
UC Berkeley
UC Berkeley Previously Published Works

Title
AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control

Permalink
https://escholarship.org/uc/item/9rh2t6tt

Authors
Peng, Xue Bin
Ma, Ze
Abbeel, Pieter
et al.

Publication Date
2021-04-05

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9rh2t6tt
https://escholarship.org/uc/item/9rh2t6tt#author
https://escholarship.org
http://www.cdlib.org/

AMP: Adversarial Motion Priors for Stylized Physics-Based Character
Control

XUE BIN PENG†, University of California, Berkeley
ZE MA†, Shanghai Jiao Tong University
PIETER ABBEEL, University of California, Berkeley
SERGEY LEVINE, University of California, Berkeley
ANGJOO KANAZAWA, University of California, Berkeley

Fig. 1. Our framework enables physically simulated character to solve challenging tasks while adopting stylistic behaviors specified by unstructured motion
data. Left: A character learns to traverse an obstacles course using a variety of locomotion skills. Right: A character learns to walk to and punch a target.

Synthesizing graceful and life-like behaviors for physically simulated charac-
ters has been a fundamental challenge in computer animation. Data-driven
methods that leverage motion tracking are a prominent class of techniques
for producing high fidelity motions for a wide range of behaviors. However,
the effectiveness of these tracking-based methods often hinges on carefully
designed objective functions, and when applied to large and diverse motion
datasets, these methods require significant additional machinery to select the
appropriate motion for the character to track in a given scenario. In this work,
we propose to obviate the need to manually design imitation objectives and
mechanisms for motion selection by utilizing a fully automated approach
based on adversarial imitation learning. High-level task objectives that the
character should perform can be specified by relatively simple reward func-
tions, while the low-level style of the character’s behaviors can be specified
by a dataset of unstructured motion clips, without any explicit clip selection
or sequencing. For example, a character traversing an obstacle course might
utilize a task-reward that only considers forward progress, while the dataset
contains clips of relevant behaviors such as running, jumping, and rolling.
These motion clips are used to train an adversarial motion prior, which spec-
ifies style-rewards for training the character through reinforcement learning
(RL). The adversarial RL procedure automatically selects which motion to
perform, dynamically interpolating and generalizing from the dataset. Our
system produces high-quality motions that are comparable to those achieved
by state-of-the-art tracking-based techniques, while also being able to easily
accommodate large datasets of unstructured motion clips. Composition of
disparate skills emerges automatically from the motion prior, without re-
quiring a high-level motion planner or other task-specific annotations of
the motion clips. We demonstrate the effectiveness of our framework on
a diverse cast of complex simulated characters and a challenging suite of
motor control tasks.

Authors’ addresses: Xue Bin Peng† , University of California, Berkeley; ZeMa† , Shanghai
Jiao Tong University; Pieter Abbeel, University of California, Berkeley; Sergey Levine,
University of California, Berkeley; Angjoo Kanazawa, University of California, Berkeley.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3450626.3459670.

CCS Concepts: • Computing methodologies→ Procedural animation;
Adversarial learning; Control methods.

Additional Key Words and Phrases: Wireless sensor networks, media access
control, multi-channel, radio interference, time synchronization

ACM Reference Format:
Xue Bin Peng†, Ze Ma†, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa.
2021. AMP: Adversarial Motion Priors for Stylized Physics-Based Character
Control. ACM Trans. Graph. 40, 4, Article 1 (August 2021), 20 pages. https:
//doi.org/10.1145/3450626.3459670

1 INTRODUCTION
Synthesizing natural and life-like motions for virtual characters
is a crucial element for breathing life into immersive experiences,
such as films and games. The demand for realistic motions becomes
even more apparent for VR applications, where users are provided
with rich modalities through which to interact with virtual agents.
Developing control strategies that are able to replicate the properties
of naturalistic behaviors is also of interest for robotic systems, as
natural motions implicitly encode important properties, such as
safety and energy efficiency, which are vital for effective operation
of robots in the real world. While examples of natural motions
are commonplace, identifying the underlying characteristics that
constitute these behaviors is nonetheless challenging, and more
difficult still to replicate in a controller.
So what are the characteristics that constitute natural and life-

like behaviors? Devising quantitative metrics of the naturalness of
motions has been a fundamental challenge for optimization-based
character animation techniques [Al Borno et al. 2013; Wampler et al.
2014; Wang et al. 2009]. Heuristics such as symmetry, stability, and
effort minimization can improve the realism of motions produced by
physically simulated characters [Grochow et al. 2004; Mordatch et al.
2012, 2013; Yu et al. 2018]. But these strategies may not be broadly
applicable to all behaviors of interest. Effective applications of these
† Joint first authors.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

ar
X

iv
:2

10
4.

02
18

0v
1

 [
cs

.G
R

]
 5

 A
pr

 2
02

1

https://doi.org/10.1145/3450626.3459670
https://doi.org/10.1145/3450626.3459670
https://doi.org/10.1145/3450626.3459670

1:2 • Xue Bin Peng† , Ze Ma† , Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa

heuristics often require careful balancing of the various objectives,
a tuning process that may need to be repeated for each task. Data-
driven methods are able to mitigate some of these challenges by
leveraging motion clips recorded from real-life actors to guide the
behaviors of simulated characters [Da Silva et al. 2008; Liu et al.
2010; Muico et al. 2009; Sok et al. 2007]. A common instantiation
of this approach is to utilize a tracking objective that encourages a
character to follow particular reference trajectories relevant for a
given task. These tracking-based methods can produce high-quality
motions for a large repertoire skills. But extending these techniques
to effectively leverage large unstructured motion datasets remains
challenging, since a suitable motion clip needs to be selected for
the character to track at each time step. This selection process is
typically performed by a motion planner, which generates reference
trajectories for solving a particular task [Bergamin et al. 2019; Park
et al. 2019; Peng et al. 2017]. However, constructing an effective
motion planner can itself be a challenging endeavour, and entails
significant overhead to annotate and organize the motion clips
for a desired task. For many applications, it is not imperative to
exactly track a particular reference motion. Since a dataset typically
provides only a limited collection of example motions, a character
will inevitably need to deviate from the reference motions in order
to effectively perform a given task. Therefore, the intent is often not
for the character to closely track a particular motion, but to adopt
general behavioral characteristics depicted in the dataset. We refer
to these behavioral characteristics as a style.

In this work, we aim to develop a system where users can specify
high-level task objectives for a character to perform, while the low-
level style of a character’s movements can be controlled through
examples provided in the form of unstructured motion clips. To
control the style of a character’s motions, we propose adversarial
motion priors (AMP), a method for imitating behaviors from raw
motion clips without requiring any task-specific annotations or
organization of the dataset. Given a set of reference motions that
constitutes a desired motion style, the motion prior is modeled as
an adversarial discriminator, trained to differentiate between behav-
iors depicted in the dataset from those produced by the character.
The motion prior therefore acts as a general measure of similarity
between the motions produced by a character and the motions in
the dataset. By incorporating the motion prior in a goal-conditioned
reinforcement learning framework, our system is able to train physi-
cally simulated characters to perform challenging tasks with natural
and life-like behaviors. Composition of diverse behaviors emerges
automatically from the motion prior, without the need for a motion
planner or other mechanism for selecting which clip to imitate.
The central contribution of this work is an adversarial learning

approach for physics-based character animation that combines goal-
conditioned reinforcement with an adversarial motion prior, which
enables the style of a character’s movements to be controlled via
example motion clips, while the task is specified through a simple
reward function. We present one of the first adversarial learning
systems that is able to produce high-quality full-body motions for
physically simulated characters. By combining the motion prior
with additional task objectives, our system provides a convenient
interface through which users can specify high-level directions for
controlling a character’s behaviors. These task objectives allow our

characters to acquire more complex skills than those demonstrated
in the original motion clips.While our system is built on well-known
adversarial imitation learning techniques, we propose a number of
important design decisions that lead to substantially higher quality
results than those achieved by prior work, enabling our characters
to learn highly dynamic and diverse motors skills from unstructured
motion data.

2 RELATED WORK
Developing systems that can synthesize natural motions for vir-
tual characters is one of the fundamental challenges of computer
animation. These procedural animation techniques can be broadly
categorized as kinematic methods and physics-based methods. Kine-
matic methods generally do not explicitly utilize the equations of
motion for motion synthesis. Instead, these methods often lever-
age datasets of motion clips to generate motions for a character
[Lee et al. 2002, 2010b]. Given a motion dataset, controllers can be
constructed to select an appropriate motion clip to play back for
a particular scenario [Agrawal and van de Panne 2016; Safonova
and Hodgins 2007; Treuille et al. 2007]. Data-driven methods using
generative models, such as Gaussian processes [Levine et al. 2012;
Ye and Liu 2010] and neural networks [Holden et al. 2017; Ling et al.
2020; Zhang et al. 2018], have also been applied to synthesize mo-
tions online. When provided with sufficiently large and high-quality
datasets, kinematic methods are able to produce realistic motions
for a large variety of sophisticated skills [Agrawal and van de Panne
2016; Lee et al. 2018, 2010b; Levine et al. 2011; Starke et al. 2019].
However, their ability to synthesize motions for novel situations
can be limited by the availability of data. For complex tasks and
environments, it can be difficult to collect a sufficient amount of data
to cover all possible behaviors that a character may need to perform.
This is particularly challenging for nonhuman and fictional crea-
tures, where motion data can be scarce. In this work, we combine
data-driven techniques with physics-based animation methods to
develop characters that produce realistic and responsive behaviors
to novel tasks and environments.

Physics-Based Methods: Physics-based methods address some of
the limitations of kinematic methods by synthesizing motions from
first principles. These methods typically leverage a physics sim-
ulation, or more general knowledge of the equations of motion,
to generate motions for a character [Raibert and Hodgins 1991;
Wampler et al. 2014]. Optimization techniques, such as trajectory
optimization and reinforcement learning, play a pivotal role in many
physics-based methods, where controllers that drive a character’s
motions are produced by optimizing an objective function [Mor-
datch et al. 2012; Tan et al. 2014; van de Panne et al. 1994]. While
these methods are able to synthesize physically plausible motions
for novel scenarios, even in the absence of motion data, designing ef-
fective objectives that lead to natural behaviors can be exceptionally
difficult. Heuristics derived from prior knowledge of the character-
istics of natural motions are commonly included into the objective
function, such as symmetry, stability, effort minimization, and many
more [Mordatch et al. 2012; Wang et al. 2009; Yu et al. 2018]. Simu-
lating more biologically accurate actuators can also improve motion

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control • 1:3

quality [Geijtenbeek et al. 2013; Jiang et al. 2019; Wang et al. 2012],
but may nonetheless yield unnatural behaviors.

Imitation Learning: The challenges of designing objective func-
tions that lead to natural motions have spurred the adoption of
data-driven physics-based animation techniques [Da Silva et al.
2008; Kwon and Hodgins 2017; Lee et al. 2010a; Sharon and van de
Panne 2005; Zordan and Hodgins 2002], which utilizes reference
motion data to improve motion quality. Reference motions are typi-
cally incorporated through an imitation objective that encourages a
character to imitate motions in the dataset. The imitation objective
is commonly implemented as a tracking objective, which attempts
to minimize the pose error between the simulated character and
target poses from a reference motion [Lee et al. 2010a; Liu et al.
2016, 2010; Peng et al. 2018a; Sok et al. 2007]. Since the pose error is
generally computed with respect to a single target pose at a time,
some care is required to select an appropriate target pose from the
dataset. A simple strategy is to synchronize the simulated character
with a given reference motion using a phase variable [Lee et al.
2019; Peng et al. 2018a,b], which is provided as an additional input
to the controller. The target pose at each time step can then be
conveniently determined by selecting the target pose according to
the phase. This strategy has been effective for imitating individual
motion clips, but it can be difficult to scale to datasets containing
multiple disparate motions, as it may not be possible to synchronize
and align multiple reference motions according to a single-phase
variable. Recent methods have extended these tracking-based tech-
niques to larger motion datasets by explicitly providing target poses
from the reference motion that is being tracked as inputs to the con-
troller [Bergamin et al. 2019; Chentanez et al. 2018; Park et al. 2019;
Won et al. 2020]. This then allows a controller to imitate different
motions depending on the input target poses. However, selecting the
appropriate motion for a character to imitate in a given scenario can
still entail significant algorithmic overhead. These methods often
require a high-level motion planner that selects which motion clip
the character should imitate for a given task [Bergamin et al. 2019;
Park et al. 2019; Peng et al. 2017]. The character’s performance on a
particular task can therefore be constrained by the performance of
the motion planner.

Another major limitation of tracking-based imitation techniques
is the need for a pose error metric when computing the tracking
objective [Liu et al. 2010; Peng et al. 2018a; Sharon and van de Panne
2005]. These errormetrics are oftenmanually-designed, and it can be
challenging to construct and tune a common metric that is effective
across all skills that a character is to imitate. Adversarial imitation
learning provides an appealing alternative [Abbeel and Ng 2004;
Ho and Ermon 2016; Ziebart et al. 2008], where instead of using a
manually-designed imitation objective, these algorithms train an ad-
versarial discriminator to differentiate between behaviors generated
by an agent from behaviors depicted in the demonstration data (e.g.
reference motions). The discriminator then serves as the objective
function for training a control policy to imitate the demonstrations.
While these methods have shown promising results for motion imi-
tation tasks [Merel et al. 2017; Wang et al. 2017], adversarial learning
algorithms can be notoriously unstable and the resulting motion

quality still falls well behind what has been achieved with state-of-
the-art tracking-based techniques. Peng et al. [2019b] was able to
able to produce substantially more realistic motions by regularizing
the discriminator with an information bottleneck. However, their
method still requires a phase variable to synchronize the policy and
discriminator with the reference motion. Therefore, their results are
limited to imitating a single motion per policy, and thus not suitable
for learning from large diverse motion datasets. In this work, we
propose an adversarial method for learning general motion priors
from large unstructured datasets that contain diverse motion clips.
Our approach does not necessitate any synchronization between
the policy and reference motion. Furthermore, our approach does
not require a motion planner, or any task-specific annotation and
segmentation of the motion clips [Bergamin et al. 2019; Park et al.
2019; Peng et al. 2017]. Instead, composition of multiple motions
in furtherance of a task objective emerges automatically through
the motion prior. We also present a number of design decisions for
stabilizing the adversarial training process, leading to consistent
and high-quality results.

Latent Space Models: Latent space models can also act as a form
of motion prior that leads to more life-like behaviors. These mod-
els specify controls through a learned latent representation, which
is then mapped to controls for the underlying system [Burgard
et al. 2008; Florensa et al. 2017; Hausman et al. 2018; Heess et al.
2016]. The latent representation is typically learned through a pre-
training phase using supervised learning or reinforcement learning
techniques to encode a diverse range of behaviors into a latent rep-
resentation. Once trained, this latent representation can be used to
build a control hierarchy, where the latent space model acts as a
low-level controller, and a separate high-level controller is trained to
specify controls via the latent space [Florensa et al. 2017; Haarnoja
et al. 2018; Lynch et al. 2020]. For motion control of simulated char-
acters, the latent representation can be trained to encode behaviors
from reference motion clips, which then constrains the behavior
of a character to be similar to those observed in the motion data,
therefore leading to more natural behaviors for downstream tasks
[Merel et al. 2019; Peng et al. 2019a]. However, since the realism
of the character’s motions is enforced implicitly through the latent
representation, rather than explicitly through an objective function,
it is still possible for the high-level controller to specify latent encod-
ings that produce unnatural behaviors [Merel et al. 2020; Peng et al.
2019a]. Luo et al. [2020] proposed an adversarial domain confusion
loss to prevent the high-level controller from specifying encodings
that are different from those observed during pre-training. However,
since this adversarial objective is applied in the latent space, rather
than on the actual motions produced by the character, the model is
nonetheless prone to generating unnatural behaviors. Our proposed
motion prior directly enforces similarity between the motions pro-
duced by the character and those in the reference motion dataset,
which enables our method to produce higher fidelity motions than
what has been demonstrated by latent space models. Our motion
prior also does not require a separate pre-training phase, and instead,
can be trained jointly with the policy.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:4 • Xue Bin Peng† , Ze Ma† , Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa

3 OVERVIEW
Given a dataset of referencemotions and a task objective defined by a
reward function, our system synthesizes a control policy that enables
a character to achieve the task objective in a physically simulated
environment, while utilizing behaviors that resemble the motions
in the dataset. Crucially, the character’s behaviors need not exactly
match any specific motion in the dataset, instead its movements
need only to adopt more general characteristics exhibited by the
corpus of reference motions. These reference motions collectively
provide an example-based definition of a behavioral style, and by
providing the system with different motion datasets, the character
can then be trained to perform a task in a variety of distinct styles.

Figure 2 provides a schematic overview of the system. The motion
datasetM consists of a collection of reference motions, where each
motionm𝑖 = {q̂𝑖𝑡 } is represented as a sequence of poses q̂𝑖𝑡 . The mo-
tion clips may be collected from the mocap of real-life actors or from
artist-authored keyframe animations. Unlike previous frameworks,
our system can be applied directly on raw motion data, without
requiring task-specific annotations or segmentation of a clip into
individual skills. The motion of the simulated character is controlled
by a policy 𝜋 (a𝑡 |s𝑡 , g) that maps the state of the character s𝑡 and
a given goal g to a distribution over actions a𝑡 . The actions from
the policy specify target positions for proportional-derivative (PD)
controllers positioned at each of the character’s joints, which in
turn produce control forces that drive the motion of the character.
The goal g specifies a task reward function 𝑟𝐺𝑡 = 𝑟𝐺 (s𝑡 , a𝑡 , s𝑡+1, g),
which defines high-level objectives for the character to satisfy (e.g.
walking in a target direction or punching a target). The style objec-
tive 𝑟𝑆𝑡 = 𝑟𝑆 (s𝑡 , s𝑡+1) is specified by an adversarial discriminator,
trained to differentiate between motions depicted in the dataset
from motions produced by the character. The style objective there-
fore acts as a task-agnostic motion prior that provides an a-priori
estimate of the naturalness or style of a given motion, independent
of a specific task. The style objective then encourages the policy to
produce motions that resemble behaviors depicted in the dataset.

4 BACKGROUND
Our system combines techniques from goal-conditioned reinforce-
ment learning and generative adversarial imitation learning to train
control policies that enable simulated characters to perform chal-
lenging tasks in a desired behavioral style. In this section, we provide
a brief review of these techniques.

4.1 Goal-Conditioned Reinforcement Learning
Our characters are trained through a goal-conditioned reinforce-
ment learning framework, where an agent interacts with an envi-
ronment according to a policy 𝜋 in order to fulfill a given goal g ∈ G
sampled according to a goal distribution g ∼ 𝑝 (g). At each time step
𝑡 , the agent observes the state s𝑡 ∈ S of the system, then samples
an action a𝑡 ∈ A from a policy a𝑡 ∼ 𝜋 (a𝑡 |s𝑡 , g). The agent then
applies that action, which results in a new state s𝑡+1, as well as a
scalar reward 𝑟𝑡 = 𝑟 (s𝑡 , a𝑡 , s𝑡+1, g). The agent’s objective is to learn
a policy that maximizes its expected discounted return 𝐽 (𝜋),

𝐽 (𝜋) = E𝑝 (g)E𝑝 (𝜏 |𝜋,g)

[
𝑇−1∑︁
𝑡=0

𝛾𝑡𝑟𝑡

]
, (1)

Fig. 2. Schematic overview of the system. Given a motion dataset defining a
desired motion style for the character, the system trains a motion prior that
specifies style-rewards 𝑟𝑆𝑡 for the policy during training. These style-rewards
are combined with task-rewards 𝑟𝐺𝑡 and used to train a policy that enables
a simulated character to satisfy task-specific goals g, while also adopting
behaviors that resemble the reference motions in the dataset.

where 𝑝 (𝜏 |𝜋, g) = 𝑝 (s0)
∏𝑇−1
𝑡=0 𝑝 (s𝑡+1 |s𝑡 , a𝑡)𝜋 (a𝑡 |s𝑡 , g) represents

the likelihood of a trajectory 𝜏 = {(s𝑡 , a𝑡 , 𝑟𝑡)𝑇−1𝑡=0 , s𝑇 } under a policy
𝜋 for a goal g. 𝑝 (s0) is the initial state distribution, and 𝑝 (s𝑡+1 |s𝑡 , a𝑡)
represents the dynamics of the environment. 𝑇 denotes the time
horizon of a trajectory, and 𝛾 ∈ [0, 1) is a discount factor.

4.2 Generative Adversarial Imitation Learning
Generative adversarial imitation learning (GAIL) [Ho and Ermon
2016] adapts techniques developed for generative adversarial net-
works (GAN) [Goodfellow et al. 2014] to the domain of imitation
learning. In the interest of brevity, we exclude the goal g from
the notation, but the following discussion readily generalizes to
goal-conditioned settings. Given a dataset of demonstrationsM =

{(s𝑖 , a𝑖)}, containing states s𝑖 and actions a𝑖 recorded from an un-
known demonstration policy, the objective is to train a policy 𝜋 (a|s)
that imitates the behaviors of the demonstrator. Behavioral cloning
can be used to directly fit a policy to map from states observed inM
to their corresponding actions using supervised learning [Bojarski
et al. 2016; Pomerleau 1988]. However, if only a small amount of
demonstrations are available, then behavioral cloning techniques
are prone to drift [Ross et al. 2011]. Furthermore, behavioral cloning
is not directly applicable in settings where the demonstration actions
are not observable (e.g. reference motion data).

GAIL addresses some of the limitations of behavioral cloning by
learning an objective function that measures the similarity between
the policy and the demonstrations, and then updating 𝜋 via rein-
forcement learning to optimize the learned objective. The objective
is modeled as a discriminator 𝐷 (s, a), trained to predict whether a
given state s and action a is sampled from the demonstrationsM
or generated by running the policy 𝜋 ,
arg min

𝐷

−E𝑑M (s,a) [log (𝐷 (s, a))] − E𝑑𝜋 (s,a) [log (1 − 𝐷 (s, a))] .

(2)

𝑑M (s, a) and 𝑑𝜋 (s, a) denote the state-action distribution of the
dataset and policy respectively. The policy is then trained using the

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control • 1:5

RL objective detailed in Equation 1, with rewards specified by,
𝑟𝑡 = −log (1 − 𝐷 (s𝑡 , a𝑡)) . (3)

This adversarial training procedure can be interpreted as training a
policy to produce states and actions that appear to the discrimina-
tor as being indistinguishable from the demonstrations. It can be
shown that this objective minimizes the Jensen-Shannon divergence
between 𝑑M (s, a) and 𝑑𝜋 (s, a) [Ke et al. 2019; Nowozin et al. 2016].

5 ADVERSARIAL MOTION PRIOR
In this work, we consider reward functions that consist of two
components specifying: 1) what task a character should perform,
and 2) how the character should go about performing that task,

𝑟 (s𝑡 , a𝑡 , s𝑡+1, g) = 𝑤𝐺𝑟𝐺 (s𝑡 , a𝑡 , s𝑡 , g) +𝑤𝑆𝑟𝑆 (s𝑡 , s𝑡+1) . (4)
The what is represented by a task-specific reward 𝑟𝐺 (s𝑡 , a𝑡 , s𝑡 , g),
which defines high-level objectives that a character should satisfy
(e.g. moving to a target location). The how is represented through
a learned task-agnostic style-reward 𝑟𝑆 (s𝑡 , s𝑡+1), which specifies
low-level details of the behaviors that the character should adopt
when performing the task (e.g., walking vs. running to a target). The
two reward terms are combined linearly with weights𝑤𝐺 and𝑤𝑆 .
The task-reward 𝑟𝐺 can be relatively intuitive and simple to design.
However, it can be exceptionally difficult to design a style-reward 𝑟𝑆
that leads a character to learn naturalistic behaviors, or behaviors
that conform to a particular style. Learning effective style objectives
will therefore be the primary focus of this work.

We propose to model the style-reward with a learned discrimi-
nator, which we refer to as an adversarial motion prior (AMP), by
analogy to the adversarial pose priors that were previously pro-
posed for vision-based pose estimation tasks [Kanazawa et al. 2018].
Unlike standard tracking objectives, which measure pose similarity
with respect to a specific reference motion, the motion prior returns
a general score indicating the similarity of the character’s motion
to the motions depicted in the dataset, without explicitly compar-
ing to a particular motion clip. Given a motion dataset, the motion
prior is trained using the GAIL framework to predict whether a
state transition (s𝑡 , s𝑡+1) is a real sample from the dataset or a fake
sample produced by the character. The motion prior is independent
of the task-specific goal g, therefore a single motion prior can be
applied to multiple tasks, and different motion priors can be applied
to train policies that perform the same task but in different styles. By
combining GAIL with additional task objectives, our approach de-
couples task specification from style specification, thereby enabling
our characters to perform tasks that may not be depicted in the
original demonstrations. However, adversarial RL techniques are
known to be highly unstable. In the following sections, we discuss
a number of design decisions to stabilize the training process and
produce higher fidelity results.

5.1 Imitation from Observations
The original formulation of GAIL requires access to the demonstra-
tor’s actions [Ho and Ermon 2016]. However, when the demonstra-
tions are provided in the form of motion clips, the actions taken by
the demonstrator are unknown, and only states are observed in the
data. To extend GAIL to settings with state-only demonstrations,

the discriminator can be trained on state transitions 𝐷 (s, s′) instead
of state-action pairs 𝐷 (s, a) [Torabi et al. 2018],
arg min

𝐷

− E𝑑M (s,s′)
[
log

(
𝐷 (s, s′)

)]
− E𝑑𝜋 (s,s′)

[
log

(
1 − 𝐷 (s, s′)

)]
.

(5)

𝑑M (s, s′) and 𝑑𝜋 (s, s′) denote the likelihood of observing a state
transition from s to s′ in the datasetM and by following policy
𝜋 respectively. Note that if the demonstrator is different from the
agent (e.g. a human actor), the observed state transitions may not be
physically consistent for the agent, and therefore impossible for the
agent to perfectly reproduce. Despite this discrepancy, we show that
the discriminator still provides an effective objective for imitating a
wide range of behaviors.

5.2 Least-Squares Discriminator
The standard GAN objective detailed in Equation 5 typically uses
a sigmoid cross-entropy loss function. However, this loss tends to
lead to optimization challenges due to vanishing gradients as the
sigmoid function saturates, which can hamper training of the policy
[Arjovsky et al. 2017]. A myriad of techniques have been proposed
to address these optimization challenges [Arjovsky et al. 2017; Berth-
elot et al. 2017; Gulrajani et al. 2017; Karras et al. 2017; Kodali et al.
2017; Mescheder et al. 2018; Radford et al. 2015; Salimans et al. 2016].
In this work, we adopt the loss function proposed for least-squares
GAN (LSGAN) [Mao et al. 2017], which has demonstrated more
stable training and higher quality results for image synthesis tasks.
The following objective is used to train the discriminator,

arg min
𝐷

E𝑑M (s,s′)
[(
𝐷 (s, s′) − 1

)2] + E𝑑𝜋 (s,s′) [(𝐷 (s, s′) + 1)2] .
(6)

The discriminator is trained by solving a least-squares regression
problem to predict a score of 1 for samples from the dataset and
−1 for samples recorded from the policy. The reward function for
training the policy is then given by

𝑟 (s𝑡 , s𝑡+1) = max
[
0, 1 − 0.25(𝐷 (s𝑡 , s𝑡+1) − 1)2

]
. (7)

The additional offset, scaling, and clipping are applied to bound the
reward between [0, 1], as is common practice in previous RL frame-
works [Peng et al. 2018a, 2016; Tassa et al. 2018]. Mao et al. [2017]
showed that this least-squares objective minimizes the Pearson 𝜒2
divergence between 𝑑M (s, s′) and 𝑑𝜋 (s, s′).

5.3 Discriminator Observations
Since the discriminator specifies rewards for training the policy,
selecting an appropriate set of features for use by the discriminator
when making its predictions is vital to provide the policy with effec-
tive feedback. As such, before a state transition is provided as input
to the discriminator, we first apply an observation map Φ(s𝑡) that
extracts a set of features relevant for determining the characteristics
of a given motion. The resulting features are then used as inputs to
the discriminator 𝐷 (Φ(s),Φ(s′)). The set of features include:
• Linear velocity and angular velocity of the root, represented
in the character’s local coordinate frame.
• Local rotation of each joint.
• Local velocity of each joint.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:6 • Xue Bin Peng† , Ze Ma† , Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa

• 3D positions of the end-effectors (e.g. hands and feet), repre-
sented in the character’s local coordinate frame.

The root is designated to be the character’s pelvis. The character’s
local coordinate frame is defined with the origin located at the
root, the x-axis oriented along the root link’s facing direction, and
the y-axis aligned with the global up vector. The 3D rotation of
each spherical joint is encoded using two 3D vectors corresponding
to the normal and tangent in the coordinate frame. This rotation
encoding provides a smooth and unique representation of a given
rotation. This set of observation features for the discriminator is
selected to provide a compact representation of the motion across
a single state transition. The observations also do not include any
task-specific features, thus enabling the motion prior to be trained
without requiring task-specific annotation of the reference motions,
and allowing motion priors trained with the same dataset to be used
for different tasks.

5.4 Gradient Penalty
The interplay between the discriminator and generator in a GAN
often results in unstable training dynamics. One source of instability
is due to function approximation errors in the discriminator, where
the discriminator may assign nonzero gradients on the manifold of
real data samples [Mescheder et al. 2018]. These nonzero gradients
can cause the generator to overshoot and move off the data manifold,
instead of converging to the manifold, leading to oscillations and
instability during training. To mitigate this phenomenon, a gradient
penalty can be applied to penalize nonzero gradients on samples
from the dataset [Gulrajani et al. 2017; Kodali et al. 2017; Mescheder
et al. 2018]. We incorporate this technique to improve training
stability. The discriminator objective is then given by:

arg min
𝐷

E𝑑M (s,s′)
[(
𝐷 (Φ(s),Φ(s′)) − 1

)2]
+ E𝑑𝜋 (s,s′)

[(
𝐷
(
Φ(s),Φ(s′)

)
+ 1

)2]
+ 𝑤

gp

2
E𝑑M (s,s′)

[������∇𝜙𝐷 (𝜙)���𝜙=(Φ(s),Φ(s′)) ������2] , (8)

where 𝑤gp is a manually-specified coefficient. Note, the gradient
penalty is calculated with respect to the observation features 𝜙 =

(Φ(s),Φ(s′)), not the full set of state features (s, s′). As we show in
our experiments, the gradient penalty is crucial for stable training
and effective performance.

6 MODEL REPRESENTATION
Given a high-level task objective and a dataset of reference motions,
the agent is responsible for learning a control policy that fulfills the
task objectives, while utilizing behaviors that resemble the motions
depicted in the dataset. In this section, we detail the design of various
components of the learning framework.

6.1 States and Actions
The state s𝑡 consists of a set of features that describes the configura-
tion of the character’s body. The features are similar to those used by
Peng et al. [2018a], which include the relative positions of each link
with respective to the root, the rotation of each link as represented
using the 6D normal-tangent encoding, along with the link’s linear

ALGORITHM 1: Training with AMP

1: inputM: dataset of reference motions
2: 𝐷 ← initialize discriminator
3: 𝜋 ← initialize policy
4: 𝑉 ← initialize value function
5: B ← ∅ initialize reply buffer

6: while not done do
7: for trajectory 𝑖 = 1, ...,𝑚 do
8: 𝜏𝑖 ← {(s𝑡 , a𝑡 , 𝑟𝐺𝑡)𝑇−1𝑡=0 , s

𝐺
𝑇
, g} collect trajectory with 𝜋

9: for time step 𝑡 = 0, ...,𝑇 − 1 do
10: 𝑑𝑡 ← 𝐷 (Φ(s𝑡),Φ(s𝑡+1))
11: 𝑟𝑆𝑡 ← calculate style reward according to Equation 7 using 𝑑𝑡
12: 𝑟𝑡 ← 𝑤𝐺𝑟𝐺𝑡 + 𝑤𝑆𝑟𝑆𝑡
13: record 𝑟𝑡 in 𝜏𝑖
14: end for
15: store 𝜏𝑖 in B
16: end for

17: for update step = 1, ..., 𝑛 do
18: 𝑏M ← sample batch of 𝐾 transitions {(s𝑗 , s′𝑗) }𝐾𝑗=1 fromM
19: 𝑏𝜋 ← sample batch of 𝐾 transitions {(s𝑗 , s′𝑗) }𝐾𝑗=1 from B
20: update 𝐷 according to Equation 8 using 𝑏M and 𝑏𝜋
21: end for

22: update𝑉 and 𝜋 using data from trajectories {𝜏𝑖 }𝑚
𝑖=1

23: end while

and angular velocities. All features are recorded in the character’s lo-
cal coordinate system. Unlike previous systems, which synchronize
the policy with a particular reference motion by including additional
phase information in the state, such as scalar phase variables [Lee
et al. 2019; Peng et al. 2018a] or target poses [Bergamin et al. 2019;
Chentanez et al. 2018; Won et al. 2020], our policies are not trained
to explicitly imitate any specific motion from the dataset. Therefore,
no such synchronization or phase information is necessary.
Each action a𝑡 specifies target positions for PD controllers posi-

tioned at each of the character’s joints. For spherical joints, each
target is specified in the form of a 3D exponential map q ∈ R3
[Grassia 1998], where the rotation axis v and rotation angle \ can
be determined according to:

v =
q

| |q| |2
, \ = | |q| |2 . (9)

This representation provides a more compact parameterization than
the 4D axis-angle or quaternion representations used in prior sys-
tems [Peng et al. 2018a; Won et al. 2020], while also avoiding gimbal
lock from parameterizations such as euler angles. Target rotations
for revolute joints are specified as 1D rotation angles 𝑞 = \ .

6.2 Network Architecture
Each policy 𝜋 is modeled by a neural network that maps a given state
s𝑡 and goal g to a Gaussian distribution over actions 𝜋 (a𝑡 |s𝑡 , g) =
N (` (s𝑡 , g), Σ), with an input-dependent mean ` (s𝑡 , g) and a fixed
diagonal covariance matrix Σ. The mean is specified by a fully-
connected network with two hidden layers, consisting of 1024 and
512 ReLU [Nair and Hinton 2010], followed by a linear output

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control • 1:7

layer. The values of the covariance matrix Σ = diag(𝜎1, 𝜎2, ...) are
manually-specified and kept fixed over the course of training. The
value function 𝑉 (s𝑡 , g) and discriminator 𝐷 (s𝑡 , s𝑡+1) are modeled
by separate networks with a similar architecture as the policy.

6.3 Training
Our policies are trained using a combination of GAIL [Ho and
Ermon 2016] and proximal-policy optimization (PPO) [Schulman
et al. 2017].

Algorithm 1 provides an overview of the training process. At each
time step 𝑡 , the agent receives a task-reward 𝑟𝐺𝑡 = 𝑟𝐺 (s𝑡 , a𝑡 , s𝑡+1, g)
from the environment, it then queries the motion prior for a style-
reward 𝑟𝑆𝑡 = 𝑟𝑆 (s𝑡 , s𝑡+1), computed according to Equation 7. The
two rewards are combined according to Equation 4 to yield the
reward for the particular timstep. Following the approach proposed
by Peng et al. [2018a], we incorporate reference state initialization
and early termination. Reference state initialization is applied by
initializing the character to states sampled randomly from all motion
clips in the dataset. Early termination is triggered on most tasks
when any part of the character’s body, with exception of the feet,
makes contact with the ground. This termination criteria is disabled
for more contact-rich tasks, such as rolling or getting up after a fall.
Once a batch of data has been collected with the policy, the

recorded trajectories are used to update the policy and value func-
tion. The value function is updated with target values computed
using TD(_) [Sutton and Barto 1998]. The policy is updated using
advantages computed using GAE(_) [Schulman et al. 2015]. Each
trajectory recorded from the policy is also stored in a replay buffer
B, containing trajectories from past training iterations. The dis-
criminator is updated according to Equation 8 using minibatches
of transitions (s, s′) sampled from the reference motion data setM
and transitions from the replay buffer B. The replay buffer helps to
stabilize training by preventing the discriminator from overfitting
to the most recent batch of trajectories from the policy.

7 TASKS
To evaluate AMP’s effectiveness for controlling the style of a char-
acter’s motions, we apply our framework to train complex 3D sim-
ulated characters to perform various motion control tasks using
different motion styles. The characters include a 34 DoF humanoid, a
59 DoF T-Rex, and a 64 DoF dog. A summary of each task is provided
below. Please refer to Appendix A for a more in-depth description
of each task and their respective reward functions.

Target Heading: In this task, the character’s objective is to move
along a target heading direction d∗ at a target speed 𝑣∗. The goal
for the policy is specified as g𝑡 = (d̃∗𝑡 , 𝑣∗), with d̃∗𝑡 being the target
direction in the character’s local coordinate frame. The target speed
is selected randomly between 𝑣∗ ∈ [1, 5]m/s. For slower moving
styles, such as Zombie and Stealthy, the target speed is fixed at 1m/s.

Target Location: In this task, the character’s objective is to move
to a target location x∗. The goal g𝑡 = x̃∗𝑡 records the target location
in the character’s local coordinate frame.

Dribbling: To evaluate our system on more complex object ma-
nipulation tasks, we train policies for a dribbling task, where the

character’s objective is to dribble a soccer ball to a target location.
The goal g𝑡 = x̃∗𝑡 records the relative position of the target loca-
tion with respect to the character. The state s𝑡 is augmented with
additional features that describe the state of the ball, including the
position x̃ball𝑡 , orientation q̃ball𝑡 , linear velocity ¤̃xball𝑡 , and angular
velocity ¤̃qball𝑡 of the ball in the character’s local coordinate frame.

Strike: To demonstrate AMP’s ability to compose diverse behav-
iors, we consider a task where the character’s objective is to strike
a target using a designated end-effector (e.g. hands). The target may
be located at various distances from the character. Therefore, the
character must first move close to the target before striking it. These
distinct phases entail different optimal behaviors, and thus require
the policy to compose and transition between the appropriate skills.
The goal g𝑡 = (x̃∗𝑡 , ℎ𝑡) records the location of the target x̃∗𝑡 in the
character’s local coordinate frame, along with an indicator variable
ℎ𝑡 that specifies if the target has already been hit.

Obstacles: Finally, we consider tasks that involve visual percep-
tion and interaction with more complex environments, where the
character’s objective is to traverse an obstacle-filled terrain, while
maintaining a target speed. Policies are trained for two types of envi-
ronments: 1) An environment containing a combination of obstacles
include gaps, steps, and overhead obstructions that the character
must duck under. 2) An environment containing narrow stepping
stones that requires more precise contact planning. Examples of the
environments are available in Figure 1 and 3. In order for the policy
to perceive the upcoming obstacles, the state is augmented with a
1D height-field of the upcoming terrain.

8 RESULTS
We evaluate our framework’s effectiveness on a suite of challenging
motion control tasks with complex simulated characters. First, we
demonstrate that our approach can readily scale to large unstruc-
tured datasets containing diverse motion clips, which then enables
our characters to perform challenging tasks in a natural and life-like
manner by imitating behaviors from the dataset. The characters
automatically learn to compose and generalize different skills from
the motion data in order to fulfill high-level task objectives, without
requiring mechanisms for explicit motion selection. We then evalu-
ate AMP on a single-clip imitation task, and show that our method
is able to closely imitate a diverse corpus of dynamic and acrobatic
skills, producing motions that are nearly indistinguishable from
reference motions recorded from human actors. Behaviors learned
by the characters can be viewed in the supplementary video.

8.1 Experimental Setup
All environments are simulated using the Bullet physics engine [Coumans
et al. 2013], with a simulation frequency of 1.2kHz. The policy is
queried at 30Hz, and each action specifies target positions for PD
controllers positioned at the character’s joints. All neural networks
are implemented using Tensorflow [Abadi et al. 2015]. The gradient
penalty coefficient is set to 𝑤gp = 10. Detailed hyperparameter
settings are available in Appendix B. Reference motion clips are
collected from a combination of public mocap libraries, custom
recorded mocap clips, and artist-authored keyframe animations

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:8 • Xue Bin Peng† , Ze Ma† , Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa

(a) Humanoid: Target Location (Locomotion) (b) Humanoid: Target Location (Zombie)

(c) Humanoid: Target Heading (Locomotion + Getup)

(d) Humanoid: Dribble (Locomotion) (e) Humanoid: Strike (Walk + Punch)

(f) Humanoid: Obstacles (Run + Leap + Roll)

(g) Humanoid: Stepping Stones (Cartwheel) (h) Humanoid: Stepping Stones (Jump)
Fig. 3. The motion prior can be trained with large datasets of diverse motions, enabling simulated characters to perform complex tasks by composing a wider
range of skills. Each environment is denoted by "Character: Task (Dataset)".

[CMU [n.d.]; SFU [n.d.]; Zhang et al. 2018]. Depending on the task
and character, each policy is trained with 100-300 million samples,
requiring approximately 30-140 hours on 16 CPU cores. Code for
our system will be released upon publication of this paper.

8.2 Tasks
In this section, we demonstrate AMP’s effectiveness for controlling
the style of a character’s motions as it performs other high-level
tasks. The weights for the task-reward and style-reward are set to
𝑤𝐺 = 0.5 and𝑤𝑆 = 0.5 for all tasks. The character can be trained
to perform tasks in a variety of distinct styles by providing the
motion prior with different datasets. Figure 3 illustrates behaviors
learned by the Humanoid on various tasks. Table 1 records the
performance of the policies with respect to the normalized task
return, and summary statistics of the different datasets used to train
the motion priors are available in Table 2. AMP can accommodate
large unstructured datasets, with the largest dataset containing 56

clips from 8 different human actors, for a total of 434s of motion data.
In the case of the Target Heading task, a motion prior trained using
a locomotion dataset, containing walking, running, and jogging
motions, leads to a policy that executes different locomotion gaits
depending on the target speed. Transitions between various gaits
emerge automatically through the motion prior, with the character
adopting walking gaits at slow speeds (∼ 1m/s), switching to jogging
gaits at faster speeds (∼ 2.5m/s), and breaking into a fast run as the
target speed approaches (∼ 4.5m/s). The motion prior also leads to
other human-like strategies, such as banking into turns, and slowing
down before large changes in direction. The policies develop similar
behaviors for the Target Location task. When the target is near the
character, the policy adopts slower walking gaits. But when the
target is further away, the character automatically transitions into
a run. These intricate behaviors arise naturally from the motion
prior, without requiring a motion planner to explicitly select which
motion the character should execute in a given scenario, such as
those used in prior systems [Bergamin et al. 2019; Luo et al. 2020;

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control • 1:9

Table 1. Performance statistics of combining AMP with additional task
objectives. Performance is recorded as the average normalized task return,
with 0 being the minimum possible return per episode and 1 being the
maximum possible return. The return is averaged across 3 models initialized
with different random seeds, with 32 episodes recorded per model. The
motion prior can be trained with different datasets to produce policies that
adopt distinct stylistic behaviors when performing a particular task.

Character Task Dataset Task Return
Humanoid Target Locomotion 0.90 ± 0.01

Heading Walk 0.46 ± 0.01
Run 0.63 ± 0.01

Stealthy 0.89 ± 0.02
Zombie 0.94 ± 0.00

Target Locomotion 0.63 ± 0.01
Location Zombie 0.50 ± 0.00
Obstacles Run + Leap + Roll 0.27 ± 0.10
Stepping Cartwheel 0.43 ± 0.03
Stones Jump 0.56 ± 0.12
Dribble Locomotion 0.78 ± 0.05

Zombie 0.60 ± 0.04
Strike Walk + Punch 0.73 ± 0.02

T-Rex
Target
Location Locomotion 0.36 ± 0.03

Peng et al. 2017]. In addition to standard locomotion gaits, the
motion prior can also be trained for more stylistic behaviors, such
as walking like a shambling zombie or walking in a stealthy manner.
Our framework enables the character to acquire these distinct styles
by simply providing the motion prior with different unstructured
motion datasets.

To determine whether the transitions between distinct gaits are a
product of the motion prior or a result of the task objective, we train
policies to perform the Target Heading task using limited datasets
containing only walking or running data. Figure 4 compares the
performance of policies trainedwith these different datasets. Policies
trained with only walking motions learn to perform only walking
gaits, and do not show any transitions to faster running gaits even at
faster target speeds. As a result, these policies are not able to achieve
the faster target speeds. Similarly, policies trained with only running
motions are not able to match slower target speeds. Training the
motion prior with a diverse dataset results in more flexible and
optimal policies that are able to achieve a wider range of target
speeds. This indicates that the diversity of behaviors exhibited by
our policies can in large part be attributed to the motion prior, and
is not solely a result of the task objective.
To further illustrate AMP’s ability to compose disparate skills,

we introduce additional reference motions into the dataset for get-
ting up from the ground in various configurations. These additional
motion clips then enable our character to recover from a fall and
continue to perform a given task (Figure 3(c)). The policy also dis-
covers novel recovery behaviors that are not present in the dataset.
When the character falls forward, it tucks its body into a roll during
the fall in order to more quickly transition into a getup behavior.
While this particular behavior is not present in the motion clips,
the policy is able to generalize behaviors observed in the dataset to
produce novel and naturalistic strategies for new scenarios.

Table 2. Summary statistics of the different datasets used to train themotion
priors. We record the total length of motion clips in each dataset, along
with the number of clips, and the number of subjects (e.g. human actors)
that the clips were recorded from.

Character Dataset Size (s) Clips Subjects
Humanoid Cartwheel 13.6 3 1

Jump 28.6 10 4
Locomotion 434.1 56 8

Run 204.4 47 3
Run + Leap + Roll 22.1 10 7

Stealthy 136.5 3 1
Walk 229.6 9 5

Walk + Punch 247.8 15 9
Zombie 18.3 1 1

T-Rex Locomotion 10.5 5 1

Fig. 4. Performance of Target Heading policies trained with different
datasets. Left: Learning curves comparing the normalized task returns
of policies trained with a large dataset of diverse locomotion clips to policies
trained with only walking or running reference motions. Three models are
trained using each dataset. Right: Comparison of the target speed with the
average speed achieved by the different policies. Policies trained using the
larger Locomotion dataset is able to more closely follow the various target
speeds by imitating different gaits.

For the Strike task (Figure 1), the motion prior is trained using a
collection of walking motion clips and punching motion clips. The
resulting policy learns to walk to the target when it is far away, and
then transition to a punching motion once it is within range to hit
the target. Note that the motion clips in the dataset contain strictly
walking-only motions or punching-only motion, and none of the
clips show an actor walking to and punching a target. Instead, the
policy learns to temporally sequence these different behaviors in
order to fulfill the high-level task objectives. Again, this composition
of different skills emerges automatically from the motion prior,
without requiring a motion planner or other mechanisms for motion
selection.

Finally, our system can also train visuomotor policies for travers-
ing obstacle-filled environments. By providing themotion prior with
a collection of locomotion clips and rolling clips, the character learns
to utilize these diverse behaviors to traverse the different obstacles.
The character learns to leap over obstacles such as gaps. But as it
approaches the overhead obstructions, the character transitions into
a rolling behavior in order to pass underneath the obstacles. Previ-
ous systems that have demonstrated similar composition of diverse
maneuvers for clearing obstacle have typically required a separate

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:10 • Xue Bin Peng† , Ze Ma† , Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa

Fig. 5. Learning curves comparing the task performance of AMP to latent
space models (Latent Space) and policies trained from scratch without
motion data (No Data). Our method achieves comparable performance
across the various tasks, while also producing higher fidelity motions.

motion planner or manual annotations [Liu et al. 2012; Park et al.
2019]. Our approach provides a unified framework where the same
underlying algorithm is able to learn how to perform the various
skills and which skill to execute in a given scenario. Furthermore,
the character can also be trained to traverse obstacles in distinct
styles by providing the motion prior with different motion clips,
such as jumping or cartwheeling across stepping stones (Figure 3).

8.3 Comparisons
An alternative approach for learning a motion prior from unstruc-
tured motion data is to build a latent space model [Heess et al. 2016;
Lynch et al. 2020; Merel et al. 2020; Peng et al. 2019a]. Unlike AMP,
which encourages a character to adopt a desiredmotion style directly
through an optimization objective, a latent space model enforces a
particular motion style indirectly, by using a latent representation
to constrain the policy’s actions to those that produce motions of
the desired style. To compare AMP to these latent space models,
we first pre-train a low-level controller using a motion tracking
objective to imitate the same set of reference motions that are used
to train the motion prior. The learned low-level controller is then
used to train separate high-level controllers for each downstream
task. Note that reference motions are used only during pre-training,
and the high-level controllers are trained to optimize only the task
objectives. A more in-depth description of the experimental setup
for the latent space model is available in Appendix C.

A qualitative comparison of the behaviors learned using AMP and
the latent space model is available in the supplementary video. Fig-
ure 5 compares the task performance of the different models, along
with a baseline model trained from scratch for each task without
leveraging any motion data. Both AMP and the latent space models
are able to produce substantially more life-like behaviors than the
baseline models. For the latent space models, since the low-level

Fig. 6. Snapshots of behaviors learned by the Humanoid on the single-clip
imitation tasks. Top-to-bottom: back-flip, side-flip, cartwheel, spin, spin-
kick, roll. AMP enables the character to closely imitate a diverse corpus of
highly dynamic and acrobatic skills.

and high-level controllers are trained separately, it is possible for
the distribution of encodings specified by the high-level controller
to be different than the distribution of encodings observed by the
low-level controller during pre-training [Luo et al. 2020]. This in
turn can result in unnatural motions that deviate from the behav-
iors depicted in the original dataset. AMP enforces a motion style
directly through the reward function, and is therefore able to better
mitigate some of these artifacts. The more structured exploration
behaviors from the latent space model enable the policies to solve
downstream tasks more quickly. However, the pre-training stage
used to construct the low-level controller can itself be sample inten-
sive. In our experiments, the low-level controllers are trained using
300 million samples before being transferred to downstream tasks.
With AMP, no such pre-training is necessary, and the motion prior
can be trained jointly with the policy.

8.4 Single-Clip Imitation
Although our goal is to train characters with large motion datasets,
to evaluate the effectiveness of our framework for imitating behav-
iors from motion clips, we consider a single-clip imitation task. In
this setting, the character’s objective is to imitate a single motion
clip at a time, without additional task objectives. Therefore, the

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control • 1:11

(a) T-Rex (Walk)

(b) Dog (Trot)

(c) Dog (Canter)

Fig. 7. AMP can be used to train complex non-humanoid characters, such as a 59 DoF T-Rex and a 64 DoF dog. By providing the motion prior with different
reference motion clips, the characters can be trained to perform various locomotion gaits, such as trotting and cantering.

policy is trained solely to maximize the style-reward 𝑟𝑆𝑡 from the
motion prior. Unlike previous motion tracking methods, our ap-
proach does not require a manually designed tracking objective or a
phase-based synchronization of the reference motion and the policy
Peng et al. [2018a]. Table 3 summarizes the performance of policies
trained using AMP to imitate a diverse corpus of motions. Figure 6
and 7 illustrate examples of motions learned by the characters. Per-
formance is evaluated using the average pose error, where the pose
error 𝑒pose𝑡 at each time step 𝑡 is computed between the pose of
the simulated character and the reference motion using the relative
positions of each joint with respect to the root (in units of meters),

𝑒
pose
𝑡 =

1

𝑁 joint

∑︁
𝑗 ∈joints

������(x𝑗𝑡 − xroot𝑡) − (x̂𝑗𝑡 − x̂
root
𝑡)

������
2
. (10)

x
𝑗
𝑡 and x̂

𝑗
𝑡 denote the 3D Cartesian position of joint 𝑗 from the

simulated character and the reference motion, and 𝑁 joint is the total
number of joints in the character’s body. This method of evaluating
motion similarity has previously been reported to better conform
to human perception of motion similarity [Harada et al. 2004; Tang
et al. 2008]. Since AMP does not use a phase variable to synchronize
the policy with the reference motion, the motions may progress at
different rates, resulting in de-synchronization that can lead to large
pose errors even when the overall motions are similar. To better
evaluate the similarity of the motions, we first apply dynamic time
warping (DTW) to align the reference motion with the motion of
the simulated character [Sakoe and Chiba 1978], before computing
the pose error between the two aligned motions. DTW is applied
using Equation 10 as the cost function.
AMP is able to closely imitate a large variety of highly dynamic

skills, while also avoiding many of the visual artifacts exhibited
by prior adversarial motion imitation systems [Merel et al. 2017;
Wang et al. 2017]. We compare the performance of our system to
results produced by the motion tracking approach from Peng et al.
[2018a], which uses a manually designed reward function and re-
quires synchronization of the policy with a reference motion via

a phase variable. Figure 8 compares the learning curves of the dif-
ferent methods. Since the tracking-based policies are synchronized
with their respective reference motions, they are generally able to
learn faster and achieve lower errors than policies trained with AMP.
Nonetheless, our method is able to produce results of comparable
quality without the need to manually design or tune reward func-
tions for different motions. However, for some motions, such as the
Front-Flip, AMP is prone to converging to locally optimal behaviors,
where instead of performing a flip, the character learns to simply
shuffle forwards in order to avoid falling. Tracking-based methods
can mitigate these local optima by terminating an episode early
if the character’s pose deviates too far from the reference motion
[Peng et al. 2018a; Won et al. 2020]. However, this strategy is not
directly applicable to AMP, since the policy is not synchronized
with the reference motion. But as shown in the previous sections,
this lack of synchronization is precisely what allows AMP to eas-
ily leverage large datasets of diverse motion clips to solve more
complex tasks.

8.5 Ablations
Our system is able to produce substantially higher fidelity motions
than prior adversarial learning frameworks for physics-based char-
acter control [Merel et al. 2017; Wang et al. 2017]. In this section, we
identify critical design decisions that lead to more stable training
and higher quality results. Figure 8 compares learning curves of
policies trained on the single-clip imitation tasks with different com-
ponents of the system disabled. Gradient penalty proves to be the
most vital component. Models trained without this regularization
tend to exhibit large performance fluctuations over the course of the
training, and lead to noticeable visual artifacts in the final policies,
as shown in the supplementary video. The addition of the gradient
penalty not only improves stability during training, but also leads
to substantially faster learning across a large set of skills. The inclu-
sion of velocity features in the discriminator’s observations is also
an important component for imitating some motions. In principle,

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:12 • Xue Bin Peng† , Ze Ma† , Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa

Table 3. Performance statistics of imitating individual motion clips without
task objectives. "Dataset Size" records the total length of motion data used
for each skill. Performance is recorded as the average pose error (in units of
meters) between the time-warped trajectories from the referencemotion and
simulated character. The pose error is averaged across 3 models initialized
with different random seeds, with 32 episodes recorded per model. Each
episode has a maximum length of 20s. We compare our method (AMP) with
the motion tracking approach proposed by Peng et al. [2018a]. AMP is able
to closely imitate a diverse repertoire of complex motions, without manual
reward engineering.

Character Motion
Dataset
Size

Motion
Tracking

AMP
(Ours)

Humanoid Back-Flip 1.75s 0.076 ± 0.021 0.150 ± 0.028
Cartwheel 2.72s 0.039 ± 0.011 0.067 ± 0.014
Crawl 2.93s 0.044 ± 0.001 0.049 ± 0.007
Dance 1.62s 0.038 ± 0.001 0.055 ± 0.015

Front-Flip 1.65s 0.278 ± 0.040 0.425 ± 0.010
Jog 0.83s 0.029 ± 0.001 0.056 ± 0.001
Jump 1.77s 0.033 ± 0.001 0.083 ± 0.022
Roll 2.02s 0.072 ± 0.018 0.088 ± 0.008
Run 0.80s 0.028 ± 0.002 0.075 ± 0.015
Spin 1.00s 0.063 ± 0.022 0.047 ± 0.002

Side-Flip 2.44s 0.191 ± 0.043 0.124 ± 0.012
Spin-Kick 1.28s 0.042 ± 0.001 0.058 ± 0.012
Walk 1.30s 0.018 ± 0.005 0.030 ± 0.001
Zombie 1.68s 0.049 ± 0.013 0.058 ± 0.014

T-Rex Turn 2.13s 0.098 ± 0.011 0.284 ± 0.023
Walk 2.00s 0.069 ± 0.005 0.096 ± 0.027

Dog Canter 0.45s 0.026 ± 0.002 0.034 ± 0.002
Pace 0.63s 0.020 ± 0.001 0.024 ± 0.003
Spin 0.73s 0.026 ± 0.002 0.086 ± 0.008
Trot 0.52s 0.019 ± 0.001 0.026 ± 0.001

including consecutive poses as input to the discriminator should
provide some information that can be used to infer the joint veloci-
ties. But we found that this was insufficient for some motions, such
as rolling. As shown in the supplementary video, in the absence of
velocity features, the character is prone to converging to a strat-
egy of holding a fixed pose on the ground, instead of performing
a roll. The additional velocity features are able to mitigate these
undesirable behaviors.

9 DISCUSSION AND LIMITATIONS
In this work, we presented an adversarial learning system for physics-
based character animation that enables characters to imitate diverse
behaviors from large unstructured datasets, without the need for
motion planners or other mechanisms for clip selection. Our system
allows users to specify high-level task objectives for controlling a
character’s behaviors, while the more granular low-level style of a
character’s motions can be controlled using a learned motion prior.
Composition of disparate skills in furtherance of a task objective
emerges automatically from the motion prior. The motion prior also
enables our characters to closely imitate a rich repertoire of highly
dynamic skills, and produces results that are on par with tracking-
based techniques, without requiring manual reward engineering or
synchronization between the controller and the reference motions.

Our system demonstrates that adversarial imitation learning tech-
niques can indeed produce high fidelity motions for complex skills.

Fig. 8. Learning curves of various methods on the single-clip imitation
tasks. We compare AMP to the motion tracking approach proposed by Peng
et al. [2018a] (Motion Tracking), as well a version of AMP without velocity
features for the discriminator (AMP - No Vel), and AMPwithout the gradient
penalty regularizer (AMP - No GP). A comprehensive collection of learning
curves for all skills are available in the Appendix. AMP produces results
of comparable quality when compared to prior tracking-based methods,
without requiring a manually designed reward function or synchronization
between the policy and reference motion. Velocity features and gradient
penalty are vital for effective and consistent results on challenging skills.

However, like many other GAN-based techniques, AMP is suscepti-
ble to mode collapse. When provided with a large dataset of diverse
motion clips, the policy is prone to imitating only a small subset
of the example behaviors, ignoring other behaviors that may ulti-
mately be more optimal for a given task. The motion priors in our
experiments are also trained from scratch for each policy. But since
the motion prior is largely task-agnostic, it should in principle be
possible to transfer and reuse motion priors for different policies
and tasks. Exploring techniques for developing general and trans-
ferable motion priors may lead to modular objective functions that
can be conveniently incorporated into downstream tasks, without
requiring retraining for each new task. While the motion prior does
not require direct access to task-specific information, the data used
to train the motion prior is generated by policies trained to perform
a particular task. This may introduce some task dependencies into
the motion prior, which can hinder its ability to be transferred to
other tasks. Training motion priors using data generated from larger
and more diverse repertoires of tasks may help to facilitate trans-
ferring the learned motion priors to new tasks. Our experiments
also focus primarily on tasks that involve temporal composition
of different skills, which require the character to perform different
behaviors at different points in time. However, spatial composition
might also be vital for some tasks that require a character to perform
multiple skills simultaneously. Developing motion priors that are
more amenable to spatial composition of disparate skills may lead to
more flexible and sophisticated behaviors. Despite these limitations,

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control • 1:13

we hope this work provides a useful tool that enables physically
simulated characters to take advantage of the large motion datasets
that have been so effective for kinematic animation techniques,
and open exciting directions for future exploration in data-driven
physics-based character animation.

ACKNOWLEDGEMENTS
We thank Sony Interactive Entertainment for providing reference
motion data for this project, Bonny Ho for narrating the video,
the anonymous reviewers for their helpful feedback, and AWS for
providing computational resources. This research was funded by
an NSERC Postgraduate Scholarship, and a Berkeley Fellowship for
Graduate Study.

REFERENCES
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, PeteWarden,MartinWattenberg,Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. http://tensorflow.org/ Software available
from tensorflow.org.

Pieter Abbeel and Andrew Y. Ng. 2004. Apprenticeship Learning via Inverse Rein-
forcement Learning. In Proceedings of the Twenty-First International Conference on
Machine Learning (Banff, Alberta, Canada) (ICML ’04). Association for Computing
Machinery, New York, NY, USA, 1. https://doi.org/10.1145/1015330.1015430

Shailen Agrawal and Michiel van de Panne. 2016. Task-based Locomotion. ACM
Transactions on Graphics (Proc. SIGGRAPH 2016) 35, 4 (2016).

M. Al Borno, M. de Lasa, and A. Hertzmann. 2013. Trajectory Optimization for Full-
Body Movements with Complex Contacts. IEEE Transactions on Visualization and
Computer Graphics 19, 8 (2013), 1405–1414. https://doi.org/10.1109/TVCG.2012.325

Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein Generative
Adversarial Networks (Proceedings of Machine Learning Research, Vol. 70), Doina
Precup and Yee Whye Teh (Eds.). PMLR, International Convention Centre, Sydney,
Australia, 214–223. http://proceedings.mlr.press/v70/arjovsky17a.html

Kevin Bergamin, SimonClavet, Daniel Holden, and James Richard Forbes. 2019. DReCon:
Data-Driven Responsive Control of Physics-Based Characters. ACM Trans. Graph.
38, 6, Article 206 (Nov. 2019), 11 pages. https://doi.org/10.1145/3355089.3356536

David Berthelot, Tom Schumm, and Luke Metz. 2017. BEGAN: Boundary Equilibrium
Generative Adversarial Networks. CoRR abs/1703.10717 (2017). arXiv:1703.10717
http://arxiv.org/abs/1703.10717

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp,
Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin
Zhang, Jake Zhao, and Karol Zieba. 2016. End to End Learning for Self-Driving Cars.
CoRR abs/1604.07316 (2016). arXiv:1604.07316 http://arxiv.org/abs/1604.07316

W. Burgard, O. Brock, and C. Stachniss. 2008. Learning Omnidirectional Path Following
Using Dimensionality Reduction. 257–264.

Nuttapong Chentanez, Matthias Müller, Miles Macklin, Viktor Makoviychuk, and Stefan
Jeschke. 2018. Physics-Based Motion Capture Imitation with Deep Reinforcement
Learning. In Proceedings of the 11th Annual International Conference on Motion,
Interaction, and Games (Limassol, Cyprus) (MIG ’18). Association for Computing
Machinery, New York, NY, USA, Article 1, 10 pages. https://doi.org/10.1145/3274247.
3274506

CMU. [n.d.]. CMU Graphics Lab Motion Capture Database. http://mocap.cs.cmu.edu/.
Erwin Coumans et al. 2013. Bullet physics library. Open source: bulletphysics. org 15, 49

(2013), 5.
M. Da Silva, Y. Abe, and J. Popovic. 2008. Simulation of Human Motion Data using

Short-Horizon Model-Predictive Control. Computer Graphics Forum (2008). https:
//doi.org/10.1111/j.1467-8659.2008.01134.x

Carlos Florensa, Yan Duan, and Pieter Abbeel. 2017. Stochastic Neural Networks for
Hierarchical Reinforcement Learning. In Proceedings of the International Conference
on Learning Representations (ICLR).

Thomas Geijtenbeek, Michiel van de Panne, and A. Frank van der Stappen. 2013. Flexible
Muscle-Based Locomotion for Bipedal Creatures. ACM Transactions on Graphics 32,
6 (2013).

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial Nets. In
Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling,

C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Eds.). Curran Associates, Inc.,
2672–2680. http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

F. Sebastin Grassia. 1998. Practical Parameterization of Rotations Using the Exponential
Map. J. Graph. Tools 3, 3 (March 1998), 29–48. https://doi.org/10.1080/10867651.
1998.10487493

Keith Grochow, Steven L. Martin, Aaron Hertzmann, and Zoran Popović. 2004. Style-
Based Inverse Kinematics. ACM Trans. Graph. 23, 3 (Aug. 2004), 522–531. https:
//doi.org/10.1145/1015706.1015755

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville. 2017. Improved Training of Wasserstein GANs. In Advances in Neural
Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc., 5767–5777.
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans.pdf

Tuomas Haarnoja, Kristian Hartikainen, Pieter Abbeel, and Sergey Levine. 2018. Latent
Space Policies for Hierarchical Reinforcement Learning (Proceedings of Machine
Learning Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, Stock-
holmsmässan, Stockholm Sweden, 1851–1860. http://proceedings.mlr.press/v80/
haarnoja18a.html

T. Harada, S. Taoka, T. Mori, and T. Sato. 2004. Quantitative evaluation method for pose
and motion similarity based on human perception. In 4th IEEE/RAS International
Conference on Humanoid Robots, 2004., Vol. 1. 494–512 Vol. 1. https://doi.org/10.
1109/ICHR.2004.1442140

Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin
Riedmiller. 2018. Learning an Embedding Space for Transferable Robot Skills. In
International Conference on Learning Representations. https://openreview.net/forum?
id=rk07ZXZRb

Nicolas Heess, Gregory Wayne, Yuval Tassa, Timothy P. Lillicrap, Martin A. Riedmiller,
and David Silver. 2016. Learning and Transfer of Modulated Locomotor Controllers.
CoRR abs/1610.05182 (2016). arXiv:1610.05182 http://arxiv.org/abs/1610.05182

Jonathan Ho and Stefano Ermon. 2016. Generative Adversarial Imitation Learning.
In Advances in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett (Eds.). Curran Associates, Inc., 4565–4573.
http://papers.nips.cc/paper/6391-generative-adversarial-imitation-learning.pdf

Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-Functioned Neural Networks
for Character Control. ACM Trans. Graph. 36, 4, Article 42 (July 2017), 13 pages.
https://doi.org/10.1145/3072959.3073663

Yifeng Jiang, Tom Van Wouwe, Friedl De Groote, and C. Karen Liu. 2019. Synthesis
of Biologically Realistic Human Motion Using Joint Torque Actuation. ACM Trans.
Graph. 38, 4, Article 72 (July 2019), 12 pages. https://doi.org/10.1145/3306346.
3322966

Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and Jitendra Malik. 2018. End-to-
end Recovery of Human Shape and Pose. In Computer Vision and Pattern Regognition
(CVPR).

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2017. Progressive Growing
of GANs for Improved Quality, Stability, and Variation. CoRR abs/1710.10196 (2017).
arXiv:1710.10196 http://arxiv.org/abs/1710.10196

Liyiming Ke, Matt Barnes, Wen Sun, Gilwoo Lee, Sanjiban Choudhury, and Sid-
dhartha S. Srinivasa. 2019. Imitation Learning as f-Divergence Minimization. CoRR
abs/1905.12888 (2019). arXiv:1905.12888 http://arxiv.org/abs/1905.12888

Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational
Bayes. In 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings.
arXiv:http://arxiv.org/abs/1312.6114v10 [stat.ML]

Naveen Kodali, Jacob D. Abernethy, James Hays, and Zsolt Kira. 2017. How to Train
Your DRAGAN. CoRR abs/1705.07215 (2017). arXiv:1705.07215 http://arxiv.org/abs/
1705.07215

Taesoo Kwon and Jessica K. Hodgins. 2017. Momentum-Mapped Inverted Pendulum
Models for Controlling Dynamic Human Motions. ACM Trans. Graph. 36, 4, Article
145d (Jan. 2017), 14 pages. https://doi.org/10.1145/3072959.2983616

Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jessica K. Hodgins, and Nancy S. Pollard.
2002. Interactive Control of Avatars Animated with Human Motion Data. ACM
Trans. Graph. 21, 3 (July 2002), 491–500. https://doi.org/10.1145/566654.566607

Kyungho Lee, Seyoung Lee, and Jehee Lee. 2018. Interactive Character Animation by
Learning Multi-Objective Control. ACM Trans. Graph. 37, 6, Article 180 (Dec. 2018),
10 pages. https://doi.org/10.1145/3272127.3275071

Seunghwan Lee, Moonseok Park, Kyoungmin Lee, and Jehee Lee. 2019. Scalable Muscle-
Actuated Human Simulation and Control. ACM Trans. Graph. 38, 4, Article 73 (July
2019), 13 pages. https://doi.org/10.1145/3306346.3322972

Yoonsang Lee, Sungeun Kim, and Jehee Lee. 2010a. Data-Driven Biped Control. ACM
Trans. Graph. 29, 4, Article 129 (July 2010), 8 pages. https://doi.org/10.1145/1778765.
1781155

Yongjoon Lee, Kevin Wampler, Gilbert Bernstein, Jovan Popović, and Zoran Popović.
2010b. Motion Fields for Interactive Character Locomotion. ACM Trans. Graph. 29,
6, Article 138 (Dec. 2010), 8 pages. https://doi.org/10.1145/1882261.1866160

Sergey Levine, Yongjoon Lee, Vladlen Koltun, and Zoran Popović. 2011. Space-Time
Planning with Parameterized Locomotion Controllers. ACM Trans. Graph. 30, 3,

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

http://tensorflow.org/
https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1109/TVCG.2012.325
http://proceedings.mlr.press/v70/arjovsky17a.html
https://doi.org/10.1145/3355089.3356536
https://arxiv.org/abs/1703.10717
http://arxiv.org/abs/1703.10717
https://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
https://doi.org/10.1145/3274247.3274506
https://doi.org/10.1145/3274247.3274506
https://doi.org/10.1111/j.1467-8659.2008.01134.x
https://doi.org/10.1111/j.1467-8659.2008.01134.x
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://doi.org/10.1080/10867651.1998.10487493
https://doi.org/10.1080/10867651.1998.10487493
https://doi.org/10.1145/1015706.1015755
https://doi.org/10.1145/1015706.1015755
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans.pdf
http://proceedings.mlr.press/v80/haarnoja18a.html
http://proceedings.mlr.press/v80/haarnoja18a.html
https://doi.org/10.1109/ICHR.2004.1442140
https://doi.org/10.1109/ICHR.2004.1442140
https://openreview.net/forum?id=rk07ZXZRb
https://openreview.net/forum?id=rk07ZXZRb
https://arxiv.org/abs/1610.05182
http://arxiv.org/abs/1610.05182
http://papers.nips.cc/paper/6391-generative-adversarial-imitation-learning.pdf
https://doi.org/10.1145/3072959.3073663
https://doi.org/10.1145/3306346.3322966
https://doi.org/10.1145/3306346.3322966
https://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1905.12888
http://arxiv.org/abs/1905.12888
https://arxiv.org/abs/1705.07215
http://arxiv.org/abs/1705.07215
http://arxiv.org/abs/1705.07215
https://doi.org/10.1145/3072959.2983616
https://doi.org/10.1145/566654.566607
https://doi.org/10.1145/3272127.3275071
https://doi.org/10.1145/3306346.3322972
https://doi.org/10.1145/1778765.1781155
https://doi.org/10.1145/1778765.1781155
https://doi.org/10.1145/1882261.1866160

1:14 • Xue Bin Peng† , Ze Ma† , Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa

Article 23 (May 2011), 11 pages. https://doi.org/10.1145/1966394.1966402
Sergey Levine, Jack M. Wang, Alexis Haraux, Zoran Popović, and Vladlen Koltun.

2012. Continuous Character Control with Low-Dimensional Embeddings. ACM
Transactions on Graphics 31, 4 (2012), 28.

Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel van de Panne. 2020. Character
Controllers Using Motion VAEs. 39, 4 (2020).

Libin Liu, Michiel van de Panne, and KangKang Yin. 2016. Guided Learning of Control
Graphs for Physics-Based Characters. ACM Transactions on Graphics 35, 3 (2016).

Libin Liu, KangKang Yin, Michiel van de Panne, and Baining Guo. 2012. Terrain runner:
control, parameterization, composition, and planning for highly dynamic motions.
ACM Transactions on Graphics (TOG) 31, 6 (2012), 154.

Libin Liu, KangKang Yin, Michiel van de Panne, Tianjia Shao, and Weiwei Xu. 2010.
Sampling-based contact-rich motion control. ACM Trans. Graph. 29, 4, Article 128
(July 2010), 10 pages. https://doi.org/10.1145/1778765.1778865

Ying-Sheng Luo, Jonathan Hans Soeseno, Trista Pei-Chun Chen, and Wei-Chao Chen.
2020. CARL: Controllable Agent with Reinforcement Learning for Quadruped
Locomotion. ACM Trans. Graph. 39, 4, Article 38 (July 2020), 10 pages. https:
//doi.org/10.1145/3386569.3392433

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey
Levine, and Pierre Sermanet. 2020. Learning Latent Plans from Play. In Proceedings of
the Conference on Robot Learning (Proceedings of Machine Learning Research, Vol. 100),
Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura (Eds.). PMLR, 1113–1132.
http://proceedings.mlr.press/v100/lynch20a.html

X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley. 2017. Least Squares
Generative Adversarial Networks. In 2017 IEEE International Conference on Computer
Vision (ICCV). 2813–2821. https://doi.org/10.1109/ICCV.2017.304

Josh Merel, Leonard Hasenclever, Alexandre Galashov, Arun Ahuja, Vu Pham, Greg
Wayne, Yee Whye Teh, and Nicolas Heess. 2019. Neural Probabilistic Motor Primi-
tives for Humanoid Control. In International Conference on Learning Representations.
https://openreview.net/forum?id=BJl6TjRcY7

Josh Merel, Yuval Tassa, Dhruva TB, Sriram Srinivasan, Jay Lemmon, Ziyu Wang,
Greg Wayne, and Nicolas Heess. 2017. Learning human behaviors from motion
capture by adversarial imitation. CoRR abs/1707.02201 (2017). arXiv:1707.02201
http://arxiv.org/abs/1707.02201

JoshMerel, Saran Tunyasuvunakool, Arun Ahuja, Yuval Tassa, Leonard Hasenclever, Vu
Pham, Tom Erez, Greg Wayne, and Nicolas Heess. 2020. Catch and Carry: Reusable
Neural Controllers for Vision-Guided Whole-Body Tasks. ACM Trans. Graph. 39, 4,
Article 39 (July 2020), 14 pages. https://doi.org/10.1145/3386569.3392474

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. 2018. Which Training Meth-
ods for GANs do actually Converge?. In Proceedings of the 35th International Con-
ference on Machine Learning (Proceedings of Machine Learning Research, Vol. 80),
Jennifer Dy and Andreas Krause (Eds.). PMLR, Stockholmsmässan, Stockholm Swe-
den, 3481–3490. http://proceedings.mlr.press/v80/mescheder18a.html

Igor Mordatch, Emanuel Todorov, and Zoran Popović. 2012. Discovery of Complex
Behaviors through Contact-Invariant Optimization. ACM Trans. Graph. 31, 4, Article
43 (July 2012), 8 pages. https://doi.org/10.1145/2185520.2185539

Igor Mordatch, Jack M. Wang, Emanuel Todorov, and Vladlen Koltun. 2013. Animating
Human Lower Limbs Using Contact-Invariant Optimization. ACM Trans. Graph. 32,
6, Article 203 (Nov. 2013), 8 pages. https://doi.org/10.1145/2508363.2508365

Uldarico Muico, Yongjoon Lee, Jovan Popović, and Zoran Popović. 2009. Contact-Aware
Nonlinear Control of Dynamic Characters. In ACM SIGGRAPH 2009 Papers (New
Orleans, Louisiana) (SIGGRAPH ’09). Association for Computing Machinery, New
York, NY, USA, Article 81, 9 pages. https://doi.org/10.1145/1576246.1531387

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Linear Units Improve Restricted
Boltzmann Machines. In Proceedings of the 27th International Conference on Interna-
tional Conference on Machine Learning (Haifa, Israel) (ICML’10). Omnipress, Madison,
WI, USA, 807–814.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. 2016. f-GAN: Training Genera-
tive Neural Samplers using Variational Divergence Minimization. In Advances in
Neural Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett (Eds.), Vol. 29. Curran Associates, Inc., 271–279. https://proceedings.
neurips.cc/paper/2016/file/cedebb6e872f539bef8c3f919874e9d7-Paper.pdf

Soohwan Park, Hoseok Ryu, Seyoung Lee, Sunmin Lee, and Jehee Lee. 2019. Learning
Predict-and-Simulate Policies from Unorganized Human Motion Data. ACM Trans.
Graph. 38, 6, Article 205 (Nov. 2019), 11 pages. https://doi.org/10.1145/3355089.
3356501

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. 2018a. Deep-
Mimic: Example-guided Deep Reinforcement Learning of Physics-based Charac-
ter Skills. ACM Trans. Graph. 37, 4, Article 143 (July 2018), 14 pages. https:
//doi.org/10.1145/3197517.3201311

Xue Bin Peng, Glen Berseth, and Michiel van de Panne. 2016. Terrain-adaptive Loco-
motion Skills Using Deep Reinforcement Learning. ACM Trans. Graph. 35, 4, Article
81 (July 2016), 12 pages. https://doi.org/10.1145/2897824.2925881

Xue Bin Peng, Glen Berseth, Kangkang Yin, and Michiel Van De Panne. 2017. DeepLoco:
Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement Learning. ACM
Trans. Graph. 36, 4, Article 41 (July 2017), 13 pages. https://doi.org/10.1145/3072959.

3073602
Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine. 2019a.

MCP: Learning Composable Hierarchical Control with Multiplicative Composi-
tional Policies. In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Cur-
ran Associates, Inc., 3681–3692. http://papers.nips.cc/paper/8626-mcp-learning-
composable-hierarchical-control-with-multiplicative-compositional-policies.pdf

Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik, Pieter Abbeel, and Sergey Levine.
2018b. SFV: Reinforcement Learning of Physical Skills from Videos. ACM Trans.
Graph. 37, 6, Article 178 (Nov. 2018), 14 pages.

Xue Bin Peng, Angjoo Kanazawa, Sam Toyer, Pieter Abbeel, and Sergey Levine. 2019b.
Variational Discriminator Bottleneck: Improving Imitation Learning, Inverse RL, and
GANs by Constraining Information Flow. In International Conference on Learning
Representations. https://openreview.net/forum?id=HyxPx3R9tm

Dean A. Pomerleau. 1988. ALVINN: An Autonomous Land Vehicle in a Neural Network.
In Proceedings of the 1st International Conference on Neural Information Processing
Systems (NIPS’88). MIT Press, Cambridge, MA, USA, 305–313.

Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised Representa-
tion Learning with Deep Convolutional Generative Adversarial Networks. CoRR
abs/1511.06434 (2015). arXiv:1511.06434 http://arxiv.org/abs/1511.06434

Marc H. Raibert and Jessica K. Hodgins. 1991. Animation of Dynamic Legged Loco-
motion. In Proceedings of the 18th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’91). Association for Computing Machinery, New
York, NY, USA, 349–358. https://doi.org/10.1145/122718.122755

Stephane Ross, Geoffrey Gordon, and Drew Bagnell. 2011. A Reduction of Imitation
Learning and Structured Prediction to No-Regret Online Learning (Proceedings of
Machine Learning Research, Vol. 15), Geoffrey Gordon, David Dunson, and Miroslav
Dudík (Eds.). JMLR Workshop and Conference Proceedings, Fort Lauderdale, FL,
USA, 627–635. http://proceedings.mlr.press/v15/ross11a.html

Alla Safonova and Jessica K. Hodgins. 2007. Construction and Optimal Search of
Interpolated Motion Graphs. ACM Trans. Graph. 26, 3 (July 2007), 106–es. https:
//doi.org/10.1145/1276377.1276510

H. Sakoe and S. Chiba. 1978. Dynamic programming algorithm optimization for spoken
word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing 26, 1
(1978), 43–49. https://doi.org/10.1109/TASSP.1978.1163055

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. 2016. Improved Techniques for Training GANs. CoRR abs/1606.03498
(2016). arXiv:1606.03498 http://arxiv.org/abs/1606.03498

John Schulman, PhilippMoritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. 2015.
High-Dimensional Continuous Control Using Generalized Advantage Estimation.
CoRR abs/1506.02438 (2015). arXiv:1506.02438

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).
arXiv:1707.06347 http://arxiv.org/abs/1707.06347

SFU. [n.d.]. SFU Motion Capture Database. http://mocap.cs.sfu.ca/.
Dana Sharon and Michiel van de Panne. 2005. Synthesis of Controllers for Stylized

Planar Bipedal Walking. In Proc. of IEEE International Conference on Robotics and
Animation.

Kwang Won Sok, Manmyung Kim, and Jehee Lee. 2007. Simulating Biped Behaviors
from Human Motion Data. ACM Trans. Graph. 26, 3 (July 2007), 107–es. https:
//doi.org/10.1145/1276377.1276511

Sebastian Starke, He Zhang, Taku Komura, and Jun Saito. 2019. Neural State Machine
for Character-Scene Interactions. ACM Trans. Graph. 38, 6, Article 209 (Nov. 2019),
14 pages. https://doi.org/10.1145/3355089.3356505

Richard S. Sutton and Andrew G. Barto. 1998. Introduction to Reinforcement Learning
(1st ed.). MIT Press, Cambridge, MA, USA.

Jie Tan, Yuting Gu, C. Karen Liu, and Greg Turk. 2014. Learning Bicycle Stunts. ACM
Trans. Graph. 33, 4, Article 50 (July 2014), 12 pages. https://doi.org/10.1145/2601097.
2601121

Jeff Tang, Howard Leung, Taku Komura, and Hubert Shum. 2008. Emulating human
perception of motion similarity. Computer Animation and Virtual Worlds 19 (08
2008), 211–221. https://doi.org/10.1002/cav.260

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas,
David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lilli-
crap, and Martin A. Riedmiller. 2018. DeepMind Control Suite. CoRR abs/1801.00690
(2018). arXiv:1801.00690 http://arxiv.org/abs/1801.00690

Faraz Torabi, Garrett Warnell, and Peter Stone. 2018. Generative Adversarial Imitation
from Observation. CoRR abs/1807.06158 (2018). arXiv:1807.06158 http://arxiv.org/
abs/1807.06158

Adrien Treuille, Yongjoon Lee, and Zoran Popović. 2007. Near-Optimal Character
Animation with Continuous Control. In ACM SIGGRAPH 2007 Papers (San Diego,
California) (SIGGRAPH ’07). Association for Computing Machinery, New York, NY,
USA, 7–es. https://doi.org/10.1145/1275808.1276386

Michiel van de Panne, Ryan Kim, and Eugene Flume. 1994. Virtual Wind-up Toys for
Animation. In Proceedings of Graphics Interface ’94. 208–215.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

https://doi.org/10.1145/1966394.1966402
https://doi.org/10.1145/1778765.1778865
https://doi.org/10.1145/3386569.3392433
https://doi.org/10.1145/3386569.3392433
http://proceedings.mlr.press/v100/lynch20a.html
https://doi.org/10.1109/ICCV.2017.304
https://openreview.net/forum?id=BJl6TjRcY7
https://arxiv.org/abs/1707.02201
http://arxiv.org/abs/1707.02201
https://doi.org/10.1145/3386569.3392474
http://proceedings.mlr.press/v80/mescheder18a.html
https://doi.org/10.1145/2185520.2185539
https://doi.org/10.1145/2508363.2508365
https://doi.org/10.1145/1576246.1531387
https://proceedings.neurips.cc/paper/2016/file/cedebb6e872f539bef8c3f919874e9d7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/cedebb6e872f539bef8c3f919874e9d7-Paper.pdf
https://doi.org/10.1145/3355089.3356501
https://doi.org/10.1145/3355089.3356501
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/2897824.2925881
https://doi.org/10.1145/3072959.3073602
https://doi.org/10.1145/3072959.3073602
http://papers.nips.cc/paper/8626-mcp-learning-composable-hierarchical-control-with-multiplicative-compositional-policies.pdf
http://papers.nips.cc/paper/8626-mcp-learning-composable-hierarchical-control-with-multiplicative-compositional-policies.pdf
https://openreview.net/forum?id=HyxPx3R9tm
https://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1511.06434
https://doi.org/10.1145/122718.122755
http://proceedings.mlr.press/v15/ross11a.html
https://doi.org/10.1145/1276377.1276510
https://doi.org/10.1145/1276377.1276510
https://doi.org/10.1109/TASSP.1978.1163055
https://arxiv.org/abs/1606.03498
http://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1145/1276377.1276511
https://doi.org/10.1145/1276377.1276511
https://doi.org/10.1145/3355089.3356505
https://doi.org/10.1145/2601097.2601121
https://doi.org/10.1145/2601097.2601121
https://doi.org/10.1002/cav.260
https://arxiv.org/abs/1801.00690
http://arxiv.org/abs/1801.00690
https://arxiv.org/abs/1807.06158
http://arxiv.org/abs/1807.06158
http://arxiv.org/abs/1807.06158
https://doi.org/10.1145/1275808.1276386

AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control • 1:15

Kevin Wampler, Zoran Popović, and Jovan Popović. 2014. Generalizing Locomotion
Style to New Animals with Inverse Optimal Regression. ACM Trans. Graph. 33, 4,
Article 49 (July 2014), 11 pages. https://doi.org/10.1145/2601097.2601192

Jack M. Wang, David J. Fleet, and Aaron Hertzmann. 2009. Optimizing Walking
Controllers. In ACM SIGGRAPH Asia 2009 Papers (Yokohama, Japan) (SIGGRAPH
Asia ’09). Association for Computing Machinery, New York, NY, USA, Article 168,
8 pages. https://doi.org/10.1145/1661412.1618514

Jack M. Wang, Samuel R. Hamner, Scott L. Delp, and Vladlen Koltun. 2012. Optimizing
Locomotion Controllers Using Biologically-Based Actuators and Objectives. ACM
Trans. Graph. 31, 4, Article 25 (July 2012), 11 pages. https://doi.org/10.1145/2185520.
2185521

Ziyu Wang, Josh S Merel, Scott E Reed, Nando de Freitas, Gregory Wayne, and
Nicolas Heess. 2017. Robust Imitation of Diverse Behaviors. In Advances
in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Cur-
ran Associates, Inc., 5320–5329. https://proceedings.neurips.cc/paper/2017/file/
044a23cadb567653eb51d4eb40acaa88-Paper.pdf

Jungdam Won, Deepak Gopinath, and Jessica Hodgins. 2020. A Scalable Approach to
Control Diverse Behaviors for Physically Simulated Characters. ACM Trans. Graph.
39, 4, Article 33 (July 2020), 12 pages. https://doi.org/10.1145/3386569.3392381

Yuting Ye and C. Karen Liu. 2010. Synthesis of Responsive Motion Using a Dynamic
Model. Computer Graphics Forum (2010). https://doi.org/10.1111/j.1467-8659.2009.
01625.x

Wenhao Yu, Greg Turk, and C. Karen Liu. 2018. Learning Symmetric and Low-Energy
Locomotion. ACM Trans. Graph. 37, 4, Article 144 (July 2018), 12 pages. https:
//doi.org/10.1145/3197517.3201397

He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. 2018. Mode-Adaptive Neural
Networks for Quadruped Motion Control. ACM Trans. Graph. 37, 4, Article 145 (July
2018), 11 pages. https://doi.org/10.1145/3197517.3201366

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. 2008. Maximum
Entropy Inverse Reinforcement Learning. In Proceedings of the 23rd National Confer-
ence on Artificial Intelligence - Volume 3 (Chicago, Illinois) (AAAI’08). AAAI Press,
1433–1438.

Victor Brian Zordan and Jessica K. Hodgins. 2002. Motion Capture-Driven Simulations
That Hit and React. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation (SanAntonio, Texas) (SCA ’02). Association for Comput-
ing Machinery, New York, NY, USA, 89–96. https://doi.org/10.1145/545261.545276

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

https://doi.org/10.1145/2601097.2601192
https://doi.org/10.1145/1661412.1618514
https://doi.org/10.1145/2185520.2185521
https://doi.org/10.1145/2185520.2185521
https://proceedings.neurips.cc/paper/2017/file/044a23cadb567653eb51d4eb40acaa88-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/044a23cadb567653eb51d4eb40acaa88-Paper.pdf
https://doi.org/10.1145/3386569.3392381
https://doi.org/10.1111/j.1467-8659.2009.01625.x
https://doi.org/10.1111/j.1467-8659.2009.01625.x
https://doi.org/10.1145/3197517.3201397
https://doi.org/10.1145/3197517.3201397
https://doi.org/10.1145/3197517.3201366
https://doi.org/10.1145/545261.545276

1:16 • Xue Bin Peng† , Ze Ma† , Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa

APPENDIX

A TASKS
In this section, we provide a detailed description of each task, and
the task reward functions used during training.

Target Heading: In this task, the objective for the character is to
move along a target heading direction d∗ at a target speed 𝑣∗. The
goal input for the policy is specified as g𝑡 = (d̃∗𝑡 , 𝑣∗), with d̃∗𝑡 being
the target direction in the character’s local coordinate frame. The
task-reward is calculated according to:

𝑟𝐺𝑡 = exp
(
−0.25

(
𝑣∗ − d∗ · ¤xcom𝑡

)2)
, (11)

where ¤𝑥com𝑡 is the center-of-mass velocity of the character at time
step 𝑡 , and the target speed is selected randomly between 𝑣∗ ∈
[1, 5]m/s. For slower moving styles, such as Zombie and Stealthy,
the target speed is fixed at 1m/s.

Target Location: In this task, the character’s objective is to move
to a target location x∗. The goal g𝑡 = x̃∗𝑡 records the target location
in the character’s local coordinate frame. The task-reward is given
by:

𝑟𝐺𝑡 = 0.7 exp
(
−0.5| |x∗ − xroot𝑡 | |2

)
+ 0.3 exp

(
−
(
max

(
0, 𝑣∗ − d∗𝑡 · ¤xcom𝑡

))2)
. (12)

Here, 𝑣∗ = 1𝑚/𝑠 specifies a minimum target speed at which the
character should move towards the target, and the character will
not be penalized for moving faster than this threshold. d∗𝑡 is a unit
vector on the horizontal plane that points from the character’s root
to the target.

Dribbling: To evaluate our system on more complex object ma-
nipulation tasks, we train policies for a dribbling task, where the
objective is for the character to dribble a soccer ball to a target
location. The reward function is given by:

𝑟𝐺𝑡 = 0.1𝑟cv𝑡 + 0.1𝑟
cp
𝑡 + 0.3𝑟

bv
𝑡 + 0.5𝑟

bp
𝑡 (13)

𝑟cv𝑡 = exp

(
−1.5 max

(
0, 𝑣∗ − dball𝑡 · ¤xcom𝑡

)2)
(14)

𝑟
cp
𝑡 = exp

(
−0.5 | |xball𝑡 − xcom𝑡 | |2

)
(15)

𝑟bv𝑡 = exp

(
−max

(
0, 𝑣∗ − d∗𝑡 · ¤xball𝑡

)2)
(16)

𝑟
bp
𝑡 = exp

(
−0.5 | |x∗𝑡 − xcom𝑡 | |2

)
. (17)

𝑟cv𝑡 and 𝑟cp𝑡 encourages the character to move towards and stay near
the ball, where xball𝑡 and ¤xball𝑡 represent the position and velocity
of the ball, dball𝑡 is a unit vector pointing from the character to the
ball, and 𝑣∗ = 1m/s is the target velocity at which the character
should move towards the ball. Similarly, 𝑟bv𝑡 and 𝑟bp𝑡 encourages the
character to move the ball to the target location, with d∗𝑡 denoting a
unit vector pointing from the ball to the target. The goal g𝑡 = x̃∗𝑡
records the relative position of the target location with respect to the
character. The state s𝑡 is augmented with additional features that
describe the state of the ball, including the position x̃ball𝑡 , orientation

q̃ball𝑡 , linear velocity ¤̃xball𝑡 , and angular velocity ¤̃qball𝑡 of the ball in
the character’s local coordinate frame.

Strike: Finally, to further demonstrate our approach’s ability to
compose diverse behaviors, we consider a task where the charac-
ter’s objective is to strike a target using a designated end-effector
(e.g. hands). The target may be located at various distances from
the character. Therefore, the character must first move close to the
target before striking it. These distinct phases of the task entail
different optimal behaviors, and thus requires the policy to compose
and transition between the appropriate skills. The goal g𝑡 = (x̃∗𝑡 , ℎ𝑡)
records the location of the target x̃∗𝑡 in the character’s local coor-
dinate frame, along with an indicator variable ℎ𝑡 that specifies if
the target has already been hit. The task-reward is partitioned into
three phases:

𝑟𝐺𝑡 =

1, target has been hit
0.3 𝑟near𝑡 + 0.3, | |x∗ − xroot𝑡 | | < 1.375𝑚

0.3 𝑟 far𝑡 , otherwise
. (18)

If the character is far from the target x∗, 𝑟 far𝑡 encourages the char-
acter to move to the target using a similar reward function as the
Target Location task (Equation 12). Once the character is within a
given distance of the target, 𝑟near𝑡 encourages the character to strike
the target with a particular end-effector,

𝑟near𝑡 = 0.2 exp
(
−2| |x∗ − xeff𝑡 | |2

)
+ 0.8 clip

(
2

3
d∗𝑡 · ¤xeff𝑡 , 0, 1

)
,

where xeff𝑡 and ¤xeff𝑡 denote the position and velocity of the end-
effector, and d∗𝑡 is a unit vector pointing from the character’s root to
the target. After striking the target, the character receives a constant
reward of 1 for the remaining time steps.

Obstacles: Finally, we consider tasks that involve visual percep-
tion and interaction with more complex environments, where the
character’s goal is to traverse an obstacle filled environment, while
maintaining a target speed. Policies are trained for two types of envi-
ronments. 1) An environment containing a combination of obstacles
including gaps, steps, and overhead obstacles that the character
must duck under. 2) An environment containing stepping stones
that requires more precise contact planning. Examples of the envi-
ronment are available in Figure 1 and 3. The task-reward is the same
as the one used for the Target Heading task (Equation 11), except
the target heading is fixed along the direction of forward progress.
In order for the policy to perceive the upcoming obstacles, the state
is augmented with a 1D height-field of the upcoming terrain. The
height-field records the height of the terrain at 100 sample locations,
uniformly spanning 10m ahead of the character.

B AMP HYPERPARAMETERS
Hyperparameter settings used in the AMP experiments are available
in Table 4. For single-clip imitation tasks, we found that a smaller
discount factor𝛾 = 0.95 allows the character to more closely imitate
a given reference motion. A larger discount factor 𝛾 = 0.99 is used
for experiments that include additional task objective, since these
tasks may require longer horizon planning, such as Dribble and
Strike.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control • 1:17

Table 4. AMP hyperparameters.

Parameter Value
𝑤𝐺 Task-Reward Weight 0.5

𝑤𝑆 Style-Reward Weight 0.5

𝑤gp Gradient Penalty 10

Samples Per Update Iteration 4096

Batch Size 256

𝐾 Discriminator Batch Size 256

𝜋 Policy Stepsize (Single-Clip Imitation) 2 × 10−6
𝜋 Policy Stepsize (Tasks) 4 × 10−6
𝑉 Value Stepsize (Single-Clip Imitation) 10−4

𝑉 Value Stepsize (Tasks) 2 × 10−5
𝐷 Discriminator Stepsize 10−5

B Discriminator Replay Buffer Size 105

𝛾 Discount (Single-Clip Imitation) 0.95

𝛾 Discount (Tasks) 0.99

SGD Momentum 0.9

GAE(_) 0.95

TD(_) 0.95

PPO Clip Threshold 0.02

C LATENT SPACE MODEL
The latent space model follows a similar architecture as Peng et al.
[2019a] and Merel et al. [2019]. During pretraining, an encoder
𝑞(z𝑡 |g𝑡) maps a goal g𝑡 to a distribution over latent variables z𝑡 .
A latent encoding z𝑡 ∼ 𝑞(z𝑡 |g𝑡) is then sampled from the encoder
distribution and passed to the policy as an input 𝜋 (a𝑡 |s𝑡 , z𝑡). The
latent distribution is modeled as a Gaussian distribution 𝑞(z𝑡 |g𝑡) =
N(`𝑞 (g𝑡), Σ𝑞 (g𝑡)), with mean `𝑞 (g𝑡) and diagonal covariance ma-
trix Σ𝑞 (g𝑡). The encoder is trained jointly with the policy using the
following objective:

arg max
𝜋,𝑞

E𝑝 (𝜏 |𝜋,𝑞)

[
𝑇−1∑︁
𝑡=0

𝛾𝑡𝑟𝑡

]
+ _E𝑝 (g𝑡) [DKL [𝑞(·|g𝑡) | |𝑝0]] .

(19)

𝜏 = {(s𝑡 , a𝑡 , g𝑡 , 𝑟𝑡)𝑇−1𝑡=0 , s𝑇 , g𝑇 } represents the goal-augmented tra-
jectory, where the goal g𝑡 may vary at each time step, and

𝑝 (𝜏 |𝜋, 𝑞) =𝑝 (g0)𝑝 (s𝑡)
𝑇−1∏
𝑡=0

(
(g𝑡+1 |g𝑡)𝑝 (s𝑡+1 |s𝑡 , a𝑡) (20)∫

z𝑡

𝜋 (a𝑡 |s𝑡 , z𝑡)𝑞(z𝑡 |g𝑡)𝑑z𝑡
)

(21)

is the likelihood of a trajectory under a given policy 𝜋 and encoder
𝑞. Similar to a VAE, we include a KL-regularizer with respect to a
variational prior 𝑝0 (z𝑡) = N(0, 𝐼) and coefficient _. The policy and
encoder are trained end-to-end with PPO using the reparameteriza-
tion trick [Kingma and Welling 2014]. Once trained, the latent space
model can be transferred to downstream tasks by using 𝜋 (a𝑡 |s𝑡 , z𝑡)
as a low-level controller, and then training a separate high-level
controller 𝑢 (z𝑡 |s𝑡 , g𝑡) that specifies latent encodings z𝑡 for the low-
level controller. The parameters of 𝜋 are fixed, and a new high-level
controller 𝑢 is trained for each downstream task.

During pretrainig, the latent spacemodel is trained using amotion
imitation, where the objective is for the character to imitate a corpus
of motion clips. A reference motion is selected randomly at the start
of each episode, and a new reference motion is selected every 5-10s.
The goal g𝑡 = (𝑞𝑡+1, 𝑞𝑡+2) specifies target poses from the reference
motion at the next two time steps.
The networks used for 𝜋 and 𝑢 follow a similar architecture as

the networks used for the policies trained with AMP. The encoder
𝑞 is modeled by a network consisting of two hidden layers, with
512 and 256 hidden units, followed by a linear output layer for
`𝑞 (g𝑡) and Σ𝑞 (g𝑡). The size of the latent encoding is set to 16D.
Hyperparameter settings are available in Table 5.

Table 5. Latent space model hyperparameters.

Parameter Value
Latent Encoding Dimension 16
_ KL-Regularizer 10−4

Samples Per Update Iteration 4096

Batch Size 256

𝜋 Policy Stepsize (Pre-Training) 2.5 × 10−6
𝑢 Policy Stepsize (Downstream Task) 10−4

𝑉 Value Stepsize 10−3

𝛾 Discount (Pre-Training) 0.95

𝛾 Discount (Downstream Task) 0.99

SGD Momentum 0.9

GAE(_) 0.95

TD(_) 0.95

PPO Clip Threshold 0.02

D SPATIAL COMPOSITION
Our experiments have so far focused primarily on temporal composi-
tions of skills, where a character performs different skills at different
points in time in order to fulfill particular task objectives, such as
walking to a target and then punching it. In this section, we explore
settings that require spatial composition of multiple skills, where the
task requires a character to perform different skills simultaneously.
To evaluate AMP in this setting, we consider a compositional task
where a character needs to walk along a target heading direction
while also waving its hand at a target height. The motion prior
is trained using a dataset consisting of both walking motions and
waving motions, but none of the motion clips show examples of
walking and waving at the same time. Therefore, the onus is on the
policy to spatially compose these different classes of skills in order
to fulfill the two disparate objectives simultaneously.

In this task, the character has two objectives: 1) a target heading
objective for moving along a target direction d∗ at a target speed
𝑣∗, 2) and a waving objective for raising its right hand to a target
height 𝑦∗. The goal input for the policy is given by g𝑡 = (d̃∗𝑡 , 𝑣∗, 𝑦∗),
with d̃∗𝑡 being the target direction in the character’s local coordinate
frame. The composite reward is calculated according to:

𝑟𝐺𝑡 = 0.5𝑟
heading
𝑡 + 0.5𝑟waving

𝑡 , (22)

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:18 • Xue Bin Peng† , Ze Ma† , Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa

where 𝑟heading𝑡 the same as the reward used for the Target Heading
task equation 11, and 𝑟wave

𝑡 is specified according to:

𝑟wave
𝑡 = exp

(
−16

(
𝑦hand𝑡 − 𝑦∗

)2)
, (23)

where 𝑦hand𝑡 is the height of character’s right hand.
To evaluate AMP’s ability to compose disparate skills spatially, we

compare policies trained using both walking and waving motions,
with policies trained with only walking motions or only waving
motions. Table 6 compares the performance of the different policies
with respect to the target heading and waving objectives. Although
the motion prior was not trained with any reference motions that
show both walking and waving at the same time, the policy was able
to discover behaviors that combine these different skills, enabling
the character to walk along different directions while also waving
its hand at various heights. The policies trained with only walking
motions tend to ignore the waving objective, and exhibit solely
walking behaviors. Policies trained with only the waving motion
are able to fulfill the waving objective, but learns a clumsy shuffling

gait in order to follow the target heading direction. These results
suggest that AMP does exhibit some capability for spatial composi-
tion different skills. However, the policies trained with both datasets
can still exhibit some unnatural behaviors, particularly when the
target height for the hand is high.

Table 6. Performance of policies trained using different dataset on a spatial
compositional task that combines following a target heading and waving
the character’s hand at a target height. The normalized task returns for each
objective is averaged across 100 episodes for each model. The model trained
with both walking and waving motions achieves relatively high rewards on
both objectives, while the models trained with only one type of motions
perform well only on one of the objectives.

Dataset (Size) Heading Return Waving Return
Wave (51.7s) 0.683 ± 0.195 0.949 ± 0.144
Walk (229.7s) 0.945 ± 0.192 0.306 ± 0.378
Wave + Walk (281.4s) 0.885 ± 0.184 0.891 ± 0.202

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control • 1:19

Fig. 9. Learning curves comparing AMP to the motion tracking approach proposed by Peng et al. [2018a] (Motion Tracking) on the single-clip imitation tasks.
3 policies initialized with different random seeds are trained for each method and motion. AMP produces results of comparable quality when compared to
prior tracking-based methods, without requiring a manually designed reward function or synchronization between the policy and reference motion.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:20 • Xue Bin Peng† , Ze Ma† , Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa

Fig. 10. Learning curves of applying AMP to various tasks and datasets.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Background
	4.1 Goal-Conditioned Reinforcement Learning
	4.2 Generative Adversarial Imitation Learning

	5 Adversarial Motion Prior
	5.1 Imitation from Observations
	5.2 Least-Squares Discriminator
	5.3 Discriminator Observations
	5.4 Gradient Penalty

	6 Model Representation
	6.1 States and Actions
	6.2 Network Architecture
	6.3 Training

	7 Tasks
	8 Results
	8.1 Experimental Setup
	8.2 Tasks
	8.3 Comparisons
	8.4 Single-Clip Imitation
	8.5 Ablations

	9 Discussion and Limitations
	References
	A Tasks
	B AMP Hyperparameters
	C Latent Space Model
	D Spatial Composition

