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ABSTRACT 

 

Understanding and Mitigating Search Errors in 3D Volumetric Images 

by 

 

Devi S. Klein 

 

In the field of oncology, three-dimensional volumetric medical images provide 

radiologists with a detailed visual representation of various anatomical structures that 

facilitate the early detection and characterization of malignant lesions but at the cost of an 

increased search space. Recent work (Lago, Jonnalagadda, et al., 2021) establishes that 

human observers rely heavily on peripheral visual processing away from the point of 

fixation when searching for signals in 3D volumetric images. The searcher’s over-reliance 

on peripheral vision interacts strongly with how much of the volume they explore and with 

how much they report they have explored. Specifically, observers under-explore—as 

determined by the percentage of the volume covered by the Useful Field of View (UFOV)—

and overestimate the percentage of volume they explored through self-report measures. 

Consequently, they miss small signals during the search. This thesis aims to elucidate the 

psychological factors mediating human under-exploration of 3D volumetric image data.  

The second thrust of this thesis is to investigate three solutions to mitigate the 

detrimental impact of under-exploration in 3D images. The first method is a 2D synthetic 

view of the 3D data that observers can utilize as additional information when performing the 

3D search. I establish through behavioral measurements and a computational model 
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simulating foveated vision how the 2D-S guides eye movements to suspicious regions in the 

3D volume. In turn, this guidance allows observers to find the small signal that would 

otherwise be missed without the 2D-S adjunct. The second method involves a different type 

of search aid, a convolutional neural network, which acts as a computer-aided detection 

system to assist human observers during the 3D search. Like the 2D-S, it guides eye 

movements to suspicious regions in a 3D volumetric image that observers would have 

otherwise not looked at. 

The last method is inspired by the power of group decision-making. It investigates how 

combining multiple independent judgements from a group of searchers can lead to more 

exploration of the search space and a higher chance of detecting the small signal. Together, 

the body of work herein provides empirical results from laboratory studies to further our 

understanding of how humans interact with 3D imaging modalities with the goal of 

improving healthcare services relating to early cancer screenings.   
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I. Introduction 

1.1. The perception of medical images 

Since Wilhelm Rontgen took the first X-ray photograph of his wife’s hand in 1895, 

medical imaging technology has made remarkable progress in imaging the human body. 

From plain film radiography to Computed Tomography (Bercovich & Javitt, 2018), the 

advancements have been significant (L. Zhou et al., 2022). Medical imaging has not only 

improved surgery with interventional imaging techniques such as coronary angiography (La 

Vecchia, 2013), but it has also revolutionized the early detection of diseases like cancer 

(Pisano et al., 2005; Sharma et al., 2012) and diabetic retinopathy (Salz & Witkin, 2015). 

Medical image has been the cornerstone of cognitive neuroscience since the advent of 

functional magnetic resonance imaging in the early 90s (Ogawa et al., 1990). The impact of 

medical imaging on modern-day society cannot be overstated.  

However, any acknowledgment of medical imaging advancements requires a discussion 

of image quality, as it is part and parcel of assessing a medical imaging device's functional 

use (i.e., its ability to provide information and reduce diagnostic uncertainty). For instance, 

in radiology, a great deal of research is spent on mapping the relationship between ionizing 

radiation dosage and image quality, the latter of which can be characterized by spatial 

resolution, contrast, and photon noise (Huda et al., 2002). Image reconstruction algorithms 

can further enhance the image by increasing diagnostic information (Gothwal et al., 2022), 

and there are two schools of thought for measuring medical image quality. The first school 

of thought evaluates image quality based on fidelity metrics such as Peak Signal-to-Noise 

Ratio and Mean Squared Error (Chow & Paramesran, 2016; Samajdar & Quraishi, 2015).  
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The second school of thought is rooted in task-based image quality assessment, and it 

provides a more objective avenue for judging the functional use of an imaging system 

(Barrett, 1990; Barrett & Myers, 2013). This approach requires defining the task (e.g., 

estimating some property of the image or classifying an image as signal or noise), an 

observer (a human or mathematical model), and a figure of merit (e.g., sensitivity, 

specificity, or the area under the receiver operating curve). This thesis follows the latter 

convention for assessing image quality, focusing on classification tasks with human 

observers and evaluating their performance using multiple figures of merit. 

Human observer performance studies remain the gold standard for assessing the quality 

of medical images because clinicians make the final interpretation and recommendation for 

the next steps. However, clinicians are not always perfect; they are prone to making 

perceptual and decision errors (Krupinski, 2010, 2011). There is, in fact, a great deal of 

variability in radiologist performance (Beam et al., 2003), and a substantial amount of 

research has been conducted to understand the role of expertise in mediating diagnostic 

performance (Nodine & Mello-Thoms, 2010; Waite et al., 2019). However, to assess the 

functionality of an imaging system, it is essential to not only understand the role of expertise 

but also to understand how humans perform visual searches in medical images and 

taxonomize the types of visual-cognitive errors they make while interpreting them.  

One common error arises from the interaction between search and prevalence-low target 

prevalence leads to misses (false negatives). This finding has been attributed to early 

termination of the search rather than perceptual or identification errors, suggesting that 

priors or expectations about target prevalence guide the search to some degree before the 

visual interpretation of the image begins (Fleck & Mitroff, 2007; Mitroff & Biggs, 2014; 
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Wolfe et al., 2005). Satisfaction of search is a related cognitive error whereby after detection 

of the first anomalous feature, a searcher becomes satisfied and has a higher likelihood of 

missing other signs of malignancy in the image (Adamo et al., 2021; Berbaum et al., 1990; 

Tuddenham, 1962). Other notable factors related to radiologist workflow include fatigue, 

time of day, and eye strain, all of which can negatively impact performance (Krupinski et 

al., 2010; Taylor-Phillips & Stinton, 2019b). 

Visual-cognitive errors directly related to the perception of an image have been 

identified with eye-tracking and characterized from a vision science perspective (Krupinski, 

1996; Kundel et al., 1978). Kundel, Nodine, and Carmody provided one of the first studies 

categorizing misses of malignant lesions based on where a radiologist looked in an image. 

They labeled misses as recognition errors, decision errors, or search errors. Recognition 

errors were defined as short fixations on the lesion and target-absent responses, and decision 

errors required a longer fixation dwell time on the lesion (> 500ms). These two types of 

errors have been attributed to visual masking effects and human observers' inability to see 

through the noise and backgrounds in medical images (Burgess et al., 1997, 2001; Mello-

Thoms et al., 2005). Search errors occurred when the radiologist failed to fixate the signal 

and reported it as absent. Understanding the nature of search errors, why they arise, and 

assessing methods for mitigating them is of central interest to this thesis.  

Search errors occur because of the interaction between eye movement exploration during 

search and the foveated nature of the human visual system. Visual information presented at 

the fovea or near the gaze point is processed with high resolution (Levi et al., 1985; Robson 

& Graham, 1981; Rovamo et al., 1984) because of a densely packed array of cone 

photoreceptors in the foveola (Curcio et al., 1990), one-to-one mapping between cones to 
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retinal ganglion cells via bipolar cells (Curcio & Allen, 1990), and the disproportionate 

amount of neurons per mm2 in the primary visual cortex dedicated to processing foveal 

information (Duncan & Boynton, 2003). Peripheral vision, on the other hand, which 

processes most of the information in the visual field, is characterized by lower spatial 

resolution but still plays a significant role in guiding eye movements (Rosenholtz, 2016; 

Stewart et al., 2020). Small signals, comprised of high spatial frequency information, which 

are hard to detect in the visual periphery (Lago, Sechopoulos, et al., 2020), are the most 

prone to becoming a search error if a radiologist fails to visually scrutinize a medical image 

sufficiently.   

1.2. From 2D to 3D medical images 

To this point, the discussion has broadly been concerned with medical images and how 

radiologists interpret them. No distinction has been made regarding the interpretation of 2D 

versus three-dimensional medical images. In the field of oncology, three-dimensional 

volumetric medical images are becoming the standard for interpretation because they reduce 

tissue superposition inherent in 2D projection images. The reduction in tissue overlap 

diminishes partial occlusion of signals of interest by surrounding dense tissue, thus 

providing radiologists with a detailed visual representation of various anatomical structures 

that facilitate the early detection and characterization of malignant lesions (Alabousi et al., 

2020; Gould, 2014).  

As an example, for early breast cancer detection, screenings have evolved over the past 

decade from the interpretation of 2D mammograms to the interpretation of digital breast 

tomosynthesis (DBT) volumetric data (Georgian-Smith et al., 2019; Skaane, 2017). The use 
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of DBT has been shown to improve early cancer detection (Badano et al., 2018; Georgian-

Smith et al., 2019). 

 DBT generates a stack of cross-sectional “slices” of the breast from reconstructed X-ray 

projections acquired over a limited arc range (i.e., quasi-3D view) as a detector and X-ray 

source revolve around the patient (Sechopoulos, 2013). The slices are viewed one at a time 

as part of a sequence of images displayed on a computer monitor, permitting radiologists to 

scroll back and forth through the third dimension of the volume. Displaying the image data 

in this way allows radiologists to better segment abnormal tissue from the surrounding 

parenchyma that may otherwise be partially or fully occluded if the patient's anatomy were 

to be interpreted from a two-dimensional projection image (e.g., full-field digital 

mammogram) (Helvie, 2010). 

The benefits associated with the additional depth information in 3D volumetric images 

come with an unprecedented increase in the search space (50-90 slices per scan (Baker & 

Lo, 2011; Gur et al., 2009)), which can increase signal position uncertainty. Depending on 

the 3D image reconstruction algorithm and parameter settings (e.g., z resolution and slice 

thickness), small signals of interest can appear on only one or a few of the total slices in the 

3D stack (Williams & Drew, 2019). The large search space can also affect the reader. It 

would be prohibitively time-consuming to scan exhaustively, with eye movements, each 

cross-sectional slice in the stack of images before terminating one’s search. In fact, given 

average reading times of DBT images that range from 2-3 minutes per scan (Good et al., 

2008; Gur et al., 2009) and typical fixation durations of 250-350 ms, it is estimated that 

radiologists would max out at approximately 14 fixations per slice, which may negatively 

impact their ability to find signals of interest.  
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How to optimize the interpretation of 3D images to increase performance further is still 

an active area of research (Drew, Vo, Olwal, et al., 2013; Drew, Vo, & Wolfe, 2013; Lago, 

Jonnalagadda, et al., 2021; Rubin et al., 2015; Williams & Drew, 2019). Eye-tracking 

studies have revealed how radiologists search through 3D images. Some radiologists scan a 

cross-sectional slice before moving on to the next slice, while others tend to fixate on one 

location and drill through the 3D stack of images before refixation somewhere else (Drew, 

Vo, Olwal, et al., 2013). Eye-tracking studies have also shown how a large search space can 

negatively affect perceptual performance vis-à-vis under-exploration of the 3D volume, 

whereby observers do not exhaustively direct their center of gaze to every region in the 

space.  

For example, recent work (Lago, Jonnalagadda, et al., 2021) establishes that human 

observers rely heavily on peripheral visual processing away from the point of fixation when 

searching for signals in 3D volumetric images. The searcher’s over-reliance on peripheral 

vision interacts strongly with how much of the volume they explore and how much they 

report they have explored. Specifically, observers under-explore—as determined by the 

percentage of the volume covered by the Useful Field of View (UFOV)—and overestimate 

the percentage of volume they explored through self-report measures.  

Under-exploration in 3D images differentially impacts the detection of signals based on 

their spatial size. Large signals more detectable in the visual periphery are less affected by 

under-exploration. On the other hand, due to the foveated nature of the human visual system 

(i.e., low spatial acuity in the visual periphery), observers miss small signals (search errors) 

embedded in the 3D space. These small signals are otherwise salient and easily detected in a 
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2D image because observers can direct their fovea to most regions in the image in a time-

efficient manner.  

The study by Lago et al. identified a unique visual-cognitive error related to 3D imaging 

modalities. However, it is not well understood why observers under-explore during 3D 

search and overestimate how much they explore. Additionally, it remains unclear what the 

best solutions are to mitigate 3D search errors for small signals. Various techniques have 

been adopted in clinical practice to complement radiologist decisions and mitigate errors. 

One simple solution is to add a second reader (Ciatto et al., 2005; Duijm et al., 2004). In 

many countries, radiological images undergo double reading (Taylor-Phillips & Stinton, 

2019a), and there are theoretical accounts of how pooling multiple radiologist’s decisions 

can outperform the average radiologist (Brennan et al., 2019) and even the best-performing 

member (Kurvers et al., 2016; Wolf et al., 2015). 

In the US, independent double reading in mammography is seldom done. Nonetheless, 

for many years, mammography has used computer-aided detection (CADe) and 

classification (CADx) to work as a “second reader” to identify potential malignancies (Doi, 

2007; Giger et al., 2008). More recently, artificial intelligence-based CADx can be 

incorporated into the workflow at the radiologist’s discretion, such as by filtering out exams 

with the lowest likelihood of malignancy (triage), thus saving time and effort for more 

ambiguous images (Rodriguez-Ruiz et al., 2019). In general, the CADe prompts are 

superimposed on the medical image, and readers can visually attend to those locations while 

interpreting the image.  

Finally, since the advent and FDA approval of DBT in 2011, radiologists have either a 

mammogram or a 2D synthetic view (2D-S) of the corresponding DBT data available to aid 
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their visual search in the 3D volumetric image. More experienced radiologists have 

developed visual search strategies that are optimized for interpreting 2D images (Wolfe et 

al., 2016), and there are documented cases of them being able to glean relevant information 

quickly from a 2D medical image (Drew, Evans, et al., 2013; Kundel & Nodine, 1975). 

Thus, the 2D image should reduce or mitigate errors that may arise by just reading a 3D 

image alone.  

Although studies have shown how CAD and double reading influence screening 

mammography with 2D images, less has been done to evaluate their influences on 3D 

images and search errors. In the case of complementary 2D synthetic images accompanying 

3D images, there is no systematic vision science investigation explicating how it improves 

3D search or reduces search errors.  

In summary, this thesis will increase our understanding of why humans under-explore 

3D volumetric images and provide potential solutions to mitigate 3D search errors with 

applications to radiology. To achieve this, the studies outlined below will focus on 

addressing the following questions. When observers under-explore 3D images, what 

evidence do they base their quitting decision on? How do the 2D synthetic image and CADe 

influence observers’ search strategies in 3D? Are there unique benefits gained from 

aggregating observers' judgments in 3D that are not seen in 2D searches? For each of the 

three methods (2D synthetic view, CADe, or group decisions), which types of signals 

benefit the most? Lastly, which of these techniques is best suited to mitigate 3D search 

errors? 

 

1.3. Organization of this thesis 
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This thesis aims to better understand why humans under-explore 3D volumes and 

investigate solutions to mitigate the detrimental impact of this search strategy. Chapter II 

elucidates possible visual-cognitive mechanisms that subserve the under-exploration of 3D 

volumes. Specifically, I utilize psychophysical measurements and eye-tracking to derive 

estimates of the proportion of area explored with the perceived UFOV (how well observers 

think they can see in the visual periphery) versus the empirical UFOV (how well they can 

see in the visual periphery) to contrast two plausible search-termination thresholds human 

observers utilize after reporting the absence of the signal.  

The remainder of this thesis investigates three ways of reducing the detrimental impact 

of an overreliance on peripheral vision while performing the 3D search. Chapter III assesses 

the impact of a 2D-S, a 2D synthesized view of the 3D volume, serving as an adjunct to the 

3D search. I establish through behavioral measurements and a computational model 

simulating foveated vision how the 2D-S guides eye movements to suspicious regions in the 

3D volume. In turn, this guidance allows observers to find the small signal that would 

otherwise be missed without the 2D-S adjunct. Chapter IV homes in on a second type of 

search aid, a convolutional neural network, which acts as a computer-aided detection system 

to assist human observers during the 3D search. Like the 2D-S, it guides eye movements to 

suspicious regions in a 3D volumetric image. Chapter V employs a modified wisdom of the 

crowd model, a majority vote with exception rule. We establish that many observers visually 

scanning the same 3D volume outperform any single observer in the group if at least one 

person fixates on the signal of interest and the exception rule supplants the group’s decision 

with their explicit judgment.    
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II. Relating the perceived useful field of view to visual 

search with 2D images and 3D volumetric images 

2.1. Abstract 

3D volumetric images are prevalent in industries ranging from radiology and oncology to 

airport luggage screenings. With 3D medical images, however, radiologists are visually 

overburdened by the vast amount of image data requiring inspection. Radiologists and 

trained (non-radiologist) observers often under-explore 3D images with eye movements—

producing misses of small targets undetectable in the visual periphery. We investigate why 

observers under-explore 3D images by quantifying their perceived exploration of the search 

area and relating it to the extent of their search on trials where they report “target-absent.” 

Six trained observers participated in two eye-tracking experiments to evaluate whether the 

area explored by the Useful Field of View (UFOV) influences the under-exploration of the 

3D images. Experiment 1 estimated empirical and perceived target-specific UFOVs per 

observer. We tested the observer’s detectability of a small and large target embedded in 1/f 

noise as a function of retinal eccentricity (empirical UFOV). Observers also estimated how 

well they could see the two targets in their visual periphery (perceived UFOV). Experiment 

2 had observers participate in a 2D and a 3D search for the two targets. The area explored 

with the perceived but not empirical UFOVs was consistent across targets in the 2D and 3D 

searches. Moreover, while performing the 3D search, people covered the 2D image plane 

with their perceived UFOVs to the same extent as in the 2D search task, leaving much of the 

3D volume unexplored. 
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2.2. Introduction 

Three-dimensional (3D) volumetric imaging technology is becoming a mainstay in 

industries ranging from medical imaging (Williams & Drew, 2019) to airport screening 

(Parker et al., 2022). 3D volumetric imaging diminishes occlusion and object superposition 

inherent in traditional 2D imaging systems because a rotating energy source (e.g., X-ray 

tube) interacts with the object of interest at various viewing angles. In computed 

tomography, for example, a set of sinograms generated from an X-ray source positioned at 

different angles to the human body can be integrated via filtered back projection to produce 

a 3D view of the lungs, liver, or other anatomical structures (Schofield et al., 2020, p. 1). 

Similar 3D reconstruction algorithms are used for early breast cancer detection. For 

example, digital breast tomosynthesis (DBT or 3D mammography) minimizes tissue 

superposition (Sechopoulos, 2013) and can increase sensitivity and specificity relative to 2D 

full-field digital mammography (Skaane, 2017). 

Regardless of the 3D imaging technology or anatomy under view, visual search in 

medical images is a difficult task that has garnered much interest (Krupinski, 2000). 

Additional complexity is introduced when considering how to display the 3D data to a 

human observer (Calhoun et al., 1999; Getty & Green, 2007; Lu & Sakamoto, 2018; Maupu 

et al., 2005; Rubin et al., 1996). It is common practice to render the 3D volumetric image as 

a stack of 2D image “slices.” Each slice represents a cross-sectional view of the anatomy. 

Therefore, the reader must scroll back and forth through the third dimension of the volume 

at their own pace and visually inspect each slice as they appear one at a time on the 

computer monitor. One might ask if there are drawbacks to this 3D presentation strategy. 

Specifically, do visual-cognitive bottlenecks hinder search performance in the 3D image?  
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Recent work has investigated this question directly by testing how human observers 

search for spatially large and small targets in both 3D volumetric images and 2D images 

(Lago, Abbey, et al., 2021a; Lago, Jonnalagadda, et al., 2021). Lago et al. identified that the 

small target was readily detected in 2D images because (1) it was salient when fixated and 

(2) humans can direct their fovea to most regions of the image in a time-efficient manner. 

Whereas in the 3D search, the small target was often missed. They hypothesized that the low 

detectability of the small target in the visual periphery and the non-exhaustive coverage of 

the image data with the eye movements caused observers to miss the small target. They 

corroborated this hypothesis by examining the 3D scan paths of observers while they 

performed the search and found that a large fraction of misses occurred because observers 

failed to foveate the target. Furthermore, requiring observers to extend their 3D search 

exploration time caused a reduction in errors. 

For the larger target, which was more detectable in the visual periphery, they found no 

performance detriment for 3D images due to search errors. This was in spite of the fact that 

observers’ explorations were shorter, and their eye movements covered less of the 

volumetric area compared to the 3D search of the small target. Together, this observed 

interaction between search modality and target type further supported their hypothesis that 

related the 3D search errors to the interaction between under-exploration and the peripheral 

detectability of the target. This 3D under-exploratory behavior can have clinical significance 

because the results were replicated in the same study with radiologists and 3D DBT 

phantoms (Lago, Jonnalagadda, et al., 2021), and similar results of under-exploration were 

reported in a study of radiologist searching through lung CT scans (Rubin et al., 2015). 



 

 13 

The outstanding question remains—why do observers under-explore 3D volumetric 

images relative to 2D images? Relatedly, why do observers change their search exploration 

for different types of targets? Many factors influence an observer’s stopping criterion during 

the 2D search. Finding an easily detectable target produces a self-terminating search rather 

than an exhaustive scan of all items in the visual display (Van Zandt & Townsend, 1993). 

Lower prevalence can decrease the search times (Ishibashi et al., 2012), while high rewards 

can also increase them (but see (Wolfe, 2012) for a discussion of the evidence of no effects 

of rewards). Conceptual models of search posit a quitting threshold based on an estimate of 

the “effective set size” or number of candidate target items searched (Wolfe, 2012) and an 

estimate of the ease with which candidate targets can be localized and discounted during 

covert deployment of attention (Chun & Wolfe, 1996; Wolfe, 2021). Models of eye 

movements during 2D search implicitly incorporate stopping criteria based on the 

accumulated evidence of the presence of the target (Akbas & Eckstein, 2017; Lago, Abbey, 

et al., 2021a; Najemnik & Geisler, 2005) or a stopping criterion based on the proportion of 

the image area explored (Lago, Abbey, et al., 2021a). Thus, one possible explanation for the 

under-exploration of 3D volumetric images and why exploration differs across targets is that 

each imaging modality (2D vs. 3D) and target type has a different search-termination 

threshold that involves multiple factors.   

A different and more parsimonious possibility is that observers use a common metric 

across target types and 2D and 3D image modalities to terminate their search. This paper 

investigates whether an observer’s internal estimate of the proportion of area explored, sans 

finding the target, serves as that common metric. To quantify the proportion of the area 

explored, one can use the Useful Field of View (UFOV) construct (Ball et al., 1988; 
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Hulleman & Olivers, 2017; Lago, Sechopoulos, et al., 2020; Wu & Wolfe, 2019) and 

observers fixation patterns during their search. The UFOV is defined by the area around the 

fovea for which a target is detected with a high probability. For example, following classic 

conventions (Drew, Vo, Olwal, et al., 2013; Kundel et al., 1989), Lago et al. chose a single 

UFOV for both types of targets, a circular area with a radius of 2.5° visual angle centered at 

each recorded fixation position during the search. They found that humans, on average, 

explored a different proportion of the area when tasked to look for the two targets and across 

2D/3D images (Lago, Jonnalagadda, et al., 2021). Thus, their data does not support the idea 

that an observer compared the proportion of the area explored to a single stopping criterion 

to gauge when to terminate their search. 

However, one limitation of their approach is the assumption of a theoretical UFOV of 

2.5°. Studies have demonstrated that empirically measured UFOVs differ across targets and 

backgrounds (Carmody et al., 1980; Ebner et al., 2017; Lago, Sechopoulos, et al., 2020). A 

target-specific empirical UFOV measurement quantifies the net effect of factors influencing 

foveal and peripheral detectability (Banks et al., 1991), such as the interplay between target 

and background spatial frequencies (Abbey & Eckstein, 2007; Burgess et al., 2001; Lago, 

Abbey, et al., 2021b), masking and crowding (Bouma, 1970; Pelli et al., 2004; Rosenholtz, 

2016; Strasburger et al., 2011; Vater et al., 2022). Thus, if we incorporate target-specific 

empirical UFOVs (rather than the generic 2.5° theoretical UFOV) with the measured search 

fixations, observers might be exploring a similar proportion of area when tasked to look for 

each target, which would suggest a common mediating the stopping criterion.  

The hypothesis that observers might use the proportion of area explored with their 

UFOV can theoretically relate to other conceptual models that base the stopping criterion on 
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the number of candidate target items examined (Van Zandt & Townsend, 1993; Wolfe, 

2012). However, rather than the number of candidate items examined, the proportion of 

image/volume area explored with the UFOV quantifies the image’s area examined. The 

measure is particularly appropriate for textures (Abbey & Eckstein, 2014; Burgess et al., 

2001; Castella et al., 2008) or medical images (Bochud et al., 2004) such as Gaussian noise 

images and mammograms/DBT images, and scenes (Neider & Zelinsky, 2008; Akbas & 

Eckstein, 2017), for which the number of items is difficult to define (Hulleman & Olivers, 

2017). 

Two crucial considerations factor into an observer’s ability to compute the proportion of 

the area explored with their target-specific empirical UFOV. First, observers need to keep 

track of which areas they have already explored during their search. Despite studies 

demonstrating that observers do not have a good memory of the exact locations they 

previously fixated/searched (Horowitz & Wolfe, 1998; Võ et al., 2016), although this has 

been debated (Beck et al., 2006; Peterson et al., 2001), there is evidence that they can 

provide estimates that approximate the proportion of area explored in 2D search tasks (Lago, 

Jonnalagadda, et al., 2021). Specifically, when observers were probed at the end of each trial 

about the percentage (proportion) of the area they explored, their average estimates were in 

line with the area they explored when applying the 2.5° radius UFOV to their eye movement 

scan paths.  

The second consideration is that observers might not necessarily have explicit 

knowledge concerning the exact spatial extent of their target-specific empirical UFOV but 

rather some perceived UFOV estimate that they can utilize to compute the area explored. 

The perceived UFOV might not always agree with the empirical UFOV as evidenced by 
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peripheral inflation or filling in, a phenomenon where our metacognitive estimates of target 

detectability in the visual surround, away from the point of fixation, can be inflated and do 

not track the fidelity of information processing in the visual periphery (Odegaard et al., 

2018; Solovey et al., 2015). Peripheral inflation gives rise to the rich phenomenological 

experience of seeing everything at once in our visual field at any point in time (Knotts et al., 

2019) despite the neurophysiological and attention constraints that cap our peripheral 

detection capabilities (Stewart et al., 2020). Considering these two assumptions, we 

hypothesize that observers use the target-specific perceived UFOV, rather than target-

specific empirical UFOV, to track the proportion of area already explored during their 

search. Moreover, an observer compares this introspective estimate to a stopping criterion to 

terminate their search when they fail to find the target.    

Until now, our hypothesis could account for variations in search exploration across 

different targets. However, the hypothesis would not explain the differences in the area 

explored between 2D and 3D searches. Lago et al. found that regardless of the target being 

searched for, humans explored roughly double the area in the 2D search condition than in 

the 3D search condition. However, when asked to estimate the proportion of the area 

explored, observers massively overestimated the area explored for 3D searches. On the other 

hand, those reported estimates for the 3D searches were similar to the more veridical 

estimates of the area explored in the 2D search conditions (Lago, Jonnalagadda, et al., 

2021). Those results motivate us to test a simple hypothesis. When searching through 3D 

image stacks, observers keep track of the proportion of area explored in the 2D image plane 

without regard for the area yet to be covered in the rest of the volumetric image. The second 

hypothesis posits that observers search approximately the same proportion of area in the 2D 
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search as the 2D plane of the 3D search (i.e., 3D fixations projected onto the 2D image 

plane) with the target-specific perceived UFOV.   

To test our hypotheses, we investigated 2D and 3D searches for two targets with 

different UFOVs. One target is larger and more detectable in the visual periphery, while a 

second small target is difficult to detect away from the fovea. The purpose of Experiment 1 

was to estimate for each observer a target-specific empirical UFOV by measuring the 

detectability (yes/no task, 50% prevalence) of the two targets at different eccentricities and 

polar angles (location-known-exactly to the observer). We also estimated the target-specific 

perceived UFOVs using two different procedures for which observers assessed target 

detection accuracy at different eccentricities and polar angles. The first method to measure 

the target-specific perceived UFOV required observers to estimate the accuracy of detecting 

the target in the visual periphery while fixating on the target foveally. The second method 

presented the target at different retinal eccentricities so that observers could experience it in 

the visual periphery while making perceptual judgments about their perceived accuracy for 

detecting it at those locations.  

Experiment 2 measured visual search for the two targets in 2D displays and 3D image 

stacks to test our hypotheses related to common metrics used to search in 2D and 3D images 

of different targets. Based on this experimental setup, our hypotheses make the following 

predictions. First, the proportion of the area explored with the target-specific perceived 

UFOV (but not target-specific empirical UFOV) will be approximately equal across the 

small and large targets, suggesting a unitary metric being used as a stopping criterion. Our 

second hypothesis predicts that when observers perform the 3D search, the proportion of the 

2D image plane area covered with the target-specific perceived UFOV will be similar to the 
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proportion of area covered with the same type of UFOV but in the 2D search condition, also 

suggesting a unitary stopping criterion. 

 

2.3. Experiment 1 

 2.3.1. Methods 

Participants 

Six undergraduate students (50% female, age range: 19-22) at the University of 

California, Santa Barbara, participated in experiments 1 and 2 for course credit. The sample 

size was based on the estimated search error rate effect size from a previous experiment 

utilizing similar stimuli. A repeated measure t-test from Klein and Eckstein (D. Klein & 

Eckstein, 2023) compared the search error rate in 2D and 3D search for a small target (N=6) 

and found an effect size of 5.8, therefore requiring N=3 to obtain 90% power in a two-tailed 

t-test. Previous studies with similar sample sizes have also established a large difference in 

search error rate for the small target between 2D and 3D search (D. S. Klein et al., 2023; 

Lago, Abbey, et al., 2020; Lago et al., 2018). Our choice of six participants was also based 

on practical constraints. Participation in both experiments took approximately 1.5-2 months. 

Participants came in for 2-hour sessions three days a week.  

All participants maintained normal or corrected-to-normal vision while participating, 

verified by the Snellen Chart for visual acuity 20/20. The University of California, Santa 

Barbara Institutional Review Board (IRB) approved the experimental procedures under 

protocol 12-22-0667. All participants signed a consent form before participating in the 

experiments.  
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Apparatus 

In both experiments, participants interacted with stimuli on a medical-grade Barco 

MDRC-119 LCD monitor (16.5-in. x 13.5-in; screen resolution of 1,280 x 1,024 pixels; 

screen width 37.5cm; refresh rate of 60 Hz). The monitor was linearly calibrated for 

luminance intensity such that 0.1 cd/m2 and 111 cd/m2 corresponded to gray level values of 

0 and 255, respectively. Participants sat in a darkened room (2 lux) at a viewing distance of 

75 cm from the monitor, translating to 45 pixels per degree of visual angle (dva).  

While performing the various tasks in each experiment, an EyeLink-1000-plus desktop 

mount real-time eye tracker (SR Research Inc.) monitored the participant’s right eye 

movements at 2,000 Hz. The default parameters—eye velocity and acceleration thresholds 

of 30 °/sec and 9,500 °/sec2, respectively—defined the onset of a saccade. At the beginning 

of each block of trials described in the methods sections below, participants completed a 9-

point calibration and validation procedure to ensure valid eye-tracking data. All tasks were 

controlled (i.e., presentation of visual stimuli and recording of keystrokes and mouse events) 

in Psychopy (Peirce et al., 2019), a Python programming package for psychophysical 

experiments.  

 

Stimuli 

Background 

To generate a 3D volumetric image, we first populated a 3D array of size 1,024 x 820 x 

100 pixels with IID noise—gray levels sampled from a Normal distribution, 

𝒩~(128, 25).	We filtered the white-noise array to introduce pixel-to-pixel correlations 

amongst the gray level values in the x, y, and z dimensions. The filtering process simulates a 
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mammogram’s idealized noise power spectrum (NPS) ( !
"!.#

; where f denotes radial frequency 

index). The NPS follows a power law assuming a stationary stochastic image generation 

process (Abbey & Barrett, 2001; Burgess et al., 2001). A single 3D array was represented as 

100 slices (i.e., 100 2D images). Each slice was of size 22.8 x 18.2 dva. The 2D noise 

texture background extensively used in Experiment 1 was defined as the 50th slice taken 

from 100 slices constituting a 3D volumetric image.  

 

Targets 

The small and large targets had two distinct geometric shapes but were matched in peak 

contrast, 0.43—defined as the additive luminance of the target (24.02 cd/m2) divided by the 

mean luminance of the background (55.77 cd/m2). In object space, the small target was 

modeled as a sphere with a radius of 2 a.u. In image space (on a 3D Cartesian coordinate 

system), we discretized the sphere into five circular disks, as shown in Figure 2.1.a, bottom 

left. Each disk represents a cross-sectional view of the sphere in the xy-plane at a different 

coordinate in the z dimension. Thus, in the z dimension, the sphere's diameter was five slices 

with a radius of 2 slices extending up/down from the central slice, denoted as slice c. The 

central slice of the sphere (Figure 2.1.a, top left) was a circular disk with a radius of 2 pixels 

(0.044 dva) and a diameter of 5 pixels. The two circular disks above and two below the 

central slice were parameterized by smaller radii such that radius c > radius c±1 > radius c±2. 

Each constituent disk of the sphere maintained a uniform contrast of 0.43.  

The large target’s shape (Figure 2.1.a right) was modeled by a 3D Gaussian function in 

object space (𝜎 = 20 a.u.). In image space, it was parameterized by 𝜎#$ = 20 pixels or 0.44 

dva and 𝜎% = 20 slices. The large target’s centroid maintained a contrast of 0.43. However, 
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its contrast monotonically decayed away from its center in the xy-plane. Figure 2.1.a, top 

right, exemplifies how the contrast decays from the center. Moreover, the peak contrast on 

the non-central slices (i.e., 𝑧 ≠ 𝑐) was lower than on the central slice. Therefore, the target's 

contrast also decreased away from the center in the z dimension. Figure 2.1.a, bottom right, 

shows how the peak contrast changes as a function of the distance from the central slice.  

In Experiment 1, we only utilized 2D profiles of each target, which were simply the 

central slice of the 3D profiles (Figure 2.1.a, top row). 

Final image stimulus 

In order to generate a final image stimulus for each of the three tasks described below 

(task 1-peripheral detection, task 2-foveal perceive, and task 3-peripheral perceive), we 

applied the following procedure. First, we generated a 3D array and selected the 50th slice 

out of 100 for 2D image conditions. Therefore, participants only interacted with 2D displays 

in Experiment 1. Target-absent stimuli in task 1 were simply this slice. For stimuli that 

contained a target (task 1 target-present stimuli and tasks 2 and 3), we followed the same 

procedure to generate a target-absent stimulus. However, we then linearly added the central 

slice of a single target profile (Figure 2.1.a, top) to a particular (x, y) coordinate in the 

image. Therefore, the center-of-mass of the target was at that position. The array elements 

were then converted to unsigned 8-bit integers and stored as a PNG file.  



 

 22 

 
Figure 2.1. Target profiles and task procedures for measuring the empirical and two perceived UFOVs. a) 
Depictions of the small and large target profiles in 2D (top) and in 3D (bottom). b) A forced fixation yes/no 
detection task to determine target detectability as a function of retinal eccentricity was used to construct the 
empirical UFOV. (Left) The task procedure and the trial timeline for the detection task. (Right) The twelve 
possible locations in the visual field where a target could appear fall along the four cardinal directions (left, 
right, up, and down) at three eccentricities (1, 4, and 7 dva). c) The task procedure for measuring the 
perceived UFOV in the fovea. Observers estimated the peripheral detectability of the target while foveating 
it. Four example trials exemplify how the marker can move along the four cardinal axes. d) The task 
procedure for measuring the perceived UFOV in the visual periphery. Rather than having the marker move 
into the visual periphery like in c), the target would move into the visual periphery so that observers could 
experience the target's visibility in the peripheral field of view. All 2D slices shown are from a single trial. 
However, each slice is sampled from an independently generated 3D image.    

 

Design and procedure 

Task 1 – Measuring the target-specific empirical UFOV (UFOVE) 

The measurement of the target-specific empirical UFOV is based on the standard yes/no 

SDT experiment paradigm (Lago, Sechopoulos, et al., 2020). A noisy 2D texture is 

presented to the observer for a brief period. The texture contains a single target at a known 

location on a fraction of the trials. The observer must indicate whether the target was present 
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or absent at the cued location after the period has elapsed. Our task builds upon this base 

experimental procedure by recursively applying it with the target positioned at different 

retinal eccentricities and polar angles across trials to produce a performance map across the 

visual field (Carrasco et al., 2001; Lago, Sechopoulos, et al., 2020; Najemnik & Geisler, 

2005). Figure 2.1.b, left, depicts an example trial for detecting the small target positioned in 

the top portion of the visual field at a distance of 7 dva from the center position of the 

monitor, the location where the participant was instructed maintain fixation while the image 

stimulus appeared on the screen. 

At the beginning of each trial, a high-contrast copy of one of the two targets was 

presented to the participants. After clicking the space bar, participants maintained fixation 

on a black cross placed at the center of the screen on top of a gray background. A fiducial 

marker was also present at one of three retinal eccentricities (1, 4, or 7 dva) along one of the 

four cardinal axes. Figure 2.1.b, right, depicts the 12 possible locations where the marker 

could appear relative to the center fixation cross. The salient marker cued participants to the 

location in the visual field to attend to covertly. After maintaining fixation on the cross for 1 

second, the stimulus appeared on the screen for 250 ms. The stimulus either contained the 

target at the center of the cued location or did not (50% prevalence). If participants broke 

fixation (1 dva distance tolerance), the trial would abort. Afterward, participants 

encountered an 8-point rating scale where they had to rate their confidence in their decision. 

A rating of 1-4 was reserved for target-absent decisions, with 1 representing the highest 

confidence that the target was absent and 4 representing the lowest confidence that the target 

was absent. Conversely, for target-present decisions, a rating of 8 corresponded to the 
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highest confidence that the target was present, and a rating of 5 mapped to the lowest 

confidence in their target-present decision.  

This procedure was repeated 1,200 times in 50-trial block increments. Each combination 

of conditions (eccentricity, three levels; direction, four levels; target type, two levels) 

included 25 target-present trials and 25 target-absent trials. We intermixed the conditions, 

resulting in a random presentation order across trials. 

Task 2 – Measuring the target-specific perceived UFOV with a foveal reference target 

(UFOVP F) 

In task 2, rather than having participants detect the targets in their parafovea or visual 

periphery, they had to estimate how well they could see the large and small targets in their 

visual field. Before the experiment began, participants were given the following instructions: 

“You will move a marker to a location on the screen where you think you would be able to 

achieve a performance level of, say, 70% accuracy if the target you are currently staring at 

was placed at that location in the noise background and you could not move your gaze from 

the center of the screen. The stimulus would appear for only a quarter of a second, and half 

the time, the target would be there at that location, and the other half would not. In other 

words, if there were 100 trials, you would make a correct decision on 70 trials at that 

location you move the marker to.” Participants were allowed to ask clarifying questions after 

instructions. One way of thinking about this task is that observers extrapolate foveal 

information to the visual periphery during fixation (Stewart et al., 2020). 

At the beginning of each trial, participants were presented with one of five percentage 

correct (PC) values: 50%, 60%, 70%, 80%, or 90%. After acknowledging the PC value, 

participants fixated on a black cross on a gray background positioned at the center of the 
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screen for one second. Afterward, a single image stimulus would appear on the screen with 

only one of two reference targets presented foveally where the fixation had been presented. 

The same marker used to cue the target locations in task 1 surrounded the target, 

superimposed on top of the image stimulus. Participants would then manipulate the mouse 

scroll wheel to move the fiducial marker to a position they estimated the foveally presented 

reference target would be detected with the accuracy (PC) assigned for that trial. The 

fiducial marker could be moved along only one of the four cardinal directions in increments 

of 0.111 dva. The center of the marker always started at 0 dva and could extend as far out as 

1 dva from the edge of the image stimulus in a particular direction (10.4 dva from fixation 

horizontally and 8.1 dva vertically).  

Figure 2.1.c exemplifies four separate types of trials for estimating the large target’s 

detectability in the visual periphery. Each example image shows a subset of valid positions 

where the marker could land along a particular cardinal axis. After positioning the marker at 

a location, participants pressed the space bar to confirm. The dependent variable of interest 

was the distance between the marker’s final position and the center of the screen where the 

participant was fixating. At the end of each trial, participants were presented with the 5 

possible PC values that could be assigned to a trial. They had to select the correct PC value 

presented at the beginning of the trial.  This allowed us to identify trials for which the 

observers misremembered the assigned PC (3% of all trials dropped because the observer 

reported PC at the end of the trial did not match the assigned PC). The trial quit if 

participants broke fixation at any point. 

Participants completed 800 trials in total, 50 trials per block. There were 40 

combinations of conditions (five PC values, four directions, and two targets), amounting to 
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20 estimates per combination. We randomized the trial presentation order across the 40 

combinations for each participant. 

Task 3 – Measuring the target-specific perceived UFOV with a peripheral reference 

target (UFOVP P) 

We utilized a second techniques to measure the perceived UFOV that involved the 

observer’s access to the sensory signal of the target in the visual periphery while estimating 

peripheral detectability. The critical methodological difference between the foveal 

estimation task described above (task 2) and the peripheral estimation task was that 

observers moved a fiducial marker into the visual periphery in the former. In contrast, in the 

latter, they moved the target. To this effect, in the peripheral UFOV estimation task, 

participants experienced the target in the visual periphery while they estimated how well 

they could see it. In the previous task, they were continually fixating on the target while 

making estimates. 

The procedure's beginning was the same as task 2 (i.e., PC value first presented to an 

observer, fixation cross procedure, etc.). Once the stimulus appeared on the screen, the 

target was initially positioned where the participants were fixating. The fiducial marker 

surrounded the target but did not move. The leftmost image in Figure 2.1.d, without the 

double-headed arrow, depicts what participants first saw when the image stimulus appeared 

on the screen. The double-headed arrow indicates that a participant must estimate the large 

target’s detectability in the right portion of the visual field on that particular trial. 

Specifically, while maintaining fixation at the center of the screen, the participant would 

manipulate the mouse scroll wheel to move the target in increments of 0.44 dva along the 

right cardinal axis to the edge of the image stimulus. The max distance from the center of 
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the screen to where the center of the target could be placed was 8.4 dva to prevent portions 

of the large target from being cropped out of the image. We chose to keep this distance the 

same across target types.  

Each time the participant moves the target, a different (IID) noise texture background 

appears on the screen, with the target embedded in a more distal (or proximal) location 

relative to the fixation position. The five image stimuli on the righthand side of Figure 2.1.d 

demonstrate how the target appeared at five more distal locations along the right cardinal 

axis. Including different 2D noise images (i.e., the 50th slice from independently generated 

3D images) for each scroll event mitigated the effect of a motion-percept confound whereby 

the target is perceived as moving across a fixed background.  

Once participants placed the target at a desired location in their visual periphery, they 

pressed the spacebar to end the trial and then entered which proportion correct value (e.g., 

50%, 60%, etc.) they were prompted with at the beginning of the trial (2% of all trials were 

discarded because the reported PC did not agree with the prompted PC at the beginning of 

the trial). Broken fixations led to the early termination of the trial.  

This procedure was repeated ten times for each direction (four levels: up, down, left, and 

right), proportion correct estimate (5 levels), and target type (2 levels) combination, totaling 

400 trials. The task was broken up into eight 50-trial blocks. We chose to halve the number 

of estimates here relative to task 2 because rendering the image stimuli onto the graphics 

card for a single trial took quite some time. Participants completed thousands of trials across 

experiments 1 and 2, and we did not want to overburden them. We also ran a power analysis 

(Table A.1) on the estimates from task 2 to demonstrate that ten estimates per combination 

of conditions are sufficient.  
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Figure 2.2. Algorithm for generating different types of UFOVs. a) (Top left) For a given subject and both 
targets, Contaminated Binormal ROC curves are fit to rating data from the yes/no detection task (task 1) at 
three different retinal eccentricities (1, 4, 7 dva). (Top middle) The latent space of target detectability for the 
small target at all eccentricities is conceptualized by a signal distribution, noise distribution, and a criterion, 
λ (not shown). Moreover, the signal distribution is defined by a recentering parameter, µ$%&, and a mixing 
parameter, α. (Top right) For each eccentricity, three parameters are estimated. For each parameter, 
secondary fits (half Gaussian or linear) are applied to the three point estimates. (Middle left) Together, these 
parameters and secondary fits are used to estimate the proportion correct for untested eccentricities. For the 
proportion correct threshold of 0.82 (blue line), an eccentricity is estimated for the large and small targets. 
(Bottom) Those two eccentricities (arrows pointing to circles) are the radii of target-specific empirical-
UFOVs, UFOVE. The size of the UFOVs is shown in relation to the stimulus and monitor dimensions. b) 
For the large and small targets, a linear prediction of eccentricity at the proportion correct threshold of 0.82 
(green line) is used for the radii (arrows pointing from the y-axis to circles) of the target-specific perceived 
UFOVs from the foveal estimation task (task 2), UFOVP F. Note, random noise is added to the x position of 
each scatter point for display purposes only. c) For the peripheral estimation task (task 3), the same linear fit 
procedure as shown in b) is done for computing the radii of the second type of Perceived UFOVs (orange 
line), UFOVP P. 

 

Fitting individual target-specific empirical and perceived UFOV 

The main objective of tasks 1, 2, and 3 was to derive target-specific empirical and 

perceived UFOVs for each participant. We first selected a proportion correct threshold of 
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0.82. This means that a target appearing anywhere within the circumscribed region of the 

UFOV, which is centered on a fixation point, has a probability of being detected at 0.82 or 

greater. A proportion correct of 0.82 is common in the psychophysics threshold detection 

literature (Britten et al., 1992; Cameron et al., 2002; Najemnik & Geisler, 2005). By fixing 

this free parameter, we could normalize the spatial extent (or area) of the empirical UFOV 

with the areas of the two perceived UFOVs. However, 0.82 is not a level of our independent 

variable in task 2 or 3, nor is there an eccentricity that produced a PC of 0.82 in task 1. 

Therefore, we needed to estimate from our data the eccentricity that produces a PC of 0.82 

in task 1 and determine what eccentricity is predicted for a PC of 0.82 in the latter two tasks. 

Below, we describe these methods. 

The empirical UFOV (UFOVE) was obtained for a given participant and target type via 

multiple fits. First, we fit a contaminated binormal model (CBM) (Dorfman & Berbaum, 

2000) to the rating data obtained in task 1 for each target at every eccentricity (100 target-

absent ratings and 100 target-present ratings after collapsing across the four cardinal 

directions). We chose the CBM as it is robust in estimating proper ROC curves—curves that 

do not hook under the chance line. Figure 2.2.a, top left, depicts the fitted ROC curves for 

the two targets at each eccentricity for a single participant using maximum likelihood 

estimation.  

The CBM estimates two parameters of the well-known signal distribution, which resides 

on a latent axis in the Signal Detection Theory literature (Green, 1966; Macmillan & 

Creelman, 2005). Rather than treating the signal distribution as a shifted standard normal 

(assuming equal variance), the CBM assumes the signal distribution is comprised of a 

mixture of Gaussians—the first being the standard normal and the second being a unit 
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variance Gaussian centered on 𝜇&'(, where 𝜇&'( ≥ 0. The second parameter, 𝛼, denotes the 

mixing fraction of the two distributions and is bounded between 0 and 1. Figure 2.2.a, top 

middle exemplifies the latent distributions for the small target at the three eccentricities 

based on the CBM fits. Lastly, the CBM estimates K-1 cut points, where K is the number of 

rating options used in the experiment. We chose to focus on the middle cut point (K=4), 

which coincides with the criterion, 𝜆, that separates target-present decisions (ratings greater 

than 5) from target-absent decisions (ratings less than 5) in our experimental paradigm. The 

CBM assumes a standard normal for the noise distribution. For a given combination of 

parameter estimates, 𝜇&'(7,𝛼8, and 𝜆9 we computed an estimated PC with the following set of 

equations: 

𝑇𝑃𝑅= = (1 −	𝛼8) 	∗ 		𝜙A−𝜆9B +	𝛼8 ∗ 𝜙A𝜇&'(7 −𝜆9B (𝐸𝑞. 2.1) 

𝐹𝑃𝑅= = 𝜙(−𝜆9) (𝐸𝑞. 2.2) 

𝑃𝐶H =	
𝑇𝑃𝑅=+ (1 − 𝐹𝑃𝑅=)

2
(𝐸𝑞. 2.3) 

Where 𝜙 denotes the cumulative distribution function of the standard normal distribution. 

 We measured observer performance at three eccentricities: 1, 4, and 7 dva. Figure 

2.2.a, top right, depicts the relationship between our parameter estimates, J𝜇&'(7,𝛼8, 𝜆9	K and 

visual eccentricity for one observer. However, we required PC estimates for untested 

eccentricities. To achieve this objective, we fit a half Gaussian function to the parameter 

estimates of 𝜇&'(7  for both targets. The half Gaussian asymptotes at 0 as eccentricity 

increases, which is the lower constraint on the bounds for this parameter. For the small 

target, 𝛼8 was also fit to a half Gaussian to avoid negative values. For the large target 𝛼8 

estimate, we fit a line. We also fit a line for the 𝜆9 estimates for both targets. We utilized 
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these secondary fits to generate predictions of PC for untested eccentricities using Eq. 2.1-

2.3, as shown in Figure 2.2.a, middle left. Lastly, we determined the eccentricity that 

produced an estimated PC of 0.82, which, in turn, defines the radius of the circular UFOVE 

for each target, as shown in blue at the bottom of Figure 2.2.a.  

 The radii for the two types of circular target-specific perceived UFOVs were 

computed via simple linear fits to the raw data obtained from the foveal estimation task (task 

2-UFOVP F) and the peripheral estimation task (task 3-UFOVP P). Once again, we collapsed 

our data across directions before regressing eccentricity on PC, as depicted in the top of 

Figures 2.2.b and 2.2.c. We then predicted the eccentricity for a PC of 0.82. These 

eccentricities served as the radii of the UFOVs (Figures 2.2.b and 2.2.c bottom). Individual 

fits for each subject can be found in Figure A.1. 

Data analysis 

Statistical analyses 

Our first analysis considered the slope and intercept estimates for a simple linear 

regression model that predicted proportion correct from eccentricity (task 1). For tasks 2 and 

3 the linear models predicted eccentricity from the probed proportion correct. For each task, 

our goal was to assess differences in linear fits between targets at a participant-average level. 

This allowed us to identify the differences in peripheral detectability of each target and 

differences in metacognitive estimates regarding peripheral detectability. Our second 

analysis focuses on individual differences across the three tasks to derive target-specific 

empirical and perceived UFOVs for each participant. These individualized target-specific 

UFOVs are pertinent for our analyses in Experiment 2.  
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Statistical analyses used non-parametric bootstrap resampling procedure of trials and 

participants, with replacement, to construct empirical sampling distributions (n=20,000) of 

the slope and y-intercept estimates from the data collected in tasks 1-3. For example, let us 

consider one bootstrap iteration for the data collected in task 1. After sampling with 

replacement trials and participant IDs, we computed the proportion correct at each of the 

three eccentricities for the two targets (6 PCs in total). We fit a line to the 3 PC estimates for 

the small target. The same procedure was done for the large target.  

Next, we computed the difference between the slope estimates of the two targets for each 

bootstrap iteration. Out of the distribution of 20,000 difference scores, we computed the 

fraction of scores that were less than 0. We multiplied this fraction by 2 to obtain an 

unadjusted two-tailed p-value. This procedure was repeated for the y-intercept as well. 

Finally, we applied an FDR correction (Benjamini & Hochberg, 1995) to the p-values based 

on the six comparisons tested in Experiments 1—2 for each task.  

 
Figure 2.3. Proportion correct plotted versus eccentricity for the detection task (task 1) and two estimation 
tasks (tasks 2 and 3). (Left) Mean detection performance is plotted at eccentricities 1, 4, and 7 dva 
(collapsed across polar angle). (Middle) For the following proportion correct thresholds: 0.5, 0.6, 0.7, 0.8, 
and 0.9, mean eccentricity across observers is plotted for the foveal estimation task. (Right) It is the same as 
the middle plot but for the peripheral estimation task. Triangle points represent the mean performance across 
observers for the large targets, and circular points represent the mean performance for the small target. Error 
bars represent 68% confidence intervals (~1 standard error) from bootstrap sampling distributions. 
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 2.3.2. Results 

Actual versus estimated target detectability across the visual field 

In task 1, we found a significant difference in the slope estimates between the large and 

small targets (Δ𝛽! = 0.0554, 𝑝 < 5𝑒)*). Figure 2.3, left, shows a steep drop-off in 

performance as eccentricity increases for the small target relative to the large target. 

Although the two targets' peak contrasts are matched, low visual acuity and spatial 

resolution in the periphery hindered the detection of the small target, comprised of high 

spatial frequency information. We also found a significant difference in the y-intercept 

(Δ𝛽+ = −0.0469, 𝑝 = 0.0087).  

 In task 2, we found no significant difference in either the slope (Δ𝛽! = 0.0026, 𝑝 =

0.6065) or y-intercept (Δ𝛽+ = −0.0866, 𝑝 = 0.6591). When estimating target detectability 

in the fovea, on average, participants considered both targets equally detectable in their 

peripheral field of view (Figure 2.3, middle). However, in task 3, despite not finding a 

significant difference in the slope (Δ𝛽! = −0.0075, 𝑝 = 0.5675), we found a large 

difference in the y-intercept, although it was also not significant (Δ𝛽+ = 1.0785, 𝑝 =

0.1242). Figure 2.2, right, depicts a rightward shift in the large target estimates, suggesting 

that the participants may think they see the large target better in their visual periphery than 

the small target. Figure A.2 breaks down these analyses by direction. 

 2.3.3. Discussion 

In this experiment, we have demonstrated how the observer’s perceived concerning 

target detectability in the visual periphery differs from the empirical peripheral detectability. 

Specifically, participants misjudge that both targets are equally detectable at large 

eccentricity. However, detection performance for the small target is significantly worse at 4 
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and 7 dva than for the large target. Second, we have utilized the measured and estimated 

target detectability across the visual field to construct three types of UFOVs at a fixed 

proportion correct threshold of 0.82. These UFOVs will be a tool to compute the proportion 

of area explored in the 2D and 3D searches described in the following experiment. 

2.4. Experiment 2 

 2.4.1. Methods 

Participants and apparatus parameters were kept constant between experiments 1 and 2. 

Stimuli 

 

The stimuli used for the 2D search task were generated in the same manner as in 

Experiment 1, task 1 (see “Final image stimulus” subsection in the methods section of 

Experiment 1) but with one important caveat. The target's center (x, y) position was 

randomly generated for each target-present stimulus. Specifically, we uniformly sampled an 

x and a y coordinate within the confines of a rectangular area that was smaller than the 

image stimulus dimensions and then placed a single target (Figure 2.1.a, top-left or top-

right) at that location to avoid cropping the target’s edges by the image stimulus boundaries. 

In total, there were 200 independently generated stimuli: 50 stimuli contained the large 

target, 50 stimuli contained the small target, and 100 stimuli contained neither target.   

The stimulus set for the 3D search task consisted of 200 independently generated 3D 

volumetric images. Recall from the Methods section of Experiment 1 that a single 

volumetric image comprised 100 2D slices. Therefore, participants could view all 100 slices 

of the 3D image in a single trial of the 3D search task. One hundred 3D volumetric images 
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contained no target, fifty 3D volumetric images contained a small target, and the other fifty 

3D backgrounds contained a large target. 

In order to embed a single 3D target into the 3D background, we applied the following 

procedure. First, we randomly sampled an (x,  y,  z) coordinate, denoted as (x*, y*, z*). The 

central slice of a single target (e.g., Figure 2.1.a, bottom-left, slice z=c) was then linearly 

added to the z* slice of the 3D background at the (x*, y*) position. The slices of the target 

above and below the central slice (e.g., z=c + 1 and z=c – 1 in Figure 2.1.a, bottom-left) 

were added to the z* + 1 and z* – 1 slices of the 3D image at the same (x*, y*) position. This 

procedure was repeated until all slices of a given target were added to the 3D background.  

The location (x*, y*, z*) was constrained to be within a smaller cube inside the 

volumetric image to prevent cropping of the target profile by the boundaries of the image 

stimulus. Like the 2D target-present stimuli, (x*, y*) was sampled from a rectangular area 

smaller than the area of a single 2D slice. In the third spatial dimension, we ensured that z* 

was never in slices 1-10 or 90-100. Therefore, all five slices appeared in the 3D volume for 

the small target. For the large target, there were instances where not all slices of the 3D 

profile were inserted into the 3D background. For example, in the edge case that z* = 11, the 

target profile slices greater than c+10 would not be inserted into the 3D volumetric image. 

Design and procedure 

2D search 
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Figure 2.4. Depiction of the trial flow for the 2D and 3D searches. a) The 2D search task procedure is 
depicted. At the onset of the trial, the target type is cued (small or large). Next, a participant must fixate on a 
randomly located cross for one second. Afterward, the visual stimulus would appear. The participant would 
search for the cued target in the image until they find it or decide to quit the search. Lastly, they provided a 
confidence rating in their decision. b) The 3D search task procedure is depicted. It follows the same general 
structure as the 2D search task. However, participants can scroll through 100 slices (z=1, z=2, etc.) 
constituting the 3D volumetric image. 

 

Participants completed 200 trials in the 2D search task. We intermixed the target-present 

and target-absent stimuli for both types of targets and randomized the presentation order. In 

other words, an observer could see a small-present, small-absent, large-present, or large-

absent stimulus on any given trial. Participants completed four 50-trial blocks in total, with 

breaks in between blocks. 

Before each trial began, participants were informed about which target to look for with 

the presentation of a reference target (Figure 2.4.a, left). Next, they were instructed to stare 

at a fixation cross (Figure 2.4.a, middle left), randomly located within the image stimulus 

boundaries, for one second to ensure proper eye tracker calibration (i.e., a custom drift 

check). Participants were able to start a complete recalibration at this time if needed. 

Afterward, the image stimulus appeared on the screen (Figure 2.4.a, middle right), and 

participants were allowed to make free eye movements. They had unlimited time to perform 

the search. A high-contrast copy of the 2D target profile (Figure 2.1.a, top row) was placed 

above the image stimulus to remind participants which target they had to look for.  
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To end the trial, participants had to make one of two choices: press the spacebar to end 

the trial to signify a target-absent decision or click at a location where they thought the 

target might be present in the image and then hit the spacebar key to confirm (both actions 

together denoting a target-present decision). Afterward, they were instructed to rate their 

confidence in their decision on an 8-point scale (Figure 2.4.a, right), the same rating scale 

used in Task 1 of Experiment 1.  

No feedback was given at the end of the trial. However, participants completed practice 

trials with feedback before starting the 2D search task to help familiarize themselves with 

the task. The feedback on target-present trials consisted of displaying the image stimulus 

again after participants input a confidence rating. A circular ring was superimposed on top 

of the image stimulus around the target location to demarcate its position. In the target-

absent trials, a gray background with the text “ABSENT” was presented to the participants. 

In both instances, there was unlimited time to review the feedback.   

3D search 

Participants searched through 200 3D volumetric images (50 % prevalence). They saw 

one volumetric image per trial. In one hundred trials, participants were asked to search for 

the small target; in the other half, they were asked to look for the large target. Given the 

relatively long nature of the search, the trials were broken up into sets of 10 trials per block 

and randomized across the different target types and ground truth statuses, like in the 2D 

search task.   

The basic procedure/trial flow of the 3D search task (Figure 2.4.b) is akin to that of the 

2D search. Participants were instructed to look for a particular target at the beginning of the 

trial, and a fixation cross appeared at a random location on top of a gray background within 
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the confines of the (x, y) plane of the image stimulus. After maintaining fixation at the cross 

for one second, the stimulus presentation portion of the trial began. Rather than seeing a 

single image on the screen, as in the 2D search task, participants could scroll through 100 

images, each representing a different planar view of the 3D volume (Figure 2.4.b, middle). 

Only one image would appear on the screen at a time. However, participants could either 

manipulate a mouse scroll wheel to view different slices of the 3D volume or click, hold, 

and drag a custom scrollbar widget on the right-hand side of the stimulus to maneuver 

through the third dimension. The custom scrollbar also allowed participants to jump across 

multiple slices at a time.  

To make a localization decision in 3D, participants were instructed to click on the image 

stimulus on the slice where they first detected the target, as the targets spanned multiple 

slices. Clicking on the screen produced a red circle to demarcate the localized region. 

Participants were instructed to make only one click per trial. To end the trial, participants 

clicked the spacebar button and encountered the same 8-point rating scale as in the 2D 

search task. The trial would conclude after they made a rating decision.  

Participants completed practice trials at the beginning of the 3D task. These trials 

contained feedback regarding the presence/absence of the target. If the trial was target-

present, the slice of the 3D volume containing the central slice of the 3D target was shown 

to the observer. A white circle demarcated the target location. We chose to display the slice 

of the 3D volume that contained the target's central slice because the target's central slice 

provided the strongest reinforcement of the target’s appearance in the background noise. We 

acknowledge that learning may have changed if we showed the slice they clicked on during 
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the trial. If the trial was target-absent, no image would appear, and the word “ABSENT” 

would be displayed on the screen instead.  

Data analysis 

Our first analysis focuses on behavioral performance measures for the small and large 

targets in the 2D and 3D search conditions. We evaluate the empirical area under the ROC 

curve, hit rate (and hit rate localized), false alarm rate, and search error rate. We 

supplemented the behavioral performance analysis with measures of search time and the 

number of eye movements executed during the searches. Together, these results will support 

the claim that observers under-explore the 3D volumetric images and change their search 

patterns for each target.   

Our second analysis focuses on the search-termination criterion and its relation to the 

area explored with the target-specific perceived UFOV. We focus on trials where 

participants reported the targets as absent (misses and correct rejections) to parse a self-

terminating search strategy from a quitting threshold independent of target detection. 

Search performance measures characterizing 2D vs. 3D  

We used various figures of merit to describe search performance for the small and large 

targets in the 2D and 3D searches. The AUC is a criterion-free assessment of search 

performance. We constructed empirical ROC curves with the rating data and then computed 

the area under the empirical ROC curve using the trapezoidal rule (Macmillan & Creelman, 

2005). We computed the empirical AUC based on 100 trials (50 % prevalence) for each 

participant, search condition, and target type. We examined the hit and false alarm rates 

using the same data stratification. We defined hits as a rating greater than 4 on target-present 

trials. Similarly, we defined false alarms as ratings greater than 4 but on target-absent trials. 
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Both counts of hits and false alarms were divided by the number of target-present and target-

absent trials, respectively, to produce a hit rate and false alarm rate.  

Given that we asked participants to localize the targets in the 2D and 3D searches, we 

included an analysis of the hit rate localized. A target was localized in 2D if an observer 

produced a rating greater than 4 and clicked within a distance of 1 dva from the target's 

center (x, y) position. In 3D, we augmented the definition of localizing the target because 

the target profile spanned multiple slices. A valid localization in 3D required that an 

observer meet the first condition described above and that their click occurred on a slice that 

was less than or equal to N slices from the central slice of the target. We set N=2 for the 

small target because it spanned five slices in 3D. For instance, consider an observer looking 

for the small target inserted at location (x*, y*, z*=45). Any click within 1 dva from the (x, y) 

location on any slice between 43-47 would be considered a localized hit.  

For the large target, N was set to 23. Given that the large target’s peak contrast decayed 

monotonically as a function of distance from the central slice, it is unclear what N should be. 

Therefore, we conducted a control experiment with five new observers to determine N for 

the large target. In this task, participants saw 100 3D volumetric images. We inserted half of 

the mass’s 3D profile into the 3D images such that the central slice was on slice 1, the c-1 

slice was on slice 2, the c-2 slice was on slice 3, etc. Participants were informed that the 

target was placed at the center of each 2D image slice and that the central slice of the target 

was present on the first slice they saw. Participants were instructed to scroll downward until 

they no longer saw the mass target, a form of method of adjustment. They were instructed to 

press the spacebar on the slice where they could not discern the signal from the background 

noise. The dependent variable of interest was the slice number or distance from the central 
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slice in z. Across the 100 trials, we computed the median slice distance from the central slice 

for each observer. We averaged these estimates across the five observers. Based on this 

supplementary experiment (Figure A.3), we set N=23.  

Gaze-dependent errors analysis  

We also considered eye movement patterns to bolster our analysis further. Search errors 

are a common metric for assessing human performance in complex decision-making tasks 

when eye-tracking data is available (Krupinski, 2010; Kundel et al., 1978). A search error 

occurred in a trial where a participant reported a false-negative decision. Upon further 

analysis of their fixation positions, it was revealed that they never stared directly at the 

target (i.e., never foveated it). In our 2D search experiment, we quantified a failure to 

foveate the target as an absence of fixation locations within 2 dva from the target's center (x, 

y) position. For the 3D search task, we built upon this definition by adding the constraint 

that the fixations needed to appear outside of N slices above or below the central slice of the 

target. For the small target, we set N=2, and for the large target, we used N=23. Thus, we 

defined the search error rate as the proportion of target-present trials where participants 

reported the target as absent and failed to foveate it.  

 Across the five dependent variables, we evaluated performance differences across 

2D and 3D for each target separately. We applied the same bootstrap resampling procedure 

and non-parametric significance testing as described in the Data Analysis section of 

Experiment 1. In total, we assessed 8 FDR corrected p-values (we did not FDR correct for 

hit rate localized because it supplemented the hit rate metric). 

Search time and number of fixations 

Two additional measures, search time and number of fixations, were evaluated to 

understand better how the observer's search patterns changed across the two modalities for 
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the two targets. For a given search condition (e.g., 2D small target), we computed the mean 

time exploring on trials where observers reported the target as absent (misses and correct 

rejections). Similarly, we computed the mean number of fixations across all trials where 

observers reported the target as absent.  

These two variables are correlated with the area explored with the UFOV, the dependent 

variable utilized to test our hypotheses. Therefore, we assessed statistically significant 

differences across targets for a given modality (e.g., mean time searching for the large target 

in 2D versus mean time searching for the small target in 2D) and across modalities for a 

given target (e.g., the mean number of fixations in small target 2D search versus the mean 

number of fixations in the small target 3D search). Adding pairwise comparisons between 

targets for these two dependent variables will help facilitate the discussion surrounding our 

main hypotheses. We computed four pairwise differences per endpoint, and FDR corrected 

the p-values for each dependent measure separately.  

 
Figure 2.5. Illustration of how to compute the proportion of area explored (PAC) in 2D, 3D, and the 2D 
plane during the 3D search. a) The small target empirical UFOV (top), perceived UFOV in the fovea 
(middle), and perceived UFOV in the periphery (bottom) for a single observer are replotted from Figure 2.2. 
b) Graphical depiction of the search area covered in both the 2D (left column) and 3D (right column) search 
trials using the three types of UFOVs. Dotted lines indicate the observer’s eye movement scan path in 2D 
and 3D, respectively. The UFOVs are painted onto the search array at each recorded fixation position during 
the search. The formula for computing the PAC is shown at the bottom. c) Algorithm for computing PAC of 
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the 2D image plane during the 3D search with an arbitrary UFOV. All fixations are projected onto one 
plane, and the PAC is computed as if it were a 2D search (b, left column). 

 

Computing the proportion of area explored (PAC) 

This study aimed to determine whether the proportion of area covered (PAC) by the 

UFOV serves as a plausible search-termination criterion in trials where observers report 

“target-absent.” In our analyses below, which are focused on our primary hypotheses, we 

considered four types of UFOVs. The first is the standard UFOV with a radius of 2.5° 

(UFOVS), which serves as a control and helps contextualize our results with what has been 

reported in the literature using the same UFOV size. The latter three types of UFOVS are the 

empirical UFOV (UFOVE), the perceived UFOV in the fovea (UFOVP F), and the perceived 

UFOV in the visual periphery (UFOVP P). The spatial extent of these types of UFOVs are 

target-specific, whereas the standard UFOV covers the same area for both types of targets.  

Figure 2.5.a illustrates an example of the three types of small target UFOVs for one 

observer. Figure 2.5.b illustrates how we calculated the PAC in 2D and 3D with each type of 

UFOV in Figure 2.5.a. In the 2D search, we painted each type of UFOV on all recorded 

fixation positions during the trial and determined the union set of pixels that were “painted.” 

For instance, in the left column of Figure 2.5.b, from top to bottom, we counted the pixels 

colored blue, green, and red, respectively. We divided these three counts, one for each type 

of UFOV, by the total number of pixels in the 2D array to obtain three separate PAC values. 

In 3D, we also painted the UFOVs on the fixation positions on each slice visited by the 

observer, as shown in the right column of Figure 2.5.b. We divided this count by the total 

number of pixels in all 100 slices of the 3D array to compute the PAC with the UFOVs.  
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Our first hypothesis posits that the PAC with the perceived UFOV, but not the empirical 

UFOVs or standard UFOV, will be approximately equal between targets. In the 2D search, 

we evaluated the difference in the PAC between the two targets using each type of UFOV. 

We repeated this analysis for the 3D search (8 pairwise comparisons in total across the two 

image modalities). Next, we computed the PAC ratio for each of the four types of UFOV 

separately. The PAC ratio is defined as the PAC for the large target divided by the PAC for 

the small target. The PAC ratio facilitated pairwise comparisons between UFOV types while 

accounting for differences in the PAC between targets. In 2D, there were six comparisons 

(four UFOV types chose two). This was true in 3D as well.  

We evaluated twenty pairwise comparisons for completeness, which we report in Table 

A.2. We used the same bootstrapping procedure discussed in the previous analyses and FDR 

correct for twenty comparisons. The reader can refer to Table A.2 for comparisons not 

directly mentioned in the Results section below. 

Our second hypothesis concerns the difference in PAC between 2D and 3D searches for 

a given target. Here, we argue that the observers under-explore in 3D because they terminate 

their search after sufficiently covering the 2D image plane area with their perceived UFOV. 

We define sufficient coverage as the average PAC while performing the 2D search task for 

the same target. To compute the proportion of the 2D plane covered by a UFOV, we 

projected all the fixations in a 3D search trial onto a single 2D array (Figure 2.5.c). We then 

computed the proportion of the 2D array covered by the UFOVs in the same manner as 

Figure 2.5.b, left column.  

We utilized the same bootstrap resampling procedure for each UFOV type to assess 

three difference scores for the large target and three for the small target. The first difference 
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score concerned the PAC in 2D versus the PAC in the 2D plane of the 3D search, which is 

our main focus. The second comparison looked at the PAC in 2D versus the PAC in 3D. The 

third type of comparison evaluated the difference between the two PAC ratios. The first 

PAC ratio was the mean PAC in 2D divided by the mean PAC in the 2D plane of the 3D 

search. The second PAC ratio was the mean PAC in 2D divided by the mean PAC in 3D. 

We evaluated twenty-four pairwise difference scores across the two targets and four UFOV 

types and applied an FDR correction. Results for all 24 comparisons can be found in Table 

A.2.  

2.4.2. Results 

Quantifying observer performance in 2D vs. 3D search for the two targets 

 
Figure 2.6. Behavioral performance for small and large targets in 2D and 3D searches. (a) AUC or area 
under the empirical ROC curve is depicted for the large (left) and small (right) targets. The white bars 
denote AUC for the 2D search condition, whereas the gray bars represent AUC in the 3D search condition. 
(b-c) The same stratification of data as (a) but for hit rate (b), search error rate (c), and false alarm rate (d) 
measures. All error bars represent 68% bootstrap confidence intervals. “*” means FDR corrected p-value < 
alpha level of 0.05, and “n.s.” represents non-significant results. 

 

Figure 2.6 shows the performance differences across the two image modalities stratified 

by the target type. The mean AUC and mean hit rate for the smaller target were significantly 

higher in the 2D search relative to the 3D search condition (∆V𝐴𝑈𝐶 = 0.2156, 𝑝 < 5𝑒)*, 

∆V𝐻𝑅 = 0.3333, 𝑝 < 5𝑒)*). The change in hit rate localized (∆V𝐻𝑅,-&.,/%01 = 0.4333, 𝑝 <

5𝑒)*) was also significantly different across the two searches (Figure A.4, right). As 
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expected, the search error rate was significantly higher in the 3D condition than in the 2D 

condition (∆V𝑆𝐸𝑅 = 0.36, 𝑝 < 5𝑒)*). Lastly, we did not find a significant difference in the 

false alarm rate between 2D and 3D searches for the small target (∆V𝐹𝐴𝑅 = 0.0267, 𝑝 =

0.3602). These behavioral differences are similar to those found in previous studies and 

consistent with under-exploration of the 3D volumetric images (Lago, Jonnalagadda, et al., 

2021).  

The behavioral performance of the larger target tells a different story. As shown in 

Figure 2.6 a, b, and d, there was no significant difference in AUC (∆V𝐴𝑈𝐶 = 0.0334, 𝑝 =

0.3316), hit rate (∆V𝐻𝑅 = 0.0733, 𝑝 = 0.0771), or false alarm rate (∆V𝐹𝐴𝑅 = 0.0133, 𝑝 =

0.7075) when participants searched for the large target in the 2D versus 3D conditions. We 

observed no significant difference in the localized hit rate (Figure A.4, left, ∆V𝐻𝑅,-&.,/%01 =

0.0233, 𝑝 = 0.5189). Interestingly, the search error rate (SER) was significantly higher in 

3D than in 2D for the large target (∆V𝑆𝐸𝑅 = 0.11, 𝑝 < 5𝑒)*), but to a smaller extent than for 

the small target.  

 
Figure 2.7. Search time and number of fixations on trials where participants reported target-absent. a) The 
mean search time across observers in the 2D condition (left) and the mean search time in the 3D condition 
(right). White bars represent the search time for the large target, and gray bars represent the search time for 
the small target. b) The number of fixations is plotted in the same manner as (a). All error bars represent 
68% bootstrap confidence intervals. “*” means FDR corrected p-value < alpha level of 0.05, and “n.s.” 
represents non-significant results. 
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Search times 

In addition to the performance measures, the analysis of search time and number of eye 

movements shed additional light on how observers executed the 2D and 3D searches for the 

two targets. Figure 2.7.a shows that participants spent significantly more time in 3D 

searching for the small target than in 2D (∆V𝑇𝑖𝑚𝑒 = 63.2393 seconds, 𝑝	 < 5𝑒)*). 

Observers also spent more time looking for the large target in 3D than in 2D (∆V𝑇𝑖𝑚𝑒 =

24.8645 seconds, 𝑝	 < 5𝑒)*). In comparing search times across targets in 2D, there was no 

significant difference (∆V𝑇𝑖𝑚𝑒 = 0.9445 seconds, 𝑝 = 0.1774). However, in 3D, observers 

spent more time searching for the small target than the large target (∆V𝑇𝑖𝑚𝑒 = 39.3193 

seconds, 𝑝	 < 5𝑒)*).  

 

Number of fixations 

Figure 2.7.b conveys the mean number of fixations in the 2D and 3D searches for both 

targets on trials where participants reported “target-absent.” Like search time, participants 

made significantly more fixations when searching in 3D for the small target than in 2D 

(∆V𝐹𝑖𝑥 = 110.6234 fixations, 𝑝	 < 5𝑒)*), and this pattern held for the large target as well 

(∆V𝐹𝑖𝑥 = 25.8553 fixations, 𝑝	 < 5𝑒)*). Additionally, participants made more fixations for 

the small target than the large target in both the 2D search condition (∆V𝐹𝑖𝑥 = 7.7863 

fixations, 𝑝	 < 5𝑒)*) and the 3D search condition (∆V𝐹𝑖𝑥 = 92.5544 fixations, 𝑝	 < 5𝑒)*).  
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Figure 2.8. Comparing the proportion of the search area covered for the two targets with different types of 
UFOVs. a) The participant-average PAC in the 3D search (top) and 2D search (bottom) conditions. Gray 
bars correspond to the mean PAC for the small target search on false-negative and true-negative trials. 
White bars represent the same information but for the larger target. We include the standard UFOV in the 
left column for reference. From left to right, the x-axis labels are as follows: UFOVS, UFOVP F, UFOVP P, 
and UFOVE. b) The PAC ratio, or the large target PAC divided by the small target PAC for the 4 UFOV 
types in c). The x-axis labels follow the same label ordering convention from left to right as in c). Error bars 
represent 68% bootstrap resampling confidence intervals. “*” means FDR corrected p-value < alpha level of 
0.05, and “n.s.” represents non-significant results. 

  

Comparing the proportion of area covered between targets using different types of 

UFOVs (hypothesis 1) 

Figure 2.8.a, top, depicts the mean PAC in the 3D search for both targets using all four 

UFOV types. We first consider the PAC in the 3D search for both targets using the two 

types of perceived UFOVs and the empirical UFOV. The difference in the mean PAC 

between targets in 3D with the UFOVP F was −0.0615, 𝑝 = 0.0969. For the second type of 

perceived UFOV, UFOVP P, the difference across targets in 3D was −0.0214, 𝑝 = 0.6726. 

In both instances, observers explored slightly more for the small target than the large target. 

However, the slight differences in the PAC for the searches of the two targets suggest that 

observers were exploring an equal amount of the 3D volumetric data with their perceived 
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UFOVs. In comparing the two perceived UFOVs (Figure 2.8.b, top), we note that the PAC 

ratio using the UFOVP P was significantly larger than the PAC ratio using the UFOVP F  

(∆V𝑟𝑎𝑡𝑖𝑜2	2	45.		2	7;	9: = 0.2380, 𝑝 = 0.0078). Moreover, the PAC ratio using the UFOVP P  

of 1.0340 (95% bootstrap CI [0.6944, 1.4421]) produced the most consistent exploration 

behavior across targets for the six participants. On the other hand, when considering the 

target-specific empirical UFOVs, we see that the mean PAC in the 3D search for the large 

target was significantly greater than that for the small (∆V𝑈𝐹𝑂𝑉;;	9: = 0.4407, 𝑝	 < 5𝑒)*). 

Furthermore, when comparing the PAC ratio using the UFOVE to the PAC ratios using the 

three alternative UFOVs, we note that it is significantly larger than all 3 PAC ratios (Figure 

2.8.b, top, and Table A.2). 

How did the 2D search PAC between the two targets differ when considering the three 

types of UFOVs? Figure 2.8.a, bottom, confirms that what was observed in 3D held during 

the 2D search. Specifically, the mean difference in the PAC across the two targets with the 

UFOVP F was −0.1047, 𝑝 = 0.1379. Similarly, for the second type of perceived UFOV, the 

UFOVP P, we found no significant difference between the PAC for the two targets 

(∆V𝑈𝐹𝑂𝑉2	2;	<: = −0.0405, 𝑝 = 0.5778). Like in the 3D search, observers, on average, 

explored slightly more for the small than the large target. We also note that, like the 3D 

search, the mean PAC ratio utilizing the UFOVP P was marginally higher than the mean PAC 

ratio utilizing the UFOVP F  (∆V𝑟𝑎𝑡𝑖𝑜2	2	45.		2	7;	9: = 0.0675, 𝑝 = 0.0499), as shown in 

Figure 2.8.d, bottom. Again, the PAC ratio using the UFOVP P  of 0.9502 (95% bootstrap CI 

[0.7806, 1.1130]) produced the most consistent exploration behavior across targets for the 

six participants. 
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Conversely, for the difference in 2D PAC between targets using the UFOVE, we saw a 

similar result as in the 3D search. Figure 2.8.a, bottom shows that the 2D PAC with the large 

target UFOVE was significantly greater than that utilizing the small target UFOVE 

(∆V𝑈𝐹𝑂𝑉;;	<: = 0.1266, 𝑝	 < 5𝑒)*). As reflected in Figure 2.8.b, bottom, and Table A.2, 

the mean PAC ratio using the UFOVE was significantly greater than the mean PAC ratio 

using the standard UFOV and two perceived UFOVs. This is not surprising given the greater 

spatial extent of the large target UFOVE relative to the small target UFOVE, exemplified for 

one observer in Figure 2.2.a, bottom left. With just a few fixations, one fixation in each 

image quadrant, one can sufficiently cover the image area with the large target empirical 

UFOV. This is confirmed by the fact that the mean PAC for the large target in 2D with the 

UFOVE was approximately 1, as shown in Figure 2.8.b, bottom. 

Overall, across the 2D and 3D searches, the mean PAC using the UFOVP P was the most 

similar across target types. To assess the generality of our results to the chosen PC threshold 

of 0.82, we ran this analysis for five additional PC thresholds (0.8, 0.84, 0.86, 0.88, and 

0.90). As the PC thresholds increased, the size of the UFOVE, UFOVP P, and UFOVP F 

decreased for each participant and target combination. Figure A.5 in the appendix that 

regardless of the PC threshold used, the UFOVP P provided the most consistent pattern of 

results between the two target searches.  
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Figure 2.9. Comparing 2D and 3D search area coverage with different UFOVs by the target type. a) Mean 
(across observers) PAC in the 2D search (white bars), the 2D plane of 3D search (hatched gray bars), and 
the 3D search (gray bars). The top row depicts coverage for the large target on false negative and true 
negative trials, and the bottom row depicts coverage for the small target on the same types of trials. b) The 
ratio of PAC in 2D vs. PAC in 3D (blue bars) and PAC in 2D vs. PAC in 2D image plane of 3D (red bars). 
The top row corresponds to the large target search ratios, and the bottom corresponds to the small target 
search ratios. The x-axis represents the three types of UFOVS derived in experiment 1 and the standard 
UFOV for comparison. Error bars represent 68% bootstrap resampling confidence intervals. “*” means FDR 
corrected p-value < alpha level of 0.05, and “n.s.” represents non-significant results. 

 

Evaluating the proportion of area covered in the 2D image plane during the 3D search 

as a stopping criterion (hypothesis 2) 

Our second hypothesis argues that the observers terminate their 3D search after 

sufficiently covering the 2D image plane area with their perceived UFOV. Recall that we 

define sufficient coverage as the average PAC while performing the 2D search task. Figure 

2.9.a demonstrates, for each type of UFOV, the PAC in 2D, the PAC in the 2D plane of 3D, 

and the PAC in 3D. Based on hypothesis 1 and the consistent PAC between targets using the 

UFOVP P, our following analysis focuses on the PAC in 2D versus 3D using the UFOVP P. 



 

 52 

We briefly comment on the PAC in 2D versus 3D using the UFOVE but refer the reader to 

Table A.2 for statistics concerning pairwise comparisons using the other two types of 

UFOVs. 

For the large target (Figure 2.9.a, top), the mean PAC in 2D was marginally higher (but 

statistically significant) in comparison to the PAC of the 2D plane of the 3D search 

(∆V𝑈𝐹𝑂𝑉2	2;	<:	45.		<:	=,.>0 = 0.0705, 𝑝 = 0.0309). For the small target (Figure 2.9.a, 

bottom), the PAC in the 2D search using the UFOVP P was less but not significantly different 

from the PAC in the 2D plane of the 3D search (∆V𝑈𝐹𝑂𝑉2	2;	<:	45.		<:	=,.>0 = −0.0754, 𝑝 =

0.0520). These results suggest that when observers report the small or large target as absent, 

they roughly explore (7% difference on average) as much of the 2D image plane during the 

3D search with their UFOVP P as they would during the 2D search for the same target. 

As a point of comparison, the large target UFOVE produced a comparable PAC in the 

2D search versus the 2D plane of the 3D search (∆V𝑈𝐹𝑂𝑉;;	<:	45.		<:	=,.>0 = 0.0174, 𝑝 =

0.0656). This is not surprising given the substantial spatial extent of the large target 

UFOVE. Interestingly, the small target UFOVE also produced a similar PAC in both the 2D 

search and the 2D plane of the 3D search (∆V𝑈𝐹𝑂𝑉;;	<:	45.		<:	=,.>0 = −0.0248, 𝑝 =

0.2698). The consistent pattern in the difference in PAC across the two small-target UFOV 

types may be explained by the fact that observers' metacognitive estimates regarding the 

target’s peripheral detectability (Figure 2.3, right solid line), on average, were aligned with 

their actual detectability of the target in their visual periphery (Figure 2.3, left solid line).  

Figure 2.9.b provides another visualization suggesting the possibility search termination 

criterion using the 2D plane area covered. The blue bars represent the PAC ratio between the 

2D search versus the 3D search, and the red bars depict the PAC ratio between the 2D 
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search versus the 2D plane of the 3D search. If observers quit searching in 3D after covering 

the 2D image plane to the same extent as in the 2D search task, we would expect the latter 

PAC ratio (red bars) in Figure 2.9.b to be approximately equal to 1. Indeed, both the small 

and large targets, regardless of the UFOV construct used, the PAC ratios cluster around 1. 

For example, the PAC ratio using the UFOVP P for the large target was 1.1111 (95% 

bootstrap CI [1.0051, 1.2424]). Similarly, the PAC ratio using the UFOVP P for the small 

target was 0.9186 (95% bootstrap CI [0.8353, 1.0030]). 

Comparisons between the mean PAC in 2D versus the mean PAC in 3D, the white and 

gray bars in Figure 2.9.a, respectively, reveal that regardless of target or UFOV type, 

observers under-explored the 3D volumetric images with eye movements. Figure 2.9.b 

graphically contrasts under-exploration (blue bars) with our proposed 2D plane stopping 

criterion (red bars). Once again, regardless of the UFOV or target type, the former PAC ratio 

is substantially greater than 1. Moreover, The PAC ratio between the 2D and 3D search is 

significantly higher than the PAC ratio between the 2D search and the 2D plane of the 3D 

search.  

2.5. General discussion 

We sought to understand why people under-explore 3D volumetric images and how the 

search strategy interacted with target type. Framed another way, what evidence do observers 

use to quit their 3D search when they fail to find the target they were looking for? Prior 

work investigating the search-termination process for 2D displays has primarily taken an 

item-based approach (Becker et al., 2022; Lui et al., 2024; Mazor & Fleming, 2022; Shi et 

al., 2020). One prominent model predicting target-absent reaction times for target/distractor 

2D searches suggests that the quitting signal follows a drift-diffusion process (Ratcliff, 
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1978) and that target-absent responses are induced once the signal surpasses an adjustable 

threshold modulated by estimates of local target-prevalence rates (Wolfe & Van Wert, 

2010).  

In this work, we take a conceptually similar approach but argue in favor of a quitting 

signal proportional to the image/volume area explored with eye movements—which, in 

theory, could be the underlying dimension on which the diffusion process occurs. This 

approach is particularly suited for search arrays where the distinction between target and 

distractor is poorly defined (i.e., no countable set of items in the display). It also can account 

for differences in search patterns across various targets (e.g., reaction time and number of 

eye movements; Figure 2.7) while emphasizing the role of extrafoveal processing on search 

performance (Figure 2.6). Furthermore, this approach is amenable to bridging theories of 2D 

and 3D searches together, of which, in the latter case, the theories are nascent and still being 

developed (Williams & Drew, 2019).  

In short, we propose that observers keep track of the proportion of area explored with a 

target-specific perceived Useful Field of View. If observers do not find the target during the 

search, they compare this estimate to a stopping criterion and terminate their search if the 

estimated area explored surpasses it. The area explored with a UFOV may serve as the 

feature dimension along which the stopping criterion exists because this metric is positively 

correlated with detection performance in previous work on search in 3D volumetric images 

(Drew, Vo, Olwal, et al., 2013; Lago, Jonnalagadda, et al., 2021; Rubin et al., 2015). Under 

this working model, we tested two hypotheses. Our first hypothesis posits that when 

observers consider their perceived detectability of each target in their field of view, they 

roughly cover the same amount of image/volume area in the two separate target searches. 
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Our second hypothesis argues that when observers perform the 3D search and do not find 

the target, they quit once they have covered the 2D image plane of the 3D volume to the 

same extent as they would in the analogous 2D search task. Consequently, they would not 

explore much of the 3D area with their target-specific perceived UFOV.  

To test these hypotheses, we needed a principled way of measuring each participant's 

metacognition regarding the spatial extent of covert attention—the perceived eccentricity at 

which a target can be detected for a given accuracy threshold. Experiment 1 provided a 

methodological framework for testing this. First, we demonstrated how people intuit target 

detectability in the visual periphery and how this metacognition differs from their actual 

detectability of a small and large target. Specifically, participants believed that the large and 

small targets were similarly detectable at various eccentricities (Figure 2.3, middle and 

right) despite them being able to detect the large target further out in the visual periphery 

than the small target (Figure 2.3, left). However, it should be noted that the peripheral 

estimation task produced an upward shift in the y-intercept of the linear fit of the large target 

relative to the small target by 1° in eccentricity.   

The second goal of Experiment 1 was to generate target-specific empirical and perceived 

UFOVs for each participant. We used simple linear fits of eccentricity regressed on 

proportion correct to derive perceived UFOVs estimated in the fovea (task 2) or the visual 

periphery (task 3). We also derived empirical UFOVs for each subject by fitting a 

Contaminated Binormal Model (CBM) to the ROC data gathered at each eccentricity for 

each target. We applied a secondary fit on the CBM parameters, J𝜇&'(7,𝛼8, 𝜆9	K, so that we 

could predict proportion correct for untested eccentricities (Figure 2.2.a). To normalize 

across the spatial extent of the empirical and perceived UFOVs, we found the eccentricity 
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that would predict a proportion correct value of 0.82 (UFOVE). We also selected the 

predicted eccentricities at the same proportion correct value of 0.82 to derive the radii of the 

two perceived UFOVs (UFOVP F, UFOVP P), as shown in the subplots of Figure 2.2.b and 

2.2.c, respectively.  

In experiment 2, we examined the proportion area covered, or PAC, in the 2D search and 

3D search for both targets using the standard UFOV with a radius of 2.5°, the empirical 

UFOV, and both perceived UFOVs from experiment 1. In the 2D or 3D search, the mean 

PAC using the target-specific empirical UFOV was significantly greater for the large target 

than the small one (Figure 2.8.a). However, the PAC ratio (PAC large target search / PAC 

small target search) was near 1 when we applied the perceived UFOVs to the observer’s eye 

movements (Figure 2.8.b), suggesting that people may explore a similar amount of area 

using their perceived UFOV for both targets. The most consistent PAC between targets was 

found when applying the UFOVP P. Interestingly, the PAC with the UFOVs and UFOVP F 

showed no significant difference (Table A.2), which suggests that the standard UFOV can 

serve as a good tool for approximating the area covered in future work investing 3D search 

for these types of targets.  

Lastly, we found that people under-explore 3D volumetric images (Figure 2.9.b blue 

bars), which could be partly due to sufficient coverage of the 2D image plane with the 

UFOV during the 3D search (Figure 2.9.b red bars). Given the presentation interface of the 

3D data to the users (i.e., scrolling through a stack of 2D images), focusing on covering the 

2D image plane before quitting the search could lead to the under-exploration of the 3D 

volume in many ways. For example, if one scanned the upper right portion of the monitor 

screen at the beginning of the trial, say on slices 1-5, they may not revisit that area for some 
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time or at all. Moreover, they might not remember which slices they directed their gaze to in 

that area. As a result, there is a high probability that the upper right portion of the image 

stimulus on slices 6-20, for example, will only be processed by their peripheral vision. 

Depending on the target detectability in the visual periphery and the resultant size of the 

UFOVE, that region of the 3D volume may go unexplored during the search.   

As a brief aside, some caution should be taken in this interpretation, as prior work has 

shown that humans are poor at remembering where they have previously fixated during the 

search (Võ et al., 2016) and discerning their fixation patterns from another person’s fixations 

patterns on the same image stimulus (Foulsham & Kingstone, 2013). However, humans may 

have a coarser representation of which regions of the image they have already explored with 

eye movements—otherwise, why would a radiologist feel confident in moving on to the next 

case without examining the entire medical image (Võ et al., 2016)? 

It is important to consider the limitations of our study, which can limit the 

generalizability of our findings to real-world visual search tasks in a radiologist's office. 

First and foremost, we utilized trained undergraduate observers as opposed to radiologists. 

Undergraduate observers afforded us many trials with eye-tracking data collected over 

multiple weeks to procure asymptotic estimates (i.e., large N per observer) of search 

performance and actual versus estimated target detectability across the visual field. The 

observer's extensive experience with both types of targets in the simulated noise 

backgrounds of Experiment 1 most surely formed their search strategies in both the 2D and 

3D conditions of Experiment 2, particularly when they would terminate their search. 

However, to translate our findings in the laboratory to real-world search scenarios, we must 

consider that search strategies vary with a person’s expertise and experience (Nodine & 
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Mello-Thoms, 2010; Waite et al., 2019). For example, Drew et al. classified a sample of 

radiologists into two groups based on their eye movement scan paths while looking for 

nodules in lung CT scans: scanners and drillers. Scanners systematically foveated multiple 

regions in a slice before moving on to the next slice. In contrast, drillers fixated on one 

location in the (x, y) plane and scrolled through many slices at a time before fixating 

somewhere else. The radiologists with more training and experience tended to drill, whereas 

those with less experience tended to scan the 3D stack of images (Drew, Vo, Olwal, et al., 

2013). Interestingly, drillers outperformed scanners in this experiment. 

Considering our findings with undergraduate students, the discrepancy in performance 

between drillers and scanners may be explained by a size mismatch between the empirical 

and perceived UFOVs of less experienced radiologists who tend to scan the 3D image 

stacks. We suspect that the area of the empirical UFOV grows with a person’s expertise 

(Lago, Sechopoulos, et al., 2020). However, we do not know how the perceived UFOV 

tracks with expertise. Suppose a less experienced radiologist’s empirical UFOV is much 

smaller in area than their Perceived UFOV. In that case, it makes sense that they miss small 

lung nodules even after scanning the 3D image stack because the target never appears in the 

empirical UFOV during the search. Concurrently, they may terminate their search because 

they feel they explored a significant portion of the 3D image data with their perceived 

UFOV. For the more experienced radiologists, it could be the case that their empirical and 

perceived UFOVs are similar in size. Therefore, drilling allows more experienced 

radiologists to capture peripheral information (e.g., motion onset cues due to a small nodule 

flickering in and out of the peripheral field of view while scrolling through 3D), and they 

know that their peripheral vision is good. Because of this awareness, they know they 
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adequately explored most of the image data with their perceived UFOV. They are confident 

with terminating their search after drilling at only a subset of different locations in the (x, y) 

plane.  

Another limitation of our study is that observers knew which target they were looking 

for at the beginning of each trial. This allowed us to directly measure how much of the 

image data they explored with both types of UFOVs. These measures of the area explored 

would be unattainable if they had to simultaneously search for both the large and the small 

targets in a single trial. However, in a clinician's office, the radiologist does not know apriori 

what type of lesion might be present. Microcalcifications, which we simulate as a sphere, 

often appear in clusters. The large target, which we model as a Gaussian blob, rarely appears 

symmetrical in a medical image. Spiculations and other architectural asymmetries often 

make the lesion appear distorted. The type of perceived UFOV a radiologist would deploy in 

a 3D search scenario with signal uncertainty is unclear. Would a radiologist adopt a more 

conservative (smaller) perceived UFOV to avoid missing potential lesions? Or would the 

size of the perceived UFOV depend on the patient's history and other demographic factors 

(i.e., risk for cancer) or a combination of both? Our framework provides the grounds for 

testing these hypotheses in future work.  

Additional complexities about the search termination criterion arise when considering 

that 1) multiple lesions may be present in an actual DBT image and 2) target-prevalence 

influences when observers quit searching. Prior work on 2D search has demonstrated that 

finding one target often leads to a subsequent miss of a second target in the same image, a 

phenomenon known as the satisfaction of search (Berbaum et al., 1990; Fleck et al., 2010). 

The self-termination of search explains this type of cognitive error, but the hypotheses in 
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this paper do not directly address this circumstance. Fortunately, at screening, if one lesion 

is identified, then at work-up, there is a higher chance that other lesions missed on the first 

pass will be later identified. Regarding target prevalence rates, it is well-documented that 

low prevalence rates mediate when people choose to end their search. If the prevalence rate 

is low, people will be more prone to missing the target than if the prevalence rate is high 

(Ishibashi et al., 2012). Our study focused on a prevalence rate of 50% to avoid confounding 

our analysis with low target-prevalence effects. Nonetheless, incorporating the empirical and 

perceived UFOV analysis into a 3D search context with low target prevalence is an 

interesting future line of research. 

2.6. Conclusion  

3D volumetric imaging has become essential for improving performance in life-critical 

tasks such as early cancer detection and threat detection in airport carry-on luggage.  Under-

exploration of 3D image stacks has been shown to lead to search errors. Our findings 

suggest that the under-exploration is explained by observers’ consistent strategy to use their 

perceived detectability of targets in the visual periphery and area explored by their eye 

movements in the 2D plane to terminate their search. 
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III. A 2D synthesized image improves the 3D search for 

foveated visual systems 

3.1. Abstract 

Current medical imaging increasingly relies on 3D volumetric data making it difficult for 

radiologists to thoroughly search all regions of the volume. In some applications (e.g., 

Digital Breast Tomosynthesis), the volumetric data is typically paired with a synthesized 2D 

image (2D-S) generated from the corresponding 3D volume. We investigate how this image 

pairing affects the search for spatially large and small signals. Observers searched for these 

signals in 3D volumes, 2D-S images, and while viewing both. We hypothesize that lower 

spatial acuity in the observers’ visual periphery hinders the search for the small signals in 

the 3D images. However, the inclusion of the 2D-S guides eye movements to suspicious 

locations, improving the observer’s ability to find the signals in 3D. Behavioral results show 

that the 2D-S, used as an adjunct to the volumetric data, improves the localization and 

detection of the small (but not large) signal compared to 3D alone. There is a concomitant 

reduction in search errors as well. To understand this process at a computational level, we 

implement a Foveated Search Model (FSM) that executes human eye movements and then 

processes points in the image with varying spatial detail based on their eccentricity from 

fixations. The FSM predicts human performance for both signals and captures the reduction 

in search errors when the 2D-S supplements the 3D search. Our experimental and modeling 

results delineate the utility of 2D-S in 3D search—reduce the detrimental impact of low-

resolution peripheral processing by guiding attention to regions of interest, effectively 

reducing errors. 
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3.2. Introduction 

A 3D volumetric medical image is typically constructed to produce an array of cross-

sectional “slices” of the body anatomy (e.g., 3D breast tomosynthesis, DBT, (Chong et al., 

2019; Williams & Drew, 2019)). Each slice constitutes a different plane in space, and 

radiologists view the slices one at a time as part of a sequence of images on a computer 

monitor. This design allows the radiologist to scroll back and forth through the third 

dimension of the reconstructed volume to visualize features of interest and segment them 

from the background of noise and normal anatomical structures (Aizenman et al., 2017; 

Georgian-Smith et al., 2019; Skaane, 2017). However, evidence suggests that radiologists do 

not direct their center of gaze to every region in an image or 3D volume (Krupinski, 1996; 

Kundel, 1975; Rubin et al., 2015). Instead, they adopt a search strategy that relies heavily on 

processing visual information away from points of fixation, which can be problematic when 

scrolling through 3D volumes (Lago et al., 2018). 

 Notably, peripheral vision is characterized by low spatial acuity (i.e., low sensitivity to 

high spatial frequencies) relative to central/foveal vision (Benson et al., 2021; Rosenholtz, 

2016; Rovamo et al., 1984; Strasburger et al., 2011). Taken as a whole, the varying 

resolution of human vision across the visual field (~180 degrees of arc) is described as a 

foveated visual system. Small signals (e.g., microcalcifications), which comprise a tiny 

portion of the voxels in the entire 3D volume and have a radial frequency profile dominated 

by high spatial frequencies, are often missed in the 3D search. This can be explained as a 

consequence of under-exploration with eye movements and an inability to detect small 

signals in the visual periphery (Lago, Jonnalagadda, et al., 2021; Lago, Sechopoulos, et al., 

2020). Eye-tracking studies corroborate this notion by finding a large proportion of misses 
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as instances where observers fail to foveate a signal (search errors) (M. P. Eckstein et al., 

2018; Lago, Abbey, et al., 2021a). On the other hand, humans do not miss large mass-like 

signals often in 3D images because they can be more readily detected in the visual periphery 

(M. P. Eckstein et al., 2018; Lago et al., 2018).  

Volumetric data, however, are not the only sources of visual information utilized for 

diagnostic purposes. Modern DBT systems make available a complimentary 2D view, either 

in the form of a FFDM image or a synthesized view generated from a projection of the DBT 

volume, which is the focus of our work.  We will refer to the projection image as a 2D 

synthesized image or 2D-S. Currently, there is little theoretical understanding of why a 

complementary 2D-S image might aid detection performance and which types of signals 

benefit. This work aims to better understand the functional role of a projection image used in 

tandem with a 3D volume.  

We hypothesize that the 2D-S will benefit the 3D search for small signals that are hard 

to detect in the visual periphery (e.g., microcalcifications). Specifically, we expect fewer 

search errors for the microcalcification-like signal when the 2D-S image is available. 

Localizing suspicious areas in the 2D-S image is relatively easy because it does not involve 

scrolling through a 3D stack. Our hypothesis is based on the idea that the 2D-S search 

guides eye movements in the corresponding 3D data, resulting in a more efficient 3D search.  

To assess our hypothesis, we measured and analyzed human search performance, 

response times, and eye movement patterns while observers viewed images in three 

conditions: 2D-S, 3D, and joint presentation of 2D-S + 3D. We report results for five non-

radiologist observers who searched for either signal embedded in power-law noise (Burgess 

et al., 2001) after task-specific training. 
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We then assess whether a Foveated Search Model (FSM) (Lago, Abbey, et al., 2021a) 

can explain human performance and errors. The model uses the measured eye movements of 

human observers and processes the image data at each human fixation with a set of 

templates that together simulate foveated vision. We reason that human search performance 

is heavily influenced by an interaction between eye movement exploration and peripheral 

detection of the signal. A model observer that captures human-foveated vision while taking 

in as input an observers’ eye movement patterns should explain the influence of an 

accompanying 2D-S image on 3D search. Additionally, the model should predict how these 

imaging modalities interact with a signal’s visibility in the visual periphery (e.g., micro 

calcification-like and mass-like signals). A preliminary version of the behavioral data, with 

fewer trials and analyses, was presented here (D. S. Klein et al., 2021). 

3.3. Methods 

Participants 

Five graduate students from the University of California, Santa Barbara, with normal or 

corrected-to-normal vision, participated in this experiment. Four observers were naïve to the 

hypotheses of the study. One participant was the first author and was aware of the hypothesis 

but not the model observer predictions. The gender balance was 20% female and 80% male, 

ranging from 23-30 years old. All participants viewed consent forms and were treated 

according to the approved human subject research protocols by the University of California, 

Santa Barbara. 
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Figure 3.1. Examples of stimuli and signal profiles. Examples of stimuli used in each of the three conditions 
of the experiment (a). The 3D condition (left) consisted of two hundred 3D volumetric images of n=100 
slices each. The 2D-S condition (middle) contained 2D synthetic views of the 3D volumes that 1) filtered 
out low spatial frequency information and 2) took a subsequent max operation across the third dimension. 
All backgrounds in the 2D-S + 3D condition (right) were composed of a 3D volumetric image, and 
associated 2D-S concatenated to the top of the volume (n=101, 100 slices plus the 2D-S). Observers viewed 
a single slice (or 2D-S) at a time on the computer monitor. Depictions of the 3D signal profiles across 
different slices (b). The microcalcification (top row) spanned seven slices, and the radii of the composite 
disks decreased away from the central slice (M), approximating a sphere. The mass, a Gaussian blob with 
luminance decreasing gradually away from the centroid of the signal profile, spanned approximately 51 
slices. 

 

Display and image generation 

Monitor 

Participants viewed stimuli on a medical-grade monitor (1,280x1,024 resolution Barco 

MDRC-1119 LCD monitor) 75 cm away (45 pixels per degree of visual angle or dva) in a 

darkened room (2 lux). We calibrated the monitor to have a linear contrast in luminance 

intensity. Specifically, 0.1 cd/m2 and 111 cd/m2 mapped to gray levels of 0 and 255, 

respectively. The background area of the monitor screen, bordering the stimulus on all sides, 

was set to a neutral gray level of 128.  

Background 
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Using a pseudorandom number generator, we created all stimuli by sampling from 

stationary Gaussian random fields (𝜇 = 128, 𝜎 = 25). We introduced pixel-to-pixel 

correlations by filtering three-dimensional arrays of white noise. The filtering process 

simulates the idealized noise power spectrum found in mammography ( !
"!.#

, using radial 

frequency indices), which characterizes the background variability (or anatomical noise) 

(Burgess et al., 2001; M. P. Eckstein et al., 2017). Each 3D stimulus occupied 

1,024x820x100 voxels, translating to 100 “slices” (1 mm depth sampling per slice) of size 

1,024x820 pixels (22.8 dva x 18.2 dva), where each pixel was converted and stored as an 8-

bit integer (Figure. 3.1.a, left). A typical pixel spans 150 µm in space, making the 

dimensions of each slice span 19.2 cm by 15.4 cm.  

Creating 2D-S 

2D synthetic image generation algorithms on commercial DBT systems are proprietary. 

We approximated the images these algorithms produce by convolving each volume with a 

local filter kernel and then applying a pixel-wise max operation across the third dimension 

of the filtered volume, as others have done in a conceptually similar manner (H. Kim et al., 

2020; S. T. Kim et al., 2014). The kernel was a 9x9x9 high-pass spherical filter, a 

sharpening kernel where the elements sum to one. The central elements, those less than 3.99V 

pixels from the kernel center pixel, were set to a positive constant value of 2/251. In 

contrast, the elements constituting the outer shell, greater than 4 pixels away from the center 

but less than 5 pixels from the center pixel, were set to -1/234 so that the kernel maintained a 

DC frequency response of 1. The max operation was taken across the 100 slices at each (x, 

y) coordinate to produce a single 2D view (2D-S) of size 1,024x820 pixels (Figure 3.1.a, 

middle).  
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Signals 

Next, we generated two signal profiles that approximate the geometric shape of 

abnormalities radiologists screen for in a routine exam. The first was a small 

microcalcification-like signal, a sphere spanning 7 pixels in diameter (~0.15 dva) and 7 

slices in depth, with a uniform contrast of 0.47 (Figure. 3.1.b, top). We defined contrast as 

the additive luminance of the signal (microcalcification = 26.2 cd/m2) divided by the mean 

luminance of the background noise (55.77 cd/m2). The second was a larger signal, modeled 

as a Gaussian function in 3D (𝜎#,$ = 10	𝑝𝑖𝑥𝑒𝑙𝑠 = 	0.25	𝑑𝑣𝑎, 𝜎% =10 slices) that represents 

a small mass lesion (FWHM in x, y was 3.5 mm). This signal had a peak contrast of 0.57 at 

the center and with contrast monotonically decreasing towards the edges of the signal profile 

(Figure 3.1.b, bottom). Both signals were linearly added to the 3D volumes to maintain their 

frequency-space properties. However, the frequency-space properties of the signals changed 

in the 2D-S images because of the filtering and max operations applied to the 3D volumes. 

Initially, we adopted the signal profile parameters from previous studies (Lago, Abbey, et 

al., 2021a; Lago et al., 2019; Lago, Jonnalagadda, et al., 2021) but chose signal contrasts to 

prevent ceiling effects (hit rate of 1 and false alarm rate of 0). 

Psychophysics experiment: 3D, 2D-S, and 2D-S + 3D search 

Apparatus 

We utilized a real-time eye tracker (EyeLink Portable Duo, SR Research Inc.) to track 

eye movement patterns (i.e., scan paths and fixation locations) at 2,000 Hz. Participants 

periodically incurred calibration and validation procedures to ensure accurate recording of 

their eye movements. We utilized the default parameters—eye velocity and acceleration 

thresholds of 30 degrees/sec and 9,500 degrees/sec2, respectively—to delineate fixations 
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from saccades. Scroll events, mouse clicks, and keyboard presses were all recorded at a 

sampling rate of 60 Hz (monitor refresh rate). The eye-tracking experiment was run through 

the Python programming package Psychopy (Peirce et al., 2019). 

Task overview 

Participants performed a Yes/No, rating and localization visual search procedure (Abbey 

et al., 2018; Abbey & Eckstein, 2014; Droll et al., 2009) in three different conditions: 

volumetric images (3D), 2D synthesized images (2D-S), and a combination of both (2D-S + 

3D). They saw 600 trials (200 per condition), broken up into 30 mini-blocks of 20 trials 

each. Each mini-block contained 20 randomly sampled (without replacement) stimuli from a 

single condition.  

Prior to the main experiment, participants completed two training mini-blocks per 

condition (6 blocks total), with feedback given at the end of each trial. Feedback included 

ground truth information and the presentation of the stimulus from the trial with the location 

of the signal marked, if applicable. Participants did not receive feedback at the end of a trial 

in the main experiment.  

Participants had unlimited time to search for a signal (50% prevalence). We introduced 

signal and location uncertainty by adding the microcalcification to random locations in ¼ of 

the images and a mass to random locations in another ¼ of the images. Participants searched 

for both signals simultaneously, knowing only one would be present on any signal-present 

trial. Participants ended the trial by either clicking on a location where they believed the 

signal was present or pressing the spacebar key to indicate a signal-absent decision. 

Afterward, participants chose one of 3 decision options: neither present, microcalcification 

present, or mass present, and provided a corresponding confidence rating in their decision 
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using an 8-point scale. A rating of 1 indicated the highest confidence that the trial did not 

contain a signal, 4 indicated the lowest confidence in the signal-absent decision, and 5 and 8 

indicated the lowest and highest confidence that a signal was present, respectively. In other 

words, participants were instructed to use ratings 5-8 only when they made a localization 

click and indicated that either the mass or microcalcification was present on the trial. Below, 

we provide details for each experimental condition. 

3D search 

On a given trial in the 3D search condition, participants encountered one slice of the 

volume at a time on the monitor screen. Participants scrolled through the volume at their 

leisure by toggling between 1) a mouse wheel or 2) a custom-designed scroll bar presented 

to the right of each image stimulus on the screen. The scrollbar allowed the participants to 

drag or jump across multiple slices at a time. Participants demarcated the signal’s location 

by right-clicking on the screen to produce a single red circle overlaid on the image stimulus 

for visual confirmation. 

2D-S search 

In the 2D-S condition, participants viewed on each trial one of two hundred 2D views 

synthesized from the corresponding 3D volumes. Participants made localization and rating 

decisions like the 3D condition.  

2D-S + 3D search 

The 2D-S + 3D condition was like the 3D condition but with a few important caveats. 

First, the 2D-S image of the 3D volume was the first image participants interacted with, and 

the remaining one hundred images were the 3D volume slices (Figure 3.1.a right). Second, 

participants could left-click on the 2D-S image to produce white circles, marking suspicious 
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(x, y) coordinates. The circles would persist on the screen (across slices) to aid the 

participants in the search process. For example, the circles could serve as landmarks for 

saccade endpoints as participants scrolled through the 3D volume. Participants provided 

localization and rating decisions as described in the two previous conditions.  

Figures of merit 

The area under the ROC curve (AUC) 

Rating data were used to construct empirical ROC curves representing the subject’s (or 

model’s) ability to discriminate abnormalities (mass or microcalcification) from images 

without a signal. The Area Under the Curve (AUC) was computed by integrating the 

empirical ROC curve (trapezoidal AUC) (Macmillan & Creelman, 2005). AUC was used to 

establish overall performance across the three conditions for humans and model observers. 

Hit rate and false alarm rate 

We also used hit rate and false alarm rate to better understand the impact of the 2D-S 

image on criterion-specific search performance measures. Hits were defined as signal-

present trials where an observer produced a rating greater than or equal to five and selected 

the correct signal profile. We defined false alarms as signal-absent trials where observers 

produced a rating greater than or equal to five and rated one of the two signals as being 

present. For instance, when considering the mass signal, there were one hundred and fifty 

trials without a mass present in the image (fifty trials with calcifications and one hundred 

signal-absent trials). All of these are potential false-alarm trials.  

Characterization of search 

We used several parameters to quantify the time efficiency and accuracy of the search. 

Search time, defined as the elapsed time the stimulus was on the screen, provided us with an 



 

 71 

overall measure of search-time efficiency. We could determine how quickly it took 

observers to localize the signals or quit the search under each of the three conditions. 

Similarly, the number of fixations, a measure positively correlated with search time, gave us 

a rough estimate of the amount of search space explored. Fixations were counted as changes 

in the center of gaze position on the (x, y) plane. We reasoned that less of the search area 

explored with eye movements while maintaining high localization accuracy is consistent 

with a time-efficient search.  

We described search accuracy in terms of three metrics: search errors, recognition errors, 

and misses turned to hits. Search errors and recognition errors are standard metrics for 

assessing eye movements’ role in visual search tasks (Krupinski, 2000, 2011; Kundel et al., 

1978). On a given trial, a search error occurred when 1) the observer missed the signal and 

2) the observer did not foveate the signal (Kundel et al., 1978). Here, we defined foveating a 

signal as a fixation location with a distance less than or equal to 2 dva from the center of the 

signal profile. A recognition error occurred when the trial outcome was a miss, but the 

observer made a fixation within 2 dva (Kundel et al., 1978). In the 3D conditions, we added 

a constraint to the definition of foveating a signal. Fixations needed to be within +-N slices 

from the center slice of the signal profile. We set N=3 for microcalcification-present trials 

and N=10 for the mass-present trials. 

Misses turned to hits characterized whether the addition of the 2D-S image to the 3D 

search improved the localization accuracy of the signals relative to the 3D condition.  For a 

given subject, this measure counted the number of ‘cases’ (i.e., the same stimulus ID) in 

which a miss was recorded in one imaging condition but correctly localized in another. The 

measure was reported as a proportion by dividing these counts by the total number of signal-
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present trials. We stratified the data for the two signal types and the imaging condition that 

defined the misses (3D or 2D-S + 3D). This resulted in four conditions: microcalcification 

misses in the 3D search converted to hits in the 2D-S + 3D, microcalcification misses in 2D-

S + 3D search converted to hits in 3D, mass misses in the 3D search converted to hits in the 

2D-S + 3D, and mass misses in 2D-S + 3D search converted to hits in 3D. Of these four 

possible scenarios, our hypothesis would predict that a larger number of misses would be 

converted to hits going from 3D to 2D-S + 3D for the microcalcification signal. If there was 

no effect of adding the 2D-S image, then miss-to-hit proportions for both the mass and 

microcalcification should be approximately the same. 

Statistical methods 

To check overall human performance, we evaluated trapezoidal AUC using a multi-

reader multi-case (MRMC) analysis that is standard for diagnostic imaging assessments. 

This analysis treats readers and cases as random effects and tests for differences across 

experimental conditions (B. Smith et al., 2022; B. J. Smith & Hillis, 2020). 

For the other performance and search-efficiency measures, we utilized a non-parametric 

bootstrap resampling procedure. We independently resampled readers and stimuli 20,000 

times for confidence intervals and significance testing on the various measures. This 

resampling method preserves reader and stimulus effects in the measures.  

Significance was assessed for differences between the 3D and 2D-S + 3D conditions for 

both search time and the number of fixations without consideration for stimulus types (mass, 

microcalcification, and signal-absent). This allowed us to broadly focus on the impact of the 

2D-S on the 3D search. For the miss to hit measure, significance was assessed both within 

signal type (mass and microcalcification) and across signal type for those same two imaging 
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conditions, which is detailed at the end of the previous section. For hit rate and false alarm 

rate, we considered differences across the three imaging conditions for each signal 

separately. For the search error rate, we again focused on the comparison between the 2D-S 

+ 3D condition and the 3D condition but only for the microcalcification-like signal. 

For each of the comparisons above, we computed a p-value as follows. For each 

bootstrap iteration, we computed the difference between two mean estimates—one for each 

condition in the comparison—to generate a distribution of difference scores. To derive a p-

value for this comparison, we determined the proportion of difference scores that were less 

than or equal to zero. We multiplied this proportion by 2 to conduct a two-tailed test.  

In addition to the 3 pairwise comparisons of the MRMC analysis, we looked at 

comparisons for search time and the number of fixations (2 hypotheses), miss to hit (3 

hypotheses), hit rate (6 hypotheses), false alarm rate (6 hypotheses), and search error rate (1 

hypothesis). In total, we evaluated 21 hypotheses of theoretical interest. We applied the 

Benjamini-Hochberg procedure to control the false discovery rate (FDR) at 𝛼 = 0.05 

(Benjamini & Hochberg, 1995).  

In the results section below, we report the FDR-corrected p-values. In Figs 4-6, observed 

means are plotted along with error bars that represent 95% confidence intervals for the 

empirical sampling distributions of our various measures of interest.  

Lastly, five trials total, from three subjects, were deemed outliers and excluded from the 

statistical analyses because no fixations were recorded in each of those trials and we could 

not run the FSM on that data. A fourth subject chose not to complete the experiment and is 

missing 20% of all the trials—40 trials in the 2D-S condition and 40 trials in the 2D-S + 3D 

condition. The data can be found online here: https://dx.doi.org/10.21227/f8vk-aj29.  

https://dx.doi.org/10.21227/f8vk-aj29
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Figure 3.2. A general diagram of information flow and processing in the human visual system. Light 
impinges upon the retina at the back of the eye from different points in the visual field (3.2.a). For a 
foveated visual system, where a specific ray of light falls on the retina has downstream consequences for 
perceptual and cognitive processes. Signals projected onto more peripheral locations of the retina are 
processed with lower resolution than if they were projected onto the fovea. This is in part due to the optics 
of the eye. Moreover, it is due to the center-surround spatial receptive field (i.e., sensory integration area) 
properties of neurons in the retina and the Lateral Geniculate Nucleus (LGN) and the neurons in the visual 
cortex that synapse with LGN cells. Our work builds upon these general principles of signal processing in 
the human visual system by considering simple cell receptive fields in the visual cortex (area V1), which can 
function as edge detectors, typically modeled as Gabor filters. We quantify the visual periphery in terms of 
eccentricity, 𝜃, in units of degrees of visual angle (dva). A simple geometric relation between the distance of 
the eye to the monitor screen, 𝑑; and the distance between the pixel of interest and the pixel being fixated at, 
𝑠 allows for the following mathematical relation: 𝜃 = tan'( ,)

*
-. In the modeling subsections below, we 

relate retinal eccentricity to Gabor receptive field properties. Gabor channels are linearly combined, with 
optimal linear weights, to produce signal-specific model observer templates (3.2.b). On the left side of 3.2.b, 
we show a subset of Gabor channels used to generate a CHO template. We manipulate three parameters of 
the Gabor function: spatial frequency, orientation, and phase, to create a filter bank. On the right, the CHO 
template, tuned to the mass signal in the 2D-S background at eccentricity 9, is a linear superposition of the 
Gabor filters with optimal (Hotelling) weights. 

 

Foveated Search Model (FSM) 

We begin with an overview of the FSM. The central goal of the FSM is to model foveal 

and peripheral processing within the human visual system during the search. Signals are 

processed differently depending on whether the signal is foveated or not (Stewart et al., 

2020). The inhomogeneous processing of signals across the visual field is due to various 

physiological factors: cone density in the fovea is higher than in the periphery (Curcio et al., 

1990), synaptic convergence from bipolar cells to retinal ganglion cells (spatial integration) 

is lower in the fovea relative to the visual periphery (Purves et al., 2001), and more neurons 

in visual cortex per mm2 are dedicated to processing visual information in the fovea than in 
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the visual periphery (cortical magnification) (Essen et al., 1984). As a result, the peripheral 

visual system, characterized by lower spatial resolution, limited visual processing, and lower 

visual sensitivity, may constrain task performance (Rosenholtz, 2016). This is particularly 

true in 3D images when scrolling provides less opportunity to foveate signals through eye 

movements (Lago, Jonnalagadda, et al., 2021).  

Here, we adopt a linear model observer (Barrett et al., 1993; Burgess et al., 2001; 

Gifford et al., 2016; Rolland & Barrett, 1992; Sen & Gifford, 2016; Zhang et al., 2004a, 

2004b) that is augmented to model known neurophysiological properties of the fovea and 

visual periphery. Figure 3.2.a shows a Gabor receptive field approach to modeling variable 

resolution in the fovea and periphery. We parametrize the visual periphery in terms of 

eccentricity, the angular distance (in units of dva) between a point in the visual field and the 

fixation point. Figure 3.2.a shows how eccentricity is defined.  

The following sections describe the various components of the FSM model. In section 

“Linear observer templates”, we develop the Channelized Hotelling Observer (CHO) 

template (Barrett et al., 1993; Rolland & Barrett, 1992; Yao & Barrett, 1992; Zhang et al., 

2007), the base component of the FSM. In Section “Implementation of foveal and peripheral 

processing” implements foveation by changing the resolution of the linear template 

developed in the previous section. Specifically, the resolution of the template decreases as a 

function of eccentricity, reflecting the loss in spatial acuity in the visual periphery. Section 

“Processing image data for a given fixation” focuses on foveated processing of the image 

stimulus for a single fixation coordinate acquired experimentally from human observers. 

Section “Integrating information across fixations” describes how the FSM accumulates 

information at each pixel location in the 2D-S (or 3D slice) in the form of an average of log-



 

 76 

likelihood ratios where each ratio is generated independently for each fixation on the image.  

Section “Detection and localization of potential signals” describes how a final decision 

variable is generated along with signal-specific thresholds to make final decisions about the 

presence and location of signals.  

Linear observer templates 

The foundation of the FSM is the Channelized Hotelling Observer (CHO), inspired by 

the multiple-spatial-frequency channels hypothesis (Blakemore & Campbell, 1969) and first 

introduced into the medical imaging community in the 1980s (Myers & Barrett, 1987). This 

anthropomorphic model performs a detection task by reducing the image data to a set of 

channel responses. The final model is a linear combination of the channel responses with 

optimal (Hotelling) weights (Abbey & Bochud, 2000). The CHO model is typically 

implemented as a linear template, w. For search tasks, the template can be scanned over an 

image to localize a target. 

This work utilizes Gabor channels over a set of spatial frequencies, orientations, and 

phases to generate a template (M. P. Eckstein & Whiting, 1995; Zhang et al., 2004a). The 

channels are parameterized by six spatial frequencies (32, 16, 8, 4, 2, and 1 cycles per 

degree of visual angle), eight orientations spaced at equal intervals between 0 and 𝜋, and 

even/odd phases (Watson, 1982) for a total of ninety-six channels (Figure 3.2.b, left). The 

channels of the CHO are arranged into a channel matrix denoted as T. The columns of T are 

Gabor channels lexicographically indexed such that the pixels in the 2D array representing 

the Gabor are remapped into a column vector. The channels are linearly independent but not 

orthogonal. The two-dimensional profile of the signal is also remapped to a column vector 
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and is denoted as s. The mean effect of the signal on the channels is defined by the product 

𝐯 = 𝐓@𝐬,	where 𝐓@ indicates the transpose of 𝐓.	

The CHO template, as shown in Figure 3.2.b, also requires the specification of an image 

covariance matrix representing the stochastic effects in the images (noise and anatomical 

variability). We denote the image covariance matrix as 𝐊A. When the image is processed 

through the channels (i.e., multiplication by 𝐓@), an image covariance matrix 𝐊A is 

transformed into a channel covariance matrix, 𝐊BC = 𝐓@𝐊A𝐓. Under the Hotelling 

formalism (Abbey & Bochud, 2000), the optimal linear channel weights are then given by, 

𝐊BC)!𝐯. The resulting template is then 

𝐰 = 𝐓𝐊BC)!𝐯. (𝐸𝑞. 3.1) 

Eq. 3.1. is adequate for 2D images. However, we also use a 3D CHO for 3D volumetric 

images (Lago, Abbey, et al., 2021a; Yu et al., 2017). For 3D images, we modify the CHO to 

include information from two slices above and below the slice under consideration. In this 

case, the CHO consists of five templates, 𝐰D, m = M− 2,… ,M + 2 (see slice index 

notation in Figure 3.1.b and see discussion in (Platiša et al., 2011) on ROI and the selection 

of adjacent slice to central slice for 3D CHO). The five CHO templates are defined as, 

𝐰D = 𝐓𝐊BC)!𝐯D, (𝐸𝑞. 3.2) 

Where 𝐯D is the channel matrix applied to 𝐬D, one of the five central slices of the 3D signal 

depicted in Figure 3.1.b. The five templates in the 3D model will produce five response 

variables that are summed together into a single template response for a detection task. Prior 

work has shown that humans integrate inefficiently across time within a limited temporal 

window  (M. Eckstein et al., 1992; M. P. Eckstein et al., 1996).  We used a limited temporal 

integration of five slices, consistent with previous studies (Lago, Abbey, et al., 2020; Lago, 
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Jonnalagadda, et al., 2021). Integration of a larger number of slices increased model 

performance but did not vary the relative model accuracy across conditions. 

The derivation so far considers detecting a signal at a known location. For search tasks 

with typical scanning model observers (Gifford et al., 2005), the CHO template is scanned 

across multiple locations. For 2D images, this is a simple 2D convolution with the image 

data that results in a template response at each pixel in the search region. A decision is made 

by comparing the max template response to a threshold. If the response is above the 

threshold, the model localizes the signal at that location. In 3D, a human observer sees a 

series of slices in the stack as they scroll through it. At each slice, the 3D model performs 

five 2D convolutions ranging from two slices above to two slices below the slice under 

consideration and sums across the five 2D responses to obtain a single 3D response at each 

location.  

An FSM builds upon the computations a model observer uses to detect and localize 

signals but uses different CHO templates at different eccentricities and the next section 

detail its implementation. 
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Figure 3.3. Visual processing in the Foveated Search Model for a single fixation. Foveation effects are 
implemented (3.3.a) using eccentricity with respect to observer fixation points. The CHO detection 
templates are constrained to be at lower spatial frequencies for higher eccentricity bins (3.3.b). Each 
template comprises bandpass filters representing visual channels, where the bands shift to lower spatial 
frequencies for more eccentric templates. The response array of the model (3.3.c) is generated by 
convolving each of the ten eccentricity templates with the image and assigning the convolutional outputs to 
the appropriate eccentricity bin (see text in section “Foveated Search Model (FSM)”). A likelihood ratio 
(3.3.d) is generated at each pixel location (𝑙) using the ratio of signal-present and signal-absent likelihoods, 
as defined by response distribution properties (µ+,, µ+', 𝜎+,, 𝜎+') of each template in its respective eccentricity 
bin. 

 

Implementation of foveal and peripheral processing 

The FSM incorporates decreasing visual resolution as a function of eccentricity with 

respect to observer fixations and eye movements that reorient the fovea to regions of interest 

in the image. In this subsection, we describe foveal and peripheral processing for a single 

fixation. 

We implement a model of peripheral effects by modifying the spatial resolution of 

templates according to the distance from each fixation. At each fixation, eccentricity is 

binned into eight non-overlapping concentric rings plus a circle centered on the fixation. 

Here, eccentricity ranges from zero (E=0) to nine (E=8) degrees in visual angle. We also 

consider the stimulus regions greater than nine dva (E=9). Ten eccentricity bins are 

sufficient to capture foveal effects while maintaining a computationally tractable model. 

Figure 3.3.a illustrates this binning procedure at a fixation location towards the bottom left 

of the image stimulus.  

The loss of resolution for a template at a greater retinal eccentricity is incorporated by 

scaling the frequency response of the channels so that they exclude spatial frequencies at 

greater eccentricities. Scaling the spatial size of the Gabor channels shifts their response to 

lower spatial frequencies, but it maintains their 1-octave bandwidth. The scaling is 

implemented by a scaling constant for each eccentricity bin, E, with parameters taken from a 
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previous experiment that fit the model to predict d' vs. eccentricity degradation for human 

subjects in (Lago, Abbey, et al., 2021a). It is given by:   

𝑠𝑐𝑎𝑙𝑖𝑛𝑔(E) = 1 + 0.7063E!.EF*9. (𝐸𝑞. 3.3) 

Within each eccentricity bin, a different CHO template is used, as depicted in Figure 

3.3.b. These templates are generated by modifying the channels of the channel matrix. 

Specifically, the wavelength,	𝜆, of the sinusoidal component of each Gabor channel in 𝐓 is 

scaled, 𝜆 → 𝑠𝑐𝑎𝑙𝑖𝑛𝑔(E) ∗ 	𝜆. To signify the different templates used to simulate foveal and 

peripheral processing, we introduce an eccentricity index to indicate the scaling used on the 

channels, 𝐓 →	𝐓G	(E=0, …, 9). For 2D images, the resulting CHO template in each 

eccentricity bin is given by,  

𝐰G = 𝐓G𝐊BC,G)! 𝐯G, (𝐸𝑞. 3.4) 

where 𝐯G is the product of the eccentric channel matrix and the signal, and 𝐊BC,G is the 

corresponding channel covariance matrix. Figure 3.3.b exemplifies three CHO templates at 

retinal eccentricities zero, six, and greater than nine. Similarly, for 3D images, each of the m 

templates is scaled for eccentricity,  

𝐰G,D = 𝐓G𝐊BC,G)! 𝐯G,D. (𝐸𝑞. 3.5) 

Practical implementation of the FSM utilizes precomputed convolutions between the 

image and the CHO templates for all eccentricities. For the 2D-S images, this requires ten 

2D convolutions, as shown in the left half of Figure 3.3.c. A 2D response array is generated 

from these ten convolution outputs by selecting the response corresponding to the 

appropriate eccentricity bin with respect to a given fixation, as demonstrated in the right half 

of Figure 3.3.c. The model produces a new response array for each fixation in the trial.  
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Implementation of the FSM for 3D images parallels the processing steps outlined in 

Figure 3.3.a-c for 2D but with a few important caveats. First, the five slice templates for 

each eccentricity bin defined in (Eq. 3.5) are concatenated together. Specifically, the 2D 

templates are stacked together along the third dimension with m = M+ 2  at the top and 

m = M− 2 at the bottom of the stack of templates (recall slice index notation from Figure 

3.1.b) to form a single 3D template/kernel. The 3D kernel is convolved with the volumetric 

data to model the varying spatio-temporal integration of information across the image data 

while scrolling through the slices in 3D. Second, a response array is generated only for slices 

where human observers make fixations. In other words, if a fixation is recorded on slice n, 

then the general process outlined in Figure 3.3.c is reproduced in the 3D search by selecting 

the appropriate dot products of the 3D templates and 3D image data stored on the nth slice of 

each of the ten precomputed 3D convolution outputs. 

Processing image data for a given fixation 

Using eccentricity-dependent CHO templates results in response variables with different 

statistical properties across the range of eccentricities. To account for different statistical 

properties of the responses, a likelihood ratio is computed, as shown in Figure 3.3.d. This 

converts responses into a form that is appropriate for combining location-specific responses 

across different saccades (as described below in section “Integrating information across 

fixations”). The likelihood ratios are defined by the template response distribution 

parameters (means and standard deviations) of the eccentricity bin for each location in the 

image for a given fixation point.  

Let 𝐠 be the noisy image (2D-S or 3D), and let 𝐫 be the template response of the FSM. 

The elements of 𝐠 and 𝐫, g	, and r	, represent each pixel and the response of the FSM at that 
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location, respectively. For a given location, let µ;H,	µ;), 𝜎;H, 𝜎;)	 be the template response 

distribution parameters with respect to r	,. The eccentricity index, E, is defined for location 𝑙 

by the appropriate eccentricity bin for the current fixation point. As shown in Figure 3.3.d, 

the likelihood of a signal being present at location 𝑙 is given by,  

𝐿,H 	=
1

𝜎;H√2𝜋
exp�−

1
2
�
r	, − µ;H

𝜎;H
�
<

� . (𝐸𝑞. 3.6) 

The likelihood of the signal being absent at location 𝑙 is given by, 

𝐿,) 	=
1

𝜎;)√2𝜋
exp�−

1
2
�
r	, − µ;)

𝜎;)
�
<

� . (𝐸𝑞. 3.7) 

For the 3D images, the Gaussian likelihood correctly describes the conditional 

distribution of linear template responses to a Gaussian-distributed image. For the 2D-S 

images, the likelihood calculation is approximate because of the nonlinear operation used to 

convert the 3D volume to a 2D synthetic image.  

The model combines the likelihoods defined in (Eq. 3.6) and (Eq. 3.7) into a likelihood 

ratio at each location that represents the evidence for the presence or absence of the signal at 

location 𝑙, 

ℒℛ, =
𝐿,H

𝐿,)
. (𝐸𝑞. 3.8) 

Eq. 3.8 gives a likelihood ratio at each location under the assumption of a fixation position 

that defines the eccentricity of each location (Figure 3.3.d right). 

Integrating information across fixations 

We treat each observer-trial instance as a separate modeling event. As such, our 

implementation of the FSM utilizes an individual human observer’s scan path (i.e., the time-

sorted sequence of fixations and scrolls) to model the response of that subject in each trial. 
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The following approach for integrating information across fixations is applied to the 2D-S 

images and 3D volumes on slices with fixations.  

Since there are generally multiple fixations within a given trial, a single location in the 

image may be incorporated into the modeling by appearing in multiple eccentricity bins. 

This means the observer may process the same region of an image with varying spatial 

resolution (CHO templates) across the sequence of fixations. The FSM accounts for this by 

accumulating likelihood ratios across fixations for each pixel location, 𝑙 separately.  

The likelihood ratio in Eq. 3.8 depends on a particular fixation position. For multiple 

fixations, k=1, …, K, the model accumulates log-likelihood ratios and then divides by the 

number of fixations to produce a test statistic,  

λ, =
1
𝐾�log(ℒℛ,,I).

J

IK!

(𝐸𝑞. 3.9) 

Note that the number K will vary across trials (and slices in 3D) for each observer. 

Therefore, λ,—which is conceptualized as the average response of the FSM at the end of the 

trial for a given location—will combine potentially different CHO template responses 

depending on the eccentricity of location 𝑙 with respect to the various K fixation points in 

the image.   

Detection and localization of potential signals 

After λ, has been computed for each location 𝑙 in the 2D-S image or 3D volume, the	

FSM	generates	a	signal-specific	decision	variable	by	taking	the	maximum	across	all	

possible	locations, 	

λLMN 	= max
,
(λ,) . (𝐸𝑞.		3.10) 



 

 84 

So far, the development of the FSM, from the definition of the CHO templates to the 

accumulation of log-likelihood ratios, has assumed a specific signal profile. However, there 

are two possible signals in the search task and three possible decisions: mass-present, 

microcalcification-present, and signal-absent. To account for signal uncertainty, the FSM 

produces two decision variables per trial,	λNOPP	LMN 	and	λNQBRS	LMN ,	where the subscript indicates 

the signal profile being modeled. 	

The FSM converts these decision variables into a final decision by comparing	λNOPP	LMN 	and	

λNQBRS	LMN to signal-specific thresholds. If both response variables exceed their respective 

thresholds, the model selects the signal associated with the larger response. If both responses 

are less than their respective thresholds, the model responds “absent.” In the two cases 

where one response is greater than its respective threshold and the other is not, the model 

selects the signal associated with the response variable greater than its threshold.  

The FSM assumes that human observers maintain multiple internal thresholds for 

detection. The FSM instantiates this notion by computing sets of thresholds independently 

for each participant. There are six thresholds per participant, one for each imaging condition 

and signal type combination. For determining a threshold, we first compute the ROC curve 

for the model by treating λNOPP	LMN  (or λNQBRS	LMN ) as ratings. As with the human subjects when 

considering the criterion-specific measures of performance, there are 50 signal-present trials 

and 150 signal-absent trials per condition. Next, we find the operating point, (hit rate, false 

alarm rate), on the model ROC curve closest to the human operating point in the ROC space. 

The detection threshold producing that operating point becomes the threshold for a given 

signal and imaging condition combination.  
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 We explored two additional common choices for model thresholds, one that maximizes 

proportion correct and another that generates a match between human and model false alarm 

rates. The three methods to select decision thresholds resulted in the same relative model 

performance across conditions.  

 

 
Figure 3.4. Evaluating search performance and efficiency for three imaging modalities. Area Under the 
ROC Curve considers the participants' confidence ratings in the signal-present trials and the confidence 
ratings in the absent trials (3.4.a). It provides an overall measure of the effectiveness of the 2D-S during the 
3D search. The misses turned to hits were computed using the trials from the 2D-S + 3D and 3D conditions 
(3.4.b). We collapsed search time (3.4.c) and the number of fixations (3.4.d) across signal types in each 
condition. Error bars represent 95% confidence intervals (CI) that consider reader and case variability. CIs 
in 3.4.a are estimated from a Linear Mixed Effects MRMC model whereas CIs in 3.4.b-3.4.d are generated 
from empirical bootstrap resampled distributions. * = FDR-adjusted p value < threshold at 𝛼 =	0.05 , n.s. = 
non-significant.   

 

3.4. Results 

2D-S serves a functional role in 3D search 

Our main interest is the impact of the 2D-S image in 3D search. Specifically, we 

determine whether the 2D-S, serving as an adjunct to the 3D volumetric image, improves 

performance, and if so, how. The MRMC analysis found a significant effect of the reading 

condition (F(2, 12.80642) = 11.92141, p = 0.00119) with performance in 3D imaging alone 

significantly less than 2D-S + 3D (∆AUC2D-S + 3D vs. 3D = 0.09702, p = 0.00097) and 2D-S 

(∆AUC2D-S vs. 3D = 0.05568, p = 0.03604). The 2D-S + 3D condition improved performance 
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over 2D-S alone but was not significant (∆AUC2D-S + 3D vs. 2D-S = 0.04134, p = 0.11245). As 

depicted in Figure 3.4.a, these findings are congruent with the general pattern of results from 

our bootstrap resampling procedure used in subsequent analyses. 

Figure 3.4.b shows the average miss-to-hit proportions across subjects. Adding the 2D-S 

to the 3D search increases the miss-to-hit proportion significantly for the microcalcification-

like signal (∆proportion = 0.24995, p = 0.00126). Furthermore, 2D-S + 3D converts a 

significantly greater proportion of misses to hits for the microcalcification signal than for the 

mass signal (∆proportion = 0.16875, p = 0.02074). For the mass signal, there is no 

significant increase (∆proportion = 0.05045, p = 0.45791) for the miss-to-hit proportion 

going from 3D to 2D-S + 3D.  

The average time to complete a trial (Figure 3.4.c) and the average number of fixations per 

trial (Figure 3.4.d) are displayed for the three imaging conditions. Not surprisingly, the 

search times in the 2D-S condition are much faster than in either 3D search condition. In the 

2D-S + 3D condition, both the average time to complete a trial and the average number of 

fixations were significantly lower relative to the 3D condition (∆Time = 12.16435 seconds, 

p < 5e-5; ∆Fixations = 57.89218, p < 5e-5). Taken together, the 2D-S image used in 

conjunction with the 3D volumetric image makes the search more time-efficient, reduces 

misses, and improves accuracy. 
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Figure 3.5. FSM vs. human performance across imaging conditions (a, b) or imaging condition and signals 
(c). FSM AUC compared to human observer AUC (3.5.a). The top figure denotes the mean FSM empirical 
AUC for each condition (i.e., treating calc-present and mass-present trials as “signal-present” trials). The 
bottom figure depicts the human AUC results from Figure 3.4.a, reproduced here for visual comparison to 
FSM performance. FSM vs. human observer ROC curvers across imaging conditions (3.5.b). The curves in 
each of the three plots are computed by subject ID (color) and observer type (linestyle: solid-human, or 
dashed-model). The curves are used to generate the AUC results in 3.5.a. FSM vs. human comparison on 
criterion-specific measurses of performance for mass and microcalcification-like signals in each of the three 
conditions (3.5.c). The top left panel illustrates the average hit rate of the FSM (left three columns) and 
human observers (right three columns) for the microcalcification signal. Each colored column represents a 
different imaging condition. The top right panel represents the average hit rate for the mass signal also 
stratified by the observer (left column cluster-FSM, right-human) and condition (column color). The bottom 
two panels are organized graphically in the same manner as the top row, but the dependent variable is the 
average false alarm rate. Error bars in Figure 3.5.a bottom are 95% CIs estimated from the MRMC analysis 
and error bars in Figure 3.5.c represent bootstrap distribution 95% CIs that consider reader and case 
variability. * = FDR-adjusted p value < threshold at 𝛼 =	0.05 , n.s. = non-significant.   

 

Comparing human vs. model performance 

The second aim of this experiment is to show that foveal effects, as implemented in the 

FSM, can predict human performance in these search tasks. Figure 3.5 demonstrates that the 

FSM produces similar performance trends for the two signals across the three imaging 

conditions compared to the human observers. First, Figure 3.5.a replots the MRMC analysis 

from Figure 3.4.a underneath FSM AUC performance across the three imaging conditions 

(Figure 3.5.a, top panel). The mean differences in the FSM’s AUC for each combination of 

conditions are similar to the performance trends of human observers despite the model 

performing better overall. For example, the mean AUC for the FSM in the 3D imaging alone 
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condition is less than 2D-S + 3D (∆AUC2D-S + 3D vs. 3D = 0.09202) and the 2D-S condition 

(∆AUC2D-S vs. 3D = 0.08759). These results are on par with mean differences in AUC across 

conditions for the human subjects. However, the FSM’s mean difference in AUC between 

the 2D-S + 3D condition and the 2D-S alone (∆AUC2D-S + 3D vs. 2D-S = 0.00443) diverged 

substantially from the average difference in human AUC across these two conditions, which 

was 0.04134.  

Figure 3.5.b highlights the absolute differences between human and FSM performance 

across the three conditions. By visually inspecting the ROC curves in Figure 3.5.b, we see 

that curves generated from the human observer rating data (solid lines) tend towards the 

chance line (𝑦 = 𝑥) more relative to the ROCs generated from the FSM response variables 

defined in Eq. 3.10. This is true for all imaging conditions. Despite this, the FSM captures 

individual differences in search performance, which is demonstrated by the color coding of 

the ROC curves. Each color represents a different participant.  The solid lines are the 

observer ROCs and the dotted line with the same color is the corresponding FSM ROC 

using that observer’s fixations.  

 Next, we looked at hit rate and false alarm rate. The top row of Figure 3.5.c compares 

the hit rate of the humans to the FSM for each signal in all three conditions. For the 

microcalcification signal (Figure 3.5.c, top left panel), human observers maintain 

significantly higher hit rates in the 2D-S + 3D and 2D-S condition relative to the 3D 

condition (∆HR2D-S + 3D vs. 3D, calc = 0.28889, p < 5e-5, ∆HR2D-S vs. 3D, calc = 0.24715, p = 

0.00105). The 2D-S + 3D condition HR is not significantly higher, for humans, relative to 

the 2D-S condition (∆HR2D-S + 3D vs. 2D-S, calc = 0.04175, p = 0.42136). The FSM produces the 

same pattern as humans for differences in mean hit rate across the three conditions (∆HR2D-S 
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+ 3D vs. 3D, calc = 0.28827, ∆HR2D-S vs. 3D, calc = 0.24706, ∆HR2D-S + 3D vs. 2D-S, calc = 0.04120). For 

the mass signal, we do not see any significant differences across the three conditions for the 

humans (∆HR2D-S + 3D vs. 3D, mass = 0.09524, p = 0.14280, ∆HR2D-S vs. 3D, mass = 0.05079, p = 

0.41335, ∆HR2D-S + 3D vs. 2D-S, mass = 0.04445, p = 0.34243). The FSM mirrors smaller 

differences in human mean hit rate across the three conditions for masses (∆HR2D-S + 3D vs. 3D, 

mass = 0.09524, ∆HR2D-S vs. 3D, mass = 0.05079, ∆HR2D-S + 3D vs. 2D-S, mass = 0.04445). 

We find no significant differences in the human observer microcalcification false alarm 

rates across the three conditions. The pattern of non-significant differences holds for the 

mass signal as well (Figure 3.5.c, bottom row). There are qualitative differences between 

human observers and the FSM in average false alarm rates for both signals in all three 

conditions. Human observers tend to make few false alarms for both signals whereas the 

false alarm rate for the FSM is either close to or at zero.  

 

Figure 3.6. 2D-S guides eye movements to reduce misses. Search and recognition error rates in all three 
conditions for humans and the FSM (3.6.a). The top row shows mass (left), and microcalcification (right) 
search error rates across all three conditions. Yellow bars correspond to model error rates, and green bars 
correspond to human error rates. Bottom row: same as top row but for recognition error rates. Error bars 
represent bootstrap distribution 95% CIs that consider reader and case variability. * = FDR-adjusted p value 
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< threshold at 𝛼 =	0.05 , n.s. = non-significant. Two examples of observers missing the signals in 3D search 
but localizing them with the 2D-S available (3.6.b). In the top row, one participant searches through the 
same 3D volume with the 2D-S (left column) or without the 2D-S image (right column). They localize the 
microcalcification in the 2D-S image and scroll to the signal in the 3D volume. In the bottom row, another 
observer localizes the mass in the 2D-S + 3D condition but misses it in the 3D condition. Small circles 
indicate observer fixation locations in the (x, y) plane throughout the trial. The colors of the circles denote 
the slice number in the third dimension. Blue circles correspond to fixations closer to the top of the image 
stack where participants begin their search, and red circles correspond to fixations on slices towards the 
bottom of the image stack. Larger blue circles in the left column denote clicks made by the observer on the 
2D-S image to mark suspicious locations on the (x, y) plane. The black horizontal lines on the color bars 
indicate the central slice number of the 3D signals. The black fiduciary marks surrounding both signal 
profiles emphasize the signals' location for display purposes (not shown to observers). All four images 
contain the center slices of the respective signal profiles in 3D. 

 

2D-S guides eye movements and reduces search errors in 3D search 

To assess the role of foveation in all three search conditions, we compare the human 

search and recognition errors to the FSM search and recognition errors because the model 

explicitly incorporates foveation into the decision-making process. Figure 3.6.a top row 

demonstrates that the model observer’s search error rates (SER) were consistent with the 

SER of the human observers for both signals in all three conditions. Of particular interest to 

the main hypothesis of this study is the difference in SER for the microcalcification-like 

signal in the 3D condition versus the 2D-S + 3D condition for human observers. The 

∆SER2D-S + 3D vs. 3D, calc = 0.28481, p < 5e-5, suggests that the 2D-S facilitated 3D search by 

reducing the number of search errors for the small signal. The 2D-S could have guided the 

center of gaze to probable signal locations in the (x, y) plane that could later be scrutinized 

more thoroughly in the 3D volume. 

Figure 3.6.b exemplifies the moderating effect of the 2D-S on the 3D search for both 

signals. The observers miss the signals in the 3D condition and never fixate on them. In the 

2D-S + 3D condition, the observers fixate the signals in the 2D-S and localize them in the 

3D volume afterward. 
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The FSM recognition error rate (Figure 3.6.a bottom row) for the mass signal was 

similar to humans. The FSM generated higher recognition error rates for the 

microcalcification-like signal than humans in the 3D and 2D-S + 3D conditions. 

3.5. Discussion 

We are interested in understanding the perceptual impact of the 2D-S serving as an 

adjunct to the 3D volumetric image in the search task. Specifically, we demonstrate that 

accuracy improves, and the search process becomes more time-efficient when we add the 

2D-S image to the 3D search. The AUC is highest when observers utilize the 2D-S image in 

the 3D search (Figure 3.4.a). However, the 2D-S markedly improves the 3D search for the 

small microcalcification signal while modestly improving the detection of the mass signal, 

as noted in Figure 3.4.b. Additionally, when the observers scan the 2D-S image before 

starting the 3D search, the speed to complete the trial and the number of fixations decreases 

significantly (Figure 3.4.c and Figure 3.4.d, respectively). The improvements in 

performance and reduction in search time and the number of fixations suggest that observers 

utilize the 2D-S extensively. We attribute the observed higher AUC in the 2D-S condition 

relative to the 3D condition (Figure 3.4.a) to the decrease in microcalcification search errors 

for the 2D-S condition (Figure 3.6.a top right).  

Our second goal is to demonstrate that a model simulating human foveation can account 

for the human-observer performance in all three conditions for both signals. First, 

comparing accuracy across conditions, our results show that the difference in average AUC 

of the human observers across the three conditions matches the pattern of differences in 

AUC scores for the FSM across the conditions (Figure 3.5.a). Second, the FSM, taking the 

human-observer fixation positions as input, matches human observer hit rates across the 
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three conditions for both the microcalcification and the mass signals. However, the false 

alarm rates are either extremely low or not present for the FSM but present for humans 

(mass). For the microcalcifications, the FSM shows false alarm rates that do not follow 

those of humans across the three conditions (microcalcification). Additionally, the FSM 

recognition errors are higher than the human observers in the 3D search condition for the 

microcalcification, suggesting that there might be a systematic difference between the 

human and model 3D perceptual templates (Abbey et al., 2018; Abbey & Eckstein, 2007, 

2014).  

Taking the model predictions one step further, we glean new insights about how the 2D-

S image complements the foveated nature of the human visual system to confer a benefit in 

the 3D search task. Specifically, the model explains the accuracy benefits of the 2D-S when 

accompanying the 3D images. It also explains the interaction of the 2D-S benefits and a 

signal’s visibility in the visual periphery. We observe fewer search errors for both humans 

and the FSM in the 2D-S + 3D condition relative to the 3D condition, with a substantially 

reduced search error rate for the microcalcification signal (Figure 3.6.a, top right). This 

finding aligns with our hypothesis that the under-exploration of 3D volumetric images and 

the low detectability of small signals in the visual periphery leads to increased search errors 

in the 3D search. If foveation is not mediating the discrepancy in error rates between the 2D-

S + 3D condition and the 3D condition, we would expect the humans to make fewer search 

errors in the 3D condition, which would contrast with the FSM search error rate.  

This study has multiple limitations that need to be considered. For example, the 3D 

backgrounds we generated, 1/f2.8 filtered white noise, share a common NPS with 

mammographic images (Abbey & Barrett, 2001), but diverge significantly in appearance 
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from more realistic simulations (Bochud et al., 1999; Castella et al., 2008) and digital breast 

phantoms (Bakic et al., 2018; Barufaldi et al., 2018). For masses embedded in more realistic 

backgrounds containing normal anatomy, 3D volumetric images provide radiologists with a 

reconstructed image that allows them to segment the mass from anatomical noise much 

better than when viewing a 2D reconstructed image. Therefore, our experiment might 

underestimate the effect size in reducing recognition errors between 3D reconstructions 

versus 2D images. Similarly, our algorithm used to generate the 2D-S images filters out low 

spatial frequency image information, thus increasing the SNR for the microcalcification 

signal. Not all commercially available 2D-S algorithms may do this, leading to potential 

differences in how the 2D-S facilitates 3D search in a clinical setting (Nelson et al., 2016).   

Beyond the simplified stimuli in this study, we utilized trained student observers instead 

of actual radiologists. Trained observers afforded us many trials with eye-tracking data but 

at the expense of limiting our ability to generalize our findings to clinical settings.  

However, our previous studies have shown that some of the bottlenecks in search 

obtained with synthetic images and trained student observers generalize to more realistic 

phantoms and radiologists (M. P. Eckstein et al., 2017; Lago et al., 2017, 2018). In 

particular, under-exploration of the 3D images and low visibility of signals in the visual 

periphery led to search errors for radiologists and trained observers (M. P. Eckstein et al., 

2017; Lago et al., 2017, 2018). In addition, our findings agree with studies with radiologists 

showing the benefits of adding a 2D image to the 3D volumetric data (Skaane et al., 2014; 

Zuley et al., 2014). Taken together, our study suggests the main contribution of the 2D 

images is to guide the search for small signals in the 3D volume and might apply well to 

clinical settings where radiologists routinely scrutinize 3D images such as DBT data. 
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Lastly, we note some of the limitations of the FSM. First, the FSM depends on the 

eccentricity scaling estimated from previous work which utilized similar signals in 1/f  noise 

images (Lago, Abbey, et al., 2021a). The eccentricity scaling of the model may not 

generalize to other anatomical backgrounds and signals. The second limitation is the human 

fixation points, which serve as an input to the model might not be always accessible. Other 

versions of the model include an eye movement algorithm that generates a sequence of 

exploratory eye movements as described recently in (Lago, Abbey, et al., 2021a; W. Zhou & 

Eckstein, 2022).     

3.6. Conclusion 

A complementary 2D synthesized image can reduce errors in the 3D search for small 

signals that are otherwise missed due to under-exploration of the 3D volume and low signal 

detectability in the visual periphery. The 2D- synthesized image serves to guide eye 

movements during the 3D search. Predicting such effects requires a model observer that 

incorporates properties of the human visual system when processing information across the 

entire visual field (foveation). Together, our findings show how visual psychophysics, eye 

tracking, and model observers incorporating foveation can explain human search 

performance bottlenecks and help guide the assessment of 3D medical image quality.  
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IV. Greater benefits of deep learning-based computer-

aided detection systems for finding small signals in 3D  

4.1. Abstract 

Radiologists are tasked with visually scrutinizing large amounts of data produced by 3D 

volumetric imaging modalities. Small signals can go unnoticed during the 3D search 

because they are hard to detect in the visual periphery. Recent advances in machine learning 

and computer vision have led to effective computer-aided detection (CADe) support systems 

with the potential to mitigate perceptual errors. Sixteen non-expert observers searched 

through digital breast tomosynthesis (DBT) phantoms and single cross-sectional slices of the 

DBT phantoms. The 3D/2D searches occurred with and without a convolutional neural 

network (CNN)-based CADe support system. The model provided observers with bounding 

boxes superimposed on the image stimuli while they looked for a small microcalcification 

signal and a large mass signal. Eye gaze positions were recorded and correlated with 

changes in the area under the ROC curve (AUC). The CNN-CADe improved the 3D search 

for the small microcalcification signal (∆	𝐴𝑈𝐶 = 0.098, 𝑝 = 0.0002) and the 2D search for 
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the large mass signal (∆	𝐴𝑈𝐶 = 0.076, 𝑝 = 0.002). The CNN-CADe benefit in 3D for the 

small signal was markedly greater than in 2D (∆∆	𝐴𝑈𝐶 = 0.066, 𝑝 = 0.035). Analysis of 

individual differences suggests that those who explored the least with eye movements 

benefited the most from the CNN-CADe (𝑟 = −0.528, 𝑝 = 0.036). However, for the large 

signal, the 2D benefit was not significantly greater than the 3D benefit (∆∆	𝐴𝑈𝐶 = 0.033, 

𝑝 = 0.133). The CNN-CADe brings unique performance benefits to the 3D (vs. 2D) search 

of small signals by reducing errors caused by the under-exploration of the volumetric data. 

4.2. Introduction 

Digital breast tomosynthesis (DBT) is becoming the standard imaging modality for early 

cancer screening within the United States (Health, 2023). DBT affords a quasi-3D rendering 

of the patient's anatomy that reduces tissue superposition and signal occlusion inherent in the 

2D planar views generated from digital mammography image reconstruction algorithms 

(Sechopoulos, 2013). Radiologists interpret DBT images by freely scrolling back and forth 

through cross-sectional slices of the volumetric data—displayed one at a time on a computer 

monitor—to visually segment masses, microcalcifications, and architectural distortions from 

surrounding parenchyma (Helvie, 2010). 

3D volumetric images, however, pose new challenges to the radiological decision-

making process (Williams & Drew, 2019) because of the increased data requiring visual 

scrutiny. It would be prohibitively time-consuming to scan exhaustively, with eye 

movements, each cross-sectional slice in the stack of images before terminating one’s 

search. Therefore, radiologists must adopt new search strategies to perform 3D visual 

searches (Aizenman et al., 2017; Drew, Vo, Olwal, et al., 2013; M. P. Eckstein et al., 2018). 

For example, a recent eye-tracking study demonstrated that radiologists and trained human 
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observers rely on peripheral vision when scrolling through 3D volumetric images. Due to 

under-exploring the 3D image stack with eye movements, trained observers and radiologists 

miss small signals that are hard to detect in the visual periphery (Ba et al., 2020; Lago, 

Jonnalagadda, et al., 2021). Specifically, under-exploration leads to search errors of small 

signals, a miss that occurs because the observer failed to direct their center of gaze to the 

signal’s location (Kundel, 1989; Kundel et al., 1978). 

Recent advances in deep learning-based computer-aided detection (CADe) algorithms 

provide a promising avenue for mitigating search errors in 3D volumetric images. First, 

unlike human observers, Convolutional Neural Network (CNN)-based CADe systems are 

not constrained by attentional bottlenecks that are a consequence of foveated vision—high 

spatial acuity in the fovea and low spatial acuity in the peripheral visual field (Stewart et al., 

2020). The convolution kernels in a CNN can process each voxel in a large 3D volumetric 

image in parallel while simultaneously filtering for both high and low spatial frequency 

information (Yamashita et al., 2018). Second, CNN-based CAD algorithms—models that 

can perform both classification (CADx) and detection simultaneously—have obtained non-

inferior performance relative to expert radiologists (Kooi et al., 2017; Rodríguez-Ruiz et al., 

2019). Thus, these artificial intelligence-based support systems can work in parallel with an 

attending radiologist as a “co-pilot” to enhance and augment their workflow (Conant et al., 

2019; Yang et al., 2022). 

To date, no systematic vision science investigation delineates how a CNN-CADe 

algorithm benefits visual search in 2D versus 3D imaging modalities. For instance, does the 

CNN-CADe induce different performance benefits for 2D and 3D imaging modalities, and 

do these benefits depend on whether the signal is spatially large or small? Moreover, what 
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types of errors does the CADe system mitigate in 2D? Are they the same types of errors as 

in 3D? Do individuals who under-explore the image/volume with eye movements benefit the 

most from the additional information provided by the CNN-CADe adjunct?  

To answer these questions, we conduct an eye-tracking study to evaluate the utility of a 

CNN-CADe support system on human detection performance. The model produces 

bounding boxes on suspicious locations made viewable to naive (trained) observers while 

they perform a visual search task for simulated cancers in DBT phantoms (50% prevalence 

rate). Specifically, trained observers search with (and without) the CNN-CADe for a small 

microcalcification-like signal and a large mass-like signal embedded in 3D breast phantoms 

(3D search) and single slices of the phantoms (2D search).  

We hypothesize that the CNN-CADe will guide an observer's eye movements to 

suspicious locations in the 3D volumetric image that would have otherwise been missed 

without it. We predict a more considerable reduction in microcalcification search errors in 

3D than in 2D because it is relatively easy to explore most regions of a 2D image with eye 

movements in a time-efficient manner. For the large mass-like signal, we hypothesize that 

the search with the CNN-CADe will result in a less pronounced reduction in search errors in 

3D because the mass is more detectable in the visual periphery than the small 

microcalcification-like signal. However, the mass-like signal is more difficult to recognize 

in 2D than 3D. Thus, we predict that the CNN-CADe will mitigate 2D recognition errors—

misses that occur even after fixating the signal (Krupinski, 1996). Finally, we hypothesize 

that observers with the highest degree of under-exploration of 3D images will benefit the 

most from the CNN-CADe adjunct when searching for a small microcalcification-like 

signal. To quantify an observer’s personalized, effective exploration of 3D volumes, we 



 

 99 

combine their eye movement scan path data with an estimated Useful Field of View 

acquired from a separate task that measures an observer’s peripheral detectability for each 

signal. 

4.3. Methods 

Participants 

Sixteen undergraduate students (62.5% female, age range 18-22) from the University of 

California, Santa Barbara, participated in this experiment for course credit. All participants 

provided informed written consent and were treated according to human subject research 

protocols approved by the University of California, Santa Barbara (protocol # - 12-23-0301). 

Participants maintained normal or corrected-to-normal vision throughout the duration of the 

experiment. 

Apparatus 

Display monitor 

Participants interacted with stimuli on a medical grade grayscale DICOM monitor 

(Brand-Barco, type-MDNG-6121; 24 Hz refresh rate; 5.8 MP or 2096x2800 pixel resolution 

or 325x430 mm screen size) at a viewing distance of 750 mm in a darkened room (ambient 

luminance = 2 lux). 45 pixels on the monitor screen subtended 1 degree of visual angle 

(dva). We calibrated the monitor with a Barco LCD sensor (42630), and it passed a MediCal 

QAWeb DICOM GSDF compliance test with a maximum error of 7%.  

Eye-tracker 

While participants engaged with the task, an eye tracker (SR Research Eyelink Desktop 

Mount) monitored their gaze position at 2000 Hz. Participants encountered a calibration and 

validation procedure at the beginning of each session and could recalibrate between trials if 
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necessary. Each procedure used a nine-point grid, and successful calibration was met if the 

average validation error across the 9 grid points was less than 1 dva and the max error was 

less than 1.5 dva. Fixations and saccades were analyzed offline using the standard velocity 

and acceleration thresholds of 30 deg/s and 9,500 deg/s2, respectively. 

Experiment control 

The experiment used the Python package PsychoPy (Peirce et al., 2019). Events such as 

mouse scrolls and clicks were sampled at the monitor refresh rate of 24 Hz but synced to a 

wall clock via the ioHub event monitoring module in Psychopy to facilitate co-registration 

in the timing of these events with saccade and fixation data acquired from the eye tracker. 

Stimuli 

Phantoms  

Participants viewed anthropomorphic DBT phantoms that simulate the spatial 

arrangement of anatomical tissues (skin, Cooper’s ligaments, adipose, and glandular) and 

lesions (microcalcifications and masses). The phantoms were generated with the OpenVCT 

virtual breast imaging tool from the University of Pennsylvania (Bakic et al., 2018; Pokrajac 

et al., 2012; Predrag R. Bakic, 2017) using clinical acquisition geometry and clinical 

automatic exposure control settings (Selenia Dimensions, Hologic, Marlborough, MA). The 

700 ml simulated phantoms were compressed in the mediolateral direction at 6.33 mm 

thickness with glandular tissue prevalence of 15%-25%. The spatial reconstruction parameters 

were set to 100 𝜇m in-plane resolution and 1 mm depth sampling (Briona Standard; Real Time 

Tomography, LLC, Villanova, PA), producing a 3D voxel array of size 2048x1792x64. Each 

voxel of a phantom was stored as an unsigned 16-bit integer. For display purposes, we 

windowed the volumetric images between 5066 and 16907 and then applied a linear rescaling 



 

 101 

to conform with the backend display functions in Psychopy, which requires 8-bit images. We 

utilized 160 unique 3D DBT phantoms for the search tasks described below.  

Signals 

Participants searched for two types of simulated lesions. The first signal was a solid sphere 

(0.3 mm diameter, 0.06 dva in the xy plane) akin to a small microcalcification lesion and 

spanned ~6 cross-sectional slices. The second signal resembled a mass lesion and was 

generated with a combination of several 3D ellipsoids with an average diameter of 7 mm (0.5 

dva in the x, y plane). The density of the mass lesion decreased towards the edges of the signal 

profile, causing it to blend in with the anatomical background to a greater extent than the 

microcalcification signal. The mass signal spanned ~15 cross-sectional slices. Both signals 

were added to the background before the windowing and rescaling operations described 

above.  

Search task 

Experimental design 

Human observers performed a Yes/No localization task (Abbey et al., 2018; Abbey & 

Eckstein, 2014) and reported whether a single signal was present or absent in the image 

stimulus. The experiment had three within-subjects factors, each with two levels: imaging 

modality (2D and 3D), CNN-CADe (searching with and without CADe support), and signal 

type (microcalcification and mass), totaling eight conditions. The presentation order of the 

levels of the first two factors was counterbalanced across participants. For example, half of 

the participants started the experiment with the CNN-CADe support, followed by a washout 

period (minimum two weeks) before they saw the same stimuli without the CNN-CADe. Of 
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those participants who completed the CNN-CADe conditions first, half searched through the 

3D phantoms with the CADe before searching through the 2D slices of the phantoms with the 

CADe. The other half of the participants performed the 2D search before performing the 3D 

search. The same counterbalancing procedure between 2D and 3D searches was implemented 

for the other half of the participants who completed the search without the CNN-CADe before 

the washout period. The last factor, signal type, was combined into a single block of 160 trials 

(50% prevalence). In other words, one block contained 40 microcalcification-present trials, 

40 microcalcification-absent trials, 40 mass-present trials, and 40 mass-absent trials. The 

presentation order was randomized across both signal type and ground truth status. Each block 

comprised 16 10-trial sessions with an enforced 2-minute break in between sessions to 

mitigate fatigue effects. Participants completed four blocks of trials, with the 2-week washout 

period occurring between blocks 2 and 3.  

 
Figure 4.1. An example practice trial where a participant is looking for the mass signal in 3D, and they have 
access to the CNN-CADe output. a) At the beginning of each trial, the participant is informed of which 
signal they need to look for. In this case, it is the mass signal. A cropped image of the central slice of the 
mass signal is shown to the participant in addition to instructional text. b) Next, a black fixation cross is 
placed at a random (x, y) coordinate on top of a uniform-colored background. The participant needs to stare 
at the fixation cross for 1 second before proceeding to the next component of the trial. c) 3 of 64 slices of a 
DBT phantom are shown. When scrolling through all 64 slices, only one slice is presented on the monitor at 
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a time. Three cues (square bounding boxes) are superimposed on top of the image stimulus to indicate where 
the CNN-CADe thinks the signal is located to the participant. Note that the cues persist across multiple 
adjacent slices at the same (x, y) coordinate. d) After viewing the image stimulus, the participant must input 
a rating (1-8) indicating their confidence that the signal was absent/present in the stimulus. e) During 
practice trials only, the participant is shown feedback at the very end of the trial. For the 3D search task, the 
DBT phantom slice containing the central slice of the signal is shown on signal-present trials. A black 
fiducial marker surrounds the signal’s location to inform the participant where the signal is located in the (x, 
y) plane. The central slice number is also shown at the top of the display to inform the participant where the 
signal was centrally located in the third dimension. 

 

The general structure of a trial for each of the four blocks is depicted in Figure 4.1. At the 

beginning of each trial, participants viewed a cropped 2D image of the signal they would need 

to search for (Figure 4.1.a). Instructional text was also provided. The cropped image was taken 

from the central slice of the 3D signal profile, the cross-sectional slice corresponding to the 

signal’s centroid. Next, they had to force-fixate a black cross placed at a random location on 

top of a gray background for 1 second to ensure the eye tracker was well-calibrated for the 

trial (Figure 4.1.b). Afterward, the image stimulus was presented to the participants until they 

chose to terminate the search (Figure 4.1.c). The interface of this trial component changed 

depending on which of the four blocks the participants were in. In the following sections, we 

provide a more complete description of what Figure 4.1.c entailed for each of the four blocks. 

Upon completion of the search component of the trial, participants rated their confidence in 

their decision on a scale of 1-8 (Figure 4.1.d). A rating of 1 corresponded to the highest 

confidence that the signal was absent, and a rating of 4 represented the lowest confidence that 

the signal was absent. Conversely, a rating of 5 corresponded to the lowest confidence in the 

signal’s presence, and a rating of 8 corresponded to the highest confidence in the signal’s 

presence. 

3D search without CNN-CADe (Block I) 
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Upon completion of the forced fixation component of a trial (Figure 4.1.b), participants 

were shown the 3D image data. The “top” slice of the 3D DBT volume would always first 

appear on the monitor screen. Only one slice was shown to the participant at a time. The 

cropped image of the signal and a slice index tracker appeared at the top of the screen, above 

the DBT slice. This can be visualized in Figure 4.1.c. The signal template reminded 

participants which signal they needed to look for, and the slice index tracker displayed the 

current slice they were on. To view each of the 64 slices that comprised the DBT phantom 

image data, participants could either manipulate the mouse scroll wheel or hold and drag a 

widget placed on a custom-designed scroll bar located on the right-hand side of the image 

stimulus (also shown in Figure 4.1.c). The mouse scroll wheel allowed participants to scroll 

back and forth through adjacent slices. In contrast, the scroll bar provided the additional 

functionality of clicking on the bar to jump across multiple slices at a time.  

Participants had unlimited time to perform the search and were instructed to click on the 

(x, y, z) coordinate that produced the most evidence of the signal’s presence. They had to 

navigate to the slice with the highest signal contrast and click on the center of the signal 

profile. Clicking on the screen produced a circle (radius of 1 dva) for visual confirmation. 

They were instructed not to click on the screen if they did not see the signal. To end the trial, 

they pressed the space bar on the keyboard.  

3D search with CNN-CADe (Block II) 

A 3D search trial with the CNN-CADe support available mirrored the 3D search task 

described above but with one crucial caveat. While scrolling through the cross-sectional slices 

of the 3D DBT data, a varying number of square bounding boxes (3.1 dva in width/length) 

would appear on the screen, overlaid on top of the DBT slices. An example of what the cue 
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boxes looked like while the participants scrolled through 3 DBT slices is shown in Figure 

4.1.c. Participants were informed that the cued locations correspond to where a computer 

vision model predicts the signal may be located. The cue boxes on microcalcification-present 

and microcalcification-absent trials persisted across 5 slices (2 slices above and below the 

central slice on which the box was placed), and the cue boxes on mass trials persisted across 

11 slices (5 above and below the center location). The choice for the cue box locations and 

the number of cue boxes that appeared on screen for a given trial is described in CNN-CADe 

subsections below.  

2D search without CNN-CADe (Block III) 

Participants interacted with a single DBT slice while performing the 2D search task. 

Concerning Figure 4.1.c, only one DBT slice would appear on the screen, and scrolling would 

be disabled. Furthermore, neither the slice index tracker nor the custom scroll bar was on the 

monitor screen. All other aspects of the search interface depicted in Figure 4.1.c were held 

constant.  

On signal-present trials, the DBT slice corresponding to the central slice of the signal was 

displayed. The image stimulus depicted in Figure 4.1.e, sans the additional feedback text and 

markings, provides an example of what the participants saw when searching for the mass 

signal in 2D. The 32nd slice of a signal-absent 3D DBT phantom was displayed to participants 

on signal-absent trials.  

We used single DBT slices rather than simulated mammograms to model the search with 

a “2D imaging modality”. The noise power spectrum of 2D mammograms differs from that 

of single-slice DBT images (L. Chen et al., 2012). Therefore, an AI-based CADe system may 

have a differential impact on 2D mammograms versus single slices of DBT volumes because 
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image acquisition parameters and postprocessing differ across these two modalities, which 

can cause differences in lesion conspicuity (Horvat et al., 2019). DBT slices allowed us to 

isolate differences in performance across 2D and 3D searches while controlling for confounds 

that the image generation process may introduce.   

2D search with CNN-CADe (Block IV) 

The 2D search task with the CNN-CADe support replicated the 2D search task described 

above. However, it included cue boxes superimposed on top of the DBT phantom slice. Like 

in Block II, participants were informed that the cued locations represent the predicted 

locations made by the computer vision model for the mass/microcalcification signal. 

Training and practice trials  

Before completing the experiment blocks, participants partook in 4 practice blocks to 

familiarize themselves with the search tasks. For the 3D and 2D practice blocks without the 

CNN-CADe, there were 80 practice trials per block and 40 trials per signal (50% prevalence). 

Additionally, there were 20 practice trials (10 per signal and 50% prevalence) for the 2D and 

3D search practice blocks with the CNN-CADe. These blocks were included so observers 

could estimate the CNN’s performance and develop an internal model of incorporating its 

information into their decision-making process.  

Block of practice trials were interleaved with each of the four experimental blocks. For 

example, those participants randomly assigned to the 2D CNN-CADe block completed the 

practice block without the CNN-CADe. This was done to help familiarize them with the 

overall task procedure and to develop an understanding of what the two signals looked like in 

a single DBT phantom slice. Then, they would complete the practice block with the CNN-

CADe before starting the experimental block. Upon completion of the 2D CNN-CADe 
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experimental block, those same participants would complete the 3D practice block without 

the CADe, followed by the 3D practice block with the CADe, before starting the 3D 

experimental block with the CNN-CADe. Without further training, these participants would 

continue to the last 2 experiment blocks after the washout period.  

Practice trials maintained the same design as experiment trials. However, at the end of 

every practice trial, feedback was given to the participants. On signal-present 2D trials, a 

fiducial marker was superimposed on top of the DBT slice, centered on the signal’s location. 

If participants made a localization click on the trial, the circle centered on where they clicked 

was also present on the screen so they could discern where they clicked relative to the signal’s 

location. On signal-present 3D trials, the same DBT slices were shown as in 2D (i.e., the 

central slice of the signal in the DBT volume) but included the slice number on which the 

center of the 3D signal was placed. Figure 3.1.e provides a graphical depiction of the feedback 

on a mass-present 3D trail. For signal-absent trials in 2D and 3D, a gray background with the 

text “ABSENT” was displayed to participants. Participants had unlimited time to review the 

feedback before proceeding to the next practice trial.  

Microcalcification and mass peripheral detectability task 

Upon completing the search tasks, participants partook in a forced fixation yes/no 

location-known-exactly detection task. We included this task to measure each participant’s 

peripheral detectability of the microcalcification and mass signals (M. P. Eckstein et al., 2017; 

Lago et al., 2017; Lago, Sechopoulos, et al., 2020). Participants viewed 800 stimuli, 400 per 

signal. Each stimulus was a single slice of a DBT phantom sampled from a set of stimuli not 

shown to participants in the search task. Half the stimuli contained a signal (50% 
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microcalcification and 50% mass), and the other half contained no signal. The detection tasks 

were segregated into two separate 400-trial blocks, one block per signal.   

At the beginning of each trial in a block, participants stared at a black fixation cross, 

superimposed on a gray background, at the center of the computer monitor. A fiducial marker 

was also present on the screen. The marker was centered 5 dva from the center of the fixation 

cross, and it appeared at 1 of 4 polar angles on any given trial: 0, 90, 180, or 270 degrees. 

Participants were informed that the signal would appear in half of the trials at the cued 

location. Therefore, they needed to only covertly attend to the marker's location and ignore all 

other locations in the image stimulus. After staring at the fixation cross for 1 second, the image 

stimulus appeared on the screen for 200 ms. The trial would abort if participants attempted to 

make a saccade towards the cued location. Afterward, participants encountered the same 

rating scale as in the search tasks (Figure 4.1.d). They had to indicate their confidence that the 

microcalcification/mass was present (or absent) at the cued location. In sum, we measured the 

peripheral detectability at 4 polar coordinates in the visual field (100 trials per coordinate and 

50% prevalence).  

Each block for measuring the extra-foveal processing of the microcalcification/mass 

signal was preceded by a block of practice trials. There were 16 trials, 2 per polar coordinate 

(1 signal-present trial and 1 signal-absent trial). Practice trials provided feedback at the end of 

each trial, similar to Figure 4.1.e.  

CNN-CADe 

Model overview 
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Our study employed an encoder-decoder U-Net CNN architecture for image segmentation 

(Çiçek et al., 2016; Ronneberger et al., 2015). The encoder-decoder semantic segmentation 

architecture allowed us to preserve a one-to-one mapping between the input stimulus size and 

the model output size. For our experiment, the model output, being the probability of 

malignancy at each voxel/pixel location in the image, is a requisite for displaying cue boxes 

to human observers during the search task. Furthermore, we utilized nnU-net (Isensee et al., 

2019), an out-of-the-box segmentation tool built upon the basic U-Net architecture. nnU-net 

automates the preprocessing, network architecture, training, and post-processing 

configuration settings given domain-relevant information for the use case at hand (i.e., 

properties of the dataset, voxel spacing size, image modality, image size, etc. (Singh et al., 

2020)). Moreover, nnU-net has outperformed specialized networks on various biomedical 

tumor segmentation tasks, demonstrating its generalizability to new datasets (Isensee et al., 

2019). For this experiment, we trained and tested 4 models: microcalcification-2D, 

microcalcification-3D, mass-2D, and mass-3D. 

Preprocessing 

The input to the 3D models for training were the phantoms cropped to size 380x380x64 

to improve training efficiency the non-cascade full-resolution network. The input to the 2D 

models for training were single slices of the phantoms of size 793x2048x1. We cropped the 

left-hand side of the image slices as it was a black background that provided no relevant 

information for training. The phantom resided on the right-hand side of the slices for all 

stimuli.   

Network architecture 
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The backbone of the U-Net architecture for each of the 4 separate models consisted of an 

encoder and decoder module. For the encoding stage, strided convolution was used to down-

sample the input spatial dimensions while increasing the feature dimensionality. For the 

decoding stage, up-sampling was performed using transposed convolutions, thus gradually 

decreasing the feature dimensionality while increasing the spatial dimensions until the output 

matched the input dimension size. Both the encoder and decoder were comprised of two 

computational blocks. Within each block, convolution operations were followed by instance 

normalization and a leaky-ReLU nonlinearity operation. The nnU-Net utilized a Stochastic 

Gradient Decent optimization to minimize the cross-entropy and maximize the dice 

coefficient with a preconfigured learning rate and Nestrov momentum hyperparameters set to 

0.01 and 0.09, respectively. A ‘polyLR’ (polynomial function) regime caused the learning rate 

to decay across training for each parameter group.  

 

 

Model 

 

 

 

AUC 

 

 

Proportion 
of trials 
cue on 
signal 

location 

 

Connected components parameters 

Number of cues 

Signal-
present trials 

Signal-
absent trials 

 

P(malignancy) 
threshold 

Euclidean 
distance 

(x, y) 
pixels 

Manhattan 
distance 
(z) slices 

 

Mean 

 

SD 

 

Mean 

 

SD 

3D 
calc 

1.0 0.775 0.9 350 7 5 1.961 3.9 1.736 

2D 
calc 

0.931 0.775 0.2 350 N/A 1.1 0.304 0.825 0.549 

3D 
mass 

0.743 0.775 0.8 160 11 7.875 2.221 8.675 3.133 

2D 
mass 

0.696 0.775 0.1 140 N/A 1.150 0.662 1.375 0.807 

Table 4.1. CNN-CAD model performance metrics and relevant parameters for computing the number of 
cues and their locations.  
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Training 

We utilized 5-fold cross-validation for training (4 training sets and 1 validation set). Thus, 

a given model (e.g., microcalcification-2D) was an ensemble of 5 separate CNNs, which were 

later combined to make predictions in the test set. Each of the 5 constituent models was trained 

for 1000 epochs. One epoch for the microcalcification-3D or mass-3D model took 800 

seconds to complete compared to 240 seconds for the microcalcification-2D or mass-2D 

models. The training was completed across 4 12 GB Nvidia GPUs. 500 cropped phantoms 

containing the microcalcification and 500 cropped phantoms containing the mass signal were 

utilized to train the 3D models. 1,500 single slices—3 slices per each of the 500 phantoms 

used in the 3D training set—were chosen for training the 2D models. The 3 slices per phantom 

corresponded to the central slice and the slices above and below the central slice.  

Post-processing 

After training, a given ensemble model was fed the full-resolution 3D phantom or 2D slice 

shown to the trained human observers. The probability of malignancy score at each voxel (3D) 

or pixel (2D) location was binarized using a model-specific threshold. The P(malignancy) 

thresholds are shown in the third column of Table 4.1 for all 4 models. Voxels above the 

threshold were treated as signal (1), and voxels less than the threshold were treated as 

background (0). We then applied a connected components algorithm—26 connectivity for 3D 

binarized model outputs and 6 connectivity for 2D binarized outputs—to join 

contiguous/neighboring signal voxels into blobs (Silversmith, 2023). This procedure resulted 

in multiple connected components of varying sizes per stimulus.  

Testing 
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With the connected component output in hand, we chose the count of voxels/pixels 

comprising the largest component as the decision variable of the model for each of the 80 test 

stimuli per imaging modality and signal type combination. We assumed that the largest 

component would correspond to the actual signal location if present in the volume/image. 

Moreover, on average, phantoms containing a signal would have larger connected components 

than phantoms without a signal. Based on this decision variable, we computed the area under 

the receiver operating curve (AUC) for each of the 4 models to confirm their ability to 

discriminate signal from noise. The AUCs for each model can be found in the second column 

of Table 4.1.   

Converting CNN output to CADe support tool 

There are many candidate options for displaying the CNN output as a support tool to 

human observers. Previous studies have presented both a stimulus-level score and location-

specific scores in the form of cue boxes (Pinto et al., 2021; Seah et al., 2021), saliency maps 

(Geras et al., 2019), or “click-to-see” model probability scores for a specific location on the 

image (i.e., interactive decision support (Rodríguez-Ruiz et al., 2019; Samulski et al., 2010)). 

We converted the connected component output into cue boxes/prompts superimposed on the 

image stimulus. Our central hypothesis focused on microcalcification search errors in 3D. 

Interactive decision support would not mitigate search errors because if the participants did 

not foveate the microcalcification signal, they would not click on the stimulus to activate the 

decision support. Interactive decision support is most helpful in mitigating decision and 

recognition errors, misses that occur when the observer foveates the signal but reports it as 

absent. 
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We omitted from displaying the probability of malignancy scores associated with each 

box because the per-pixel probability thresholds used to generate the connected components 

varied across the 4 CNN models. For instance, the probability of malignancy associated with 

cues for the microcalcification-3D stimuli would range between 0.9 and 1, whereas the 

probability scores would range between 0.2 and 1 for the microcalcification-2D stimuli. The 

difference in the range of probability scores across models would introduce information to the 

observer, potentially confounding our analysis.  

To convert the connected components in a 3D phantom stimulus into bounding boxes 

overlaid on the stimulus, we first computed each component's center-of-mass coordinate (x, 

y, z). We then computed the Euclidean distance in the (x, y) plane between every pair of 

center-of-mass coordinates. We also computed the Manhattan distance between the z-

coordinates for every pair of center-of-mass coordinates. We grouped components if their 

Euclidean distance was less than a model-specific distance threshold and their Manhattan 

distance was less than a model-specific threshold. Each group of connected components was 

converted into a single cue. The cue was placed at the mean location of all the center-of-mass 

coordinates in the group. The same procedure was done for the 2D connected components 

without the Manhattan distance calculation. The threshold parameters for this process can be 

found in Table 4.1, columns 5 and 6. 

This grouping procedure was done to prevent overlap amongst the cued locations, which 

would induce visual clutter and distract from the primary task. Second, we wanted to reduce 

the average number of visual prompts per stimulus to less than 10 to maintain consistency 

with previous studies that report the number of CNN-CADe false positive prompts per image 

(see Table 3 in (Fan et al., 2019)). Third, we attempted to normalize the number of cues in the 
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signal-present and signal-absent sets of stimuli to prevent observers from utilizing this 

information to make their decisions. For example, in the edge case where all signal-present 

stimuli have at least one cue and all signal-absent stimuli have zero cues, a human observer 

could use the number of cues on the stimulus to determine the presence/absence of the signal. 

Lastly, we equated the localization accuracy of the 4 models to ensure, from the observer's 

vantage point, that the CNN-CADe provided consistent, accurate information across the 

2D/3D searches for the mass and microcalcification signals. The localization accuracy in 3D 

was defined as the proportion of signal-present trials where at least one cue prompt was less 

than 1.5 dva away from the centroid of the signal profile in the (x, y) plane. Moreover, the 

central slice of the signal needed to appear in at least one of the slices where the cue would 

appear on the screen. Recall that the cue boxes spanned 5 slices in z for the microcalcification 

signal and 11 slices in z for the mass signal. For 2D, only the former condition described for 

3D needed to be met to define CNN-CADe localization accuracy.  

To equate the localization accuracy across the 4 models, we applied a grid search over 3 

parameters in 3D: the P(malignancy) threshold, the Euclidean distance threshold, and the 

Manhattan distance threshold. For the 2D models, we applied a grid search over only the first 

two parameters. This grid search produced a localization accuracy of 0.7775 across all models 

(Table 4.1, column 3). In other words, on 31 of the 40 signal-present trials, at least one cue 

would be placed directly over the signal.  

Human performance measures and statistical analysis 

We assessed overall human performance in the search tasks based on the following 

primary endpoints: AUC, hit rate, and false alarm rate. We supplemented this analysis by 
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stratifying misses into two categories: search errors and recognition errors. Furthermore, we 

quantified the proportion of the search area observers explored with eye movements 

(proportion of area covered by the Useful Field of View, or PAC UFOV) and the time 

participants spent searching. Lastly, for the peripheral detection task, we calculated the AUC 

for each signal to determine how much the mass signal was more detectable in the visual 

periphery than the microcalcification signal. We also combined the peripheral detectability 

measurements into participant-specific UFOVs (PUFOVs) to highlight individual differences 

for the CNN-CADe benefit in the search tasks. Below, we provide a more complete 

description of each analysis.  

AUC-search 

We employed a multi-reader multi-case (MRMC) analysis (Gallas & Brown, 2008; 

Obuchowski & Bullen, 2022; Roe & Metz, 1997) to evaluate significant differences in the 

AUC with versus without CNN-CADe decision support using the open-source MRMCaov 

software package available in the R programming language (B. J. Smith & Hillis, 2020). This 

software treats “readers” and “cases” as random effects under a generalized linear mixed 

effects model framework. The software also provides individual AUC estimates for each 

participant in each condition (with and without the CAD), assuming a binormal model. We 

applied this analysis 4 times, once for each search task: microcalcification 2D search, 

microcalcification 3D search, mass 2D search, and mass 3D search. We applied the 

Benjamini-Hochberg false discovery rate (FDR) correction to an	𝛼 = 0.05 level for all 4 two-

tailed p-values (Benjamini & Hochberg, 1995).  

In line with our primary hypotheses outlined in the introduction, we assessed whether the 

benefit of the CNN-CADe was significantly greater in 3D than in 2D for the microcalcification 
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signal. For the mass signal, we determined whether this benefit was significantly greater in 

2D than in 3D. Here, we utilized a nonparametric bootstrap resampling procedure (i.e., 

sampling readers and cases with replacement 20,000 times) and computed the mean empirical 

AUC for all 8 levels of the 3 within-subject factors. For a given bootstrap iteration and signal 

type, we subtracted the mean AUC without the CNN-CADe from the mean AUC with the 

CNN-CADe for both the 2D and 3D searches. For the microcalcification signal, we subtracted 

the difference in AUC in 2D from the difference in AUC in 3D. For the mass signal, we 

subtracted the difference in AUC in 3D from the difference in AUC in 2D. We computed the 

proportion of difference of differences in mean AUC that were greater than 0 across all 20,000 

bootstrap iterations to obtain 1-tailed p-values. In total, two p-values, one for each signal, were 

compared to 𝛼 = 0.05.  

Hit rate and false alarm rate 

Hits and false alarms were defined as ratings greater than or equal to 5 on signal-present 

and signal-absent trials, respectively. The number of hits divided by the number of signal-

present trials (40) produced a participant-specific hit rate. The same procedure was applied to 

false alarms on signal-absent trials. We utilized the bootstrapping procedure discussed above 

(i.e., sampling readers and cases with replacement 20,000 times) to obtain differences in mean 

hit rate or false alarm rate for the searches with the CNN-CADe and without it. The count of 

bootstrapped differences in the hit rate (or false alarm rate) more extreme than 0 was divided 

by 20,000 and then multiplied by 2 to obtain a two-tailed p-value. We FDR corrected for 4 p-

values (2D microcalcification, 2D mass, etc.) per endpoint. This nonparametric procedure, 

including the number of pairwise comparisons and the FDR correction, was applied to search 

and recognition errors, the area covered by the UFOV, and the amount of time spent searching.  
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Search and recognition errors 

Search and recognition errors allowed us to ascertain the impact of foveal vision on 

detection performance by stratifying misses into two distinct categories. Search errors were 

defined as the subset of false negative responses where an observer failed to fixate directly on 

the signal. Recognition errors were defined as the complement set of misses where observers 

missed the signal but stared directly at it (Drew, Vo, Olwal, et al., 2013; Krupinski, 1996; 

Kundel et al., 1978). In the 2D search conditions, we computed the Euclidean distance 

between every recorded fixation position and the center (x, y) coordinate of the signal’s 

location for a given participant and trial. If at least one fixation was at a distance less than or 

equal to 2.5 dva away from the signal, then the observer fixated the signal on that trial. For 

the 3D search conditions, we augmented the definition of fixating the signal because its profile 

spanned multiple consecutive slices. The Manhattan distance between the z coordinate of 

every fixation and the signal’s central slice z coordinate was computed. If the Manhattan 

distance for a fixation was less than or equal to N, where N=3 for the microcalcification and 

N=10 for the mass, and the Euclidean distance in (x, y) was less than or equal to 2.5 dva, then 

that fixation was considered to be on the signal in 3D. To obtain an error rate per participant, 

we divided the count of each type of error by the total number of signal-present trials (40). 

PAC UFOV 

The proportion of the search area covered by the UFOV provides an approximate estimate 

of how much observers explored the 2D slices or 3D volumes with eye movements. For a 

given observer and trial, we “painted” a circle on all recorded (x, y) fixation locations in 2D 

and all recorded (x, y, z) fixation locations in 3D. The circle had a radius of 2.5 dva, the 

standard in the literature (Drew, Vo, Olwal, et al., 2013; Krupinski, 1996). (We include a 
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supplementary analysis that utilizes a signal-specific UFOV radius based on each observer’s 

peripheral detectability of a signal). We computed the cardinality of the union set of pixels 

that were “painted” by the UFOV and divided this count by the number of pixels that 

comprised the DBT phantom slice (2D) or DBT phantom volume (3D) to obtain a proportion. 

We computed point estimates per observer by averaging the PAC UFOV across all signal-

present and signal-absent trials. 

Search time 

The search time was defined as the elapsed time (in seconds) between when the image 

stimulus was first displayed on the monitor and when the participant pressed the spacebar to 

end the search component of the trial. Point estimates were obtained by averaging across all 

signal-present and all signal-absent trials.  

AUC-peripheral detectability 

We implemented a single-reader multi-case analysis to obtain participant-specific AUCs 

for the microcalcification and mass signals based on their rating data from the peripheral 

detection task. This was done using the MRMCaov software package available in R. To test 

whether the average AUC, across participants, was significantly lower for the 

microcalcification signal than the mass signal, we utilized the same nonparametric 

bootstrapping procedure (20,000 bootstraps) with empirical AUCs to obtain differences in 

mean AUCs across the two signals. A single p-value was compared to 𝛼 = 0.05. One 

participant chose not to complete the peripheral detection task for the mass signal, and we 

omitted them from this analysis.  

Lastly, we used the parametric AUC estimates from the MRMCaov package to obtain 

participant-specific UFOV radii for each signal type (PUFOV). We assumed that detection 
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performance for both signals at the fovea in a location-known-exactly and signal-known-

statistically task would produce AUC estimates of 1, which is a mild assumption. We then fit 

a half-Gaussian function: 

𝐴𝑈𝐶 =
𝛾

�2𝜋𝜎2
𝑒
−𝐸2

2𝜎2 (𝐸𝑞.		4.1) 

where 	𝛾 and 𝜎< are fitting parameters and E refers to eccentricity (0 ≤ 𝐸	 ≤ 10 degrees 

visual angle). The function was fit to two points for a single signal: (𝐸 = 0,  𝐴𝑈𝐶 = 1) and 

(𝐸 = 5,  𝐴𝑈𝐶 = 𝐴𝑈𝐶=) where 𝐴𝑈𝐶=  refers to the participant-specific estimated AUC from the 

MRMC model described above. We set 𝐴𝑈𝐶 = 0.82 and solved for 𝐸 to obtain 𝐸∗. The radius 

of the PUFOV for a given signal was set to 𝐸∗. An example of applying this procedure to a 

single subject is shown on the left-hand side of Figure 4a/b for the microcalcification and mass 

signals, respectively. We acknowledge that we are fitting a function with two parameters to 2 

data points; thus, our fit has no error. This limitation can be fixed in future work by computing 

the peripheral detectability of each signal at various eccentricities. 

 
Figure 4.2. The results of the MRMC analysis depict the benefit of the CNN-CADe during the 2D and 3D 
searches for the microcalcification and mass signals. a) The difference in reader-averaged AUC between the 
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CNN and no CNN searches (scatter points) and their respective 95% confidence intervals (horizontal lines) 
are plotted with respect to the null hypothesis of no change in AUC when searching with versus without the 
CNN-CADe (vertical line centered at 0). From top to bottom, the change in AUC is plotted for 
microcalcification 3D search, microcalcification 2D search, mass 3D search, and mass 2D search. * = p < 
0.05, ** = p < 0.01, *** = p < 0.001 and n.s. signifies p > 0.05. b) reader-averaged Binormal ROC curves 
with (red lines) and without the CNN-CADe (blue lines) are shown for microcalcification 3D search (top 
left), microcalcification 2D search (top right), mass 3D search (bottom left) and mass 2D search (bottom 
right). The area under the ROC curve is also reported for the CNN and No CNN searches in each of the 4 
subplots. The scatter point in a given subplot represents the participant-averaged operating point (false 
alarm rate, hit rate) at the cut point 4.5, the middle of the rating scale used in our experiment. Horizontal and 
vertical error bars for a given operating point denote 68% bootstrapped confidence intervals (~1 standard 
error of the mean) for the false alarm rate and hit rate, respectively. 

 

We recomputed the mean proportion of area covered on 2D and 3D signal-absent trials 

without the CNN-CADe available, using each participant’s PUFOV. The area covered in 

signal-absent trials without the CNN-CADe provides a measure of eye movement exploration 

that is not confounded by finding the signal during the search or relying on the CNN-CADe 

prompts. The personalized UFOV, instead of the standard UFOV, normalizes peripheral 

detectability for a given signal across all participants by combining the two constructs into 

one. Next, we correlated these estimates of the PAC PUFOV with each observer’s change in 

AUC when searching with the CNN versus without it. This correlation allowed us to ascertain 

whether those who explored less, while normalizing by their peripheral detectability of each 

signal, benefited the most from the CNN-CADe during the searches. That is, they have the 

most considerable change in AUC.  

4.4. Results 

The CNN-CADe provides the largest benefit for the 3D search of small 

signals 

Our main objective in this study was to determine if the CNN-CADe improves 

performance in the 2D and 3D searches and if the benefits are contingent on what type of 



 

 121 

signal observers had to find. Figure 4.2.a demonstrates that the change in overall search 

performance with the CNN-CADe in 2D and 3D depended on the signal type. For the small 

microcalcification signal, having the CNN-CADe available during the 3D search markedly 

improved the overall AUC (∆	𝐴𝑈𝐶 = 0.098, 95% CI [0.048, 0.147], 𝑝 = 0.0002). However, 

in the 2D search, the observed change in AUC did not reach statistical significance (∆	𝐴𝑈𝐶 =

0.029, 95% CI [−0.026, 0.084], 𝑝 = 0.296). Moreover, the benefit of the CNN-CADe in 3D 

was significantly greater than that of the CNN-CADe in 2D (∆∆	𝐴𝑈𝐶 = 0.066, 𝑝 = 0.035). 

For the mass signal, we observed an opposite effect of the CNN-CADe on 2D versus 3D 

search performance. During the 3D search for the mass, the AUC change was significant but 

did not survive an FDR correction (∆	𝐴𝑈𝐶 = 0.048, 95% CI [0.002, 0.094], 𝑝 = 0.048). On 

the other hand, when observers searched for the mass signal in 2D, the CNN-CADe 

significantly benefited their search (∆	𝐴𝑈𝐶 = 0.076, 95% CI [0.028, 0.123], 𝑝 = 0.002). 

However, the improvement in AUC when searching with the CNN-CADe in 2D was not 

significantly greater than the improvement in AUC when searching for the mass in 3D 

(∆∆	𝐴𝑈𝐶 = 0.033, 𝑝 = 0.133).  

The influence of the CNN-CADe on hit and false positive rates 

We evaluated criterion-specific search performance measures to understand further how 

the CNN-CADe influenced the observer’s perceptual decision-making processes. Figure 4.2.b 

depicts the reader-averaged ROC curves and the mean operating points (i.e., false alarm rate 

and hit rate pair) at the rating threshold 4.5 when observers searched with and without the 

CNN-CADe for the two signals in 2D and 3D. 
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When observers searched for the microcalcification in 3D (Figure 4.2.b, top left), the 

average hit rate significantly increased from 0.714 to 0.892 when the additional information 

from the CADe was made available to them, 𝑝 = 0.001. We observed a modest but not 

significant reduction in the mean false alarm rate as well (𝐹𝐴𝑅U-	VUU = 0.146, 𝐹𝐴𝑅VUU =

0.127, 𝑝 = 0.6844). Similarly, when searching for the microcalcification in 2D (Figure 4.2.b, 

top right), the CNN-CADe increased the mean hit rate from 0.797 to 0.840, and reduced the 

average false alarm rate from 0.192 to 0.150. However, neither the difference in hit rate nor 

the difference in false alarm rate was statistically significant from 0, 𝑝 = 0.384, 𝑝 = 0.317, 

respectively. Together, these results suggest that CNN-CADe facilitated the detection of the 

microcalcification in 3D to a greater extent than in 2D and support the finding of a 

significantly larger change in AUC in 3D than in 2D, as discussed above.  

In considering the search for the mass signal, the CNN-CADe minimally impacted the hit 

and false alarm rates in both the 2D and 3D modalities. During the 3D search (Figure 4.2.b, 

bottom left), the mean hit rate increased with the CNN-CADe (𝐻𝑅U-	VUU = 0.745, 𝐻𝑅VUU =

0.794) but so did the false alarm rate (𝐹𝐴𝑅U-	VUU = 0.293, 𝐹𝐴𝑅VUU = 0.320). However, 

these differences in the hit rate and false alarm rate were not significantly different from 0 

(𝑝 = 0.135, 𝑝 = 0.624, respectively). When observers searched for the mass signal in 2D, 

their average hit rate increased from 0.778 to  0.831 with the CNN-CADe, but this difference 

was not significantly different from 0 (𝑝 = 0.130). The false alarm rates were also not 

significantly different from one another (𝑝 = 0.368) despite the CNN-CADe marginally 

reducing the mean false alarm rate from 0.363 to 0.317. The negligible changes in hit rate 

and false alarm rates support the finding that the improvement in AUC in the 2D search was 

not significantly higher than the improvement in AUC in the 3D search for the mass signal.  
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Figure 4.3. Additional measures exemplify the impact of the CNN-CADe on the participant's search 
strategies. a) The mean proportions of microcalcification search errors (black lines) and recognition errors 
(green lines) in 3D (left set of lines) and 2D (right set of lines). For a given line, the left scatter point 
represents a particular mean error rate when observers searched for the microcalcification with the CNN-
CADe, and the right scatter point represents that same endpoint but when observers searched for the 
microcalcification without the CADe available. b) The mean proportion of the search area (PAC) covered by 
the standard UFOV (2.5 dva radius) on all trials for the 3D (left cluster of bars) and 2D (right cluster of bars) 
searches. White bars denote the area covered when searching for the microcalcification signal with the 
CNN-CADe, and gray bars represent the proportion of the area covered when searching for the 
microcalcification without the CNN-CADe. c) The mean search time while looking for the 
microcalcification signal. The breakdown of search time in 2D/3D and CNN/No CNN is kept consistent 
with b). d), e), and f), The same endpoints and organization of 2D/3D and CNN/No CNN data that was 
discussed in a), b), and c) are shown for the mass signal. All error bars represent 68% bootstrap confidence 
intervals (~ 1 SEM). * = p < 0.05, ** = p < 0.01, *** = p < 0.001 and n.s. signifies p > 0.05. 

 

The influence of the CNN-CADe on search and recognition errors 

We are not only interested in whether the CNN-CADe improves search performance in 

2D and 3D for both small and large signals but also in how it facilitates the detection of these 

signals. Our analysis of the gaze-contingent errors provides this additional insight. Figure 

4.3.a depicts how search and recognition errors for the microcalcification signal in 3D and 2D 

changed when the bounding boxes from the CNN-CADe were made available during the 

searches. Figure 4.3.a left demonstrates that the mean search error rate (SER) was significantly 
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reduced with the CNN-CADe (𝑆𝐸𝑅U-	VUU = 0.197, 𝑆𝐸𝑅VUU = 0.070, 𝑝 = 0.0069). 

Although the mean recognition error rate (RER) was also significantly reduced from 0.089 to 

0.038 when searching with the CADe, 𝑝 = 0.043, it did not survive an FDR correction. When 

observers searched for the microcalcification signal in 2D (Figure 4.3.a, right), we observed 

that the CADe reduced the mean SER from 0.056 to 0.017 and the mean RER from 0.147 to 

0.142. However, these differences were not significantly different from 0, 𝑝 = 0.060 and 𝑝 =

0.893, respectively.  

Relative to Figure 4.3.a, Figure 4.3.d shows similar but less dramatic effects of the CNN-

CADe on the search and recognition errors for the mass signal in both 3D and 2D. During the 

3D search (Figure 4.3.d, left), both the mean search error rate (𝑆𝐸𝑅U-	VUU = 0.071, 

𝑆𝐸𝑅VUU = 0.036, 𝑝 = 0.125) and mean recognition error rate (𝑅𝐸𝑅U-	VUU = 0.185, 

𝑅𝐸𝑅VUU = 0.170, 𝑝 = 0.647) were reduced, but the changes in error rates were not 

significantly different from 0. When observers searched for the mass signal in 2D (Figure 

4.3.d, right), the mean SER was reduced from 0.028 to 0.009, and the mean RER was reduced 

from 0.1938 to 0.160 when the cue boxes were present during the search. However, these 

differences in SER and RER were not significantly different from	0 (𝑝 = 0.139, 𝑝 = 0.305, 

respectively).  

CNN-CADe reduces eye movement exploration (PAC UFOV) 

Figure 4.3.b summarizes the 2D/3D PAC UFOV when participants were tasked to look 

for the microcalcification signal with and without the CNN-CADe. In the the 3D search 

(Figure 4.3.b, left), the mean PAC without the CNN-CADe (0.140) was significantly higher 

than the mean PAC with the CNN-CAD (0.090), 𝑝 < 5𝑒)*. Similarly, during the 2D search 
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(Figure 4.3.b, right), the PAC without the CNN-CADe available (0.576) was significantly 

higher than with it (0.438), 𝑝 < 5𝑒)*. 

We observed a similar trend in the PAC UFOV when observers were tasked to find the 

mass signal with and without the CNN-CADe in both the 2D and 3D searches (Figure 4.3.e). 

The PAC during 3D search (Figure 4.3.e, left) was significantly lower when searching with 

the CAD (0.087) than without it (0.108), 𝑝 = 0.013. Figure 4.3.e, right, shows that the PAC 

in 2D was also significantly lower with the CADe (0.410) as opposed to searching without it 

(0.450), 𝑝 = 0.003. In sum, regardless of the imaging modality or signal type, observers, on 

average, explored less of the search area with eye movements when the CNN-CADe support 

system was enabled. 

CNN-CADe reduces the search time for the microcalcification but not the 

mass signal 

Figure 4.3.c depicts the effect of the CNN-CADe on the time spent searching for the 

microcalcification in 3D and 2D. During the 3D search (Figure 4.3.c, left), there was a 

significant reduction in average search time from 42.994 seconds without the CADe to 

27.848 seconds with it, 𝑝 < 5𝑒)*. While performing the 2D search (Figure 4.3.c, right), 

observers searched for 14.141 seconds on average without the CADe and 10.606 seconds 

with the CADe, and this difference was statistically significant, 𝑝 < 5𝑒)*. 

Figure 4.3.f exemplifies how the CNN-CADe impacted the search time for the mass in 

both 2D and 3D. Figure 4.3.f, left shows a marginal reduction in search time when observers 

looked for the mass in 3D with the CNN-CADe (28.503 seconds) versus without it (32.445 

seconds), 𝑝 = 0.226. We also observed a slight reduction in 2D search time with the CNN-



 

 126 

CADe (10.751 seconds) versus without it (10.887 seconds), 𝑝 = 0.842. However, neither 

the differences in 3D search time nor 2D search time were statistically significant.  

 
Figure 4.4. The procedure for deriving the PUFOV for each signal/participant combination. The correlation 
between the change in overall performance versus the mean PAC with the PUFOV on signal-absent, no 
CNN trials for the mass, and microcalcification signals in both 2D and 3D are also shown. a) Left, a half 
Gaussian is individually fit to each participant’s AUC in the microcalcification peripheral detection task. 
Each colored line represents a fit for a different participant. Scatter points represent each participant’s AUC 
from the forced-fixation yes/no detection task for the microcalcification signal presented at 5 dva away from 
the fixation point. The blue dotted horizontal line intersects the y-axis at 0.82. The blue vertical line 
represents the predicted eccentricity at which that participant would have an AUC of 0.82 in the peripheral 
detection task. This eccentricity served as the radius of the circular PUFOV for the microcalcification signal 
for that participant. a) Middle right, the PUFOV for the microcalcification signal derived in 4.4.a, left is 
“painted” on all recorded fixation positions from an example 2D microcalcification signal-absent search trial 
without the CNN-CADe cues available to the participant. Blue circles overlaid on the DBT slice visualize 
the 2D area covered by the PUFOV. a) Middle right, scatterplot relating the change in AUC (CNN AUC – 
No CNN AUC) during the microcalcification 3D search versus the PAC PUFOV on signal-absent 
microcalcification 3D trials without the CNN-CAD output available. Each point represents a single 
participant’s change in AUC (y-axis) and how much they explored with eye movements while accounting 
for their peripheral detectability of the microcalcification signal (x-axis). The correlation test statistic, 𝑟, and 
the corresponding p-value are included in the subplot legend. a) Right, the dependent variables represented 
in the scatterplot in a) Middle right are visualized for the microcalcification 2D search task. b) left, middle 
left, middle right, and right depict the same analysis as in a) but for the mass signal. 

 

The mass signal is more detectable in the visual periphery than the 

microcalcification  
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The scatter points in Figure 4.4.a, left, and Figure 4.4.b, left plot the peripheral 

detectability of the microcalcification and mass signals for all participants in this study, 

respectively. The mean AUC for detecting the microcalcification in the visual periphery was 

0.711. In contrast, the mean AUC for detecting the mass in the visual periphery was 0.863, 

and this difference was statistically significant (𝑝 < 5𝑒)*). 

Deriving signal-specific UFOVS for each observer (PUFOVS) 

Figure 4.4.a, left, also includes the half-gaussian fits to each observer’s peripheral 

detectability of the microcalcification signal. Figure 4.4.b, left, shows the same type of fits 

but for the mass signal. The half-gaussian fits were used to derive signal-specific UFOVs 

(PUFOVs) for each participant at an AUC threshold of 0.82. The middle left subplots of Figure 

4.4.a and Figure 4.4.b depict the process of “painting” the PUFOVs on all recorded fixation 

positions from a single participant during the 2D searches of the microcalcification and mass 

signals, respectively. These fixations were obtained from two searches on signal-absent trials 

without the CNN-CADe output available. Of note for the participant’s data shown here is that 

the radius of the circular PUFOV for the mass signal is larger than the radius of the PUFOV 

for the microcalcification signal. Thus, when incorporating the PUFOV into the computation 

of the PAC, more of the DBT phantom slice is covered in the mass trial than in the 

microcalcification trial. 

Individual differences in the AUC benefits of the CNN-CADe correlate 

with PAC PUFOV 

Our last analysis evaluates whether those who explore less in 2D/3D with their PUFOV 

benefit the most from the CNN-CADe. Figure 4.4.a, middle right exemplifies this relationship 
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for the microcalcification 3D search. We observed a strong negative linear correlation 

between how much people explore with eye movements and their change in AUC when 

searching with the CADe versus without it (𝑟 = −0.528, 𝑝 = 0.036). In short, those who 

tended to explore less of the 3D volume with eye movements benefited the most from the 

CNN-CADe.  

The correlation analysis reported above depends on two free parameters: 1) the half-

gaussian function we chose to fit the peripheral detectability data to, and 2) the AUC threshold 

of 0.82 for computing the radius of the PUFOVs for each observer. Therefore, we reran the 

analysis using AUC thresholds ranging from 0.82-0.9 in steps of 0.02. We also fit a line rather 

than a half-gaussian to the peripheral detectability estimates and used the same range of AUC 

thresholds. Across the set of AUC thresholds and the two fitting functions (10 models), the 

correlations ranged from −0.528 to −0.416 (mean =	−0.4793, std = 	0.0463).  

We also ran this same analysis for the 2D search of the microcalcification (Figure 4.4.a, 

right). Like the microcalcification 3D search, we observed a strong negative linear relationship 

between these two variables (𝑟 = −0.692, 𝑝 = 0.003). Furthermore, considering the range 

of AUC thresholds and two fitting functions, the correlations spanned from -0.692 to -0.607 

(mean = -0.6624, std equals . 0286). However, caution should be taken in interpreting the 

strength of this negative linear relationship because one participant was an outlier (Figure 

4.4.a, right, top left corner). Removing this person from the analysis produced a correlation of 

−0.373 (𝑝 = 0.171) at an AUC threshold of 0.82 for the half-gaussian fitting function. 

We ran the same analysis for the mass signal in the 2D and 3D searches to understand if 

this relationship holds across both small and large signals. For the mass 3D search (Figure 

4.4.b, middle right), we observed a positive linear relationship between the mean PAC with 
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the PUFOV on signal-absent trials without the CNN-CADe and the change in AUC between 

searching with versus without the CNN-CADe. However, this relationship was not 

statistically significant (𝑟 = 0.370, 𝑝 = 0.175). Correlations ranged from 0.185 to 0.448 

(mean = 	0.3302, std = 	0.075). For the mass 2D search (Figure 4.4.b, right), we observed a 

negative linear relationship between these two dependent variables, but this relationship was 

also not significant (𝑟 = −0.226, 𝑝 = 0.419). Here, the correlations ranged from −0.226 to 

−0.114 (mean =	−0.169, std = 	0.047).  

4.5. Discussion 

Our main objectives in this experiment were to assess 1) how the benefits of the CNN-

CADe vary across 2D and 3D searches and 2) how the support system interacts with the size 

of the searched signal across these two imaging modalities. Our results show that the CNN-

CADe brings about added benefits for the 3D search of small signals, and to a lesser extent, 

it improves the 2D search of large signals. To better understand this nuanced interaction, we 

quantified how much the CNN-CADe mitigated the microcalcification and mass search and 

recognition errors across the 2D and 3D modalities.  

For example, at the outset, we hypothesized that the CNN-CADe provides unique 

benefits to the 3D search of the small microcalcification signal by guiding an observer’s eye 

movements to suspicious locations cued by the model observer, effectively reducing search 

errors. Recall search errors result from the interaction between under-exploring the 3D 

volumetric data with eye movements and having low detectability of the microcalcification 

signal in the visual periphery (Lago et al., 2017, 2018, 2019; Lago, Jonnalagadda, et al., 

2021). Conversely, when searching for the microcalcification signal in 2D, it is relatively 
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easy to direct one’s center of gaze to most regions of the DBT slice in a time-efficient 

manner. Thus, we predicted that the benefit of the CNN-CADe would be less pronounced in 

this case because extra-foveal processing would have a diminished influence on search 

errors. Indeed, our results show that the CNN-CADe markedly reduced search errors in 3D 

but not in 2D (Figure 4.3.a). These results are commensurate with the fact that the CNN-

CADe induced a significant increase in 3D search AUC but only a marginal improvement in 

2D search AUC (Figure 4.2.a). Moreover, the difference in AUC for the 3D search was 

significantly higher than in the 2D search.   

We can ascertain that the participants relied heavily on the marked locations made by the 

CNN-CADe when searching for the microcalcification signal because not only did the 

search error rate decrease when the model output was available, but participants, on average, 

explored less with eye movements (Figure 4.3.b). They also searched for a shorter period 

when the cued locations were available (Figure 4.3.c). Thus, if an observer adopts a search 

strategy focusing on visually inspecting the cued locations and the cues are highly accurate, 

we expect observers to explore less and for a shorter duration while maintaining high 

sensitivity and specificity (Deza et al., 2019). These findings highlight the importance of 

having an accurate auxiliary aid when performing life-critical tasks such as early cancer 

screening. Prior work has shown that inaccurate CADe systems can increase misses because 

observers explore less of the search space with eye movements when it is made available to 

them (Drew et al., 2012), a possible consequence of automation bias or overreliance on the 

machine (Alberdi et al., 2004). This effect can be particularly pernicious as 3D imaging 

modalities become the standard of care for breast cancer detection. 
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Our second hypothesis posited that the CNN-CADe would benefit the detection of the 

mass signal in 2D to a greater extent than in 3D. The mass signal is more detectable in the 

visual periphery than the microcalcification signal (Figure 4.4.a, left versus Figure 4.4.b, 

left), and it spans many more slices in 3D than the microcalcification signal. Thus, more 

signal information in 3D can be integrated. However, in 2D, the simulated glandular and 

adipose tissue in the DBT slice can obfuscate or visually mask the mass signal (Mello-

Thoms et al., 2003, 2005). The signal profile is dominated by low spatial frequency 

information, and there is high energy at low spatial frequencies in the noise power spectrum 

of the DBT phantom slice (L. Chen et al., 2012). In sum, we expect more recognition errors 

and false positives in 2D than in 3D, and the CNN-CADe should mitigate these 2D errors. 

Our results partially align with this hypothesis because the CNN-CADe improved the 

overall search AUC for the mass in 2D but not in 3D (Figure 4.2.a). However, the 

improvement in 2D was not significantly greater than in 3D. Despite observing a significant 

improvement in AUC for the 2D search with the CNN-CADe, we did not find a significant 

reduction in false alarms (Figure 4.2.b, bottom right) or recognition errors (Figure 4.3.d, 

right). Interestingly, observers explored less of the 2D DBT slice with the CADe available 

(Figure 4.3.e) but did not spend significantly less time searching (Figure 4.3.f). One 

interpretation is that in the presence of a “second opinion,” participants spent more time 

scrutinizing only the cued locations. 

An important finding from this work is the considerable inter-observer variability in the 

benefits of the CNN-CADe on 3D search for small signals. Moreover, this variability can be 

related to an observer’s exploration behaviors, quantified via the PUFOV. This claim is 

realized by our analysis of individual differences (Figure 4.4.a, middle right), which 
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demonstrates a negative correlation between the change in AUC when searching with the 

CADe (versus without it) and the mean proportion of the search area covered with the 

PUFOV on signal-absent trials with no CNN-CADe. This finding suggests that those who 

explored less of the 3D DBT phantom benefited the most from the cued locations. 

Additionally, our PUFOV construct considers the peripheral detectability of the 

microcalcification signal. Therefore, if an observer makes many eye movements during the 

search but has poor peripheral detectability, they should still benefit from the CNN-CADe 

because their poor peripheral vision will reduce their effective eye movement exploration.  

On the other hand, we did not observe a significant correlation between the PAC with 

the PUFOV and the change in AUC when participants searched for the mass signal in 2D or 

3D (Figure 4.4.b, middle right and right). The detection of the mass signal, with signal 

location uncertainty, is noise-limited (Burgess et al., 2001). That is, observers should not be 

influenced by extra-foveal processing and eye movement exploration but rather by signal 

contrast and how this attribute interacts with the anatomical noise embedded in the DBT 

phantom. In this regard, properly placed CADe prompts on suspicious locations scrutinized 

by the observer may induce increased confidence in their decision because the model 

reassures the observer’s initial suspicion. 

Our study has inherent limitations worth enumerating to help contextualize our results 

within the broader medical imaging field. First, we utilized trained human observers as 

opposed to radiologists. Given the data-intensive nature of our experiment, we opted to run 

non-expert observers because it allowed us to run many trials while collecting eye-tracking 

data. As a consequence, the external validity of our findings may be limited in scope 

because expertise mediates observer performance (Nodine & Mello-Thoms, 2000; Waite et 
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al., 2019). Despite differences in performance due to expertise, studies have shown how 

bottlenecks and properties of the visual system common to naïve and radiologist observers 

(Krupinski, 2010) result in similar effects across the two cohorts (M. Eckstein et al., 2003; 

Lago, Jonnalagadda, et al., 2021; Wolfe et al., 2016). For instance, (Lago, Jonnalagadda, et 

al., 2021) demonstrated that trained human observers and radiologists are similarly 

susceptible to making search errors when tasked to find microcalcification-like signals in 3D 

volumetric images. This finding can be explained by the neurophysiological constraints of 

the human visual system rather than expertise. Hence, we would expect a CNN-CADe 

system to aid the detection of microcalcifications in DBT volumes within a clinical setting.  

Another limitation of our study concerns how our 3D search task differs from how 3D 

volumetric images are interpreted in a clinical setting.  When radiologists interpret DBT 

data, they have available either a 2D mammogram or a 2D synthetic (2D-S) view generated 

from the DBT data. Prior work has demonstrated how a 2D-S can guide eye movements in 

3D and thus mitigate search errors (D. S. Klein et al., 2023). Therefore, the presentation of 

CADe prompts may provide redundant information that can otherwise be extrapolated from 

the 2D-S. The CNN-CADe may only provide radiologists with little additional benefit 

beyond a reduction in reading time (Uematsu et al., 2023). 

The signals used in our study pose additional caps on the external validity of our 

findings. First, observers knew which signal to search for at the outset of every trial. 

However, radiologists are not privy to this information in practice—there is signal 

uncertainty. Therefore, radiologists must maintain multiple signal templates in memory 

while examining medical images. Second, microcalcifications often appear in clusters. 

However, here, we had observers search for a single microcalcification. However, prior 
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work has shown that microcalcification clusters have low peripheral detectability (Lago, 

Sechopoulos, et al., 2020). Our results suggest that the benefits of the CNN-CADe in 3D 

search may extend to microcalcification clusters. Third, there are signals radiologists screen 

for indicative of malignant lesions, particularly architectural distortions, that were not 

investigated in this study. Despite the differences between our experimental design and what 

is observed in clinical practice, future studies with radiologists (or radiology residents) can 

measure their peripheral detectability of various signals and quantify how much they explore 

3D volumetric images with eye movements. Our work provides specific predictions about 

how a CNN-CADe would benefit the 3D search with those measurements in hand. 

Lastly, cognitive factors such as fatigue (Reiner & Krupinski, 2012) and criterion shifts 

that arise from low target prevalence rates in cancer screenings (Wolfe et al., 2007) might 

interact with the search effects in this study. Similarly, our study included one signal per 

case, not addressing instances with multiple lesions, often leading to the satisfaction of 

search (Berbaum et al., 1990; Fleck et al., 2010; Tuddenham, 1962).    

4.6. Conclusion 

Recent advances in artificial intelligence-based computer-aided detection algorithms can 

improve human observer search performance in 3D volumetric medical images where 

interpretation time and effort far exceed the visual examination of 2D medical images. Our 

study suggests that CNN-CADe brings about greater performance benefits to the 3D search 

of small signals (vs. 2D search) by reducing search errors caused by the under-exploration of 

the volumetric data. Our proposed methodology for measuring observer 3D search under 

exploration has the potential to identify individuals who would benefit the most from the 

CNN-CADe support system. 
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V. More than meets the (single) eye: the greater benefits 

of group decision-making for visual search in large 3D 

volumetric medical images 

5.1. Abstract 

The hallmark of a group's collective intelligence is its superior decision-making performance 

compared to the average performance of groups. This longstanding and replicable 

phenomenon across various perceptual tasks is reflected in the fact that certain countries 

require independent double reading for early cancer screening. Interpreting medical images 

is difficult, causing considerable variability in radiologists' performance, but it is often the 

case that two heads are better than one. Compounding the task's difficulty is that radiologists 

are beginning to visually scrutinize large 3D volumetric medical images instead of more 

traditional 2D displays. An interaction between eye movement under-exploration of the 3D 

data and the foveated nature of the human visual system can cause trained observers and 

radiologists to miss small lesions that are hard to detect in the visual periphery. To test the 

theoretical benefits of wisdom of crowds for 3D imaging modalities, twelve trained 

observers (Experiment 1) searched through Digital Breast Tomosynthesis (DBT) phantoms 

(3D search) and single slices of the DBT phantoms (2D search) for a small 

microcalcification signal and large mass signal. We show that a simple averaging of group 

member's confidence scores and an asymmetric maximum-confidence slating rule, which 
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changes the majority’s decision if at least one member provides the highest signal-present 

confidence rating, boosts the group’s performance to a greater extent than (1) a majority 

vote decision rule and (2) the mean performance of the group. Moreover, we identify that 

these signatures of the wisdom of crowds for visual search tasks are uniquely enhanced for 

detecting the microcalcification in the 3D DBT phantoms, suggesting that the group can 

counteract the decrement in individual search performance caused by under-exploration. In 

Experiment 2, twelve radiologists searched for the microcalcification and mass signals in the 

3D DBT phantoms. We show that the expected benefits of group decision-making for 3D 

search generalize across expertise levels. In particular, the average and majority vote with 

exception pooling models outperform the majority vote rule. These findings provide new 

theoretical insight into the collective intelligence of groups for complex visual search tasks 

such as interpreting large 3D volumetric images. 

 

5.2. Introduction 

Many societally important actions, from jury verdicts (Tiley, 1969) to financial 

forecasting (H. Chen et al., 2014) to early cancer screening (Taylor-Phillips & Stinton, 

2019a), rely on decisions as a group or by comparing independent judgments between 

individuals. Group decisions are commonly formulated by taking a majority vote across 

binary choices or computing a weighted average over numerical estimates. Group decision-

making can often attain higher performance relative to its members—including the group’s 

best performer—in several perceptual tasks such as estimation (Galton, 1907; Merkle & 

Steyvers, 2011), prediction (Hueffer et al., 2013; Kattan et al., 2016), and detection 

(Brennan et al., 2019; Kurvers et al., 2016; Wolf et al., 2015). This benefit of aggregating 
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individual judgments, colloquially referred to as the Wisdom of Crowds effect, presupposes 

a diverse set of individuals whose judgments are independent of one another (Surowiecki, 

2005).   

There has been a long history of trying to understand the upper bound (optimal) of the 

task-accuracy benefits that arise from aggregating judgments. Classic work has utilized 

Signal Detection Theory (SDT) to make upper-bound predictions for detection and 

classification tasks (Green, 1966; Green & Swets, 1989; Sorkin & Dai, 1994). SDT models 

assume each individual’s judgment on a trial is based on an internal variable sampled from 

one of two normal distributions (binormal model), one for the signal-absent trials and 

another with a higher mean for the signal-present trials. Each individual’s sensitivity is 

described by the distance between the two distribution means in standard deviation units 

(𝑑W). This modeling framework has been successful at explaining how the group 

outperforms its members in simple perceptual tasks ranging from visual search (M. P. 

Eckstein et al., 2012; Juni & Eckstein, 2017; Saha Roy et al., 2021) to discriminating ruler-

like stimuli (Sorkin et al., 1998, 2001) and for explaining how the majority vote rule often 

approximates the optimal combination rule.  

But does this modeling framework correspond to all decision-making circumstances that 

groups might encounter? The classic SDT model assumes that individuals with high or low 

𝑑W are well-described by their two associated normal distributions (and 𝑑W) for every 

trial/decision. In practice, there are tasks in which, from decision to decision (trial to trial), 

the probability of making a correct response (and 𝑑W) might vary—the individual might have 

a higher probability of making a correct decision in some trials and a lower probability in 

other trials depending on the circumstances (Prelec et al., 2017). Consequently, from the 
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group’s perspective, the individual with the highest probability of a correct decision (𝑑W) 

might vary from trial to trial. Studies have shown that these scenarios result in greater 

accuracy benefits from pooling individual judgments (Juni & Eckstein, 2015) and group 

decisions (Juni & Eckstein, 2017). In addition, the commonly deployed and usually effective 

majority vote rule (Hastie & Kameda, 2005) can become highly suboptimal or even perform 

worse than an averaging of judgments. These effects can be captured by an extended SDT 

model (SDTmix) that assumes, for each individual, a sampling of an internal variable from a 

mixture of normal distributions on a trial-by-trail basis (Juni & Eckstein, 2017). 

What real-world situations might lead to these circumstances? One example would 

involve a panel that is given a battery of questions spanning multiple knowledge domains 

and a scenario in which, from decision to decision, a varying minority of panelists often 

have high expertise and express very high confidence in their decision. Another example is 

visual search, in which observers try to find a target in a large image in a limited time. In 

such searches, a target may be difficult to see in the visual periphery, and the limited search 

time may preclude the observer from exhaustively exploring each image region with eye 

movements. Consequently, an observer will only fixate the target on a subset of trials 

depending on their particular eye movement scan path, which will, in turn, impact their trial-

to-trial d’. At the group level, a different individual on each trial will have the highest 

probability of target detection (Juni & Eckstein, 2017).    

What remains unknown is whether any real-world scenarios might also show these 

greater benefits of the wisdom of crowds. In medical image perception, radiologists are 

tasked with searching through images to screen for early signs of cancer. Moreover, 

radiologists are now visually scrutinizing large volumetric images produced by 3D imaging 
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modalities (Health, 2023; Smith-Bindman et al., 2008; Williams & Drew, 2019). Several 

eye-tracking studies with both radiologists and trained human observers have shown that 

humans fail to exhaustively scan with eye movements the large set of cross-sectional slices 

that constitute a 3D volumetric image (Drew, Vo, Olwal, et al., 2013; Lago, Jonnalagadda, 

et al., 2021; Rubin et al., 2015). In the case of breast cancer screening, small 

microcalcification signals are hard to detect in the visual periphery (Lago, Sechopoulos, et 

al., 2020) and can often go undetected during 3D search due to eye movement under-

exploration (D. S. Klein et al., 2023; Lago, Abbey, et al., 2020; Lago, Jonnalagadda, et al., 

2021). Taken together, 3D visual search for small microcalcification signals satisfies two 

preconditions enumerated by SDTmix—low peripheral target detectability and low eye 

movement coverage of the image—warranting further investigation as to whether or not the 

expected benefits of group decision-making extend to this type of real-world visual search 

task. 

In this study, we ask the following questions. What are the quantitative performance 

benefits of group decision-making in 3D search? Do these benefits depend on the type of 

signal (small or large) observers are tasked with looking for? Are these performance benefits 

similar to what would be expected in traditional 2D search tasks? Moreover, how do 

different decision rules or pooling algorithms compare in 2D and 3D searches? 

To answer these questions, in experiment 1, trained naïve observers searched with no 

time constraints through 3D digital breast tomosynthesis (DBT) phantoms (3D search) and 

single slices of the DBT phantoms (2D search) for a small microcalcification-like signal and 

a large mass-like signal. We also measured each observer’s peripheral detectability of the 

two signals using a forced-fixation yes/no detection task with the signals placed at 5 degrees 
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of visual eccentricity from a fixation point. Search performance and eye movement 

exploration were quantified for all four search tasks and considered with the peripheral 

detection task to ascertain whether the two preconditions in SDTmix were met. 

Next, the relative efficiencies of three pooling algorithms were computed for group sizes 

ranging from 2-9 members in all four search tasks. The relative efficiency is defined as the 

squared ratio in 𝑑W between a pooling algorithm (numerator) and a statistically optimal 

decision maker (denominator) (Tanner Jr & Birdsall, 1958). Under the statistically 

independent model of observers, an upper bound in performance benefits of pooling 

judgments across group members is determined by the sensitivity of the ideal group—a 

hypothetical, statistically optimal group—which can be computed by optimally integrating 

the individual 𝑑W estimates for each group member (Sorkin & Dai, 1994). 

The pooling models we investigated in this work are the average (AVG), majority vote 

(MAJ), and majority vote with exception (MAJe). The last algorithm was included because 

it implicitly captures the notion of sampling from a mixture of Gaussians on a trial-by-trial 

basis described in the SDTmix framework. Relative efficiencies for each algorithm were 

contrasted across the four searches. We also quantified differences in relative efficiencies 

between search tasks for a given pooling method.  

In a second experiment, radiologists performed the 3D search for the same small and 

large signals on a subset of the stimuli the naïve observers saw in Experiment 1. The same 

group decision-making analyses were performed on the radiologists to determine if our 

results generalize across expertise levels. 

Based on this experimental framework, we hypothesize that the AVG and MAJe, but not 

the MAJ pooling algorithm, will incur the expected benefit predicted by SDTmix for the 
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small microcalcification signal in the 3D search. In particular, we predict that the relative 

efficiencies of these two pooling methods should be higher than the MAJ pooling method. 

Additionally, we hypothesize that the expected performance benefits of the AVG and MAJe 

pooling algorithms will be higher in the 3D search of the microcalcification signal than in 

the analogous 2D search for the same signal. Thus, we predict that the relative efficiencies in 

the 3D search will be higher than in the 2D search for these two pooling models.  

The large mass-like signal is more detectable in the visual periphery than the small 

microcalcification signal. Therefore, we hypothesize that predictions outlined in the 

SDTmix framework will not apply to the 3D search of the mass signal. Specifically, we 

predict that the relative efficiencies across the three pooling algorithms will be similar. 

Similarly, for a given pooling method, we expect no differences in relative efficiency across 

the 2D and 3D searches for the mass signal.  

5.3. Experiment 1 

 5.3.1. Methods 

Participants 

Twelve undergraduate students (58% female, age range 18-22) from the University of 

California, Santa Barbara, were recruited for this experiment. All twelve observers provided 

informed written consent (protocol # 12-23-0301) and received course credit for 

participation. All observers maintained normal or corrected-to-normal vision throughout the 

duration of the experiment.  

Apparatus 

Participants viewed stimuli in a darkened room (2 lux) on a medical grade grayscale 5.8 

MP DICOM monitor (MDNG-6121 Barco) with a screen resolution of 2096x2800 pixels. 
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The refresh rate was 24 Hz, and the screen dimensions were 325x430 mm (x, y). 

Participants sat at a viewing distance of 750 mm, which translates to 45 pixels per degree of 

visual angle (dva). An eye tracker (SR Research Eyelink Desktop Mount) was positioned 

600 mm from the chinrest and sampled the participant’s gaze position at 2000 Hz. Before 

the experiment began, participants needed to pass a 9-point calibration and validation 

procedure with an average error during validation of less than 1 dva and a max error of less 

than 1.5 dva across the nine tested points on the grid. Fixation events and Saccades were 

collected using velocity and acceleration thresholds of 30 deg/s and 9,500 deg/s2, 

respectively. The experiment was designed in PsychoPy (Peirce et al., 2019), a Python 

programming package utilized for psychophysics. 

Stimuli  

Phantoms. The current study focused on detecting cancer-like lesions embedded in 3D 

DBT phantoms and 2D slices of the corresponding 3D phantoms. The OpenVCT virtual 

breast imaging software (Bakic et al., 2018; Pokrajac et al., 2012; Predrag R. Bakic, 2017) 

enabled us to simulate the spatial structure and relationship of anatomical tissues like the 

skin, Cooper’s ligaments, and adipose and glandular tissue (prevalence of 15%-25%) which 

are visible in actual DBT volumes. Each 700 ml simulated phantom was compressed in the 

mediolateral direction at 6.33 mm thickness, and the reconstruction parameters were chosen 

for 100 𝜇m in-plane resolution and 1 mm depth sampling. The resultant 3D voxel arrays 

were of size 822x2048x64, and each voxel was stored as an unsigned 16-bit integer. We 

windowed each voxel between 5066 and 16907 and then linearly rescaled the values to 

conform to the requirements for the display software. A single 3D voxel array was stratified 

into 64 cross-sectional slices. Each slice was a 2D image that subtended 18.3x45.5 dva 
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(822x2048 pixels). In total, 160 DBT phantoms were utilized in the search tasks described 

below. 

Signals. The OpenVCT software allowed us to insert lesions at random (x, y, z) 

locations within the confines of the DBT tissue but not near the edges of the stimulus. This 

was done before windowing and rescaling. There were two lesions: one mass-like lesion and 

one microcalcification-like lesion. The mass was modeled as a combination of multiple 3D 

ellipsoids with an average diameter of 7 mm. The density of the lesion decreased gradually 

away from the object's centroid. As a result, its geometric profile blended with the 

anatomical background surrounding it, losing contrast towards the object's edges. The signal 

spanned across multiple cross-sectional slices but generally was only visible within +- 10 

slices in either direction from its center z-coordinate. The microcalcification signal was 

modeled as a solid sphere with a 0.3 mm diameter and spanned 7 slices in the z dimension. 

It appeared on a single cross-sectional slice as a high-contrast rod-like “pixel.” 

In the following subsections, we use the term “central slice.” The central slice should not 

be confused with the 32nd cross-sectional slice in the DBT volume. The central slice refers to 

1 of the 64 cross-sectional slices on which a signal was inserted into the 3D DBT volume. It 

is a planar view of the centroid of the signal in 3D and provides the most visual evidence 

(highest signal contrast) of the signal. For example, if the microcalcification signal were 

inserted into the DBT volume on the 44th slice at a particular (x, y) coordinate, it would be 

visible on only the slices ranging from 41 to 47, and the central slice would be 44. There is 

no central slice for signal-absent DBT phantoms that do not contain either signal.     
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Figure 5.1. Trial flow diagram for the 3D and 2D search tasks. a) Depiction of a mass-present 3D search 
practice trial. From left to right, the participant was first notified which signal to look for. Next, a fixation 
cross would appear on the screen at a random location, and the participant needed to fixate on the cross for 1 
second before proceeding to the image stimulus presentation portion of the trial. The fixation cross here is 
white for display purposes only. Once the image stimulus appeared on the screen, the participant could 
scroll through different slices. We display 5 of 64 slices, two above and two below the central slice. After 
completing the search portion of the trial, the participant had to indicate their confidence in the presence or 
absence of the signal. Lastly, they were presented with the central slice of the DBT volume that contained 
the signal. A fiducial marker was placed around the signal to inform the participant of its (x, y) location. b) 
Depiction of a microcalcification-present 2D search practice trial. From left to right, the participant 
encountered the same sequence of events in the 2D trial as in the 3D trial. However, only one cross-sectional 
slice was shown to the observer when the image stimulus appeared on the screen. 

 

Search tasks 

Overview. Participants performed a yes/no localization task. This was a 2x2 within-

subjects experimental design. The first factor was imaging modality, which had two levels: 

3D search and 2D search. The second factor was the signal type, with two levels: 

microcalcification and mass. The first factor was blocked and counterbalanced across 

participants—half the participants completed the 3D search task before completing the 2D 

search task, and the other half completed the 2D search task before completing the 3D 

search task. The signal type was intermixed within each block so that observers would look 
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for the mass signal or the microcalcification signal on any given trial, but not both 

simultaneously.  

Each person completed 160 trials per experimental block, totaling 320 trials. Within a 

block, 80 trials contained one of the two signals but not both. The other 80 trials contained 

neither signal (i.e., 50% target prevalence). In other words, the participants saw 40 

microcalcification-present, 40 microcalcification-absent, 40 mass-present, and 40 mass-

absent trials. The trial presentation order was randomized across signal type and ground 

truth status. 

Each experimental block was broken into 16 mini-blocks, with ten trials per mini-block 

to avoid fatigue effects. Participants were encouraged to take short breaks between mini-

blocks and complete as many as possible within a 2-hour session. The 3D search task 

required multiple 2-hour sessions across several days, 4-5 days on average. The 2D search 

task also required multiple 2-hour sessions, but participants completed all trials over two 

days, on average. Below, we provide a complete description of the trial flow of the 3D and 

2D searches. 

3D search. Figure 5.1.a depicts the general task procedure for a single trial in the 3D 

search condition. At the beginning of each trial, a cropped 2D image (64x64 pixels) 

corresponding to the central slice of one of the two signals was displayed to the participant 

(Figure 5.1.a, left). Additional instruction text was also present on the screen. After pressing 

the spacebar key to acknowledge they needed to look for that signal, a black fixation cross 

appeared at a random location on top of a neutral gray background (Figure 5.1.a, middle 

left). Participants were required to stare at the fixation cross for 1 second to proceed to the 

search component of the trial. We included this procedure to ensure that the eye tracker was 
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adequately calibrated at the beginning of each trial (i.e., custom drift check). Participants 

were allowed to recalibrate the eye tracker during this trial phase if needed. 

After successfully staring at the cross for 1 second, the image stimulus would appear on 

the screen. Given the 3D nature of the DBT image data (Figure 5.1.a, middle), participants 

did not see the entirety of the stimulus at once. Instead, they viewed a single cross-sectional 

slice of the 3D volume at a time on the computer monitor. In total, 64 slices required visual 

inspection. Participants would begin the search by inspecting the slice at the top of the 

image stack. They could freely scroll back and forth through all 64 slices, at their own pace, 

by manipulating the mouse scroll wheel. They had unlimited time to perform the search. 

In addition to the image stimulus, the monitor screen displayed a slice index tracker, the 

2D cropped image of the signal they needed to look for, and a custom-designed widget 

scroll bar. These features are shown in Figure 5.1.a, middle. The slice index tracker and 2D 

cropped image of the signal were displayed above the image stimulus. The slice index 

tracker indicated to the participant which of the 64 images was currently being displayed on 

the monitor. The 2D cropped image reminded participants which signal they needed to look 

for. The scroll bar appeared to the right of the image stimulus. The scroll bar tracked the 

slice number and visually indicated where the participant was currently searching in the 3rd 

spatial dimension. It consisted of a horizontal bar superimposed on top of a vertical bar. The 

vertical position of the horizontal bar moved in concert with the slice index tracker as the 

participant scrolled through the 3D volume. Participants could also click on the vertical line 

of the scroll bar to jump across slices. For instance, if they were on slice 64 and wanted to 

return to the top of the image stack, they could click the top of the scroll bar to return to slice 

1. 
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Participants had two options to end the search. If they found the signal, they had to click 

on the image stimulus at the (x, y) location where they believed the signal was present. 

Moreover, they had to navigate to the slice that provided them with the most visual evidence 

of its presence, presumably the central slice. Once they clicked on a location, a circle would 

appear at the marked area for visual confirmation. They were allowed to remove clicks or 

click at another location but were instructed to mark at most one location per trial. 

Afterward, they would press the spacebar to end the search portion of the trial. If they did 

not find the signal on the trial, they did not click anywhere and pressed the spacebar to end 

the search. 

Next, participants had to rate their confidence in their decision on a scale of 1-8 (Figure 

5.1.a, middle right). Confidence ratings of 1-4 mapped to signal-absent decisions. A rating 

of 1 represented the highest confidence that the signal was absent, and a rating of 4 

represented the lowest confidence that the signal was absent. Conversely, a rating of 5 

denoted the lowest confidence that the signal was present, and a rating of 8 indicated the 

highest confidence in their decision that the signal was present. After entering their 

confidence score, the subsequent trial would begin. 

Before starting the experimental trials, participants completed 80 practice trials to 

familiarize themselves with the task. There were 20 microcalcification-present, 20 

microcalcification-absent, 20 mass-present, and 20 mass-absent trials. The 80 DBT 

phantoms utilized here were from a different set of phantoms than the ones used in the 

experimental block. The practice trials followed the same procedure described above but 

with the addition of feedback at the end of each trial. The central slice was displayed at the 

end of signal-present trials (Figure 5.1.a, right). A fiducial marker was placed around the 
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signal to signify its (x, y) position. Text was also present above the image stimulus, denoting 

the central slice to inform participants where the signal was placed in the 3rd spatial 

dimension. If participants clicked on the trial, a circle was also overlaid on top of the image 

stimulus where they clicked so that they could visually correspond where they clicked with 

respect to the location of the signal. If the ground truth state was signal-absent, the text 

“ABSENT” was displayed on a gray background, and no image was presented. Participants 

had unlimited time to view the feedback. 

2D search. Each image stimulus in this task corresponded to a single slice from one of 

the 160 DBT volumes used in the 3D search task. For the 80 signal-present stimuli, the 

central slices of the 80 DBT volumes were selected. The 32nd slice was chosen from the 80 

signal-absent DBT phantoms for signal-absent stimuli. 

We opted to use slices from the 3D DBT volumes for the 2D search task to isolate the 

effects of 2D versus 3D search on task performance. If we had chosen to use 2D 

mammogram phantoms instead, then the image statistics for this set of stimuli would differ 

from the image statistics of the cross-sectional slices in the 3D DBT phantoms (L. Chen et 

al., 2012), which could confound our analyses. This is mainly due to the image acquisition 

parameters and image reconstruction algorithms differing across 2D and 3D imaging 

modalities (Sechopoulos, 2013).  

The trial procedure for the 2D search task, as shown in Figure 5.1.b, mirrored the steps 

for a trial in the 3D search task (e.g., specifying the signal to be looked for at the beginning, 

fixation cross to ensure proper eye tracker calibration, etc.). The main difference between 

the two tasks is the presentation of the image stimulus. For a 2D search trial, only a single 

image stimulus was presented to the participant, as shown in Figure 5.1.b, middle. Scrolling 
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was disabled, and no slice index tracker or custom scroll bar was present on the computer 

screen. All other aspects of the trial were consistent with a 3D search trial.  

Participants completed 80 practice trials before beginning the 2D search experimental 

blocks. Again, we extracted 80 slices from the 80 DBT stimuli utilized in the 3D search 

practice blocks. Practice trials were broken up into eight 10-trial blocks. 

Peripheral detectability task 

Upon completion of the two experimental blocks described above, observers partook in a 

forced-fixation yes/no location-known-exactly detection task with the objective being to 

measure how well participants could detect each signal in their visual periphery (Lago, 

Sechopoulos, et al., 2020). Overall, there were 800 trials broken into two 2-hour sessions. 

All 800 stimuli were selected from a separate set of DBT phantoms than the ones used in the 

2D/3D search tasks. The signal type was blocked in this task. Each block contained 400 

trials. Half of the stimuli contained one kind of signal within a block, and the other half 

contained no signal. All stimuli were 2D slices of the 3D DBT phantoms. Signal-present 

stimuli corresponded to the signal’s central slice within the DBT, like the 2D search task. 

Signal-absent stimuli were slices selected from the DBT phantoms that contained neither 

signal. 

At the beginning of each trial, a black fixation cross and a black fiducial marker 

appeared on a gray background. The fixation cross was at the center of the screen, and the 

fiduciary marker was placed at a distance of 5 dva from the center of the fixation cross. The 

marker served as a visual cue that informed participants to covertly attend to that location 

before the stimulus would appear on the screen. The signal, if present, would always appear 

at that marked location. The five dva distance was chosen to prevent ceiling and floor effects 
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(i.e., perfect performance and chance performance, respectively). The marker could appear 

to the left or right, above or below the fixation cross. Placing the marker along the cardinal 

axes allowed us to account for anisotropies in visual processing across the vertical and 

horizontal meridians in the visual field (Abrams et al., 2012).  

After staring at the fixation cross for 1 second, the image stimulus would appear on the 

screen for 200 ms. The fiducial marker was superimposed on the image stimulus, but the 

fixation cross was absent. Participants were instructed not to move their eyes. If they did, the 

trial would abort, and a “broken fixation” message would appear on the screen. (In this case, 

the trial would end, and participants would see the stimulus in a later trial). After viewing 

the stimulus, participants had to rate their confidence that the signal was present or absent at 

the cued location. We used the same rating scale as in the search tasks (i.e., ratings 1-8). 

Ground truth status was randomized across trials, and participants were informed that there 

was a 50% chance that the signal would be present at the cued location during any given 

trial. 

Individual search performance measures and statistical analyses 

Overview of dependent variables for 2D/3D search and peripheral detectability. We 

analyzed the area under the receiver operating curve (AUC), recognition errors, search 

errors, and the search area covered by the Useful Field of View (UFOV) to characterize 

observer performance across the 2D and 3D searches for both the microcalcification and 

mass signals (4 conditions). Lastly, we computed the AUC from the forced-fixation 

experiment to assess the peripheral detectability of each signal. Together, these analyses will 

provide the backdrop for explaining the expected benefits of the pooling algorithm in each 

of the four search conditions. 
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AUC. We first constructed a ROC curve using the rating scale (1-8) data for each 

participant in all four search conditions. We calculated the empirical area under the ROC 

curve using the trapezoidal method and then averaged AUCs across participants. Statistical 

significance was assessed for four pairwise comparisons: 2D-microcalcification vs. 2D-

mass, 3D- microcalcification vs. 3D-mass, 2D-microcalcification vs. 3D-microcalcification, 

and 2D-mass vs. 3D-mass.  

Recognition errors. Recognition and search errors are standard metrics for assessing 

human observer search performance in medical image perception tasks (Drew, Vo, Olwal, et 

al., 2013; Krupinski, 1996; Kundel et al., 1978; Lago, Jonnalagadda, et al., 2021). In our 

study, recognition errors occurred when a participant made a miss (rating < 5) and fixated on 

the signal during the trial at least once, regardless of the fixation duration. For the 2D search 

task, a fixation on the signal event occurred when the center of gaze position was at a 

distance less than or equal to 2.5 dva from the signal’s centroid (x, y) coordinate. For the 3D 

search task, each signal spanned across multiple consecutive slices (i.e., they were visible on 

+- N slices from the central slice). Therefore, staring at the signal in 3D required the 

condition above and the concurrent slice where the fixation was recorded within N slices 

from the signal’s central slice. For the microcalcification signal, N was set to 3. For the mass 

signal, N was set to 10. Recognition errors were tallied separately for each participant in the 

four conditions. The counts were divided by the total number of signal-present trials in a 

condition (40) to produce a recognition error rate (RER). 

Search errors. Search errors were defined as the complement set of false negative 

responses. Participants did not fixate on the signal during the search and reported it absent. 

Search errors were also converted into rates (SER) by dividing the counts by 40. Together, 
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recognition errors, search errors, and hits summed to 40. Statistical significance for RER and 

SER were evaluated for the exact four pairwise comparisons as the AUC (8 comparisons in 

total across the two dependent variables). 

UFOV coverage. The proportion of search area covered by the UFOV quantitatively 

measures how much participants explored with eye movements during the trial. This is an 

essential measure for this study because it allows us to ascertain whether human observers 

exhaustively scanned the search arrays, the second precondition outlined in the SDTmix 

framework. 

For each recorded fixation in a trial, a circle with a radius of 2.5 dva was painted onto a 

binarized mask of a single slice of the DBT volume. Pixel values corresponding to the 

phantom tissue were converted to 1, and all background pixels were converted to 0. For the 

3D search, if a participant fixated at one location and then proceeded to scroll through the 

slices, the circle was painted at that (x, y) location on each slice visited during the fixation. 

We calculated the union set of pixels covered by the UFOV and divided this count by the 

total number of pixels that comprised the binarized mask of either the 2D slice (2D search) 

or 3D volume (3D search). This procedure was done for all signal-present and all signal-

absent trials, and the mean proportion of area covered was computed across all participants 

for each of the four conditions. Statistical significance was determined for all four pairwise 

comparisons discussed above. 

Peripheral detectability. The other precondition in the SDTmix framework was a 

signal’s peripheral detectability. Precisely, the signal’s detectability needed to degrade 

rapidly as a function of retinal eccentricity. 
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The rating data from the 400 microcalcification and 400 mass trials per observer in the 

forced-fixation experiment were used to construct ROC curves. AUC was computed in the 

same manner as for the search task. Statistical significance was assessed between the two 

signals (1 pairwise comparison). One participant chose not to complete the mass peripheral 

detection block, and we omitted them from this analysis. 

Statistical tests. We utilized a non-parametric bootstrap resampling procedure to obtain 

p-values for each pairwise comparison. First, we sampled, with replacement, stimuli (while 

maintaining 50% target-prevalence) and then participants. This was repeated 3,000 times. 

For each bootstrap iteration, we computed the mean AUC, mean RER, etc., for each of the 

four conditions. For a given dependent variable and pairwise comparison, we took 

difference scores across the 3,000 bootstraps. We counted the number of bootstrap 

difference scores more extreme than 0. We divided this count by 3,000 and multiplied the 

proportion by 2 to obtain a two-tailed p-value. All p-values were compared to an alpha level 

of 0.05. 

Group decision-making performance measures and statistical analysis 

Overview of the pooling algorithms. Three pooling algorithms were investigated in 

this work: average (AVG), majority vote (MAJ), and majority vote with exception (MAJe). 

Each model’s performance for all four search tasks was evaluated for group sizes ranging 

from 2 to 9 members. The latter two algorithms were tested on groups of sizes 3, 5, 7, and 9, 

whereas the AVG algorithm was tested on all group sizes. For a given group size, 𝑚, there 

are A!<(B possible combinations of groups. Considering one algorithm, one search task, and 

one group size, a model’s expected performance was equal to the average performance 

across all possible combinations of groups. The descriptions of each pooling algorithm 
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below hone in on one search task and one group of a particular size for clarity, but the logic 

of the models can be generalized across groups, group sizes, and search tasks. 

AVG. The AVG algorithm computed the mean rating across the members of the group. 

Each member’s rating was weighted equally. We binarized the group’s average rating to 

produce a yes/no decision. Specifically, the average rating was compared to a criterion—if 

the rating was above the criterion, the decision was yes. Otherwise, it was no. The criterion 

was set to the grand mean rating across all group members from all signal-present and 

signal-absent trials. Under an equal variance Gaussian model from Signal Detection Theory 

and 50% target prevalence, the midpoint between the noise and signal distribution means is 

the theoretically optimal criterion (Green & Swets, 1989). The grand mean discussed above 

is a point estimate of this midway point. The yes/no outcome was chosen as the decision 

variable instead of the average rating to be commensurate with the binarized decision 

variables inherent to the MAJ and MAJe algorithms.   

MAJ and MAJe. The MAJ algorithm tallied the number of yes and no votes within the 

group for a given trial and selected the yes/no decision with the most votes. Each group 

member’s rating was binarized (yes if rating > 4, no otherwise), and the majority decision 

was made. The MAJe algorithm was similar to the MAJ algorithm but with one crucial 

caveat. When the majority of group members voted no but at least one member produced a 

rating of 8 (i.e., the highest confidence that the signal was present), the MAJe decision 

variable was changed from no to yes. In all other instances, the MAJe decision variable was 

equal to the MAJ decision variable. 

Pooling model performance metrics. Each pooling model’s 𝑑W and proportion correct 

(PC) was benchmarked against two reference models: the mean observer (OBS) and a Signal 
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Detection Theory Independent model (SDT-IND). 𝑑WXYZ and 𝑃𝐶XYZ were simply the 

average 𝑑W and average PC of the 12 participants. These point estimates did not change as a 

function of group size in our analyses and served to facilitate qualitative comparisons 

between a given algorithm and the average observer.  

The SDT-IND model assumes that each group member’s judgment is statistically 

independent and normally distributed and that the group's decision-making process is 

dominated by internal noise only. The shared noise generated from the image does not factor 

into the decision-making process. In other words, SDT-IND predicts the idealized benefit 

for aggregating group members' decisions—it is the ideal group (Juni & Eckstein, 2017). 

Below, we describe how 𝑑W and PC were calculated for AVG, MAJ, MAJe, OBS, and SDT-

IND. 

𝒅W. Sensitivity was calculated for the three pooling algorithms (𝑑W[\] , 𝑑W^[_, and  

𝑑W^[_0) using the standard formula, 𝑑W =	Φ)!(ℎ𝑖𝑡	𝑟𝑎𝑡𝑒) −	Φ)!(𝑓𝑎𝑙𝑠𝑒	𝑎𝑙𝑎𝑟𝑚	𝑟𝑎𝑡𝑒), 

where Φ)! denotes the quantile function of the standard normal distribution. The hit rate is 

the proportion of signal-present trials where the group algorithm said yes, and the false 

alarm rate is the proportion of signal-absent trials where the group algorithm said yes. For a 

group of size 𝑚, the average hit rate and average false alarm rate were computed across the 

A!<(B groups and plugged into the 𝑑W formula to obtain one sensitivity estimate per pooling 

model and group size. We assume a pooling algorithm’s decision variable is sampled from 

the standard normal distribution on signal-absent trials. The decision variable is sampled 

from a unit variance normal distribution centered on 𝑑W for signal-present trials.  

The sensitivity of the OBS was obtained by first transforming all 12 participant AUCs 

into 𝑑′. =	√2	Φ)!(𝐴𝑈𝐶), an equivalent normal-normal sensitivity measure to 𝑑W. Here, we 
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assume the common binormal distribution where the pairs of transformed hit and false alarm 

rates form a straight line on the normal deviate axes (Metz, 1986; Swets, 1986). 𝑑WXYZ was 

the average 𝑑′. across all 12 participants. The sensitivity for SDT-IND was computed in a 

2-step process. First, for the 𝑗`a group of size 𝑚, 𝑑′Z:b)cU:,d = �∑ (𝑑′.,/)<(
/K! , where 𝑖 

denotes the 𝑖`a member of the group (Green & Swets, 1989; Sorkin et al., 2001). Next, we 

calculated the expected sensitivity of SDT-IND as follows:  𝑑′Z:b)cU: =

	!
I
∑ 𝑑′Z:b)cU:,dI
dK! , where 𝑘 indicates the total number of unique groups of size 𝑚.   

PC. 𝑃𝐶[\] , 𝑃𝐶^[_, and  𝑃𝐶^[_0 were each defined as the sum of hits and correct 

rejections divided by the total number of trials. Correct rejections occurred when a model 

said no on a signal-absent trial. We computed the mean PC across all groups of size	𝑚 to 

obtain a point estimate for each model at that given group size. 𝑃𝐶XYZ was defined as the 

mean PC across all 12 participants. For the SDT-IND PC prediction, 𝑃𝐶Z:b)cU: =

	!
I
∑ Φ)!(𝑑′Z:b)cU:,d/2)I
dK! , where 𝑘 and 𝑗 refer to the same variables as in the 𝑑W 

calculation and Φ)! denotes the quantile function of the standard normal distribution. The 

right-hand side of the equation assumes an optimally placed criterion for an equal variance 

Gaussian SDT model with 50% target prevalence.  

Statistical analysis for the pooling models. Our statistical analyses focused on two 

separate types of pairwise comparisons. The first comparison was made between the three 

algorithms within a given search task, totaling twelve comparisons across the four search 

tasks. The second type of comparison was made between two search tasks for a given 

algorithm, totaling twelve comparisons across the three algorithms. To facilitate these 

comparisons, we first computed their relative efficiency to SDT-IND. The efficiency is 

defined as the squared ratio of 𝑑Ws and this metric summarizes how each algorithm performs 
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with respect to a hypothetical reference group. The relative efficiency to SDT-IND, 

𝜂Z:b)cU: =	©
1-.//0

1-1234562
ª
<
, where 𝑑W=--, ∈ J𝑑W[\] , 𝑑W^[_, 𝑑W^[_0K, were computed 

separately for each group size and algorithm combination. In this work, 𝑑WZ:b)cU: can be 

thought of as 𝑑W/10.,. 𝑑W/10.,
< is typically considered as being proportional to signal energy 

in low signal contrast detection tasks. Therefore, the optimal group detector can achieve the 

same performance as a particular pooling algorithm using only 100 ∗ 	𝜂Z:b)cU:% of the 

signal energy needed by the pooling algorithm under comparison (Sorkin et al., 2001). 

To test for significant differences in relative efficiencies between 2 pooling algorithms 

or between two search conditions for one algorithm, we employed a similar bootstrap 

resampling procedure (i.e., sampling readers and cases with replacement) as discussed in the 

Statistical tests section above. However, we include one additional step for the pooling 

algorithms. For group sizes 5, 6, and 7, we sampled 500 random groups (without 

replacement) during each bootstrap iteration and computed the expected performance across 

those 500 groups. The total number of unique groups was less than 500 for all other group 

sizes, and all groups were used to compute expected performance. This process was repeated 

for each of the 3,000 bootstrap iterations.  

For a given search condition (e.g., mass 3D search), we averaged the relative efficiencies 

across all common group sizes between 2 algorithms under comparison. For example, to 

determine if the relative efficiency of the AVG algorithm was higher than the relative 

efficiency of the MAJ algorithm, we computed the mean efficiency across group sizes 3, 5, 

7, and 9 for each algorithm. Then, we computed the difference in mean relative efficiency. 

On the other hand, for a given algorithm (e.g., AVG), we computed the mean relative 

efficiency across all group sizes for that algorithm for two search conditions. For instance, in 
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comparing the relative efficiency of the AVG algorithm in 3D microcalcification search 

versus 2D microcalcification search, we first computed the mean efficiency across all group 

sizes ranging from 2-9 for each search condition. We took a difference score across these 

means.  

Lastly, we computed the proportion of 3,000 bootstrapped difference scores more 

extreme than 0 and multiplied this by 2 to obtain a 2-tailed p-value for a given pairwise 

comparison. In total, 24 pairwise comparisons were evaluated. We applied an FDR 

correction (Benjamini & Hochberg, 1995) to an alpha level of 0.05 for twelve comparisons. 

We chose to correct for the 12 comparisons instead of 24 because each pooling algorithm 

was based on the same data, and comparisons across algorithms within a search condition 

are correlated. Thus, we opted to correct for 12 comparisons to preserve statistical power.  

5.3.2. Results 

 
Figure 5.2. Search performance for the microcalcification (calc) and mass signals in the 2D and 3D search 
modalities. Microcalcification and mass peripheral detectibly are also shown. a) The mean AUC across all 
12 observers for all four search conditions. The left set of columns refers to the mean AUC for the 
microcalcification signal, and the right set of columns denotes the mean AUC for the mass signal. Gold bars 
indicate 2D search and purple bars denote 3D search. b) The mean proportion of the search area covered by 
the Useful Field of View (UFOV). The same labeling for the four conditions used in a) is persevered here. c) 
The mean proportions of search (gray lines) and recognition errors (black lines). The left set of lines refers 
to search and recognition errors for the microcalcification signal across 2D (left) and 3D (right). The right 
set of lines refers to the same measures for the mass signal in 2D (left) and 3D (right). d) The mean AUC is 
the primary endpoint for assessing observer peripheral detectability for the microcalcification (left) and 
mass (right) signals. Error bars in each subplot denote 68% bootstrap confidence intervals (~ 1 standard 
error of the mean). Statistically significant differences are only shown for plotting clarity. * = p <0.05, ** = 
p < 0.01, and *** = p < 0.001. 
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Characterizing 2D/3D search performance. Our first objective is to understand how 

observers performed in the 2D/3D searches for the two signals. Based on these analyses, we 

can ascertain whether a particular search task meets the two criteria outlined by the SDTmix 

framework—non-exhaustive coverage of the search array with eye movements and low 

peripheral signal detectability. These results will determine whether the predictions made by 

the SDTmix framework for the pooling algorithms apply to each search task. Below, we 

analyze the microcalcification performance across the two search modalities and then follow 

up with the same analyses for the mass signal. Lastly, we contrasted the performance of the 

two signals in 2D and then in 3D. 

Microcalcification 2D versus 3D search. When observers looked for the 

microcalcification signal, there was no significant difference in overall performance when 

searching in 2D (AUC = 0.866) versus 3D (AUC = 0.834), p = 0.293 (Figure 5.2.a, left). 

However, the analysis of eye movement exploration (Figure 5.2.b, left) and gaze-contingent 

errors (Figure 5.2.c, left) suggest a more nuanced interpretation of the search performance 

across the two modalities. For instance, on average, observers covered 57% of the 2D DBT 

slices with their UFOV but only explored 15% of the 3D DBT volume, and this difference 

was statistically significant (p < 0.001). Moreover, the mean search error rate in 2D (0.063) 

was significantly lower than the mean search error rate in 3D (0.194), p < 0.001. However, 

the mean recognition error rate in 2D (0.14) was not significantly different from that in 3D 

(0.09), p = 0.225. Despite no significant differences in overall performance, observers 

under-explored the 3D DBT phantoms with eye movements, and this led to a substantial 

increase in search errors relative to the 2D search. These results suggest that at least the first 
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condition of the SDTmix framework was met for the 3D search of the microcalcification 

signal. 

Mass 2D versus 3D search. Overall search performance for the mass signal in 2D 

versus 3D mirrored the relative difference in performance for the microcalcification signal 

(Figure 5.2.a, right). Specifically, the AUC in 2D (0.799) was not significantly different 

from the AUC in 3D (0.79), p = 0.716. Observers also covered markedly more of the search 

area with the UFOV in 2D (45%) than in 3D (11%), p < 0.001 (Figure 5.2.b, right). 

However, unlike the microcalcification signal, the mean search error rate in 2D for the mass 

(0.029) was not significantly different from that in 3D (0.065), p = 0.09. As reflected in 

Figure 5.2.c, right, the mean recognition error rate in 2D (0.194) was also not significantly 

different from that in 3D (0.186), p = 0.807. These results partially support the first criteria 

of the SDTmix framework for the mass 3D search. Still, the low search error rate suggests 

that observers sufficiently covered the 3D DBT phantoms with eye movements.    

2D search microcalcification versus mass. The mean AUC in the 2D search for the 

microcalcification was higher but not significantly different from the mean AUC of the mass 

signal (p = 0.171). Observers, on average, also covered more of the DBT slices with the 

UFOV when tasked to look for the microcalcification signal than the mass signal (p 

<0.001). This could result from how well observers can see the two signals in their visual 

periphery (Figure 5.2.d). The peripheral detectability of the mass (AUC= 0.844) was 

significantly higher than the peripheral detectability of the microcalcification (AUC = 0.68), 

p < 0.001. Not surprisingly, the microcalcification search error rate was higher than the 

mass search error rate in 2D. However, this observed difference was not significantly 

different from 0, p = 0.179. On the other hand, the microcalcification recognition error rate 
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was lower but not significantly different from the mass recognition error rate, p = 0.367. 

These results suggest that observers sufficiently explored the DBT slices when searching for 

the microcalcification. Although the signal is hard to detect in the visual periphery, the 2D 

search for the microcalcification fails to meet the first condition of the SDTmix framework. 

The 2D search for the mass signal also does not meet the requirements of the SDTmix 

model because the signal is readily detected in the visual periphery.    

3D search microcalcification versus mass. Lastly, we compare the 3D searches for the 

microcalcification and mass signals. The difference in AUC was not significantly different 

from 0 for the 3D searches of the two signals, p = 0.424. Observers did cover a more 

significant proportion of the DBT volume with the UFOV when tasked to look for the 

microcalcification signal versus the mass signal, p < 0.001. However, observers made 

significantly more microcalcification search errors than mass search errors, p = 0.007. This 

makes sense, given that the microcalcification signal is more challenging to detect in the 

visual periphery than the mass signal. Conversely, observers made significantly fewer 

microcalcification recognition errors than mass recognition errors, p = 0.036. It is clear from 

this analysis that the microcalcification 3D search meets the two criteria outlined by the 

SDTmix model. Because the mass signal is more detectable in the visual periphery and the 

recognition errors are high, they sufficiently explored the 3D volume with eye movements. 

Therefore, the mass 3D search does not meet the criteria for the SDTmix model.  
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Figure 5.3. Pooling algorithms performance benchmarked against the mean observer (OBS) and SDT-IND. 
a) d’ is plotted as a function of group size (1-9) for each of the four search conditions. The two subplots on 
the left refer to the 2D (left) and 3D (middle left) search conditions for the microcalcification signal. 
Similarly, the subplots on the right depict sensitivity as a function of group size for the mass signal in 2D 
(middle right) and 3D (right). OBS (black lines) refers to the mean d’ across the 12 participants, and error 
bars represent the standard error of the mean. SDT-IND (gray lines) depicts predictions, as a function of 
group size, of the expected performance for a Signal Detection Theory model assuming independent 
judgments across participants. The three pooling algorithms (AVG-red, MAJe-green, and MAJ-blue lines) 
are plotted similarly. Note, in the microcalcification-3D search condition, d’ is not shown for the MAJ 
model at a group size of 9 because the algorithm did not produce false alarms at that group size. As a result, 
d’ could not be computed for that group size. b) The same performance analysis as a function of group size 
is shown as in a), but the dependent variable is proportion correct. In both a) and b), all error bars (except for 
OBS) represent 68% bootstrapped confidence intervals (~ 1 standard error of the mean). Additionally, all 
pooling models are anchored to OBS performance at group size 1. 

 

Pooling model’s performance across group sizes and search conditions. Figure 5.3. 

depicts the expected performance for all pooling algorithms as a function of group size. It 

includes OBS as a reference point, where OBS performance does not change as group size 

increases. The predictions made by SDT-IND demonstrate that expected performance (both 

d’ and PC) increases as group size increases, which is consistent with previous work (Juni & 

Eckstein, 2017). This pattern holds across all four search conditions. 

For the microcalcification signal, in both the 2D and 3D searches, the AVG and MAJ 

algorithms expected d’ increase as group size increases (Figure 5.3.a, left and middle-left 
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subplots). For MAJe, the expected d’ increases with group size for microcalcification 3D 

search but plateaus as group size increases for microcalcification 2D search. Moreover, the 

expected performance for the three algorithms in microcalcification 3D search aligns better 

with the predictions made by SDT-IND (i.e., more overlap in error bars) than for the 

microcalcification 2D search condition. All algorithms outperform the mean observer in the 

two microcalcification search conditions regarding d’ and PC (Figure 5.3.a/b, left two 

subplots). 

The results show a different pattern for the mass signal (Figure 5.3.a, middle-right and 

right subplots). The MAJ and MAJe algorithms deviate from the predictions made by SDT-

IND for the mass 2D and mass 3D search conditions. As group size increases, the expected 

d’ for the two algorithms increases but then plateau for larger group sizes. This is true for 

PCs as well. Interestingly, the expected d’ increases more for the AVG algorithm relative to 

MAJ and MAJe as group size increases in 3D but not in 2D. Lastly, expected performance 

improvements for the two majority vote algorithms are incremental relative to OBS as group 

size increases.   

 
Figure 5.4. Relative efficiency to SDT-IND plotted as a function of group size for all four search tasks 
(colored lines) and stratified by pooling algorithm (subplots). The relative efficiency at a group size of 1 is 
anchored to 1 for all three subplots for display purposes only. The magenta lines refer to the efficiency of an 
algorithm in the 3D search for the microcalcification (calc) signal. The brown lines, cyan lines, and yellow 
lines denote the relative efficiencies of an algorithm in the microcalcification 2D search, mass 3D search, 
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and mass 2D search tasks, respectively. a) The relative efficiency for the AVG algorithm is plotted for all 
group sizes (2-9). b) The relative efficiency for the MAJ algorithm is plotted for all odd-numbered group 
sizes (3, 5, 7, and 9). Note that the relative efficiency at group size 9 for the microcalcification 3D search 
task is omitted because d’ at group size 9 is not identifiable. c) The relative efficiency of the MAJe 
algorithm for all odd-numbered group sizes. The two unique colors that comprise a single vertical line on 
the righthand side of a given subplot correspond to a significant difference in mean relative efficiency, 
collapsed across all group sizes, between 2 search tasks. For example, the vertical bar on the right-hand side 
of the left subplot indicates that the mean relative efficiency of the AVG Algorithm in the microcalcification 
3D search task is significantly higher than the mean relative efficiency of the AVG algorithm in the 
microcalcification 2D search task. ** = p < 0.01 and *** = p < 0.001. Error bars in all plots represent 68% 
bootstrap confidence intervals (~ 1 standard error of the mean). 

 

Relative efficiency comparisons across search conditions for a given algorithm. 

Each subplot in Figure 5.4. depicts an algorithm’s relative efficiency to SDT-IND as a 

function of group size for all four search conditions. For the AVG algorithm (Figure 5.4.a), 

the mean relative efficiency in the microcalcification 3D search task (𝜂Z:b)cU: =

0.943585) was significantly higher than that in the microcalcification 2D search task 

(𝜂Z:b)cU: = 0.563715), 𝑝	 = 	0.009. Similarly, the mean relative efficiency in the 

microcalcification 3D search task was substantially higher than that in the mass 3D search 

task (𝜂Z:b)cU: = 0.569716), 𝑝	 = 	0.030, but did not survive an FDR correction. Neither 

the difference in mean relative efficiency between the mass 2D search versus the mass 3D 

search nor the difference in mean relative efficiency between the mass 2D search and the 

microcalcification 2D search reached statistical significance (see Table 5.1.). 

Combining observer judgments using the MAJ pooling method (Figure 5.4.b) provided 

different expected benefits than the AVG model. In particular, the pairwise comparisons in 

the relative efficiency between search conditions were not significant (Table 5.1.). The 

biggest observed difference in mean relative efficiency was between the microcalcification 

3D search (𝜂Z:b)cU: = 0.704410) and the mass 3D search (𝜂Z:b)cU: = 0.332433), p = 

0.017. However, this comparison did not survive an FDR correction. On the other hand, the 

MAJe pooling model induced performance differences similar to those of the AVG pooling 
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method (Figure 5.4.c). For instance, the relative efficiency in the 3D microcalcification 

search condition (𝜂Z:b)cU: = 0.885901) was significantly higher than the relative 

efficiency in the 2D microcalcification search condition (𝜂Z:b)cU: = 0.371643), p < 0.001 

and the 3D mass search condition (𝜂Z:b)cU: = 0.303189), p < 0.001. All other pairwise 

comparisons did not reach statistical significance (Table 5.1.). 

Algorithm Search 
condition 1 

Search 
condition 2 

Mean 
𝜼𝑺𝑫𝑻)𝑰𝑵𝑫 

condition 
1 

Mean 
𝜼𝑺𝑫𝑻)𝑰𝑵𝑫 

condition 
2 

P-value 

 
 

AVG 

Calc-
2D 

 

Mass-
2D 

0.563715 0.471633 0.344667 

Calc-
3D 

0.943585 0.009333 

Mass 
3D 

 

Mass 
2D 

0.569716 0.471633 0.390000 

Calc 
3D 

0.943585 0.030000 

 
 

MAJ 

Calc 
2D 

 

Mass 
2D 

0.468217 0.330291 0.194000 

Calc 
3D 

0.704410 0.134000 

Mass 
3D 

 

Mass 
2D 

0.332433 0.330291 0.977333 

Calc 
3D 

0.704410 0.017333 

 
 

MAJe 

Calc 
2D 

 

Mass 
2D 

0.371643 0.296951 0.418667 

Calc 
3D 

0.885901 0.000667 

Mass 
3D 

 

Mass 
2D 

0.303189 0.296951 0.943333 

Calc 
3D 

0.885901 P < 
3.33e-4 

Table 5.1. Comparisons in mean relative efficiency (collapsed across all groups and group sizes) between 
search tasks for each pooling algorithm. Boldface p-values represent statistically significant differences that 
survived an FDR correction. We use the notation “Calc” to refer to the microcalcification signal. 
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Figure 5.5. Mean relative efficiency collapsed across group size for each pooling algorithm stratified by 
search condition. From left to right, each cluster of bars denote the relative efficiencies of the three pooling 
models in the microcalcification (calc) 2D search, microcalcification 3D search, mass 2D search, and mass 
3D search conditions. Red bars denote mean relative efficiencies for the AVG algorithm, blue bars denote 
the same metric for the MAJ algorithm, and green bars denote the efficiencies for the MAJe algorithm. All 
error bars represent 68% bootstrap confidence intervals (~ 1 standard error of the mean). * = p < 0.05. 

 

Relative efficiency comparisons between algorithms for a given search condition. 

Our last analysis focuses on contrasting the performance of the three algorithms within a 

single search condition. Figure 5.5. shows the mean relative efficiency, collapsed across 

group sizes, of each pooling algorithm within a given search condition. In the 2D search for 

the microcalcification signal (Figure 5.5., left), the mean difference in relative efficiency 

between the AVG and MAJe pooling methods was significantly different (∆j= 0.171196, p 

= 0.010667). In contrast, the mean difference in relative efficiency between the AVG and 

MAJ algorithms was not significantly different from 0 (∆j= 0.098834, p = 0.153333). The 
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mean difference in relative efficiency between the MAJ and MAJe pooling algorithms was 

also statistically significant (∆j= 0.072362, p = 0.04133).  

For the microcalcification 3D search condition (Figure 5.5., middle-left), The AVG 

pooling model’s mean relative efficiency was not significantly higher than the MAJ pooling 

method (∆j= 0.178662, p = 0.05000), nor was it considerably lower than the MAJe 

pooling model (∆j= 0.036465, p = 0.821333). In comparing the two majority vote 

schemes, the MAJe algorithm’s mean relative efficiency was significantly higher than the 

mean relative efficiency of the MAJ algorithm (∆j= 0.215128, p = 0.036667).  

How do the algorithms compare when observers were tasked to look for the mass signal? 

In the 2D search (Figure 5.5., middle-right), the AVG algorithm’s relative efficiency was not 

significantly higher than the MAJe algorithm’s relative efficiency (∆j= 0.138911, p = 

0.105333), nor was it significantly higher than the MAJ algorithm (∆j= 0.134782, p = 

0.104000). The mean relative efficiencies of the MAJ and MAJe algorithms were also not 

significantly different (∆j= 0.004130, p = 0.38533).  

Unlike the 2D search, in the 3D search for the mass signal (Figure 5.5., right), the mean 

relative efficiency of the AVG algorithm was significantly higher than the mean relative 

efficiency of the MAJe algorithm (∆j= 0.235838, p = 0.013333). Similarly, the AVG 

algorithm had higher mean relative efficiency than the MAJ algorithm (∆j= 0.234185, p = 

0.013333). The difference in relative efficiencies across the two binary voting methods was 

not significantly different from one another (∆j= 0.001653, p = 0.843333). 

 5.3.3. Discussion 

At the outset, we posited that the 3D search for the small microcalcification signal meets 

the two preconditions spelled out in the SDTmix framework: low detectability of the signal 
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in the visual periphery and non-exhaustive search with eye movements in the 3D volumetric 

image. Indeed, our results show that observers had low peripheral detectability of the 

microcalcification signal in the visual periphery (Figure 5.2.d). Moreover, observers under-

explored the 3D volumetric images, which is reflected by the fact that they explored 

significantly less in 3D than in 2D with the UFOV (Figure 5.2.b). Although there is no 

definitive threshold for under-exploration or non-exhaustive eye movement coverage, the 

results concerning the microcalcification search errors corroborate the claim that observers 

under-explored in 3D. Specifically, they made significantly more search errors in 3D than in 

2D, and they made considerably more microcalcification search errors than mass search 

errors in 3D. 

Given that the 3D search for the small microcalcification signal met the two 

preconditions of the SDTmix framework, does the performance of the group decision-

making algorithms align with the predictions outlined under this framework? Specifically, 

do the AVG and MAJe pooling models, but not the MAJ model, have higher expected 

performance in the 3D search than the 2D search for the microcalcification signal? 

Additionally, do the AVG and MAJe pooling models outperform the MAJ pooling model in 

the 3D search for the microcalcification signal but not in the 2D search? Our results indicate 

that the relative efficiency of the AVG algorithm was significantly higher in the 3D search 

than in the 2D search (Figure 5.4.a). Similarly, the MAJe algorithm had a higher relative 

efficiency in the 3D search than in the 2D search (Figure 5.4.c), but the MAJ algorithm did 

not follow the same trend as the other two models (Figure 5.4.b). Regarding the second 

prediction, we observed that the MAJe but not the AVG pooling model had a significantly 
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higher relative efficiency than the MAJ pooling method in the 3D search for the 

microcalcification (Figure 5.5., middle-left). 

We included an analysis of the group decision-making models for the 2D 

microcalcification search to highlight that the expected benefits are unique to the 3D search. 

Despite the signal being hard to detect in the visual periphery, it is relatively easy to visually 

scrutinize most regions of the 2D DBT slice with eye movements. Observers explored 

significantly more with the UFOV in 2D for the microcalcification signal than the mass 

signal (Figure 5.2.b). Thus, we would not expect the AVG or MAJe algorithm to have 

significantly higher relative efficiencies than the MAJ algorithm. Figure 5, left, showed that 

the relative efficiencies between the AVG and MAJ pooling models were not significantly 

different from one another. This finding aligns with a similar comparison between these two 

algorithms for a single-location detection task reported in (Juni & Eckstein, 2017), a 

detection task that did not meet the low peripheral detectability condition outlined by the 

SDTmix framework. Interestingly, the AVG and MAJ algorithms had significantly higher 

relative efficiencies than the MAJe pooling model. This discrepancy from our prediction can 

be explained by the fact that on signal-absent trials, at least one group member produced a 

false alarm with a rating of 8, the highest confidence in a signal-present decision. This is the 

only mechanism by which the relative efficiency of the MAJ pooling model can be higher 

than the MAJe pooling model, given that the two majority vote models differ in their 

decision if at least one person in the group produces a rating of 8. 

Our inclusion of the search for the mass signal in 2D and in 3D and the subsequent 

analyses between search conditions and pooling models helped to juxtapose the unique 

benefits of group decision-making for the 3D search of the microcalcification signal. First, 
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the mass signal is more detectable in the visual periphery than the microcalcification signal 

(Figure 5.2.d). Since observers can see that signal better in the visual periphery, they would 

need to explore less with eye movements because their peripheral vision would compensate 

for the need to execute additional eye movements. We did find that observers explored less 

with their UFOV when searching for the mass than the microcalcification in both the 2D and 

3D searches (Figure 5.2.b). We would not expect to see any difference in relative efficiency 

between the 2D and 3D searches for the mass signal for a given algorithm. Table 5.1. 

confirms that regardless of the pooling model under consideration, the difference in relative 

efficiency between the mass 2D search and 3D search did not reach statistical significance. 

So how do the algorithms differ from one another, in terms of relative efficiency to 

SDT-IND, in the mass 2D search and the mass 3D search? The mass 2D search is directly 

opposite to the microcalcification 3D search concerning the two preconditions of the 

SDTmix framework. We expect the most negligible relative efficiency differences between 

the three pooling models. Figure 5.5., middle-left, confirms no significant differences in 

relative efficiency for all pairwise comparisons amongst the three pooling models. On the 

other hand, the analysis of the pooling models in the 3D search for the mass signal defied 

our predictions spelled out at the outset of this study because the AVG pooling model had a 

significantly higher relative efficiency to SDT-IND than the MAJ and MAJe pooling 

models. Sorkin et al. point out two possible reasons we observed this effect (Sorkin et al., 

1998). First, the inefficiency of the Condorcet group’s performance (i.e., majority vote 

models) is due to the least competent members' binary decision having an equal weight as 

the most competent group member’s decision. Second, the graded information regarding the 
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signal’s likelihood, encapsulated in the confidence score, is lost when the rating is converted 

to a binary decision. 

The results of Experiment 1 provide a strong argument for applying the SDTmix 

framework to real-world visual search tasks involving analyzing complex image data. In the 

next experiment, we take a similar analytic approach as here but evaluate group decision-

making with expert radiologists rather than trained human observers. Our goal is to 

determine whether the predictions outlined by the SDTmix extrapolate across domain 

expertise.  

5.4. Experiment 2 

 5.4.1. Methods 

Participants 

Twelve radiologists (41% female, age range 27-35) participated in this study. Data were 

collected at the Radiological Society of North America conference in 2017.   

Apparatus 

The radiologist viewed stimuli on a medical-grade grayscale DICOM-calibrated monitor 

(5Mpx). They sat at a viewing distance of ~75 cm in a darkened room. Stimulus 

presentation, recording of mouse scroll movements, and all other aspects of the experiment 

were coded in Psychtoolbox (Kleiner et al., 2007). 

Stimuli 

The radiologists searched through 28 DBT phantoms in total. The 28 DBT phantoms 

were a subset of the 3D DBT phantoms seen by the undergraduate observers in Experiment 

1. Each radiologist saw a random sample of seven microcalcification-present stimuli from a 

subset (14 stimuli) of 40 DBT images containing the microcalcification signal. Another 
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seven stimuli were randomly sampled from 14 of the 40 mass-present DBT phantoms shown 

to the undergraduate observers. Lastly, 14 DBT phantoms were sampled from a set of 28 

unique signal-absent DBT phantoms seen by the observers in Experiment 1. Half of those 

stimuli were mass-absent, and the other half were microcalcification-absent.  

Search task 

The radiologists performed the same yes/no localization task (50% prevalence and 

signal-known-exactly) in 3D as the observers in Experiment 1. Each radiologist saw the 28 

DBT phantoms in a randomized presentation order (i.e., randomized across all combinations 

of ground truth status and signal type). They completed the task in a single block. They rated 

their confidence in their decision on a scale of 1-4, with 1 representing the highest 

confidence in the signal’s absence and 4 indicating the highest confidence in the signal’s 

presence.   

Grouping radiologist decisions together 

Our analysis of the radiologist data is restricted to the 3D search of the mass and 

microcalcification signals. Furthermore, we assess the expected performance of the AVG, 

MAJ, and MAJe pooling models at group size three. We chose to evaluate a group size of 

three for two reasons. First, the randomized assignment of unique DBT phantoms to each 

radiologist created instances where all 12 radiologists did not see a single DBT phantom. 

For a signal-present stimulus, up to 8 of the 12 radiologists (mean number of radiologists = 

6, std = 2) interacted with that DBT phantom. One radiologist was assigned to look for the 

mass signal for certain signal-absent stimuli, while another radiologist was asked to look for 

the microcalcification signal. Consequently, the total number of radiologists who saw a 

single mass-absent or microcalcification-absent DBT phantom varied up to 7, but, on 
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average, was 3 (std = 2). Second, independent double reading is employed in various 

European countries where two radiologists examine a single case (Geijer & Geijer, 2018). In 

the case of discordant opinions between the two readers, a third radiologist (or more) can be 

brought in for arbitration. Thus, our focus on groups of 3 emulates, to some extent, what is 

practiced in a real-world setting.  

 5.4.2. Results 

 
Figure 5.6. Pooling algorithms for a group size of three were applied to the radiologist's judgments in the 3D 
search for microcalcification and mass signals. a) 𝑑′ is plotted for the microcalcification (calc) signal (left) 
and the mass signal (right) for the mean observer or OBS (black), the predictions made by SDT IND (gray), 
and the three pooling models (from left to right, AVG-red bars, MAJ-blue bars, MAJe-green bars). b) The 
relative efficiency to SDT IND is plotted for the three pooling models for the microcalcification signal (left) 
and the mass signal (right). The same color-coding scheme used to denote each algorithm in a) is used in b). 
The error bars for the mean observer represent the standard error of the mean. All other error bars denote 
68% bootstrap confidence intervals (~ 1 standard error of the mean). ** = p < 0.01. 

 

Our goal in Experiment 2 was to ascertain whether the expected benefits of the group 

decision-making models for complex visual search tasks extrapolate across expertise levels. 

Figure 6a, left, depicts the 𝑑′ for the mean radiologist, the prediction made by SDT-IND, 

and the three pooling models for the 3D search of the microcalcification signal. Of note, all 

three pooling models have a higher 𝑑′ than the mean radiologist, suggesting that there are 

performance benefits in this search task. Moreover, the AVG and MAJe pooling models 
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approximate the expected benefits predicted by SDT-IND. On the other hand, the MAJ 

pooling model performs the worst.  

We computed the relative efficiencies of the three pooling models with respect to SDT-

IND (Figure 5.6.b, left) to determine if the AVG and MAJe algorithms outperformed the 

MAJ pooling model on this search task. The AVG algorithm had the highest relative 

efficiency (𝜂Z:b)cU: = 0.936833). However, the relative efficiency was not significantly 

higher than that of the MAJe model (𝜂Z:b)cU: = 0.809997, p = 0.547368) nor that of the 

MAJ pooling model (𝜂Z:b)cU: = 0.529757, p = 0.086737). In comparing the relative 

efficiencies of the two majority vote models, we observed that the MAJe pooling scheme 

was not significantly higher than the MAJ pooling method (∆j= 0.280240, p = 0.053895). 

Although the differences in relative efficiencies across the three pairwise comparisons did 

not reach statistical significance, the fact that the relative efficiencies of the AVG and MAJe 

models approached 1, whereas the MAJ relative efficiency resided near 0.5 suggests that the 

former two methods of aggregating radiologist decisions are effective at improving the 3D 

search of the microcalcification signal. 

Does grouping radiologists’ decisions together provide similar effects for the 3D search 

of the mass signal? Figure 5.6.a, right, shows that the three pooling models had higher 

sensitivity than the average radiologist. Similar to the microcalcification 3D search, the 𝑑W of 

the AVG model approximated what would be predicted by SDT-IND for the mass 3D 

search. However, the two majority vote models had sensitivities closer to the average 

radiologist than the prediction made by SDT-IND. Thus, the sensitivities of the three models 

with respect to the mean radiologist and SDT-IND are similar to the microcalcification 3D 

search sans the sensitivity of the MAJe model.  
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By focusing on the relative performance of the three pooling models with respect to 

SDT-IND, we note the relative efficiency of the AVG model (𝜂Z:b)cU: = 0.976431) was 

significantly higher than that of the MAJe model (𝜂Z:b)cU: = 0.495526), p = 0.002526 

and the MAJ model (𝜂Z:b)cU: = 0.466941), p = 0.007579. However, the latter two models 

were not significantly different in relative efficiency (∆j= 0.028584, p = 0.435368). The 

slight difference in relative efficiency between the latter two pooling models suggests that 

radiologists were not highly confident when reporting “signal-present.” On the other hand, 

when averaging the rating data from the groups of radiologists, their group performance 

improved markedly.  

Lastly, we consider the difference in relative efficiencies across the two signals for a 

single algorithm. The AVG pooling method had near ceiling relative efficiency (i.e., 

𝜂Z:b)cU:	~	1) for both the mass and microcalcification signals, and the difference was not 

statistically significant (∆j= 0.039598, p = 0.944000). The MAJ pooling method also 

showed a negligible and nonsignificant difference in relative efficiency between the two 

signals (∆j= 0.062815, p = 0.764632). On the other hand, the relative efficiency of the 

MAJe pooling model for the microcalcification signal was substantially higher than that for 

the mass signal (∆j= 0.314471). However, this difference was not statistically significant 

(p = 0.261053). Our findings suggest that a simple averaging of confidence scores can 

improve radiologist group decision-making the most for 3D search, regardless of the signal 

being searched for. The MAJe pooling method performed well for the microcalcification 

signal but not the mass signal. On the other hand, the simple majority vote rule was the least 

efficient pooling method of the three, regardless of the signal radiologists were tasked to 

look for.   
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 5.4.3. Discussion 

Do the expected benefits of group decision-making generalize across expertise levels for 

complex tasks such as searching through large 3D volumetric medical images? In short, they 

mostly do. However, before assessing whether a subset of our predictions outlined at the 

outset hold across radiologists and trained observers, we briefly comment on differences in 

absolute performance across these two cohorts. On average, trained observers were slightly 

better at discriminating microcalcification-present trials from microcalcification-absent trials 

(𝑑W = 1.457272) than radiologists (𝑑W = 1.173704). However, for the mass signal, 

radiologists, on average, had a slightly higher sensitivity (𝑑W = 1.430509) compared to the 

trained observers (𝑑W = 1.158341).  

Regarding the pooling models, we compare relative efficiencies to SDT-IND between 

radiologists and trained observers for a group size of 3. For the microcalcification signal, the 

relative efficiency of the AVG pooling model using the radiologist data was approximately 

1% less than that using the trained observer’s rating data. Similarly, the relative efficiencies 

for the MAJ and MAJe models utilizing the radiologists’ decisions were 32% and 19% less 

than those using the trained observer’s binary choices, respectively. On the other hand, for 

the mass signal, the relative efficiencies of the AVG, MAJ, and MAJe pooling models using 

the radiologist data were greater than those using the trained observer judgments by 42%, 

5%, and 10%, respectively. In sum, the average trained observer and the corresponding 

groups of observers performed better when searching for the microcalcification signal. On 

the other hand, the radiologists and groups of radiologists performed better when searching 

for the mass signal.  
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Despite the difference in absolute performance across the two groups of observers in 

Experiments 1 and 2, our prediction regarding the expected performance benefits of the 

pooling models for the 3D search of the microcalcification signal was confirmed across 

expertise levels. A glance at Figure 5.5., middle left, and Figure 5.6.b, left reveals a common 

qualitative pattern among trained observers and radiologists regarding the differences in 

relative efficiencies between the three pooling models. In both groups, the AVG and MAJe 

pooling models have a higher relative efficiency to SDT-IND than the MAJ pooling model. 

The difference in relative efficiency between the AVG and MAJ pooling models for 

radiologists and trained observers was large and trending in the direction of statistical 

significance. On the other hand, the relative efficiency of the MAJe model was significantly 

higher than that of the MAJ for the trained observers but not the radiologists (although the 

difference in relative efficiency was trending towards significance). Why would the AVG 

and MAJe pooling models, but not the MAJ pooling model, have relative efficiencies close 

to 1?  

Recall that SDT-IND makes predictions under the assumption of independent judgments 

across the member’s decisions. Because the trained observers in Experiment 1 have limited 

peripheral detectability of the microcalcification signal and under-explored the 3D DBT 

phantoms with eye movements, the group member’s idiosyncratic eye movement scan paths, 

on a trial-by-trial basis effectively produced an independent sampling of the large search 

space. Thus, it makes sense that the relative efficiencies of the AVG and MAJe are close to 

1, suggesting that the two pooling models capture the independent judgments made by the 

group members. For the latter algorithm, if a majority of group members miss the 

microcalcification because they did not stare directly at it, but one member happens to, by 
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chance, fixate on the signal and produce the highest signal-present confidence score, then 

the MAJe pooling method is explicitly capturing the notion of independent sampling of the 

image data.  

Prior work has outlined the search behavior of the radiologists used in this study (Lago, 

Jonnalagadda, et al., 2021). In particular, the radiologists underexplored the 3D DBT 

phantoms with eye movements to a similar extent as the observers in Experiment 1 (Figure 

5.2.b). The under-exploration with eye movements degraded the radiologist's performance in 

the 3D search but not the 2D search for the microcalcification signal. The high relative 

efficiencies for the AVG and MAJe models suggest that radiologists also independently 

sampled the 3D data like the trained observers. Thus, the visual cognitive bottlenecks that 

arise from the foveated nature of the human visual system (Stewart et al., 2020; Tuten & 

Harmening, 2021) mediate the radiologist’s performance to a greater extent than expertise 

for the 3D search of the microcalcification signal.  

The pooling model performances from Experiment 2 mirror those in Experiment 1 

concerning the 3D search of the mass signal. The AVG pooling method produced the 

highest relative efficiency to SDT-IND for trained observers and radiologists. In both 

instances, the relative efficiency of the AVG pooling method was significantly higher than 

that of the MAJe and MAJ pooling methods, as shown in Figures 5.5., right, and Figure 

5.6.b, right, respectively. In Experiment 1, the difference in relative efficiencies between the 

MAJ and MAJe pooling models were marginal and nonsignificant (Figure 5.5., right), and 

this finding was actual for radiologists as well (Figure 5.6.b, right). Even though domain 

knowledge and expertise mediate observer performance (Nodine & Mello-Thoms, 2010; 

Wood, 1999) in difficult medical image perception tasks that are not limited by the 
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constraints of foveated vision (i.e., the mass is detectable in the visual periphery), we show 

that regardless of expertise level, the simple unweighted integration of confidence 

judgments is superior to a majority vote decision rule, or a variant of it.  

Our last comparison between the two groups of observers focuses on the difference in 

relative efficiency between signals for a given pooling model. In Experiment 1, the MAJe 

pooling model had a significantly higher relative efficiency for the microcalcification 3D 

search condition than for the mass 3D search condition. In Experiment 2, this same 

difference in relative efficiency was large but did not reach statistical significance. One 

possible explanation for this discrepancy may be a matter of statistical power. We ran a 

nonparametric analog to an independent samples t-test for the radiologists because the same 

radiologists may have seen the microcalcification signal but not the mass signal. However, 

in Experiment 1, all observers saw the same images, which gave us more statistical power. 

For the AVG and MAJ pooling models, we observed no significant difference in relative 

efficiency between the two signals for the radiologists and the trained observers.  

Our results confirm that pooling radiologists or trained observers' decisions together can 

induce the wisdom of crowds effect. Specifically, when searching for the microcalcification 

signal in 3D, the three pooling models tested here tend to outperform the average observer 

(Figure 5.3., middle-left) and the average radiologist (Figure 5.6.a, left). Moreover, the 

greatest benefit is applying a simple average over confidence estimates or a majority vote 

rule with an exception, as shown in Figure 5.5., middle-left, and Figure 5.6.b, left. 

Conversely, when searching for the mass signal in 3D, the unweighted average of group 

members’ confidence scores outperforms the average observer and radiologist, as reflected 
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in Figures 5.3.a, right, and 5.6.a, right. It also provides a unique benefit not seen by the 

majority vote rules, as shown in Figures 5.5., right, and 5.6.b, right. 

5.5. General discussion 

Regarding overt search tasks, foveated vision plays a demonstrable role in mediating 

task performance (M. P. Eckstein, 2011; Najemnik & Geisler, 2005). This is especially true 

when the signal to be searched for is hard to detect in the visual periphery—but easy to 

detect when fixated upon—and the nature of the task, whether it be limited search time or a 

large search space, precludes exhaustive coverage of the image data with eye movements 

(Juni & Eckstein, 2017; Lago, Jonnalagadda, et al., 2021). One could consider these two 

factors as sufficient (but not necessary) conditions for generating independent processing of 

visual information between a group of observers looking at the same image stimulus. Group 

decision-making can exploit the independent sampling of visual information and the 

subsequent behavioral judgments (Sorkin & Dai, 1994) to induce the Wisdom of Crowds 

effect (Surowiecki, 2005).  

In Experiment 1, observers searched through DBT phantoms for a microcalcification 

signal. The behavioral results replicated prior work, showing that observers under-explore 

3D volumetric images with eye movements and miss small signals (i.e., high search error 

rate) because they are hard to see in the visual periphery (Lago, Jonnalagadda, et al., 2021). 

Thus, we predicted that the expected benefits of group decision-making would be at play in 

this search task because it meets the two conditions noted above. Indeed, we found that both 

averaging group members’ confidence scores and an asymmetric maximum-confidence 

slating rule (i.e., only following the most confident signal-present decisions in the group) 

outperformed the mean observer to a great extent. These two pooling models also had higher 
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relative efficiencies to a statistically optimal pooling model (SDT-IND) than a commonly 

investigated majority vote rule. The latter finding suggests that the two pooling models can 

better utilize the independent information from each group member than the majority vote 

rule.  

To demonstrate that the expected benefits of group decision-making were amplified and 

unique to the 3D search of the microcalcification signal, we had observers search for the 

same signal in a 2D DBT phantom slice. By design, this task makes it relatively easy to 

foveate most regions of the 2D slice in a time-efficient manner. Therefore, we would expect 

less independent sampling of visual information amongst observers than in the 3D search of 

the same signal. In comparing the performance of the pooling models across tasks, we 

observed that the averaging and majority vote with exception rules performed better in 3D 

than in 2D. These results helped bolster our claim that the benefits of pooling group member 

decisions together are enhanced for the 3D search of the microcalcification signal.  

We included the 3D search for the mass signal in Experiment 1 to demonstrate that it is 

not just under-exploration that causes the enhanced benefit of group decision-making but 

also the signal’s peripheral detectability. Again, we found that averaging confidence scores 

and the majority vote with exception pooling methods aligned better with SDT-IND in the 

3D microcalcification search task than in the 3D mass search task. Together, these findings 

across both search modality (2D versus 3D) and signal type (microcalcification versus mass) 

clearly show the role of foveated vision inducing the benefits of group decision-making in 

complex perceptual tasks such as interpreting 3D medical images for detecting small signals. 

A critical limitation of Experiment 1 is that we utilized trained undergraduate observers 

without prior experience interpreting and searching through medical images. Thus, it is 
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unclear if our results concerning the benefits of group decision-making extend across 

expertise levels. Although there is a large body of literature replicating the Wisdom of the 

Crowd effect with medical professionals (Brennan et al., 2019; Hasan et al., 2023; Kattan et 

al., 2016; Kurvers et al., 2016; Wolf et al., 2015) because of the known heterogeneity in task 

performance amongst radiologists (Beam et al., 2003), there has not been an investigation of 

the benefits of grouping radiologists decisions for screening tasks that involve large 3D 

volumetric images.  

Experiment 2 tested whether the expected benefits of group decision-making amongst 

medical professionals extend beyond 2D displays. We found a strikingly similar pattern to 

Experiment 1 when assessing the relative performance benefits between the three pooling 

algorithms for the 3D searches of the microcalcification and mass signals. Like Experiment 

1, we saw the performance advantage of the average and majority vote with exception rules 

over the majority vote rule for the 3D search of the microcalcification. We also identified 

that the average pooling method was superior to the two majority vote rules for the 3D 

search of the mass signal, following a similar pattern seen in Experiment 1. These 

similarities held despite differences in absolute performance across the two groups of 

subjects tested in experiments 1 and 2. The high relative efficiencies of the average and 

majority vote with exception rules for the 3D search of the microcalcification suggest that 

radiologists also sampled the 3D data independently when performing the visual search task. 

These findings indicate that pooling independent judgments can overcome universal visual-

cognitive bottlenecks that limit a human observer’s task performance.  

As discussed above, the literature is replete with studies investigating the performance 

improvements of various pooling models concerning the average observer for a host of 
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visual perception tasks (Balsdon & Clifford, 2018; Juni & Eckstein, 2017; Kattan et al., 

2016; Saha Roy et al., 2021). We consider how the findings from this study compare with 

other accounts on the benefits of group decision-making. Figure 5.7. provides a graphical 

depiction of the relative efficiency of the AVG pooling model (for a group size of 3) to the 

mean observer for five studies in addition to this one. Here, we replace the denominator of 

the efficiency calculation with the mean 𝑑’ of the observers in the study rather than the 𝑑’ 

predicted by SDT-IND. We chose this relative efficiency metric because the predictions 

made by SDT-IND were not included in most cases. We also report on the AVG pooling 

model’s performance because it performed well in experiments 1 and 2 and is a commonly 

investigated pooling model in the literature. 

Across the 12 tasks plotted in Figure 5.7., the AVG pooling model outperformed the 

mean observer, which is reflected by the relative efficiencies being above 1. We plotted the 

relative efficiencies in descending order to exemplify how the expected benefits of 

averaging confidence scores change across diverse tasks ranging from medical image 

perception to face perception. Importantly, we see that tasks where (1) the signal is hard to 

detect in the visual periphery and (2) the design of the experiment precludes observers from 

foveating all regions of the search space have the highest relative efficiencies (tasks with a * 

next to them). These types of tasks produce scenarios where a varying subset of group 

members, by chance, foveate the signal and produce high-confidence signal-present 

decisions that boost the group’s performance by compensating for the remaining group 

members who only processed the signal in their visual periphery.  
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Figure 5.7. Comparisons of the relative efficiency of the AVG pooling model to the mean observer (OBS) across 
different tasks and studies. All relative efficiencies are reported for a group size of 3. Relative efficiencies (x-axis) are 
plotted across tasks (y-axis) in descending order. Orange bars denote tasks investigated in this study, and blue bars 
denote tasks reported in other studies in the literature. The vertical dotted line indicates a relative efficiency of 1 (i.e., no 
benefit in grouping decisions with respect to the average observer). Asterisks indicate tasks that strictly meet the two 
sufficient preconditions spelled out in the SDTmix theory framework to induce the benefits of group decision-making. 
Rad. = radiologist/dermatologist. 

 

Our study has a few limitations that warrant future investigations into the benefits of 

collective intelligence for interpreting large 3D volumetric images. First, we did not 

modulate prevalence rates. In our study, observers knew at the outset of each trial that there 

would be a 50% chance that the signal would be present. However, manipulations to 

prevalence rates in search tasks have been shown to reduce search times, change an 

observer’s criterion, and increase false negative decisions—see (Wolfe, 2012) for a review. 

Prevalence could negatively impact collective intelligence by increasing under-exploration 

with eye movements and thus increasing the correlation among group members' judgments. 

If all members under-explore because they are shortening their search time, then there is a 

higher probability that no observer in the group foveates the signal in 3D. Consequently, 
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members would not produce high-confidence signal-present decisions, which is a 

requirement for seeing the expected benefits of the AVG and MAJe pooling methods 

discussed in this work. Our analysis of 40 dermatologists looking for skin cancer (25% 

prevalence rate) showed that the AVG model is robust to prevalence effects in 2D images. 

Still, future work should assess whether this extends to 3D search scenarios.    

Another limitation of our study concerns the satisfaction of search and the presence of 

multiple signals in a single medical image (Berbaum et al., 1990). Although recent work has 

shed light on this phenomenon in the context of 2D/3D search (Adamo et al., 2024), 

showing that 3D search reduces the likelihood of missing a second signal after finding the 

first, it is unknown how this phenomenon interacts with group decision-making. If the 

primary endpoint is recall and not localizing a lesion, then group decision-making may 

provide additional benefits when multiple signals are present. If two radiologists localize 

different signals because they visually scrutinized different regions of the same 3D image, 

then the group has successfully flagged potential cancer, and additional workup can be done 

to identify both signals.   
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VI. Conclusion 

The purpose of this thesis is twofold. The first aim is to understand better why human 

observers under-explore 3D volumetric images with eye movements (Lago, Jonnalagadda, et 

al., 2021). By leaving much of the 3D image data “unexplored,” observers tend to miss 

small signals that are hard to detect away from the point of fixation or near the fovea. They 

are highly likely to process the signal solely in their visual periphery during the search and 

report it as absent (search errors).  

The second aim of this thesis is to investigate three methods for mitigating 3D search 

errors. The first method concerns a 2D synthetic view of the 3D data, an adjunct to 

interpreting the 3D volumetric image. The 2D synthetic view supplants a 2D mammogram, 

thus reducing the radiation exposure to the patient. The second method is a deep learning-

based computer-aided detection tool that works in tandem with human observers as they 

perform the 3D search. The last method focuses on pooling independent judgments across a 

group of observers to harness the wisdom of crowds. Each approach has been deployed in 

practice within a clinical setting (Aujero et al., 2017; Lamb et al., 2022; Taylor-Phillips & 

Stinton, 2019a). However, the theoretical underpinning for how these methods can improve 

medical image perception by reducing 3D search errors is poorly understood. Therefore, the 

second aim of this thesis is to fill in these theoretical gaps.  

At the outset, I proposed the following questions. (Q.1) When observers under-explore 

3D images, what evidence do they base their quitting decision on? (Q.2) How do the 2D 

synthetic image and CADe influence observers’ search strategies in 3D? (Q.3) Are there 

unique benefits gained from aggregating observers' judgments in 3D that are not seen in 2D 

searches? (Q.4) For each of the three methods (2D synthetic view, CADe, or group 
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decisions), which types of signals benefit the most? (Q.5) Lastly, which of these techniques 

is best suited to mitigate 3D search errors? Below I provide an answer (A.1, A.2, etc..) to 

each of these questions to further the field in having a better theoretical grasp of how to 

improve 3D medical image perception. 

(A.1). Perceived peripheral detectability of targets may mediate how much people 

explore in 3D medical images. Chapter II directly investigates the interaction between 3D 

under-exploration and the search-termination criterion. It provides two significant 

contributions to this line of inquiry. First, it builds upon the paucity of empirical work 

theorizing about the specific evidence (i.e., quitting signal) humans consider when asking 

themselves, is it time to abandon the current search and move on to the subsequent trial? 

One prominent model for this in 2D displays posits that a quitting signal follows a drift-

diffusion process (Ratcliff, 1978), and observers end their search once the signal exceeds a 

threshold (Wolfe & Van Wert, 2010). Factors like target prevalence can be incorporated into 

the model by adjusting the diffusion threshold (Wolfe, 2012). However, this approach treats 

the quitting signal as an internal variable to the searcher (a free fitting parameter) without 

explicitly linking the stopping criterion to the properties of the target and its relationship 

with the background image statistics or the size of the search display.  

Chapter II posits that the quitting signal is proportionally related to the percentage of 

image area covered with eye movements when the target prevalence rate is set to 50%. The 

results from a series of experiments showed that humans utilize their perception of how well 

they can see various signals in their visual periphery to gauge how much search space they 

have covered. Once their internal estimate of the area explored with eye movements 

exceeded a stopping criterion, they terminated their search. This hypothesis produced 
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consistent exploration behavior between a small and large target with different peripheral 

detectability despite differences in reaction time, number of eye movements, and 

performance between the searches of the two signals. Importantly, this hypothesis is 

amenable to linking the peripheral detectability of various signals in arbitrary 2D and 3D 

backgrounds (i.e., not only items on a uniform background) to a stopping criterion, which is 

particularly pertinent for computational models of eye movements as they are often in need 

of a principled stopping criterion (Akbas & Eckstein, 2017; Hoppe & Rothkopf, 2019; Lago, 

Abbey, et al., 2020; Najemnik & Geisler, 2005; Zelinsky, 2008). The findings do not negate 

previous factors that influence the stopping criterion, which can influence the adopted 

threshold related to the perceived % area covered. 

Chapter II's second contribution provides one possible explanation for why humans 

under-explore 3D volumetric images. The results from Chapter II Experiment 2 showed that 

humans tend to explore the 2D image plane of the 3D volume to the same extent as an 

analogous 2D search task, suggesting that they may be under-exploring the 3D volume 

because they are defaulting to sufficiently covering the 2D image plane without regard for 

areas of the 3D volume that have yet to be explored. This finding speaks more to how 3D 

images are displayed to humans when performing visual searches rather than the features 

that comprise the image. Tatler showed that the simple presentation of an image on a 

computer monitor screen induced the central fixation bias (Tatler, 2007), which 

fundamentally changed how the field evaluated contemporary saliency models that predicted 

fixation distributions in natural scene-viewing tasks (Bylinskii et al., 2019). In a similar 

vein, the presentation of a series of cross-sectional slices viewed one at a time on a computer 

monitor may interact with human observers' entrenched oculomotor strategies of viewing 
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single images on computer monitors, and this interaction may cause them to under-explore 

the 3D volumetric image.     

(A.2). Search aids guide eye movements to areas in 3D that would have otherwise 

not been processed with foveal vision. Chapter III evaluated how a 2D synthetic view (2D-

S), used as an adjunct to interpreting a 3D volumetric image, mitigated 3D search errors. 

The 2D-S reduced search errors for a small but not a large signal. By applying a 

dimensionality reduction to the image data, the 2D-S markedly reduced the spatial location 

uncertainty of the small signal that was hard to detect in the visual periphery. Human 

observers were able to scrutinize the 2D-S and mark suspicious locations efficiently. The 

marked locations helped guide eye movements in 3D, reducing search errors. To 

demonstrate the influence of the 2D-S on the 3D search, an image computable Foveated 

Search Model (FSM) was employed. The FSM explicitly models the effects of foveated 

vision on peripheral signal detectability. It took each human observer's unique 2D and 3D 

scan paths as input, along with the image data, and produced a test statistic representing the 

presence/absence of a signal. The model performance correlated well with the human 

observer performance. It captured the relative differences in AUC across the 2D-S search, 

3D search, and 2D-S + 3D search. Together, these results showed how a 2D-S can mitigate 

the detrimental impact of under-exploration of 3D volumetric images. 

One interesting takeaway from the findings of Chapters II and III is how the 2D-S serves 

as a natural complement to the oculomotor strategy of focusing on the 2D image plane 

during the 3D search. Since the FDA approved digital breast tomosynthesis (DBT) for early 

breast cancer detection in 2011, all interpretations of 3D DBT images require either a 2D 

mammogram or a 2D-S image (FDA approval in 2014) generated from the corresponding 
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3D DBT image. This thesis provides a theoretical lens for how a 2D-S adjunct can 

accommodate 3D search strategies.  

Chapter IV investigates how a convolutional neural network (CNN)-based computer-

aided detection (CADe) system helps human observers find small microcalcification-like 

signals in 3D DBT phantoms. This study demonstrated that the CNN-CADe was an 

effective tool for improving the 3D search of a small microcalcification signal by reducing 

3D search errors. In particular, the cue boxes produced by the CNN-CADe, superimposed 

on top of the 3D image stimulus, guided human eye movements to suspicious locations that 

the fovea would have otherwise not processed.  

An important finding from this study was that the 3D search benefits of the CNN-CADe 

were unique to the microcalcification-like signal but not a second larger mass-like signal. 

Moreover, an examination of individual differences showed a strong negative linear 

relationship between the proportion of area explored in 3D and the additional improvement 

in performance when using the CNN-CADe output during the search—those who under-

explored the most in 3D benefitted when the aid was available.  

The latter finding could serve as an additional data point in radiology residency 

programs for emphasizing the benefits and pitfalls of relying on an AI aid to interpret 3D 

volumetric medical images. If a radiologist tends to under-explore and rely heavily on the 

AI-CAD output, their sensitivity and specificity will be similar to that of the AI (Deza et al., 

2019), at least for detecting small microcalcification signals  

(A.3). Crowd wisdom and the corresponding idiosyncratic 3D scan paths are an 

effective method for reducing 3D search errors. Chapter V took a conceptually different 

approach to mitigating the detrimental impact of 3D under-exploration. Unlike Chapters III 
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and IV, which augmented the search process, Chapter V investigated the benefits of pooling 

independent judgments from multiple visual searchers interacting with DBT phantoms and 

2D slices of DBT phantoms. The results indicated that either averaging independent 

confidence ratings or taking a majority vote with an exception rule (the exception being 

following the most confident target-present response in the group) but not a simple majority 

vote rule produced the greatest benefit for the 3D of the microcalcification signal. 

Specifically, the two models outperformed the average searcher. The models also induced a 

higher benefit here than in an analogous 2D search task for a microcalcification signal and a 

3D search task for the large mass signal.  

The findings were partially replicated with radiologists. However, more data needs to be 

collected to corroborate this. The application of radiologist crowd wisdom and breast cancer 

detection in 3D is particularly interesting because most countries that require double reading 

(e.g., Sweden, Norway, Australia, New Zealand, etc.) employ different rules for requiring a 

patient to undergo additional workup (recall). Some follow a majority vote, and others 

require just one of two radiologists to ask for a recall. Moreover, most of these countries still 

rely on 2D Full Field Digital Mammography. Our work and theoretical modeling suggest 

that if 3D DBT is adopted in these countries, it might affect the rules governing how to best 

combine radiologist judgments to form a consensus opinion.  

Signal 
type 

Imaging 
modality 

Method for improving search 
2D-S (Chapter 

III) 
CNN-CADe 
(Chapter IV) 

Wisdom of 
Crowds 

(Chapter V) 
Small 2D - 1.43 1.67 

3D 2.25 2.16 2.53 
Large 2D - 1.65 1.49 

3D 1.66 1.14 1.39 
Table 6.1. Comparing relative efficiency across search tasks for a given method. The relative efficiency here 
is defined as: 𝑑′ numerator = detectability of observers + search aid (or wisdom of crowds) and 𝑑′ 
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denominator = average detectability of group on search task (without aid or wisdom of crowds). Boldface 
numbers represent the highest relative efficiency within a column (method).	

 

(A.4). 3D search for the small signal benefits the most for each of the three methods 

investigated. Table 6.1. provides a summary of each method’s added benefit to the 2D/3D 

search for the small and large signals. In particular, we computed the relative efficiency to 

the mean observer, the d’ when searching with the aid (or pooling observers' judgments 

together), divided by the average d’ without the aid (or no pooling across judgments). It is 

clear from the table that regardless of whether observers searched with the 2D-S, the CNN-

CADe, or a majority vote with exception rule was taken across group members' decisions, 

the 3D search for the small signal benefited the most. Additionally, suppose we disregard 

the imaging modality factor (i.e., average the 2D/3D search relative efficiencies). In that 

case, we note that the small signal benefited more from the three methods than the large 

signal. In sum, each of these methods strongly interacts with the negative effect of under-

exploration and the foveated nature of the human visual system.  

Future work can look at methods for reducing recognition errors of larger signals in both 

2D and 3D modalities that are related to visual masking and the human observer’s inability 

to see through image and background noise.  
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Figure 6.1. Comparing the relative efficiency between the three methods for aiding 2D and 3D search for 
small and large signals. From left to right: 2D search small signal, 3D search small signal, 2D search large 
signal, 3D search large signal. Black bars denote the 2D-S method, Gray bars denote the CNN-CADe 
method, and white bars represent the wisdom of crowds (majority vote with exception). For Chapter III, we 
exclude the calculation of relative efficiency for 2D since observers only interacted with the 2D-S. 

 

(A.5). Comparing the three methods for mitigating 3D search errors.  Figure 6.1 

plots the relative efficiency of each method in Table 6.1 but stratified by search condition on 

the x-axis. Of interest, the wisdom of crowds (using the majority vote with exception rule) 

slightly outperforms the other 2 methods. Returning to A.3 for a moment, double reading 

with DBT may prove to be effective at improving the detection of small microcalcifications 

or microcalcification clusters. It would be interesting to see the results from future pilot 

studies using actual radiologists.  

However, caution should be taken in emphasizing these comparisons across methods 

because the investigation of the 2D-S adjunct was done in correlated Gaussian noise and 

with signal uncertainty. On the other hand, the CNN-CADe method and wisdom of crowds 

analyses were investigated using DBT phantoms and no signal uncertainty. Additionally, the 
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results will depend on the overall accuracy achieved by the CNN-CADe relative to humans. 

For our case, the CNN-CADe correctly localized the signals in the DBT phantoms and 

single slices of the phantoms in 77.5% of the signal-present trials. On the other hand, when 

observers searched for the small signals in 2D and 3D, they localized the signals on 74.8% 

(sd=12.2) and 64.8% (sd=15.0) of signal-present trials, respectively. For the large signal 2D 

and 3D searches, they localized the signal on 68.1% (sd=12.8) and 60.4% (sd=8.4) of the 

signal-present trials. Thus, we would predict that if the CNN-CADe could localize the 

signals on more signal-present trials, then the CNN-CADe may have a higher relative 

efficiency than the wisdom of crowds method.  

Concluding remarks. In conclusion, this thesis has increased our understanding of the 

mechanisms mediating human under-exploration of 3D volumetric images and the 

associated search errors. It has assessed potential solutions spanning from multiple readers, 

AI aids, and using 2D synthetic images as an adjunct to the 3D search for mitigating 3D 

search errors. Although there was an emphasis on Digital Breast Tomosynthesis, the results 

and findings are likely to be applicable to all scenarios in which human observers search 

through large image stacks, including other medical imaging modalities (e.g., CT, MR, or 

PET) and potentially other applications like CT scans of luggage in airports and satellite 

imagery.  
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VII. Appendix 

 
Figure A.1. Raw data and individual fits to targets for computing the three types of UFOVs for the 5 
participants not shown in Figure 2.2. Each row corresponds to data from a different participant. On the left-
hand side of the figure, the CBM model is applied to the proportion correct data for the two targets in task 1 
of Experiment 1. A secondary fit is applied to the 3 point estimates estimated at the three tested 
eccentricities. In the 4th row, only two estimates for the CBM model are shown for the small target because a 
single rating of 1 on a target-present trial at eccentricity 4 prevented the CBM model from fitting the data. 
The linear fits to the raw estimates from task 2 in Experiment 1 are shown in the middle. On the right-hand 
side of the figure, the raw estimates and linear fits to the two targets are shown for task 3 in Experiment 1. 
Triangle points and dotted lines represent large target data and fits, respectively. Circular scatter points and 
solid lines depict small target data and fits, respectively. 

 
 

Target type 
 

Parameter 
95% confidence interval 

# of trials = 10 # of trials = 20 
 
     Small 

𝛽- [6.5122, 11.2751] [6.5099, 11.2441] 
𝛽! [-0.1032, -0.0394] [-0.1032, -0.0393] 

      
     Large 

𝛽- [6.2943, 11.1367] [6.3146, 11.1138] 
𝛽! [-0.1026, -0.0349] [-0.1025, -0.0350] 

Table A.1. Power analysis for number of estimates needed for Experiment 1, Task 3 based on results from 
Experiment 1, Task 2. 95% Cis for the simple linear fit parameters for the small and large target in Experiment 
1, Task 2 are shown for sampling 10 trials (with replacement) versus 20 trials (with replacement). 

 



 

 231 

 
Figure A.2. Mean performance and estimation data from Tasks 1-3 in Experiment 1. From top to bottom, we 
move clockwise across the visual field, showing how performance and estimation change along the vertical 
and horizontal meridians of the visual field. Error bars represent 68% bootstrap resampling confidence 
intervals.  
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Figure A.3. Control experiment with a group of 5 new observers. Each unique colored boxplot depicts the 
data from 100 trials for a single observer. The dependent variable, distance to the central slice, was used to 
determine the threshold for mass hit rate localized and mass search errors in 3D. In particular, the mean slice 
distance of 23, computed across the five median values (horizontal lines within each boxplot), was used as 
the threshold.   
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Figure A.4. The average hit rate localized is depicted for the large (left) and small (right) targets. White bars 
denote the hit rate localized in the 2D search, and the gray bars denote the hit rate localized in the 3D search. 
All error bars represent 68% bootstrap confidence intervals. “***” means 𝐩 < 𝟓𝐞'𝟓 and “n.s.” represents 
non-significant results. 

 

 
Figure A.5. Comparing the average PAC while searching for the large target (triangle points and dotted line) 
to the average PAC while searching for the small target for various UFOV sizes. The X-axis represents the 
proportion correct threshold, which determines the size of the UFOV area. The top row depicts the average 
PAC comparison between targets in the 2D search, and the bottom row conveys the same information as the 
3D search. The three columns represent the PAC in 2D or 3D using different types of UFOVs for each target 
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(left-measured UFOV; middle-estimated UFOV in the fovea; right-estimated UFOV in the periphery). Error 
bars represent 68% bootstrap resampling confidence intervals. 

 
Figure # subplot Dependent 

variable 
Comparison 
group 1 

Comparison 
group 2 

Delta Mean 
(c1 – c2) 

p-value 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.8 

 
 

a, top 

PAC 3D w/ 
UFOVS 

 
 
 
 

Large target 

 
 
 
 

Small target 

-0.05859 0.00711 

PAC 3D w/ 
UFOVP F 

-0.06152 0.09686 

PAC 3D w/ 
UFOVP P 

-0.02140 0.67260 

PAC 3D w/ 
UFOVE 

0.44072 P < 5e-5 

 
 

a, bottom 

PAC 2D w/ 
UFOVS 

 
 
 
 

Large target 

 
 
 
 

Small target 

-0.11377 0.03783 

PAC 3D w/ 
UFOVP F 

-0.10472 0.13788 

PAC 3D w/ 
UFOVP P 

-0.04053 0.57779 

PAC 3D w/ 
UFOVE 

0.12660 P < 5e-5 

 
b, top 

 
PAC ratio 
3D (Large / 
Small) 

 
UFOVE 

UFOVS 2.23312 P < 5e-5 
UFOVP F 2.19500 P < 5e-5 
UFOVP P 1.95697 P < 5e-5 

UFOVP P UFOVP F 0.23804 0.00775 
UFOVS 0.27616 0.01400 

UFOVS UFOVP F -0.03812 0.50129 
 

b, bottom 
 

PAC ratio 
2D (Large / 
Small) 

 
UFOVE 

UFOVS 0.31000 P < 5e-5 
UFOVP F 0.28819 0.00657 
UFOVP P 0.22073 0.00680 

UFOVP P UFOVP F 0.06745 0.04985 
UFOVS 0.08926 0.09640 

UFOVS UFOVP F -0.02181 0.56222 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.9 

 
 

a, top 

PAC w/ 
UFOVS 
Large 

 
 
 
 

 
       2D 

 

3D 0.50042 P < 5e-5 
2D plane of 
3D 

0.05564 0.03423 

PAC w/ 
UFOVP F 
Large 

3D 0.51507 P < 5e-5 
2D plane of 
3D 

0.06203 0.03507 

PAC w/ 
UFOVP P 
Large 

3D 0.53668 P < 5e-5 
2D plane of 
3D 

0.07048 0.03092 

PAC w/ 
UFOVE 
Large 

3D 0.22837 P < 5e-5 
2D plane of 
3D 

0.01745 0.06563 

 
 

a, bottom 

PAC w/ 
UFOVS 
Small 

 
 
 
 

2D 

3D 0.55560 P < 5e-5 
2D plane of 
3D 

-0.09026 0.04194 

PAC w/ 
UFOVP F 
Small 

3D 0.55827 P < 5e-5 
2D plane of 
3D 

-0.08593 0.03408 

PAC w/ 
UFOVP P 
Small 

3D 0.55581 P < 5e-5 
2D plane of 
3D 

-0.07538 0.05204 
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PAC w/ 
UFOVE 
Small 

3D 0.54250 P < 5e-5 
2D plane of 
3D 

-0.02480 0.26980 

 
 

b, top 

PAC ratio w/ 
UFOVS 
Large 

 
 
 

 
 
    2D / 3D 

 
 
 
 

   2D / 2D 
plane of 3D 

3.64111 P < 5e-5 

PAC ratio w/ 
UFOVP F 
Large 

3.10566 P < 5e-5 

PAC ratio w/ 
UFOVP P 
Large 

2.80901 P < 5e-5 

PAC ratio w/ 
UFOVE 
Large 

0.34831 P < 5e-5 

 
 

b, bottom 

PAC ratio w/ 
UFOVS 
Small 

 
 
 
 

     2D / 3D 

 
 
 
 

   2D / 2D 
plane of 3D 

3.28365 P < 5e-5 

PAC ratio w/ 
UFOVP F 
Small 

2.77643 P < 5e-5 

PAC ratio w/ 
UFOVP P 
Small 

3.13232 P < 5e-5 

PAC ratio w/ 
UFOVE 
Small 

2.46999 P < 5e-5 

Table A2. Differences in the mean PAC or ratio of PACs for the various predictions made by the general 
hypothesis concerning the area covered by the UFOV as a stopping criterion. We report the most relevant 
findings in the Results section of the main text but include this table for completeness.   

 




