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Stochastic renewal model of Iow-fow streamflow 
sequences 

H. A. Loaidga 
Dept. of Geography and Environmental Studies, University of California, Santa Barbara, 
CA 93106, USA 

R. B. Leipnik 
Department of Mathematics, University of California, Santa Barbara, CA 93106, USA 

Abstract: It is shown that runs of low-flow annual streamflow in a coastal semiarid basin of Cen- 
tral California ea~ be adequately modelled by renewal theory, l~br example, runs of below-median 
annual streamflows are shown to follow a geometric distribution. The elapsed time between runs of 
below-median streamflow are geometrically distributed also. The sum of these two independently 
distributed geometric time variables defines the renewal time elapsing between the initiation of a 
low-flow run and the next one. The probability distribution of the renewal time is then derived 
from first principles, ultimately leading to the distribution of the number of low-flow runs in a spec- 
ified time period, the expected number of low-flow runs, the risk of drought, and other important 
probabilistie indicators of low-flow. The authors argue that if one identifies drought threat with the 
occurrence of multiyear low-flow runs, as it is done by water supply managers in the study area, 
then our renewal model provides a number of interesting results concerning drought threat in areas 
historically subject to inclement, dry, climate. A 430-year long annual streamflow time series recon- 
structed by tree-ring analysis serves as the basis for testing our renewal model of low-flow sequences. 

Key words: Streamflow, drought, tree-ring data, renewal model, geometric variables. 

1 I n t r o d u c t i o n  

In a study of natural  hazards around the world, that included droughts, tropical 
cyclones, floods, earthquakes, volcanic eruptions, and, virtually, any conceivable nat- 
ural hazard, Bryant (1991; see Table 1.1) concluded that droughts had the greatest 
adverse impacts among all surveyed hazards. In spite of their environmental  and eco- 
nomic significance, progress made on the mathematical/stat ist ical  study of droughts 
has been slow. This can be at t r ibuted to (1) the scanty long-term hydroclimatic data 
available to describe spatial and temporal drought patterns, and (2) the theoretical 
puzzle d placing drought phenomena within a tractable probabilistic framework (for 
an early probabilistic study of droughts see, e.g., Blumenstock, 1943). 

Before proceeding further into the subject matter,  the concept of drought deserves 
more precise definition. Climatologists, meteorologists, hydrologists, water resources 
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planners, and irrigation analysts have somewhat different interpretations of what a 
drought is (see, e.g., Yevjevich, 1964~ 1967; Palmer, 1965~ Loaiciga et al., 1992a). 
This is a result of the gamut of spatial and temporal scales with which profession- 
Ms in various disciplines operate. It is also rooted in the diversity of economic and 
environmental impacts that reduced levels of surface moisture are perceived to have 
by different professional disciplines. To illustrate, meteorologists use an index that 
combines precipitation and potential evapotranspiration to describe drought severity, 
the well-known Palmer drought severity index (Palmer, 1965). Typical time-scales 
to define the onset and duration of meteorological drought so described are days and 
weeks. These time scales are relevant to irrigation scheduling, where a few days of 
sustained crop-stressful conditions (e.g., low precipitation and high evapotranspira- 
rive rates) can determine the crop yield. On the other extreme of the spectrum of 
time scales, water resources planners consider much longer time scales in defining 
drought incidence. In California, for example, a state that supports the largest water 
resources infrastructure in the world (Marino and Loaiciga, 1985), the initial state 
of water storage in reservoirs and the duration (in years) of dry spells (say, mea- 
sured in terms of below-median annum precipitation) are the major determinants on 
the onset of drought conditions (Loaiciga, 1988). In regards to the spatial scales 
of droughts, previous meteorologic (e.g., Stockton and Meko, 1975) and hydrologic 
(e.g., Loaiciga et al., 1992a; 1993)) studies have focused attention on regional-scale 
drought coverage (i.e., on the order of 104 to 105 kin2). This is consistent with empir- 
ical evidence suggesting that protracted drought conditions are typically associated 
with sustained synoptic-scale climatic anomalies and with teleconnections affecting 
climatic conditions over broad areas (Loaiciga et al., 1993). 

In this study, we equate drought with sustained low-streamflow conditions. The 
annual streamflow time series used in this work, spanning over 430 years, was ob- 
tained from a previous tree-ring reconstruction of annual streamflow (Michaelsen and 
Haston, 1988) for the Santa Ynez River (Santa Barbara County, California). Turner 
(1992) has shown that the Michaelsen and Haston (1988) streamflow reconstruction 
reproduces well the persistence pattern of low- and high-flow annual streamflow runs, 
based on a detailed analysis of the Hurst coefficient (Hurst, 1951) of both observed and 
reconstructed streamflows. Turner (1992) also shows the excellent predictive skill of 
the cited streamflow reconstruction. Following other authors (Yevyevich, 1964, 1972; 
Zektser and Loaiciga, 1993), streamttow is chosen in this work as the indicator for 
surface hydrologic conditions, and thus, as an indicator for droughts. Streamflow 
integrates other major fluxes in the hydrologic cycle (precipitation, snowmelt, evap- 
otranspiration, and baseflow), and, therefore, from the perspective of water supply 
analysis, it is uniquely suited as a drought indicator. In fact, Loaiciga et al. (1992a, 
t993) used annual streamflow in the study of regional-scale drought in the Sacra- 
mento river basin of California and the Upper and Lower Colorado river basins. In 
California, a state with a vast water resource infrastructure, for example, it was found 
that sequences of below-median annual stream flow lasting three or more years almost 
inevitably led to hydrologic drought conditions for any initial water storage and water 
demand level (Loaiciga et al., 1992a, 1993). Following these studies, sustained low 
(annual) stream flow is the basis for the definition of hydrologic drought in this pa- 
per. We present a probabilistic theory of droughts based on the fundamental renewal 
processes of stochastic analysis. 
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2 Low-f low r u n s  as a r enewa l  p roces s  

Suppose that  a time series of annual runoff is given by Q1, Q2, ..., Qt, where time 
ranges from year 1 to year t. In attempting to characterize runs of runoff years, 
we prefer to classify runoff into two exclusive categories, such as, say, below-median 

~runoff or above-median runoff. Then, a run of, say, below-median years can be of 
length D = 1, 2, .... Similarly, one could define the first 40-percentile, or Q0.40, for 
which annual streamflow falls below with a 40% probability, as the threshold for clas- 
sifying runoff years. In that  instance, a runoff year is either equal to or less than Q0.40, 
or it is larger than it. Exactly where the classification threshold lies is entirely the 
analyst's decision. That  decision, certainly, must be based on an understanding of 
the hydrologic consequence of dry runs in the area of study (Klemes, 1974), as well as 
on water storage characteristics, water level demands, water transfers and the like, all 
factors important to hydrologic drought, that, if considered jointly would render the 
mathematical-probabilistic analysis of drought too complex (this issue is treated fur- 
ther later in this paper). For our study, the severity of drought is measured in terms 
of the level of streamfiow through the specification of a streamflow threshold (e.g., 
median streamflow); recurrence and the probable duration of drought are derived by 
probabilistic analysis. 

It may appear unreasonable in some instances to consider one-year runs of "dry" 
years to be relevant to droughts. This would be the case in areas where there is 
multiyear carryover storage capacity of reservoirs. For the purpose of mathematical 
analysis, however, this is a convenient convention imposed on the probabilistic model 
of droughts. It is possible to introduce a threshold constraint whereby the onset of 
a drought is subject to a minimum length of runs of dry runoff years, as shown later 
in this work. 

The concept of droughts as a renewal process is illustrated in Figure 1. Starting 
at time t = 0, there is an elapsed period of time, 7"1, until the first drought (i.e., 
a run of dry years) occurs. At that point, the number of events occurred in time 
t, denoted by N(t), takes the value of 1. The first dry run lasts D1 years, and is 
followed by an interarrival time of T2 years until the next drought is initiated at time 
t = f l  + D1 + ;2. N(t) increases to 2 at that  point The second drought lasts D2 years, 
and the renewal "cycle" is initiated again. In general, a renewal cycle time, or more 
concisely, renewal time, is the time R comprising the duration of a drought D plus the 
subsequent interarrival time r;  therefore, R = D + r. The term "renewal" (see, e.g., 
Blackwell, 1953; Feller, 1957; Parzen, 1964) chosen to describe this type of stochastic 
counting process conveys the idea that the phenomenon in question (droughts in 
this instance) reappears with statistical regularity over time (i.e., drought recurrence 
is probabilistically stationary). There need be no cyclic behavior in the sense of a 
perfectly repetitive deterministic process with known period. Statistical regularity 
means in this instance that  the elapsed time between the initiation of a drought and 
the beginning of the next one (i.e., the renewal time R of Figure 1) has a time- 
independent distribution with constant expected value. 

Renewal processes are a generalization of the fundamental Poisson stochastic pro- 
cess. Poisson processes have been considered mainly in hydrology in the study of 
floods or other extreme hydrologic phenomena (e.g., 7bdorovic, 1978). In the Pois- 
son model the recurring phenomena has an instantaneous duration (i.e., the duration 
D in Figure 1 is zero) with independent, exponentially distributed, interarrival times 
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Figure 1. The concept of drought as a recurrence process. D is the duration of drought, r is the 
duration of nondrought conditions, R is the renewal time, and N(t) is the number of droughts in 
period t. 

(T in Figure 1). In the renewal process, the recurring phenomenon has a stochastic 
duration D, and, the interarrival time r need not be exponentially distributed. The 
critical requirement, which we claim to hold for drought recurrence (at least in the 
hydroclimatic regimes considered in this study), is that the times D and ~- must be 
independent (although not necessarily identically distributed). In the context of our 
discussion, this means that the duration of a drought does not influence the waiting 
time until the next one. This assumption has been established in (Loaiciga et al., 
1992a,b; and Loaiciga et al., 1993). 

It is worth indicating that the study of runs of streamflow conditions~ defined clas- 
sically in terms of deviations about the mean or median of a time series, has a long 
tradition in hydrologic analysis (Hurst, 1951; Yevjevich, 1964; Mandelbrot and Wal- 
lis, 1969; Klemes, 1974). Statistics such as the run-length, run-sum, maximum run- 
length, and the like, have been studied extensively. In this study we aim at the 
probability distribution of the number of droughts in a period t, interarrival times, 
risk of droughts, expected number of events in an interval t, etc., using the renewal 
model to explain the underlying probabilistic process. This perspective on the prob- 
abilistic study of droughts appears novel. 

3 The  d i s t r ibu t ion  of the  renewal  t ime  

Figure 2 shows histograms of below- (solid line) and above-median (dashed line) 
annual flow durations in the Santa Ynez river of Central California. Figure 2 was 
developed from a 430-year streamflow time series constructed by dendrochronologi- 
cal analysis (Michaelsen and Haston, 1988) and tested for accuracy and hydrologic 
consistency by Turner (1992). (The hydroclimatology of the Santa Ynez river basin 
has been described by Upson and Thomasson, 1951.). These exponentially-shaped 
histograms suggest (this will be corroborated in a latter section) that the underlying 
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Figure 2. Histograms of below-median (solid line) and above-median (dashed line) annual flow 
durations for the Santa Ynez river of Central California. 

probability model of below-median and above-median durations may be adequately 
described by a geometric distribution (Loaiciga et at., 1992b). Assume, in general, 
that tee runs of dry and non-dry years'-(of which a special case would be runs of below 
and above-median flows) are governed by geometric distributions with parameters Pl 
and p2, respectively, i.e., 

P(D = r) = ( 1 - p l )  p~-l, r = 1, 2, ... (1) 

P ( ~  = r)  : ( 1 - p ~ )  p ~ - ' ,  r : l ,  2 ,  ... ( 2 )  

in which r represents the length of the runs in either case. (Note that the lengths 
of dry and non-dry runs are denoted by D and % respectively.) The parameters 
pl and p2 satisfy the relation p~ + p2 = 1, since Pl defines the probability of a dry 
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streamfiow condition and p2 is the probability of a non-dry streamflow. In particular, 
when below-median flow defines a dry year, Pl = P2 = P = 1/2. 

The renewal t ime R, i.e., the t ime from the beginning of a dry run to the initiation 
of the next dry run, is equal to the sum of tile two independent geometric variables 
defined in equations (1) and (2). The distribution d the renewal t ime R is then (see 
Appendix A for a proof): 

P (R = r) = ( t - p l ) ( 1 - p 2 )  [p~ - l_p~- l ]  (3) 
pl - p2 

where r = 2, 3, .... This distribution becomes P(R = r) = (1 - p)2(r - 1)p r-2, when 
Pl = P2 = P. The distribution of equation (3) is of fundamental  importance here. 
From (3), it is possible to define (i) the risk of a drought, (ii) the probabili ty of occur- 
rence of a number of droughts r within a t ime interval t, and (iii) the expected number 
of droughts within a t ime interval t. This provides a pret ty  complete probabilistic 
description of drought incidence, though other statistics could be asked for, and many  
could be calculated efficiently. Incidentally, the expected value of the renewal t ime 
R in Eq. (3), #, is equal to 4 when pl = p2 = 0.50, i.e., when the median streamflow 
is the threshold that  divides dry and wet streamflow runs. This theoretical value of 
# agrees well with the calculated value for # obtained from the histogram of below- 
median streamflow runs shown in Figure 2, which is obtained by dividing the length of 
the time series, t, by the number of runs observed in time-period t, N(t), or 430/105 
= 4.09. The similarity between the theoretical renewal t ime # and its calculated 
analog follows from a rather general theorem of stochastic processes (Feller, 1957; 
Parzen, 1964; Ross, 1985) which states that for sufficiently large t, N( t ) / t  --+ #-1. 
In reference to this theorem, it is possible to estimate from Figure 2, for example, 
that  the average recurrence time of 5-year droughts is approximately 108 years (after 
rounding 430/4). 

4 D r o u g h t  p r o b a b i l i t i e s  and  r e l a t e d  r e su l t s  

4.1 The probability of the number of droughts N(t) 

It has been established that  the interarrivat t ime for the renewal drought process 
conceptualized in Figure 1, has a distribution function given by Eq. (3). The wait- 

ing time until the r-th drought, Wr, is Wr = ~ Rj, where the interarrival times 
j=l 

Rj are independent and identically distributed according to the distribution in Eq. 
(3). A basic relation between the number of droughts in a period t, N(t), and the 
waiting t ime to the r-th event is that  (see, e.g., Parzen, 1964) N(t) _< r if and only if 
Wr+l > t. Upon reflection on this basic relation, it follows that  N(t) = r if and only 
if Wr _< t and Wr+l > t. It is concluded at once that  (see, e.g., Parzen, 1964): 

P[N(t) = r] = P[Wr _< t] -- P[Wr+I < t] (4) 

Equation (4) can be expressed in terms d the renewal parameters  of interest, i.e., 
the geometric parameters  Pl and P2, and the rth- and r+ls t -order  convolutions of the 
renewal t ime R introduced by the waiting times Wr and Wr+l, respectively. Appendix 
B establishes the following result: 
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PIN(t) = r] = E (1 - pl)r(1 -- p2) r [br,~b ..... p~p~-~] - 
n=O s'mO 

E (1 -- pl)~+t (1 - p2) r+l [br+l,sbn,r+l,sp~p~ -s] (5) 
11=0 S=O 

for r = 0, 1, 2,... [(t/2)-l], where [(t/2)-1] is the largest integer not larger than (t/2)-1. 
In equation (5): 

br,~ = (r + s -  1)! /[s!(r-  1)!] (6a) 

b ..... = ( n q - r - s - 1 ) ! / [ ( n - s ) ! ( r - 1 ) ! ]  = br,n-~ (6b) 

Equation (5) for the probability of the number of events N(t) in a period t based on 
geometric probability distributions as construed herein appears novel in the stochastic 
analysis of droughts. (Similar treatments have been presented using the negative 
binomial distribution Ross (1972) and the gamma distribution Parzen (1964) for the 
renewal times in problems other than hydrology). 

From the previous relations between the counting process N(t) and the 
waiting time Wr, it follows that  the cumulative probability of N(t) satisfies 
P[N(t) _< r] = P[Wr+~ > t], or (see details in Appendix B): 

b s n - s  PIN(t) < r] = 1 - E (1 - p~)r+l(1 - p2) r+l [ r+l,sbn,~+l,~plp~ ] (7) 
n = O  s = 0  

for  r = 1,  2 ,  . . . ,  [ ( t / 2 ) - 1 ] .  
The risk of drought, II, is the probability of having at least one occurrence in t 

years, or PIN(t)>1], and, therefore: 

t 

17 : ~ (1-- pl)(1--  p2) ~=2 (~-1 --~p-~ (p~-I _ p~-l) (8) 

where the relation P[N(t)>_I] = P(R_<t), was used in establishing equation (9), and 
R is the renewal time (see equation (3)). (It is noted that the renewal time R and 
the time to the first occurrence, Wl,  are, by definition, identically distributed.) 

4.2 The expected number of droughts 

The count of droughts in a period t, N(t), is nonnegative and integer valued, therefore, 
its expected value, E[N(t)], can be written in terms of its probabilities as E[N(t)] = 
2 P[N(t)>r] (see, e.g., Ross, 1985) where the sum is over r_>l. In addition, from 
the relation N(t)>_r if and only if Wr < t, it. follows then that the expected number 
of droughts in a period t is given by: 

E[N(t)] = ~ (l - pl)r(i --p2) r [br,sb ..... p~p~-S (9) 
r = l  n = 2  s = 0  

where [t/2] is the largest integer not larger than t/2. 
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Equations (5) through (9) summarize the theoretical results of posing drought recur- 
rence as a renewal process with geometric distributions. These equations provide the 
probability distribution (equation (5)), the cumulative distribution function (equa- 
tion (7)), the risk of drought (equation (8)), and the expected value of the number 
of droughts (equation (9)). All other distributional properties, such as the variance 
and higher moments, and, more generally, the characteristic function of the renewal 
process are derivable from the fundamental results presented previously. A peculiar 
aspect of the probabilistic results just derived in Eqs. (5) through (9) is that they 
do not involve parameter estimations. Model validation in this work is based on 
testing the goodness-of-fit of the geometric (Eqs. (1) and (2)), renewal (Eq. (3)) and 
counting (Eq. (5)) distribution, as shown below. A very important special ease, i.e., 
when a dry year is classified as below-median flow, is treated next 

5 T h e  case of  b e l o w - m e d i a n  runs  

In a number of previous studies (Loaiciga et al., 1992a; Loaidga et al., 1993), it was 
demonstrated that runs of below-median annual streamflow can lead to hydrologi- 
cally significant droughts. When the duration of dry runs is defined by below-median 
annual streamflow, the parameters pt and p2 of the geometric distributions for dry 
and non-dry year runs (see equations (1) and (2), respectively) are equal, i.e., Pl = 
p2 = P = 1/2. As a result, simplifications occur :in the probabilistic equations of the 
previous sections dealing with the general case of unequal geometric probabilities. 
The following resutts are shown in Appendix C. 

5.1 The probability of the number of droughts 

The probability of the number of (below-median) droughts in a period t, P[N(t)], is 
given (where Pl = P2 = P = 1/2) by the following expression: 

t-2(r+l) 
P[N(t) = r] =E P~+~ 2 r +  + 2r - E p2(r+l)+n (10) 

- -  \ 2 r + l  
n=O n = 0  

where r = 0, 1, ..., [(t/2)-1]. The terms in parentheses denote binomial coefficients 
(that is, in general, for integers n and r such that 0<r<n ,  

n, 

r r!(n - r)! 

defines the binomial coefficient). 
The cumulative probability for the number of below-median droughts in a period t 

is: 
t - 2 ( r + l )  

P[N(t) < r] : 1 - _  E P2(~+l)+n ( 2r+n+l)2r+l (11) 
n : O  

with r = 0, 1, ..., [(t/2)-1]. 
The risk of drought, II, for the below-median case takes the simple form: 

n : 1 - pt (t  + 1) (12)  
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5.2 The expected number of droughts 

The expected number of (below-median) droughts in a period t becomes: 

It/2] t--2r 

r=l n----O 

Equations (5)-(13) permit a complete characterization of drought recurrence for 
the cases when Pl ¢ P2 and P1 = P2. In the former case, the calculation of prob- 
abilities, risk and expected values is computationally intensive. This is particularly 
true for large time periods t. Simplifications arise when Pl = P2 = P. The binomial 
coefficients appearing in equations (10) to (13) satisfy computationally convenient 
recursions. Let 

a~ = P2~+~ ( 2r+n-1)2r-I (14) 

and 

bn = p2~+,+~ / / 2 r + n + l )  
\ 2r + 1 (15) 

The following recursions hold: 

2 r + n - 1  
n 

2 r + n + l  
bn  = bn-1  p (17) 

n 

t o r n =  1, 2, ..., with ao = p~r andb0 = p2r+2. 
Using the previous recursions, equation (10), the expression for the probability of 

below-median droughts, becomes: 

t--2r t -2(r+l)  

P[N(t) = r] = E a ~ -  E bn (18) 
rlmO rt~-O 

The sums in equation (18) are then calculated via the recursions in (16) and (17). 
This greatly facilitates programming of the probability calculations, and avoids loss 
of accuracy by sidestepping the computation of large binomial coefficients that arise 
when the time period t is large. 

6 Truncation of drought duration and other complicating matters 

5.1 Truncated drought duration 

It was previously discussed that in areas with water resources infrastructure, primarily 
reservoirs, there may be multiyear carryover water storage that helps mitigate the 
impacts of short runs of dry streamflow years. Loaiciga et al. (1993) established in a 
survey of drought studies that, typically, runs of three or more years of below-median 
stream flow allnost unequivocally lead to some sort of drought impact. Considering 
then that runs of dry streamflow years are likely to trigger a hydrologic drought if 
their length exceed, say, 0 years, it is still possible to model drought recurrence as 
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a renewal process. In this instance, drought duration becomes a truncated random 
variable in the sense of (Loaiciga et al., 1992b). For the case of a geometric drought 
duration (see equation (1)), the distribution gets modified when the duration D is 
larger than 0. The truncated geometric distribution is known to be (see Loalciga et 
al., 1992b): 

P[D = r] : (1 - Pl) P1-0-i, r -> 0 + 1 (19) 

The renewal time in this instance is the sum of D, the truncated drought duration 
(larger than 0 years), plus the duration of the elapsed time, r,  from the end of 
a drought to the initiation of the next one. The latter elapsed-time distribution 
must be identified from data, and wouldn't be a sample geometric distribution with 
parameter p2 = 1 - p l  as in equation (2), since it now includes runs of non-dry 
years (non-dry years occur with probability P2 in any year) and runs of dry years that 
last 0 or less years. Upon identification of the renewal time so defined, probability 
results analogous to those embodied in Eqs. (5)-(13) are obtainable by the methods 
of Appendices A C. 

6.2 Length of streamflow time series 

In order to make reliable probabilistic inferences on hydrologic droughts based on 
stream flow time series, the length of the data set and its accuracy are primordial. In 
the Santa Ynez river streamflow time series analyzed herein, in 430 years of data, there 
were 32, 6, and 2 below-median runs of durations >3, >5, and ->6 years, respectively 
(see Figure 2). Clearly, the ability to conduct sound probability analyses is limited 
when the truncation threshold for drought duration increases, say, from 3 to 6 years, 
by the limited sample sizes available for long droughts. The renewal-theory approach 
of this paper, in conjunction with the empirical criterion discussed previously, namely, 
to consider runs of dry years lasting at least 3 years, seems to represent well drought 
incidence in regions with high hydroclimatic variability and recurrent droughts. The 
important Sacramento and Colorado river basins are examples in point (Loaiciga et 
al., 1993). 

The renewal method of drought occurrence requires reasonably long hydrologic 
time series. A role of thumb might be that time series be no less than one hundred 
years for studies based on either annual streamflow or precipitation (Loalciga et al., 
1993). Annual precipitation typically shows less temporal correlation than annual 
streamflow (Michaelsen et al., 1987). Therefore, it is likely to see a larger proportion 
of short-duration runs of dry years in annual precipitation records than in streamflow 
records. The threshold for defining hydrologic drought can arguably be reduced to 
two or more - as opposed to three or more- consecutive dry years when working 
with annual precipitation. The implication here is that for annual streamflow and 
precipitation time series of equal length, the precipitation records are likely to be 
more representative in modeling short-duration droughts. If drought is triggered by 
relatively larger dry runs, the streamflow records are likely to be more suitable for 
drought modeling purposes. 

It is desirable to pool instrumental records with well verified reconstructed proxy 
records, such as tree-ring based reconstructions, when available. It is then possible 
to develop centuries-long time series leading to highly reliable results by the methods 
presented herein. It is significant that in drought analysis based on binary classi- 
fication of droughts (i.e., dry vis-a-vis non-dry conditions), as done in this work, 
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reconstructed streamflow and precipitation (say, from tree-rings) can be very suc- 
cessful in identifying dry years. (Stockton and Meko, 1975; Michaelsen et al., 1988). 
Therefore, the predictive skill of those reconstructions can be very high when it comes 
to classifying streamflow and precipitation into dry and non-dry categories, i.e., up 
to or above 90% of years correctly classified in either category (Haston, 1992; Turner, 
1992). This fortunate situation does not occur when one attempts to identify extreme 
high precipitation and streamflow based on tree rings. It is known that tree-rings 
cease growing after ambient humidity exceeds high levels, so the ability to discern the 
extremely wet events from tree rings is greatly impeded (Haston, 1992). Therefore, 
in tree-ring based precipitation and stream flow reconstructions, accuracy is greater 
in drought analysis than in the analysis of extremely wet event.s. For an extensive 
and recent account of dendrohydrologic applications to drought analysis see Loaiciga 
et al. (1993). 

7 Resu l t s  based  on the  renewal  t h e o r y  

A study of below-median drought recurrence was conducted based on a 430-year 
long reconstruction of annual streamflow for the Santa Ynez river in Santa Barbara 
County, California. This data set has been shown to have excellent predictive skill 
by Michaelsen and Haston (1988) and Turner (1992), providing an unusually repre- 
sentative time series for the purpose of model testing. The Santa Ynez river basin's 
hydroclimatology has been described in Upson and Thomasson (1951). Character- 
ized by extreme climatic variability, this 2,000 km 2 river basin of Mediterranean-like 
climate has average annual precipitation of about 35.6 cm on the coast to 88 or 102 
cm in the headwater mountains. The histograms of (unimpaired) below-median and 
above-median annual stream flow run durations at Bradbury Darn located at about 
1/3 of the way of the stream course from its headwaters to the ocean) are shown in 
Figures 2. At this site, the drainage area is approximately 1050 km 2, with an annual 
median flow of 36.62 million cubic meters (29.7 thousand acre-feet per year). 

7.1 Testing of geometric and renewal distributions 

The geometric distribution was proposed as a suitable distribution for modeling the 
duration of below-median and above-median run durations (see equations (1) and 
(2)). Figure 3 shows the observed (solid line) and expected (dashed line) frequencies 
of below-median run durations. The histogram of expected frequencies in Figure 3 
was calculated by letting the frequency f be equal to f = m P, where m is the total 
number of observed runs (i.e., 105, as can be verified in the histogram of Figure 2) 
and P is the theoretical probability as given by equation (1), with Pl = P = 1/2 for 
any duration r = 1, 2, .... The chi-squared test (Loaiciga et al., 1992b) was conducted 
to assess the goodness of fit of the geometric model to the observed distribution of 
below-median run durations. Since we are testing for the goodness-of-fit of theo- 
retical probability models to empirical frequencies, the chi-squared test is the most 
robust test for this purpose (Pearson, 1914; Rao, 1989). The chi-squared statistic 
was found to be equal to 8.89, well below the critical test statistic (with eight degrees 
of freedom) X(0.05;s) = 15.5, indicating that the geometric distribution is a suitable 
model at a 5% significance level. 
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Figure  3. Results of chi-squared goodness-of-fit test for the distribution of the duration of below- 
median droughts. The theoretical geometric frequency fits the observed frequency of drought dura- 
tions at a 5% significance level. 

Figure 4 shows the observed (solid line) and expected (dashed line) frequencies of 
above-median run durations. Proceeding in an analogous manner as explained for the 
case of below-median runs, the chi-squared test yielded a chi-squared statistic of 2.80, 
below the critical test statistic (with seven degrees of freedom in this case) X(0.05;7) = 
14.t, indicating that  the geometric distribution is a suitable model for above-median 
run durations at a significance level of 5%. 

In Figure 5 are shown the observed (solid line) and expected (dashed line) frequen- 
cies of renewal time durations (see definition implied by Figure 1). There were m = 
106 renewal t ime runs with durations ranging from r = 2 to r = 11. The distribution 
of expected frequencies in Figure 5 was calculated by letting the frequency f be f = 
m P, in which the probability P is given by the theoretical model of equation (3) 
applicable to renewal durations r = 21 3 ..., after letting pl = p2 = p = 1/2. 
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Figure  4. Results of chi-squared goodness-of fit test for the distribution of the duration of above- 
median droughts. The theoretical geometric frequency fits the observed frequency of drought dura- 
tions at a 5% significance level. 
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The chi-squared test for goodness of fit of the probability model of equation (3) to 
the observed renewal durations yielded a chi-squared statistic of 2.03, well below the 
critical test statistic (with six degrees of freedom in this case) X(0.05;6) = 12.7. The 
theoretical probability of equation (3) is therefore adequate for observed renewal time 
durations at a 5% significance level. 

The quality of the goodness of fit for below-median, above-median, and renewat 
time durations by the proposed (equations (1) and (2)) and derived (equation (3)) 
probability models is remarkable. Therefore, a high degree of confidence can be 
attached to the probability results of equations (5) to (13). Calculations related to 
these probability results follow. 

7.2 Probability calculations 

Based on equation (10), the probabilities of observing a specified number of droughts 
in t = 430 years, PIN(430) = r] for r = 100 through r = 117 were calculated. This 
interval of renewal time durations account for approximately 91% of the mass of the 
probability of the number of droughts when the total observation time is 430 years. 
The 430 interval is relevant since it is the length of the Santa Ynez river streamflow 
time series. It was indicated previously that there were m = 106 observed renewal 
time runs in the Santa Ynez river time series. The calculated probability P [N(430)= 
106] is approximately 7.5%, which is the third most likely number of droughts in 430 
years, and, as shown in Figure 6, only exceeded by PIN(430) = 107] = 0.077 (this is 
the mode of the probability distribution) and P [N(430) = 108] = 0.0761. 

7.2 Ezpected value calculations 

Equation (12) for the expected number of droughts in a period t = 430 was used 
to calculate that E[N(430)] = 107, in remarkable agreement with the distribution of 
Figure 6 where the mode is r = 107, and with the fact that the number of observed 
droughts was r = 106. In the same vein, it was previously established that the average 
renewal time # in the Santa Ynez time series is approximately 430/105 = 4.09 years. 
This is in excellent agreement with the theoretical expected renewal time obtained 
fi'om equation 0), with Pl = p2 = 1/2, that is, # = 4. 

Expected values of the number of droughts in periods of other lengths, i.e., t = 
100, 200, 500, 1000, were calculated via equation (13) to be equal to 25, 50, 125 and 
250, respectively. This is in perfect agreement with the asymptotic result N(t)/t--+ 
#- t ,  where # = 4 for the case of below-median droughts. (Strictly speaking, this 
last statement implies a slight extension of the previous asymptotic statement to 
m(t)/t--~ # - 1  where m(t), the expected number of droughts in a period t, replaces 
N(t), the number of droughts in that same period t). 

8 S u m m a r y  and  conclusions 

The theory of droughts as a renewal process has been developed in this paper. Our 
analysis was based on identifying the distribution of the renewM time, that is, the 
time elapsing from the initiation of a drought to the beginning of the next drought. In 
this study, that renewal time turned out to be the sum of two independent geometric 
variables. Once the renewal time distribution was derived, a number of important 
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Figure 6. Calculated probabilities of the number of droughts in a period t = 430 years. The interval 
100 < r < 117 comprises about 91% of the probability mass. The observed number of droughts was 
106, close to the theoretical mode of 107. 

drought-related questions were solved by standard methods, such as the probability of 
having so many droughts in a time period, the risk of drought, the expected number 
of droughts per time period, and the like. 

The theory presented here is not restricted to pairs of independent geometric dis- 
tributions as building blocks for the renewal time. These can be in fact any pair of 
independent distributions for drought duration D and the intervening time ~- (given 
by equations (1) and (2), respectively). Even though this study is based on dis- 
crete probabilities, the concepts and methods apply as well to continuous and mixed 
distributions. 

A long and statistically representative streamflow time series was key to the proper 
identification of the renewal time's distribution. When drought is defined to have 
a threshold period of dry conditions, then one must work with a suitably truncated 
distribution for the drought duration. As restrictions on the basic drought definitions 
presented herein are added, e.g., thresholds, contemporaneous states of water storage, 
water demand and river flow, data needs become vexing and dil~cult to meet in prac- 
tice. Also, the renewal model will no longer apply to these specially conditioned data, 
even if available. These man-made considerations will result in much less tractable 
models, although the conclusions would be more important to interested planners 
with such elaborations. 

The methods of this paper were tested with a representative annual streamflow 
time series. Model testing basically consists of (i) verifying the basic distributions 
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for drought duration D and intervening time r,  (ii) verifying the derived distribution 
for the renewal time, and (iii) calculating expected values and probability of droughts 
and comparing those calculated values with observed ones and with asymptotic esti- 
mates (see, e.g., equation (4)) available from renewal theory. Chi-squared tests were 
implemented in this work to establish an excellent agreement between postulated and 
observed distributions. Probability calculations, using accurate and efficient recur- 
sive computational algorithms (see equations (14)-(18)), were remarkably close to the 
observed data values and theoretical asymptotic results. 

In conclusion, a complete probabilistic characterization of drought recurrence is 
feasible with the methods of this paper. Our theory does not require estimation of 
parameters; instead, the basic geometric distributions and derived probability distri- 
bution must be verified against observed frequencies. The analyst simply specifies the 
streamflow threshold differentiating dry from non-dry years. For geometric drought 
durations, the case worked out here, closed-form expressions in terms of elementary 
functions yield all pertinent drought probabilities and expected drought values, which 
were easily calculated after adequate provision was given to ensure numerical accu- 
racy. 
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A p p e n d i x  A 

To show equation (3), one must realize that the characteristic func- 
tion of a geometrically distributed variable with parameter pj is given by 
Cj(t)) = e i~ (1 - pj)/(1 - p5 ei~), where i 2 = -1. Therefore, the characteristic func- 
tion of the sum of two independent geometric variables with parameters Pl and 
p2), CR(@), is equal to the product 4~(@) ¢2(@): 

¢a(ql) - ( 1 - p l )  ( 1 - p 2 )  
(~ - pl) (( - p2 )  ( 1 1 )  

where ~ = e -iq'. The characteristic function in equation (A1) can be rewritten as a 
sum of partial fractions as follows: 

( t  - p l ) ( 1  - P2)  (1 - p l ) ( 1  - P2 )  ( 1 2 )  
C R ( ~ )  = (p l  - p~)(~  - p l )  + (p~ - p~)(~  - p~) 

The denominators in the right-hand side of equation (A2) can be expanded as a 
geometric series on pie iv, j = 1, 2, and after factoring common terms, the characteristic 
function can be rewritten as: 

(1  - p l ) ( 1  - p~)  ~ ,  • 
C R ( ~ )  
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By definition, the characteristic function CR is equal to: 

CR(~) = ~ P ( R =  r)e i*~ (A4) 
r=O 

Letting r = v + 1 in equation (A3), and matching term by term the right-hand sides 
of equations (3) and (4) yields that: 

P (R = r) (1 - p J ( 1  - p J  (~-1 7 - p ~  [p;-1 _ p~-l] (A5) 

where r = 2, 3 ..... as proposed in equation (3), the expression to be proved. 

A p p e n d i x  B 

To prove equation (5), it suffices to derive the distribution of the t ime till the rth 
arrival, Wr, as it is clear from equation (4). It was previously stated that  the t ime 

tilt the rth arrival is the sum of the renewal time, R, r times, i.e., W~ = k Ri- In 
j=t  

turn, the renewal t ime is the sum of two independent geometric variables as seen in 
Appendix A. The characteristic function of W~ is, therefore: 

(1 - pl)  ~ (1 - p2) ~ e2ir, ~ (B1) 
Cw,(@) -- (1 - plei*) r (1 -- p2e*) r 

By differentiating r - 1  times the geometric series k [PJ ei~] k = (1 - Pi ei~) -1, J = 
k=0 

1, 2, with respect to p j e  io, it is readily established that: 

1 
- ~ b~,~p~ e i¢~ (B2)  

(1 - Pl ei~!') r s=0 

where b~# was defined in equation (6@ Also: 

oo 

1 = E br,up; e i@~ (B3) 
(1 - P2 ei@) r u=0 

where br,~ is defined by equation (6a) with s = v. Combining equations (B1)-(B3), 
the characteristic function of Wr becomes: 

(J)Wr (lI'J) : (1 -- pl)~(1 - -  p2) r 

Using the well-known formula 

fs,~ = 
sw=O 

L 
s,tJ~O 

hrabr,~p~p~ e i(~+~)¢~ e 2ir~ (B4) 

n=O s=O 

for any argument f, the characteristic flmction &w,(~) becomes: 

e i~(~+2~) (B6) 
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in which b . . . . .  was given in equation (6b). 
The characteristic function 5w~(q~) is also, by definition, equal to: 

Cw~(~) = ~ P[W~ = n + 2r] e i@(n+2r) (B7) 
r t~O 

Comparing equations (B6) and (B7) te rm by term within the summation from n = 
0 to n = oc, yields at once the probability for the distribution of the t ime till the rth 
arrival: 

P[W~ = n + 2r] = (1 - pl)r(1 -- p2) r ~ br,sb . . . . .  p~p~-S (B8) 
S ~ 0  

for n >_ 0; for n < 0 the probability is zero. 
Equation (B8) is the fundamental  probability, since, based on it and on the relations 

between the counting process N(t) and the waiting times W~ and Wr+l (see, e.g., 
equation (4)), construction of the probabilities in equations (5), (7), and (8), a s well 
as the expected value of equation (9), is direct. 

A p p e n d i x  C 

The probability results of equations (10)-(13) for the case when Pl = P2 = P, i.e., 
the classification criterion for dry years is that  annual s tream flow be below median, 
require essentially the probability of the waiting time Wr for this special case. Once 
this probabili ty is available, other results follow easily from previously established 
relations between the count process N(t) and the waiting t ime to the rth arrival. 

The characteristic function of the t ime to the r th arrivM for below-median droughts 
is a limiting case (Pl --* P2 = P) of the result in equation (B1), and is given by: 

(1 - p)2r 
~bw~(g~) - (1 - p eikg) 2r e2irgs ( e l )  

By taking 2r-1 derivatives with respect to p e i~ on both sides of the geometric series 

(1-p @¢)-1 = ~ [p ei~]k it is established that: 
k = O  

1 __ ~ ( 2 r + n - 1 )  pneiCn (C2) 
(1 - p eigl) 2r 2r - 1 

Combining equations (C1) and (C2) yields the characteristic equation of the time 
to the rth event: 

Cw~(q~) = ~ p2~+n ( ' 2 r , + n - l )  e(2r+n)i @ (C3) 
n=o i x 2r - 1 

The characteristic function Cw~(qJ) is, by definition, equal to: 

ewe(@) = ~ P[Wr = 2r + n] e (2~+')i¢ (C4) 
n~O 
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Equa t ing  terms wi th in  the  summat ions  of equat ions (C3) and (C4) yields the prob- 
abi l i ty  of the r th  arrival t ime: 

P[Wr = 2 r + n ]  = p2r+n { / 2 r + n  - 1 )  \ 2r -  1 (C5) 

for n > 0, and  for n < 0 the probabi l i ty  is zero. 
Equa t ion  (C5) is t hen  the  basis for deriving expressions (10)-( t3)  based on the  

relations among the arrival t ime  and the count  process N(t).  
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