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ABSTRACT OF THE DISSERTATION

Expressive, Interactive Robotic Patient Simulators for Clinical Education

by

Maryam Pourebadi khotbesara
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Professor Laurel D. Riek, Chair

Preventable patient harm is the root cause of many adverse events in healthcare, and

is a leading cause of mortality and morbidity worldwide. One way to address this is through

career-long clinical education, often via the use of robotic patient simulator (RPS) systems.

These highly realistic human-like physical or virtual platforms enable clinical learners to safely

practice their diagnostic, procedural, and social interaction skills without harming real patients.

However, most commercial RPS systems lack a realistic depiction of non-verbal facial cues,

limiting learner engagement and immersion, which can ultimately lead to incorrect skill transfer

and patient harm.
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In my PhD, I have worked to address this gap by building new interactive and expressive

RPS systems, whose faces are based entirely on real patients, and the system’s expressions are

realistic. In this dissertation, I will describe the main contributions of my work, including 1)

Developing an end-to-end analysis-modeling-synthesis framework that can easily and robustly

recognize, model, and synthesize patient-driven facial expressions and clinical cues on the

faces of virtual and physical RPS systems, 2) Developing new methods to create accurate

computational models of multiple pathologies, including stroke and Bell’s Palsy, 3) successfully

synthesizing these models on RPS systems, and, 4) designing the RPS as a clinical educational

tool tested with clinicians.

My research opens new avenues of exploration in robotics, human-robot interaction,

and health technology, and may trigger a new round of relevant technological innovations by

creating the next generation of RPS technology. My work will enable roboticists to discover

platform-independent methods to control the facial expressions of both robots and virtual agents,

yielding new modalities for interaction. Furthermore, disseminating the results of this work to

the research community will help both the broader robotics and healthcare communities employ

these novel systems in their own application domains. This work serves as a bridge between

robotics and healthcare research and practice, and offers promising opportunities to reduce

misdiagnoses and bias in healthcare, ultimately reducing preventable patient harm.
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Chapter 1

Introduction

For several decades, researchers in the field of human-robot interaction (HRI) have been

studying how humanlike robots can collaborate with humans, support their work, and assist

them in their daily lives [207, 131, 117, 81]. Their design and deployment are influenced by a

range of socio-technical, economic, and contextual factors, which, in return, inspires research

areas, especially in the realm of clinical applications [109]. For example, recent research topics

include cognitively assistive robots, providing social engagement for older adults, and supporting

telemedical care delivery in hospitals [148, 163, 162, 183, 82].

There is emerging interest in using robotics technology to address key challenges in

healthcare, particularly those related to the quality, safety, and cost of care delivery. However,

there are several key contextual challenges to realizing this vision, including the increasing cost

of healthcare services [63], the dynamic nature of clinical environments [118], and a global

shortfall in professional healthcare workers with sufficient clinical education and skills [260].

Providing healthcare systems with robots may help address these gaps. For example,

robots may help reduce “non-value added” physical tasks like transportation and inventory

management [207], thus minimizing errors and freeing up more time for patient care [237].

Robots could mitigate the considerable workload and cognitive strain experienced by healthcare

workers, who are grappling with labor shortages, hazardous environments, and significant

personal risk [107].
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In the space of healthcare education and training (HET), robots can provide clinical

educators with new learning opportunities for their students.

Simulation-based clinical learning is an important component of HET already incorpo-

rated into several subspecialties that intersect with diagnosing and treating patients [207, 196].

Simulation-based clinical learning offers healthcare professionals with clinical education and

training in safe, realistic environments that replicate a range of scenarios, allowing them to

practice their clinical and procedural skills without risking harm to actual patients [174].

There are many benefits to this learning method. Research suggests using patient simula-

tors may reduce preventable patient harm [215], which causes death and serious injury to nearly

25% of medicare patients, representing millions of lives affected [121]. Furthermore, researchers

found that when compared with non-digital educational methods, patient simulator systems are

superior in terms of improving knowledge and skill-building [146]. (See Chapter. chapter 2 for a

detailed description of simulation-based clinical learning).

Robotic patient simulator (RPS) systems are one of the common simulators incorporated

into simulation-based clinical learning. RPS systems are humanlike physical or virtual platforms

that serve as a conducive medium for clinical learners (CLs) to safely practice their diagnostic,

procedural, and social interaction proficiencies. RPS systems can also benefit clinical educators

(CEs) by enabling them to perform diverse simulated clinical scenarios tailored to the needs of

CLs, rather than relying on the availability of real patients. Research demonstrated that simulation

systems might enhance CLs’ clinical skills, understanding, comprehension, and keenness for

education more efficiently than traditional text-based learning approaches [146, 137]. Career-

long clinical education with RPS systems may reduce the incidence of preventable patient harm

[195, 197, 192, 196, 172, 136].

Despite the many benefits of using patient simulators, there are several challenges with

existing systems that may impede how effective they are at supporting HET.

Most current commercial RPS systems suffer from a major design flaw: they completely

lack facial expressions (FEs) and, thus, the ability to convey key diagnostic features of different
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disorders and social cues, which can eventually cause problems with learner immersion and skill

transfer. Lack of facial expressiveness is problematic because FEs serve as an important social

and clinical cue in patients; thus, the lack of expressions in simulators may adversely affect CLs’

learning performance. In order to successfully support clinicians in real-world HET settings,

RPS systems will need to be able to exhibit humanlike actions and behaviors.

The anthropomorphization of social robots gives rise to concerns about the robot’s impact

on users’ emotions, expectations, and interactions [199, 183, 114]. The limited expressiveness

of humanlike social robots can lead to reduced emotional engagement with users, hindering

the development of empathy and social presence in HRI [185]. Even for the RPS systems with

expressive faces, their appearance and characteristics may not be widely customizable to address

CEs’ needs. These gaps call for researchers to be mindful of humanlike social robots’ ethical

and societal impacts.

While enabling RPS systems with an expressive face can address this challenge, it

still creates a bigger challenge with designing expressive systems: facial expressions are very

person-dependent and can vary from person to person [275]. It is challenging to analyze,

model, and synthesize FEs of a small subgroup of patients on simulators’ faces and develop

generalized expressive simulator systems that are capable of representing a diverse group of

patients (including but not limited to different ages, genders, and ethnicities who are affected by

different diseases and conditions) [275].

Another challenge is that incorrectly (or not) exhibiting symptoms on a simulator’s

face may reinforce incorrect skills in CLs, and could lead to future patient harm. Furthermore,

developers may face physical limitations preventing them from advancing the state-of-the-art.

Other challenges include the simulator’s usability, controllability, high costs, physical limitations,

and the need to recruit experts with various skills.

Tackling these technical challenges to advance the state-of-the-art needs work on several

fronts. These include the creation of capable and usable RPS systems, new techniques for

recognizing and synthesizing facial expressions on simulators, novel computational methods for
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developing humanlike face models for them, and new means for evaluating these systems.

My work is situated in this problem domain of enabling RPS systems to realistically

exhibit humanlike actions and behaviors similar to human patients to support learners in dynamic,

real-world educational environments. My work examines state-of-the-art technical approaches

for human facial expression analysis, facial action modeling, and facial expression synthesis

on RPS systems. More specifically, my research addresses the need for new training tools in

HET. In my work, I develop expressive RPSs capable of realistically synthesizing non-verbal

asymmetric facial cues that are important for the rapid diagnosis of neurological emergencies,

such as stroke. I contextualize this work within the field of HRI, as ultimately, I am interested

in how this technology can be leveraged to improve immersion, engagement, and educational

outcomes for learners.

1.1 Motivation and scope

Current RPS systems do not promote humanlike interaction with CLs, nor can they

operate autonomously. The existing RPS systems rarely provide CLs with an interactive platform

to adequately engage them in automatic interaction, which may result in transferring poor

social interaction skills to CLs, leading them to perform poorly on patient exams. This can be

problematic for diagnosing and interacting with real patients, for example, those presenting with

neurological impairments such as stroke. Additionally, our clinical collaborators have shared that

CLs often fail to master the neurological examination on simulated patients. This may result in

inadequately performing the exam on real patients [116]. Even if a CL performs the exam well,

they may have little confidence in the accuracy of their findings. Given the subjective nature

of the interpretation of these findings, low confidence in the neurological exam, irrespective of

how well it is performed, may lead to an uncertain interpretation of the results. This uncertainty

can lead to missed opportunities for acute interventions, prompt treatments, and prevention of

serious harm [176, 47].

4



As the purpose of existing RPS systems is mainly informative rather than interactive, they

lack various communication modalities, which may limit the range and quality of interactions

between the RPS robot and users, affecting the overall training effectiveness. The lack of

immersion and engagement in the interaction can also result in reduced motivation, interest, and

retention of the training content in the context of HRI.

Existing RPS systems may offer tools to practice basic clinical skills (e.g., taking vital

signs, and performing physical exams); however, they only partially replicate interactive clinical

scenarios that replicate real-life medical situations with evolving and changing conditions. This

can lead to limited opportunities for effective clinical skill acquisition and knowledge transfer,

potentially resulting in missed opportunities for acute interventions, tools, prompt treatment, and

prevention of serious harm.

Designing a clinical training tool with an interactive, expressive RPS to address these

gaps, can also introduce design and technical challenges. For example, if poorly designed,

interacting with the system can heavily rely on advanced technology or complex interfaces,

limiting clinicians’ perceived ease of use. The perception of robots’ ease of use may significantly

influence the clinicians’ acceptance of new technology in their professional life [109]. Moreover,

the limited usability of robots can make it challenging for users to effectively work with the robot

and access the training content, ultimately resulting in frustration and lower learning outcomes.

These challenges necessitate a new interactive clinical training intervention to enhance

the learning experience of CLs by providing a realistic and immersive environment for practicing

dynamic clinical scenarios.

Thus, the research goal of my work is to create highly lifelike and interactive

robots, capable of accurately replicating patient symptoms and autonomously engaging

socially with clinical learners. My work focuses on supporting CLs for diagnosis and treatment

of neurological emergencies, especially stroke. This dissertation discusses research at the

intersection of HRI, robotics, automatic facial and gesture recognition (FG), computer vision,

and health technology, to enable socially interactive robots to simulate human-patient-like
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expressions and interaction. While there are many dimensions to this problem, this dissertation

explores the following aspects:

• How can one generate data-driven statistical models of patients’ facial expressions, repre-

sentative of clinical conditions, such as facial paralysis.

• How might robotic faces automatically synthesize these models.

• How RPS systems simulate existing dynamic clinical scenarios, such as neurological

exams, while providing interactive and engaging learning experiences.

• How can robots automatically engage in interactions and effectively communicate with

CLs in real-time?

• How using social robots as an educational tool can create an immersive and realistic

environment for practicing diagnosis and treatment skills.

• How can robots provide end-users with lower levels of technology literacy intuitive control

features to support the systems’ ease of use

• What are the key design requirements for building socially interactive robots for CLs.

• How to consider the ethical implications of the use of humanlike robots in HET.

1.2 Contributions

The contributions of this work are as follows:

Presented the potential for humanlike robotic patient simulators in transforming

HET [195]. My work identified the gaps and opportunities in existing learning modalities

in order to recognize the potential of humanlike RPS in the context of HET. I outlined the

root causes of preventable patient harm in clinical settings, and how simulation-based clinical

education is one of the best defenses to reduce the incidence of patient harm. Second, I examined
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the benefits and challenges that accompany common learning modalities of HET, including

virtual and robotic patient simulators. Finally, I presented major gaps in introducing the use of

humanlike learning modalities into clinical education. This work established the foundations of

designing and deploying expressive RPS systems in HET.

Created new virtual and physical faces for robots in HET [195, 196]. I investigated

the effect of expressive mechanical and rendered faces in RPS design and presented my work

on building new expressive faces. First, I discussed the role of humanlike behaviors in social

interactions and outlined the benefits and key challenges of enabling virtual and robotic embodi-

ments to depict verbal and non-verbal behaviors. Second, I explored techniques for detecting,

modeling, and synthesizing humanlike FEs in robotic faces. Finally, I discussed my research on

virtual and robot patient simulator faces, enhanced with the capacity to exhibit nuanced verbal

and non-verbal behaviors and cues, while displaying diverse appearances and backgrounds. This

work stands as a potential instrument in HET, opening new frontiers in developing expressive

RPS systems. Moreover, this work provides valuable insights to researchers by examining

methods for detecting, modeling, and synthesizing FEs, with potential applications in enhancing

social interactions, and clinical education.

Built an analysis-mask-synthesis (AMS) framework and developed a general facial

paralysis masks (FPM) framework to generate accurate representations of FEs for RPSs

based on real patient’s facial characteristics [172, 195]. This work had two main goals. First,

it aimed to enable people to easily synthesize human facial movements on any robotic and virtual

faces in real time. Second, it aimed to understand how robots can accurately and realistically

depict asymmetric facial expressions. In this work, we designed and developed the end-to-

end AMS control framework which robustly recognizes the facial movements of an operator,

masks their movements with computational models of FP, and automatically, easily, and robustly

synthesizes the masked facial movements across a range of RPS embodiments. Moreover, we

developed the FPM framework, a system designed to automatically generate high-precision

computational models that realistically depict FEs associated with patient pathologies, and are
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constructible in real time. Furthermore, we integrated these two frameworks, enabling the overall

system to elevate the authenticity and accuracy of FE representations on RPS faces, based on

real patients’ facial characteristics. Finally, we reported the results from an expert-based user

study, highlighting that experts perceived our expressive virtual patient simulator to be realistic

and comparable to humans with Bell’s Palsy. This study fosters technological innovations in

HET and provides platform-independent methods for controlling the FE of robots and virtual

agents, leading to novel modalities for interaction.

Introduced RPSwS for modeling and synthesizing acute stroke [192, 197, 191]. The

core objective of this work was to architect a comprehensive system that adapts our general

FPM and AMS frameworks in order to create data-generated models of real humans, and

overlay them on a robot to enable it to depict realistic verbal and non-verbal cues. This enables

RPSs to accurately and effectively depict stroke symptoms, thereby advancing the landscape

of HET for stroke diagnosis and treatment. Thus, I introduced robotic patient simulators with

stroke (RPSwS): a new expressive clinical training tool capable of realistically depicting non-

verbal, asymmetric FP cues representing acute stroke. First, I developed the Stroke FPM

framework, comprising a machine learning method for accurate facial landmark tracking in a

newly collected dataset of PwS, and a statistical modeling approach to use tracked facial point

values to automatically represent the visually significant features of stroke. Second, I created a

RPSwS by developing an end-to-end Stroke AMS control framework which uses the generated

stroke models to automatically depict stroke on the face of RPS systems. Third, I identified key

features for enhancing realism and similarity between synthesized stroke faces of RPSwS and

those of PwS through a study with clinical experts.

To my understanding, the Stroke FPM framework pioneers a computational modeling

approach that can capture stroke-associated FP cues across the upper and lower facial regions,

while extracting various representations of neurological effects through systematic analysis of

facial movement patterns. Thus, the Stroke FPM provides researchers with a reliable tool for

modeling and analyzing facial asymmetry and movements in both upper and lower facial regions.
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In addition, the Stroke AMS framework allows for the accurate rendering of stroke characteristics

on various RPS systems, enabling the creation of highly realistic FP simulations, thereby offering

robotics researchers a means to develop empirically derived facial representations for robots

in a HET environment [197]. By producing a set of 75 facial models that represent stroke in

various facial regions, our research yielded insights into the best representations of stroke in each

facial region based on professional expertise, enhancing the precision and reliability of stroke

representations for different facial regions. This work has significant cross-disciplinary impacts in

clinical education, health informatics, FG, robotics, and HRI, as it pioneers a statistical modeling

methodology for comprehensive stroke-associated FP representation, facilitates realistic FP

simulations on various RPS systems, and provides insights for asymmetric FE analysis, social

robot design, and understanding the effects of facial asymmetry on social interactions.

Designed and developed ROSE: an interactive social robot for medical education

[193].

The core objective of this work was to understand how to enable a robot with social

intelligence to autonomously exhibit realistic behaviors and effectively engage in interactions

within real clinical education settings. This work spearheads the design and development of a

clinical training tool employing an interactive, socially adept RPSwS, ROSE, to enhance the

learning experience for CLs. ROSE provides a diverse, inclusive, and customizable platform that

enhances the realism and accessibility of HET. Through close collaboration with neurologists

and CEs, we identified user-centered design requirements for building ROSE. Second, we co-

designed and implemented a new automatic multi-modal communication (MMC) framework for

the robot, supporting the automation of clinical scenario simulations, interaction, and engagement

in RPSwS. Third, we presented and evaluated ROSE as a clinical training tool that leverages the

MMC framework to simulate clinical scenarios and autonomously engage in user interactions,

providing a realistic and immersive learning environment for CLs to hone their diagnostic skills.

This work is important for HET, as well as the broader healthcare, FG, and HRI com-

munities. To our knowledge, ROSE is the first patient-data-driven, interactive clinical training
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tool accessible to clinicians to practice diagnosis and treatment of neurological disorders such

as stroke. To our knowledge, ROSE is the first patient-data-driven, interactive clinical training

tool accessible to clinicians to practice the diagnosis and treatment of stroke. Our work lays

the foundation for extending the accessibility of educational interventions to the healthcare

domain, enabling humanlike social robots to support HET through an automated interactive,

expressive robot. Moreover, our work provides a framework for researchers to explore HRI in

new experiential learning settings (e.g., build RPS systems to enable CLs to avoid forming biased

impressions) and broader domains (e.g., explore methods for designing social robots to enhance

people’s perception of individuals with FP).

1.3 Publications

The work presented in this dissertation is based on the following papers that are either in

the process of being submitted for publication or have already been published.

1. Pourebadi, M., Pai, S., Pei, R., Riek, L.D. (2024) “ROSE: An Interactive Social Robot

for Medical Education”, Submission Pending, The ACM/IEEE International Conference

on Human-Robot Interaction (HRI).

2. Pourebadi, M., LaBuzetta, J. N., Riek, L.D. (2023) “Modeling and Synthesizing Stroke

on Expressive Patient Simulator Robots”, Submission Pending, The ACM Transactions on

Human-Robot Interaction (THRI).

3. Pourebadi, M., Riek, L.D. (2022) “Facial Expression Modeling and Synthesis for Patient

Simulator Systems: Past, Present, and Future”, In Proceedings of the ACM Transactions

on Computing for Healthcare Journal (ACM HEALTH), 3(2), 1-32.

4. Pourebadi, M., and Riek, L.D. (2020). “Stroke Modeling and Synthesis for Robotic and

Virtual Patient Simulators”, In Proceedings of the AAAI Fall Symposium on Artificial
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Intelligence in Human-Robot Interaction: Trust and Explainability in Artificial Intelligence

for Human-Robot Interaction (AAAI AI-HRI).

5. Pourebadi, M., Gonzalez, C. G., LaBuzetta, J. N., Meyer, B. C., Suresh, P., Riek, L. D.

(2020). “Mimicking Acute Stroke Findings With a Digital Agent”, International Stroke

Conference (ISC), Proceedings of the American Heart Association Journal (AHA).

6. Moosaei, M., Pourebadi, M., and Riek, L.D. (2019). “Modeling and Synthesizing Idio-

pathic Facial Paralysis”, Proceedings of the IEEE International Conference on Automatic

Face and Gesture Recognition (FG). [Acceptance rate: 20%]

7. Pourebadi, M., and Riek, L.D. (2018). “Expressive Robotic Patient Simulators for Clinical

Education”, Robots 4 Learning workshop at the 13th Annual ACM/IEEE International

Conference on Human-Robot Interaction (HRI).

1.4 Ethical procedures

The Institutional Review Board at the University of California San Diego has formally

reviewed human subject experiments described in this dissertation. Participants provided in-

formed consent to participate in experimental research in all human subjects experiments. The

researcher appropriately anonymized and securely stored all collected data.

1.5 Dissertation overview

The dissertation is organized as follows:

• Chapter 2 provides an overview of related work in the areas of HET, learning modalities,

and robotic patient simulators.

• Chapter 3 presents my work on developing physical and virtual faces as a communication

modality for robots, and explores common methods for facial expression analysis (FEA),

facial action modeling (FAM), and facial expression synthesis and animation (FSA).
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• Chapter 4 introduces my work on creating new embodiments for robots and virtual agents,

developing an end-to-end analysis-modeling-synthesis (AMS) control framework that can

robustly recognize, model, and synthesize FEs across a range of robotic embodiments, and

building the Facial Paralysis Mask (FPM) framework that generates accurate computational

models of multiple patient-driven pathologies that can be synthesized onto robotics faces.

• Chapter 5 describes the design, implementation, and evaluation of the stroke AMS and

stroke FPM: two frameworks for generating statistical modeling approaches representing

facial characteristics of stroke, and applying the generated models onto the face of an RPS

system to automatically display stroke.

• Chapter 6 introduces the design, development, and results of evaluating ROSE, an interac-

tive social robot for clinical education.

• Chapter 7 concludes by summarizing the primary contributions of this dissertation,

deliberating on prospects for future research, presenting open questions for the HRI and

FG communities, and delivering concluding remarks.
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Chapter 2

Background

2.1 Introduction

For more than five decades, researchers in the field of HRI have been building and

studying how robots can collaborate with humans, support them with their work, and assist them

in their daily lives [207, 131, 117]. For example, autonomous mobile robots work side-by-side

with skilled human workers in factories and retail sectors [214]. Social robots inform and guide

passengers in large and busy airports [242]. In both clinical and home settings, robots have

been used to assist healthcare workers, clean rooms, ferry supplies, and support people with

disabilities and older adults in rehabilitation and task assistance [207].

There is emerging interest in using robotics technology to address key challenges in

healthcare, particularly those related to the quality, safety, and cost of care delivery. However,

there are several key contextual challenges to realizing this vision. One big concern is the rapidly

increasing costs of healthcare. For example, in the United States, healthcare is expensive across

a range of services including administrative costs, pharmaceutical spending, individual services,

and the use of high-income trained healthcare workers [63]. Another challenge is the dynamic

nature of clinical environments with occupational hazards that put health care workers at risk of

injury and disability [118, 237, 238]. Additionally, the global shortfall in professional healthcare

workers with sufficient clinical education and skills is challenging [260].

Providing healthcare systems with robots may help address these gaps. For example,
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Figure 2.1. A typical patient simulation center setup. Clinical learners treat a non-expressive
robotic patient simulator. Its physiology is controlled by a clinical educator.

robots can support the independence of people with disabilities by enabling transitions to home

based care. Robots can also help clinicians and caregivers with care tasks including physical,

cognitive, and manipulation tasks [207, 107, 18, 254, 120], as well as healthcare worker education

(See Figure 2.1).

Robots can potentially enable healthcare workers to spend more time with patients and

less time engaging in “non-value added” physical tasks, and reduce the errors caused by the

overburden of these tasks [237, 107]. These physical tasks include transportation, inventory,

and spending time searching and waiting [207]. For example, Tug robots [11] are medical

transportation robots that autonomously move through hospitals, delivering supplies, meals, and

medication to patients.

Moreover, robots can assist in clinical learning. For example, humanoid patient simulators

can mimic human function (physiology) or anatomy (biology). Some of these simulators are

engineered systems that model information integration and flow to help clinical learners study

human physiology. Others present models of human patient biology and cognition to provide
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clinicians with a platform to practice different skills including task execution, testing and

validation, diagnosis and prognosis, training, and social and cognitive interaction.

Robotic patient simulators, virtual patient simulators (VPS) and augmented reality patient

simulators (APS) are three main technologies used to represent realistic, expressive patients

within the context of clinical education. Clinical educators (CE) can use them to convey realistic

scenarios, and clinical learners (CL) can practice different procedural and communication skills

without harming real patients.

Although there are many benefits associated with using RPS, VPS, and APS systems,

their designs suffer from a lack of FE, which are both a key social function and clinical cue

conveyed by real patients. While enabling RPS and VPS systems with an expressive face can

address this challenge, still it creates a bigger challenge with designing expressive systems:

facial expressions are very person-dependent and can vary from person to person [275]. It is

challenging to analyze, model, and synthesize FEs of a small subgroup of patients on simulators’

faces and develop generalized expressive simulator systems that are capable of representing a

diverse group of patients (including but not limited to different ages, genders, and ethnicities

who are affected by different diseases and conditions) [275].

Another challenge is that incorrectly (or not) exhibiting symptoms on a simulator’s

face may reinforce incorrect skills in CLs, and could lead to future patient harm. Furthermore,

developers may face physical limitations preventing them from advancing the state-of-the-art.

For example, VPSs are limited by flat 2D display mediums, making them unable to represent

a physical 3D human-shape volume which clinicians can palpate in order to perform clinical

assessments. Other challenges include the simulator’s usability, controllability, high costs, and

physical limitations, as well as the need of recruiting experts with various skills.

Tackling these technical challenges to advance the state-of-the art needs work on several

fronts. These include the creation of capable and usable RPS and VPS systems, new techniques

for recognizing and synthesizing facial expressions on simulators, novel computational methods

for developing humanlike face model for them, and new means for evaluating these systems.
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Ultimately addressing these gaps can provide healthcare education with realistic, expressive

simulators capable of mimicking patient-like expressions. This has the potential to positively

affect CLs’ retention, and eventually, revolutionize healthcare education.

In this review, we discuss research at the intersection of robotics, computer vision, and

clinical education, to enable socially interactive robots and virtual agents to simulate human-

patient-like expressions and interact with real humans. In this work we provide an overview of

the root causes of preventable patient harm, and contextualize clinical education as a means for

addressing it. We outline common learning modalities, including VPS and RPS systems, and

outline key opportunities to improve them.

2.2 Background

2.2.1 Patient Safety and Healthcare Education

The World Health Organization defines patient safety as “the absence of preventable

harm to a patient during the process of health care and reduction of risk of unnecessary harm

associated with health care to an acceptable minimum” [33]. Taking an action (errors of omission)

or inaction (errors of commission) by healthcare workers, system failures, or a combination of

these two factors may cause or lead to preventable patient harm [128].

Preventable patient harm represents the root cause of many adverse events experienced

in healthcare departments including intensive care units, and is a leading cause of mortality and

morbidity in the world. Conservative estimates suggest preventable patient harm causes over

400,000 preventable deaths per year in the US hospitals alone [136], and 4-8 million experience

serious harm and injury. It is estimated between 27-33% of patients experience an adverse event

as a result of their care [245, 230, 84, 1].

While better designed healthcare systems, services, and processes, as well as new tech-

nologies, can help reduce the incidence of patient harm, in the short term one of the best

approaches is high-quality clinical education. Recent work shows that healthcare education and
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training is the most effective mechanism to reduce the incidence of patient harm and improve

patient safety [215].

One way to advance the state-of-the-art of healthcare education is through the develop-

ment intelligent learning modalities, such as simulation systems. Simulators provide CLs the

chance to safely study the causes and effects of errors, while avoiding harm to real patients.

Using simulators also improves CLs’ comprehension, confidence, efficiency, and enthusiasm for

learning [137]. When compared with non-digital learning methods, using patient simulators can

more effectively improve CLs’ skills, and at least as effectively improve knowledge [146].

CEs may also benefit from using simulation systems to run a variety of desired clinical

simulation scenarios on realistic patients based on a learner’s need, instead of patients’ availability.

Examples of these scenarios include nursing simulation scenarios [9], physician scenarios [30],

and surgical simulation scenarios [32]. Studies also indicate that using simulation improves the

performance of learner evaluation and educational needs diagnosis by CEs [45]. This work, and

others, are encouraging, and suggest that augmenting existing healthcare simulation systems

with emerging AI-based technologies offers promising opportunities to substantially reduce

preventable patient harm, as well as risks to clinicians.

2.2.2 Patient Simulator Types, Benefits, and Challenges

There are four types of simulated patients used in simulation-based clinical learning:

standardized human patients, augmented reality patient simulators, virtual patient simulators,

and robotic patient simulators. Table 2.1 illustrates the structure, functionality, and controlability

for each type of patient simulator. This is further discussed below.

SHP are live actors who assume the roles of patients. They convey a series of symptoms

and/or a scenario defined by CEs [57]. SHPs are beneficial as they provide CLs with a real-human

case study to practice their history-taking and clinical assessment skills. As a result, SHPs enable

the learning process to sometimes deviate from a predefined senario, as this type of simulator

can adapt to unexpected changes on-the-fly.
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Table 2.1. Simulators: the structure, functionality, and controlability.

Type Platform Physiological
variables

Visual appearance Control Scheduling
time

Standardized
human pa-
tients (SHPs)

Real: 3D real-
human body

Can present some
of the variables.

Can display dynamic facial
expressions (FEs), gestures,
and some of the abnormal vi-
sual findings.

Controlled by a human. High

Augmented
reality patient
simulators
(APSs)

Hybrid: Visual
appearance pro-
jected to a 3D
physical surface.

Can easily present
all the variables.

Can be programmed to richly
display dynamic FEs, ges-
tures, and all abnormal visual
findings.

Ranges from fully auto-
mated to teleoperated to
pre-recorded mode.

Low

Virtual
patient simu-
lators (VPSs)

Virtual: 2D mon-
itor or TV or
Tablet

Can only present
the visual physi-
ological variables
due to 2D display
limitations.

Can be programmed to richly
display dynamic FEs, ges-
tures, and all abnormal visual
findings.

Ranges from fully auto-
mated to teleoperated to
pre-recorded mode.

Low

Robotic
patient simu-
lators (RPSs)

Mchanical: 3D
human-like phys-
ical robot

Can exhibit
5000+ physiology
changes on it.
Verbal responses
controlled using a
live operator.

Mostly have a static face.
They can be programmed
to display some of dynamic
FEs, gestures, and abnormal
visual findings.

Ranges from fully auto-
mated to teleoperated to
pre-recorded mode.

Low

However, SHPs cannot accurately exhibit many symptoms of real patients, such as

facial paralysis or physiological changes. Furthermore, recruiting SHPs can be difficult and

expensive, especially ones at younger ages because of child labor laws and scheduling difficulties

[57, 44, 243, 115].

APSs, also known as physical-virtual simulators, use augmented reality (AR) techniques

to combine physical human-shaped surfaces with dynamic visual imagery projected on its surface

[89]. APSs combine the benefits of two worlds: its physicality can convey a realistic, embodied

similarity to people, while its virtual component can display dynamic appearances and FEs

without being limited by hardware infrastructure.

However, it is still challenging to display an accurate representation of naturalistic

symptoms even in an AR environment. APSs also present some challenges depending on the AR

modalities and techniques used. Recent work [74] suggests to avoid the use of commercially

available head-mounted displays for AR surgical interventions, because perceptual issues can

affect user performance. In front-projected imagery [212], the shadow of users can hover over the

projection [258] and cause the CEs fail to display desired scenarios. Rear-projected imagery [88]
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Figure 2.2. Robotic patient simulators with virtual faces. Left: Augmented reality patient
simulators (APSs) with rendered faces based on projector placement. A) An APS system with
front-projected imagery [212], and B) An APS system with rear-projected imagery [88]. Right:
Examples of virtual patient simulators (VPSs) software with rendered faces. C) Shadow Health
[34], D) CliniSpace [8], and E) i-Human [28].

can solve both multi-user and projection occlusion problems; however, it requires a sufficient

physical space behind the augmented platform to place the projectors [89] See Fig. 2.2, left).

VPSs are interactive digital simulations of real patients in clinical settings displayed on a

screen See Fig. 2.2, left). For example, the Shadow Health VPS keeps CLs engaged with digital

patients, and lets them practice communication skills, assessing virtual patients, and documenting

their findings [34]. CliniSpace offers both a stand alone healthcare education system and a fully

immersive game [8]. i-Human VPS agents are capable of presenting human physiology and

pathophysiology, as well as 3D anatomy of the human body [28]. Gabby is a VPS system which

provides support to African-American women to decrease their preconception health risks and

eliminate racial and ethnic disparities in maternal and child health [249, 62].

VPSs benefit from virtually portraying physiological variables (e.g., heart rate) without

being limited by hardware infrastructure. The virtual display also provides the opportunity to

richly and quickly display changes in the appearance, symptoms, behavior, or body language.

Furthermore, Kononowicz et al. [146] found that VPS systems can help improve knowledge and

skill-building (e.g., clinical reasoning, procedural, and teamwork skills) when compared with

non-digital educational methods, including didactic-learning modalities (e.g. lectures, reading

exercises, group discussion in the classroom), and non-digital models such as SHPs. Another

advantage to VPSs is that they make clinical education more accessible to CLs in low resource

settings, which Kononowicz et al. [146] discuss as being effective in a range of countries
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Figure 2.3. Examples of robotic patient simulators (RPSs) with physical faces. A) Laerdal’s
Little Resusci Anne [76], B) Code Blue III by Gaumard Scientific [24], C) Laerdal’s SimNewB
[35], D) Laerdal’s Mama Natalie [29], E) Simroid by Morita Corp [36], and F) Gaumard’s
Pediatric HAL [31].

worldwide.

RPSs are lifelike physical robots that can simulate realistic patient physiologies and

pathologies (See Fig. 2.3) [196]. The use of physical simulators originated with Resusci Anne, a

static mannequin created to teach cardiopulmonary resuscitation in 1960. It was used to train more

than half a billion people in life-saving skills [182, 15]. Later in the 1960s, in an effort to train

anesthesiologists, researchers developed a physical RPS called SimOne, able to show palpable

pulses, heart sounds, and movement. Its software provided several pre-programmed events, such

as different changes in heart rate or blood pressure [76]. Since then, many companies have

built more advanced RPS systems to support a range of clinical scenarios, including Gaumard

Scientific and Laerdal.

Recent RPSs benefit from the ability to interactively convey thousands of physiological

signals. Their high fidelity physical bodies are comparable to the bodies of real patients, affording

CLs a practice platform for physical examinations and procedures.

2.2.3 Open Problems in Simulation-Based Education

Despite the many benefits of using patient simulators, there are several challenges with

existing systems that may impede how effective they are at supporting CL education, particularly

with regard to skill transfer (how well skills map from simulated patients to real patients).

One main challenge with existing RPS and VPS systems is low usability and control-

20



lability, which can cause delay and distraction. These simulators are very complicated and

difficult for CEs to control, particularly when running complex simulations in a dynamic learning

environment. Running clinical scenarios on these simulators has several time-consuming tasks

and requires scheduling. As a result, CEs often cannot run the necessary simulations to support

effective learning strategies. Furthermore, clinicians tend to have fairly low technology literacy,

so a poorly designed system along with poor socio-technical integration can adversely affect

skill learning performance [207]. Finally, using robots in healthcare settings can potentially

add disruption and delay to the simulation process, which will change the clinical workflow in

unforeseen directions [207, 236].

The other main challenge is that most current commercial VPS and RPS systems suffer

from a major design flaw: they completely lack FEs, and thus the ability to convey key diagnostic

features of different disorders and social cues, which can eventually cause problems with learner

immersion and skill transfer. This is critical for scenarios that require dynamic changes in

appearance (e.g., abnormal visual findings such as drooping, which cannot be easily portrayed

on a mannequin). Therefore, this lack of expression limits the extent to which a CL will

become engaged with and immersed in a simulation, which may adversely affect their learning

performance [168]. Consequently, CLs may be learning to incorrectly read patient social cues

and signals, and may need to be retrained. Due to the importance of FEs as a key social function

and clinical cue in patients, it is essential to study the synthesis of expressions (both symmetric

and asymmetric) in simulators.

While RPS, APS, and VPS systems with expressive faces can address the previous

challenge, they introduce several technical challenges and opportunities with designing expressive

systems. First, because facial expressions and their intensities are very person-dependent and can

vary greatly from person to person [275], it can be challenging to develop one generalized system

to recognize, model, and display facial expressions of a wide range of different individuals and

cultures. Furthermore, some of the simulators, such as VPS systems, are limited by a flat 2D

display medium, making them unable to convey a physical 3D human-shape which clinicians

21



can palpate in order to perform clinical assessments. Inaccurately exhibiting symptoms on a

simulator’s face may reinforce incorrect skills in CLs and eventually lead to incorrect diagnoses

in their future career [77].

Other challenges with creating expressive simulators include the need to recruit experts

with various skills for development, high development costs, and systematic physical limitations.

Therefore, in order to design robots and virtual agents with human-like expressive faces

capable of accurately exhibiting patient-like symptoms, it is beneficial to examine the effect of

expressive mechanical or rendered faces. To do this, roboticists and engineers need to closely

co-design systems with developers and designers with a range of expertise, and also include a

diverse set of stakeholders, including CLs, CEs, and patients [207, 196, 210].

Adopting an interface to a physical or virtual robotic face similar to a human-patient’s

face to mimic real FEs and symptoms requires knowledge on building and controlling physically-

embodied robots and/or animating virtual systems. It also requires having the knowledge on

the nature of human facial expressions, and the existing methods of analyzing (recognizing,

detecting, and tracking) human facial features. Moreover, it requires knowledge of the existing

methods on developing models of human-like facial expressions, and techniques to incorporate

and synthesize patient-like FEs onto the simulator’s face.

2.3 Chapter Summary

The unique application of facially expressive robots in patient simulation offers a wealth

of research opportunities for advancements in medical training and healthcare. This chapter

provided a comprehensive overview of the research’s objectives, and described the motivation

behind my proposed work. It began by identifying the gaps and opportunities in existing learning

modalities within the context of healthcare education and training. The benefits and challenges

associated with virtual and robotic patient simulators are examined, highlighting the need for

alternative learning approaches. The next chapter will introduce the concept of utilizing RPS
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systems with expressive faces as learning modalities to address major gaps in current healthcare

education and training, and will present my efforts in the creation of diversified, expressive

physical and virtual faces to be integrated into RPS design.
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Chapter 3

Expressive Faces For Robots

3.1 Introduction

The human face is a key expressive modality for communicating with others and under-

standing their intentions and expressions. Facial expressions are a form of visual communication

that help to enhance other modalities of communication, such as spoken or gestural language,

and enable people to spontaneously communicate important information [171, 71]. In clinical

settings, healthcare workers use other non-verbal cues to infer patient physiological states, such

as pallor, blinking, eye gaze, blushing, and sweating.

RPS and VPSs with expressive faces also can benefit from this human-like ability to

create better connections and interactions with users, and be more favorably perceived [80]. This

is why many roboticists develop physical or virtual embodiments capable of displaying facial

expressions. Sometimes these expressions are conveyed physically (e.g., with mechanically

moving parts), sometimes they are conveyed virtually (e.g., using 2D displays) (See Figure 3.1).

While building accurate physical and virtual platforms for robots can enhance interaction,

poorly designed faces can adversely affect the interaction and create distractions [80]. In the

1970s, Mori introduced the uncanny valley concept which explains people’s negative reaction to

certain lifelike robots [173]. The idea is that as robots become more human-like, they become

more attractive until they reach a certain point, after which, people perceive the robots as being

creepy and/or immoral. This effect has since been validated across multiple experimental studies
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[139, 246].

It is important to consider the variability of facial expressions while designing robotic

platforms capable of generating humanlike expressions. For many years, facial expressions were

considered a universal language to express internal emotional states across all cultures[133].

However, recent cross-cultural studies suggest that culture is a well-documented source of

variance in facial expressions. Studies by Jack et al. [133, 134] and Elfenbein et al. [99]

suggest that humans across different cultures communicate emotions using different sets of facial

expressions, and therefore, the notion of “universal” facial expressions proposed by Ekman [96]

is now refuted in the light of demonstrated cultural nuances.

Another important consideration is the source videos and models used to create expres-

sions on VPS or RPS systems. Many of these systems are trained on datasets of actors, presenting

exaggerated facial expressions with little variance or cultural nuances, and tend to propagate the

now unfavored Ekman “universal” framing of facial expressions with action units (AU) based

models. This can lead to bias and errors in both facial expression analysis and synthesis systems.

(See Section 3.2.6).

These studies raise an awareness that the impact of including different facial expressions,

features, and functionalities in designing virtual and physical faces requires meticulous attention

while designing realistic appearance and performance for human faces. Furthermore, the results

suggest to carefully study the effects of using different facial analysis methods before, during,

and after the realistic face design process.

In this work, I explore common methods for facial expression analysis (FEA), facial

action modeling (FAM), and facial expression synthesis and animation (FSA), present my work

on developing physical and virtual faces as a communication modality for robots. In Section 3.2,

I explore common methods for detecting and tracking human-like expressions to contextualize

facial expression analysis in HRI. In Section 3.3, I describe different facial action modeling

techniques while considering various information processing and knowledge modeling methods.

Section 3.4, I examine technical approaches to synthesizing dynamic FEs on virtual agents and
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Figure 3.1. Top: Physical robots with mechanical faces: A) Kismet [5], B) Simon [93], C)
Diego-San [7], D) Charles [149], E) Geminoid HI-5 [123], F) Sophia [38]. Bottom: virtual and
hybrid robots with rendered faces: G) Kuri [19], H) BUDDY [17], I) FURo-D [13], J) Mask-Bot
2i [188], K) Furhat [80], L) Socibot [37].

robots. In Section 3.6, I present robotic faces with diverse expressivity and diversity created by

our team.

3.2 Automatic Facial Expression Analysis

In order to build physical and virtual robotic faces that can replicate realistic, understand-

able, human-like expressions, it is necessary to be able to recognize how people express FEs.

This section discusses common methods for manually and automatically detecting, locating, and

analyzing human-like expressions in the presence of noise and clutter. First, we list a few key

concepts.

Facial landmarks (FL), also known as facial feature points or facial fiducial points, are

visually highlighted points in the facial area, mainly located around facial components and

contours such as the eyes, mouth, nose and chin.

Facial action units (AUs) are individual components representing the movements of one

or several specific facial muscles in each facial component surrounded with specific FLs [12].

Researchers introduced 46 main facial AUs [239] and others have added 8 head movement AUs

and 4 eye movement AUs [12]. Examples include AU6-Cheek Riser, AU12-Lip Corner Puller,

5-Upper Lid Raiser, or AU-26 Jaw Drop. In order to express each specific facial expression,
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people need to move a specific subset of AUs in different facial components of their face. For

example, researchers have identified AU6 and AU10 are associated with the expression of pain,

and AU 10 with the expression of disgust [168].

Facial action coding system (FACS) is a system for manually describing facial actions

according to their appearance, first published in 1978 and later updated in 2002 [96]. The

main focus of FACS systems is to recognize facial expression configuration, which refers to the

combination of AUs. This means that the system associates facial expression changes into a set

of facial AUs (out of 46 uniquely defined AUs) that produce them. This system also characterizes

the variation of AU intensity, which represents the degree of difference between the current state

of facial expression and neutral face. [184]. FACS provides a 5-point intensity scale (A-E) for

representing the AU intensity (A weakest intensity, and E strongest intensity).

Manual FACS are based on annotations done by trained FACS coders who manually

recognize both configuration and intensity of AUs in video recordings of an individual according

to AUs described by FACS [96]. However, manual FACS rating requires extensive training, and

is subjective and time consuming. Thus, it is impractical for real-time applications [124].

Nowadays, many researchers work on automating FACS systems to analyze AUs [111].

Using automatic FACS instead of a manual approach can be beneficial, because training experts

and manually scoring videos is time consuming. Furthermore, studies suggest using automatic

FACS can enhance reliability, accuracy, and temporal resolution of facial measurements [161].

In developing these systems, in addition to configuration and intensity variation, researchers also

analyze facial expression dynamics (i.e., the timing and the duration of different AUs). Dynamics

can be important for human facial movement interpretation [111]. For example, facial expression

dynamics can be beneficial for learning complex physiological behavioral states such as different

types of pain [257, 266, 265].

The rest of this section briefly describes the main stages involved in automatic FEA, as

suggested in a recent survey by Martinez et al. [161], which include: face detection and tracking,

facial point detection and tracking, facial feature selection and extraction, AU classification based
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on extracted features, and new approaches on jointly estimating landmark detection and AU

Intensity. Finally, we include a list of facial expression analysis software used by the community.

3.2.1 Face Detection and Tracking

In order to engage in facial expression analysis, systems need to be able to engage in

“face localization”, which Deng et al. define as including face detection, alignment, parsing, and

dense face localization [92]. Deng et al. introduced RetinaFace [92, 91], “a robust, single-stage,

multi-level face detector”. It performs face localization on different scales of the image plane

using joint extra-supervised and self-supervised multi-task learning. Many acknowledge that

RetinaFace provides one of the most robust and strongest approaches to face detection. Others

have made strides on related problems, for example, Hu et al. [130] explored a new approach of

training separate detectors for face images with different scales. Their result reduced error by a

factor of two compared to prior state-of-the-art methods.

In general, most current methods for face detection employ deep learning techniques,

including Cascade-Convolutional Neural Network (CNN) Based Models, region-based Con-

volutional Neural Network (R-CNN) and Faster Regions with Convolutional Neural Network

Features– (Faster-R-CNN) based models, Single Shot Detector Models, and Feature Pyramid

Network Based Models, see [112] for a recent survey.

3.2.2 Facial Feature Point Detection and Face Alignment

Facial feature point detection (FFPD) (also known as landmark localization) generally

refers to a supervised or semi-supervised process of detecting the locations of FLs. FFPD

algorithms are sensitive to facial deformations that can be due to either rigid deformations (e.g.,

scale, rotation, and translation) or non-rigid deformations (e.g., facial expression variation, head

poses, illuminations, noise, clutter, or occlusion) [250, 190]. Enabling FFPD methods to align

faces in an input image can lower the effect of changes in face scale as well as in-plane rotation.

28



Cascaded regression-based methods are one type of FFPD method that recognize either

local patches or global facial appearance variations, and directly learn a regression function to

map facial appearance to the FL locations of the target image [262]. These methods do not

explicitly build any global shape model, but they may implicitly embed the information regarding

the global shape constraints (i.e, estimate the shape directly from the appearance without learning

any shape model or appearance model).

Deep learning regression-based methods combine deep learning models, such as CNN,

with global shape models to enhance performance. Early work in this field employed Cascaded

CNNs [232], which predict landmarks in a cascaded way. Researchers then presented Multi-task

CNNs [271] to further benefit from multi-task learning to increase the performance rate. Studies

show the cascade regression with deep learning (DL) performs better than cascade regression,

and cascade regression better than direct regression [262].

In terms of facial feature point detection and face alignment, the Face Alignment Network

(FAN) proposed by Bulat and Tzimiropoulos [69]is considered to be the state-of-the-art. They

constructed FAN by combining landmark localization with a residual block. They then trained

the network on a 2D facial landmark dataset and evaluated it for large-scale 2D and 3D face

alignment experiments. Researchers have proposed different follow up methods in order to

reduce the complexity of the original approach. For example, MobileNets is a class of efficient

models that uses light weight deep neural networks (DNN) to improve the performance [129].

3.2.3 Facial Feature Selection and Extraction

If the number of facial features becomes relatively large in comparison to the number

of observations in a dataset, some algorithms may not be able to train models effectively. High

dimensional vectors may cause two problems for classifiers: one, data may become sparser

in high-dimensional space, and two, too many extracted features may cause overfitting [132].

Traditionally, this was addressed by employing techniques such as PCA or LDA.

Li and Deng [153] provide a recent comprehensive survey on deep facial expression
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recognition, and include discussion of feature learning and feature extraction techniques. A few

examples are briefly discussed below. CNNs have been widely employed for the purpose of

feature extraction, due to their ability to being robust when encountering facial location changes

and variations [106]. For example, researchers in [231] used a region-based CNN (R-CNN) to

combine multi-modal texture features for facial expression recognition in the wild. Moreover,

researchers [152] proposed a Faster Regions with CNN Features (Faster R-CNN) technique to

prevent from the explicit feature extraction step by producing region proposals.

Deep autoencoders (DAE) and their variations have also been used for feature extraction.

For example, researchers [150] used the deep sparse autoencoder network (DSAE) on a large

dataset of images to prune learned features and develop high-level feature detectors using

unlabeled data. The proposed DSAE-based detector is robust to different transformations,

including translation, scaling, and rotation. As another example, researchers [211] employed

contractive Autoencoder network (CAE) that adds a penalty term to induce locally invariant

features, leading to a set of robust features.

3.2.4 Facial Feature Classification

In the classification step, the classifier predicts expressions by categorizing the facial

features into different categories. Similar to the facial feature extraction stage, classification

performance directly affects the performance of the facial expression recognition system.

Early facial feature classification work used techniques such as Naive Bayes [159, 234],

multi-layer perceptrons [194, 65], and SVMs [206], however, these have fallen out of favor

given newer deep learning methods. While traditional facial expression analysis approaches

usually perform the feature extraction step and the feature classification step independently, deep

facial expression analysis approaches are able to perform both steps in an end-to-end training

manner by adding a loss layer as the final layer to the DNN to adjust the error, and then directly

estimating the probability distribution over a set of classes [153].

For this purpose, many researchers have adapted CNN techniques for expression detection

30



and classification [67, 155, 274]. The results of work done by Zeng et al. [155] shows that

CNN classifiers trained faster and performed well. Another study indicates CNN classifiers also

provide better accuracy compared to other neural network-based classifiers [206]. One main

challenge to some of CNN classifiers is that they are sensitive to occlusion [155].

In addition to using deep neural networks for end-to-end training, other researchers

[94, 219, 181, 43] have used DNNs for feature extraction and then added independent classifiers

to the system for expression classification.

3.2.5 Jointly Estimating Landmark Detection and Action Unit Intensity

Early FEA work often included a computationally intensive and laborious process (e.g.,

face and facial landmark detection, hand-crafted feature extraction, and limited classification

methods). Nowadays, researchers benefit from having access to comprehensive, large-scale

facial data sets, as well as advanced computing resources to develop more efficient facial analysis

methods [83, 103, 102, 144, 154, 156].

One line of research is the work done on jointly estimating landmark and action unit inten-

sity. For example, Wu et al. [261] proposed a constrained joint cascade regression framework to

simultaneously perform landmark detection and AU intensity measurement. This method learns

a constraint to model the correlation between AUs and face shapes. Next, they use the learnt

constraint as well as the proposed framework to estimate the landmark location and recognize

AUs. The results of the study suggests the connection between these two parameters can improve

the performance for both tasks.

Furthermore, many researchers consider the work done by Ntinou et al. [180] as the

state-of-the-art method for jointly estimating landmark localization and AU intensity. In this

work, researchers employed heatmap regression to model the the existence of an AU at specific

location. For this purpose, they used a transfer learning technique between the face alignment

network and the AU network.

It is worth mentioning that the newer directions for estimating AU intensity seek learning
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models with little or no supervision, including work done by Sanchez et al. [217], Wang and

Peng [252], Wang et al. [251], and Zhang et al. [273].

One of the applications for AU intensity estimation is to further analyze and synthesize

facial expressions representing specific feelings, such as pain. Many researchers have already

conducted studies that indicate there is a relationship between a combination of AUs and pain,

including work done by Xu et al. [266, 265, 267, 264], Kaltwang et al. [140] and Werner et

al. [256]. Furthermore, it is worth mentioning that a fully functional automatic pain estimation

system requires enough representative data, and for that purpose, there are some pain datasets

publicly available (c.f. [158]).

3.2.6 Facial Expression Analysis Software

Dynamic facial expression analysis (FEA) systems integrate automatic FACS to assess

human expressions. Several commercial and open-source FEA software packages are available,

including iMotions, AFFDEX, FaceReader, IntraFace, and OpenFace 2.0.

iMotions developed a commercial tool for FEA that offers assessing FEs in combination

with EEG, GSR, EMG, ECG, and eye tracking [22]. This tool lets users record videos with

a mobile phone camera or laptop webcam, and then detects changes in FLs. The researcher

can set the tool to apply either the AFFDEX algorithm by Affectiva Inc. [98] or the Computer

Expression Recognition Toolbox (CERT) algorithm used by FaceReader tool [157] to classify

expressions. Different classifier algorithms such as CERT and AFFDEX employ various facial

datasets, FLs, and statistical models to train the ML system to perform the classification task

[22].

Affectiva’s AFFDEX software developer kit (SDK) [166] is a commercially available real-

time facial expression coding toolkit which is able to simultaneously recognize the expressions of

several people, and is available across different platforms (IOS, Windows, Android). AFFDEX

algorithm uses Viola-Jones [248] for detecting a face and identifying 34 landmarks, Histogram

of Oriented Gradient (HOG) to extract facial textures, SVM classifiers to classify facial action
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and finally code seven facial expressions based on combinations of facial according to FACS

[22]. AffdexMe is the name of the IOS-based AFFDEX SDK which enables developers to

emotion-enable their own apps and digital experiences. The tests we performed on the trial

version of this SDK show that the app can efficiently analyze and respond to seven basic emotions

in real-time.

FaceReader [21] is a commercially available automated expression analysis system

developed by Noldus. It enables developers to integrate expression recognition software with

eye tracking data and physiology data. This tool provides an assessment of seven expressions,

head orientation, gaze direction, AUs, heart rate, valence and arousal, and person characteristics.

FaceReader’s algorithm uses the Viola-Jones algorithm [248] to find a face, then makes a

3D face model using facial points and face texture. It then analyzes the face using deep learning

methods, and classifies the expressions using an ANN. Studies show that FaceReader is more

robust than AFFDEX [226].

IntraFace is a software package developed by De La Torres et. al. [90] for automated

facial feature tracking, head pose estimation, facial attribute recognition, and facial expression

analysis. This package also includes an unsupervised technique for synchrony detection that

supports the function of discovering correlated facial behavior between two people.

IntraFace uses the SDM method to extract and track facial feature landmarks, and

normalize the image with respect to scale and rotation [90]. They then extract HoG features at

each landmark and perform a linear SVM for classifying facial attributes. Finally, they use the

Selective Transfer Machine (STM) learning approach to classify facial expressions and AUs.

OpenFace 2.0 is an open source and cross-platform tool for facial behavior analysis

released by the Multimodal Communication and Machine Learning Laboratory (MultiComp

Lab) at Carnegie Mellon University in 2018 [10]. OpenFace 2.0 is capable of performing facial

landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation

in real-time [52].

OpenFace 2.0 uses a newly developed Convolutional Experts Constrained Local Model
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[268] and optimized FFPD algorithm for facial landmark detection and tracking which enables

real-time performance [52]. Using this approach also enables OpenFace 2.0 to cope with

challenges such as non-frontal or occluded faces and low illumination conditions. The algorithm

of this tool is able to operate on recorded video files, image sequences, individual images, and

real-time video data from a webcam without any specialist hardware. GANimation [200, 201] is

an anatomically-aware facial synthesis method that automatically generates anatomical facial

expression movements from a single image. This method provides the opportunity to control the

magnitude of activation of each AU and combine several of them.

Latent-pose-reenactment [72] uses latent pose descriptors for neural head reenactment.

This system can use videos of a random person and map their expressions to generate realistic

reenactments of random talking heads.

3.3 Facial Action Modeling for Synthesis

In many robotics and AI applications, in addition to recognizing FEs in people, we also

need the ability to synthesize them on robotic and virtual characters. We discuss this further in

Section 3.4, however, it is first important to discuss facial modeling.

Facial action modeling (FAM) builds a bridge between facial analysis (recognizing and

tracking facial movements) and facial expression synthesis (translating modeled FEs onto an

embodied face and animating its facial components) [216]. Thus, technology developers need

to incorporate two key ideas in the design of face models: 1) Patterns that model the human

face (e.g, shape, appearance), both in its neutral state and the way facial movements (i.e., AUs)

change to display different expressions. 2) Patterns of the temporal aspects of facial deformation

(e.g., acceleration, peak, amplitude).

The complexity of facial modeling can vary based on the degrees of freedom (DoF) of

the embodiment (e.g., a mechanical robot or virtual face). It is less complex to build face models

for more machine-like robots with very simple faces, such as Jibo [26] which only has one eye
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with varying properties and details. The complexity of designing a face model increases as the

face becomes more realistic and detailed. For both robots with hyper realistic faces (e.g., Charles

[210], Geminoid HI-2 [177]), or a human-like computer-generated virtual face (e.g., Furhat [23]),

developers need to design highly accurate models in order to engage in synthesis.

There are two groups of information processing strategies for face modeling: theory-

driven modeling and data-driven modeling [135].

3.3.1 Theory-Driven Modeling Methods

Ekman and Friesen’s FACS theory [96] describes the facial movements through observing

the effect of each facial muscle on facial appearance, and decomposes the visible movements

of the face in the form of 46 AUs. Formerly, many researchers adopted FACS theory for

facial modeling and embedded FEs derived from this theory constrained into their social robots

[126, 66]. In this approach, programmers selected a small set of (static) FEs (e.g., tightening

and slightly raising the corner of the lip unilaterally to express contempt) [97]. They then asked

actors to contract k different combinations of muscle AUs to display the selected FEs to generate

k different face images, and score the face with FACS to verify muscle AUs depicted in each

image. Finally they asked observers to select which image better mimics each specific FEs, and

therefore identify which combinations of muscle AUs are signals for each specific FE.

However, there are several challenges with the theory-driven modeling methods. For one,

these models are based on FEs that precisely met criteria selected and specified by researchers

[97]. Moreover, since these models are based on static FEs, they lack dynamical data including

the temporal order of FE movements (e.g., acceleration, peak, amplitude) [135], resulting in less

realistic facial models and ultimately less human-lik simulators. Furthermore, even in studies on

cross-cultural FE analysis where subjects pose cultural-specific expressions, still most subjects

are identified as Westerners [175], leading to less diverse face models. Finally, people may

have asymmetric facial expressions, such as people who have facial paralysis or deformities are

rarely included, thus also limiting the diversity of facial models [172]. As a result, expressive
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physical and virtual robotic faces developed using theory-driven modeling methods lack the

ability to generate a wide range of FEs. Therefore, these embodiments are not able to adequately

communicate and interact with users.

3.3.2 Data-driven Modeling Methods

To address the gaps associated with theory-driven methods, researchers have proposed

data-driven modeling methods (or, example-based deformation models) to computationally

model (dynamic) FEs based on real data. Data-driven modeling methods usually consist of three

main steps: data collection, facial expression and intensity data labeling, and facial expression

model creation [135].

Data Collection

Data is generally collected in one of two ways: via recordings of human participants, and

through the use of artificial data creation.

One way of collecting data is to capture videos of facial expressions of human subjects

(e.g., via an actor or layperson performing facial movements, or use of existing datasets). In

this method, a researcher can use any statistical analysis method or facial expression analysis

software package (See Section 3.2.6) to derive a parametric representation of facial deformations

and identify the AUs correlated to each frame of a video. For example, Wang et al [253] created a

new FE dataset of over 200 thousand images with 119 persons, 4 poses and 54 expressions, which

is about enough to evaluate the effects of unbalanced poses, expressions on the performance of

the FE tasks.

Another way of collecting data is by generating artificial data through artificial data

creation methods. In this method, developers usually use facial movement generators to randomly-

generate an enormous range of artificial dynamic facial expression videos. For example, Jack et

al. use a facial movement generator, which randomly selects a subset of AUs, assigns a random

movement to each AU by setting random values for each temporal parameter, combines randomly

activated AUs, and finally projects them to a robotic face to create random facial animation
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videos [79].

Facial Expression and Intensity Data Labeling

Researchers have used different techniques for labeling FE data correlated to each frame

of videos and their intensities, including manual labeling by both lay participants and domain

experts, and unsupervised data labeling via use of machine learning.

For instance, Jack et al. [79] recruited participants to watch videos of facial expressions.

If the projected video formed a pattern that correlated with the perceivers’ prior knowledge

of one of six expressions, they manually assigned a label to identify the expression and its

intensity rating accordingly. Other researchers working on labeling FEs use domain experts (e.g.,

clinicians) to manually label data [172]. Other researchers develop facial expression datasets

that use different semi-supervised or unsupervised techniques to label the data [253].

Facial Expression Model Creation

The next step is the learning phase, where the system uses the shape and texture variations

of several sample images in datasets to build a face model and generate its appearance parameters.

The parameters of the face model are reversible, meaning that they represent the shape and the

texture of all images in the dataset, and therefore, are able to regenerate realistic images similar

to each of the learned sample images. Thus, researchers can reverse-engineer specific dynamic

FE patterns. This helps to derive the unique patterns of correlated AUs that are activated over

time, which are correlated with human perception of each expression. For example, Chen et al.

[79] developed their models by calculating a 41-dimensional binary vector per emotion detailing

all AUs, and also seven values detailing the temporal parameters of each AU .

Using these three steps, developers can learn and build mathematical models of the

dynamic FEs within a video stream that make it possible to reconstruct these FEs on a robot or

virtual agent’s face and animate them later [79].
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3.4 Facial Expression Synthesis and Animation

Facial expression synthesis and animation (FSA) refers to techniques used to animate

dynamic expressions on the faces of virtual agents or robots using previously developed face

models. FSA techniques provide the facial movement vocabulary that maps the developed model

of AU movements and densities into the mesh topology of the social robot or virtual agent

heads [189]. Using this technique makes the simulated face able to display AU movements

corresponding to developed facial expression models. Concerning FSA, many articles have

reviewed state-of-the-art methods and techniques, including [101, 189, 216].

3.4.1 FSA Technical Approaches

Existing surveys in facial expression synthesis and animation include [151], [216], and

[101]. The surveys suggest there are three primary categories of techniques for synthesis

purposes: skeletal-based, shape blend-based, and performance-driven approaches. Table 3.1

provides a summary of common approaches, which are further discussed below.

Skeletal-based approach (also known as the key-framing approach) works by rigging a

skeletal model using an interactive tool to mimic the contraction of facial muscles and generate

synthetic facial movements[101, 27]. For this purpose, animators use the 3D rigging tool first

to construct a rig of bones and joints based on an estimation of the locations of facial muscles.

They manually define the combinations of muscles representing each and every facial expression,

and associate each bone into different parts of the virtual agent’s visual presentation accordingly.

Using this mapping, animators can automatically animate the virtual face using skeletal motion

data.

Animating a virtual model using this approach is less labor-intensive, as animators only

need to manipulate a set of vertices (bones) instead of each individual vertex. However, the

downside of the skeletal-based approach is that generating the accurate mapping between the

bones with facial parts is labor- and time-consuming. Furthermore, because it is difficult to
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accurately model facial movements based on bone movements, using this method can generate

unrealistic artificial-looking animations and lead to inaccurate synthesis and unrealistic FEs on a

virtual robot [216].

Blend-shape approach works by creating a number of main mesh topologies of the

expressions and poses examples collected from the face of a real subject (one for each main

expression), and then using an automatic interpolation function to linearly blending these

topologies to create a smooth transition between them [216]. In order to achieve smooth

animations, animation developers need to generate hundreds of blended topologies.

This approach is commonly used to animate virtual faces as it benefits from low com-

putational time and is easy to implement. However, the performance of this approach greatly

depends on the existing examples of different expressions [27]. Furthermore, this method only

provides synthetic FEs in between the existing examples [101]. Furthermore, manually designing

the main mesh topologies and manipulating each vertex to create animations is labor-intensive

and time-consuming, making it an inconvenient modeling technique for creating real-time, long

animations [216].

Parameter-based approach (also known as Motion Capture or Performance-driven ap-

proach) uses a system of sensors and cameras to record motions and FE movements of a subject

[216]. It then learns the face and deformation parameters from the captured data (including

visual or physical effects of muscle actions) and finally transfers synthetic FEs onto the virtual

robot’s face.

In comparison with the other two methods, the performance-driven approach has the

potential to be more realistic [27]. The use of parameter-based models makes it possible to create

a wide range of deformations. These techniques also support creating interactive animations

by incorporating text, audio, or video data in the model developing process [216]. However, in

order to get the best and most accurate simulation using this method, it is necessary to use lots

of high-quality motion capture equipment. Although this method is greatly used by major film

making companies, it is not a convenient approach for technology developers and animators
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[101].

3.4.2 Advanced FSA Methods

Recently, researchers have performed more research-oriented studies of facial expression

generation, that reflect ongoing attempts to address several of the challenges with respect to

the expressivity of a facial expression synthesis system. More specifically, recent studies have

focused on automatically synthesizing facial expressions from a few or single images using the

newest advances in Generative and Adversarial Networks (GAN).

For example, Pumarola et al. [200, 201] introduced GANimation to automatically

generate facial expressions in a continuous domain, without using any facial landmarks. They

conditioned the network on a one-dimensional vector that represents the existence and the

magnitude of each AU. This provides the opportunity to control the magnitude of activation

of each AU and combine several of them. Additionally, they trained the network in a fully

unsupervised manner, only requiring images annotated with their activated AUs, leading to an

approach that is robust to changing backgrounds and lighting conditions.

In addition, other recent work addresses face reenactment and synthesis in a landmark-

driven way. For instance, Burkov et al. [72] recently proposed a “neural head reenactment

system” which uses a latent pose representation, based solely on image reconstruction losses.

This system can use videos of a random person and maps their expressions to generate realistic

reenactments of random talking heads.

Another recent work in this field is by Zakharov et al.[269], who developed a system

that can generate plausible video sequences of speech expressions and mimicry of a particular

person. They use a deep network that combines adversarial fine-tuning into a meta-learning

framework to train lifelike digital speaking heads based on only a few photos of a person (e.g., a

few-shot approach). This model can generate photorealistic animations of both random people

and portrait paintings.

Gecer et al. [110] proposed a novel multi-branch GAN architecture that synthesizes
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Table 3.1. An overview of technical approaches for the purpose of facial expression synthesis
and animation [151, 216, 101, 27].

Categories Process Benefits Drawbacks

Skeletal-
based

Associates each bone and joint
to various facial parts via a
rigged skeletal model, animated
with skeletal motion data.

Reduced labor as animators only need
to manipulate a set of vertices (bones)
instead of each individual vertex.

Time-consuming to create accurate bone
to facial part mappings. May lead to
artificial-looking animations and inaccu-
rate synthesis of FEs.

Blend-shapes Creates key mesh facial topolo-
gies and uses interpolation for
smooth transition among them.

Low computational time and easy imple-
mentation.

Requires a large number of key topolo-
gies of different expressions. Only
provides synthetic FEs in between the
existing examples. Mesh design and
animation creation is labor and time-
consuming. Not suitable for real-time
applications.

Parametric-
based

Uses a parameter system for cre-
ating the face and deformation
models, based on visual or phys-
ical effect of muscle actions.

Creates realistic animations, capable of
creating various deformations. Enables
creation of interactive animations with
text, audio, or video data.

Requires high-quality motion capture
equipment. Real-time performance is
usually not feasible.

photo-realistic expressions. It adopts a multimodal approach by including multiple 3D features

(e.g., shape, texture, normals, etc). They then trained the network to generate all modalities in a

local and global correspondence, and condition the GAN by expression labels to create 3D faces

with various expressions.

OpenPose, proposed by Cao et al. [73], is a open-source, real-time system that detects the

2D pose (including the face) of multiple people in a single image. It employs a non-parametric

representation in order to learn which body or facial parts is related to which person in the image.

The system achieves high accuracy and real-time performance, regardless of the number of

people.

3.4.3 FSA Exemplar

Researchers have mapped the synthesized motions to the face of different embodiments

using FSA software packages (See Fig. 3.2). For example, Faceposer SDK [20] for the Steam

Source engine [39] is a virtual platform that uses synthesis framework to transfer facial ex-

pressions and skeletal animations to a virtual character’s control points for animation. After

generating facial movements and transformation parameters from a source video using one of the

methods described in Section 3.3, Faceposer’s synthesis framework converts the parameters into
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21 control points (Flex sliders)r. The system saves the values of the Flex sliders in a .VCD scene

file consisting of a header section with date, simulator, and timescale information; a variable

definition section; and a value change section. Finally, after importing the .VCD file to the

Faceposer SDK as the input, the SDK transfers the FEs on a virtual agent’s face accordingly and

animates the virtual agent.

Moreover, Pelachaud [187, 186] introduced Greta, which is a conversing socio-emotional

virtual agent. This agent’s software provides users with a real-time platform to control socio-

emotional virtual characters and develop natural interaction with humans. Greta animation engine

receives body animation parameters and facial animation parameters as inputs, and synthesizes

the expressions on a virtual character using Ogre3D or Unity3D [25].

Furthermore, Chen et al. [79] introduced a social physical-virtual agent displayed on a

Furhat robot [23], which is capable of re-displaying facial expression using state-of-the-art 3D

animation techniques. The introduced agent’s algorithm provides full control over face designs,

and includes realistic lip movements, as well as high-level control over the eyes and other

facial movements [23]. It also provides the user with the opportunity to change the projected

face’s ethnicity, gender, language, and even its species. In order to measure the humanlike-

ness of their synthesis approach, they performed an experiment to compare two FE synthesis

methods (one generated through their reverse-engineering and synthesizing method, and one

manually pre-programmed on their social robot). Their results suggest that users perceived their

reverse-engineered expressions as more humanlike than the existing expressions of the robot

[79].

Charles is a humanoid, hyper-realistic robot head from Hanson Robotics [210, 208].

Charles is able to display lifelike human expressions as it has wrinkles on the skin and 22 degrees

of freedom (DOF) in the face and neck. The robot has microcontrollers to control the motors

that move the brow, eyes, midface, lips, mouth, jaw, head, and neck. Its control system generates

motions using a direct AU-to-motor mapping system to synthesize expressions.
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Figure 3.2. A) Figure of the Greta virtual agent [25, 186]. B) Figure of synthesizing dynamic
facial expressions onto the Furhat robot [80]. C) Figure of the Charles robot mimicking a human
[210]. D) Figure of the Faceposer software interface [20].

3.5 Ethical Considerations

Using FEA and FSA technologies to develop new RPS and VPS systems and integrating

them within clinical learning contexts presents a number of ethical and social challenges that

require specific attention. It is important researchers and technology developers carefully consider

these challenges, and work to design inclusive technologies to avoid unintended consequences.

While this is by no means an exhaustive list, a few key challenges are highlighted herein.

3.5.1 Racial and Ethnic Bias in FEA technologies

There are many concerns regarding racial, ethnic, misogynistic, and ableist biases in FEA

technologies, which can perpetuate social and fiscal oppression [179, 178, 61]. For example,

many studies show high rate of misidentifying blacks by recognition systems, which can be

due using FEA algorithms trained on a racially biased datasets, as well as systemic biases

embedded within the systems themselves [70]. Such biased models can then affect FSA, and

further perpetuating biases in clinical education [221]. Moreover, there are challenges regarding

distancing and dividing effects caused by using FEA systems for controlling patient simulators.

For example, an operator of an expressive robot sometimes need to adjust their feelings to express

exaggerated facial expressions (e.g., intense smile) or fake facial expressions (e.g., reflecting

different feeling than what they genuinely feel at the moment), so the FEA algorithm can detect

and/or track the expression. Although some researchers think these adjustments may only cause

minor problems or difficulties, others think using these technologies can distance and dehumanise
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people [46].

3.5.2 Privacy

Another concern is on privacy and the extensive use of data in FEA and FSA systems.

Widespread use of these systems in healthcare settings can lead to the collection of large amounts

of patients’ and clinical workers’ actions, locations, personal, physiological, and behavioral

information. This can raise many concerns about the ways of protecting the privacy of collected

personal data, as well as the ways simulator developers use the data.

3.5.3 Uncanny Valley

Another concern that often arises with highly humanlike RPS and VPS systems is a

phenomenon called the Uncanny Valley [173]. This is a theory that suggests that as robots

become more humanlike they are more attractive, until they reach a certain point, where people’s

affinity for these humanlike robots descends into a feeling of strangeness and unease [173, 139].

This is reflected in both their appearance and their behavior [218]. While CLs require highly

humanlike RPS and VPS systems to learn proper clinical skills, ones that miss the mark can

cause learner distress, and adversely affect their learning, Thus, RPS/VPS designers should

carefully consider learners’ perceptions as part of their design process.

3.5.4 Risks and Benefits of Diverse FSA

Just like humans, human-like patient simulators that resemble a certain gender, race, or

culture in their design can face judgement and aggression based on the biases towards such social

identities. Designing human-like robots with diverse appearance and behavior has numerous

benefits. For example, building a human-like robot resembling a patient who has had a stroke

for healthcare education application provides the clinical learners with a great opportunity to

practice their communication and procedural skills on these robots, preparing them for treating

real human patients with stroke in their future careers [197, 192].

44



However, diversifying the appearance and behavior for simulators also introduces risks.

For example, roboticists may implicitly or explicitly reinforce gender biases by assigning a

specific gender to the robot during the design process, and CLs and CEs might as well during

simulation sessions [221].

People also more readily dehumanize robots racialized in the likeness of marginalized

social identities than those racialized White [227]. As such, people with racist behavioral biases

represented similar racist biases while interacting with human-like RPS or VPS systems of a

similar race.

3.6 Creating New Embodiments for Robots and Virtual
Agents

In dynamic, real-world environments such as HET, social robots need to have realistic

human-like faces capable of accurately exhibiting verbal and non-verbal cues. However, many

existing RPS systems have limited to no capabilities for human-like expressiveness in their

faces, which may impede emotional engagement, empathy, and social presence, leading CLs

to experience reduced motivation, interest, and retention of training content [185]. Thus, our

research concentrated on developing nuanced patient simulator faces for virtual agents and robots,

characterized by diverse appearances, backgrounds, and the capacity to exhibit sophisticated

verbal and non-verbal cues. The core aim was to leverage the expressivity and diversification of

these embodiments, enhancing their potential to improve outcomes in their respective application

domains [196, 172, 195, 191, 193] (See Fig. 4.1).

3.6.1 Approach

For this purpose, we created different virtual agents with diverse ethnic backgrounds

and genders using the aforementioned Source SDK tool [172] and Furhat virtual SDK [191].

Furthermore, we supported the redesign of our team’s bespoke robotic head and a low-cost

expressive face[209] by increasing its DOF to 21 and performing iterative experimentation to
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Figure 3.3. Some examples of physical and virtual robotic faces with diverse expressivity and
diversity created by our team.

increase their realism and efficacy [196]. Moreover, as per our final study, we used the Furhat

robot from Furhat Robotics [3] as the physical platform, enabling the system to perform real

time rendering of dynamic facial expressions, head movements, and speech [3, 191].

Ultimately, we expanded the diversity of these expressive faces, crafting designs that

represent a wide array of backgrounds and accurately portray different age groups, genders, and

races. Some examples of our creations are displayed in Figure 3.3.

3.6.2 Results

The use of virtual agents and expressive robotic faces has shown promising results

in terms of diversification and expressivity. Expressive robotic faces have been developed to

showcase a range of facial expressions in order to foster more natural conversations. These

features are key components in improving the user experience and promoting dialogue between

humans and machines.

The redesign of the robotic head, with an increased degree of freedom (DOF) to 21,

has significantly improved the robot’s expressivity. The iterative experimentation resulted in a

more realistic and effective robotic embodiment capable of conveying dynamic and nuanced

human-like expressions. These developments have led our work to meet, and in certain areas

exceed, the current state of the art in expressive robotics.

Additionally, the representation of various age groups, genders, and races in the expressive
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faces of the robots has added a layer of inclusivity and diversity to the project. The ability to

emulate diverse backgrounds allows the robots to connect with users on a deeper level, improving

their efficiency in health and safety applications.

This work stands as a potential transformative instrument in HET, opening new frontiers

in developing expressive RPS systems. Moreover, this work provides valuable insights to

researchers by examining methods for detecting, modeling, and synthesizing FEs, with potential

applications in enhancing social interactions, knowledge modeling, and education.

3.6.3 Discussion

The utilization of expressive robotic and virtual faces has been demonstrated to be

effective in many applications, yet areas still require more thorough investigation. For instance,

real-time performance and integration into complex systems must be further evaluated, especially

within high-stress scenarios. To ensure user satisfaction, long-term interaction studies should be

conducted to analyze user preferences and assess design improvements. Furthermore, exploring

creative functions and incorporating machine-learning techniques may expand the capabilities of

these embodiments.

In conclusion, this work has demonstrated the benefits of using diversified embodiments

to improve the expressivity and inclusivity of physical and virtual robots. This success indicates

that further research into such approaches could result in improved robotic face designs, providing

greater user satisfaction and efficacy while engaging in human-robot interactions. The potential

benefits of this research are substantial, with implications for increased efficacy and usability

across a wide variety of domains.

3.7 Chapter Summary

This chapter investigated the effect of expressive mechanical and rendered faces in RPS

design, introduced the concept of human-like RPS learning modalities as a potential solution

to address major gaps in current practices, and presented my work on building new expressive
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faces. The next chapter will present the foundations and frameworks for designing expressive

RPS systems to support researchers in developing and deploying systems capable of effectively

depicting clinical conditions.
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Chapter 4

Frameworks Development

4.1 Introduction

Every year, millions of individuals experience conditions such as stroke, Parkinson’s

disease, Moebius syndrome, and Bell’s palsy, leading to facial paralysis and A-FEs. People’s

misperceptions and biased impressions can make it challenging for them to interact socially with

and understand the emotions of people with A-FEs These misperceptions in clinical settings

can adversely impact the quality of care provided to FP patients. This highlights the need for

new training tools to enhance clinicians’ interaction skills and improve care for individuals

with facial paralysis. The lack of exploration in using FP patient simulators highlights the need

for researchers to develop training tools that consider individuals with FP, aiming to enhance

clinician skills in avoiding biased impressions, improve clinical communication, and deliver

better care for this population.

For the past decade, our team has had numerous projects that address crucial aspects of

facial expression modeling and synthesis in expressive simulation technologies for healthcare

education (See Figure 4.1). This chapter presents the foundations and frameworks required to

design expressive RPS systems, capable of depicting A-FE on their faces based on real patient’s

facial characteristics. Particularly, this chapter introduces 1) a new end-to-end control framework

for integrating three systems presented in Chapter 3 (FEA, FAM, and FSA) to more robustly

transfer human-like expressions from a subject’s face onto an expressive robotic face, 2) a new
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Figure 4.1. Robotic patient simulators are tele-operated, life-size mannequins that can exhibit
thousands of physiological signals, and can breathe, bleed, and respond to medications. However,
they are largely inexpressive, leading to poor training outcomes for CLs, and possibly poor
clinical outcomes for patients. Our work addresses this gap by introducing patient simulator sys-
tems with a much wider range of expressivity, including the ability to express pain, neurological
impairment (e.g. stroke, Bell’s Palsy), and other clinically-relevant expressions, via simulators
with diverse genders, races, and ages.

computational framework for modeling a range of clinical conditions, and 3) the connection

between these two frameworks [210, 169, 168, 172, 192, 209, 171, 196, 197]. We briefly discuss

this work below.

4.2 Analysis-Masking-Synthesis Framework Development

In addition to building robotic and virtual embodiments, we designed and developed

an end-to-end Analysis-Masking-Synthesis (AMS) framework, which included: FEA, FAM,

and FSA systems (See Figure 4.2). Modularizing the AMS framework into three components

allowed for a more organized and encapsulated structure of the framework. The FEA component

enables the AMS framework to more robustly detect and track FE movements in real time. The

FAM component overlays a computational representation of a clinical condition onto the tracked
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FE movements. Finally, the FSA component automatically synthesizes facial movements onto

the face of robotic and virtual simulators with different ages, races, and genders, and animates

their facial components.

The contributions of this work are as follows. First, we extended an FEA system

previously developed by our team [171] to improve automatic FACS ratings of facial AUs.

The extended FEA system benefits from preprocessing techniques such as noise reduction and

facial alignment techniques to diminish the effects of facial deformations, including translation,

rotation, and distance to the camera. Next, a CLM-based tracker [87] is used in the FEA system,

as it is robust to illumination and occlusion. This tracker robustly locates the FL locations on an

input frame based on the global statistical shape models and the independent local appearance

information around each landmark.

Second, we proposed a novel data-driven FAM system developed in three steps: first, we

collected real dynamic facial expression data, second, we labeled the FE data correlated to each

frame of videos and their intensities using manual outsourcing technique, and third, we generated

reversible appearance parameters by calculating a 46-dimensional binary vector detailing all

AUs. This FAM system makes it possible to computationally model dynamic FEs tracked by the

FEA system based on real human facial expression data, which ultimately can make it easier for

developers to generate a diverse set of realistic face models derived from real patients.

Third, we extended an FSA system previously developed by our team [171] for synthesiz-

ing realistic, patient-like FEs on both our bespoke RPS head and virtual agent faces. The method

is based on data-driven synthesis, which maps motion from video of an operator/CE onto the face

of an embodiment (e.g., virtual agent or physical robot). This platform-independent software

makes it possible for SMs to easily and robustly synthesize and animate realistic expressions on

the faces of a range of embodiments, and makes it easy for CEs to perform simulation.

This end-to-end AMS framework models and synthesizes patient- data-driven facial

expressions, and can easily and robustly map these expressions onto both simulated and robotic

faces. By leveraging this work, other roboticists and engineers will be able to discover platform-
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Figure 4.2. In our work, we have developed of an end-to-end Analysis-Masking-Synthesis
(AMS) framework to recognize, model, and synthesize facial expressions of real humans to the
face of a physical or virtual robotic head. The AMS framework integrates three systems presented
in Chapter 3 (FEA, FAM, and FSA). Furthermore, we developed a novel Facial Paralysis Masks
(FPM) framework to build accurate computational models of people with Bell’s Palsy that are
constructible in real time.

independent methods to control the FEs of both robots and virtual agents. This can also help

improve how clinicians interact with patients, and increase their cultural competence when

interacting with patients from diverse backgrounds.

4.3 Facial Paralysis Mask Framework Development

Every year, 22 million people experience Bell’s Palsy, stroke, Parkinson’s disease, and

Moebius syndrome [6, 244, 160], leading to facial palsy (FP). FP is the inability to move one’s

facial muscles on the affected side of the face, leading to asymmetric facial expressions (A-FEs)

[58]. Studies show observers perceive the emotions of a person with FP differently from their

actual emotional states [233]. For example, people with severe FP are perceived as less happy

than people with mild FP [64]. People’s misperceptions and biased impressions of FP can make

it challenging for them to interact socially with and understand the emotions of people with

A-FEs.

In clinical contexts, these misperceptions can lead to poor care delivery. Healthcare

providers frequently have negatively biased impressions of patients with facial nerve paralysis

[240], which may adversely affect the quality of care they receive [213, 210]. If a patient and a

healthcare provider do not communicate effectively, there is a higher chance that their treatment
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will be unsuccessful [233, 48]. This calls for the development of new training tools to enable

CLs to practice their interaction with FP patients, and improve how clinicians calibrate their

perception of asymmetric expressions.

However, prior development of facially expressive RPS systems was based on the assump-

tion that human faces are structurally symmetric, and thus have not accounted for expressing

A-FEs. Due to the large number of people affected by FP, it is important to also explore syn-

thesizing A-FEs in clinical contexts. To our knowledge, FP patient simulators have not been

explored in this way.

For this purpose, we introduced the concept of facial paralysis mask (FPM) framework

to provide a platform to generate accurate A-FEs representations for patient simulators based

on real patients’ facial characteristics, situated within a clinical education context. FPMs are

computational models of different pathologies derived from recognized expressions of real

people with FP.

Finally, we integrated these two frameworks by overlaying pre-built FPMs on the facial

model of the AMS framework described in Section 4.2 to recreate A-FEs on RPS faces. Tthe

AMS framework utilizes the results of the FPM framework and enables the system to robustly

recognize the facial movements of a human operator, mask the generated model on tracked

movements, and automatically synthesize the generated models of FEs across a range of RPS

embodiments, thereby animating their facial components.

For the past decade, our team has developed new methods for modeling a range of

clinically-relevant conditions, including dystonia, pain, Bell’s Palsy, and stroke (See Figure 4.3)

[210, 169, 168, 172, 192, 209, 171, 196, 197, 195, 191, 193]. In the remainder of this chapter, I

briefly summarize several of these projects below (dystonia and pain), then discuss the results of

our work on Bell’s Palsy modeling and synthesis project in more detail. I will explain the detail

of our work on stroke modeling and synthesis in Chapter 5 and Chapter 6.
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Figure 4.3. Three examples of the expressive patient simulator systems our team has built, with
clinically relevant-expressions: A) Dystonia [210], B) Pain [168], C) Bell’s Palsy [172], and D)
stroke [191].

4.3.1 Dystonia

Dystonia is a movement disorder characterized by involuntary motions, often in the head

and neck. People with dystonia often struggle during interaction due to the biases of others,

raising an possibility to explore if a robot conveying dystonia could serve as a facilitator to help

improve human-human communication. Our team interviewed four people with head and facial

movement disorders and synthesized their movements on a physical robot, and experimentally

explored using these robots as social facilitators to improve communication between people with

and without disabilities. The results suggest that a robot may be useful for this purpose [210].
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The results also indicate a significant relationship between people who hold negative attitudes

toward robots and negative attitudes toward people with disabilities.

4.3.2 Pain

Our team modeled and synthesized both acute and chronic pain, on both virtual agents

and physical robots [169, 168]. This study explored people’s perceptions of pain, both on a

humanoid robot and comparable virtual agent, using autonomous facial expression synthesis

techniques.

Our team conducted an experiment with clinicians and laypersons to explore differences

in pain perception across the two groups, and also to study the effects of embodiment (physical

robot or virtual agent) on pain perception. The results of this study indicated that clinicians have

lower overall accuracy in detecting synthesized pain in comparison to lay participants. It also

suggested that all participants are overall less accurate detecting pain from a humanoid robot in

comparison to a comparable virtual agent [168].

4.3.3 Bell’s Palsy

In our work, we focused on a particular type of FP, Bell’s Palsy (BP). We presented an

FPM framework personalized to model characteristics of BP, and utilized the AMS framework

to synthesize it on a virtual RPS. This work explored two research questions. First, how does

one computationally model the facial characteristics of BP, and synthesize them on a patient

simulator to help support clinical engagement of those affected? To address this question, the

first step was to collect self recorded, publically-available videos from people with BP conveying

four expressions (raising eyebrow, furrowing brow, smiling, and closing the eye).

Next, we presented a novel algorithm for the FPM framework to build accurate com-

putational masks that can model facial characteristics of people with BP and are constructible

in real time. (See Figure 4.2) This algorithm tracks faces in each source video and uses the

2D coordinates of the 34 facial features of the unaffected side of the face to calculate the 2D
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coordinates of the other part of the face, assuming that the person did not have A-FEs. Dividing

the actual coordinates of the affected side by the calculated coordinates of the affected side gave

us the scaling parameters βi,x and βi,y for x and y of each of the facial points. A 68-bit array

consisting of the scaling parameters of all 68 tracked feature points is the calculated mask for the

patient with BP.

Our second research question was How realistically do these masks convey signs of

BP when applied to a virtual patient? To address this question, we conducted a qualitative,

expert-based perceptual experiment to evaluate the realism of the synthesized expressions in

comparison to actual patients and get feedback for further refinement. This is a common method

for evaluating synthesized FEs [59, 165].

To perform this validation, after collecting videos from a performer without BP, we

inputted the videos into the AMS framework (See Section 4.2), and overlaid three pre-built

masks of BPs to recreate the AFE. (See Figure 4.2). Next, the generated asymmetric expressions

of BP were transferred to the face of a VPS system to create stimuli videos (See Figure 4.3-C).

The results of this study suggest that two of the developed BP masks realistically display

signs of BP. Furthermore, clinicians’ perceptions of the synthesized expressions were comparable

to their perceptions of the expressions of real people with BP. Therefore, the models described in

this work have the potential to provide a practical training tool for CLs to better understand the

emotions of people with this facial paralysis.

4.4 Future Work

There are several opportunities to advance the state-of-the-art of expressive RPS and VPS

systems within the context of clinical learning, as well as in the broader context of robotics and

HRI. These include technical advancements, such as new methods for FEA, FMA, and FSA, as

well as socio-technical considerations, such as stakeholder-centered design and ethical questions.

We briefly outline these below.
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4.4.1 Advancing Expression Recognition and Synthesis Systems

As discussed, there are many methods for recognizing and synthesizing facial expres-

sions. However, they have their drawbacks. Many commercially-available systems are unable

to perform the tasks necessary for FE analysis or synthesis (e.g., FaceReader is not able to

provide head pose estimation). Furthermore, systems may may lack state-of-the-art performance,

rendering them impractical for clinical applications.

Thus, there are many opportunities to advance the state-of-the-art. For example, some

regression-based methods such as CNNs are successful for FL detection and tracking. Fur-

thermore, Gabor features showed promising results for feature extraction, and CNN and SVM

methods improved classification performance. Integrating these approaches into facial expression

FEA and FSA systems may improve analysis and/or synthesis of dynamic FEs in individuals

with and without facial disorders.

4.4.2 Combining Domain Knowledge with Model Development

As part of the design process, engaging in stakeholder-centered design with CEs and CLs,

as well as conducting observations of live simulations is important. For example, neurologists

can help validate if neurological impairment models created by the system are realstic, and also

ensure the patient simulator’s appearance and expressiveness is well-aligned with their clinical

education goals.

4.4.3 Real-world, Spontaneous Data Collection

It is important for developers to release systems that are designed and built using enough

real-world, spontaneous facial expression data [119]. The number of facial expressions used

for training and developing FEA, FAM, and FSA systems should be much higher to lead to

more realistic results. In case of having a low number of images for training, it is challenging

to choose the best approaches to enlarge the dataset while developing the system. Expressive

robot developers also need to make sure the system includes a continuous adoption process that
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learns each user’s expressions over time and adds them to its knowledge base [119]. It is also

important to pay close attention to include the variability of the facial data in terms of subjects,

by including data from subjects well-represented in gender and ethnicity, as well as diversity

in terms of lighting, head position, and face resolution [119]. Given that patient simulators

are designed to mimic humans and are designed for use by humans, we added a discussion on

the importance of having designs that are informed by human sensory systems and behavioral

outputs. Finally, it is important that datasets are labeled and analyzed in concert with domain

experts, but to our knowledge little work has been done in this area. One potential solution can

be to create a large training set of photorealistic facial expressions generated using existing face

generation platforms labeled by human observers.

There are several existing facial expression datasets and Action Unit datasets that tackle

some of the data collection challenges, including DISFA [164], BP4D-spontaneous [272], Aff-

Wild 2 [145], and SEWA DB [147]. Furthermore, some of the recent facial expression synthesis

methods, such as those mentioned in Section 3.4, are also intended to address these challenges.

However, more work can be done in this field to tackle all the afordmentioned problems.

Moreover, newer directions also seek learning models with little or no supervision, both

for facial landmarks (unsupervised landmark detection) and for Action Units which can help to

address these challenges.

In terms of identifying databases of images or videos that reflect real facial expressions,

it is important to consider the relationship between internal states and external facial cues. Work

done by Benedek et al. [60] indicates people perceive the appearance of the face, especially the

eyes of others, to understand both their external goals or actions, and their internal thoughts and

feelings. Voluntary facial expressions are sometimes made in the absence of internal states. On

the other hand, it is difficult to detect internal states in case attention is not presented externally.

Therefore, it is critical to identify datasets of real data to better infer the external facial cues and

more accurately interpret internal states.

It is worth mentioning that there is the potential of having a pattern of confusions (false
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alarms and misses) in detected facial expressions. False alarms is the errors of describing a

facial expression being present when it was absent. Misses is the errors of describing a facial

expression as being absent when it was present. Studies indicate that the pattern of confusion

becomes worse when some other challenges occur at the same time, such as illumination or

occlusion in an image [198].

4.4.4 Cultural Considerations

Researchers have also explored the caveats associated with cultural variance in the way

observers infer internal experiences from external displays of facial expressions. For example,

Engelmann et al [100] argues that culture influences expression perception in different ways.

For one, people from different cultures may perceive the intensity of external facial expressions

differently. For example, American participants rated the intensity of same expressions of

happiness, sadness, and surprise higher that Japanese participants. Moreover, depending on

cultural contexts, there is a difference in the way people infer internal states from external facial

cues of expressions. For example, researchers ran an experiment to ask two groups of American

and Japanese participants to rate the intensity of internal and external state of a person expressing

certain emotions. American participants gave higher rates to external facial cues of emotions,

while Japanese participants gave a higher ratings to internal state of emotions. Therefore, it is

important to consider these cross-cultural differences in inferring internal states and external

expressions.

4.4.5 Universal Model Generation for Pathologies

In order to generally represent all patients with specific pathologies, one can create

a universal model for each that encompasses its predominant features. This can be done by

leveraging our previous findings in Section 4.3 to further extend the FPM framework in two

directions: 1) Extend the FPM framework to encompass the predominant features of a specific

pathology (e.g., stroke), and 2) transfer the framework from being an individual mask generator
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Figure 4.4. The context for performing masked synthesis using the FPM framework and the
AMS framework. This can be performed on either a VPS or RPS system.

to a universal model generator. This can be done by using enough source videos of people

with the specific pathology, extracting its common features, and creating a general model. (See

Figure 4.4). By leveraging this work, CLs will have the potential to more accurately diagnose

people with diverse backgrounds, and to be better able to interact with them.

4.4.6 Shared Control System for Expressive Robots

Nowadays, autonomy level is one of the most effective aspects to consider in developing

more efficient HRI management systems in different contexts [204]. For example, using a

shared control approach in a structured environment enabled the operator to benefit from human

intelligence, while benefiting the robot accuracy and precision to improve the performance of

grasping and handling of specific objects [104]. Another interesting example of using a shared

control system is in flexible industrial automation, where it can help to improve the safety of users

who work in dangerous areas, and increase accuracy, reliability and flexibility [125]. Therefore,

it will be an interesting context to explore and to exploit the shared control system approach in

the area of patient simulators.

Considering how to share autonomy between a human and robot is an important aspect

to ensuring effective HRI [204]. It can help to reduce an operator’s workload, allow both

inexperienced and professional operators to control the system [204, 104].
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As such, it is important to focus on interaction between the control system and human

users in the context of expressive simulator systems. Thus, researchers can design and validate a

customizable, shared autonomy system for expressive RPS systems to leverage the advantages

of automation while also having users as “active supervisors”. For example, in our work, we

are designing a shared autonomy system that can support a range of adjustable control modali-

ties, including direct tele-operation (e.g., puppeteering), pre-recorded modes (e.g., hemifacial

paralysis during a stroke), and reactive modes (e.g., wincing in pain given certain physiological

signals) [196]. It also can help overcome common control challenges, including the operator

being overwhelmed, having high workload, and lack of autonomy in robotic simulator systems.

This system can help make robots adjustable to different control paradigms, so that they reliably

support CEs’ workload in dynamic, safety-critical settings and improve the operator’s ability to

focus on their educational goals rather than robot control.

4.5 Discussion

The overall system presented in this work, seamlessly creates a comprehensive solution

that accurately portrays FEs similar to real patients’ facial characteristics on RPS faces, situated

within a HET context. The technologies and methods discussed in this review can cultivate a

bridge between robotics and healthcare research, and improve existing clinical training practices,

by enabling VPS and RPS systems to become more diverse, interactive, and immersive for CLs

and CEs. This will enable CLs to further engage during training sessions, will help them to

significantly improve their communication and procedural skills, and ultimately save more lives.

Building on these approaches will lead to systems with a much wider range of expressivity, such

as the ability to express clinically-relevant facial expressions. Through studies with stakeholders,

including patients, clinicians, and clinical learners, technologists can improve the expressiveness

of simulator robots, and improve the interactions between humans and robots for expressive

patient simulators and beyond. Ultimately, this work may help clinicians deliver better clinical
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care, by both improving their diagnostic skills and by providing new educational opportunities

for reducing racial disparities [210].

Furthermore, disseminating the results of this work (and software) to the research commu-

nity will help both the broader robotics and healthcare communities employ these novel systems

in their own application domains. This may trigger a new round of relevant technological innova-

tions by creating the next generation of patient simulator robot technology to support clinicians

in healthcare education settings. Furthermore, the results of this study will enable roboticists to

discover platform-independent methods to control the FEs of both robots and virtual agents, and

yield new modalities for interaction.

4.6 Chapter Summary

This chapter presented the foundations and two frameworks for creating expressive RPS

systems, with the aim to support researchers in developing and deploying systems capable of

depicting clinical conditions effectively. The next chapter will introduce a new clinical training

tool with an expressive face capable of realistically depicting non-verbal, asymmetric FP cues

representing acute stroke.
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Chapter 5

Modeling and Synthesizing Stroke on Ex-
pressive Patient Simulator Robots

5.1 Introduction

In the previous Chapter chapter 4, I presented our proposed techniques for creating

FPM and AMS frameworks. In this chapter, I will describe our work developing a new FPM

framework for creating computational models of the predominant features of stroke, and an AMS

framework for depicting patient-like stroke characteristics on the face of a physical robot.

Stroke is a substantial contributor to the global economic burden [228], the second

leading cause of mortality, and the third leading cause of disability-adjusted life years worldwide

[14, 138]. Stroke causes premature death or permanent disability in 10 million people worldwide,

of the 15 million people it affects each year [220, 95].

Patients with stroke (PwS) usually experience FP, which is the inability to fully move

some or all facial muscles on the affected side of the face, usually caused by weakness or

damaged nerves [58]. FP in PwS can present in different ways, including asymmetric facial

expressions (A-FE), gaze deviation, loss of blinking control, drooping of the mouth on the

affected side, and slurred speech [58, 167].

In clinical contexts, there are several challenges to having clinicians assess PwS properly.

Stroke is regularly misdiagnosed in one out of ten cases [223] and is the fourth most common

misdiagnosis reported by clinicians [235]. Clinicians may misdiagnose acute stroke and BP,
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as they have shared symptoms (such as FP), motivating the need for clear language in clinical

practice to avoid diagnostic error and patient harm [51].

Traditional healthcare education and training tools rarely provide CLs with adequate

training for performing neurological assessment tests (NATs), which may contribute to stroke

misdiagnoses for actual patients [116]. Even if a CL performs exams well, they may not be

familiar enough with stroke to adequately make a proper diagnosis. Additionally, they may have

low confidence in the accuracy of their diagnosis. Considering the subjective nature of stroke

diagnosis, this uncertainty can cause missing opportunities for critical interventions, accurate

diagnosis, proper treatment plans, and prevention of severe harm [176, 47].

These challenges necessitate new clinical training tools for CLs to practice assessing and

treating stroke.

As discussed in Chapters chapter 1 and chapter 2, advances in robotics offer new oppor-

tunities for healthcare education and training by means of the creation of RPS [49, 259, 88].

Despite the benefits of existing RPS systems, they have one major challenge: they incor-

porate facial designs that presuppose a symmetrical human face. This assumption makes RPS

systems unable to naturalistically express non-verbal facial cues important for rapid diagnosis

of neurological emergencies, such as stroke [197]. Being able to depict asymmetric facial cues

is crucial for simulating clinical scenarios on these systems that demand dynamic changes in

appearance (e.g., simulating a PwS with abnormal visual symptoms such as A-FE and facial

droop). The lack of A-FE in simulators can yield problems with learner immersion, skill transfer,

and learning performance [195]. As a result, CLs may be incorrectly learning to read social cues

from and diagnose symptoms of people presenting with FP [195].

Although existing RPS systems capable of conveying A-FE can address the previous

challenge, developing such systems introduces other technical and design challenges. First, as

FEs and their intensities exhibit significant inter-individual variability and dynamicity[275], the

development of a universal RPS system capable of accurately modeling and presenting neurolog-

ical impairments across diverse cultural and demographic spectrums poses a daunting challenge
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[195]. Doing this would require access to a large corpora of data from PwS representing a diverse

set of characteristics associated with acute neurological disorders and facial impairments, which

is both time and labor-intensive.

Bandini et al. recently presented the first publicly available dataset comprising videos

featuring individuals with neurological disorders [55]. However, their work primarily focused

on exploring impairments within the lower facial region, specifically concerning oro-motor

abilities assessed in PwS. Achieving an accurate and comprehensive presentation of acute stroke

conditions necessitates the inclusion of data enclosing a broader spectrum of impairments within

both the upper and lower facial regions. This entails collecting data from PwS who engage in a

more extensive array of speech and non-speech diagnostically relevant facial movements.

Second, it can be challenging to analyze the data collected from a restricted cohort of

PwS and extrapolate it to construct stroke models that depict a more extensive population of PwS.

Nonetheless, it is important to develop such universal models to design versatile RPS systems with

synthesized faces encompassing a diverse patient group. This diverse assortment includes but is

not restricted to individuals of varied ages, genders, and ethnicities suffering from various health

afflictions [275]. Addressing these challenges can lead to the design and development of diverse,

expressive RPS systems, capable of mimicking realistic stroke symptoms and representing a

diverse group of people with FP. This may prevent CLs from initiating misperceptions of people

with FP, improve clinical diagnosis, enhance clinical communication, and, consequently, improve

care delivery for people with FP.

This chapter explores how to address this issue for a particular type of FP, acute stroke, by

developing robotic patient simulators with stroke (RPSwS): an expressive training tool capable of

realistically depicting non-verbal, asymmetric facial cues. In this research, we collected realistic

data from PwS performing a wide range of tasks required for assessing diagnostically relevant

facial movements, developed a modeling framework to create mathematical representations for

naturalistic facial characteristics of stroke, and synthesized them on a robotic platform.

There has been prior work on stroke recognition and detection [53, 55] and virtual
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expressive patient simulator development capable of representing other FP pathologies [172].

However, to our knowledge, we are the first to introduce a data-driven, statistical modeling

approach representing facial characteristics of stroke, and then use these models to synthesize

stroke on RPS systems. Using such systems can help educate and assess CLs’ stroke diagnosis

skills, particularly in the context of real time RPS interaction [192, 197]. Our system has the

potential to help calibrate clinicians’ perception of acute stroke and support the health of people

who have a stroke.

The contributions of this chapter are threefold.

First, we introduce the stroke facial palsy mask framework (Stroke FPM): a new frame-

work for generating statistical models representing stroke. This consists of three parts: 1) a

deep learning face detection and alignment method to automatically extract the region of interest

(ROI) around the PwS’s face, 2) a facial landmark localization technique to accurately identify

and anonymously track the location of specific facial landmark points of interest within the ROI,

and 3) a statistical modeling approach to use tracked location values in order to automatically

extract stroke statistical measurement (SSM) features. The landmark tracker can accurately

identify and automatically track specific points in videos of PwS that are crucial for analyzing

A-FE movements. The Stroke FPM can successfully extract a diverse set of visual features that

represent stroke-related asymmetric movements in each facial region. We validated the Stroke

FPM on a new dataset of PwS we collected, all of whom experienced acute ischemic stroke

resulting in neurological findings. This provided a systematic and objective way to analyze and

interpret facial movement patterns associated with stroke, contributing to a better understanding

of the neurological effects of the condition. (See Section 5.4).

Second, we present the end-to-end stroke analysis-modeling-synthesis (Stroke AMS)

framework: which applies the generated models onto the face of an RPS system to automatically

display FP [197, 195]. To our knowledge, this is the first data-driven statistical modeling

approach to represent the facial characteristics associated with stroke, encompassing both the

lower and upper regions of the face, being used to synthesize stroke effects on a range of RPS
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systems, thereby enabling the generation of realistic FP simulations. The AMS framework

enables robot developers to generate diverse data-driven FP faces for patient simulators, situated

within a clinical education context [197] (See Section5.5).

Third, we report the results from a perceptual study with seven clinicians to investigate

the efficacy of our system for modeling and synthesizing stroke (See Section 5.6). This study

explored the visual differences in realism and similarity between the synthesized stroke robot

faces and those of stroke patients. The results of these measurements enabled the identification of

features that can make the stroke robot look more realistic (See Section 5.8). Overall, participants

perceived the stroke models used to mask all three facial regions of the robot and the overall

face as very realistic. They also reported the stroke models were moderately similar to real PwS.

Participants also reported positive comments with regard to the usefulness of the robot, and gave

some suggestions for improvement (See Section 5.8).

This work has impacts on multiple research fields, including clinical education, health

informatics, automatic face and gesture (FG), and human-robot interaction (HRI). Our RPS

system can depict PwS, with the aim to help train and assess future generations of neurologists in

rapid diagnosis of acute neurological injury. Employing simulators in this way may help improve

clinicians’ diagnostic skills, which will help improve care delivery for people with FP. Our work

can also help researchers in the FG community to explore new methods for asymmetric facial

expression analysis, modeling, and synthesis. Moreover, our study enables HRI researchers

to explore methods for designing social robots to enhance people’s perception of individuals

with FP and understand the effects of facial asymmetry on social interactions. We discuss the

implications of these findings in Section 5.9).

5.2 Background

Many researchers have explored the use of automatic facial analysis for clinical applica-

tions. This includes developing virtual and robotic patient simulators cable for expressing a range
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of pathologies, such as pain and Bell’s Palsy [169, 168, 170, 171], and automatic analysis of

facial movements in individuals with neurological disorders such as stroke, amyotrophic lateral

sclerosis, and Parkinson’s [53, 54, 122]. In the development of such systems, researchers use

facial landmark localization to extract features that affect the characteristics of each specific

disorder, and measure the presence or severity of signs. The common automatic facial landmark

localization methods used for clinical applications include active appearance models (AAM)

[86], supervised descent method (SDM) [263], constrained local model (CLM) [87], ERT [142],

and the deep learning-based face alignment network (FAN) [69].

Bandini et al. [55] compared the accuracy of these facial landmark localization methods

for detecting speech and orofacial impairment in PwS. Their work indicated that FAN had

the lowest localization error; however, they also identified the existence of bias in the face

alignment accuracy when oro-facial impairment was present in a facial video. Furthermore, they

studied the effect of fine-tuning the FAN algorithm with data from the target populations (e.g.,

individuals with stroke) on landmark localization accuracy. Compared to the pre-trained FAN,

their work demonstrated a lower bias and improved landmark localization accuracy when using

the fine-tuned FAN [55]. Therefore, the fine-tuned FAN could be a better candidate for tracking

landmark locations when working with data from PwS.

5.3 Data Collection and Analysis

The main step for developing expressive patient simulators capable of realistically rep-

resenting facial characteristics of stroke is to model them using real-world data collected and

extracted from individuals with stroke. Toronto NeuroFace released by Bandini et al. [55], is the

first public dataset that includes videos of oro-facial movements performed by individuals with

ALS and post-stroke. However, to the best of our knowledge, there are no publicly available

datasets specifically focused on diverse tests to assess PwS. These tests are essential for the

purposes of our research, which aims to assess FP in both the lower and upper regions of the
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face. Additionally, the dataset should include exam findings consistent with acute neurological

injuries, anonymously tracked facial landmark features, and relevant clinical metadata. Thus,

this required us to collect a new dataset of videos of facial movements performed by individuals

with facial impairments.

This section presents our efforts to collect and analyze stroke data. We include details

about participants, task selection, data collection procedure, clinical assessment of the recorded

videos, and acquired facial landmark localization method. The study was approved under

Institutional Review Board number 191488X by the Human Research Protections Program at

our institution.

5.3.1 Participants

Unlike other stroke datasets collected from post-stroke and amyotrophic lateral sclerosis

patients [53], we focus on people with acute stroke. We recorded patients recently admitted to a

neurological unit at an urban academic medical center to ensure the videos represent existing

acute neurological features, which are a crucial source of information for diagnostic purposes.

We recruited 16 participants for this study: 14 PwS admitted to the Intensive Care

Unit (8 female, 6 male), and two participants without stroke (PwoS) (1 female, 1 male). The

PwS had experienced acute neurological injury resulting in neurological findings such as facial

droop, eyelid apraxia, dysarthria, and coma. All participants provided verbal informed consent

and HIPAA authorization. We collected videos of PwS to generate data-driven stroke models,

while videos of PwoS were collected to serve as source videos for controlling the robot’s facial

expressions.

5.3.2 Selection of Neurological Assessment Tests

The cranial nerves (CN) are components of the peripheral nervous system, some of which

transmit instructions to and from the brain, and others which send and receive information to and

from the brain [16].
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Table 5.1. This table presents a list of cranial nerves (CNs) and their corresponding neurological
functions. The CNs required to be assessed for diagnosing impairments in the patient’s facial
movements, eye movements, and speech are highlighted in gray.

Cranial Nerves Corresponding Neurological Function

CN I Smell

CN II Vision acuity, blink to threat

CN III Horizontal eye movements (adduction)

CN IV Vertical eye movements

CN V Facial sensation assessment, corneal reflex

CN VI Horizontal eye movements (abduction)

CN VII Facial muscle strength and movement

CN VIII Hearing

CN IX Taste and gag reflex

CN X guttural sounds and gag reflex

CN XI Neck muscles

CN XII Tongue and lateral movements

CN I carries the ability to smell. CN II takes visual impulses from the eye to the brain by

means of the optic nerve, while CN III, CN IV, and CN VI present eye movements in different

directions. CN VII is responsible for the strength of many muscles of facial expression, including

the left and right muscles of the upper region of the face (i.e., forehead) and the left and right

muscles of the lower region (i.e., cheeks and mouth). CN VIII is responsible for taking sound

impulses from the cochlea to the brain. CN IX and CN X are responsible for raising the soft

palate of the mouth and the gag reflex. CN XI innervates the muscles responsible for shoulder

shrugging and lateral head movement. Finally, CN XII is responsible for enabling the tongue

muscles to function properly. This study emphasizes the assessment of six CNs necessary for

diagnosing impairments related to facial movements, eye movements, and speech in patients. (In

Table 5.1, the six selected CNs are highlighted in gray.)

In order to assess the functionality of the selected CNs in PwS, many clinicians, including
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neurologists at our medical center, perform various neurological assessments [116]. These

neurological assessments encompass a series of structured evaluations and examinations designed

to assess the neurological status of patients and aid in identifying the presence and characteristics

of stroke symptoms in their faces and bodies. By employing these assessments, clinicians can

gather valuable diagnostic information, enabling them to manage stroke appropriately.

In this chapter, we aim to develop robots capable of depicting speech and non-speech

neurological criteria in both the lower and upper regions of the robot’s face. Building upon the

findings reported by Banditi et al. [53, 55] and drawing on standard measurement criteria used

by our clinical collaborators, we decided to video record PwS performing ten tests from a list of

existing neurological assessments (NAT) to examine the six selected CNs [116]. They include:

• following a finger that moves in an ”H” shape in front of their face with their eyes while

keeping their head fixed (FOLLOW),

• closing and opening the eyes (BLINK),

• closing their eyes tightly while wrinkling their inner eyebrows (CLOSE),

• raising the eyebrows while trying to induce the wrinkling of the forehead muscles (RAISE),

• making the cheeks larger and rounder by filling them with air while having lips tightly

closed (PUFF),

• making a big smile with lips wide open (SMILE),

• repetitions of the syllable /ma/ at a comfortable speaking rate and loudness (MAMAMA),

• repetitions of the syllable /la/ at a comfortable speaking rate and loudness (LALALA),

• repetitions of the syllable /ga/ at a comfortable speaking rate and loudness (GAGAGA),

and

• rest position with teeth in normal bite and neutral facial expression (REST).
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Table 5.2. This table presents a list of selected cranial nerves (CNs) and their corresponding
Neurological Assessment Tasks (NAT), including FOLLOW, BLINK, CLOSE, RAISE, PUFF,
SMILE, MAMAMA, LALALA, GAGAGA, and REST.

Selected CNs Corresponding neurological assessment tests (NAT)

CN III, CN IV, CN VI FOLLOW, REST

CN VII BLINK, CLOSE, RAISE, PUFF, SMILE

CN X, CN XII MAMAMA, LALALA, GAGAGA

(See Table 5.2 for the list of selected CNs and their corresponding NATs.)

5.3.3 Experimental Setup and Data Collection

Other works recorded their participants in a controlled environment where patients sat

in front of the camera and were asked to perform each task for a specific number of times or

duration [53]. In contrast, we recorded each patient during their standard neurological assessment

procedure, and thus, we could only record one repetition per task from each patient.

We asked each participant to perform the ten selected NATs listed in Table 5.2, resulting

in 160 video recordings (140 from PwS, and 20 from PwoS). The average duration of the videos

was 5.5 seconds. We recorded participants’ faces using the GoPro HERO8 Black camera. During

the tasks, participants lay on their beds in front of the camera, with a face-camera distance

between 30 and 35 inches. A continuous light source with a color temperature of 5700K and a

brightness of 200 lumens, 200 lux @1m was attached on top of the HERO8 to illuminate the face

uniformly. A separate video recording for each performed task was stored at approximately 30

frames per second and 1920 x 1080 pixels of image resolution, in Codec H.264 / MPEG-4 AVC.

5.4 Facial Palsy Model Framework Development

This section, introduces the Stroke FPM, a novel framework for generating computational

models representing the A-FE characteristics of stroke. (See Figure 5.1 for an overview.)

Developing Stroke FPM included several steps. First, we took our previously collected data (see
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Figure 5.1. Stroke facial palsy mask (Stroke FSM) framework consists of three main components.
First, we develop a deep learning face detection and alignment method to automatically extract the
region of interest around the PwS’s face. Next, we perform landmark localization to accurately
identify and anonymously track specific landmark locations within the region of interest that are
crucial for analyzing A-FE movements. Next, we perform landmark localization to anonymously
track landmark locations. Next, we engage in SSM feature extraction to create 15 SSM features.
Finally, we collect SSM features over all NAT videos to create 75 region-specific stroke masks.

Section 5.3), then engaged in data processing and annotation. We then tracked facial feature

landmarks in the videos (Section. 5.4.1) and then extracted 15 SSM features (Section. 5.4.3).

Next, we used the average SSM features to create region-specific stroke masks (Section. 5.4.3).

5.4.1 Region Of Interest Extraction

We introduce an automatic region of interest (ROI) extraction technique. We implemented

a deep-learning-based face detection and alignment method based on fine-tuned FAN [55] to

detect 17 landmarks in proximity to the face in each image frame. This method then uses

the extracted landmarks to produce bounding boxes around the face with an expansion factor

of 0, a height of 600 px, and a width of 600 px. The proposed method actively defines the

aforementioned bounding boxes and identifies an ROI for the accurate localization of the face.

5.4.2 Facial Landmark Localization

We employed the fine-tuned FAN technique [55] to track the location of 68 facial

landmarks within the ROI via heatmap regression from the RGB frame image. This technique

yielded anonymously tracked landmark features within the ROI for each video, making it possible

to prevent participants from being identified by their faces.

73



Figure 5.2. Stroke Model Extraction Algorithm.

After an initial evaluation, we included 15 video recordings from 3 PwS (2 female, 1

male) performing five NATs (BLINK, CLOSE, RAISE, PUFF, and SMILE) in our final study.

Some PwS were excluded due to cognitive impairment, facial occlusion, or excessive movements.

Among all recorded NATs, we excluded five NATs; four of them did not have clear visual effects

on facial asymmetry and movements (e.g., REST, MAMAMA, LALALA, and GAGAGA), and

for one of them, the face tracker was not able to track the movements (e.g., the FAN tracker was

not able to track gaze movement during FOLLOW task).
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For each video recording, two human judges labelled each NAT performance. Fur-

thermore, in order to prune the dataset, we only included the frames of each video where the

algorithm accurately tracked the face. For this purpose, we instructed the human judges to label

the frames where the face was not accurately tracked across that frame. We then only used the

well-tracked frames for the next steps.

5.4.3 Feature Extraction and Selection

Points Of Interest

The second component of Stroke FPM is a new method that uses the values of tracked

facial landmark locations within the ROI in each frame to automatically extract a set of SSM

features. SSM features characterize the A-FE movements of facial points in different facial

regions, illustrating stroke characteristics in each region. Other research on analyzing facial

movements in individuals with stroke [54, 55] usually focuses on motion in the lower region of

the face. However, in this work, we aim to measure asymmetric movements and gestures on the

upper and lower regions of the face. Thus, we defined 15 facial landmark points of interest (POI)

for feature extraction purposes, which are described in Figure 5.3.

SSM Feature Formulation

Building upon our findings from a literature review and our interviews conducted with

clinicians, we created a list of 15 SSM features for measuring stroke-related clinical criteria.

This list of SSM features enables us to assess the asymmetry movement between corresponding

POI in the affected and unaffected sides of the face (see Table 5.3). For each NAT video, we used

the POIs extracted frame-by-frame by the fine-tuned FAN method to extract the SSM features.

Building upon the work of Bandini et al. [53], we introduced our first two SSM features,

which includes:

• Pearson’s correlation coefficient (PCC) between the LC and RC landmarks, to extract two

SSM features for each x and y coordinate (SSM 1 and SSM 2). In order to remove the
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Figure 5.3. 15 facial landmark points of interest (POI) for feature extraction purposes: central
points of lower and upper lips (LL and UL), left and right lip corners (LC and RC), left and
right outer eye corners (LOE and ROE), left and right inner eye corners (LIE and RIE), central
points of the left and right lower eyelids (LLE and RLE), central points of the left and right upper
eyelids (LUE and RUE), and left and right brows (LB and RB), and nose tip (NT).

effects of head rotation, we shifted the center of the coordinate (0 , 0) to nose tip (NT),

and re-expressed the landmark points with respect to NT.

This feature only measures movement coordination between the mouth’s left and right sides in

the face’s lower region.

We expanded our list of SSM features and added six SSM features to measure asymmetry

movement coordination in the upper region of the face. This included:

• Pearson’s correlation coefficient between the LB and RB for each x and y coordinate

(SSM 3 and SSM 4) to measure asymmetric y movement coordination in the brow area,

• Pearson’s correlation coefficient between the LUE and RUE for each x and y coordinate

(SSM 5 and SSM 6) to measure movements in the eye area,

• and Pearson’s correlation coefficient between the LLE and RLE for each x and y coordinate

(SSM 7 and SSM 8) to measure movements in the eye area.

• We measured the distance between LIE and LB and the distance between RIE and RB, and
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then calculated the ratio of the measured distance on the affected side over the measured

distance on the unaffected side to extract the SSM 9 feature.

We used a similar approach for extracting the SSM features listed below.

• the ratio of measured distance between LIE and LC and measured distance between the

RIE and RC to extract SSM 10,

• the ratio of measured distance between LIE and UL and measured distance between the

RIE and UL to extract SSM 11,

• the ratio of measured distance between LC and NT and measured distance between the

RC and NT to extract SSM 12,

• the ratio of measured distance between LB and NT and measured distance between the

RB and NT to extract SSM 13,

• calculate the ratio of measured distance between LUE and NT and measured distance

between the RUE and NT to extract SSM 14,

• and calculate the ratio of measured distance between LLE and NT and measured distance

between the RLE and NT to extract SSM 15.

The first set of features (from SSM 1 to SSM 8) represents how to coordinate the asymme-

try movement between two sides are, whereas the second set of features (from SSM 9 to SSM 15)

represents the difference of the range of movements between the affected and unaffected sides of

the face.

Build Region-Specific FPM

We aimed to determine the SSM features that yielded the most salient visual contribution

to conveying stroke for each facial region. Thus, we extracted 15 SSM features for five NATs

performed by three patients. We then calculated the average value of each SSM feature for
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Table 5.3. A list of 15 stroke statistical measurement (SSM) asymmetry features for assessing
stroke clinical criteria. Each feature measures asymmetry movements of the landmark points of
interest in the corresponding face region.

Region SSM Description POIs

mouth SSM1 Pearson”s correlation coefficient between the left and right lip corners
wrt NT for x coordinate

LC and RC

mouth SSM2 Pearson”s correlation coefficient between the left and right lip corners
wrt NT for y coordinate

LC and RC

brows SSM3 Pearson”s correlation coefficient between the left and right brows wrt
NT for x coordinate

LB and RB

brows SSM4 Pearson”s correlation coefficient between the left and right brows wrt
NT for y coordinate

LB and RB

eyes SSM5 Pearson”s correlation coefficient between the left and right upper eyes
wrt NT for x coordinate

LUE and RUE

eyes SSM6 Pearson”s correlation coefficient between the left and right upper eyes
wrt NT for y coordinate

LUE and RUE

eyes SSM7 Pearson”s correlation coefficient between the left and right lower eye
points wrt NT for x coordinate

LLE and RLE

eyes SSM8 Pearson”s correlation coefficient between the left and right lower eye
points wrt NT for y coordinate

LLE and RLE

brows SSM9 Ratio between the measured distance between inner canthus of the eyes
and brow points affected side over unaffected side

LIE LB and RIE RB

mouth SSM10 Ratio between the measured distance between inner canthus of the eyes
and mouth corners affected side over unaffected side

LIE LC and RIE RC

mouth SSM11 Ratio between the measured distance between inner canthus of the eyes
and UL affected side over unaffected side

LIE UL and RIE UL

mouth SSM12 Ratio between the measured distance between the left and right lip
corners wrt NT affected side over the unaffected side

LC NT and RC NT

brows SSM13 Ratio between the measured distance between the left and right brows
wrt NT affected side over the unaffected side

LB NT and RB NT

eyes SSM14 Ratio between the measured distance between the left and right upper
eyes wrt NT affected side over the unaffected side

LUE NT and RUE NT

eyes SSM15 Ratio between the measured distance between the lower eye points wrt
NT affected side over unaffected side

LLE NT and RLE NT

each NAT video over all patients to generate 75 region-specific Stroke FPM models that best

characterized acute stroke in different facial areas. This included 30 stroke models to mask the

area around the eyes, 25 to mask the mouth region, and 20 to mask the area around the brows.

Although the FP models developed in our earlier work [172] are generated so that each mask

represents characteristics extracted from one patient, each of our stroke models was developed

using facial characteristics of stroke extracted from data collected from a diverse group of

patients. Thus, each stroke mask can represent diverse characteristics.

We analyze the features for separate facial regions rather than the entire face for two

reasons. One, performing each NAT involves asymmetric movements on a subset of the facial

parts but not whole facial parts, and thus, averaging over all facial parts to calculate models for
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Figure 5.4. The end-to-end stroke analysis-modeling-synthesis (Stroke AMS) framework. First,
the system collects source video of an operator performing an NAT. Next, the framework tracks
the facial landmarks from the video. Next, the system overlays the stroke models over the tracked
landmark values with respect to the facial regions to which the landmark belongs. Finally, the
framework synthesizes stroke on the robot’s face synchronized with the audio extracted from the
video.

each task may add values from symmetrical movements of facial parts that are not moving on

that task. Second, during our interviews with stakeholders, they indicated that they would prefer

to have the flexibility to apply different stroke models to different robots’ facial parts of their

choice. Unlike previous models [172] that mask the entire face, our system employs multiple

stroke models to mask each specific facial region separately, allowing for the representation

of varying levels of FP in each region. This approach results in a more realistic stroke facial

appearance and movements, enhancing the fidelity of our system.

5.5 Acute Stroke Synthesis System Development

In order to study how clinicians perceived the synthesized stroke faces created using

the generated models, we aimed to create robotic faces representing the AFE characteristics of

stroke for healthcare education purposes. Thus, we developed an end-to-end stroke analysis-

modeling-synthesis (AMS) framework, which extracts facial landmarks and audio from a video

of an operator performing NATs, masks the landmark locations, and then streams the audio and

masked landmarks to the robot’s face to display signs of stroke. See Figure 5.4 for an overview.

For each source video, we used Live Link Face (LLF) (developed by Unreal Engine) to
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track the facial landmark locations of the operator’s face and extract a file that stores the tracked

values.

Next, we automatically masked the operator’s facial parts in each source video via the

generated models. To do this, we developed a Java program that analyzes the LLF generated

file, and can incorporate a region-specific Stroke FPM model generated in Section 5.4.3to depict

stroke in each facial region (eyes, brows, or mouth) for each facial side (left and right). For each

specific facial region and facial side, the system multiplies the region-specific model into the

movement values of facial points within that facial region for the selected facial side. A model

value of less than 1 means the movements of facial points within that region will be dampened,

and a value of higher than 1 means the movements will be more attenuated.

The system translates the streamed masked facial movements file into parameters that

are readable for the robot in real time, to display masked stroke facial movements on the robot’s

face. We used the Furhat robot for this task, because it allows for real time rendering of dynamic

facial expressions, head movements, and speech [3]. Figure 5.5 shows sample frames from this

part of the system.

Finally, we followed best practices in the literature for evaluating synthesized facial

expressions [59, 165](See Section 5.2).

5.6 Evaluation

In order to assess Stroke FPM and AMS, we conducted an expert-based user study with

clinicians.

Specifically, we sought to address the following research questions:

RQ 1: How realistic are the region-specific FPM models applied to a robot for synthesiz-

ing signs of stroke?

RQ 2: How similarly does the AMS framework display the synthesized expressions on

the robot’s face compared to those of real patients with stroke?
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Figure 5.5. Sample frames from our robot. The first row shows unmasked expressions, and
the second row shows the robot’s face masked by a stroke model. From left to right: SMILE,
CLOSE, BLINK, PUFF, and RAISE.

RQ 3: Which model more reliably represents acute neurological injuries in each facial

region?

RQ 4: According to the impression of clinical educators, what can be changed to make

interacting with the robot closer to the experience of interacting with a human?

5.6.1 Stimuli creation

We video-recorded an operator without stroke1 performing five NATs (RAISE, CLOSE,

BLINK, PUFF, and SMILE) required for assessing stroke facial paralysis. This resulted in five

source videos, each five seconds long.

1Because eventually, we would like CEs to operate the robot using this stroke synthesis approach in a clinical
simulation context, it was essential to study the likely expressions clinicians would make, and how their faces might
appear when masked by our stroke models.
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For each source video of the operator performing NATT , 1 ≤ T ≤ 5, I extracted the facial

points (See Section 5.5).

Without loss of generality, we assumed the operator wanted to create stroke-like facial

movements on the left side of the face.

Therefore, for each source video of the operator performing NATT , we applied 15 pre-

built stroke models (SSMi-NATT ′) to the facial point values on the left side of the face, where

T ′ is an NAT task performed by patients, 1 ≤ T ′ ≤ 5, T ′ = T , and SSM1 ≤ SSMi ≤ SSM15. For

example, we masked the video of the operator performing the task SMILE using 15 different

models obtained from patients performing the smile task: SSM1-SMILE, SSM2-SMILE, . . . ,

SSM15-SMILE.

This process led to generating 75 masked facial movement files.

For each masked facial movements file, we ran our automatic synthesis framework to

synthesize the masked expressions to the Furhat robot’s control points, and video recorded the

robot’s performance. At the end of this step, we had 75 stimuli videos of the RPSwS, where each

video was 5 seconds long.

5.6.2 Participants

We conducted a study with seven physicians to assess the system’s usability, specifically

for CEs training in neurological diagnosis and treatment skills. We only report data from four

participants who fully completed the survey. Three participants were between 34 and 44 years

old, and one was between 24 and 34. They had, on average, four years of face-to-face interaction

with patients, and all had encountered PwS in their careers. Additionally, all had completed a

US-based medical education and had a medical specialty in Neurology.

5.6.3 Procedure

Participants completed a structured online questionnaire via Qualtrics, which probed their

impression of the robotic stroke synthesis system across several dimensions. At the beginning
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of the study, participants received a summary of the project and instructions on completing the

survey. They also completed a brief practice of the task, where they watched a test video of the

robot with a neutral non-stroke face performing an NAT and answered some questions. This

helped contextualize the robot and its functionality, which was important because physicians may

be unfamiliar with robotic technology and may therefore have difficulty imagining how people

might interact with it. Then, participants viewed the 75 stimuli videos (See Section 5.6.1) in

random order, split between five blocks (one block for each NAT), with a short break in between.

(See Appendix B.1).

5.6.4 Measures

After viewing each video, participants completed the similarity and realism measures,

described below. Then, at the end of the study, they responded to several qualitative questions.

Similarity rating: Participants were asked “Compared to a real stroke patient, how similar

does this video look?”.

Realism rating: Participants were asked “How realistic does this video look?”.

The participant provided the similarity and realism ratings on a 4-point Discrete Visual

Analogue Scale (DVAS). A one on the scale corresponded to “not at all similar/realistic to real

patients”, and a four on the scale corresponded to “very similar/realistic to real patients”.

Qualitative Feedback: At the end of the study, participants responded to several open

ended questions asking how useful the system could be for clinical education, and also asking

for suggestions for improvement of the robot.

5.7 Analysis

We wanted to explore the masks with the best similarity ratings and realism ratings and

identify the best mask for each facial region. Thus, our dependent variables included similarity

rating and realism rating, measured at the ordinal level, each has four categories, and the odds of

falling into a higher or lower category are the same across categories. The independent variables
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included SSM and NAT, which are nominal. The filtering variables included Region and the two

dependent variables. The reason is that the Region and SSM variables are highly correlated, and

thus, by filtering data based on the Region variable, we avoid multicollinearity.

After exporting the report data from the survey, we generated a Python script to parse the

output data based on the filtering variables, breaking it down into six dataframes. Then, we used

an ordinal regression model in SPSS to analyze the data in each dataframe.

Realism (RQ1): We explored the relationship between participants’ 4-DVAS realism

ratings and their respective facial regions to examine how realistically the AMS framework

displays the synthesized expressions on the robot’s face as compared to those of real PwS for

each facial region. We analyzed the marginal percentage for each realism rating category from

the Case Processing Summary table from the SPSS reports.

Similarity (RQ2): We examined the relationship between participants’ 4DVAS similarity

ratings and the facial regions to measure how similar the synthesized expressions on the RPSwS

are perceived to be to those of real PwS for each facial region. Here, we analyzed the marginal

percentage for each similarity rating category from the Case Processing Summary table from the

SPSS reports.

Model Selection based on Similarity Ratings (RQ3):We studied the relation between

the SSM NAT models used for masking each facial part and participants’ 4DVAS similarity

ratings to identify the model that more similarly presents acute neurological injuries on the

corresponding facial region of the RPSwS compared to the ones on PwS’ face. To do this, I

interpreted the estimated value for each case of independent variable NAT and SSM as linear

regression. This enabled me to identify the likelihood of each case falling into the higher category

of the dependent variable (similarity rating), leading to detect the NAT case and SSM case with

the higher likelihood of being ranked with a higher similarity rating category.

Qualitative Findings (RQ4): One researcher performed thematic coding on open-ended

question responses, in which they reviewed users’ answers and rendered high-level themes to

represent key ideas in the data. This enabled us to identify which parts of the FPM and AMS
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Table 5.4. This table reports the marginal percentage values of realism ratings for each facial
region and overall face.

Realism rating Mouth Eyes Brows Overall

Not at all realistic 11% 10% 10% 10.3%

Slightly realistic 12% 16.7% 18.8% 15.7%

Moderately realistic 36% 31.7% 26.3% 31.7%

Very realistic 41% 41.7% 45% 42.3%

frameworks need improvement before running larger studies in the future.

5.8 Results

We provide descriptive statistics of the relevant variables and metrics, including the

estimate and significance values.

5.8.1 RQ1: Clinicians’ Realism Perception

In order to compare users’ realism rating with facial regions, we provide descriptive

statistics of the relevant variables, summarized in Table 5.4. From Table 5.4, for each facial

region and overall, the highest marginal percentage statistic implies the perceived realism rating

that the majority of participants rated the corresponding region. The results indicate that the

majority of expert human judges perceived our stroke models used to mask all three facial regions

of the robot and its face overall as very realistic.

5.8.2 RQ2: Clinicians’ Similarity Perception

In order to compare participants’ similarity rating with facial regions, we report descrip-

tive statistics of the relevant variables, summarized in Table 5.5. Based on Table 5.5, clinicians

perceive the models used to mask the overall face as moderately similar to real PwS. They
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Table 5.5. This table reports the marginal percentage values of similarity ratings for each facial
region and overall face.

Similarity rating Mouth Eyes Brows Overall

Not at all similar 15% 14.2% 17.5% 15.3%

Slightly similar 32% 36.7% 42.5% 36.7%

Moderately similar 41% 41.7% 27.5% 37.7%

Very similar 12% 7.5% 12.5% 10.3%

indicated that the stroke synthesized expressions displayed on the mouth and eyes regions of the

robot are moderately similar to real PwS. They also found expressions in the brow region of the

RPSwS as slightly similar compared to those of actual people with stroke, which suggests that

the models for this region can benefit from further improvement.

5.8.3 RQ3: Model Selection based on Similarity Ratings

As for the mouth region, the stroke model associated with NAT1 (exp(B) = 1.98, 95

For the eyes region, the stroke model created using NAT1 (exp(B) = 2.14, 95Finally, for

the brows region, the model built using NAT3 (exp(B) = 3.77, 95

Thus, the masks that more reliably represent stroke include: SSM1-NAT1 FPM to mask

the mouth region, SSM7-NAT1 FPM to mask the eyes region, and SSM 9-NAT 3 FPM to mask

the brows region.

The masks that more reliably represent stroke include: SSM1-NAT1 FPM to mask the

mouth region, SSM7-NAT1 FPM to mask the eyes region, and the SSM9-NAT3 FPM to mask the

brows region.
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5.8.4 Qualitative Findings

We asked participants two open-ended questions (see Section 6.6.4). One main goal

was to gauge their impressions of and preferences for operating and interacting with RPSwS in

clinical education scenarios. Another goal was to identify parts to improve to make interacting

with the RPSwS closer to the experience of interacting with PwS based on experts’ impressions.

The overarching theme across all responses to the first question was that clinicians

found the RPSwS “useful” in helping CLs learn the symptoms of acute stroke. For the second

question, responses were more detailed, and to analyze them, we employed grounded theory

[78], and found emerging themes through an inductive coding process. We then compared

codes and identified five overarching themes among the participants, specifically relating to

visual presentation, patient similarity, robot behavior, the selection of patient vignettes, and the

importance of training.

Visual Presentation. Having a realistic visual presentation and embodiment can signif-

icantly impact the user’s impression of the robot. Participants perceived faces on the RPSwS

as very realistic for each facial part and for the face overall (See Section 5.8.2). However, one

participant noted: “At times, it is difficult to distinguish the different facial muscles; consider

adjusting the contrast.” This was likely due to complications with the video recording of the

robot with a bright face projector; however, this challenge will be mitigated once participants

interact with the physical robot.

Patient Similarity. Being able to display accurate facial cues of stroke similar to real

patients is critical for stroke diagnosis. Overall, participants perceived the faces on the RPSwS as

moderately similar to real PwS (See Section 5.8.1), and no participant had difficulty identifying

that the robot was displaying signs of stroke. One participant suggested: “the facial droop could

be more pronounced”. Incorporating facial droop around the mouth and cheeks area can enable

the robot to show signs of stroke more similar to PwS.

Robot Behavior. For the purpose of this study, and to assess region-based SSM features,
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we employed a technique of manipulating one region of the robot’s face at a time for each video.

One participant suggested: “consider each mask doing all of the movements to better assess

the pattern of weakness. For example, have one video where someone smiles, blinks, raises

eyebrows, etc.” While displaying stroke in each specific region of the face enabled me to identify

the most reliable SSM feature for each region (See Section 5.8.3), simultaneously depicting

visual signs of stroke on the entire face will make the robot’s behavior more realistic.

Patient Vignettes. Our participants were mindful of suggesting providing supplementary

materials to end users in future studies. One clinician suggested “consider adding a sentence or

two of clinical background.” In healthcare education and training, the patient’s medical history

is an important factor to interpret, and clinicians can learn some extrinsic factors from it.

Training It is essential to provide adequate training on how to use technology, particularly

to users who lack sufficient experience in interacting with robotic systems. Without adequate

training, users may misunderstand the robot’s functionality, overestimate or underestimate its

capabilities, or use the system incorrectly, leading to unreliable evaluations. One participant

noted that I “may need to show a video of the AI model doing all the commands without deficits

prior to [the] session for the participants to know how it looks baseline.” Therefore, providing

training sessions that cover the system’s functionality and modes of interaction are necessary to

ensure users can provide reliable and informed assessments.

5.9 Discussion

This work offers multiple implications to several key research and practice communities,

including clinical education, automatic face and gesture, and human robot interaction, which we

discuss below.
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5.9.1 Implications for Clinical Education and the Broader Healthcare
Community

Our work provides crucial insights into developing robotic patient simulators capable of

representing asymmetric facial expressions, providing opportunities for prompt diagnosis, and,

thus, preventing serious harm. Overall, our study reveals that a significant majority of physicians

expressed a desire for robots capable of replicating facial characteristics associated with stroke.

This finding underscores the value of employing expressive RPS systems capable of depicting

signs of stroke as educational tools for training healthcare professionals. The physicians’ desire

for such technology suggests its potential to enhance clinical education by providing expressive

and realistic learning experiences.

Moreover, our research yielded insights into the best models to represent stroke in each

facial region based on professional expertise. Our study has produced a set of 75 masks that

represent stroke in various facial regions. This diverse set of options allows clinicians to evaluate

and select masks that accurately represent stroke based on their professional expertise. Thus,

this approach enhances the precision and reliability of stroke representations for different facial

regions.

Additionally, identifying the best models provides researchers with the opportunity to

create a novel universal stroke mask to model stroke for the entire face. By overlaying the

universal mask on a robot’s face, researchers can create robotic faces that represent more realistic

and reliable representations of stroke symptoms for clinical education. This technology enables

clinical educators to design scenarios for the robot that accurately simulate real-world clinical

scenarios, providing a platform to effectively train and assess clinical learners’ stroke diagnosis

and treatment skills. The use of robots capable of representing stroke-related cues can potentially

support enhancing the accuracy and effectiveness of learners’ stroke diagnosing and treating

skills.

The clinicians’ interest in and abilities using this technology holds promise for the future
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of stroke care. The integration of expressive RPS with stroke into clinical education settings has

the potential to revolutionize stroke care by offering innovative training opportunities. These

RPS systems can provide healthcare professionals with hands-on experiences in diagnosing and

treating stroke-related conditions, with the aim of improving their skills and knowledge in a

realistic and controlled environment.

The analyses of signs of stroke on PwS can help advance clinicians’ understanding of the

effects of stroke on the face and improve the development of new stroke treatment methods that

are specific to the facial muscles and expressions affected by stroke. Since PwS can often have

complex medical needs [205], using a RPSwS can help clinicians focus on specific aspects of

stroke treatment (such as facial exercises or neuromuscular stimulation to improve facial muscle

strength) without the added complications (such as speech therapy or medication management).

Furthermore, clinical researchers can use an RPS with a stroke face to evaluate the

effectiveness of various stroke treatments, such as medication or rehabilitation, on stroke patients’

facial muscles and expressions. This can provide a safer, more controlled environment for

clinical researchers to develop and test new stroke treatment methods on RPSwS, without the

risks associated with working with human patients.

By better understanding the effects of stroke on the face, clinicians can design more

adequate care plans for patients with stroke to target explicit facial muscles and expressions af-

fected by stroke. Such a system can also support stroke patient recovery by enabling professional

healthcare providers to develop personalized rehabilitation programs for the patient that target

specific facial muscles and expressions, based on the patient’s needs and conditions.

Researchers can extend our data-driven approach for stroke modeling to collect data

and develop statistical models of A-FE caused by other conditions, such as Bell’s Palsy and

Parkinson’s disease. They can achieve this by modeling their method after our FPM framework to

develop a framework for generating computational models representing the A-FE characteristics

of their specific condition. They can then use a synthesis system similar to the end-to-end stroke

AMS framework to stream out their models to the robot’s face to display the condition. This can
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enable the development of more effective interventions for diagnosing, treating, and monitoring

these conditions.

Overall, using patient simulator robots that can facially convey stroke can help provide

appropriate and timely stroke diagnosis and treatment, and ultimately improve patient outcomes.

5.9.2 Impacts for the FG Community

Furthermore, this work can have significant implications for researchers in the FG

community.

We introduced a diverse set of 15 statistical measurement features for quantifying facial

asymmetry and asymmetric facial movements in both the upper and lower facial regions. This set

of measurement methods can provide researchers with a comprehensive and reliable framework

for analyzing facial movements and expressions. This can provide the researchers with the

opportunity to perform a more precise and accurate analysis of facial asymmetry in those affected

by FP.

Furthermore, researchers in the FG community can use the presented methods in this

work to create facial recognition technologies specifically designed to detect subtle asymmetries

in facial features’ locations and movements. Such technologies can enable more effective

recognition and monitoring of neurological disorders that affect facial expressions, such as

stroke, Bell’s Palsy, or Parkinson’s disease.

This work can facilitate cross-disciplinary collaborations between researchers in the

fields of computer science and neurology, leading to the development of innovative techniques

for future FG research.

5.9.3 Implications for the HRI Community

The development of an expressive robot capable of displaying asymmetric facial expres-

sions has numerous potential applications in HRI research, ranging from enhancing people’s

perception of individuals with FP to understanding the effects of facial asymmetry on social
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interactions.

Many existing facial models are limited to symmetric movements. However, almost

all human faces display some degree of asymmetry in their features and movements, due to

variations in muscle strength on either side of the face, differences in bone structure, and genetic,

aging, or medical conditions [255]. Using the modeling approach presented in this study to

understand facial asymmetry can advance the design and development of robots that have

more realistic and effective facial expressions. Overall, in the field of HRI, understanding and

presenting asymmetric facial expressions is critical to improving the expressivity of the robot,

enhancing its ability to convey real human-like emotions, and interacting with humans more

naturally.

In social contexts, studies show many of those with FP do not seek or receive accurate

information, treatment, support, and services because they have inaccurate perceptions of

themselves or their conditions [40]. For example, their facial condition sometimes is perceived as

a cosmetic condition instead of a medical condition, holding people with FP back from asking for

proper treatment or service [40]. HRI researchers can use our techniques to develop robots with

asymmetric facial expressions for normalizing A-FE for laypeople, enabling them to accurately

perceive the facial characteristics of individuals with FP [210].

Additionally, HRI researchers can use this robot with asymmetric faces to better un-

derstand how laypeople perceive and respond to asymmetric facial expressions. Using this

technology, they can study the effects of facial asymmetry on the perception of emotions and

social interactions between humans and robots.

Our work establishes a versatile platform that facilitates the study of HRI in the context

of facial asymmetry. Our system enables the robots to present a wide range of appearances

and characters, thereby providing a platform to study users’ perceptions of people with diverse

backgrounds. This may also help normalize users’ real-world communication and social skills,

especially when engaging with individuals from diverse populations or those with facial asym-

metry. Ultimately, my platform illustrates a valuable tool for advancing research in the field of
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HRI.

5.9.4 Future Work

In future work, we will use the selected region-specific models to enable the robot to

simultaneously show the characteristics of stroke in all facial parts, leading to a more realistic

robot appearance and behavior. As we continue to improve the robot to more accurately represent

signs of stroke, we will explore additional features, such as enabling the robot to display loss of

blinking control, gaze deviation, and facial droop around the corner of the mouth.

5.9.5 Conclusion

Ultimately, the introduction of this system can significantly advance the fields of educa-

tion, healthcare, HRI, and FG, with implications for both research and practical applications in

healthcare and technology. This study can help advance medical education and training, leading

to improvements in the diagnosis, treatment, monitoring, and rehabilitation of various clinical

conditions. Designing and deploying advanced healthcare technology can enhance patient care,

reducing healthcare costs, and eventually, improving patient outcomes. This study can lead

to new insights and technologies to advance research in border HRI and FG communities and

promote innovation by encouraging the development of new technologies in these fields.

5.10 Chapter Summary

This chapter presented my proposed FPM and AMS frameworks to model and synthesize

stroke on the face of robots. Robotic systems depicting stroke faces can have implications in

many domains, including human robot interaction, automatic face and gesture, and healthcare.

The next chapter will present the development of an interactive, expressive RPS system capable

of depicting stroke, with the aim of improving healthcare education and training.
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Chapter 6

ROSE: An Interactive Social Robot for
Medical Education

6.1 Overview

In the previous Chapter chapter 5, I discussed the development of a new FPM framework

for creating computational models of stroke, and an AMS framework for depicting patient-like

stroke characteristics on the face of a physical robot. In this chapter, we will discuss our system

engineering efforts to create ROSE: an interactive social robot for medical education, which

allows CLs to practice their stroke diagnosis skills.

6.2 Introduction

Humanlike virtual and physical robots are increasingly employed in many settings,

including hospitals and schools [183]. Their design and deployment are influenced by a range

of socio-technical, economic, and contextual factors, which, in return, inspires research areas,

especially in the realm of clinical applications [109]. Some recent examples of research topics

here include cognitively assistive robots, providing social engagement for older adults, supporting

telemedical care delivery in hospitals, assisting healthcare professionals in various tasks related

to patient care, and RPS to support healthcare education and training (HET) [148, 163, 162, 113,

191, 195].
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Humanlike robots, particularly RPS systems, are frequently deployed in clinical educa-

tional environments. See Chapter chapter 2 for more information about current RPS systems and

their benefits and limitations.

However, existing RPS systems have limited capabilities for humanlike expressiveness,

accurate representation of FP, and autonomous interaction [197]. The limited expressiveness of

robots can impede emotional engagement, empathy, and social presence, leading users (such

as CLs) to experience reduced motivation, interest, and retention of training content [185].

Moreover, the inability of robots to accurately depict FP and dynamic, realistic clinical scenarios

can hinder clinical skill transfer and diminish the robot’s utility, potentially compromising patient

exams. Thus, it is essential for RPS systems, and humanlike social robots in general, to portray a

wide range of expressions and conditions.

With these design paradigms in mind, we explore how to create an interactive, expressive

RPSwS system to be used to teach CLs in clinical training contexts. In our prior work, we

developed an expressive RPSwS system which reflected data-driven models of stroke. In this

work, we take this system and make it interactive, to be used to teach CLs how to diagnose

and treat neurological emergencies such as stroke. We have worked with neurologists and

clinical educators to co-design an interactive robot that could depict neurological impairments

and engage in autonomous interactions with CLs, with the aim of improving CLs’ diagnostic

and social skills. This robot allows CLs to have access to the repeated clinical practice of stroke

diagnostic skills in a realistic clinician-simulated environment.

Most current RPS systems have a face with limited or no humanlike naturalistic expres-

sivity. The anthropomorphization of social robots gives rise to concerns about the robot’s impact

on users’ emotions, expectations, and interactions [199, 183, 114]. The limited expressiveness

of humanlike social robots can lead to reduced emotional engagement with users, hindering

the development of empathy and social presence in HRI [185]. Even for the RPS systems with

expressive faces, their appearance and characteristics may not be widely customizable to address

CEs’ needs. These gaps call for researchers to be mindful of humanlike social robots’ ethical
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and societal impacts.

Finally, current RPS systems may not promote autonomous interaction and engagement

with CLs in a humanlike manner. As the purpose of existing RPS systems is mainly informative

rather than interactive, they lack various communication modalities, which may limit the range

and quality of interactions between the RPS robot and users, affecting the overall training

effectiveness.

Existing RPS systems may offer tools to practice basic clinical skills (e.g., taking vital

signs, and performing physical exams); however, they only partially simulate realstic dynamic

clinical scenarios that replicate real-life medical situations with evolving and changing conditions.

This can lead to limited opportunities for effective clinical skill acquisition and knowledge

transfer, potentially resulting in missed opportunities for acute interventions, tools, prompt

treatment, and prevention of serious harm.

Designing a clinical training tool with an interactive, expressive RPS to address these

gaps, can also introduce design and technical challenges. For example, if poorly designed,

interacting with the system can heavily rely on advanced technology or complex interfaces,

limiting clinicians’ perceived ease of use. The perception of robots’ ease of use may significantly

influence the clinicians’ acceptance of new technology in their professional life [109]. Moreover,

the limited usability of robots can make it challenging for users to effectively work with the robot

and access the training content, ultimately resulting in frustration and lower learning outcomes.

These challenges necessitate a new interactive clinical training tool to enhance the

learning experience of CLs, which provide a realistic and immersive environment for practic-

ing dynamic clinical scenarios. In addition, such a tool must facilitate customization of the

robot’s expressions, appearance, and clinical scenarios, to encourage its usability, adoption, and

accessibility.

To address this need, we introduce ROSE: an interactive social robot for medical educa-

tion (See Figure 6.1). ROSE consists of two parts. First, it leverages the stroke AMS and FPM

frameworks to generate computational mask representations of stroke, which are fully patient-
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Figure 6.1. ROSE: An interactive social robot for medical education. ROSE consists of two
parts: Part A, which is an expressive RPSwS, and Part B, which is a framework to transform the
robot into an interactive tool for clinical education.

data-driven (See Chapter 5) Next, it uses our newly developed multi-modal communication

(MMC) framework to simulate clinical scenarios and autonomously engage in user interactions.

Using the Stroke FPM and AMS frameworks, we built an expressive face for ROSE

with customizable characters and appearances, which can realistically depict patients with acute

stroke. To demonstrate our system, we implemented it on a Furhat robot [23] in the context of

developing stroke diagnosis training tools for CLs.

To build the MMC framework and create communication capabilities for the robot, we

teamed up with neurologists interested in developing new technologies to support CLs. We co-

designed adaptable clinician-defined controls that enable CEs to define specifications for ROSE

and incorporate the types of real-world dynamic scenarios to the robot they view as clinically

relevant. We then developed the MMC framework and a keyword-based control mechanism

for our system, enabling ROSE to autonomously interact and engage with CLs in real time.

These capabilities may empower CLs to practice their diagnostic acumen and communication

proficiencies by engaging in hands-on practice with the robot.

We evaluated ROSE with engineers and clinicians. Overall, all participants with and

without prior clinical experience successfully interacted with ROSE, and were able to perform

neurological assessments required to assess signs of stroke. Moreover, they reported positive

comments with regard to the robot’s appearance, conversational dialogue, interaction, and

usability. Furthermore, they gave detailed suggestions for improvement, which we discuss in

Section 6.7.
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The contributions of this chapter are as follows: First, we present the collaborative

user-centered design requirements for building ROSE (See Section 6.4), offering insights for

HRI researchers and developers of interactive, expressive robots, and encouraging them to adapt

these design requirements to their own applications.

Second, we introduce a multi-modal communication framework to automatically sim-

ulate clinical scenarios, and enable autonomous interaction and engagement on ROSE (See

Section 6.5). We developed an interactive, expressive RPSwS as the platform of the robot, with

customizable expressions, appearance, and characters, to enable the robot to be more humanlike

and realistically portray PwS. We then incorporated a real-world dynamic scenario into our

system to suit the users’ needs better, and developed a keyword-marching control mechanism

to enable the robot to interact with CLs automatically. This framework enables the robotics

community to leverage our approach to customize a robot’s autonomous behavior, adapt to user

needs, and promote effective HRI within their own application domains.

Third, we present ROSE to create a realistic and immersive environment for practicing

diagnosis and treatment skills, offering opportunities for repeated clinical practice, and promising

avenues for advancing the capabilities of clinical learning. We report the results from pilot studies

and interviews with robotics engineers and clinicians to investigate the efficacy of our tool for

depicting dynamic clinical scenarios (See Section 6.6), and report the results revealing how they

envision using ROSE for stroke diagnosis (See Section 6.7).

To our knowledge, ROSE is the first of its kind, representing an exciting new area of

research. This work has implications for HET, as well as the broader healthcare and HRI

communities. Employing robots in this way may improve CLs’ communication and diagnosis

skills, and ultimately improve patient outcomes. Moreover, our work provides a framework for

researchers to explore HRI in new experiential learning settings (e.g., build RPS systems to

enable CLs to avoid forming biased impressions) and broader domains (e.g., explore methods for

designing social robots for enhancing people’s perception of individuals with FP, understand the

effects of facial asymmetry on social interactions). We discuss the implications of these findings
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and future work directions in Section 6.8).

6.3 Background

Chapter 5 discussed the development of FPM and AMS frameworks to model and

synthesize stroke on the face of robots, and Chapter 2 described the importance of using

expressive robots for HET. To our knowledge, there appears to be only one other notable

expressive RPSwS system designed apart from our own, which was presented by Daher et al.

[88].

This system was comprised of a physical-virtual agent head, that can display some

stroke-related cues on its face, from which we take inspiration [88]. Using a human-in-the-loop

control system, this system can change facial appearance, listen, speak, and react physiologically

in response to CL’s behavior. Notwithstanding the advancements made by the system, the

robot could only perform a limited number of facial movements representing NATs (e.g., smile,

frown, raise eyebrows). The robot’s responses were limited to specific information and simple

responses (such as yes or no). The robot also used manual control for verbal responses and thus

lacked autonomous interaction capability, which may adversely affect perceived realisticness

and engagement. Consequently, the existing system had limitations in adequately simulating the

automatic and interactive scenarios necessary for comprehensive stroke diagnosis and treatment

training. These limitations may impede the development of effective training programs for CLs,

eventually reducing patient outcomes and healthcare efficiency.

The above mentioned challenges underscore the need for novel and reliable clinical

training tools to train CLs in evaluating and managing stroke. The intricacies of clinical care in

the context of stroke necessitate the development of HET tools for maximizing the applicability

and versatility of robotic systems in stroke diagnosis and treatment training.
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Table 6.1. Our proposed design requirements for situating and supporting ROSE in HET and
broader HRI.

Component Robot Design Considerations

Dynamic Clinical
Scenario Simulation

Robots should enable active learner engagement through-
out simulating standard clinical scenarios of assessing di-
verse NATs in a flexible order and repetition, tailored to the
learner’s behavior.

Expressivity and Ac-
curate Representation
of FP

Robots should be able to synthesize realistic human-driven
depictions of non-verbal cues on its face in different degrees
of severity and variations of FP.

Adaptability Robot’s character, appearance, and features should facilitate
adaptability based on experts’ opinions and users’ educa-
tional needs.

Accessibility and
Equality

Robots should provide learners with inclusivity and equal
repeated access to similar comprehensive educational experi-
ences, promoting fairness within simulation-based learning
and performance assessment.

Multimodality of
Communication

Robots should be proficient in interacting with individuals
through various humanlike communication modalities, to
foster effective information exchange and communication.

Increase Engagement
and Immersion

Robots should have social abilities to enhance engagement
and immersion in clinical learning.

Automation Robots’ control systems should support automatic operation
and interaction with the end-users.

Perceived Ease of
Use

Robots should be easy to use for learning purposes, with in-
tuitive controls enabling CLs to obtain the necessary behav-
ior responses from the robot without necessitating extensive
technical knowledge.

Robot’s Perceived
Usefulness

Robots’ design should consider the subjective appraisal of
the system’s usefulness by end-users.

6.4 Design Requirements for ROSE

In this section, we present the design requirements which informed the development of

ROSE, through close collaboration with clinicians and experts in the field. We teamed with

neurologists and clinical educators from other specialties who shared our interest in designing and
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developing expressive interactive robots to support HET. Figure 6.2 (presents our collaborators).

We actively participated in in-depth interviews with them, to gain a deeper understanding of

and invaluable insights into the intricate landscape of HET, particularly in the realm of stroke

diagnosis and treatment. Additionally, we reviewed relevant scientific literature, guidelines,

stroke assessment protocols, and existing clinical training sessions to refine our comprehension.

We also held numerous meetings and participated in iterative design discussions with stakeholders

to incorporate their feedback.

During our interactions with neurologists, we had the opportunity to explore various

aspects of stroke diagnosis, including the methodologies they employ when diagnosing and

treating real PwS in hospital settings. We also identified the challenges they encountered in

this context and gained a deeper understanding of the role patient simulators play in training

healthcare professionals in stroke diagnosis skills within educational environments. By delving

into the conversations with clinical educators, we explored the functionality and workings of

these simulation tools, while also identifying areas for improvement and unmet needs within this

field.

This collaborative and iterative process enabled us to create comprehensive design

requirements based on scientific knowledge and tailored to the needs of clinicians. Our primary

design requirements encompassed the need for the robot to represent clinical scenarios while

exuding expressiveness, adaptability, accessibility, user-friendliness, autonomous interaction,

sociability, captivating engagement, and benefits for the intended objective (See Table 6.1 for an

overview).

6.4.1 Co-designing Clinical Scenarios

Neurologists and clinical educators discussed the importance of simulating realistic clini-

cal scenarios in HET, necessitating the co-design of dynamic clinical scenarios to simulate them

on ROSE. Dynamic clinical scenarios are situations that involve ongoing changes, interactions,

and complexities of the patient’s condition. The scenarios also require real time decision-making
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Figure 6.2. We collaborated with neurologists and clinical educators to identify contextual
information of real clinical scenarios used for training and assessing CLs’ communication and
diagnostic skills, and co-created learning scenarios for ROSE.

and adaptability. The goal of co-designing dynamic clinical scenarios with neurologists is to

enable ROSE to simulate real-world scenarios CLs will experience while assessing human

patients. This allows the CL to actively engage in skill practice with the robot. The design of the

scenario should allow learners to practice a diverse set of NATs required for assessing stroke. It

should offer the flexibility to alter the order of NATs within the scenario and to repeat performing

an NAT, according to the learner’s behavior.

Leveraging our collective expertise, we co-designed an interactive neurological assess-

ment scenario for ROSE, modeled after real-world clinical scenarios commonly employed for

assessing PwS. The scenario is a dialogue script between a CL, defined here as the user, and

an admitted stroke patient embodied as the robot. The dialogue script aims to enable the robot

to establish a meaningful interaction with a CL, enabling them to conduct neurological exams.

To enhance the authenticity of the interaction, we incorporated non-verbal behaviors into the

scenario, thereby heightening its realism and providing a more lifelike experience for the user.

6.4.2 Support Expressivity and Accurately Represent Facial Paralysis

Because we are interested in demonstrating asymmetric facial movements characterizing

FP, our collaborators emphasized the importance of enabling the robot to synthesize a realistic
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patient-driven depiction of non-verbal cues on its face. Ideally, the robot should also present

different degrees of severity (e.g., normal symmetry, minor paralysis, partial paralysis, unilateral

complete paralysis, and bilateral complete paralysis) and variations of FP (e.g., the ability to

change the left or right range of FP, asymmetric blinking, facial droopiness, and gaze deviation).

6.4.3 Adaptability, Accessibility, and Equity

Our clinical collaborators stressed the importance of how the robot’s character, ap-

pearance, and features should facilitate adaptability based on CEs’ expert opinions and CLs’

educational needs. The robot should offer customization options to convey diverse clinical

conditions and visual representations (such as a range of genders, complexions, and ages), and

features (such as different facial features, voices, and names).

The robot’s adaptability provides an opportunity for CLs to practice on robots representing

patients with diverse backgrounds and appearances, which will help further fairness and equity

within simulation-based learning.

6.4.4 Multimodal Communication

Our collaborators discussed the importance of incorporating effective communication

capabilities for establishing connection and trust between the robot and CLs, improving the

overall user experience. Thus, it is important the robot can employ multiple modes of com-

munication to accommodate each user’s preferences and needs. Doing so will lead leading to

more adequate comprehension and engagement. Supporting multimodal communication also

enables the robot to adapt to diverse social and cultural contexts, further supporting inclusivity.

Moreover, proficient interaction can foster effective information exchange between the robot and

users, resulting in improved outcomes and user satisfaction.

Thus, the RPS system should be proficient in interacting with individuals through both

nonverbal and verbal humanlike communication modalities. For example, the robot’s face should

be expressive and humanlike, in order to establish meaningful social interactions and engage
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with users. Additionally, the robot should support non-verbal backchannel cues to make for more

naturalistic interaction, such as blinking, gaze, head nods, etc., as these are essential in building

rapport.

Ideally, the robot should employ voice recognition and natural language processing to

understand the spoken input from the user to be able to participate in the dialogue actively.

Furthermore, designing robust speech synthesis capabilities for the social robot is crucial,

as speech serves as a vital source of information exchange (e.g., providing instructions and

explanations) and communication (e.g., engaging in conversation).

6.4.5 Interaction to Increase Engagement and Immersion

Based on a review of the literature and conversions with our clinical collaborators, it

is essential to develop social abilities in the robot to improve engagement and immersion in

HET. Research suggests that social robots can improve learners’ engagement [222] and lead to

smoother and more positive social interaction [270]. In the HET context, a significant correlation

exists between engagement and the improvement of teaching effectiveness [225].

Therefore, providing the robot with social abilities is critical to enhancing engagement

and immersion in clinical learning. Achieving this objective involves the design of a robot with

social presence and embodiment, characterized by attributes such as having a humanlike appear-

ance and behavior. Moreover, it requires equipping the robot with advanced natural language

understanding and generation, and incorporating interactive activities such as gamification into

the learning process. Additionally, it is essential to enable the robot to personalize its behavior

and content to meet CLs’ needs and interests, and provide timely and constructive feedback,

such as personalized feedback on CLs’ progress.

6.4.6 Automation

Clinical educators discussed the importance of enabling automatic operation for the robot

to support CEs’ workload. This includes depicting FP, being able to respond to CL-initiated
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neurological assessment tests, and autonomous interaction with the end-users (e.g., attending to

the user, and socially engaging in conversation). Thus, the robot’s control system should support

it by automatically adapting its behavior and performance based on CLs’ responses, in order to

make the interaction more realistic, engaging, and enjoyable for CLs. Automating elements of

the control system has the potential to provide CEs more flexibility, reduce their workload, and

free up their time, allowing them to focus on more critical matters such as scenario planning and

CLs’ performance assessment.

In the design of ROSE, most interactions are programmed and managed by researchers,

and automatically performed by the robot, compared to the traditional training methods in which

CEs must fully manage and perform all aspects of interaction.

6.4.7 Robot’s Perceived Usefulness

Our collaborators indicated that the robot’s design should consider the subjective appraisal

of the system’s usefulness by CLs and CEs. Enhancing learning outcomes, such as the accuracy

of CLs’ learning outcomes, the impact of CLs’ expectations, and their social interaction skills

and confidence, is vital in developing RPS systems. However, it is essential to consider the

perceptions of CLs and CEs regarding how similar to real patients the system is and how realistic

the interaction is. Ensuring the attainment of these design assumptions will culminate in a system

that realistically replicates patients’ behaviors and focuses on the needs of CLs and CEs.

6.5 Stroke Robotic Patient Simulator Prototype Design

Building on our design guidelines developed with clinicians, we developed a platform for

ROSE using an RPSwS robot that can simulate facial movements, gestures, gaze, and dialogue

similar to PwS in stroke evaluation scenarios. In this section, we discuss our prototype and its

hardware and software components.

Since a key focus of ROSE is to convey facial expressions and engage in dialogue, we

used the Furhat robot from Furhat Robotics as our robot platform. Furhat allows for real time
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Figure 6.3. A high-level overview of our system’s hardware components and interaction diagram
of our software.

rendering of dynamic facial expressions, head movements, and speech [3]. Along with the robot,

we used the MetaMotionS, an inertial measurement unit (IMU) device from MbientLab [2],

which enables the robot to track the user’s hand movements while performing the NATs required

for assessing stroke. Figure 6.3 demonstrates a high-level overview of our system’s hardware

components and interaction diagram of our software.

6.5.1 Hardware

Robot platform

The Furhat robot has an organic unibody design [3], consisting of a head and neck. The

robot’s base contains a built camera, speaker, and microphone, and is situated below the neck of

the robot, as shown in Figure 6.4.

Head and face. The size of the head is similar to most human heads, and the face can

emulate a wide variety of facial expressions [3]. The outer surface of the head consists of two

main parts: the face, made from a proprietary polymer with a smooth surface reflecting the

geometry and textures of a human face, and the external shell, which makes up the cranium of

the head, covering the internal components [3].

The internal structure of the head contains the projection system, which portrays facial

features such as eyes, eyebrows, nose, and mouth on the face. This feature enables ROSE to
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display facial expressions, playing a crucial role in the development of our tool.

Neck. The lower portion of the head makes up the robot’s neck, which encases a mobile

platform, enabling the robot to move like a human’s head (e.g., nodding and side-to-side motion).

This platform contains three high-speed servos with active feedback, and metallic gears to

provide three degrees of freedom (pan, tilt, and roll) [3], which enables the robot to move its

neck [3].

Camera. The onboard RGB camera can record video, and the vision module can then

process the feed in real time to detect human faces. Face detection allows the Furhat robot to

“attend to” the nearest human, meaning that it rotates its head toward them, and its eye gaze will

follow them, thus enabling more naturalistic HRI.

Speaker and Microphone. It also has a built-in speaker and a microphone that enable

vocal communication between people and the robot. The robot uses a 30W power, built-in dual

speaker system [3] to play all audio outputs and communicate with humans. For audio input,

the robot uses one of two microphone systems. One is a built-in set of two omnidirectional

digital microphones placed 180 mm apart on the robot’s shoulders [3]. The other is a set of four

omnidirectional digital microphones that can pick up voices from up to 5 meters away in all

directions. This bundled microphone system has features like echo cancellation and background

noise suppression that enhance the quality of voice recorded during interactions.

Wearable Motion Sensor

Per one of the NATs commonly used for stroke assessment, CLs may ask the PwS to

visually follow their hand movements with their eyes, while keeping the head still. Similarly, to

enable ROSE to track CLs’ hand movements, we used the MetaMotionS, which is a wearable

sensor that tracks motion continuously and in real time. The sensor is a 10-axis IMU that contains

a gyroscope, accelerometer, and magnetometer. Using the Bosch Kalman filter sensor fusion

algorithm, it combines inertial and magnetic readings from all three devices to determine real

time sensor orientation. We developed a wireless connection script using the MetaMotionS
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Figure 6.4. The Furhat Robot, and its components. The head consists of the face in the front,
and the external shell at the back. The base of the robot contains the camera, speaker, and
microphones.

open-source API in Python to enable the robot to communicate with the sensor through Bluetooth.

Its light weight (0.2 oz) and miniature form factor make it a suitable choice as a wearable that

can be worn by the CL on their wrist, with a band encasing it.

6.5.2 Software Architecture

We built the interaction software stack of ROSE using FurhatOS, a Linux-based system

used as the Furhat Robotics’ operating system for social robotics. This includes the entire set of

subsystems required to run the robot and handles functions like facial animation, motion, audio

processing, vision, etc. [3]. We wrote this in Kotlin, and it was connected to the Furhat platform

and executed on the robot. We discuss some important aspects of our interaction software below.

Clinician-defined Controls

Upon running the interaction software on the robot to simulate a patient, the system can

set the parameters for the clinician-defined controls defined by expert CEs, enabling them to

define various aspects of the clinical scenario and the patient’s characteristics. (See Figure 6.5

for an overview). We discuss these clinician-defined controls below.

Visual Appearance. Our interactive software allows us to portray any character with a
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Figure 6.5. ROSE provides the flexibility to customize the parameters for the clinician-defined
controls defined by expert CEs, enabling stakeholders to define various aspects of the clinical
scenario and the patient’s characteristics.

diverse set of apparent gender identities, complexions, ages, and degrees of humanlikeness, and

display it on the face of the Furhat robot. The robot’s operating system provides a standard set of

face models consisting of diverse textures [3]. Developers may use similar configurations for

aspects of the robot’s visual appearance, or simply vary them from one scenario to another.

The use of these variations facilitates the creation of a greater range of intervention

scenarios, leading to diversifying the robots and mitigating inherent biases that may creep into

the learning process.

Voice Characteristics. In tandem with visual features, the Furhat platform provides the

flexibility to change the robot’s voice characteristics. FurhatOS provides support for speech

synthesis in over forty spoken languages, in adult and child voices [3]. The system supports

both built-in voices (Acapela [4] and Cereproc [50]) and cloud-based voices (Amazon Polly [41]

and Microsoft Azure Speech [42]), while also providing pluggability support to easily extend to

additional cloud-based voices as needed [3]. Similar to ROSE’ visual appearance, developers

may use a fixed parameter for the robot’s voice, or vary it across scenarios.

Stroke mask models. Our interaction software allows for the selection and utilization of
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stroke mask models (described in Chapter 5), which are statistical models representing facial

characteristics of stroke, developed through our prior research employing our stroke FPM and

AMS frameworks. FurhatOS allows us to define and display custom actions and behaviors, by

controlling different regions of the robot’s face (e.g., eyes, eyebrows, cheeks, lower jaw, lips,

etc.), thus enabling the robot to synthesize stroke mask models onto the robot’s facial regions.

At a high-level, clinicians will be able to configure which representation of the stroke to mask

each part of the robot’s face for their desired simulated clinical scenario.

Stroke clinical characteristics. The symptoms associated with stroke may manifest

in different ways on a PwS’ face. Clinicians can specify and simulate these manifestations on

ROSE’s face using the following settings:

1. Side of the face with stroke: Stroke can occur in either the left or right hemisphere of the

brain. In most cases, a stroke on one side of the brain will lead to weakness or paralysis on

the opposite side of the body and face. This phenomenon is known as contralateral motor

deficits. Our system enables customizing the side of paralysis on the face.

2. Blinking asymmetry: PwS may experience loss of blink control on the affected side. The

clinician can specify whether or not they want ROSE to display blinking asymmetry. If

they do, they can define the paralyzed side of the face on ROSE (left or right), and the

robot will exhibit blinking asymmetry accordingly.

3. Facial droop severity: Another symptom associated with stroke can be the presence

of drooping on the edge of the lip on the affected side of the face. This can vary in its

degree of severity (e.g., none, minor, partial, and complete). Based on the CEs’ selections,

the robot can exhibit facial droop depending on the specified side (left or right), and the

identified level of droopiness.

4. Gaze deviation: Some PwS display a “deviated gaze” whereby their eyes will not be able

to pan completely to one side of the face. Our robot supports three possible values of this
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setting - intact gaze, in which there is no gaze deviation; fixed gaze, in which there is gaze

deviation at rest (when the patient is not performing any NAT) in one direction; and gaze

preference, in which there is constant gaze deviation in one direction, both at rest and

while performing NATs. CEs can identify one of the three values for the deviated gaze and

specify the direction of deviation (left or right).

Robot Autonomy (Finite State Machine)

Based on the co-designed dialogue script (See Section 6.4.1), we designed a finite state

machine (FSM) (see Figure 6.6 to make interaction autonomous on ROSE. The FSM consists

of well-defined states of the robot’s behaviors and transitions between the states, which come

together to simulate the aforementioned clinical scenarios. The robot uses a keyword-matching

technique to identify the user’s intent and transit between states. We classified the FSM states

into two categories: NAT and Non-Assessment.

NAT States. The NAT states in the FSM refer to specific states that trigger corresponding

NAT action performed by the robot upon entering those states.

1. Rest: The robot’s face is relaxed, it looks at the CLs.

2. Raise: The robot raises its eyebrows.

3. Puff: The robot puffs its cheeks and holds for a few seconds.

4. Blink: The robot blinks its eyes.

5. Close: The robot closes its eyes very tightly.

6. Smile: The robot smiles wide.

7. Gaze-Follow: The robot makes its eyes follow the hand movement of the CLs.

The transition between the NAT states usually occurs as follows: the robot begins in the

Rest state as the baseline. Receiving an input with an NAT performance request from the user
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Figure 6.6. The Finite State Machine model of ROSE. The “NAT” state refers to any one of the
six NAT States Raise, Puff, Blink, Close, Smile, and Gaze Follow.
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can trigger the transition from the Rest state to any of the other six NAT states (e.g., Rest →

Raise, Rest → Puff, etc.) After completion of a non-Rest NAT, the robot returns to the Rest state.

Such transitions can continue until the CL ends the scenario or ROSE does not see or hear the

CL in a while.

Non-Assessment States. The non-assessment states are not directly related to stroke

assessment, but help improve the quality of human-robot interaction, to ease the learning process

for CLs. These states include:

1. Attention: The robot detects the nearest human in its interaction space and automatically

rotates its head to attend to them.

2. Greeting: The robot automatically responds to a greeting uttered by the CL. The robot

randomly chooses a response from a set of predefined replies.

3. Encouragement: The robot automatically acknowledges an encouragement comment

uttered by the CL and reacts by either nodding or smiling.

4. Engagement: The robot attempts to actively and attentively be involved in the interaction.

Thus, if the user either stops talking or exits the interaction space of the robot, the robot

requests the user’s involvement in the interaction. For example, when a user leaves the

inner circle of the robot, the robot requests the user to come closer. Or when the robot

detects no responses in a while, it requests the user to talk.

5. Conclusion: When the user wants to end the conversation, the robot will transition to this

state and end the interaction.

6.5.3 MMC Framework

We designed an automatic MMC framework that allows CLs to interact with ROSE

as they would with a PwS. We integrated the clinician-defined controls and the FSM model

together to produce a robot that can initiate a conversation with a person, listen to what the
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person says, respond appropriately, and perform NATs just like a PwS would. To enable the

robot to participate in learner-to-robot interaction input (LTR), we leveraged the Furhat API to

develop capabilities for speech recognition and face tracking, and developed our own system

to support hand motion tracking. To enable the robot to establish robot-to-learner interaction

output (RTL) effectively, we developed custom action and behavior synthesis and gaze movement

synthesis capabilities, while adding non-verbal backchannel cues to further improve the quality

of human-robot interaction. We also leveraged the Furhat API to support speech synthesis. (See

Figure 6.3.)

Learner-to-robot interaction input (LTR). The CL interacts with the robot like they

would interact with a PwS - through verbal conversation and eye contact. When the CL talks

to ROSE, the robot records the audio through its microphone and uses speech recognition to

understand the words. When the CL is within the interaction space of ROSE, it captures the video

using its camera and uses face tracking to detect where to look to establish eye contact. When a

CL asks ROSE to follow their hand movements, it tracks these movements and synchronizes its

eye movements with the hand.

Robot-to-learner interaction output (RTL). We designed ROSE to automatically

interact with the CLs based on the FSM and clinician-defined controls discussed earlier. Once

the robot is in one of the NAT states, it will automatically display the corresponding action and

behavior on its face. In any state (NAT or otherwise), the robot also responds to the utterances of

the CLs through speech synthesis. At times, the robot uses non-verbal backchannel behaviors to

convey attentiveness through attention and look alive through animations.

We describe each of these aspects of interaction below.

Speech recognition

The platform provides the recorded audio of the learner’s utterance to the speech-to-text

engine, and sends the output into a context-sensitive natural language understanding (NLU)

component to detect a user’s intentions through their utterances [3]. We defined custom categories
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Figure 6.7. LTR speech recognition using the robot’s NLU component.

Figure 6.8. LTR face tracking using robots vision module.

of intent in our code, and used the NLU component of the robot to classify the utterance into one

of the categories, enabling the robot to transition between states. For example, if the CL says,

“Can you please close your eyes tightly?”, the keyword close will trigger a custom intent that

initiates a state transition from the Rest to the testitClose state (see Figure 6.7). In this manner,

different utterances will lead to different, appropriate reactions and responses synthesized by

ROSE.

User’s face detection and attention identification

Our system uses the visual perception capabilities in FurhatOS to detect a user’s face in a

defined interaction space in front of ROSE and identify whether the user is attending to the robot.

For this purpose, the live camera feed to the vision module automatically detects the CL’s face

(see Figure 6.8). We configured the interaction space, which in turn determined how close the

users should be to the robot so that the robot starts interacting with them. The robot is also able

to perform attention identification, where it recognizes whether a user is directly looking at the

robot (i.e., attending to the robot).
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Figure 6.9. Left: LTR hand motion tracking using the MetaMotionS sensor. Right: RTL gaze
movement synthesis by the robot in response to the user’s “Follow” command, where the robot’s
gaze follows the user’s hand movements in real time.

Hand motion tracking

To track hand motion, we ask CLs to wear the MetaMotionS sensor on their wrist,

and move their hand in desired directions as part of stroke assessment, while the wearable

sensor captures their hand’s position and motion data. We programmed this functionality in

Python, using the Metawear API (developed by MbientLab Inc. [2]). Our program enables data

transmission from the sensor to the computer via bluetooth, and stores data on a file in a CSV

format on the user’s computer. (See Figure 6.9: left). This enables ROSE to follow the CL’s

hand movement with its eyes.

Speech synthesis

In our MMC framework, we implemented the FSM states in a way that, upon transitioning

to a state, it identifies the proper predefined speech response (if any). It then utilizes the text-to-

speech engine to convert the response to the speech, encode the speech into an audio format, and

play audio using its speakers. Our framework allows developers to customize parameters like

language, voice, and accent in code for each scenario as desired.

Besides the audio being played on the speakers, our software will animate the face for

visual speech movements such as lip, jaw, and tongue motion in synchrony with the corresponding

audio. This gives the impression that ROSE is responding to the CL, enhancing HRI. (See
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Figure 6.10. RTL speech synthesis by the robot in response to the user’s command

Figure 6.10).

6.5.4 Action and Behavior Synthesis

In NAT states, ROSE can interact with CLs by performing actions or behaviors such

as raising its eyebrows, blinking, tightly closing its eyes, and more. While FurhatOS supports

many of these as built-in actions and behaviors, the existing implementation does not reflect

the manifestations of stroke on the robot’s face. Hence, we defined our own custom actions

and behaviors within the MMC framework based on the stroke mask models presented in

Chapter 5. Using this functionality, upon identifying an NAT-related intent by the robot, the

MMC framework synthesized the corresponding NAT assessment on the robot’s face. (see

Figure 6.11).

Non-verbal backchannel cues To make the interaction more intuitive and humanlike, we

added non-verbal backchannel cues as part of the FSM logic that governs robot behavior.

We discuss these as two main categories of cues, attention and animated momentary

behaviors.

Attention: We enabled the robot to change attention from time to time to make the

interaction more lifelike.

Earlier in this section, we explained how the robot is able to detect the users’ faces
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Figure 6.11. RTL action and behavior synthesis by the robot in response to the user’s intent.

close to, and within the interaction space of, the robot and identify their attention (whether they

are looking at the robot). FurhatOS also supports estimating head pose and attention. Thus,

we programmed the robot in such a way that once it detects a CL within its interaction space

attending to the robot, the robot will convey its attention back to the user by looking directly into

their eyes. If the CL changes position slightly, but stays within the interaction space of the robot,

the robot will rotate its head and orient its face such that it can “attend to” the CL.

Animated Momentary behaviors): In addition to paying attention to the CL, the robot will

respond to their utterances not only with speech, but also with momentary, animated behaviors

(including small eye movements, head nods, and micro-expressions) in sync with speech, just

like a person would. We added this capability to further enhance the quality of HRI.

It is essential the robot moves its eyes during the interaction, because keeping its eyes

fixed makes it seem unnatural. Humans tend to get distracted, look away, and slightly shift their

gaze when interacting with another person. We encoded these momentary eye movements into

the FSM logic, enabling the robot to execute the “LookAway” built-in behavior or shift its eye

gaze slightly at different intervals.

Head nod is another important momentary behavior. The MMC framework of the robot

enables it to acknowledge the CL’s spoken words during an interaction, often responding with

affirmatives like “Okay” or “Sure”. We enabled the robot to nod its head instead of saying

anything, or nod in sync with the affirmatives.

Micro-expressions are slight facial movements around the nose, eyes, and mouth (such
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as mild twitching, slightly closing of eyelids, etc.), which further increase the quality of human-

robot interaction. Within our MMC framework, we provided the setting to enable or disable the

micro-expressions rendered from time to time.

Gaze Movement Synthesis

While co-designing the clinical scenario, we deduced that adding gaze tracking as a

component of the system would enable ROSE to track the movements of the CL’s hands with

its eyes. The development of the hand tracking script using data collected from a wearable

MetaMotionS sensor allowed us to measure the motion and position of the CL’s hand in real

time. Using this data, we automated the robot’s eye movements in order to follow the CL’s

hand movements. We developed the MMC framework in a way to convert data into precise

eye movement values for the robot (e.g., up, down, left, and right), and subsequently transmit

this information to the robot via internet connectivity. Once the CL finishes assessing the eye

tracking, the robot’s gaze returns to the rest position while attending to the user. (See Figure 6.9:

right).

6.6 Evaluation

In order to assess the robot’s performance and identify areas for improvement, we carried

out pilot studies with engineers and clinician participants. In this study, participants engaged in

an autonomous interaction with the robot, pretending that the robot was a real patient, whom

they assessed using neurological assessment tests. Through this study, we assessed the perceived

usability of the system and its impact on user experience, while collecting feedback on how to

improve the system.

Engaging clinicians in this pilot study helped to promote a user-centered approach, and

allowed for their valuable input, validation, and expertise in shaping the development of ROSE.

Including robotics engineers allowed us to receive expert technical feedback, rigorous evaluation,

and collaborative problem-solving. Our study was approved by our institution’s Institutional
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Figure 6.12. A clinician interacting with ROSE.

Review Board, under protocol number 191488X.

6.6.1 Participants

We evaluated the prototype and determined how to improve it in two ways. First, we

engaged in extensive discussions with three neurologists through the development of the robot to

gather valuable insights and feedback, but we did not conduct a formal interview with them due

to constraints on their schedules. Among them, one individual identified as female, while the

remaining two identified as male.

Second, we conducted pilot studies with ROSE with eight participants: one physician

with a specialty in neurocritical care (N-MD), one clinical professor of medicine who works in

medical education simulation (S-MD), and six graduate engineering students (GE). Among them,

five participants self-identified as female, while the remaining two participants self-identified as

male. The age range of the participants spanned from 18 to 54 years old. Both clinicians had

completed a US-based medical education and on average had 19 years of face-to-face interaction

with patients. Those who had a robotics-related educational background had no experience in

patient-physician interactions, nor in stroke diagnoses.
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6.6.2 Measures

We used a mixed methods approach in our data collection and analysis. To understand

basic system usability, we administered the System Usability Scale (SUS), a well-validated

measure of perceived usability [56] (See Appendix B.4). We were particularly interested to

understand how clinicians without a technology background perceived the robot.

Qualitative measures included post-study interviews and researcher observations of par-

ticipants’ interactions with the robot during the study (See Appendix B.2 and Appendix B.3). We

assessed the robot’s humanlikeness (appearance and behavior), similarity to a patient, clinical

scenario realism, multi-modal communication, autonomous interaction, impact on user expe-

rience, and usefulness. Finally, we collected their suggestions on future features they would

like implemented. We also asked participants about their experience and impression of how the

robot appeared, interacted, and conversed. For participants with a clinical background, we also

asked questions to evaluate the degree of realism and similarity of ROSE’s face to someone

experiencing acute stroke (See Appendix B.2). We recorded and transcribed all interviews.

Two researchers employed a grounded theory [78] approach, and individually coded

the audio transcripts to find emerging themes through an inductive coding process. We then

compared codes and identified three overarching themes among the participants, specifically:

increased humanlikeness (Section 6.7.2), means to enable realistic communication capabilities

(Section 6.7.3), and ways to improve user experience (Section 6.7.4).

6.6.3 Robotic Patient Simulator Creation

Clinician-defined Controls for Noah

We co-designed and deployed a clinical training scenario with our neurologist collab-

orators. In this scenario, a male patient, named Noah, who has a fair complexion and is in his

50s, is admitted to the hospital with left-side upper and lower paralysis. The patient had visual

signs of one-sided droopiness and presented asymmetric blinking cues. Noah can perform facial
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Figure 6.13. The initiated values of the clinical-defined controls for Noah.

actions commonly used to assess acute stroke, including raising eyebrows, closing eyes tight,

blinking, puffing cheeks, smiling, and relaxing the face. In terms of personality, Noah’s character

is polite and neutral. The goal is for CLs to conduct a neurological exam, and diagnose the signs

of stroke. (See Figure 6.13).

Control Word Dictionary

We designed a comprehensive control word dictionary for the speech recognition system

on the robot to respond to (See Table 6.2). To create this list, we first analyzed ROSE’s intended

tasks and context to generate the initial list of keywords. We then collaborated with domain

experts to understand clinical terminology, and adjusted the keywords to match the language

clinicians use during real-world stroke assessment.

We continuously iterated and improved upon the dictionary over time by conducting user

research to shape the list based on user preferences and feedback. After several iterations, we

finalized the dictionary through testing and evaluation with clinical experts. Thus, this dictionary

list aligns with the operational context of the robot, user needs, and domain expertise. Users can

include any of these control words in their utterances to interact with the robot.
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Table 6.2. This is a dictionary list of control words and their corresponding keywords that the
speech recognition system on the robot will understand. Using the greeting keywords will start
the conversation with the robot. Using the ready keywords can initiate an assessment session
with the robot. Using the NAT keywords will ask the robot to perform any NATs. Users can ask
the robot to perform any tasks in any order they like. Using the repeat keywords will enable the
robot to repeat a task as often as the user likes. Using the encouragement keywords inspires the
robot after correctly performing a task. Using the conclusion keywords can end the conversation
at any time the user wants.

Category Main Keywords

Initiate “Hello”, “Hey”, “Hi”

Name “Name”, “Your name”, “Address”, “Address you”, “Call you”

Greetings “How is it going?”, “How are you”, “How are things going?”, “How
is everything”

Ready “Ready”, “Start”, “Set”, “Begin”, “Test”, “NAT”, “Assessment”,
“Perform”, “Exam”

NATs

Rest “Relax”,“Rest”, “Look straight”

Raise “Raise”, “Lift”, “Eyebrow”

Puff “Fill”, “Cheek”, “Air”, “Puff”, “Enlarge”, “Inflate”

Close “Close”, “Tight”, “Tight Tight Tight”

Blink “Blink”, “Blinking”

Smile “Grin”, “Mouth”, “Teeth”, “Smile”

Repeat “Repeat” ,“Again”, “One more time”, “Once more”

Encouragement “Good job”, “Well done”, “Nice”, “Perfect”, “Alright”, “Good”,
“Great”

Conclusion “End”, “Finish”, “Goodbye”, “Bye”
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Figure 6.14. A demonstration of information about the procedure of the study design shared by
clinical learners prior to the testing session.

6.6.4 Procedure

After giving written consent, we asked participants to sit in front of the robot, introduced

them to ROSE, and gave an overview of the study (See Figure 6.12. To give participants without

medical backgrounds some context, we showed them a video of someone with a stroke to

demonstrate their appearance. We then showed them a video of a clinician assessing a patient

with stroke in the real world to show them what a neurological exam looks like.

As all participants did not have experience with this robot, we showed them a demon-

strative video of ROSE simulating a real-world clinical scenario, and a user interacting with the

robot. Next, we shared the control word dictionary with them, explained what actions the robot

can perform, and how they can use the keywords to interact with the robot. We also informed

them that if the robot doesn’t hear them well, it will ask them to repeat themselves louder, and if

the robot doesn’t see them in its proximity, it will ask them to come closer or sit in front of the

robot.

We then began the practice session. We asked participants to interact with ROSE by

asking it to perform commonly used NATs, similar to what they watched in the third video.
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Figure 6.15. A demonstration of the robot and learners interaction, followed by engaging the
participants in short quantitative and qualitative surveys and interviews to evaluate the system.

We informed them that they could refer to the control word dictionary during the interaction

as needed to socialize with ROSE, ask it to perform NAT tasks, provide encouragement, or

end the interaction. Participants could ask questions before and after the practice session. (See

Figure 6.14 for an overview).

Next, we started the testing session (Figure 6.15). We asked participants to interact with

the robot just like before and end the interaction at any time. To conclude the testing session, we

administered the SUS survey, conducted an open semi-structured interview to receive qualitative

feedback on our system, and administered the SUS survey and demographic questions.

6.7 Results

Due to technical difficulties with the network connection, one of the GEs was unable to

fully complete the study. Thus, this section reports the results based on the data gathered from

the seven participants who successfully completed the study. (See Table 6.3 for an overview).
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6.7.1 Usability

On SUS, which represents a composite measure of the overall usability of the system [68],

participants scored ROSE an average of 84.64 (SD = 9.83), which is above average compared to

other systems [56]. During the interview, participants described using the system as “easy to use”,

“easy to interact with”, and “straightforward”. One participant said that the “robot is smooth

and polite”. Although participants expressed a few frustrations with the speech recognition

component of the system (as discussed in Section 6.7.3), overall, all participants were able to

successfully operate ROSE for its intended use.

Participants also provided suggestions for supporting the robot’s interaction and operation

in the HET domain, discussed below. Several of these suggestions have already been integrated

into the system, while others are potential directions for future research (See Section 6.8).

6.7.2 Increased Humanlikeness

The humanlikeness of Noah is critical for exposing CLs to real-world patient-physician

interactions when performing stroke diagnoses. Participants expressed that the realism of ROSE

allowed them to feel as if they were truly interacting with another person. They also indicated

that the level of realism exhibited by ROSE contributed to a less disruptive experience during

their interactions, setting it apart from other social counterparts. The natural look of the robot

impressed several participants despite it being a projection. One participant stated how it was

“human enough, but not creepy”. Additionally, they indicated that giving the robot the name

“Noah” further facilitated humanlike interactions since it would not be referred to as just “the

robot”. Based on participants’ feedback and comments, we can classify their preferences for hu-

manlikeness of the robot into three categories: visual humanlikeness, behavioral humanlikeness,

and patient similarity.
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Visual Humanlikeness

Participants explicitly expressed positive feedback about the visual humanlikeness of

ROSE in terms of its face and gender. For instance, one participant stated that its “face, for the

most part, looks more humanlike than most other robots”. They indicated that the natural-looking

contours, color, and shading of the skin are contributing factors to the humanlikeness of Noah.

As S-MD stated, “the contours of the face combined with the eyes moving and blinking

gave it a much more realistic appearance”. In order to improve the realism of the system, some

participants suggested adding hair, glasses, and eyebrows can help, while others mentioned how

adding hair might make the robot creepy.

One participant expressed that the shape and 3D volume of the robot’s face looked

humanlike. However, another participant found it unnatural that the face surface is primarily a

physical 3D surface, while the facial expressions and movements were a 2D virtual projection on

the 3D surface. This may cause users to not be able to precisely see volume when Noah performs

some of the NATs, such as when it enlarges its cheeks. They also expressed that a lack of texture

makes the face less humanlike, and suggested employing more facial textures, including wrinkles,

in future work. On that note, N-MD stated that usually stroke patients are older than what Noah

looks like, so the face should depict more wrinkles and accentuated nasolabial flattening.

It is critical for CLs to practice performing a stroke diagnosis on ROSE with diverse

backgrounds, to broaden their understanding of stroke presentations across different patient

demographics. As one participant suggested, “it’s important to see people of different ethnicities,

and different races, and different facial features”. On the other hand, another participant stated

how they were not able to identify Noah’s gender, and suggested that the gender-neutrality of the

simulator might potentially help remove gender bias during future patient-physician interactions.

Because ROSE does not have a body, some participants deemed it as strange and “a little

bit creepy”. From a clinical perspective, adding a body to ROSE can make it more realistic as

it enables the robot to incorporate a depiction of weakness in the affected side of the body in
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addition to the face.

Behavioral Humanlikeness

Robot behavior encompasses a wide range of actions and responses exhibited by robots,

which contributes significantly to its perceived humanlikeness. With respect to behavioral hu-

manlikeness, a participant mentioned how the robot’s voice was humanlike. Several participants

also expressed how ROSE had realistic non-verbal backchannel cues enabling the robot to be

more humanlike. One participant talked about Noah’s gaze, and how Noah’s eyes were “moving

around a little bit and. . . blinking, using its eyebrows, and those kinds of behaviors feel very

natural. It feels like someone that’s just sitting and waiting to be spoken to”. Additionally,

Noah’s ability to move its head, such as nodding, impressed a participant, which they believed

adds a level of realism. Noah’s eye-tracking, rapid and subtle eye movements, blinking actions,

and head movements are all baseline behaviors that helped establish a more humanlike system.

However, one participant expressed how the jump from Noah’s rest baseline state to an

NAT state can be sudden, and can seem animated and unnatural. This suggests that making the

transition from Noah’s relaxed state to one of the NAT states smoother could increase the realism

of the system.

In addition, enabling the robot to both understand and synthesize filler words that occur

in natural language––such as “um”, “uh”, “like”, “wait”, or “hang on”––can make the system

more realistic and naturalistic. Some participants expressed their frustrations about Noah’s

inability to understand the filler words as linguistic pauses or hesitation markers, and instead of

acknowledging these cues, Noah responded by indicating a lack of understanding of the user’s

input. The robot either does not need to respond to filler words, or, as a participant suggested, to

create a category of filler words the robot could take into account to make the interaction more

natural.

Excluding the robot’s direct responses to filler words, and treating these words as incon-

sequential data to the conversation can enhance the robot’s authenticity. Alternatively, as one
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participant suggested, ROSE could establish a specific category of filler words to recognize and

consider, enabling a more natural interaction and accommodating users’ linguistic preferences.

Patient Similarity

It is critical for ROSE to accurately imitate characteristics of PwS to support CLs with

their stroke diagnosis skills. This means that the robot should be able to depict various clinical

scenarios and characteristics similar to real patients (See Section 6.5.2), as well as realistically

perform NATs required to assess signs of stroke (See Section 6.5.2). For example, S-MD

expressed how the robot’s facial asymmetry was clear even just by looking at its face at rest,

evidently suggesting a neurological problem. N-MD stated that the NATs performed by ROSE

were very similar to actual human expressions of PwS: “the fact that he’s lifting up both sides of

his eyebrows is great because, in an acute stroke, you wouldn’t expect that as opposed to Bell’s

Palsy, where you would expect the weak side [of the eyebrow] to not lift up. That’s fantastic!”.

N-MD also stated that Noah’s asymmetric blinking alongside the facial droop made the

robot’s face look more realistic and similar to a patient with a stroke. How facial droop caused

by a stroke looks can vary significantly, ranging from subtle changes to extremely pronounced

effects such as a downward angle of the mouth and a partially open eyelid.

Other participants expressed additional similarities between Noah’s facial movements

and PwS. For example, a participant thought Noah’s resting face, puffing cheeks, and raising

eyebrows were realistic. Another participant thought the “close” NAT was realistic. (See

Figure 6.16 for an overview of NATs performed by Noah).

Some participants found the tasks performed by the robot to be easily identifiable, such

as ROSE blinking versus closing their eyes. However, others found the robot’s asymmetric facial

characteristics associated with stroke less distinct or prominent.

Although ROSE is able to exhibit recognizable facial characteristics associated with

a stroke, on average, N-MD stated that PwSs would have more facial droop than what Noah

displays. This suggests that the facial droopiness for Noah, in its partial severity setup mode, is
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more subtle than the usual facial droop seen in PwS on average.

In addition to FP, some PwS may experience speech difficulties such as slurred speech

as a result of muscle weakness (dysarthria), or difficulty sequencing and coordination of the

muscle and structures (apraxia) [224]. While the control word dictionary enabled participants

to effectively test for facial strength and characteristics associated with stroke, the list does not

include terms to test for speech deficits, such as dysarthria and apraxia. Both N-MD and S-MD

suggested adding speech slurring for the robot system to display as a symptom to help improve

its similarity to PwS. N-MD also stated that if the robot had more “facial weakness, it might

seem less realistic if the speech was still clear”. Additionally, the physician participants stated

that they would appreciate if the robot were able to perform a wider set of NATs, such as having

the robot visually follow a finger making an “H” shape with its eyes.

Still, it is important to note that achieving high fidelity humanlikeness in robots is still

ongoing research, and the level of human likeness that is ultimately possible for a robot may vary

due to technological advancements and design choices.

6.7.3 Realistic Communication Capabilities

To ensure the fidelity of stroke diagnosis simulations resembling real-world patient-

physician interactions, it is important to establish two-way conversational interactions between

users and the robot. Thus, based on participant feedback, how the robot engaged in speech

recognition and speech synthesis significantly impacted the realism of conversation with the

robot. As per participant recommendations, addressing and refining these will foster more

authentic and effective dialogue between users and the robotic system.

Speech Recognition

The robot’s speech recognition encompasses its ability to accurately comprehend and

interpret user speech inputs. Although some participants expressed a few frustrations with the

speech recognition component of the system, the robot consistently demonstrated its ability
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Figure 6.16. An overview of NATs performed by Noah.

to appropriately understand and respond to user requests in a timely manner. For instance,

N-MD stated how they “didn’t have to alter [their] language very much so that part of it was

very realistic. . . So [they] used very similar vocabulary to what [they] would do in a clinical

setting. [They] didn’t have to cater [their] language to this simulation event”. Another participant

expressed that Noah’s speech recognition is fairly good, in that it was able to carry out user

requests based on control words.

However, other participants noted occasional challenges with the robot’s auditory per-

ception, where Noah encountered difficulties in accurately capturing user speech. For example,

because the robot responds based on the provided keywords, if it mishears a word on the list, it
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results in the robot saying that it doesn’t understand the user. As a result, there were instances

where Noah did not fully execute some commands due to slight misinterpretations of the user

prompts.

Additionally, some participants stated that although the control word dictionary allowed

them to connect with the robot, incorporating a broader range of user inputs could enhance the

robot’s ability to understand and fulfill the user’s intentions. For instance, a participant stated

that it is difficult to find another way to express a command using only the keywords if the robot

didn’t understand them initially, so they needed to repeat their commands multiple times. Several

participants suggested increasing the possible number of control words and constructing a more

extensive vocabulary for the robot, such as having more keyword synonyms.

N-MD provided a few examples of what a clinician would say to a patient: “put air in

your cheeks”, “close your eyes tight tight tight”, “I’m going to examine you now”. These words

and phrases are potential add-ons to the current list of keywords.

Another participant recommendation would be for the robot to “not exactly recognize the

exact word, but infer the meaning from the user” instead of expanding the range of keywords the

robot has to understand.

Adding more keywords to the dictionary and enabling the robot to understand the meaning

of the user input rather than keyword-matching are two potential methods to increase users’

chances of getting a robot response without having to repeat themselves, and they can also make

the interaction feel more natural for the user.

Speech Synthesis

The robot’s speech synthesis pertains to the robot’s capability to generate humanlike and

contextually appropriate responses, playing an important role in the system’s conversational

realism A few participants expressed how it is less of a two-way conversation, and more of

the user telling the robot to perform tasks. Although the robot’s dialogue was based on real

clinical scenarios, some GEs perceived the conversations to be more unidirectional, with the
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user primarily instructing Noah to perform tasks rather than engaging in a genuine two-way

conversation. N-MD noted that while examining a human PwS, clinicians usually introduce

themselves to patients and ask them to introduce themselves, so it would be more realistic for

Noah to initiate conversation as well. Participants suggested the responses incorporate more

niceties, such as “How are you today?”, “I’m good, thanks for asking”, “I’m fine”, “Nice to meet

you”, fostering a more balanced and interactive exchange between the user and the robot.

Moreover, participants provided constructive feedback regarding certain aspects of the

speech synthesis, such as Noah’s taking too long to respond. One participant expressed frustration

about this, especially when they used words outside the predetermined list, leading to the robot

not comprehending the input.

To address this, participants suggested implementing shorter prompt responses for the

robot when it encounters a lack of understanding or difficulty hearing the user. Other participants

recommended streamlining the robot’s dialogue by removing certain words from the robot’s

prompt responses to enhance the overall flow and efficiency of the conversation. For instance,

one RE’s suggestion was for the robot to eliminate mentioning the phrase “OK” before it

performs a task. One participant also noted that shorter dialogue from the robot could help

prevent interruptions and enable participants to maintain their train of thought without the risk of

forgetting their intended message while waiting for the robot to finish speaking.

Furthermore, participants provided recommendations regarding Noah’s response time.

Although several participants appreciated that the robot responded in a timely manner to deliver a

natural interaction, there were suggestions from other participants to further enhance the robot’s

responsiveness. They recommended that the robot could benefit from even quicker response

times when engaging with the user, as the delay between the user command and robot action

may “reduce the effectiveness of the interaction”.

Another participant suggested that Noah should ask “Could you repeat that?” more

quickly after a user says a command, instead of the robot pausing for 3-4 seconds before asking.

Another participant recommended having the user’s facial expressions serve as a cue for the robot
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to perform turn-taking in order to increase response time. These adjustment suggestions would

contribute to a smoother and more efficient conversation, enhancing the overall user experience.

6.7.4 Ways to Improve User Experience

The user experience of the system plays a key role in fostering motivation among CLs to

consistently use the system for skill improvement and knowledge enhancement in the area of

stroke diagnosis. If ROSE provides a positive and engaging user experience, it can encourage CL

usage. Participants identified several potential uses for the system, along with three key aspects

of user experience that warrant improvement, discussed below.

Perceived Usefulness

All of our participants with clinical backgrounds found our system very useful for training

CLs on a variety of skills. N-MD stated that having CLs train on the robot “would help them

identify a facial droop better”, suggesting that training with the robot can improve their overall

skills in recognizing the facial characteristics associated with stroke.

S-MD indicated that they “can imagine practicing the sequence of a neuro exam or taking

a history [with the robot]”.

S-MD also highlighted the potential power of “an electronic system” with knowledge of

completed and incomplete tasks. They expressed the idea that real time assessment and tracking

of CLs’ questions and robots’ neuro exams could be valuable. They suggested the system could

provide feedback, allowing users to repeat any missed steps. For instance, if a CL performed

steps 1-6 using the robot but skipped steps 7-8, the system would identify the omission, notify

the user of the missed steps, and allow them to retry.

Additionally, S-MD emphasized the potential for setting automated performance metrics

within the system, such as tracking the time taken to complete each assessment. By leveraging

this feature, CLs can enhance their skills and proficiency through targeted improvements and

iterative learning facilitated by the robot’s automated performance evaluation.
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Engagement

User engagement within the system holds significant benefits for CLs, and has the

potential to positively contribute to both sustained system usage and a positive perception of the

robot’s usefulness. One of the GEs expressed how they enjoyed the robot being able to recognize

and respond to them fairly accurately, and how it was able to still communicate with them if it

did not hear them the first time.

In line with this, S-MD recommended having the robot display expressions in response

to receiving a greeting or statement of encouragement. For instance, the robot could respond to

phrases such as “well done” or “good job” with a smile, promoting a more interactive experience.

S-MD also suggested that the robot could exhibit expressions and responses consistent with

frustration. For example, if the robot encounters difficulty with a task and needs to redirect the

provider, it could express its limitations by saying,“that’s the most I can do.”

Ease of Use

An intuitive and accessible system can support CLs to effectively use the system, pro-

viding opportunities for learning and skill improvement. A participant explicitly expressed how

Noah was “overall easy to interact with and use”. In particular, participants found the control

word dictionary beneficial for enabling them to know how to command Noah to perform desired

actions.

However, some participants found it frustrating to have to repeat commands to Noah.

To address this, one GE participant suggested incorporating the ability for users to define the

duration or repetition of the robot’s actions in order to simplify use of the system. For example,

instead of asking Noah to “smile” three separate times, the user could directly ask the robot to

“smile three times” in a single command.

Additionally, another participant mentioned the robot’s lack of feedback or guidance

when the system did not work as expected, forcing the user to repeat the same commands

repeatedly. The participant suggested that the robot should provide more informative feedback

136



to explain an issue. For example, when Noah states it cannot see the user, it can add “you’re too

close” or “you’re too far away’.

Enjoyment and Sociability

Participants expressed how the robot was fun to interact with, and appreciated its smooth-

ness and politeness, which contributed to an enjoyable experience.

However, a few participants found certain aspects of the system, such as the sociability of

the robot, to be less enjoyable. In particular, a few participants experienced frustration with voice

recognition, such as having to repeat commands multiple times. Additionally, an RE participant

expressed how their natural response to what the robot says does not always align with the

vocabulary the robot understands. For example, they stated that if “the robot says something like

“Can you say that louder?”, I feel it’s natural to say something like “Yeah, for sure. I can say that

louder” or something like that, which the robot can’t understand, so it asks you again, so that can

be a little frustrating”. Currently, the robot would not be able to handle this sort of deviation in

the dialogue, and could lead to additional user frustration.

These features might demotivate CLs to use the system as their association with the

system becomes negative, frustrating, and unenjoyable. Addressing them could significantly

enhance the user experience, maintain motivation, and improve the overall satisfaction of CLs.

6.8 Discussion

6.8.1 Contributions to HRI

Introducing a new application space for HRI. Our research brings an approach to

support HET by providing an diverse, inclusive, and customizable platform that improves in

realism and accessibility. This can provide the foundations for bridging the gap for CLs between

theoretical knowledge and real-world clinical practice, promoting a richer understanding of

clinical conditions and fostering critical thinking, ultimately improving stroke patient care. To

our knowledge, ROSE is the first patient-data-driven, interactive clinical training tool accessible
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Table 6.3. Design and development recommendations for supporting the robot’s interaction and
operation in clinical education.

Increased Hu-
manlikeness

Visual Human-
likeness

The robot’s visual appearance should include natural-looking con-
tours, shading, and color of the skin for a more humanlike appear-
ance. To support the appearance of older patients with stroke, the
robot should be able to display more wrinkles and accentuated
nasolabial flattening. Adding a body can also increase its realism
since it can display weakness in the affected side of the body as a
stroke symptom.

Behavioral Hu-
manlikeness

The robot’s behaviors should include verbal cues (e.g., language un-
derstanding and speech synthesis), as well as non-verbal backchan-
nel cues (e.g., gaze tracking, blinking, head movements). The tran-
sition from the robot’s relaxed state to an NAT should be smoother,
and a category of filler words should also be integrated into the
robot’s vocabulary (e.g., “um”, “uh”).

Patient Similarity The robot exhibits NATs and facial movements similar to actual
stroke patients, such as recognizable facial asymmetry (e.g., asym-
metric blinking and facial drooping). The robot should be able to
display facial drooping in various levels of severity, perform a wider
set of NATs (e.g., eye tracking), and display speech slurring as a
symptom to increase the patient similarity of the system.

Realistic Con-
versation

Speech Recogni-
tion

The robot can consistently understand and respond to user requests
in a timely manner and allow clinicians to utilize language they
would use in a clinical setting. Adding more keywords to the
robot’s vocabulary and enabling the robot to infer meaning from
the user can increase the chance of getting a robot response without
having to repeat themselves if the robot mishears or misinterprets
the user.

Speech Synthesis Some participants suggested that the robot should engage in a
more balanced and interactive interaction with the user through the
initiation of dialogue, such as the incorporation of an introduction
and more niceties in conversation (e.g., “How are you today?”, “I’m
good, thanks for asking”). The robot should also have a shorter
prompt duration and response time to facilitate a more streamlined
conversation.

Ways to Im-
prove User
Experience

Perceived Useful-
ness

The robot is useful for training CLs to improve their ability to di-
agnose facial characteristics associated with a stroke (e.g., facial
droop). The robot can also provide support for real-time assess-
ments, tracking of CL’s questions, and patient exams. It has the
potential to provide automated performance evaluation/feedback
for CLs based on clinician-set performance metrics to enhance CL’s
skills and proficiency.

(Continued on next page)
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Table 6.3. Design and development recommendations for supporting the robot’s interaction and operation
in clinical education (Continued).

Engagement The robot is able to recognize and respond to user prompts accu-
rately, which can help users stay motivated to continue utilizing
the robot. It was suggested that the robot display expressions in re-
sponse to greetings, encouragements, and frustrations. For example,
the robot could respond to phrases like “well done” with a smile or
say “that’s the most I can do” to express its limitations and struggles
with a task.

Ease of Use The control keywords dictionary enables users to command Noah to
perform desired actions, but some participants found it frustrating
having to repeat commands to Noah. The system could incorporate
the ability for users to define the duration or repetition of the robot’s
actions to simplify the system’s usage. The robot should also pro-
vide more informative feedback and guidance so the user does not
have to repeat commands over and over again.

Enjoyability The robot is fun to interact with, and users enjoyed its smoothness
and politeness. Users expressed frustration with voice recogni-
tion (e.g., repeating commands) and the limitations of the robot’s
speech recognition, as users’ natural responses did not align with
the robot’s vocabulary.

to clinicians to practice diagnosis and treatment of neurological disorders such as stroke.

Our system demonstrates the feasibility of using expressive robots capable of automati-

cally interacting with humans in the application space of HET, which opens up the door for other

researchers to explore robots in this domain. Our work provides a framework for researchers

to explore HRI in new experiential learning settings (e.g., build RPS systems to enable CLs to

avoid forming biased impressions) and broader domains (e.g., explore methods for designing

social robots to enhance people’s perception of individuals with FP).

Data-generated models of real patients. Our research advances the state of the art of

medical simulation. We leverage our frameworks to create data-generated models of real patients,

and overlay them on the robot to enable it to depict realistic verbal and non-verbal cues. Thus,

this study demonstrates the visibility of putting more complex, realistic behaviors on robotic

platforms in this HET context, affording robots with richer communication modalities. This

enables researchers to explore how people perceive and interact with more humanlike robots,

and investigate user perceptions and experiences during these interactions. This work will enable
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the robotics community to leverage our approach to customize a robot’s autonomous behaviors,

adapt to end-user needs, and promote effective HRI within their own application domains.

Supporting reproducibility for the HRI and HET communities.This work aims to

inspire researchers to develop expressive interactive robots that are more accessible, engaging,

and capable of supporting individuals within the HRI community. As an artifact to support

reproducibility for the HRI and HET communities, the software discussed in this chapter will be

made available as open-source.

6.8.2 Collaborative User-centered Design

Given the importance of user-centered design, our work highlights our collaboration with

multiple stakeholders, including neurologists, clinical educators, and engineers. Our main objec-

tive was to demonstrate the significance of customizing the robot during deployment to address

its specific needs and backgrounds. Particularly, we aimed to support varying needs within a

system like ROSE for CLs who may possess varying clinical or social knowledge and skill levels

due to differences in their level of medical education/experience. By emphasizing user-centered

design throughout our development process, we sought to ensure that the system effectively

accommodates the unique requirements of CLs and facilitates their learning experiences. This is

critical to creating effective and successful robotic systems.

6.8.3 Making RPS systems more humanlike

Traditional simulation-based training typically lacks the features that support humanlike

communication, limiting engagement and immersion in learning. For example, using tactile-

based methods, such as partial-task trainers or clay models, provides valuable hands-on practice

by simulating anatomical structures or procedures, but does not permit interactive conversation.

Similarly, simulation-based tools, such as existing RPS systems, provide clinically-relevant

learning scenarios, but often rely on the operator’s voice rather than enabling autonomous,

expressive communication between the user and robot.
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These existing tools fail to provide the end-users the opportunity for multimodal hu-

manlike conversation, hindering their ability to fully engage and participate in meaningful

interactions with the robot. This deficiency can adversely affect the immersion and effectiveness

of the learning experience. Preserving these robot features can help users stay engaged and

motivated to continue using the robot.

Our work addresses this gap by introducing a humanized approach to RPS systems.

ROSE enables multimodal communication between CLs and robots, which allows real time,

two-way communication autonomously. Our robot also incorporates thoughtful and respectful

interactions with users, maintaining a polite demeanor throughout the conversation, and allows

users to conclude the interaction at their discretion. These features foster a more realistic and

engaging learning environment, facilitating deeper involvement and offering the potential to

improve the overall effectiveness of HET. By providing a platform that supports natural and

interactive communication, our system offers a promising avenue for advancing the capabilities

of clinical learning.

ROSE exhibits autonomous behavior in two key aspects: First, our learning tool simulates

assessment tasks automatically, eliminating the need for operators to describe clinical conditions

verbally or manually adjust visual parameters. Second, our robot autonomously interacts with

the end user (e.g., CLs) and automatically performs clinical assessment tasks within a predefined

clinical scenario. This approach stands in contrast to other existing RPS systems that usually

require an operator to manually control the robot’s actions based on the end-user’s responses.

6.8.4 Continuous adaption to CL’s evolving needs and preferences

As CLs progress in their course of clinical education, their clinical and social skills may

evolve. Furthermore, each CL may have different learning styles (visual, auditory, kinesthetic,

reading/writing, social, solitary, analytical, or logical learner) or feedback preferences (e.g.,

positive, negative, binary, or explicit feedback). CEs may have different educational goals for

RPS systems based on each individual CL and their capabilities. These attributes necessitate the
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robot’s system to dynamically adapt to the situation over time dynamically. Advancing the robot

to adapt to the CLs’ needs provides personalized training experiences that promote inclusivity

and accommodate different learning styles.

6.8.5 Intersectionality Considerations

Utilizing humanlike robots in HET presents a host of benefits, particularly with respect

to the intersectionality considerations within healthcare, which could encompass cultural, age,

complexion, ethnicity, gender identity, socioeconomic, and academic background considerations,

to name a few.

First, from the perspective of representing diverse patients, these robots are designed to

offer a high degree of realism, enabling them to convey a range of diverse backgrounds. This

enables CLs to experience and navigate the intricacies of human differences and similarities

in communication and healthcare practices. By engaging with robots that accurately reflect

the norms of different patient groups, learners can develop the essential skills of competence,

empathy, and adaptability. These skills are crucial for healthcare professionals who aspire to

provide patient-centered care in multicultural contexts while promoting positive patient outcomes.

Second, from the perspective of diverse end-users (e.g., CLs), humanlike RPSwS systems

should be able to inclusively accommodate CLs with various cultural backgrounds and different

types of professionals. These systems’ interactive and responsive communication features give

CLs an excellent opportunity to comprehend the intricacies of cross-cultural interactions in

different stages of their training. This improves their communication and clinical skills in a

controlled environment, fostering cultural sensitivity and awareness.

While humanlikeness in RPwS helps address some cultural challenges, this approach

may not fully address inequities in medicine. For instance, cultural differences can also manifest

in non-verbal cues and body language, which robots may not fully (or faithfully) replicate.

Additionally, cultural beliefs, values, and expectations regarding healthcare can greatly vary,

and a robot’s humanlike appearance may not fully convey or accommodate these complex
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cultural factors. While our advancements in creating diverse and inclusive HET systems are

commendable, it is important to recognize that inherent biases and discrimination can still persist

within these technologies [202]. Thus, it is important for HET to concurrently improve efforts in

anti-racist education, fostering equality in healthcare.

6.8.6 Ethical considerations

There are several benefits to designing humanlike social robots as a tool for HET. First,

using humanlike robots allows for a more immersive and realistic training experience resembling

human patients. It allows healthcare professionals to refine their clinical skills in a controlled

and safe environment before interacting with real patients.

Second, using humanlike robots ensures a standardized and consistent training platform.

Unlike human patients, robots can reliably reproduce specific symptoms, responses, and behav-

iors, providing CLs with consistent training opportunities. This standardization offers all learners

an equal opportunity for repeated practice of the same scenarios. Additionally, using this tool

eliminates the potential risks and ethical concerns associated with practicing on real patients,

such as accidental harm, misdiagnosis, or privacy invasion.

Third, using humanlike robots in research allows for a more accurate assessment and

evaluation of CLs’ performance. By replicating human gestures, expressions, gaze, and responses,

these robots provide learners with realistic feedback, allowing them to gauge their abilities and

identify areas of improvement. This feedback is crucial for creating a safe and effective learning

environment, promoting continuous professional development, and, ultimately, improving patient

care.

Humanlike robots, however, may pose ethical challenges, which should be acknowledged

and addressed.

Collaborative policy development. While humanlikeness in robot design offers numer-

ous benefits in healthcare education and research, it is imperative to remain vigilant and address

ethical challenges to ensure users’ well-being, privacy, and autonomy. Particularly in HET,
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it’s important to engage in collaborative policy development with key stakeholders to protect

patients’ and learners’ rights, privacy, and ethics. Comprehensive legal policies and frameworks

should be developed in consultation with relevant parties, including clinicians, educators, and

patients, to ensure equitable use of these robots. Additionally, policies must address concerns

around data privacy and security, informed consent, and ethical considerations.

Unintended perpetuation of bias. While utilizing humanlike social robots in HET offers

numerous benefits, there is a potential for them to perpetuate biases if not carefully managed.

Existing common clinical learning modalities tend to lack access to diverse representations of

patients (both standardized and simulated), which many have argued represents a key limitation

for CLs [85, 247]. Biased programming or robot behavior modeling can negatively impact

learners’ perceptions and interactions with diverse patient populations, potentially reinforcing

existing stereotypes or disparities. Additionally, biased data used to develop facial masks or train

the robots can result in unequal learning experiences.

Ongoing monitoring, evaluation, and feedback from diverse stakeholders are essential to

identify and address potential biases or shortcomings in using humanlike robots in healthcare

contexts. Institutions must ensure that the robots do not reinforce existing biases or stereotypes

and that learners receive equal and unbiased training experiences. By doing so, institutions

can promote cultural sensitivity, inclusivity, and equality in healthcare education and training,

leading to better patient care and outcomes. Furthermore, HET programs must recognize that

humanlike robots may not entirely capture cultural differences, as non-verbal cues and attitudes

can significantly affect cross-cultural interactions.

Informed Consent in HET-focused HRI. To guarantee the responsible use of robots,

healthcare organizations must provide proper instructions and guidelines that clearly explain the

goals and objectives of each task, and comprehensively demonstrate proper ways of operating

the system. Incorporating informed consent would further accessibility, especially for people

without prior knowledge of robotics. This can maximize their utilization of the system. Informed

consent can also help foster transparency and ensure participants comprehend the nature of their
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involvement.

Informed consent is a crucial element of ensuring the responsible use of robots in HET,

and can be a requirement in different stages of the robot system design and deployment. Initially,

informed consent is required from human patients to gather real-world data, aiding in the design

of the humanlike RPS. This is to protect patient privacy while ensuring their understanding of

the implications of how their data might be used to affect the development of RPS systems.

It is also important to obtain informed consent from the CL, who will use and interact

with the RPS. This guarantees that they are comprehensively informed of a robot’s capabilities,

behavior, and information-gathering procedures before beginning any training, thereby enhancing

an informed engagement and positive interaction based on mutual understanding.

Despite the significance of informed consent in HET, it still retains potential risks.

Without full clarity about the robot’s components, behavior, or how it collects data, there could

be unforeseen outcomes. For example, collecting sensitive information without informing the

subjects is an ethical and privacy issue. Moreover, in case of discrepancies between disclosed

robot functions and its actual capabilities, CLs might perform based on misleading assumptions.

The lack of clarity could adversely affect CLs, leading them to experience confusion, mistrust,

and frustration, which in turn, could hamper their concentration and involvement in the learning

process.

Autonomy in HET-focused HRI. Supporting personal autonomy is an essential aspect

of HET, particularly in providing CLs with the freedom to choose when they want to engage or

disengage from robot-enabled activities throughout their course of training. This feature endorses

a fundamental concept of autonomy in medical ethics, by allowing people to make their own

choices without being forced into anything. This can also provide a learning environment that

facilitates personal decision-making and comfort.

When it comes to HRI, autonomy has pitfalls too. If learners feel pressured by an aca-

demic atmosphere into using the robotic systems when they do not want to or feel uncomfortable

with them, it could lead to tension and anxiety. Moreover, regularity requirements may force
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a sense of obligation, violating CLs’ autonomy. This could potentially cause CLs to become

irritated and disengaged. This could also prevent CLs from voicing any concerns they may

have, thus, preventing potential upgrades to the system. Ultimately, such experiences could

compromise pursuing the primary goals of the learning process.

Power Dynamics in HET-focused HRI. The humanlike characteristics of robots in HET

can have a profound impact on human users due to their potential to unintentionally create power

imbalances between CLs and robots or between CLs and CEs. Thus, it is essential to consider

these dynamics during the design and programming phases of humanlike robots to ensure that

the training environment promotes a favorable learning experience that conforms to prevailing

ethical standards.

Regarding power imbalances between CLs and robots, designing a robot in HET to mani-

fest authority could inadvertently control CLs, thereby sabotaging their capacity for independent

critical thinking. This could encourage an environment in which CLs become excessively depen-

dent on the robot’s guidance, adversely affecting their independent decision-making and clinical

judgment skills. This dark side could impede the goal of developing competent and confident

professionals.

In terms of power imbalances between CLs and CEs, learners may display an overly-

submissive position when using a robotic simulator due to its perceived realism and authority. On

the other hand, educators may unintentionally reinforce this dynamic by taking an authoritative

role, causing learners to lose their autonomy and critical thinking skills.

To address these concerns, adopting a user-centered design approach that encourages

CLs in active participation and reinforces independent thinking while encouraging dialogue

between learners and instructors is essential.

Uncanny valley effects. There is the potential for uncanny valley effects, where close

but not quite humanlike robots can elicit feelings of unease or discomfort in users. This may

raise concerns about emotional well-being and the potential for psychological distress toward

CLs.
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Privacy and data security. Other ethical considerations include privacy and data security,

since humanlike robots may collect and process sensitive personal information of CLs. Ensuring

this data’s protection and proper handling is crucial to maintain privacy and upholding ethical

standards.

6.8.7 Limitations and Future Work

Despite our diligent efforts to operationalize the complex constructs of humanlikeness,

autonomous behavior, healthcare education delivery, and extensive piloting, we were compelled

to make decisions based on the practicality dictated by methodological and platform limitations.

In the future, it would be interesting to explore different clinical situations, use various robotic

platforms, and test different interaction methods to broaden and deepen our research.

Due to resource and time constraints, we have not been able to fully explore how our robot

interacts with clinical learners. However, we acknowledge the importance of this interaction in

evaluating the effectiveness and applicability of our system in a real-world HET setting. Thus,

our future research plan prioritizes a comprehensive study of the robot’s performance with CLs.

We believe this study will provide valuable insights about the robot and improve its usefulness in

HET.

To further improve the effectiveness of humanlike RPSwS systems in HES, we will

address some key limitations in future work. First, we will enhance the system’s conversational

framework by expanding the repertoire of control words. This will improve keyword matching,

minimize the need for users to repeat themselves, and thereby increase the system’s utility.

Second, we intend to enhance the visual appearance and behavior of the robot to address

participants’ comments about increasing humanlikeness and patient similarity. For this purpose,

we will modify the design of the robot to include increased wrinkles and accentuated nasolabial

flattening, particularly on the unaffected side of the face, to more accurately replicate patient

symptoms. We will also work closely with neurologists to adjust the degree of droopiness and

asymmetric blinking, two key symptoms for stroke assessment. Furthermore, we will provide
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customization options for the robot’s gender, skin tone, age, voice, and facial characteristics and

adjust the severity of symptoms like droopiness and asymmetrical blinking. These enhancements

will enable healthcare learners to better understand stroke presentations in diverse patient

populations and improve the realism of the simulation scenarios.

Third, we will enhance the naturalistic and engaging perception of human-robot interac-

tion by implementing several measures. For one, we will assign individual names to robots to

establish distinct identities and character-based resemblances, fostering relatability. Moreover,

we will incorporate self-introduction functionality to allow robots to introduce themselves and

establish personal connections. Furthermore, we will shorten prompt responses and implement

polite niceties to create a friendly and efficient conversational atmosphere. These changes

promote two-way interactive dialogue, and prioritize creating a more personalized and inclusive

learning environment.

Fourth, we have plans to include a feature that allows for customization of the robot’s

speech proficiency, specifically focusing on modifying the level of Dysarthria or Slurred Speech.

This is crucial because slurred speech can manifest as a symptom of stroke, and CLs need to

practice evaluating the severity of dysarthria. To achieve this, learners will use a rating scale that

ranges from none to mild-moderate, severe, to mute.

Fifth, we will focus on enhancing the system’s capability to provide comprehensive

and personalized feedback to learners regarding their performance. This entails highlighting

areas requiring improvement and offering tailored feedback to enhance learners’ skills. By

incorporating these advanced feedback mechanisms, we aim to optimize the learning experience

and empower learners to achieve higher proficiency levels in their clinical skills.

6.9 Chapter Summary

This chapter presented ROSE, an interactive social robot for clinical training tool, that

enables CLs to automatically interact and practice their stroke diagnosis skills on the robot.
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Chapter 7

Conclusion

This chapter discusses the main contributions of my research to the fields of HRI, robotics,

FG, and health technology. I then briefly deliberate on prospects for future research avenues

which follow from my work, and broader open questions that will need to be addressed to make

interactive, expressive humanlike robots accessible in real-world settings. At the end, I will

conclude this work with closing remarks.

7.1 Contributions

7.1.1 Presented the potential of humanlike robotic patient simulators in
the context of HET.

Simulation-based training methods such as RPS consistently demonstrate benefits in

comprehension, confidence, efficiency, and enthusiasm for learning. These improvements directly

contribute to clinicians’ ability to support patient safety, reduce preventable harm, minimize

risks, enhance the quality of care, and lower healthcare costs [207, 241]. However, it is crucial to

identify gaps and opportunities in existing learning modalities in order to recognize the potential

of humanlike RPS in the context of HET.

First, in order to identify the gaps and opportunities for using robots in the HET domain, I

outlined the root causes of preventable patient harm in healthcare departments, and the application

domain of HET as one of the best defenses to reduce the incidence of patient harm (See Chapter 2).
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Second, I examined the benefits and challenges that accompany common learning modalities

of HET, including virtual and robotic patient simulators. Finally, I presented major gaps in

introducing the use of humanlike learning modalities as a possible solution. This work establishes

the foundations of designing and deploying expressive RPS systems capable of portraying clinical

scenarios, and provides a framework for researchers to support this process.

7.1.2 Created new virtual and physical faces for robots in HET.

In dynamic, real-world environments such as simulation-based HET, social robots need

to have realistic humanlike behaviors to accurately exhibit verbal and non-verbal cues. However,

many existing RPS systems have limited to no capabilities for humanlike expressiveness in their

faces, which may impede emotional engagement, empathy, and social presence, leading CLs

to experience reduced motivation, interest, and retention of training content [185]. Thus, in my

work, I investigated the effect of expressive mechanical and rendered faces in RPS design and

presented my work on building new expressive faces.

First, I discussed the role of humanlike behaviors in social interactions and outlined the

benefits and key challenges of enabling virtual and robotic embodiments to depict verbal and

non-verbal behaviors (See Chapter 3).

Second, I explored techniques for detecting, modeling, and synthesizing humanlike FE

in virtual and physical robotic faces. I explored common methods to build FEA systems for

detecting and tracking humanlike expressions to contextualize facial expression analysis in HRI.

I described different facial action modeling techniques in order to build FAM systems, while

considering various information processing and knowledge modeling methods. I examined

technical approaches for building FSA systems to synthesize dynamic FEs on virtual agents and

physical robots for a variety of applications.

Finally, I discussed my research on virtual and robot patient simulator faces, enhanced

with the capacity to exhibit nuanced verbal and non-verbal behaviors and cues, while displaying

diverse appearances and backgrounds. This included my work on creating new embodiments
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for RPSs, focused on designing physical and virtual faces, while enhancing their expressivity,

diversification, and control modalities [196, 195].

This work stands as a potential transformative instrument in HET, opening new frontiers

in developing expressive RPS systems. Moreover, this work provides valuable insights to

researchers by examining methods for detecting, modeling, and synthesizing FEs, with potential

applications in enhancing social interactions, and clinical education.

7.1.3 Built an end-to-end AMS control framework, and developed a
general FPM framework to generate accurate representations of
patient-like FEs on RPS faces.

Every year, millions of individuals experience conditions such as stroke, Parkinson’s

disease, Moebius syndrome, and Bell’s palsy, leading to facial paralysis and A-FEs. People’s

misperceptions and biased impressions can make it challenging for them to interact socially with

and understand the emotions of people with A-FEs These misperceptions in clinical settings

can adversely impact the quality of care provided to FP patients. This highlights the need for

new training tools to enhance clinicians’ interaction skills and improve care for individuals

with facial paralysis. The lack of exploration in using FP patient simulators highlights the need

for researchers to develop training tools that consider individuals with FP, aiming to enhance

clinician skills in avoiding biased impressions, improve clinical communication, and deliver

better care for this population.

To address this problem, we developed two frameworks to make RPS systems able to de-

pict an accurate representation of A-FE on their faces based on real patient’s facial characteristics,

and demonstrated the complementary relation between these two frameworks (See Chapter 4).

This work had two main goals. First, it aimed to enable people to easily synthesize human facial

movements on any robotic and virtual faces in real time. Second, it aimed to understand how

robots can accurately and realistically depict asymmetric facial expressions.

In this work, we first designed and developed the AMS control framework that integrates
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three systems presented in Chapter 3 to robustly, easily, and automatically transfer humanlike

expressions from a subject’s face onto a range of physical or virtual robotic faces. We modularized

the AMS framework into three components (FEA, FAM, and FSA), allowing for a more organized

and encapsulated structure of the framework. The FEA component enables the AMS framework

to more robustly detect and track FE movements in real time. The FAM component overlays a

computational representation of a clinical condition onto the tracked FE movements. Finally, the

FSA component automatically synthesizes facial movements onto the face of robotic and virtual

simulators with different ages, races, and genders, and animates their facial components.

Second, we developed the FPM framework to provide a platform to automatically

generate accurate computational models derived from facial characteristics of people with FP,

and is constructible in real time. We then integrated these two frameworks by overlaying pre-built

FPMs on the facial model of the AMS framework to recreate A-FEs on RPS faces. The AMS

framework uses the results of the FPM framework and enables the system to robustly recognize

the facial movements of a human operator, mask the generated model on tracked movements,

and automatically synthesize the generated models of FEs across a range of RPS embodiments,

thereby animating their facial components. Furthermore, to put these frameworks into practice,

we presented an FPM framework personalized to model characteristics of a particular type of FP,

BP, and synthesized it on virtual RPS. Finally, we reported the results from an expert-based user

study, highlighting that experts perceived our expressive virtual patient simulator to be realistic

and comparable to humans with BP.

The presented frameworks create a solution that accurately portrays patient-like FEs

on RPS faces, situated within a HET context. This research opens new avenues of exploration

in Healthcare Robotics, and may trigger a new round of relevant technological innovations by

creating the next generation of patient simulator robot technology. Furthermore, the results of

this work will enable roboticists to discover platform-independent methods to control the FEs of

both robots and virtual agents, and yield new modalities for interaction.
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7.1.4 Introduced RPSwS for modeling and synthesizing acute stroke.

As FEs and their intensities exhibit significant inter-individual variability and dynamicity

[275], the development of a universal RPS system capable of accurately modeling and presenting

neurological impairments across diverse cultural and demographic spectrums poses a daunting

challenge [195]. Doing this would require access to a large corpora of data from PwS repre-

senting a diverse set of characteristics associated with acute neurological disorders and facial

impairments, which is both time and labor-intensive. Moreover, it can be challenging to analyze

the data collected from a restricted cohort of PwS and extrapolate it to construct stroke models

that depict a more extensive population of PwS. Developing such universal models to design

versatile RPS systems with synthesized faces encompassing a diverse patient group is essential.

This diverse assortment includes but is not restricted to individuals of varied ages, genders, and

ethnicities suffering from various health afflictions [275].

To address these challenges, in Chapter 5, I introduced RPSwS: a new expressive training

tool capable of realistically depicting non-verbal, asymmetric FP cues representing acute stroke.

The core objective of this work is to architect a comprehensive, holistic system derived from

our general FPM and AMS frameworks in order to create data-generated models of people, and

overlay them on the robot to enable it to depict realistic verbal and non-verbal cues. This enables

RPSs to accurately and effectively depict stroke symptoms, thereby advancing the landscape of

HET for stroke diagnosis and treatment.

First, I introduced Stroke FPM: a new framework for generating statistical modeling

approaches representing the facial characteristics of stroke. This consists of two parts: 1) a

machine learning method to accurately identify and automatically track facial landmarks of

PwS that are crucial for analyzing A-FE movements, and 2) a statistical modeling approach to

use tracked facial point values to automatically represent the most visually significant features

representing stroke in each facial region. I then ran the Stroke FPM on a newly collected dataset

of PwS admitted to an urban medical center who have experienced acute ischemic stroke resulting
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in neurological findings, leading to the generation of computational models representing stroke’s

characteristics.

Second, I created the RPSwS capable of automatically displaying FP by developing an

end-to-end Stroke AMS framework, which applies the generated models using the Stroke FPM

onto the face of an RPS system [197, 195].

Third, I reported the results from a perceptual study with seven clinicians to investigate

the efficacy of my system for modeling and synthesizing stroke. This study explored the visual

differences in realism and similarity between the synthesized stroke robot faces and those

of stroke patients. The results of these measurements facilitated the identification of salient

attributes for each facial region that can make the stroke robot look more realistic and similar

to PwS. The received feedback endorsed the robot’s utility, concurrently providing valuable

recommendations for potential enhancements.

This work has cross-disciplinary impacts in clinical education, health informatics, FG,

robotics, and HRI, as it pioneers a new method for comprehensive stroke-associated FP repre-

sentation, facilitates realistic FP simulations on various RPS systems, and provides insights for

asymmetric FE analysis, social robot design, and understanding the effects of facial asymmetry

on social interactions. To my knowledge, the Stroke FPM framework pioneered the implementa-

tion of a statistical modeling methodology that can capture stroke-associated facial anomalies,

extending across the upper and lower facial regions. This framework provides a systematic

and objective way to analyze and interpret facial movement patterns associated with stroke,

contributing to extracting various presentations of the medical condition.

Moreover, the RPSwS represents the first utilization of the comprehensive AMS frame-

work to render stroke characteristics on diverse RPS systems, thereby facilitating the production

of highly authentic FP simulations. Our RPSwS system can depict realistic facial expressions

similar to PwS. By producing a set of 75 facial models representing stroke in various facial

regions, my research yielded insights into the best representations of stroke in each facial region

based on professional expertise, enhancing the precision and reliability of stroke representations
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for different facial regions. By employing this mechanism, robotics researchers can create many

empirically derived FP facial representations for robots, specifically in HET contexts, and and

perform studies on people’s perception of and response to facial asymmetry [197]. Furthemore,

the results from an expert-based user study with physicians, highlights their strong interest in

robots replicating facial characteristics associated with stroke, supporting the indicative of the

system’s potential as a healthcare education tool.

Our work can also help researchers in the FG community to explore new methods for

asymmetric facial expression analysis, modeling, and synthesis. Moreover, our study enables

HRI researchers to explore methods for designing social robots to enhance people’s perception

of individuals with FP and understand the effects of facial asymmetry on social interactions.

7.1.5 Designed and developed ROSE: an interactive social robot for
medical education.

Current RPS systems often fail to provide CLs with interactive platforms for humanlike

engagement, limiting the development of social interaction skills and confidence in diagnosis,

while lacking communication modalities that allow effective interactions and training effective-

ness. Additionally, these systems may not replicate automatic manipulation of clinical scenarios,

limiting skill acquisition and knowledge transfer, potentially leading to missed opportunities

for timely interventions and prevention of harm. Nonetheless, designing an interactive robotic

tool to address gaps in engagement and usability may introduce challenges related to advanced

technology reliance, complex interfaces, and potential frustration among clinicians, impacting

their acceptance and learning outcomes.

To address these challenges, we spearheaded the design and deployment of ROSE: an

immersive clinical training tool employing an interactive, socially adept RPSwS to enhance the

learning experience for CLs.

The core objective of this work was to understand how to enable a robot with social

intelligence to autonomously exhibit realistic behaviors and effectively engage in interactions
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within real clinical education settings.

We first presented the collaborative user-centered design requirements for building ROSE

in the context of HET (See Chapter 6).

Second, we introduced the MMC framework to automatically simulate clinical scenarios,

and enable autonomous interaction and engagement on ROSE. We designed this in close collabo-

ration with neurologists and CEs to co-design an interactive robot that could depict neurological

impairments. For this purpose, We developed an interactive, expressive RPSwS as the platform

of the robot, with customizable expressions, appearance, and characters, to enable the robot to

be more humanlike and realistically portray PwS. We enabled the robot to simultaneously show

stroke characteristics in all facial parts, leading to a more realistic robot appearance and behavior.

We then incorporated a real-world dynamic scenario into our system to suit the users’ needs

better, and developed a keyword-marching control mechanism to enable the robot to interact

with CLs automatically.

Third, we presented ROSE to create a realistic and immersive environment for practicing

diagnosis and treatment skills. We report the results from pilot studies and interviews with

clinical educators and robotics engineers to investigate the efficacy of our tool for depicting

dynamic clinical scenarios, and report the results revealing how they envision using ROSE for

stroke diagnosis. To our knowledge, ROSE is the first of its kind, representing an exciting new

area of research.

This work has implications for HET, as well as the broader healthcare and HRI com-

munities. To our knowledge, ROSE is the first patient-data-driven, interactive clinical training

tool accessible to clinicians to practice the diagnosis and treatment of stroke. The presented

collaborative user-centered design requirements offer insights for HRI researchers and devel-

opers of interactive, expressive robots, encouraging them to adapt these design requirements to

their own applications. Furthemore, the MMC framework enabling the robotics community to

leverage our approach to customize a robot’s autonomous behavior, adapt to user needs, and

promote effective HRI within their own application domains. Our work lays the foundation

157



for extending the accessibility of educational interventions to the healthcare domain, enabling

humanlike social robots to support HET through an automated interactive, expressive robot.

ROSE enables researchers to create a realistic and immersive environment for practicing stroke

diagnosis skills, offering opportunities for repeated clinical practice, and promising avenues

for advancing the capabilities of clinical learning. Moreover, our work provides a framework

for researchers to explore HRI in new experiential learning settings (e.g., build RPS systems to

enable CLs to avoid forming biased impressions) and broader domains (e.g., explore methods

for designing social robots to enhance people’s perception of individuals with FP).

7.2 Future Work

In the future, it would be interesting to explore different clinical situations, use various

robotic platforms, enable our robot to automatically collect and understand physiological signals

from the monitoring systems, and test different interaction methods to broaden and deepen our

research. To further improve the effectiveness of humanlike RPSwS systems in HET, we will

address some key limitations in future work.

Due to resource and time constraints, we have not been able to fully explore how our

RPSwS interacts with CLs. However, we acknowledge the importance of this interaction in

evaluating the effectiveness and applicability of our system in a real-world HET setting. Thus,

our future research plan prioritizes a comprehensive study of the robot’s performance with CLs.

We believe this study will provide valuable insights about the robot and improve its usefulness in

HET.

7.2.1 Situating Social Robots within HET

The findings of this study provide a foundation for future research aiming to enhance

the visual appearance and behavior of humanlike robots in HET. Future research could explore

broader directions, such as increasing humanlikeness and patient similarity, customizing the

robot’s characteristics to represent diverse patient populations, and collaborating with domain
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experts to enhance the reproduction of specific symptoms. These enhancements will contribute

to improving realism in simulation scenarios, and further enhance the understanding of various

medical presentations in diverse patient populations.

The efforts of this work will open doors to future research in HRI in order to explore vari-

ous avenues to enhance naturalistic and engaging perceptions of RPS systems. This could include

incorporating self-introduction functionality to allow robots to verbally introduce themselves,

provide a patient history, and establish personal connections. Furthermore, future research could

include designing more effective prompt responses for the robot and implementing polite niceties,

in order to enhance friendliness, and create an efficient two-way conversational atmosphere.

7.2.2 Creating automatic, adaptive feedback systems in HET for
individualized learning experiences

Moving forward, researchers can explore advancing the system’s capacity to provide

CLs with personalized feedback regarding their performance, with the goal of enhancing their

clinical skills. This research direction could involve leveraging data analytics and machine

learning algorithms to develop adaptive feedback models that interpret a CLs’ interactions,

determine patterns, and suggest recommendations tailored to their needs, thereby creating a more

personalized learning experience. These systems adjust feedback format, content, and intensity

based on a CL’s learning preferences and styles.

Moreover, researchers can investigate mechanisms for improving the process of feedback

delivery in order to make it more effective. This could involve using methods such as visualiza-

tion, augmented reality, or interactive interfaces to increase engagement with CLs. This research

direction has the potential to revolutionize HET by effectively delivering personalized feedback

which enable CLs to optimize their learning experience and achieve higher levels of proficiency.
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7.2.3 Advancing personalized anti-bias education for promoting
equitable clinical practices

Developing personalized anti-bias educational interventions using RPS systems with

diverse identities (such as complexion and gender) opens up broad avenues for future research.

Potential directions could involve exploring how receiving training sessions using such educa-

tional systems can impact racial and gender biases among CLs and promote cultural sensitivity

throughout their training. This research direction could pave the road to mitigate biases among

healthcare professionals while treating real patients, enabling them to deliver more compassion-

ate patient care. Based on the research I have conducted so far, the presence of racial bias, racial

disparities, and gender bias in stroke care highlights the need for further exploration and action.

Research has identified racial disparities in diagnosing and treating acute stroke. For

example, non-Hispanic Black and Hispanic patients experience longer Emergency Department

waiting times compared to non-Hispanic white patients, potentially leading to delays in treatment

and sub-optimal stroke care [108]. Another study illustrated that African American patients are

less likely to undergo brain imaging within the recommended timeframe compared to white

patients [141]. Further investigation into the underlying causes of racial disparities is necessary

to identify strategies for mitigating bias, and help inform interventions and policies, ensuring

timely and fair clinical care for all patients.

Future research on addressing racial disparities could include developing an intervention

for CLs to enhance cultural competence among healthcare providers, increase diversity among

healthcare professionals, and implement strategies to address preconceptions and implicit biases

that lead to unequal access to medical services for individuals with darker complexions or

diverse racial identities. Receiving training on the proposed intervention may positively influence

the quality of care, health outcomes, and treatment provided by clinicians to individuals from

different racial or ethnic backgrounds.

Research suggests that gender presentation casn impact disparities in stroke presentation,
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diagnoses, and outcomes, with women being more likely to present nonspecific symptoms,

including hiccups, nausea, chest pain, fatigue, shortness of breath, and a racing heartbeat [75].

Research on cerebrovascular diagnosis has identified that women have a 25% higher chance of

misdiagnosis than men [75].

Future research can focus on the investigation of understanding and addressing gender

bias in stroke care. This may involve determining the ways gender presentation may impact

clinically-related symptom recognition, diagnosis, and treatment. Creating training programs

and guidelines can prepare clinicians to accurately diagnose conditions, thus, enhancing the

ability to address gender disparities in healthcare.

Finally, future research directions could explore ethical and intersectionality consider-

ations. In healthcare education and research, humanlikeness in robot design offers numerous

ethical benefits, such as immersive training experiences, accurate assessment, and effective

feedback. Moreover, it also supports various benefits of intersectionality, such as enabling the

accurate replication of diverse patient backgrounds and inclusive accommodation of CLs with

diverse backgrounds.. However, It is crucial to remain alert to the challenges associated with

ethics and the acknowledgment of intersectionality in this domain. This includes identifying

factors contributing to challenges related to the unintended perpetuation of bias, privacy, data

security, informed consent, autonomy, and power dynamics through clear guidelines, protocols,

collaborative policy development, and comprehensive legal frameworks.

It is also important to study existing training methods designed to reduce ethical and

cultural biases in healthcare, in order to understand their effectiveness and potential areas for

improvement. Further comprehensive training modules and cultural sensitivity workshops are

necessary to address complex cultural factors in healthcare settings [143, 127]. By supporting

empowerment and cultural sensitivity, researchers can create personalized and inclusive learning

environments in the realm of HRI, paving the way for exploring broader directions in this field.
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7.2.4 Customizing speech proficiency in RPS systems for enhanced
patient similarity

Based on the research progress made thus far, future research can focus on customizing

speech proficiency in RPS systems by developing a flexible and adjustable robot that allows

researchers to alter dysarthria or slurred speech. Creating an adjustable rating scale that covers

a diverse range of dysarthria severity would enable CEs to set the degree of slurred speech

according to their particular needs and preferences. Such tools could lead to the development

of comprehensive educational tools, ultimately revolutionizing the assessment and treatment of

dysarthric impairments in HET settings.

7.2.5 Advancing user input understanding methods for improved utility
and satisfaction

Based on this work, researchers can explore further advancements in the MMC framework

to improve the system’s utility and user satisfaction. This exploration can involve expanding the

repertoire of control keywords. Incorporating this approach would reduce the need for users to

repeat themselves, enhance the robot’s ability to understand and fulfill user intentions, and create

a more natural and efficient interaction experience.

Additionally, many roboticists are working on improving multimodal communication,

by enabling the robot to understand and infer the user’s input beyond speech recognition [229].

Future research direction can focus on interring meaning and intent through facial cues, body

language analysis, natural language processing, contextual understanding, and sensor integra-

tion. This can enhance the robot’s ability to more deeply interpret users’ emotional states,

behavioral intentions, and engagement levels, ultimately leading to more effective and nuanced

communication capabilities.
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7.3 Open Questions

7.3.1 What are the implications of automating learners’ performance
assessment?

Performance assessment automation is essential for assessment of all CLs, thereby

removing subjective biases that CEs may unconsciously introduce and enabling a fair and

unbiased evaluation of their performance. However, it is also necessary to acknowledge and

address potential limitations in designing automated assessment systems, considering that humans

develop the algorithms used within these systems and, thus, convey their own biases in its design

[203, 105]. Moreover, the algorithms are usually trained on datasets that may inherently reflect

various biases or disparities; thereby, careful consideration should be given to the training data

used for developing such systems.

Moreover, automation has the potential to reduce the burden on CEs, enabling them

to focus on controlling the simulator and facilitating the training process. Manually assessing

CLs’ performance can be time-consuming and resource-intensive, especially when evaluating

multiple CLs simultaneously. Thus, RPS systems which provide some autonomous support to

the assessment have the potential to free up CE time. Automating the assessment process may

help CEs with their workload thereby, enabling them to dedicate more time and energy to provide

better guidance and support to CLs.

7.3.2 How does the use of interactive, expressive RPS systems affect the
CEs’ workload and task disruption in HET?

CEs who act as both operators of the RPS system and instructors in HET scenarios

already have many tasks to manage, such as operating the RPS system, guiding CLs, assessing

their performance, providing feedback, and ensuring a smooth training session. This raises

questions about the effects of implementing shared control modalities for the robot on CEs and

their workload.
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Some open questions in this area may include: How does the dual role of CEs as robot

operators and instructors impact their workload in training clinical scenarios and assessing

CLs’ performance? To what extent can increased autonomy of the robot effectively reduce the

workload of CEs in healthcare education and training? What are the implications of implementing

shared control modalities with respect to time efficiency, workload management, and task

disruption for CEs? This opens up new opportunities for research to explore the impact of using

these robots on CEs’ workload management, and the overall effectiveness of HET. It also opens

up an avenue for exploring the benefits and challenges of developing shared control modalities

for such robots in HET.

7.3.3 How can RPS training and feedback functionalities continually
adapt to best support learners’ evolving needs and preferences?

Continually adapting educational interventions is essential to keep CLs interested, and

consistently engaged in the interaction with the robot, ultimately leading to successful educational

outcomes. In the context of HET, the importance of continuously being immersed in the learning

necessitates adaptive RPS behaviors that evolve with the changing needs and preferences of CLs

over long-term interactions.

As CLs progress in their course of clinical education, their clinical and social skills may

evolve. Furthermore, CLs will have different learning styles (e.g., visual, auditory, kinesthetic,

etc.), as preferences for different types of training modalities. CEs may have different educational

goals for RPS systems based on each individual CL and their capabilities. As a result, an RPS

system must be able to adapt to the situation over time dynamically.

Addressing these challenges to enable educational interventions to adapt appropriately

raises several questions. For example, what are the key considerations in understanding CLs’

specific support requirements, and establishing appropriate behaviors for diverse situations? How

can we effectively tailor and diversify educational materials over time to meet the personalized

CLs’ needs and their learning styles, as well as CEs’ educational goals? How can we create
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diverse educational materials and feedback to adapt to the evolving clinical skills of CLs

throughout their training? How can we adjust the assessment feedback over time to align with

CLs’ preferred feedback methods, optimizing its effectiveness?

7.3.4 How can we effectively collect and use comprehensive datasets to
develop realistic representations of clinical conditions for the robot,
considering the diverse range of patients?

Developing RPS systems to effectively simulate the diverse range of PwS requires a

comprehensive dataset, representing diverse, accurate, and realistic representations of stroke-

related symptoms. To address this challenge, we collected a dataset from a subset of the PwS

population (See Chapter 5). However, our dataset has potential gaps in terms of diversity of

background, age, and other factors. Moreover, our dataset primarily represents NATs related to

assessing visual facial cues and speech-related symptoms, lacking representation of other critical

stroke-related symptoms such as body weakness.

These gaps raise some open questions in this context. For example, what size and variety

of datasets of PwS is required to create a comprehensive dataset of stroke patients, enabling

researchers to generate accurate simulations of stroke for the robot? What specific tasks should

PwS perform while recording their videos to ensure the data set comprehensively covers the

symptoms and their variations? Finally, what are the similarities and differences between facial

symptoms in non-stroke facial palsy patients and PwS, and to what degree can the data from

non-stroke facial palsy be used in order to create comprehensive robotic stroke models?

7.3.5 What are the impacts and dynamics of trust in RPS HRI?

The dynamics of trust between the robot, CLs, CEs, and developers present new avenues

for exploring the impact of trust on various aspects in the context of using interactive, expressive

RPS systems for HET. However, there is a gap in understanding of how different levels of

responsiveness and speed can affect how reliable and competent the RPS systems appear, and

what expressive capabilities could include in the robot design to build trust between humans and
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robots. Moreover, there are limited comprehensive studies to compare the effect on patient trust

when CLs are trained with virtual simulations versus real patients.

These challenges may raise some open questions in this area: How do the responsiveness

and speed of the expressive RPS system influence its acceptance and trustworthiness among

CLs and CEs? How does the training experience on robotics simulators compared to real patient

interactions influence patients’ trust in CLs?

7.4 Closing Remarks

My work addresses problems in enabling robots to realistically depict behaviors and

appearances of a diverse group of humans and automatically interact with people in the real-world,

which will enable robots to effectively and reliably deliver clinical educational interventions, and

ultimately, facilitate improved health care outcomes. More specifically, my research addresses

fundamental challenges in humanlike robot design and development within the context of HET.

My work aims to transform how humanlike robots automatically interact with people, with the

ultimate goal of enabling more realistic and effective human-robot interaction.

As humanlike robots integrate into environments centered around human interaction, it

becomes crucial for them to effectively and reliably adjust their appearance, communication

modalities, and behavior in a suitable, useful, empowering, and diverse way for each individual

involved. Throughout my Ph.D., I designed and developed algorithms and systems that enable

robots to realistically depict the behaviors and actions of a diverse group of individuals, and

automatically interact with people in the real world.

My research opens new avenues of exploration for the advancement of humanlike robot

technologies in the fields of robotics, HRI, FG, HET, and health informatics. My work will

support healthcare education by triggering a new round of relevant technological innovations

by creating the next generation of clinical educational technology. It will enable roboticists

to develop robust methods for asymmetric facial expression analysis, modeling, and synthesis,
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and discover platform-independent methods to control the facial expressions of both robots and

virtual agents, yielding new modalities for interaction. This work serves as a bridge between

robotics and healthcare research and practice, and offers promising opportunities to reduce

misdiagnoses and bias in healthcare, and, ultimately, explore reducing preventable patient harm.

It is my aspiration that this research serves as an inspiration for researchers to conscientiously

deliberate on the humanlikeness, efficiency, and ethical use of these systems in facilitating

substantial support for individuals in their daily lives.
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Appendix A

A.1 List of Acronyms

• HRI: Human robot interaction

• FG: Automatic facial and gesture recognition

• HET: Healthcare education and training

• CEs: clinical educators

• CLs: clinical learners

• SHP: Standardized human patients

• APS: Augmented reality patient simulators

• AR: Augmented reality

• VPS: Virtual patient simulators

• RPS: Robotic patient simulators

• RPSwS: Robotic patient simulators with stroke

• PwS: Human patients with stroke
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• PwoS: Participants without stroke

• BP: Bell’s Palsy

• FP: Facial palsy

• A-FE: Asymmetric facial expressions

• FE: Facial expressions

• FL: Facial landmarks

• AU: Action units

• FACS: Facial Action Coding System

• FFPD: Facial feature point detection

• FEA: Facial expression analysis systems

• FAM: Facial action modeling systems

• FSA: Facial expression synthesis and animation systems

• AMS: Analysis modeling and synthesis framework

• FPM: Facial paralysis masks framework

• Stroke FPM: Stroke-related facial paralysis masks framework

• MMC: Multi-modal communication framework

• CN: Cranial nerves

• NAT: Neurological assessment tests

• SSM: Stroke statistical measurement features
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• IMU: Inertial measurement unit

• ROSE: An interactive social robot for medical education

• FSM: Finite State Machine

• LTR: Learner-to-robot interaction input

• RTL: Robot-to-learner interaction output

• NLU: natural language understanding

• FAN: Face alignment network

• DNN: Deep Neural Network

• CNN: Convolutional Neural Network

• R-CNN: Region-based Convolutional Neural Network

• MLP: Multilayer perceptron

• AAM: Active appearance models

• SDM: Supervised descent method

• CLM: Constrained local model

• DL: Deep Learning

• DAE: Deep autoencoder network

• DSAE: Deep sparse autoencoder network

• CAE: Contractive autoencoder network

• GAN: Generative adversarial networks
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• SVM: Support vector machine

• PCC: Pearson correlation coefficient

• DOF: Degrees of freedom

• ROI: Region of interest

• POI: Points of interest

• SDK: Software developer kit

• LOE: Left outer eye corner

• ROE: Right outer eye corner

• LIE: Left inner eye corner

• RIE: Right inner eye corner

• LB: Left brow

• RB: Right brow

• LLE: central point of the left lower eyelid

• RLE: central point of the right lower eyelid

• LUE: central point of the left upper eyelid

• RUE: central point of the right upper eyelid

• NT: Nose tip

• LL: Central point of the lower lip

• UL: Central point of the upper lip
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• LC: left lip corners

• RC: Right lip corner

• LLF: Live link face

• IMU: Inertial measurement unit

• 4-point DVAS: 4-point discrete visual analogue scale

• SUS: System usability scale

• N-MD: Physician with a specialty in neurocritical care

• S-MD: Clinical professor of medicine who works in medical education simulation

• GE: graduate engineering students
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Appendix B

B.1 Interview questionnaire with clinicians to evaluate
RPSwS
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B.2 Interview questionnaire with clinicians to evaluate
ROSE

Date and Time:

Participant ID #:

1. Tell me about your experience interacting with the robot.

2. Did you find anything frustrating about your experience?

3. How humanlike do you perceive the robot to be? Why do you think that?

4. How realistic or unrealistic were the robot's facial expressions compared to someone

experiencing acute stroke? Why do you think that?

5. How similar did you find the robot's facial expressions to someone experiencing acute stroke?

6. What should we change to improve the robot's appearance? (face, body, etc)

7. What should we change to improve the conversation/dialogue?

8. What should we change to improve the robot's interaction?

9. If clinical learners used this robot, how might it affect their learning?

10. What questions to ask clinical learners to assess their stroke diagnosis and treatment ratings?

11. Do you have any questions for us?
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B.3 Interview questionnaire with graduate engineering
students to evaluate ROSE

Date and Time:

Participant ID #:

1. Tell me about your experience interacting with the robot.

2. Would you describe your interaction with the robot to be overall positive or negative?

Can you please tell me more?

3. Did you find anything frustrating about your experience?

4. How humanlike do you perceive the robot to be? Why do you think that?

5. What should we change to improve the robot's appearance?

6. What should we change to improve the robot's interaction?

7. What should we change to improve the conversation/dialogue?

8. Do you have any other feedback, or questions for us?
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B.4 System Usability Scale Questionnaire to evaluate ROSE

Date and Time:

Participant ID #:

Robotic Patient Simulator System

Please rate the following statements.

(5 point Likert scale) - 5 highly agreed and 1 highly disagreed.

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use this system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.
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[99] H. A. Elfenbein, M. Beaupré, M. Lévesque, and U. Hess. Toward a dialect theory: cultural
differences in the expression and recognition of posed facial expressions. volume 7, page
131. American Psychological Association, 2007.

[100] J. B. Engelmann and M. Pogosyan. Emotion perception across cultures: the role of
cognitive mechanisms. volume 4, page 118. Frontiers, 2013.

[101] N. Ersotelos and F. Dong. Building highly realistic facial modeling and animation: a
survey. volume 24, pages 13–30. Springer, 2008.

[102] I. Ertugrul, L. A. Jeni, and J. F. Cohn. Pattnet: Patch-attentive deep network for action
unit detection. In BMVC, page 114, 2019.

[103] I. O. Ertugrul, J. F. Cohn, L. A. Jeni, Z. Zhang, L. Yin, and Q. Ji. Crossing domains for au
coding: Perspectives, approaches, and measures. volume 2, pages 158–171. IEEE, 2020.

[104] S. Ethier, W.J. Wilson, and C. Hulls. Telerobotic part assembly with shared visual servo
control. 2002.

[105] S. Fabi, X. Xu, and V.R. de Sa. Exploring the racial bias in pain detection with a computer
vision model. In Proceedings of the Annual Meeting of the Cognitive Science Society,
volume 44, 2022.

190

sonarplusd.com/en/programs/barcelona-2017/areas/talks/how-our-robots-will-charm-us-and-why-we-want-them-to
sonarplusd.com/en/programs/barcelona-2017/areas/talks/how-our-robots-will-charm-us-and-why-we-want-them-to


[106] B. Fasel. Robust face analysis using convolutional neural networks. In Object recognition
supported by user interaction for service robots, volume 2, pages 40–43. IEEE, 2002.

[107] A.E. Frank, A. Kubota, and L.D. Riek. Wearable activity recognition for robust human-
robot teaming in safety-critical environments via hybrid neural networks. 2019.

[108] H. Gardener, R. L. Sacco, T. Rundek, V Battistella, Y. Cheung, and M. Elkind. Race and
ethnic disparities in stroke incidence in the northern manhattan study. Stroke, 51(4):1064–
1069, 2020.

[109] N. F. Garmann-Johnsen, T. Mettler, and M. Sprenger. Service robotics in healthcare: A
perspective for information systems researchers? 2014.

[110] B. Gecer, A. Lattas, S. Ploumpis, J. Deng, A. Papaioannou, S. Moschoglou, and
S. Zafeiriou. Synthesizing coupled 3d face modalities by trunk-branch generative adver-
sarial networks. In European Conference on Computer Vision, pages 415–433. Springer,
2020.

[111] M. Ghayoumi. A quick review of deep learning in facial expression. volume 14, pages
34–8, 2017.

[112] M. Ghayoumi. A quick review of deep learning in facial expression. J. Commun. Comput,
14(1):34–38, 2017.

[113] M. Ghayoumi and M. Pourebadi. Fuzzy knowledge-based architecture for learning and
interaction in social robots. arXiv preprint arXiv:1909.11004, 2019.
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