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Abstract

Copy Number Variants (CNVs) are associated with elevated rates of neuropsychiatric disorders. A 

‘genetics-first’ approach, involving the CNV effects on the brain, irrespective of clinical 

symptomatology, allows investigation of mechanisms underlying neuropsychiatric disorders in the 

general population. Recent years have seen an increasing number of larger multisite neuroimaging 

studies investigating the effect of CNVs on structural and functional brain endophenotypes. 

Alterations overlap with those found in idiopathic psychiatric conditions but effect sizes are 2 to 5-

fold larger. Here we review new CNV-associated structural and functional brain alterations and 

outline the future of neuroimaging genomics research, with particular emphasis on developing new 

resources for the study of high-risk CNVs and rare genomic variants.
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Introduction: A brief history

Over the past two decades, the study of brain alterations associated with specific genetic 

conditions has offered a powerful tool for investigating gene–brain-behavior relationships in 

humans. Earlier structural and functional neuroimaging studies revealed insights into the 

impact of genetic conditions such as Fragile X [3], Turner Syndrome and Williams 

Syndrome on brain development and downstream behavior [4]. This ‘behavioral 

neurogenetics’ approach has shed light on potential mechanisms underlying developmental 

neuropsychiatric disorders in the general population. These initial studies were performed 

before the widespread availability of genome-wide chromosomal array techniques and thus 

were limited to a small set of clinically recognizable conditions diagnosed with locus-

specific genetic tests. In recent years, both case-control and population-based neuroimaging 

studies of ever-increasing sample sizes, in which DNA was also collected (Figure 1), have 

provided an opportunity to investigate the effects of a broader range of genetic mutations on 

brain structure and function. In particular, recurrent copy number variants (CNVs) 

associated with elevated rates of neuropsychiatric disorders, including autism spectrum 

disorder (ASD) and schizophrenia, have advanced knowledge of genetic drivers of structural 

and functional brain alterations.

Several developments in recent years have greatly accelerated progress (Figure 1). In 

particular, significant technical advances in both acquisition and analysis of neuroimaging 

data, have facilitated harmonization across sites and scanners [5], both prospectively [6] and 

retrospectively [7], and have substantially increased resolution of imaging acquisition 

protocols, thus providing greater insights into neurobiology. Secondly, increasing collection 

of large multi-site and population-based cohorts using common protocols, as well as 

increased public availability of imaging-genomic data resources [8,9], has led to important 

cross-CNV discoveries, described below.

Structural brain alterations in CNV carriers

Recent structural neuroimaging studies have included vastly larger samples of CNV carriers 

due to new efforts in data collection, development of international consortia, and, to some 

extent, large-scale population-based studies. The Enhancing NeuroImaging Genetics through 

Meta-Analysis (ENIGMA), Variation in individual’s project (VIP) and European 16p11.2 

Consortia have published multi-site studies of brain structure alterations in 22q11.2, 16p11.2 

[10,11], and 15q11.2 CNVs [12], applying standardized processing and analysis techniques 

to improve replication and generalizability of findings, while empowering comparisons with 

large-scale studies of idiopathic psychiatric illness. Semi-automated methods to measure 

MRI-derived thickness and surface area of the cerebral cortex (Text Box 1) are widely used 

in neuroimaging studies and have been used to model developmental and disease processes. 

One of the most notable observations across studies is that the effect sizes of CNV-

associated brain alterations are generally 2 to 5-fold larger than those found in large-scale 

studies of idiopathic psychiatric disorders (Figure 2).
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Insights from the 22q11.2 Microdeletion and Williams Syndrome

The 22q11.2 deletion syndrome (22q11DS; also known as Velocardiofacial Syndrome) has 

been more widely studied using neuroimaging techniques due to its relative frequency (at 

~1/4000 live births), large effects on neurodevelopment, and well-established link with 

schizophrenia. One in four individuals with 22q11DS develops psychotic illness, thus 

providing a powerful genetics-first framework to study brain markers for psychosis. A recent 

meta-analysis finds that 22q11DS is associated with widespread reductions of brain volume 

that converge with findings from idiopathic schizophrenia [13]. Recent ENIGMA studies, 

which have pooled 22q11DS neuroimaging cohorts from around the world, have mapped 

large-scale cortical [14], subcortical [15], and white matter [16] alterations in 22q11DS 

using both conventional and vertex-wise methods to reveal the spatial complexity of these 

alterations. Individuals with 22q11DS showed a widespread and highly consistent pattern of 

thicker cortex and lower cortical surface area [14], as well as robust subcortical alterations 

including smaller overall hippocampal, putamen, amygdala, and left thalamus volumes, and 

larger bilateral ventricle, caudate and accumbens volumes [15]. Subcortical shape analysis 

revealed a complex spatial pattern of these morphometric differences between 22q11DS and 

typically developing individuals [15]. In the first evidence of an effect of 22q11.2 deletion 

size on structural anatomy, smaller deletions (1.5Mb LCRA-LCRB) were associated with 

significantly greater cortical surface area [14] and less extreme subcortical alterations 

compared to the larger, more typical deletion (~2.6Mb LCRA-LCRD) [15].

Structural brain alterations have also been investigated in Williams Syndrome (WS), a 

condition resulting from a deletion of 26 genes at chromosome 7q11.23, associated with 

marked visuospatial deficits and hypersocial personality [17]. Using an alternative approach 

to identify intermediate phenotypes for broader genetic association studies, researchers 

created a multivariate neuroanatomical score from structural brain differences found 

between individuals with WS and controls. These neuroanatomical scores were then 

associated with SNPs within the 7q11.23 WS region from neurotypical cohorts and used to 

identify potential loci involved in normal brain development [18].

Gene Dosage Effects on the Brain

Studies have revealed that reciprocal CNVs, (i.e., deletions and duplications at the same 

locus) have opposing effects on brain phenotypes. Given the correlation between the number 

of genomic copies (deletions or duplications) and transcriptional levels of genes 

encompassed in CNVs [19], one may conclude that transcription levels quantitatively 

modulate structural and functional neuroimaging phenotypes. Intriguingly, the direction of 

such dosage effects differs across CNVs [Figure 2]: while 1q21.1 and 22q11.2 show positive 

dosage effects on brain volume and surface area (Del<Control<Dup), 16p11.2 BP4–5 and 

BP1–3 show negative dosage effects on grey and white matter volumes and cortical surface 

area (Dup<Control<Del). Similarly, head circumference, intracranial volume (ICV), and 

insula volumes were negatively correlated with the number of genomic copies at the 16p11.2 

BP4–5 locus [10]. These brain alterations were present at age 4 and remained stable across 

childhood, adolescence and early adulthood [20]. 16p11.2 BP1–3 deletion carriers were also 

found to have higher ICV, putamen, pallidum, and caudate brain volumes, whereas 

individuals with reciprocal duplications had lower brain volumes [11]. In contrast, 22q11.2 
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reciprocal CNVs show positive gene dosage effects for ICV, gray/white matter volume, 

cortical surface area, and hippocampal volumes, with a negative gene dosage effect for mean 

cortical thickness, caudate, and corpus callosum volume [21]. Similar principles of gene 

dosage apply to sex chromosome aneuploidies, where there are large-effect negative 

associations between the number of additional X chromosomes and total cortical surface 

area, as well as total brain volume [22]. 15q11.2 deletion carriers show a similar pattern to 

22q11.2 deletions, albeit with much smaller effects, involving lower surface area and thicker 

cortex across frontal, cingulate, and pre-and post-central regions compared to duplication 

and non-carriers [12], as well as reciprocal alterations in white matter, with duplications 

showing higher fractional anisotropy compared to controls and duplications 

(Del>Control>Dup) [23]. However, the very small effect size observed for 15q11.2 

duplications means that much larger studies will be needed to confirm these preliminary 

findings. Notably, 15q11.2 CNVs have consistently small effects on both brain and 

neurobehavioral traits, including psychiatric disease risk and cognition [24,25]. Taken 

together, the observed dose-response on brain traits observed across multiple CNVs suggests 

that neuroanatomical variation may be sensitive to gene dosage across multiple genomic 

regions. This is in line with the highly polygenic architecture of cortical surface area, 

observed in GWAS of common variants [26]. Furthermore, pervasive effects of gene dosage 

across cortical and subcortical structures suggests these effects may be driven by genes 

important in early neurodevelopment.

Shared vs. Distinct Neuroanatomic Effects across CNVs

The polygenic nature of psychiatric conditions and the pleiotropic effects of genomic-risk 

variants could potentially be explained by the shared effects of genomic variants on brain 

alteration. The proportion of shared and specific effects associated with CNVs remains 

unknown. A recent examination of subcortical variation across CNVs found significantly 

smaller volumes (hippocampus, thalamus, putamen, pallidum, and accumbens) in 49 

unaffected individuals carrying at least one of 12 CNVs known to increase risk for 

schizophrenia [27]. These subcortical volume decreases mediated a proportion of the 

negative association between CNVs and fluid intelligence. Another cross-CNV study found 

that CNV-associated penetrance scores for psychiatric illness were associated with medial 

(cingulum and corpus callosum) white-matter microstructure and morphological features 

[28]. However, larger samples, including a broader list of genomic variants, are required to 

draw robust conclusions on the putative convergence of CNVs on shared brain alterations.

Effects of CNVs versus effects of idiopathic Schizophrenia and ASD on Brain Structure

One of the key goals of neuroimaging studies of ‘neuropsychiatric’ CNVs is to determine 

whether there is convergence with underlying neuroanatomic alterations observed in 

complex polygenic idiopathic (i.e., behaviorally defined) developmental psychiatric 

disorders. To date, observations suggest that 1) CNVs with opposing effects on brain 

structure and function may be associated with the same neuropsychiatric condition; e.g., 

16p11.2 deletions and duplications are both associated with high ASD risk); and 2) The 

effect sizes of rare variants on neuroimaging endophenotypes are concordant with their 

effects on cognitive and behavioural traits [10,29] observed for neuroimaging phenotypes in 

idiopathic schizophrenia, ASD, and ADHD (Figure 2) [30,31]; 3) Additional factors present 
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in CNV carriers who develop a psychiatric condition demonstrate neuroimaging similarities 

with that particular condition, as suggested by findings from the multisite 22q-ENIGMA 

study where large demographically well-matched subgroups of 22q11.2 deletion carriers 

with and without a psychotic disorder were investigated. Notably, those with 22q11DS and a 

history of psychosis showed significantly thinner frontal-temporal cortex [14], as well as 

smaller thalamic, hippocampal and amygdala volumes compared to 22q11DS cases without 

a history of psychosis [15]; these findings converge with those from the largest studies of 

cortical and subcortical structure in idiopathic schizophrenia [32,33]. In contrast, analysis of 

white matter revealed a sharply diverging pattern from idiopathic schizophrenia [34], 

characterized by higher fractional anisotropy and lower diffusivity [16] (Text Box 1), 

suggesting distinct connectivity profiles may drive similar clinical outcomes. If indeed 

CNVs increase risk for neuropsychiatric disorders through distinct brain mechanisms, this 

would suggest that there may be mechanistically distinct subgroups with divergent brain 

alterations within behaviorally defined (idiopathic) cohorts, with this heterogeneity resulting 

in much smaller average effect sizes and diluting signal (Figure 2).

Functional connectivity across CNVs

Functional connectivity (FC) studies have provided critical insight into the architecture of 

brain networks involved in neuropsychiatric disorders. FC represents the intrinsic low-

frequency synchronization between different neuroanatomical regions. It is measured via 

resting-state functional magnetic resonance imaging (rs-fMRI) which captures fluctuations 

of blood oxygenation as an indirect measure of neural activity across brain areas when no 

explicit task is performed (Text Box 1). The field has gained traction, characterizing 

increasingly reproducible results [35] and demonstrating FC dimensions shared across 

diagnostic categories, suggesting that correlations observed at the molecular level are also 

present at the brain network level [36].

Few studies to date have investigated the effect of neuropsychiatric CNVs on FC patterns. 

Recently a ‘mirror’ effect of gene dosage on mean (global) connectivity was identified at the 

16p11.2 proximal locus. This opposing effect was not observed for FC at the regional level. 

Regional FC alterations associated with 16p11.2 deletion included a thalamic-sensorimotor 

over-synchronization, weaker long-range functional coupling of frontal and temporoparietal 

regions, and disrupted connectivity of the posterior insula, pre-supplementary motor cortex, 

and basal ganglia (beta values > 1 [Figure 2]) [37,38]. Duplications at the 16p11.2 proximal 

locus, in contrast, had a smaller effect on connectivity and mostly involved the amygdala-

hippocampus complex, cerebellum, and the basal ganglia.

Functional imaging studies at the 22q11.2 locus have shown evidence for large-scale 

network dysconnectivity, with underconnectivity in default mode, visual, and frontoparietal 

networks consistently observed in deletion carriers compared to controls [38–40]. Several 

studies also reported thalamocortical overconnectivity involving somatomotor regions and 

underconnectivity in frontoparietal associative networks, indicating that this effect maps 

onto large-scale resting-state networks with a dissociation along a sensory-associative 

hierarchy. The opposite effect was observed for the hippocampus in regards to somatomotor 
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and associative network connectivity, suggesting disruption of thalamic-hippocampal 

circuitry in 22q11 deletion carriers [38,41].

FC has also been investigated in WS using an a priori approach [17]. Given that the 

intraparietal sulcus has been previously found to be structurally and functionally abnormal in 

WS, the authors investigated whole-brain connectivity with this seed region. Compared to 

typically developing children, those with WS showed opposite FC patterns of the 

intraparietal sulcus with visual processing regions (underconnectivity) and with social 

processing regions (overconnectivity) [17]. Other CNVs have not yet been investigated with 

functional MRI; as such, the generalizability of these patterns to other CNVs is unknown.

There is evidence that FC alterations in CNVs such as 16p11.2 and 22q11.2 deletions 

delineate dimensions that generalize to idiopathic ASD and schizophrenia. The connectivity 

signatures of both 16p11.2 and 22q11.2 deletions showed similarities with dysconnectivity 

patterns of individuals with either idiopathic schizophrenia or autism, but not ADHD. 

Notably, individuals with FC patterns that more closely resembled FC signatures of deletion 

carriers showed more severe cognitive and behavioral symptoms. Regions showing the 

greatest FC similarities across both deletions and idiopathic psychiatric conditions included 

the thalamus, temporal pole, putamen, posterior insula, and above all the thalamus and 

somatomotor regions [38]. This pattern of findings is consistent with an emerging body of 

evidence for common neurobiological substrates of psychopathology (e.g., [42]).

Linking CNV-associated neuroimaging alterations to temporal and cytoarchitectural 
patterns of gene expression

Studies investigating the effects of CNVs on brain structure and function have provided a 

complex catalog of brain alteration patterns linked to different genomic loci. However, 

mechanisms linking CNVs to brain architecture remain largely unknown. Recent advances 

in large-scale, high-throughput transcriptomics, highlighted by the availability of brain-wide 

gene expression atlases such as the Allen Human Brain Atlas [43], have opened 

opportunities to study the relationship between temporal and spatial distribution of gene 

expression and macroscopic neuroimaging phenotypes. Studies have investigated how gene 

expression relates to independently measured functional connectivity [44], neuroanatomical 

hierarchy [45], and patterns of cortical alteration in idiopathic ASD [46] and schizophrenia 

[47]. However, to date, only two studies have investigated associations between human brain 

gene expression and CNV-associated neuroimaging alterations [38,48].

Seidlitz and colleagues linked structural MRI-derived cortical changes with spatial patterns 

of CNV gene expression. By studying multiple neurogenetic disorders known to increase the 

risk for one or more neurodevelopmental disorders, researchers revealed significant 

correlations between the spatial variation in cortical anatomy with the spatial expression of 

cell-type-specific patterns of CNV gene expression in neurotypical adults. This noninvasive, 

transcriptional vulnerability model provides a potential link between MRI-derived brain 

phenotypes and the underlying cell types and genomic mechanisms influencing neurogenetic 

disorders [48].
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Moreau and colleagues showed a significant association between the functional connectivity 

signatures of two neuropsychiatric CNVs, deletions at 22q11.2 and 16p11.2, and the spatial 

expression patterns of genes encompassed in the respective genomic loci [38,48]. However, 

many genes outside these 2 loci also exhibited similar levels of association. This redundancy 

has been hypothesized to represent a factor underlying similarities between the two CNV FC 

signatures and may explain why many CNVs affect a similar range of neuropsychiatric 

symptoms.

While these studies show the potential of combined analysis of brain imaging and 

transcriptome data, further studies covering a broader landscape of CNVs, concomitant with 

spatio-temporal patterns of gene expression, are required to unveil the underlying 

mechanisms that regulate the mapping of genetic risks onto brain alterations and potential 

organizing principles of neurodevelopment.

The future of neuroimaging genomic research

Datasets currently available for the analysis of CNVs.—Studies on CNVs to date 

have been conducted either by recruiting clinically ascertained CNV carriers or by calling 

CNVs in unselected populations or (to a lesser extent) disease cohorts that were previously 

genotyped with the initial aim of conducting GWAS. While the latter strategy has enabled 

access to large sample sizes with a 0.5 to 3% rate of moderately to mildly deleterious CNVs, 

the former approach is the only way to obtain neuroimaging data in individuals with large 

and extreme effect-size variants. As an example, the low frequency of CNVs in the general 

population, such as in UK-Biobank [27,49,50], will provide limited power to individually 

study neuroimaging effects of large effect size CNVs because this healthy cohort of 

relatively high-functioning individuals includes very few participants with significant 

cognitive and behavioral deficits. The Adolescent Brain Cognitive Development Study 

(ABCD) [51] is a long-term prospective study of brain development, with around 10,000 

children recruited between ages 9–10 and followed into early adulthood. ABCD is currently 

among the largest neuroimaging cohorts, and ongoing CNV identification will provide 

additional observations of CNV effects on neuroimaging traits in unselected populations. It 

also constitutes a more sociodemographically diverse cohort than those currently available, 

another urgent need in the field. Beyond unselected populations, however, large 

neuroimaging genomic datasets are almost non-existent in psychiatric cohorts. Currently, 

there are no autism cohorts and only a few small (n<100) schizophrenia cohorts with such 

data. The European Autism Interventions - A Multicenter Study for Developing New 

Medications (EU-Aims) will be the first dataset with neuroimaging genomic data, including 

approximately 250 individuals with ASD. We are not aware of any ongoing large-scale 

neuroimaging genomic data collection in psychiatric cohorts; such cohorts would provide 

valuable insights into genetic effects on brain structural and functional architecture across 

the allelic frequency, as detailed below.

Developing new resources for the study of CNVs and rare genomic variants with large 
effect sizes

To increase our understanding of the effects of deleterious variants on brain architecture, 

efforts must be made to recruit individuals presenting with a broad spectrum of cognitive 
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deficits and neuropsychiatric symptoms. Based on previous studies [52–54], this 

ascertainment strategy would provide a 10 to 30-fold enrichment in large effect size variants, 

including CNVs and single nucleotide variants. Further enrichment would also include 

individuals selected on the basis of having a deleterious genomic variant. A genetics-first 

genome-wide cohort would provide a yield of developmental psychiatric CNVs 

approximately 100-fold higher compared to an unselected population [50]. As such, the 

burden of large effect-size CNVs in a cohort of 10000 individuals recruited through 

psychiatric, developmental pediatrics and genetic clinics would be equivalent to the 

mutational burden in 500,000 to 1,000,000 individuals from the general population. 

Genomics, neuroimaging, as well as dimensional neurobehavioral assessments in such a 

cross-disorder cohort would provide multiscale information unmatched by any current 

resources. It would provide a valuable resource for the fields of neuroimaging, genomics, 

and neurodevelopmental disorders. To achieve a multiscale and multimodal dataset while 

limiting cost, assessments could be aligned with those conducted in an unselected population 

to provide a larger group of unaffected individuals for comparison, thus ascertaining a broad 

spectrum of genomic and clinical variation.

Conclusion

Identifying gene functions that may mediate the effect of CNVs on neuroimaging traits and 

risk for psychiatric conditions will require genome-wide analyses of a large number of 

genomic variants that alter genes with a broad variety of functions. Neuroimaging studies in 

animal models of CNVs are also beginning to shed light on the pathophysiology underlying 

brain alterations detected in human CNV carriers, although very few studies to date have 

directly compared neuroimaging findings between CNV mouse models and humans 

[37,55,56]. Transitioning from the current candidate studies to genome-wide analyses of rare 

variants will require large-scale efforts ascertaining individuals enriched for high-risk 

variants across a broad spectrum of neuropsychiatric symptoms. While in the near future, 

datasets will likely remain underpowered for gene-based association studies, other strategies 

collapsing variants across molecular pathways and developmental processes (weighted 

burden) would provide significant insight into mechanisms underlying the effects of rare 

variants on the structure and function of the brain.

Collectively, the research presented here summarizes insights that CNVs can offer into 

fundamental principles of brain development, in the context of health and disease. Such 

genetics-first neuroimaging approaches, combined with top-down data-driven neuroimaging 

subtyping performed in idiopathic psychiatric conditions[1] will advance understanding of 

neural mechanisms of psychopathology.
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Text Box 1.

Why study neuroimaging in CNVs?

There is a consensus that substantial heterogeneity underlies the neurobiology of 

developmental psychiatric conditions such as autism and schizophrenia [1,2].

Neuroimaging has been used to characterize atypical brain patterns in idiopathic 

psychiatric conditions and findings have highlighted small effect sizes and variability 

across studies, likely due to neurobiological heterogeneity. As such, it has become 

increasingly clear that stratification at the molecular, and brain network level is a 

prerequisite for identifying mechanisms in behaviorally defined conditions.

The study of brain alterations associated with specific genomic disorders (large effect 

size variants) offer a powerful tool for investigating gene–brain-behavior relationships in 

humans. Specifically, neuroimaging studies of CNVs: 1) provide intermediate phenotypes 

on the causal pathways between variants and cognition 2) offer a window into potential 

shared biological mechanisms between these highly penetrant large-effect mutations, 

where the molecular basis is known, and idiopathic (behaviorally defined) 

neuropsychiatric disorders; 3) can shed light on fundamental principles of brain 

development and help dissect the heterogeneity of neuropsychiatric disorders.

Definitions

Pathogenic CNV:

A CNV of large effect size on neurodevelopment which contributes substantially to the 

neurodevelopmental symptoms of a patient. Such variants are also referred to as 

“clinically significant”.

Gene dosage effect:

Effects related to a change in the number of genomic copies (deletions or duplications).

Surface area:

As with cortical thickness, semi-automated MRI processing techniques can be used to 

estimate the surface area of the cortical mantle and have been widely used to study brain 

development in healthy and clinical populations. MRI-derived measures of surface area 

are thought to be driven by the number of cortical columns and are likely under 

differential genetic control than cortical thickness.

Cortical thickness:

Measures of local thickness of the cerebral cortex can be obtained from widely used (and 

histologically validated) MRI processing techniques that measure the distance between 

the pial surface and gray/white matter boundary beneath the cortical ribbon. Local 

thickness measures are thought to vary with the number of cells within the cortical 

column, where thickness decreases from childhood onward.
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Diffusion tensor imaging (DTI):

A widely used method to infer the underlying microstructural organization of brain tissue 

by quantifying the local direction and magnitude of water diffusion, especially in white 

matter.

Fractional anisotropy (FA):

A scalar measure derived from the DTI model that provides the degree of anisotropy in a 

given region and has been related to degree of axonal packing.

Mean Diffusivity (MD):

Another scalar measure from DTI that quantifies the total velocity of diffusion, a signal 

that has been tied to tissue cellularity, edema and necrosis.

Resting-state functional connectivity:

Resting-state functional magnetic resonance imaging (rs-fMRI) captures fluctuations of 

blood oxygenation as an indirect measure of neural activity across brain areas when no 

explicit task is performed. Functional connectivity represents the synchronization of 

oxygenation fluctuation between different neuroanatomical regions. Each connection 

value is measured by the correlation of low-frequency activities between 2 regions. 

Robust functional brain networks measured by rs-fMRI are also recapitulated by spatial 

patterns of gene expression in the adult brain.

Global and regional functional connectivity (FC):

Global FC represents the mean value of connectivity strength across all regions in the 

brain. Regional FC is the connectivity between a given region and the rest of the brain.
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Figure 1. 
Collection of genomic and brain imaging data has been exponential in the past 5 years.

Cohorts for Heart and Aging Research in Genomic Epidemiology: CHARGE [57,58]; 

Alzheimer’s Disease Neuroimaging Initiative: ADNI [59]; IMAGEN [60]; Simons Variation 

in Individuals Project: Simons VIP [61]; Enhancing Neuro Imaging Genetics through Meta-

Analysis: ENIGMA 1 [5]; Human Connectome Project (HCP [62]; Brain Genomics 

Superstruct Project: GSP [63]; ENIGMA 2: [64]; SchizConnect [65]; UK-Biobank [9]; The 

Pediatric Imaging, Neurocognition, and Genetics: PING [66]; European Autism 

Interventions A Multicentre Study for Developing New Medications: EU-AIMS [67]; The 

Adolescent Brain Cognitive Development: ABCD [68]; ENIGMA-3 [26]; UK-Biobank 

release [69,70].

Red: Selected population (disease-first or genetic-first cohort), Blue: unselected population; 

“*” Longitudinal study.
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Figure 2. 
Cortical thickness (A-B) and Surface area (C-D): Effect sizes are shown for Schizophrenia: 

n=4,474 patients with schizophrenia vs. 5,098 HC [32]; ASD: n=1,571 patients with ASD 

vs. 1,651 HC [31]; Major Depressive Disorder (MDD): n=2,148 patients with MDD vs. 

7,957 HC [71]; Obsessive Compulsive Disorder (OCD): n=1,905 patients with OCD vs. 

1,760 HC [72]; Bipolar Disorder: n=6,503 patients with Bipolar Disorder vs. 1,837 HC [73]; 

ADHD: n=2,246 patients with ADHD vs. 1,934 HC [74].

22q11.2 deletion: n=474 carriers vs. 315 HC [14]; 22q11.2 duplication: n=19 carriers vs. 

312 HC; 16p11.2 BP4–5: n=80 deletion carriers, n=69 duplication carriers, and 312 HC; 

1q21.1: n=25 deletion carriers, n=16 duplication carriers, and 312 HC [75]; 15q11.2: n=203 

deletion carriers, n= 306 duplication carriers, and 45247 HC [12]

Subcortical volume (E-F): ADHD: n=1,713 patients with ADHD, and 1,529 HC [76];; 

Bipolar Disorder: n=1,710 patients with BIP, and 2594 HC [77]; MDD: n=1,728 patients 

with MDD, and 7,199 HC [78]; OCD: n=1,830 patients with OCD, and 1,759 HC [79]; 

Schizophrenia: n=2,028 patients with SZ, and 2,540 HC [33]. 22q11.2 deletion: n=533 

subjects with 22q11DS, and 330 HC [15].

Functional MRI (G-H): Schizophrenia: n=241 patients with SZ, and 242 HC; ASD: n=225 

patients with ASD, and 234 HC; ADHD: n=289 patients with ADHD, and 474 HC; 16p11.2 

proximal (BP4–5) locus: n=20 subjects with 16p11.2 deletion, n=23 subjects with 16p11.2 
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duplications and 79 HC; 22q11.2: n=46 subjects with 22q11.2 deletion, n=12 subjects with 

22q11.2 duplication and 43 HC [38].
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