
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Diversifying Language Generated by Deep Learning Models in Dialogue Systems

Permalink
https://escholarship.org/uc/item/9rh9f0mk

Author
Juraska, Juraj

Publication Date
2022

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, availalbe at https://creativecommons.org/licenses/by-nc/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9rh9f0mk
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

DIVERSIFYING LANGUAGE GENERATED BY DEEP
LEARNING MODELS IN DIALOGUE SYSTEMS

A dissertation submitted in partial satisfaction
of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Juraj Juraska

September 2022

The Dissertation of Juraj Juraska
is approved:

Professor Marilyn Walker, Chair

Professor Jim Whitehead

Scott Roy, Ph.D.

Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Juraj Juraska

2022

Table of Contents

List of Figures vii

List of Tables ix

Abstract xii

Dedication xiv

Acknowledgments xv

1 Introduction 1
1.1 Natural Language Generation Approaches 6
1.2 Semantic Control in NLG . 8
1.3 Stylistic Variation in NLG . 10
1.4 Automatic Metrics for Data-to-Text NLG Evaluation 13
1.5 Contributions . 17
1.6 Overview of the Thesis . 20

2 Data-to-Text NLG Corpora 23
2.1 E2E Dataset . 25
2.2 ViGGO: A Conversational Data-to-Text Corpus 27

2.2.1 Dataset Overview . 29
2.2.2 Data Collection . 31
2.2.3 Training/Validation/Test Split 32

2.3 ViGGO vs. E2E . 32
2.4 Discussion . 33
2.5 Summary . 35

3 Automatic Semantic Aligning 36
3.1 Heuristic Slot Aligner . 37

3.1.1 Boolean Slots . 38
3.1.2 Numeric Slots . 39
3.1.3 Scalar Slots . 40
3.1.4 Categorical Slots . 41
3.1.5 List Slots . 43

3.2 Aligning Tasks . 44
3.2.1 Finding Slot Alignment . 44
3.2.2 Training Data Denoising . 45

iii

3.2.3 Training Data Augmentation 45
3.2.4 Cross-Domain Dataset Replication 46
3.2.5 Utterance Reranking . 47
3.2.6 Evaluation of Slot Realization Accuracy 48

3.3 Slot Aligner Evaluation . 49
3.4 Summary . 50

4 Sequence-to-Sequence Models for NLG 51
4.1 Encoder-Decoder Architecture . 51

4.1.1 Recurrent Neural Network With Attention 53
4.1.2 Transformer . 54

4.2 Adaptive Delexicalization . 55
4.3 Semantic Utterance Reranking . 57
4.4 Model Ensembling . 58
4.5 Evaluation . 58

4.5.1 System Configuration . 59
4.5.2 E2E Dataset Experiments . 60
4.5.3 ViGGO Dataset Experiments 63

4.6 Summary . 67

5 Stylistic Control 68
5.1 Stylistic Selection . 69

5.1.1 Stylistic Variation in the E2E Dataset 70
5.1.2 Discourse Marker Weighting 72

5.2 Input Data Annotation . 74
5.2.1 Contrastive Relation . 74
5.2.2 Emphasis . 76

5.3 Evaluation . 77
5.3.1 Style Subsets . 77
5.3.2 Data Annotation . 78
5.3.3 Aggregation . 80

5.4 Summary . 81

6 Semantically Attention-Guided Decoding for Data-to-Text NLG 82
6.1 Semantic Attention-Guided Decoding 84

6.1.1 Interpreting Cross-Attention 85
6.1.2 Slot Mention Tracking . 89
6.1.3 Semantic Reranking . 91

6.2 Evaluation . 91
6.2.1 Data Preprocessing . 91
6.2.2 Experimental Setup . 92
6.2.3 Automatic Evaluation Metrics 93
6.2.4 SeA-GuiDe Parameter Tuning 94
6.2.5 Effects of Beam Size on SeA-GuiDe 97

6.3 Results . 98
6.3.1 SeA-GuiDe Performance . 98
6.3.2 Cross-Model Robustness . 99
6.3.3 Domain Transferability . 101
6.3.4 Slot Error Detection Examples 102

iv

6.4 Discussion . 105
6.4.1 Inference Performance . 105
6.4.2 Limitations of SeA-GuiDe 106

6.5 Summary . 107

7 Diversity-Promoting NLG Inference 109
7.1 Motivation . 109
7.2 Batch Monte-Carlo Tree Search Inference 115

7.2.1 MCTS Algorithm . 115
7.2.2 Batch Modification . 117
7.2.3 Discussion . 121

7.3 Summary . 122

8 Referenceless Automatic Evaluation Metric for Data-to-Text NLG124
8.1 Referenceless Metric Components . 126

8.1.1 Syntactic Fluency . 127
8.1.2 Semantic Accuracy . 129
8.1.3 Other Aspects of Generated Utterances 133

8.2 Reference-Based Metrics With Pseudo-References 134
8.2.1 Pseudo-Reference Perturbations 136
8.2.2 Evaluation . 140

8.3 Slot Aligner-Based Semantic Accuracy Metric 162
8.3.1 Evaluation . 163

8.4 Discussion . 165

9 Batch-MCTS Inference Evaluation 169
9.1 Experimental Setup . 170

9.1.1 MCTS Parameters . 170
9.1.2 MCTS State Evaluation Metric 171
9.1.3 Data-to-Text NLG Model . 172
9.1.4 Datasets . 173

9.2 Evaluation . 174
9.2.1 Baselines . 174
9.2.2 Automatic Metrics . 177
9.2.3 Diversity Metrics . 178
9.2.4 Human Evaluation Criteria 179

9.3 Standard Inference Method Experiments 180
9.3.1 Semantics vs. Diversity . 182
9.3.2 Other Diversity Metrics . 185
9.3.3 Summary . 188

9.4 Batch-MCTS Experiments . 189
9.4.1 MCTS Metric Optimization 190
9.4.2 PPL With BERTScore . 192
9.4.3 PPL With BLEURT . 195
9.4.4 PPL With SER . 196
9.4.5 Adding Model’s Own PPL . 198
9.4.6 Replacing GPT-2 PPL With Model’s Own PPL 201
9.4.7 Human Evaluation . 206
9.4.8 Qualitative Analysis . 211

v

9.4.9 E2E Comparison . 215
9.5 Discussion . 218

10 Conclusions and Future Work 222
10.1 Conclusions . 223

10.1.1 Overview . 223
10.1.2 Semantic Accuracy . 224
10.1.3 Evaluation Metrics and Diversity 227
10.1.4 Limitations of Our Work . 231

10.2 Future Work . 235
10.2.1 Modifications to Batch-MCTS 235
10.2.2 Reinforcement Learning With Batch-MCTS 238

vi

List of Figures

1.1 Standard architecture of a spoken dialogue system. 2

2.1 Distribution of slots in the E2E dataset. 26
2.2 Distribution of the number of slots across all types of MRs in ViGGO. 31
2.3 Distribution of the DAs across the training/validation/test split in

ViGGO. 32

4.1 Standard architecture of a single-layer LSTM encoder-decoder model
with an attention mechanism. 54

6.1 Visualization of cross-attention weight distribution for T5-small (trained
on ViGGO) in 3 different scenarios. 85

6.2 Example of the decoder paying equal attention to two slots in the
input sequence. 87

6.3 Effects of different parameter configurations of the 3 mention-tracking
components on SER and BLEU of utterances generated by BART-
base fine-tuned on ViGGO. 96

6.4 Effect of different beam sizes on the SER using different reranking
methods on the ViGGO and E2E datasets. 97

6.5 Running time of T5-small performing inference on the ViGGO test
set using different decoding methods and batch sizes. 106

7.1 Token probabilities in 3 different utterances generated by a T5-small
model for the same input MR with different inference methods. . . . 111

7.2 The 4 phases of the original MCTS. 116
7.3 Illustration of Batch-MCTS sampling utterances from different parts

of the search tree in parallel. 118
7.4 The 4 phases of our proposed Batch-MCTS algorithm. 119

8.1 Scores calculated by various metrics comparing human-written utter-
ances from the ViGGO validation set to perturbed pseudo-references
created from the corresponding MRs (using space as the separator
and no slot names). 143

8.2 Metric score changes for 3 different utterances when a Boolean slot is
negated in the pseudo-utterance. 147

8.3 Metric score changes for 2 utterances with different slot mention para-
phrases, when the slot is deleted or substituted in the pseudo-utterance.149

vii

8.4 Scores calculated by various metrics comparing human-written ut-
terances from the ViGGO validation set to their corresponding MRs
with DA types removed. 151

8.5 Scores calculated by various metrics comparing human-written utter-
ances from the ViGGO validation set to perturbed pseudo-references
created from the corresponding MRs (using space as the separator
and including slot names). 155

8.6 Scores calculated by neural metrics comparing human-written utter-
ances from the ViGGO validation set to perturbed pseudo-references
created from the corresponding MRs (using space as the separator
and no slot names). 161

8.7 Slot error rate (SER) calculated by our heuristic slot aligner com-
paring human-written utterances from the ViGGO validation set to
perturbed MRs. 163

8.8 An overview of the overall performance of N-gram overlap and neural
metrics in pseudo-reference-based semantic evaluation. 166

9.1 Overview of T5-small’s performance with different inference methods
on ViGGO. 183

9.2 Overview of T5-small’s output diversity with different inference meth-
ods on ViGGO. 186

9.3 Average scores of the top 10 candidates vs. average scores of the best
candidate only, using different numbers of MCTS iterations but fixed
total numbers of samples. 190

9.4 Metric scores for utterances generated with Batch-MCTS using two
variants of the state evaluation metric: PPL+BERTScore and PPL
only. 193

9.5 Metric scores for utterances generated with Batch-MCTS using the
PPL+SER state evaluation metric variant, and PPL+BERTScore for
comparison. 197

9.6 Metric scores for utterances generated with Batch-MCTS using the
PPL+mPPL+SER state evaluation metric variant, and PPL+SER
for comparison. 200

9.7 Metric scores for utterances generated with Batch-MCTS using two
variants of the state evaluation metric: mPPL+BERTScore and mPPL
only. 203

9.8 Overview of the best Batch-MCTS configurations with the mPPL and
mPPL+BERTScore state evaluation metric. 205

9.9 Overview of the best Batch-MCTS configurations with the mPPL+SER
state evaluation metric. 206

9.10 Results of the human evaluation comparing the outputs of Batch-
MCTS using 5 different configurations and those of 3 standard infer-
ence methods. 208

9.11 Metric scores for utterances generated with Batch-MCTS on the E2E
dataset using two variants of the internal utterance evaluation metric:
PPL+BERTScore and PPL only. 216

9.12 Semantic accuracy and diversity trade-off in model outputs produced
by Batch-MCTS compared to 3 standard inference methods. 219

viii

List of Tables

1.1 Example of a meaning representation (MR) and two corresponding
utterances of different styles. 4

2.1 Dataset partition sizes and other dataset statistics. 24
2.2 Average number of sentences in the reference utterance for a given

number of slots in the corresponding MR, along with the proportion
of MRs with specific slot counts in the E2E dataset. 26

2.3 Examples of MRs and corresponding reference utterances in the ViGGO
dataset. 27

2.4 Overview of mandatory and common possible slots for each DA in
the ViGGO dataset. 29

2.5 Dataset statistics comparing the ViGGO dataset, as well as its subset
of inform DAs only, with the E2E dataset. 33

2.6 Example of a conversation about video games comprising utterances
of DAs defined in ViGGO. 34

3.1 Examples of contrastive phrases involving Boolean slots. 39
3.2 Example of value mapping between two similar scalar slots in the E2E

restaurant domain and the ViGGO video game domain. 41
3.3 Example from the ViGGO dataset that involves list slots. 43
3.4 Mapping of slots from E2E’s restaurant domain to ViGGO’s video

game domain, which we used to create a video game dataset replica
out of the E2E dataset. 48

3.5 Human evaluation of the slot aligner’s performance on each dataset. 49

4.1 Simplified definitions of reference-based automatic metrics used in our
evaluations. 59

4.2 Slug2Slug, our LSTM/CNN ensemble system trained with sample
splitting, compared to TGen, the baseline system in the E2E NLG
Challenge. 60

4.3 Automatic metric scores of 3 different models and their ensemble,
tested on the validation set of E2E. 62

4.4 Our LSTM and transformer models evaluated on the E2E dataset. . 62
4.5 Results of our experiments on the ViGGO dataset. 64
4.6 Naturalness and coherence scores of our model’s generated outputs

compared to the reference utterances, as per the human evaluation. . 65

ix

4.7 Results of our experiments on the subset of the ViGGO dataset with
inform DAs only. 67

5.1 Examples of utterances in different datasets/domains, exhibiting in-
teresting discourse phenomena. 70

5.2 Examples of the categories of discourse phenomena extracted from
E2E utterances. 71

5.3 The weighting schema for different discourse markers for each intro-
duced category of discourse phenomena. 73

5.4 Example of emphasizing the information about family-friendliness in
an utterance conveying the same content. 76

5.5 Examples of generated utterances with or without emphasis annotation. 79
5.6 Emphasis realization success rate and the slot error rate in the gen-

erated outputs using data annotation. 79
5.7 Combinations of the slot values for which aggregation would be possible. 80

6.1 Final configuration of parameters used in each of the 3 mention-
tracking components. 90

6.2 Overview of the model specifications and the training parameters used
in our experiments. 93

6.3 Models tested on the ViGGO dataset using SeA-GuiDe and other
decoding methods. 100

6.4 Models tested on the E2E dataset using SeA-GuiDe and other de-
coding methods. 101

6.5 Models tested on MultiWOZ using SeA-GuiDe and other decoding
methods. 102

6.6 Examples of slot-mention tracking results using SeA-GuiDe. 104

8.1 MR with multiple utterance examples, each of which correctly men-
tions the has multiplayer slot (and its negative polarity) in a very
different way. 130

8.2 MR with multiple pseudo-reference examples, each using different
composition rules. 136

8.3 Examples of perturbed pseudo-references. 139
8.4 An overview of the ideal semantic accuracy metric behavior and how

it translates to a metric’s performance when comparing an utterance
with a perturbed pseudo-reference. 140

8.5 Simplified definitions of additional reference-based automatic metrics
that we employ for semantic accuracy evaluation. 141

8.6 Major differences in metric behavior between using raw MRs (without
the DA type) and pseudo-references (with slot names). 153

9.1 Vocabulary size and unique word statistics for the reference utterances
of the ViGGO and E2E test sets, along with the same statistics for the
outputs of a fine-tuned T5-small model on the test sets using greedy
decoding. 173

9.2 Classification and description of the final set of error types we distin-
guish in the human evaluation of generated utterances. 181

9.3 Example utterances generated for the same MR in the ViGGO test
set (with the request DA type) using different inference methods. . . 212

x

9.4 Example utterances generated for the same MR in the ViGGO test
set (with the give opinion DA type) using different inference methods. 214

xi

Abstract

Diversifying Language Generated by Deep Learning Models in Dialogue

Systems

by

Juraj Juraska

Conversational AI has seen tremendous progress in recent years, achieving

near-human or even surpassing human performance in certain well-defined tasks,

including speech recognition and question answering. Yet it tends to struggle with

tasks which are less constrained, in particular those that involve producing human

language. Current approaches to natural language generation (NLG) in dialogue

systems still heavily rely on techniques that lack scalability and transferability to

different domains, despite the general embrace of more robust methods by the NLG

community, in particular deep learning (neural) models. These methods rely on large

amounts of annotated data, yet they tend to produce generic, robotic, and boring

responses that lack most of the human language nuances that make conversation

creative and varied.

While the naturalness of the generated language is an important factor

affecting the perceived quality of a dialogue system, semantic accuracy is also ex-

tremely important. If a system is not semantically accurate, it may provide the

user with incorrect information or contradict its earlier responses. In this thesis,

we focus on the task of generating an utterance from a structured meaning repre-

sentation (MR). To support our work, we create and release a new parallel corpus

with more varied dialogue acts and more conversational utterances than previous

xii

MR-to-text corpora. We explore different ways of promoting output diversity in

neural data-to-text generation while ensuring high semantic accuracy by developing

new methods to help deep learning NLG models produce diverse utterances that are

faithful to their MRs. This is an important step toward making conversational AI

more reliable and pleasant to interact with.

We first observe in our initial experiments that NLG models have the abil-

ity to produce more diverse and natural-sounding texts when explicitly prompted

to, however, this diversity comes at the expense of semantic accuracy. This leads

us to develop a set of methods for automatically assessing and enforcing semantic

accuracy in the generated utterances. We introduce a general tool to find a semantic

alignment between an utterance and the corresponding input, which can be used for

automatically evaluating the accuracy of generated utterances and ranking a pool

of candidate utterances a model produces. We also propose a novel semantically

attention-guided decoding method for neural encoder-decoder models, which uti-

lizes the models’ own knowledge acquired from training in a way that enables them

to track semantic accuracy during inference and rerank generated utterance candi-

dates accordingly. We show on multiple datasets that both of these methods have an

ability to dramatically reduce semantic errors in model outputs, while maintaining

their overall quality and fluency.

We then systematically explore Monte-Carlo Tree Search (MCTS) as a way

to simultaneously optimize both semantic accuracy and stylistic diversity during in-

ference. To guide the MCTS, we propose a new referenceless automatic metric for

utterance evaluation. Our results show that, using this novel method, we can suc-

cessfully increase diversity while maintaining, or even improving, semantic accuracy.

xiii

To my fiancée Nehal and my family.

xiv

Acknowledgments

When I started my PhD program, I had no clue about the field of NLP,

despite having taken several AI classes earlier. It wasn’t until the end of my first

year, when I took Lyn Walker’s Conversational Agents class, that I discovered this

fascinating research area at the intersection of computer science and linguistics.

At that time when I was struggling to find direction on my path to PhD,

Lyn took me under her wing and believed in me, for which I am forever grateful to

her. As my advisor, Lyn offered me unwavering support throughout the years that

followed and, with her expertise and love for NLP and dialogue systems, rekindled

my passion for AI. Thanks to her invaluable guidance but also her trust in my own

judgment, I grew as a researcher, gradually becoming independent and confident in

tackling problems that did not have an obvious solution.

My dissertation would have gone a different route, had I not been lucky to

meet Scott Roy. As my mentor during my first internship at Google, he showed noth-

ing but patience and care, and he treated me as an equal, listening to my ideas and

frequently communicating appreciation along with thoughtful feedback. Working

with Scott both during and after the internship has been a remarkably empowering

experience, and I am very grateful for that opportunity. As a brilliant yet empa-

thetic leader with a contagious enthusiasm for deep learning and conversational AI,

Scott has been, and will continue to be, an inspiration and a role model to me.

Next, I want to thank my advancement and dissertation reading commit-

tee – Lyn, Scott, Jim Whitehead and Jeff Flanigan – for their advice on my early

work, and for taking the time to evaluate my dissertation and providing me with

valuable feedback.

xv

When taking a break from my dissertation research in the summers, I

had the opportunity to work with several wonderful and smart people at Google

and Microsoft Research. Elahe Rahimtoroghi, Grady Simon, Markus Freitag, Mihir

Kale, Partha Parthasarathy, and William Gale – these colleagues and mentors not

only helped me navigate the non-academic landscape and understand how to do

research in an industry setting, but also made sure my internship experiences were

all excellent.

On my journey towards PhD, I collaborated closely with many people at

UCSC. Among them I would like to especially thank Kevin for the first prototype

of the slot aligner, for his help with creating the ViGGO corpus, and for mak-

ing attending conferences and Alexa Prize summits fun. I also want to thank my

other contemporary and former labmates Davan, Wen, Lena, Jiaqi, Shereen, Angela,

Omkar, Rishi, Nikhil, Brian and Abteen, with whom I spent years developing and

tirelessly improving our SlugBot and Athena chatbots. This list would not be com-

plete without mentioning Panos, who was instrumental in developing our Slug2Slug

system with which we won the E2E NLG Challenge back in 2017, which in turn led

to my first and most successful conference paper thus far.

After moving to California to start my PhD, I was fortunate beyond mea-

sure with my first housing at Sonya and Jeff’s place. Not only did they maintain a

more-than-fair rent for the whole two years I stayed with them, despite the outra-

geous housing market in Santa Cruz, they even let me permanently keep their son’s

digital piano in my room, since I had to leave mine behind at home in Slovakia. As

if that was not enough, I had access to the best tomatoes, strawberries and per-

simmons straight from their garden to fuel my brain all year round. Thank you,

Sonya and Jeff, for your incredible kindness and making me feel at home after having

xvi

moved half across the world, as well as for all our conversations and the occasional

game night!

Zuzka and Raman, dearest of all my friends, thank you for not forgetting

about me after I left Europe. I can’t express how much I treasure our friendship, as

well as your empathy and encouragement whenever we get to talk. I know that, if I

were ever to move back to Praha, we would pick up right where we left off in 2016

as if no time had passed at all!

Of course, I would not be where I am without my family. First, my big

brother, Michal, was the one who inspired me to embark on the PhD journey in

the U.S. in the first place and who understood my struggles the most. Second,

my brother Tomik has made sure I preserved my sanity until the end of my PhD

program by frequently checking in on me and letting me momentarily escape the

reality during our impromptu gaming sessions, as well as by arranging for us to go

for a trip or at least meet once a year despite the physical distance between us.

But most of all, I am grateful to my wonderful parents, Eugénia and Dalibor, who

encouraged me to travel and start getting to know the world from an early age, and

eventually supported my decision to pursue my academic goals on the other side of

the planet. I try not to see the distance as an obstacle though, as I think, if anything,

it has even strengthened our bond. That being said, I miss you a lot, mamina and

tatino! Thank you for your infinite love and patience, and also for making me take

piano classes as a kid, as it was only much later that I discovered the profound effect

of making music on my inner peace and sense of harmony no matter where I am.

Finally, I would like to thank my best friend and fiancée Nehal for her

constant love and support all throughout my PhD program, for her solidarity in

staying up with me all night (or dozing off on the couch next to my desk) when I had

xvii

deadlines, for commiserating with me when my papers got rejected and celebrating

when they got accepted, and for making me laugh at times when I thought I couldn’t

muster even a smile. In short, I am truly grateful to her for being always by my

side, and not stopping believing in me for a second, even when I myself had serious

doubts about my ability or resolve to complete my PhD. Thank you for making life

so beautiful!

xviii

Chapter 1

Introduction

As technology permeates every aspect of our lives, dialogue systems are

becoming increasingly prevalent in facilitating our interactions with devices and ser-

vices by enabling us to communicate in human language – the most natural and

convenient way. While task-oriented dialogue systems can already be found in a

range of settings from smartphones to customer service to event reservations, con-

versational agents, or “chatbots”, currently have a rather limited scope of applica-

tion. Although chatbots remain restricted mostly to entertainment for now, their

potential lies in fields like healthcare and therapy, education, or consulting. The pri-

mary reason for their slow advancement is the enormous complexity in developing

such systems that need to be able to understand any type of utterance in the given

context and respond to it in a coherent and natural way irrespective of the domain.

There has recently been a substantial amount of research and rapid progress

in natural language processing (NLP), achieving near-human or even surpassing hu-

man performance in certain well-defined tasks, including automatic speech recogni-

tion and question answering. However, the capabilities of digital personal assistants,

such as Google Assistant or Alexa, remain fairly limited and lacking in various as-

1

Figure 1.1: Standard architecture of a spoken dialogue system.

pects, one of the most challenging of which is the ability to produce responses with

human-like coherence and naturalness on any topic and for many different kinds of

content. In a traditional (i.e., not end-to-end) dialogue system, this is the responsi-

bility of the natural language generation (NLG) component (see Figure 1.1).

NLG in conversational AI, in general, remains a difficult task, primarily

due to it being a less constrained task which involves producing rich human lan-

guage. While end-to-end generation has greatly improved since the advent of large

pretrained language models, even models like DialoGPT (Zhang et al., 2020b), GPT-

3 (Brown et al., 2020) or LaMDA (Thoppilan et al., 2022) are not quite ready for a

wide-spread adoption in customer-facing systems because of their lack of predictabil-

ity and interpretability. Since end-to-end generation approaches currently have a

limited ability to maintain a coherent and engaging conversation on a subject for

an extended number of turns, open-domain dialogue systems like the “socialbots”

developed in the Alexa Prize competition (Khatri et al., 2018; Bowden et al., 2018;

Harrison et al., 2019; Juraska et al., 2021; Hu et al., 2021) still rely to some extent

on handcrafted rules and response retrieval for sufficient controllability.

In task-oriented dialogue systems, controllability is probably even more es-

sential, as they require high semantic fidelity of the generated responses in order to

correctly track what information exactly has been exchanged with the user. There-

2

fore, their NLG components are typically conditioned on structured input data, per-

forming data-to-text generation. In a typical task-oriented dialogue system, at each

turn in a conversation, the dialogue manager produces an object with the desired

content for the system’s response, and possibly other metadata specifying additional

aspects of the response. This object is passed on to the NLG component, whose

responsibility is to generate a fluent natural-language utterance with all the desired

content faithfully and adequately realized. The structured data object can take on

different forms, ranging from simple meaning representations (Mairesse et al., 2010;

Mairesse and Young, 2014; Wen et al., 2016; Novikova et al., 2017b; Juraska et al.,

2019), to graph-based abstract meaning representations (Banarescu et al., 2013), to

RDF triples (Gardent et al., 2017; Ferreira et al., 2020; Nan et al., 2021).

Besides dialogue systems, data-to-text NLG has many successful applica-

tions in various domains (Sharma et al., 2022), including finance (Plachouras et al.,

2016; Murakami et al., 2017), healthcare (Pauws et al., 2019), journalism (Leppänen

et al., 2017), sports (Chen and Mooney, 2008; Wiseman et al., 2017) and weather

(Liang et al., 2009; Balakrishnan et al., 2019), in the majority of which the task is to

provide a summary of the information given in the structured input. In contrast to

data-to-text generation for dialogue, they often do not require all the source content

to be mentioned in the output text. Depending on the domain, the data format in

these tasks ranges from time series (Reiter et al., 2005) to tables (Lebret et al., 2016;

Chen et al., 2020; Parikh et al., 2020).

In our work, we focus on data-to-text NLG for dialogue systems, with

simple meaning representation (MR) as the input format. This type of MR provides

information about the content to be conveyed in the response (utterance) and can

optionally indicate the dialogue act (DA) type (e.g., yes/no question, or opinion)

3

MR
inform (name [The Waterman], food [English], priceRange
[cheap], customerRating [low], area [city centre], fami-
lyFriendly [yes])

Utt. #1
The Waterman is a family-friendly restaurant in the city centre.
It serves English food at a cheap price. It has a low customer rating.

Utt. #2
There is a cheap, family-friendly restaurant in the city centre,
called The Waterman. It serves English food, but received a low
rating by customers.

Table 1.1: Example of a meaning representation (MR) and two corresponding ut-
terances of different styles.

and other specifications for the utterance. It is typically structured as a list, in which

each element is a slot-value pair, where the slot specifies the type of information,

and the value is the corresponding content. Table 1.1 shows an example MR for a

restaurant called “The Waterman” along with two (out of many) possible utterances

expressing all the given information in two different ways.

Although in task-oriented dialogue systems, it is typically feasible to design

a set of templates or syntactic rules for responses, this approach lacks scalability,

as well as transferability to different domains. As a result, more robust methods

have become favored in recent years, employing statistical or deep learning models.1

While large pretrained generative language models (LMs), such as GPT-2 (Radford

et al., 2019) or T5 (Raffel et al., 2020), are remarkably good at generating fluent text,

when fine-tuned on a data-to-text NLG task, even they often fail to produce text

that reliably and correctly mentions all the information provided in the input (Li

et al., 2022a). In fact, pretrained LMs also tend to hallucinate information that is

not supported by the inputs, but might have been present in their training data in

a related context (Maynez et al., 2020; Raunak et al., 2021; Wang et al., 2021; Ji

et al., 2022). To achieve high semantic accuracy, neural models for data-to-text NLG

1Since deep learning models typically involve some kind of neural networks, they are often
referred to as “neural” models, and we use the two terms interchangeably.

4

have invariably been reliant on extrinsic components or methods, which typically

require training a separate classifier or changing the NLG model’s architecture.

Furthermore, data-to-text NLG models often rely on relatively large amounts of

annotated training data, yet they tend to produce generic sentences that lack most

of the human language nuances that make it creative and varied. The naturalness

of the generated language is an important factor affecting the perceived quality of

a dialogue system. We therefore explore different ways of ensuring output diversity

in neural data-to-text generation without a negative impact on semantic accuracy.

We believe that progress in dialogue systems overall has been stymied by

the challenges of creating robust natural language generators for dialogue. In par-

ticular we posit that progress in this field is dependent on novel methods for:

• NLG models that can simultaneously control for semantic and DA accuracy;

• NLG models that produce diverse utterances that are stylistically varied and

natural;

• Automatic evaluation metrics that can precisely measure semantic accuracy,

DA accuracy, and stylistic diversity.

This thesis contributes to addressing these challenges. In order to contextualize and

motivate our work, Section 1.1 gives an overview of different approaches to NLG, and

Section 1.2 discusses in more detail the requirements for NLG models for dialogue.

Section 1.3 then describes the state of the art for stylistic control in NLG, while

Section 1.4 summarizes where the field is in terms of automatic evaluation metrics.

5

1.1 Natural Language Generation Approaches

A natural language generator must produce a syntactically and semanti-

cally correct utterance from a given MR that typically specifies both a DA type

and a set of semantic attributes that should be realized in the generated utterance.

The utterance should express all the information contained in the MR, in a natural

and conversational way. In traditional language generator architectures, the assem-

bling of an utterance from an MR is performed in two stages: sentence planning,

which enforces semantic correctness and determines the structure of the utterance,

and surface realization, which enforces syntactic correctness and produces the final

utterance form.

Earlier work on statistical NLG approaches were typically hybrids of a

handcrafted component and a statistical training method (Langkilde and Knight,

1998; Stent et al., 2004; Rieser and Lemon, 2010; Stent et al., 2004; Walker et al.,

2007; Mairesse and Walker, 2007). The handcrafted aspects, however, lead to de-

creased portability and potentially limit the variability of the outputs. New corpus-

based approaches emerged that used semantically aligned data to train language

models that generate utterances directly from the MRs (Mairesse et al., 2010;

Mairesse and Young, 2014). The alignment provides valuable information during

training, but the semantic annotation is costly.

More recent methods do not require aligned data and use an end-to-end

approach to training, performing sentence planning and surface realization simulta-

neously (Konstas and Lapata, 2013). The first successful systems using this end-

to-end training paradigm utilized recurrent neural networks (RNNs) paired with an

encoder-decoder system design (Mei et al., 2016; Dušek and Jurč́ıček, 2016), but also

6

other concepts, such as imitation learning (Lampouras and Vlachos, 2016). These

NLG models, however, typically require greater amount of data for training due

to the lack of semantic alignment, and they still have problems producing syntacti-

cally and semantically correct output, as well as being limited in naturalness (Nayak

et al., 2017).

Many recent advances in NLG have come from the field of machine trans-

lation (Chen et al., 2018). Although machine translation is a text-to-text NLG task,

data-to-text NLG is closely related and has similarly benefited from recent rapid

development of deep learning methods. Data-to-text NLG systems thus gradually

also moved toward neural sequence-to-sequence models (Sutskever et al., 2014) with

an encoder-decoder architecture (Cho et al., 2014) and equipped with an attention

mechanism (Bahdanau et al., 2015). Even more recently, purely attention-based

models, based on the transformer (Vaswani et al., 2017) architecture, started consis-

tently outperforming RNN-based sequence-to-sequence models. Both that and their

significantly faster training times are why they quickly became widespread.

NLG methods continued evolving rapidly since then, and the paradigm

has shifted to very large transformer-based language models pretrained on massive

amounts of text data in an unsupervised way, and subsequently fine-tuned on much

smaller domain-specific datasets. This gave birth to innumerable models with differ-

ent pretraining techniques and corpora, among which GPT-2 (Radford et al., 2019),

an autoregressive decoder-only model, became the first popular and widely-used

model in NLG. It was, however, more suitable for open-ended than data-to-text

generation. GPT-2 spawned many variants, including CTRL (Keskar et al., 2019),

Transformer-XL (Dai et al., 2019) and Reformer (Kitaev et al., 2020). These were

soon followed by a number of full-fledged encoder-decoder models, including T5 (Raf-

7

fel et al., 2020), BART (Lewis et al., 2020) and ProphetNet (Qi et al., 2020), which

are generally better suited for sequence-to-sequence tasks like data-to-text NLG.

Most recently, pretrained NLG models grew to behemoths with hundreds

of billions of parameters, such as GPT-3 (Brown et al., 2020), Jurassic-1 (Lieber

et al., 2021) and BLOOM (Laurençon et al., 2022). These models often take months

to train on powerful GPUs, but once they are trained, they are sufficiently robust

to tackle tasks in zero- or few-shot setting. For data-to-text NLG, this means that a

model could generate a reasonable utterance by just seeing a definition of the task or

a few example MR-utterance pairs provided along with the input MR. Nevertheless,

these gigantic models typically only have restricted access to inference through an

API, and are therefore not practical for use in developing new methods for NLG

models.

In this thesis, we experiment with a variety of neural approaches ranging

from RNN-based encoder-decoder models with attention that we train from scratch,

to fine-tuning pretrained transformer-based language models, such as T5 and BART.

1.2 Semantic Control in NLG

Prior to the advent of pretrained language models, NLG systems would rely

on slot delexicalization (Mairesse et al., 2010; Henderson et al., 2014), which allows

the model to better generalize to unseen inputs, as exemplified by TGen (Dušek and

Jurč́ıček, 2016). However, Nayak et al. (2017) point out that there are frequent sce-

narios where delexicalization behaves inadequately (see Section 4.2 for more details).

More recently, a similar effect was achieved by using a copy mechanism (Vinyals

et al., 2015; Gu et al., 2016; See et al., 2017) integrated directly into the model’s

8

decoder, and Agarwal and Dymetman (2017) show that a character-level approach

to NLG may avoid the need for delexicalization, at the potential cost of making

more semantic omission errors.

The end-to-end approach to NLG typically requires a mechanism for align-

ing slots with the output utterances: this allows the model to generate utterances

with fewer missing slots mentions or hallucinations. Cuayáhuitl et al. (2014) per-

form automatic slot labeling using a Bayesian network trained on a labeled dataset,

and show that a method using spectral clustering can be extended to unlabeled data

with high accuracy. In one of the first successful neural approaches to data-to-text

generation, Wen et al. (2015a) augment the generator’s inputs with a control vector

indicating which slots still need to be realized at each step. Wen et al. (2015b)

take the idea further by embedding a new sigmoid gate into the LSTM cells of

their RNN network, which directly conditions the generator on the input MR. The

coverage mechanism (Tu et al., 2016; Mi et al., 2016; See et al., 2017) similarly

tracks the already realized information within the model itself. Dušek and Jurč́ıček

(2016), on the other hand, supplement their encoder-decoder model with a trainable

classifier which they use to rerank the beam search candidates based on incorrect

slot mentions. These approaches mostly depend on a high-quality parallel train-

ing corpus, where all reference utterances should correctly mention all the slots in

the corresponding MR. Unfortunately, that is not the case with all datasets, for

instance, one of the largest data-to-text NLG datasets in the restaurant domain, the

E2E dataset (Novikova et al., 2017b), which is popular due to its size for training

end-to-end neural models, is known to be noisy (Dušek et al., 2019).

One of the contributions of this thesis is a general-purpose slot aligner that

addresses some of these problems (Juraska et al., 2018). When we were first tackling

9

this data-to-text generation problem, we quickly realized that being able to align

slots in an MR with their mentions in the corresponding utterance would be bene-

ficial in multiple phases of training and evaluating the system. We thus gradually

developed a heuristic slot aligner applicable in several different aligning tasks: be-

sides its use for denoising and augmenting training data, it can complement a neural

NLG model to enhance its semantic accuracy through utterance reranking, partic-

ularly in data-starved scenarios. Furthermore, it can be utilized for evaluation by

indicating how many of the input MR’s slots have not been realized in an utterance

correctly. The slot aligner proves particularly useful when training our models on

the popular, but very noisy, E2E dataset. In addition to the slot aligner, we propose

a novel decoding method, SeA-GuiDe (Juraska and Walker, 2021), that utilizes

the model’s own attention mechanism to automatically track slot mentions during

the inference and subsequently rerank the candidate utterances, giving preference

to those that have all slots realized. Unlike the slot aligner, SeA-GuiDe works out

of the box for any new domain.

1.3 Stylistic Variation in NLG

The restaurant domain has always been the domain of choice for NLG

tasks in dialogue systems (Stent et al., 2004; Gašić et al., 2008; Mairesse et al.,

2010; Howcroft et al., 2013), as it offers a good combination of structured informa-

tion availability, expression complexity, and ease of incorporation into conversation.

Hence, even the more recent neural models for NLG continue to be tested primarily

on data in this domain (Wen et al., 2015b; Dušek and Jurč́ıček, 2016; Nayak et al.,

2017). These tend to focus solely on syntactic and semantic correctness of the gener-

10

ated utterances, nevertheless, there have also been recent efforts to collect training

data for NLG with emphasis on stylistic variation (Nayak et al., 2017; Novikova

et al., 2017b; Oraby et al., 2017).

While there is previous work on stylistic variation in NLG (Paiva and

Evans, 2004; Mairesse and Walker, 2007), this work did not use crowd-sourced ut-

terances for training. More recent work in neural NLG that explores stylistic control

has not needed to control semantic correctness, or examined the interaction between

semantic correctness and stylistic variation (Sennrich et al., 2016; Ficler and Gold-

berg, 2017). Also related is the work of Niu and Carpuat (2017) that analyzes how

dense word embeddings capture style variations, Kabbara and Cheung (2016) who

explore the ability of neural NLG systems to transfer style without the need for

parallel corpora, which are difficult to collect (Rao and Tetreault, 2018), while Li

et al. (2018) use a simple delete-and-retrieve method also without alignment to out-

perform adversarial methods in style transfer. Finally, Oraby et al. (2018) propose

two different methods that give neural generators control over the language style,

corresponding to the Big Five personalities, while maintaining semantic fidelity of

the generated utterances.

Overall, there has been a lack of research exploring the use of and utility

of stylistic selection for controlling stylistic variation in NLG from structured MRs.

This may be either because there have not been sufficiently large corpora in a par-

ticular domain until recently, or because it is surprising, as we show, that relatively

small corpora (2,000 samples) whose style is controlled can be used to train a neural

generator to achieve relatively high semantic correctness while producing stylistic

variation.

Among the contributions of this thesis is a systematic exploration of differ-

11

ent ways of gaining more control over the style of a neural model’s outputs. We were

not satisfied with the generic-sounding utterances we had observed neural models to

produce, and wanted to see if they are capable of generating more complex language,

as also seen in the training set, only not as frequently. Take, for instance, the two

alternative utterances for the same MR in Table 1.1. The first example utterance

sounds almost robotic, while the second one might be considered stylistically inter-

esting, since the name of the restaurant follows the mention of certain aspects of the

description emphasized at the beginning of the utterance, and contains a concession

in its second sentence. One goal of our work is to have neural models consistently

generate utterances like the latter, if the training set contains such examples.

We experiment with training data manipulation and model input augmen-

tation, both of which enable stylistic control to a certain degree (Juraska and Walker,

2018). We then propose an inference method for sequence-to-sequence neural mod-

els, that we posit should result in increased diversity of NLG outputs while main-

taining high semantic accuracy. The inference method based on Monte-Carlo Tree

Search (MCTS) automatically promotes diversity better than beam search and, at

the same time, optimizes for an arbitrary metric. We developed a comprehensive

referenceless metric to guide the tree search. Besides capturing the fluency of the

language, the metric also reflects the semantic accuracy, i.e., whether the gener-

ated sentence correctly conveys all the information it is supposed to. By making

generated language sound less repetitive and more natural, we seek to make the

experience more pleasant for users regularly interacting with conversational AI.

12

1.4 Automatic Metrics for Data-to-Text NLG Evalua-

tion

Automatic evaluation in data-to-text NLG is a challenging problem, and

to this day remains without a standard method or metric, let alone one that could

replace human evaluation. For years the data-to-text NLG community has been

relying on metrics from other NLG disciplines, which are not entirely compatible

with this task (Sai et al., 2022). The most popular one, BLEU (Papineni et al., 2002),

works very well in machine translation, where the structure of the target outputs

is strictly determined by the source text, and the generated texts are thus not

supposed to deviate much from the references. ROUGE-L (Lin and Och, 2004), on

the other hand, is less strict about exact phrasing but still expects information to be

in the same order, which is effective in its original discipline of text summarization.

Another example is the CIDEr (Vedantam et al., 2015) metric, proposed for image

captioning evaluation, where the desired captions are typically very simple – often

just incomplete sentences – and lack more advanced discourse relations. These are

all reference-based metrics that compare a generated utterance with one or more

reference utterances written by humans, and penalize it for differences.

There are several obvious conflicts between what these metrics were de-

signed for and the basic principles of data-to-text language generation. Most im-

portantly, in our task there is a multitude of very different, but equally correct and

accurate, ways to express all but the simplest MRs. The utterances can express the

input information in a virtually arbitrary order, as long as they are grammatical,

and in many cases using synonymous expressions, varying phrasing, and possibly

different discourse relations. Neural models are capable of capturing general con-

13

cepts across different samples in the training data, and subsequently applying them

to new, previously unseen, inputs. Therefore, datasets rarely provide more than

one reference utterance per MR. However, during evaluation, it means that if the

sentence structure chosen by the model is not common, or at all present, among the

reference utterances for the given input, the generated utterance will score lowly

according to these metrics regardless of its correctness.

The majority of automatic metrics commonly used in NLG, including the

above, depend to a high degree on lexical overlap with human-authored reference

texts. Most of the metrics give better and more objective results with an increasing

number of references available, however, collecting many references for each example

in a dataset is expensive. Not surprisingly, automatic metrics in general were shown

to only weakly correlate with human judgments in data-to-text NLG (Novikova et al.,

2017a), and have long been criticized for not accurately reflecting the true quality of

the texts generated by NLG models overall (Callison-Burch et al., 2006; Reiter and

Belz, 2009; Smith et al., 2016). Other work suggests that, even when these metrics

are shown to strongly correlate with human references, it is often not for the right

reasons (Schluter, 2017; Caglayan et al., 2020). In general, their analyses suggest

that automatic metrics, while reliable in indicating a model’s poor performance, are

weak in distinguishing mediocre utterances from good ones, like humans can. This

may make these metrics adequate for model development, but, in most cases, not for

distinguishing the best NLG system in a group of good systems. Automatic metrics

have also been shown to penalize utterances for variation (Stent et al., 2005; Wang

and Chan, 2019), which further clashes with our objective of making model outputs

more diverse.

As a result, the data-to-text NLG community has been dependent on hu-

14

man evaluation, which is typically performed alongside of automatic metric evalua-

tion. The main reason for that is that there is no consensus on human evaluation

criteria in data-to-text NLG either, and new metrics with individual definitions are

thus constantly being devised, tailored to the task at hand (Howcroft et al., 2020).

More than 40 criteria across nearly 90 NLG papers from 2018 (van der Lee et al.,

2019) are an evidence of the lack of consensus. Evaluating NLG systems is, in gen-

eral, a challenging and nuanced task requiring linguistic and domain knowledge (Sai

et al., 2022). Nevertheless, human evaluation is typically performed by crowdwork-

ers who often lack such knowledge necessary to objectively judge the quality of

model outputs in specific NLG tasks, especially when the texts are largely fluent and

grammatically correct, which is mostly the case in the era of pretrained language

models. It has been shown in other NLG fields that crowdsourced human evaluation

is unreliable and more sophisticated automatic metrics even correlate better with

professional annotators’ ratings than the ratings of crowdworkers do (Freitag et al.,

2021). All in all, automatic metric evaluation still has high value in the research

community, as the standardized metric calculations allow for better independent

benchmarking and system comparison.

The recent emergence of neural reference-based metrics offers a more robust

alternative for automatic evaluation in NLG. They compare a pair of texts on a more

semantic level, as opposed to focusing on surface-level similarities only. BERTScore,

proposed in Zhang et al. (2020a), calculates the cosine similarity between the con-

textualized embeddings of individual candidate tokens and the reference tokens, and

returns the F1 score of their best matches. A pretrained BERT-based model (De-

vlin et al., 2019) is used to calculate the contextual embeddings, i.e., learned vec-

tor representations of tokens given their context in the text (Liu et al., 2020a).

15

BLEURT (Sellam et al., 2020), on the other hand, does not try to explicitly find a

semantic alignment between the candidate and the reference. Instead, it is a metric

directly trained to score pairs of texts, in a way that makes it domain-agnostic. The

metric was developed by further training the already pretrained BERT model with

millions of synthetic sentence pairs obtained by perturbing Wikipedia sentences and

automatically scored using a set of standard automatic metrics. It was subsequently

fine-tuned on a smaller amount of data with human ratings. Although both of these

metrics were developed with the machine translation task in mind, they are equally

effective for data-to-text NLG tasks. BERTScore and BLEURT have a superior

ability to capture semantic similarities between a pair of texts and have been shown

to correlate with human judgments significantly better than metrics that only rely

on lexical overlap.

There have also been a few efforts to come up with alternate forms of

automatic evaluation avoiding the drawbacks of reference-based metrics. The first

such metric for data-to-text NLG, proposed in Dušek et al. (2017), uses a neural

model to predict the quality score for an utterance based on the corresponding MR

only. The main drawback of their approach is that human ratings of multiple NLG

systems on multiple datasets are required to train the model. This approach limits

the cross-domain generalization capabilities of the metric, and it may be difficult for

others to reproduce the same results. In another attempt at a referenceless metric,

for the sentence compression task, Kann et al. (2018) show that a normalized unsu-

pervised language model score (Lau et al., 2017) correlates with human evaluation

of sentence fluency significantly more than ROUGE-L. By further combining the

language model with the ROUGE-L metric, they achieved an additional – and even

more substantial – increase in correlation. This indicates that the two components

16

account for complementary aspects (fluency and adequacy) of the generated texts,

and together form a highly accurate metric, though dependent on references.

In this thesis, inspired by the approach in Kann et al. (2018), we develop

a novel referenceless metric for data-to-text NLG. Since, in our task, adequacy is

reflected by the slot realization accuracy, we can use our proposed slot aligner to

replace ROUGE-L with the slot error rate (SER) metric, which we calculate based

on the generated utterance and input MR only, i.e., without an explicit reference. In

order to make the metric even more generalizable, we experiment with swapping the

slot aligner for a neural metric, such as BERTScore or BLEURT, which we use to

score utterance candidates against pseudo-references automatically generated from

the corresponding MRs. Although we use the referenceless metric to guide MCTS

in our proposed inference method, it may find application in other tasks, including

automatic evaluation of data-to-text NLG systems.

1.5 Contributions

This thesis makes several novel contributions to the field. We systemati-

cally explore the extent to which corpus manipulation and augmentation can control

style in data-to-text NLG. Our experiments with training a model on specific stylis-

tic partitions of a large dataset, such as E2E, show that the model does learn more

advanced discourse phenomena (such as contrast or fronting). However, it avoids

using them altogether in the utterances it generates, when trained on a larger cor-

pus where the phenomena occur overall less frequently. We therefore propose a

method of automatically labeling the style variants during training by augmenting

the input MRs, and show that we can then successfully enforce the use of particular

17

discourse phenomena in the generated utterances using our stylistic labels in the

inputs. Nevertheless, this stylistic control comes at the cost of semantic accuracy.

This motivates us to introduce a general tool, which we call the slot aligner,

that can automatically find a semantic alignment between the slots in the input MR

and their mentions in the corresponding utterance. The alignment information can

be used for various purposes, including augmenting the training data, automatically

evaluating the semantic accuracy of generated utterances, and ranking a pool of

utterance candidates a model produces. The slot aligner can be customized to new

domains, while taking advantage of the commonalities with other specific domain

corpora.

As an alternative to the slot aligner for the task of utterance ranking, we

develop a semantically attention-guided decoding method (SeA-GuiDe) for neural

encoder-decoder models. This novel approach utilizes the model’s own knowledge

acquired from training in a way that enables it to automatically track the semantic

accuracy during inference and rerank generated utterance candidates accordingly.

SeA-GuiDe is domain-independent and requires no model or training data modi-

fications, and can thus be used out of the box. We show on multiple datasets that

it has an ability to dramatically reduce semantic errors in model outputs, while

maintaining their overall quality and fluency.

Finally, we systematically explore MCTS as a way to simultaneously op-

timize both semantic accuracy and stylistic diversity during inference. We show

that standard inference methods, such as beam search or sampling, achieve a high

accuracy while reducing the diversity, or vice versa. Our proposed Batch-MCTS

method combines sampling and informed tree search to find varied utterance candi-

dates that are, nevertheless, fluent and semantically correct. It takes advantage of

18

parallelization to explore as many candidates in as short of a time as possible, so the

performance of this inference method scales with the hardware performance. Batch-

MCTS depends on a strong utterance evaluation metric to guide its search. For this

purpose, we propose a new referenceless automatic metric that assesses the quality

of an utterance based solely on the corresponding input MR and the utterance itself.

The metric uses a pretrained language model and an existing reference-based neural

metric, such as BERTScore or BLEURT, to compare an utterance against a pseudo-

reference created from its corresponding MR in an automated fashion. As a result,

the metric requires no training and can readily be used for other tasks where texts

need to be evaluated, given a structured input, without access to human-written

utterances.

In addition to these contributions, we also created and released a new

parallel corpus, ViGGO, with more varied dialogue acts and more conversational

utterances than previous corpora (Juraska et al., 2019). The dataset consists of

6, 900 utterances spanning 9 dialogue act types that could support a dialogue system

chatting about and recommending video games, a domain previously unexplored in

the fields of data-to-text NLG and dialogue systems. While the ViGGO corpus

is crowdsourced, we put significant effort into making it clean by correcting both

syntactic and semantic errors, so that the data could serve for effective training

of neural NLG models despite its relatively small size. Since we collected three

reference utterances for each MR, automatic evaluation of models trained on the

ViGGO corpus should also be more accurate than on datasets with a single reference

per input. We use ViGGO in most of our experiments, as it enables us to evaluate

our proposed methods more broadly.

19

1.6 Overview of the Thesis

In this chapter we have summarized related work on both stylistic diversity

and semantic accuracy in order to motivate our own work. We will also discuss

additional related work in more detail throughout the thesis where it is relevant.

In Chapter 2 we describe in detail the three datasets that we use for experi-

mentation: (1) the E2E dataset that was used in the E2E NLG Challenge (Novikova

et al., 2016, 2017b), (2) the MultiWOZ dataset which has been broadly used in data-

to-text generation (Budzianowski et al., 2018; Eric et al., 2020; Zang et al., 2020),

and (3) ViGGO, the dataset that we developed to address some of the limitations

of the other datasets (Juraska et al., 2019).

Chapter 3 introduces our heuristic slot aligner tool, which we use exten-

sively for various tasks throughout the entire thesis, ranging from semantic accuracy

evaluation, to candidate utterance reranking, to training data augmentation.

In Chapter 4 we review the deep learning sequence-to-sequence models that

we train for the data-to-text generation task on the datasets introduced in Chapter 2.

We show how methods for adaptive delexicalization can improve the performance of

such models, as well as the benefits of transfer learning for models trained on small

datasets.

In Chapter 5 we discuss the goal of generating diverse utterances in NLG

for dialogue systems, and explore various methods for stylistic control of generated

utterances, such as corpus manipulation and token supervision.

In Chapter 6 we dive deeper into the transformer-based encoder-decoder

models that we use, and show that attentional state of the models indicates that

they are actually aware of whether the output is semantically accurate. We propose

20

a novel method that utilizes the attention mechanism in a way that tracks slot

realizations during inference, which we call semantically attention-guided decoding

(SeA-GuiDe), and show that it can dramatically improve semantic accuracy.

In Chapter 7 we explore the use of Monte-Carlo Tree Search (MCTS) for

NLG inference, as an alternative to standard methods like greedy search, beam

search or nucleus sampling. We discuss the potential of an MCTS-based approach

to generate diverse outputs, while maintaining or improving faithfulness to their

inputs. We describe in detail our proposed modification, Batch-MCTS, that takes

advantage of parallelization in order to make the inference feasible in real time, and

explain the need for a referenceless automatic evaluation metric to guide the search

algorithm.

Thus in Chapter 8, we propose using standard off-the-shelf automatic met-

rics such as BLEU, BERTScore and BLEURT with pseudo-references generated

automatically from MRs, as a referenceless approach to estimating semantic accu-

racy of generated utterances. We systematically explore the interaction of these

automatic metrics with a number of different pseudo-reference types to determine

both the best metric and the most effective pseudo-reference format. We show that

the neural metrics BERTScore and BLEURT are the most robust in this setting.

We then use these results to define two versions of a referenceless metric that can

rank generated utterances based on their quality. It consists of two components: a

general-purpose language model to evaluate fluency, combined with either BERT-

score/BLEURT calculated using pseudo-references, or SER calculated using our slot

aligner from Chapter 3.

In Chapter 9 we then use this referenceless metric to guide the Batch-

MCTS inference introduced in Chapter 7. We evaluate our experiments using a set

21

of diversity metrics and other automatic metrics, as well as a human evaluation.

The results show that the trade-off between diversity and semantic accuracy is very

much present even in the Batch-MCTS method, but to a lesser degree, allowing

this inference method to produce utterances with semantic accuracy on par with

standard inference methods yet significantly higher diversity, or vice versa.

Finally, Chapter 10 summarizes our findings, discusses the limitations of

our work and describes future work.

22

Chapter 2

Data-to-Text NLG Corpora

Deep learning models, regardless of the specific task they are applied to,

depend on large amounts of data they can be trained on. Data collection for NLG

models is often particularly time-consuming and expensive because it requires hu-

mans to label text and, for tasks like data-to-text generation, to actually write text.

Therefore, the selection of publicly available corpora has been limited despite the

widespread adoption of deep learning methods in NLG over the past few years.

Thanks to their unprecedented size in data-to-text NLG, the E2E (Novikova

et al., 2017b) and the WebNLG (Gardent et al., 2017) dataset have become the

most popular benchmark datasets for new models. Aside from their domains, the

primary difference between these two parallel corpora lies in the representation of

the input data. While the E2E dataset maps structured MRs onto natural-language

utterances, WebNLG uses lists of RDF triples extracted from DBpedia instead of

MRs. Since in our work we focus exclusively on language generation from MRs,

the E2E dataset serves as the primary resource for training and evaluating our own

models.

Although the E2E restaurant dataset is particularly well-suited for bench-

23

TV Laptop E2E MultiWOZ ViGGO

|Training set| 4,221 7,944 42,061 55,951 5,103

|Validation set| 1,407 2,649 4,672 7,286 714

|Test set| 1,407 2,649 4,693 7,293 1,083

Total size 7,035 13,242 51,426 70,530 6,900

Domains 1 1 1 7 1

DA types 14 14 1 13 9

Slot types 16 20 8 27 14

Table 2.1: Dataset partition sizes and other dataset statistics, including the total
number of dialogue act (DA) and slot types. For MultiWOZ, the numbers are
calculated across system turns only.

marking new models against others, since many of the state-of-the-art models have

been evaluated on it, it contains data from a single domain and uses just one dialogue

act (DA) type. MultiWOZ 2.1 (Eric et al., 2020) is a corpus of 10K human-human

written conversations covering several domains, fully annotated with task-oriented

dialogue systems in mind, and featuring thus a number of DAs. For the purposes

of data-to-text generation, we extract system turns only, together with their MR

annotations, along the lines of Peng et al. (2020) and Kale and Rastogi (2020). This

results in a parallel corpus larger than E2E, and spanning 7 domains. We use Multi-

WOZ mainly for benchmarking purposes, to compare some of our proposed methods

against state-of-the-art models that were trained and evaluated on this dataset.

In addition to E2E and MultiWOZ, we conducted our earlier experiments

on the RNNLG toolkit’s TV and Laptop datasets (Wen et al., 2016). Being sig-

nificantly smaller than E2E, we made use of them primarily when evaluating our

models against pre-E2E models, and we thus do not report results on these two

datasets in our evaluation.

In order to be able to better evaluate our automatic slot aligner (Chapter 3)

and for our domain adaptation experiments (Chapter 4), we also collect a new MR-

24

to-text corpus in the video game domain. A more detailed introduction of the

dataset, ViGGO, along with its analysis, follows in Section 2.2. Before that, in

Section 2.1, we describe the E2E dataset in more detail, as it will serve, together

with ViGGO, as one of the primary datasets we evaluate our models on throughout

the thesis. Table 2.1 summarizes the proportions of the training, validation, and

test sets for all the datasets introduced above, along with additional statistics.

2.1 E2E Dataset

The E2E dataset was, until recently, the largest publicly available dataset

for task-oriented language generation in the restaurant domain, now surpassed by

YelpNLG (Oraby et al., 2019). With 50K examples, it offers almost 10 times

more data than the San Francisco restaurant dataset introduced in Wen et al.

(2015b). The reference utterances were crowdsourced mostly from the MRs them-

selves, though a portion was collected using pictorial representations, instead of the

MRs, as the source of information for the crowdworkers. The latter was shown to

inspire more natural utterances compared to textual MRs (Novikova et al., 2016),

however, it introduced substantial noise in the form of missing and incorrect slot

mentions in the utterances, which in turn has a negative impact on the performance

of deep learning models trained on such data, as shown in Dušek et al. (2019).

Nevertheless, overall the reference utterances in the E2E dataset exhibit superior

lexical richness and syntactic variation, including more complex discourse relations.

It aims to provide higher-quality training data for end-to-end NLG models to learn

to produce more naturally sounding utterances. The dataset was released as part of

the E2E NLG Challenge shared task.1

1https://www.macs.hw.ac.uk/InteractionLab/E2E/

25

https://www.macs.hw.ac.uk/InteractionLab/E2E/

Figure 2.1: Distribution of slots in the E2E dataset.

Slots 3 4 5 6 7 8

Sentences 1.09 1.23 1.41 1.65 1.84 1.92

Proportion 5% 18% 32% 28% 14% 3%

Table 2.2: Average number of sentences in the reference utterance for a given number
of slots in the corresponding MR, along with the proportion of MRs with specific
slot counts in the E2E dataset.

The dataset contains only 8 different slot types, which are fairly evenly

distributed (see Figure 2.1). The number of slots in each MR ranges between 3 and

8, but the majority of MRs consist of 5 or 6 slots. Even though most of the MRs

contain many slots, the majority of the corresponding reference utterances, however,

consist of one or two sentences only (Table 2.2), suggesting a reasonably high level

of sentence complexity in the references.

Although the E2E dataset contains a large number of examples, each MR

is associated on average with more than 8 different reference utterances. This means

that the number of unique MRs in the training set is less than 5K. On the other

hand, by explicitly providing multiple human-authored utterances for each MR, the

dataset offers an NLG model examples of various possible ways of expressing the

same information represented by an MR (see Table 1.1). In addition to that, multiple

ground truths per MR play an important role in making automatic evaluation of a

26

confirm (name [Hellblade: Senua’s Sacrifice], release year [2017], devel-
oper [Ninja Theory])

Oh, do you mean the 2017 game from Ninja Theory, Hellblade: Senua’s
Sacrifice?

give opinion (name [SpellForce 3], rating [poor], genres [real-time strat-
egy, role-playing], player perspective [bird view])

I think that SpellForce 3 is one of the worst games I’ve ever played. Trying
to combine the real-time strategy and role-playing genres just doesn’t work,
and the bird’s eye view makes it near impossible to play.

verify attribute (name [Little Big Adventure], rating [average], has multi-
player [no], platforms [PlayStation])

I recall that you were not that fond of Little Big Adventure. Does single-
player gaming on the PlayStation quickly get boring for you?

Table 2.3: Examples of MRs and corresponding reference utterances in the ViGGO
dataset. The DA of the MRs is indicated in italics, and the slots in small caps. The
slot mentions in the utterances are bolded.

model’s outputs more objective, as different utterance structures generated by the

model can thus correctly be accepted as good realizations of the given MR.

The popularity of the E2E dataset has since its release spawned new vari-

ants of the dataset, such as one augmented with utterances in different personality

styles (Reed et al., 2018), or a cleaner version with the noise from the data collection

removed (Dušek et al., 2019).

2.2 ViGGO: A Conversational Data-to-Text Corpus

Due to our dissatisfaction with existing corpora, we created a new data-

to-text corpus, different from the existing resources. ViGGO is a smaller but more

comprehensive dataset in the video game domain, introducing several generalizable

DAs, making it more suitable for training versatile and more conversational NLG

models.2 The dataset provides almost 7K pairs of MRs and human-authored utter-

ances about more than 100 video games. Table 2.3 lists three examples.

2The ViGGO corpus is available for download at: https://nlds.soe.ucsc.edu/viggo

27

https://nlds.soe.ucsc.edu/viggo

Video games are a vast entertainment topic that can naturally be discussed

in a casual conversation, similar to movies and music, yet in the dialogue systems

community it does not enjoy popularity anywhere close to that of the latter two

topics (Fazel-Zarandi et al., 2017; Li et al., 2017b; Moghe et al., 2018; Shah et al.,

2018; Khatri et al., 2018). Restaurants have served as the go-to topic in data-to-

text NLG for decades, as they offer a sufficiently large set of various attributes

and corresponding values to talk about. While they certainly can be a topic of

a casual conversation, the existing restaurant datasets (Stent et al., 2004; Gašić

et al., 2008; Mairesse et al., 2010; Howcroft et al., 2013; Wen et al., 2015a; Nayak

et al., 2017) are geared more toward a task-oriented dialogue where a system tries

to narrow down a restaurant based on the user’s preferences and ultimately give a

recommendation. Our new video game dataset is designed to be more conversational,

and to thus enable neural models to produce utterances more suitable for a multi-

domain dialogue system.

Even the most recent additions to the publicly available restaurant datasets

for data-to-text NLG, the E2E dataset described in Section 2.1 and YelpNLG, both

suffer from the lack of a conversational aspect. E2E became popular, thanks to its

unprecedented size and multiple reference utterances per MR, for training end-to-

end neural models, yet it only provides a single DA type. And so does YelpNLG. In

contrast with these two datasets, ViGGO presents utterances of 9 different DAs.

Other domains have been represented by task-oriented datasets with mul-

tiple DA types, for example the Hotel, Laptop, and TV datasets (Wen et al., 2015b,

2016). Nevertheless, the DAs in these datasets vary greatly in complexity, and their

distribution is thus heavily skewed, typically with two or three similar DAs compris-

ing almost the entire dataset. In our video game dataset, we omitted simple DAs,

28

DA
Slot
range

Mandatory
slots

Additional common
slots

inform 3–8 name, genres
release year,

developer, esrb,
genres,

player perspective,
has multiplayer,

platforms,
available on steam,
has linux release,
has mac release

confirm 2–3 name

give opinion 3–4 name, rating

recommend 2–3 name

request 1–2 specifier

request attribute 1

request explanation 2–3 rating

suggest 2–3 name

verify attribute 3–4 name, rating

Table 2.4: Overview of mandatory and common possible slots for each DA in the
ViGGO dataset. There is an additional slot, exp release date, only possible in
the inform and confirm DAs. Moreover, rating is also possible in the inform DA,
though not mandatory.

in particular those that do not require any slots, such as greetings or short prompts,

and focused on a set of substantial DAs only.

2.2.1 Dataset Overview

ViGGO features more than 100 different video game titles, whose at-

tributes were harvested using free API access to two of the largest online video

game databases: IGDB3 and GiantBomb4. Using these attributes, we generated

a set of 2,300 structured MRs. The human reference utterances for the generated

MRs were then crowdsourced using vetted workers on the Amazon Mechanical Turk

(MTurk) platform (Buhrmester et al., 2011), resulting in 6,900 MR-utterance pairs

altogether. With the goal of creating a clean, high-quality dataset, we strived to

obtain reference utterances with correct mentions of all slots in the corresponding

MR through post-processing.

3https://www.igdb.com/
4https://www.giantbomb.com/

29

https://www.igdb.com/
https://www.giantbomb.com/

Meaning representations. The MRs in the ViGGO dataset range from 1 to 8

slot-value pairs, and the slots come from a set of 14 different video game attributes.

Table 2.4 details how these slots may be distributed across the 9 different DAs. The

inform DA, represented by 3,000 samples, is the most prevalent one, as the average

number of slots it contains is significantly higher than that of all the other DAs.

Figure 2.2 visualizes the MR length distribution across the entire dataset. The slots

can be classified into 5 general categories:

1. Boolean – binary value, such as “yes”/“no” or “true”/“false” (e.g., has multi-

player),

2. Numeric – value is a number or contains number(s) as the salient part (e.g.,

release year),

3. Scalar – values are on a distinct scale (e.g., rating or esrb),

4. Categorical – takes on virtually any value, typically coming from a certain

category, such as names or types (e.g., name or developer),

5. List – similar to categorical, where the value can, however, consist of multiple

individual items (e.g., genres or player perspective).

The first 4 categories are common in other NLG datasets, such as E2E, Laptop, TV,

and Hotel, while the list slots are unique to ViGGO. There are no restrictions as to

whether the values are single-word or multi-word in any of the categories.

Utterances. With neural language generation in mind, we crowdsourced 3 ref-

erence utterances for each MR so as to provide the models with the information

about how the same content can be realized in multiple different ways. As we ar-

gued earlier, this also allows for a more reliable automatic evaluation by comparing

the generated utterances with a set of different references each, covering a broader

30

Figure 2.2: Distribution of the number of slots across all types of MRs, as well as
the inform DA separately and non-inform DAs only.

spectrum of correct ways of expressing the content given by the MR. The raw data,

however, contains a significant amount of noise, as is inevitable when crowdsourcing.

We therefore created and enforced a robust set of heuristics and regular expressions

to account for typos, grammatical errors, undesirable abbreviations, and unsolicited

information. Moreover, using the automatic slot aligner described in Chapter 3 we

fixed most of the missing and incorrect slot realizations too.

2.2.2 Data Collection

The crowdsourcing of utterances on MTurk took place in three stages.

After collecting one third of the utterances, we identified a pool of almost 30 workers

who wrote the most diverse and natural-sounding sentences in the context of video

games. We then filtered out all utterances of poor quality and had the qualified

workers write new ones for the corresponding inputs. Finally, the remaining two

thirds of utterances were completed by these workers exclusively.

For each DA we created a separate task in order to minimize the workers’

confusion. The instructions contained several different examples, as well as counter-

examples, and they situated the DA in the context of a hypothetical conversation.

The video game attributes to be used were provided for the workers in the form of

31

Figure 2.3: Distribution of the DAs across the training/validation/test split. For
each partition the total number of examples is indicated.

a table, with their order shuffled so as to avoid any kind of bias.

2.2.3 Training/Validation/Test Split

Despite the fact that the ViGGO dataset is not very large, we strived

to make the test set reasonably challenging. To this end, we ensured that, after

delexicalizing the name and the developer slots, there were no common MRs

between the train set and either of the validation or test set. We maintained a

similar MR length and slot distribution across the three partitions. The distribution

of DA types, on the other hand, is skewed slightly toward fewer inform DA instances

and a higher proportion of the less prevalent DAs in the validation and test sets (see

Figure 2.3). The final ratio of examples is approximately 7.5 : 1 : 1.5, with the exact

partition sizes indicated in the diagram.

2.3 ViGGO vs. E2E

Our new dataset was constructed under different constraints than the E2E

dataset. First, in ViGGO we did not allow any omissions of slot mentions, as those

are typically undesirable in data-to-text generation with no previous context as

32

Size
Uni-
que
MRs

Uni-
que
delex.
MRs

Vo-
cab

Delex.
vo-
cab

Avg.
3-

gram
freq.

Ref/
MR

Slots/
MR

W/
Ref

W/
Sent

S/
Ref

E2E 51,426 6,039 5,963 2,878 2,818 18.70 8.1 5.43 22.41 14.36 1.56

ViGGOinf 3,000 1,000 997 1,378 1,102 8.33 3 5.81 30.62 15.01 2.04

ViGGO 6,900 2,253 2,066 2,427 2,178 6.91 3 4.18 25.01 15.04 1.66

Table 2.5: Dataset statistics comparing the ViGGO dataset, as well as its subset of
inform DAs only (ViGGOinf), with the E2E dataset. The average trigram frequency
was calculated on trigrams that appear more than once. “Ref” stands for references,
“W” for words, and “S” for sentences.

input, and they make the evaluation ambiguous. Second, the MRs in ViGGO are

grounded by real video game data, which can encourage richer and more natural-

sounding reference utterances.

While ViGGO is only 13% the size of the E2E dataset, the lexical diversity

of its utterances is 77% of that in the E2E dataset, as indicated by the “delexicalized

vocabulary” column in Table 2.5. Part of the reason naturally is the presence of

additional DAs in ViGGO, and therefore we also indicate the statistics in Table 2.5

for the inform examples only. The average inform utterance length in ViGGO turns

out to be over 30% greater, in terms of both words and sentences per utterance.

Finally, we note that, unlike the E2E dataset, our test set does not place

any specific emphasis on longer MRs. While the average number of slots per MR in

the inform DAs are comparable to the E2E dataset, in general the video game MRs

are significantly shorter. This is by design, as shorter, more focused responses are

more conversational than consistently dense utterances.

2.4 Discussion

In Table 2.6 we demonstrate how the 9 DAs of the ViGGO dataset can

support a natural multi-turn exchange on the topic of video games, as part of a longer

33

S: . . . What about video games?

U: Totally, I spend my entire evenings in front of my PS4.

S: What is your favorite genre of video games?

request attribute (genres [])

U: I guess I play a lot of shooter games.

S: Have you played any interesting games lately?

request (specifier [interesting])

U: Tomb Raider is pretty good.

S: Do you mean Tomb Raider from 2013?

confirm (name [Tomb Raider], release year [2013])

U: Yes, that one with the epic E3 trailer.

S: Do you also enjoy playing first-person shooters, such as Half-Life 2?

suggest (name [Half-Life 2], genres [shooter], player perspective [first
person])

U: I haven’t played that one in a while. Would you recommend something else?

S: Well, since you seem to be a fan of M-rated PlayStation games, I thought you
would perhaps like Max Payne 3. Have you heard about that game?

recommend (name [Max Payne 3], esrb [M (for Mature)], platforms
[PlayStation])

U: No.

S: Max Payne 3 is a multiplayer action-adventure shooter from 2012.

inform (name [Max Payne 3], release year [2012], genres
[action-adventure; shooter], multiplayer [yes])

U: I see. So, you enjoyed it?

S: Oh, I love Max Payne 3. When I see a game developed by Rockstar Games, I
buy it without thinking.

give opinion (name [Max Payne], rating [excellent], developer [Rockstar
Games])

U: That sounds cool.

S: Previously you told me that you enjoyed Tomb Raider. Is that the case with all
games developed by Crystal Dynamics?

verify attribute (name [Tomb Raider], rating [good], developer [Crystal
Dynamics])

U: You bet.

S: What is it that you like about Crystal Dynamics games?

request explanation (rating [good], developer [Crystal Dynamics])

U: They usually have really good stories.

S: . . .

Table 2.6: Example of a conversation about video games comprising utterances of
DAs defined in ViGGO. “S” and “U” denote the system and user turns, respectively.

34

casual conversation on different topics. One caveat of using a language generator

trained on this dataset in a dialogue system as-is is that multiple subsequent turns

discussing the same video game would be repeating its full name. ViGGO was

designed for grounded generation but without context, and therefore it is up to the

dialogue manager to ensure that pronouns are substituted for the names whenever

it would sound more natural in a dialogue. Alternately, the dataset can easily be

augmented with automatically constructed samples which omit the name slot in the

MR and replace the name with a pronoun in the reference utterance.

2.5 Summary

In this chapter, we provided an overview of existing data-to-text NLG

corpora that we use throughout the thesis to train and test our models. We also

presented a new parallel corpus for data-to-text NLG, ViGGO, which contains 9

dialogue acts, making it more conversational, rather than information seeking or

question answering, and thus more suitable for a multi-domain dialogue system.

The crowdsourced utterances were thoroughly cleaned in order to obtain high-quality

human references. ViGGO and E2E will be our primary datasets in the thesis.

35

Chapter 3

Automatic Semantic Aligning

Models that perform data-to-text language generation using deep learning

methods often find it challenging to learn exactly which part of the utterance they

generate corresponds to a specific slot in the MR. As a consequence, it is not un-

common to see generated utterances with missing or duplicate information. Slots

can be of different types, they can take on many values that often may be realized in

multiple synonymous ways. A standard sequence-to-sequence neural model needs to

encounter a large set of possible slot combinations and their realizations in reference

utterances to be able to understand these variations and the associations in general.

The problem of many values typically concerns slots representing names,

numbers/years, or other pieces of information that always get realized verbatim

in the utterance and have no equivalent alternatives. The standard approach to

handling this, as well as handling out-of-vocabulary (OOV) issues during inference,

is through slot delexicalization (Mairesse et al., 2010; Henderson et al., 2014) or,

more recently, through a copy mechanism (Vinyals et al., 2015; Gu et al., 2016; See

et al., 2017). While the former is performed as a part of the pre- and post-processing

stages, the latter is integrated directly into the model.

36

On the other hand, we address the possibility of multiple synonymous slot

realizations by developing a domain-agnostic slot aligner. It serves to indirectly

improve the performance of our neural model’s capability to learn the correct slot

realization rules, as well as to provide backup when the neural model itself produces

a sub-optimal solution. To lift some of the burden off the neural model, we use the

slot aligner to denoise the training samples, augment the training set with additional

samples, rerank the top candidates generated by the model, and identify the most

complete utterances.

In this chapter, we describe our slot aligner in detail, including the tasks

it can be applied to. We defer the evaluation of its performance on these tasks to

Section 4.5, after the description of our deep learning models which make extensive

use of the slot aligner. There we assess the slot aligner’s accuracy and benefits on the

E2E dataset, as well as the newly collected ViGGO dataset, in order to demonstrate

the slot aligner’s scalability and robustness.

3.1 Heuristic Slot Aligner

For the purposes of the slot aligner, we classify slots into the same 5 gen-

eral categories as are present in the E2E and the ViGGO dataset (i.e., Boolean,

numeric, scalar, categorical, and list), covering most types of information MRs typ-

ically convey in data-to-text generation scenarios. Each of these categories has its

own method for extracting a slot mention from an utterance, generalized enough to

be applicable across all slots in the category. One major advantage of this design

is that, whenever the NLG system is to be used in a new domain, the slot aligner

merely needs to be indicated which of the five categories each of the slots in this

37

domain belongs to. Optionally, it can be supplied with a simple dictionary of com-

mon alternatives for specific slot values, which tends to increase the slot aligner’s

performance.

3.1.1 Boolean Slots

Boolean slots take on binary values, such as “yes”/“no” or “true”/“false”.

Their mention in an utterance thus typically does not contain the actual value of the

slot, but instead a mention of the slot itself (e.g., “is a family-friendly restaurant”

for familyFriendly[yes], or “not supported on Mac” for has mac release[no]).

Therefore, extracting a Boolean slot realization boils down to the following two

steps: (1) finding a word or a phrase representing the slot, and (2) verifying whether

the representation is associated with a negation or not.

The first step is straightforward, and it only requires a list of possible

realizations for each Boolean slot. This list rarely contains more than one element,

which is the “stem” of the slot’s name (e.g., “linux” for “has linux release”). It

can thus be populated trivially for most of the new Boolean slots. And if a Boolean

slot can have multiple equivalent realizations (such as “child friendly” or “where

kids are welcome” for the slot familyFriendly), they are typically not numerous

and can be listed manually. Having a list of stems (we refer to all the equivalent

realizations of a slot collectively as “slot stems”), the utterance is scanned for the

presence of each of them in it. If one is found, we go to the second step.

A slot mention is decided to be negative if a negation cue is found to be

modifying the slot stem, i.e., within a certain distance of the stem and without a

contrastive cue in between, and it is decided to be positive if no negation cue is

present or there is a contrastive cue in between.

38

#1 There’s no Linux release or multiplayer, but there is Mac support.

#2 Though it’s not available on Linux, it does have a Mac release as well.

#3
It is available on PC and Mac but not Linux, and it can be found on
Steam.

Table 3.1: Examples of contrastive phrases involving Boolean slots. Underlined are
the stems of the Boolean slots for which the polarity is questioned. Note that in all
3 examples the mention is positive, despite the presence of contrast and negation
distractors.

3.1.2 Numeric Slots

Slots whose value is just a number are in general not handled in any spe-

cial way, and the value is matched directly in the utterance. However, there are

certain numeric slot types that benefit from additional preprocessing: (1) years, and

(2) numbers with a unit (e.g., power consumption or screen size in the TV

dataset).

When a numeric slot represents a year, the slot aligner generates the com-

mon abbreviated alternatives for the year (e.g., “’97” for the value “1997”) that it

tries to match in case the original value is not found in the utterance. The only

thing the slot aligner does differently for numeric slots with a unit than for simple

numeric slots is that it strips away the unit (such as “watts” or “inches”) and keeps

the numeric value only, which it searches for in the utterance. Although this might

appear as discarding essential information, in NLG for dialogue systems the utter-

ances are only up to a few sentences long, and thus, it is unlikely that there would

be two slots with the same numeric value in one MR, only differing in their units.

Stripping the unit away, on the other hand, relieves the slot aligner of attempting to

match the unit with its alternate expressions, such as abbreviations; which, in turn,

relieves the user from defining unit equivalents for new domains.

39

3.1.3 Scalar Slots

Similar to Boolean slot aligning, scalar slot aligning consists of two steps.

The first one is the same, i.e., finding a word or a phrase representing the slot (which

we refer to as “stem” in this case too, in order to maintain consistency). In the second

step, however, the slot aligner looks for the slot’s value, or its equivalent, occurring

within a reasonable distance from the slot stem. The optional soft alignment mode

skips the second step as long as a slot stem is matched in the first step.

We assume that scalar slots, even across different domains, will often have

values that can be mapped to each other, as long as they are on the same or a

similar scale (see Table 3.2). For each scalar slot the slot aligner refers to a corre-

sponding dictionary for possible alternate expressions of its value. With the above

assumption, it is sufficient to have one dictionary per scale, or type of scale, which

can be reused for similar scalar slots in different domains. The dictionaries can be

quickly populated with synonyms of the values of a given scale (see the last column

in Table 3.2), and thus do not necessarily require manual additions every time the

system is used with a new domain. Some alternate expressions might be suitable

for scalar slots in some domains better than others, but that will not be an issue

in most cases, since they are not likely to cause conflicts (being synonymous), and

the slot aligner will simply not encounter certain alternate expressions in certain

domains.

An example of a scalar slot whose values are on a 3- or 4-point scale, but

cannot be mapped to those of the video game rating slot for the purposes of sharing

the alternate expressions, is priceRange, which, for instance, in the E2E restaurant

domain takes on values “cheap”, “moderate” and “high”. These could, obviously,

40

customerRating

(restaurant)
rating

(video game)
Alternate expressions

low poor bad, lacking, negative,. . .

average average decent, mediocre, okay,. . .

- good fun, positive, solid,. . .

high excellent amazing, fantastic, great,. . .

Table 3.2: Example of value mapping between two similar scalar slots in the E2E
restaurant domain and the ViGGO video game domain.

not be mapped to the alternate expressions in Table 3.2, and a separate dictionary

would have to be created for it. This dictionary could then, however, be reused for

similar price-related slots in other domains, such as hotel, laptop, or booking of a

flight.

Although the slot aligner attempts to find the scalar slot’s value in close

proximity to the slot stem, it is often the case that the stem is not mentioned in the

utterance at all (such as when the mention of the slot-value pair priceRange[cheap]

in the E2E dataset is “a cheap restaurant”, without the mention of “price”). For

this scenario, the slot aligner remembers the leftmost match of any of the value’s

alternate expressions in the utterance, and uses it as a fallback when deciding about

the value’s mention without the occurrence of the slot stem.

3.1.4 Categorical Slots

Categorical slots can take on virtually any value, nevertheless, for each

such slot the values typically come from a limited, although possibly large, set of

values. For instance, in the E2E dataset, the food slot has seven possible values,

such as “Italian” and “Fast food”, but technically it could take on hundreds of

different values representing all of the cuisines of the world. Some values can be

single-word, while others can have multiple words (e.g., “restaurant” and “coffee

41

shop” as possible values for the eatType slot). Due to this huge variety in possible

values of categorical slots, the aligning methods need to remain very general.

Besides exact matching of the value in the utterance, the slot aligner can

be instructed to perform the matching in three additional modes, increasing its

robustness while maintaining scalability. The four modes of aligning the slot with

its mention work as follows:

• Exact – slot mention is identified only if it matches (case-insensitive) the slot

value verbatim,

• All words – slot mention is identified if each of the value’s tokens is found

in the utterance, though they can be in an arbitrary order and they can be

separated by other words,

• Any word – slot mention is identified by matching any of the value’s tokens

in the utterance,

• First word – slot mention is identified by matching just the value’s first token

in the utterance.

Note that for single-word values all four modes give the same result. The three non-

exact modes offer different approaches to soft alignment for categorical slots. The

choice may depend on the particular slot, and the mode can thus be specified for

each slot separately, while by default the slot aligner operates in the exact-matching

mode.

Similar to Boolean and scalar slots, the slot aligner can search for alter-

nate expressions of a value, if provided in the corresponding dictionary. The al-

ternate matching is, however, more flexible here, as the alternatives in the dictio-

nary can be multi-part, in which case the slot aligner tries to match all the parts

42

MR

inform(name [BioShock], developer [2K Boston], genres [action-
adventure, role-playing, shooter], has multiplayer [no], platforms
[PlayStation, Xbox, PC], has linux release [no], has mac release [yes])

Reference utterance

Developed by 2K Boston, BioShock is a single-player shooter game that will
have you role-playing through a well constructed action-adventure narrative.
It is available for PlayStation, Xbox, Mac and PC, but is not available for
Linux.

Slot alignment

(13: developer) (25: name) (39: has multiplayer) (53: genres) (174:
platforms) (191: has mac release) (228: has linux release)

Table 3.3: Example from the ViGGO dataset that involves list slots. Notice how
the individual value item mentions can be scattered across an entire sentence in a
natural way. The bottom section indicates the determined slot alignment between
the utterance and the MR. The position of a slot mention is given as the number of
characters from the beginning of the utterance.

(words/tokens/phrases) provided in the form of a list.

3.1.5 List Slots

A list slot is similar to a categorical slot, the only difference being that it

can have multiple individual items in its value. Two examples of a list slot, namely

genres and platforms, can be seen in the sample from the ViGGO dataset in

Table 3.3. Note that this slot type is not represented in the E2E dataset.

The aligning procedure for list slots thus heavily relies on that of categorical

slots. In order to align a list slot with the corresponding utterance, the slot aligner

first parses the individual items in the slot’s value. It then iterates over all of them

and performs the categorical slot alignment, as described in the previous section,

with each individual item. Considering the items can be scattered over multiple

sentences, the slot aligner considers the position of the leftmost mention of an item

as the position of the corresponding list slot.

43

List slots allow for an additional level of soft alignment on top of the

non-exact matching modes defined for categorical slots. The slot aligner can be

parameterized so that not all items in the value need to be matched in the utterance

in order for a list slot to be aligned with its mention. This, combined with the

categorical slot matching modes, as well as the simple but robust definition of the

alternate expression dictionary, make even the addition of support for a new list slot

straightforward, with plenty of flexibility and without compromising on scalability.

3.2 Aligning Tasks

The slot aligner described in Section 3.1 is a multi-purpose tool that finds

several different uses throughout the entire NLG pipeline, from the data collection

for a new domain to the selection of the best output utterance among multiple

candidates. The following sections give examples of different practical tasks for the

slot aligner, all of which are integrated into our NLG system described in Chapter 4.

These sections also give insight into the challenges faced in each of the tasks and

how the slot aligner tackles them.

3.2.1 Finding Slot Alignment

The first obvious task the slot aligner is designed to perform is to iden-

tify which slot is mentioned at which position in the utterance (see an example in

Table 3.3). These slot mention position indications can by themselves be used for

a general analysis of the dataset. Additionally, it can be useful in identifying dis-

course phenomena, which in turn can be exploited for training a neural model with

increased stylistic variation in general, or with the ability to enforce a certain struc-

44

ture in the generated utterance. Some example uses would be emphasizing specific

slots at the beginning of the utterance, or putting two slot mentions in contrast. We

elaborate on this in Chapter 5.

3.2.2 Training Data Denoising

NLG datasets, especially the crowdsourced ones, are notoriously full of

typos and missing information in the reference utterances, and thus a neural model

can benefit from a significant reduction of such noise. Although our slot aligner

works heuristically and, therefore, does not always find a correct alignment, nor

does it recognize all possible slot realizations, it is able to catch the vast majority

of these errors and clean up the training set by removing the non-aligned slots from

the MRs.

3.2.3 Training Data Augmentation

The slot aligner can also be used for augmenting the training data, with

the objective of providing additional relevant samples for the model to learn from.

With the positional information about slot mentions provided by the aligner, it

is straightforward to identify which slots are mentioned in which sentence of the

utterance. With the help of a sentence tokenizer, we then create pseudo-samples with

the individual sentences as reference utterances, and corresponding MRs containing

only the slots mentioned in the individual sentences. When creating new pseudo-

samples, we remove the slots whose mention is not found at all by the slot aligner

in the utterance.1 Otherwise, such slots would have to be randomly assigned to one

of the new pseudo-samples, possibly causing more noise in the augmented dataset.

1To maintain training data consistency, the denoising is applied to both the new pseudo-samples
and the original ones.

45

The motivation for the sample splitting is to provide the model with more

granular information about the alignment of the MR’s slots with their mentions in

the utterance. Our hypothesis is that this might facilitate the model’s learning pro-

cess, wherein it is given a shorter context (utterance) to learn to associate segments

of, with slots as their mentions. It should be noted that the slot aligner works in a

soft alignment mode when splitting samples, which means that for certain slot types

the slot aligner is more lax when matching their mention. This is in contrast with

the other aligning tasks, in which the slot aligner expects an exact match of the

value or each of the individual words having a match. The soft alignment is meant

to help recognizing a match even if the slot mention is not in any of the expected

forms, which is more often the case in the human-authored reference utterances than

the system-generated ones.

Taking the idea of data augmentation further, a neural model could be

made to learn from its own mistakes. To achieve this, we would modify the MRs

accordingly whenever the model generates an utterance with a missing slot mention,

and use the pair as a new training sample. A similar approach, combining such self-

training with noise injection sampling, was used in Kedzie and McKeown (2019) to

significantly improve the performance of their otherwise basic sequence-to-sequence

model.

3.2.4 Cross-Domain Dataset Replication

For two datasets from two different domains it might be difficult to get any

performance improvement on one of them by pretraining the model on the other

one, if they are not sufficiently similar. The slot aligner can, however, indirectly

help reduce the semantic gap between such two datasets. Following the work of Wen

46

et al. (2016), we find a mapping of the target-domain slots to the source-domain slots

based on their type and semantic similarity, and substitute the former for the latter

in the source dataset accordingly. At the same time, we replace the original slot

values with sampled target-domain values of the corresponding substituted slots.

The slot aligner’s dictionary of alternate expressions is utilized here to identify the

slot mentions in the source dataset, so the values could be replaced in the utterances

as well. Without the corresponding slot mentions in the utterance, though very

limited in variation, the replicated dataset would have little value for the neural

model. Whenever a slot mention is not found, the original source-domain value of

the slot is preserved so as to avoid target-domain noise.

Assuming the source dataset is substantially larger, this process results

in a crude but large target-domain dataset replica. Although the majority of the

utterances would not make sense at this point, the purpose of the replicated dataset

is to provide the neural model with an abundant number of additional training

samples from which it can learn that slots from the input need to be realized in the

generated utterance. In Table 3.4 we present the chosen slot mapping between the

E2E and the ViGGO dataset that we use to replicate a large video game dataset

(target) using the E2E dataset (source), as described above. Note that the video

game domain has more slots defined than the E2E dataset, therefore, certain E2E

slots have multiple video game slots mapped to them.

3.2.5 Utterance Reranking

Utterance reranking is employed to provide additional guidance for the

NLG system to decide which among the utterances generated by the neural model

for a given input MR is the best. A sequence-to-sequence model can produce mul-

47

E2E (restaurant) ViGGO (video game)

name −→ name

food −→ release year,
exp release date

customerRating −→ rating, esrb

priceRange −→ player perspective

familyFriendly −→

has multiplayer,
available on steam,
has linux release,
has mac release

area −→ platforms

eatType −→ genres

near −→ developer

Table 3.4: Mapping of slots from E2E’s restaurant domain to ViGGO’s video game
domain, which we used to create a video game dataset replica out of the E2E dataset.

tiple candidate utterances that it deems best according to the statistical rules and

associations learned during the training phase. Nevertheless, although the candidate

with the highest probability may be the most fluent, it might be missing one or two

slot realizations, or a realization might be incorrect (such as mentioning “excellent”

instead of the value “poor” given in the MR). This is where the slot aligner can be

of assistance.

The slot aligner scores each candidate utterance, taking the number of

missed, incorrect, and hallucinated slots into account. The alignment scores are

used as coefficients applied to the candidates’ probabilities computed by the model,

potentially causing thus a reranking of the candidate utterances. The new top

candidate is then selected as the final utterance.

3.2.6 Evaluation of Slot Realization Accuracy

The slot aligning performed in this task is similar to the one in the ut-

terance reranking, with just one difference: the output is not a score but a list of

48

SERSA SER CI (95%) Precision IAA

ViGGO 2.77% 2.19 ± 1.55% 97.37% 1.00

E2E 3.98% 3.91 ± 1.73% 100% 1.00

MultiWOZ 1.19% 1.35 ± 0.91% 94.89% 0.90

Table 3.5: Human evaluation of the slot aligner’s performance on each dataset. The
IAA column indicates the Krippendorff’s alpha reliability coefficient.

incorrectly realized slots. This task is used for evaluating the slot error rate (SER)

of utterances generated by an NLG model. SER is calculated as the proportion of

failed slot realizations (i.e., missing, incorrect, or duplicate) out of all slots in the

test set. Alternatively, it can be viewed as the weighted average of slot errors per

utterance expressed in percentage form. Therefore, unlike most metrics, SER should

be minimized, with the ideal value being zero.

3.3 Slot Aligner Evaluation

We put substantial effort into developing a highly accurate heuristic slot

aligner to calculate the semantic accuracy of generated utterances. In this section,

we evaluate how accurately it performs in practice on three different datasets, each

in a different domain: ViGGO (video games), E2E (restaurants), and MultiWOZ

(multiple domains).

To verify the slot aligner’s performance, we take the generated utterances

of one model per dataset for which it determined a relatively high slot error rate

(indicated in the SERSA column in Table 3.5). We then have one of the authors and

an additional expert annotator manually label all of the errors as true or false posi-

tives. This corresponds to 38, 173 and 176 errors for ViGGO, E2E and MultiWOZ,

respectively. From that we calculate the precision for each dataset, which turns out

49

to be above 94% for each of the datasets. The almost perfect inter-annotator agree-

ment (IAA), besides validating the precision, also suggests that SER is an objective

metric, and therefore well-suited for automation.

Furthermore, we take samples of 72 (≈ 20%), 63 (≈ 10%) and 290 (≈ 4%)

of the generated utterances on ViGGO, E2E and MultiWOZ, respectively, anno-

tate them for all types of errors, and calculate the actual SER confidence intervals

(column “SER CI” in Table 3.5). Their good alignment with the slot aligner SER

scores (column “SERSA”), together with the high error classification precision, leads

us to the conclusion that the slot aligner performs similarly to humans in identifying

semantic errors on the above datasets.

3.4 Summary

In this chapter, we proposed a domain-adaptable slot aligner capable of

many supporting tasks in an NLG system. We will be using it extensively throughout

the rest of the thesis, primarily for candidate utterance reranking and for calculating

SER scores for generated utterances. In a human evaluation we established that the

slot aligner’s performance is nearly perfect on three datasets: ViGGO, E2E and

MultiWOZ.

50

Chapter 4

Sequence-to-Sequence Models for NLG

Here we describe the deep learning sequence-to-sequence models that we

train for the data-to-text generation task on the datasets introduced in Chapter 2.

We improve the performance of the base models with an adaptive method for delexi-

calizing slots and their values, and by employing the heuristic slot aligner introduced

in Chapter 3 for augmenting the training sets and for semantic reranking of gener-

ated utterances.

4.1 Encoder-Decoder Architecture

The standard approach to sequence learning in the recent years has relied

on the encoder-decoder architecture (Sutskever et al., 2014; Cho et al., 2014). This

architecture allows the model to produce sequences of arbitrary lengths from input

sequences, which is essential in our NLG task where we want to generate a natural

language sentence from an MR. The model achieves this by first using the encoder to

produce a compressed intermediate representation of the input sequence, and sub-

sequently using the decoder to interpret it and produce an output sequence. More

51

advanced versions of the encoder-decoder architecture, with an attention mecha-

nism (Bahdanau et al., 2015; Luong et al., 2015), enable the decoder to look at the

input sequence along with its intermediate representation, which allows the decoder

to make a more informed choice at each step of the sequence generation.

To represent the MR as a sequential input for the model, we flatten the dic-

tionary of slots and values into a simple list of tokens without any special separators.

Since the structure of the MRs we work with contains no hierarchical elements, no in-

formation is lost in the process. Leaving the slot names in the input sequences poses

no problem either, as the model learns to use these tokens as mere separators and

indicators of what information the immediately following tokens represent. Before

feeding the input tokens to the encoder, they are converted to a lower-dimensional

continuous-vector space. This sequence of embedding vectors is more suitable for

processing by the encoder.

The encoder and decoder themselves can be various deep learning models,

such as recurrent neural networks (RNNs) with Long Short-Term Memory (LSTM)

cells (Hochreiter and Schmidhuber, 1997) or Gated Recurrent Unit (GRU) cells (Cho

et al., 2014). Most recently, purely attentional encoder-decoders, such as the trans-

former (Vaswani et al., 2017) and its variants, have been favored over RNN-based

ones thanks to their convenient parallelizability and often superior performance. For

our earlier experiments, we used an LSTM-based encoder-decoder model with at-

tention, and we later switched to using a transformer. Consequently, some of our

evaluations are carried out using different models than others.

52

4.1.1 Recurrent Neural Network With Attention

Our first model uses a RNN with LSTM cells for both its encoder and de-

coder, and is equipped with attention. The attention mechanism allows the decoder

to learn what specific parts of the input sequence to pay attention to, given the

output generated so far. It does so by accessing all the hidden states of the encoder

at each time step of the decoding, rather than merely using the final encoder state

to initialize the state of the decoder. To define this more formally, the probability of

output ut at time step t of the decoder, given the input sequence w and the outputs

predicted so far, depends on a distinct context vector qt – produced by the attention

mechanism – in the following way:

P (ut|u1, . . . , ut−1,w) = g(st) ,

where in the place of function g we use the softmax function over the size of the

vocabulary, and st is a hidden state of the decoder LSTM at time step t, calculated

as:

st = fD(ut−1, st−1, qt) .

The context vector qt is obtained as a weighted sum of all the hidden states h1, . . . , hL

of the encoder:

qt =
L∑
i=1

αt,ihi ,

where hi = fE(wi, hi−1), and αt,i corresponds to the attention score the t-th word

in the output sentence assigns to the i-th item in the input MR.

We compute the attention score αt,i using a simple feedforward neural net-

work jointly trained with the entire system, along the lines of the work in Bahdanau

53

Decoder

Encoder

LSTM LSTM LSTM

w1 w2 wL

LSTM LSTM LSTM

ul u2 u1

α1,2 α2,2 αL,2

Figure 4.1: Standard architecture of a single-layer LSTM encoder-decoder model
with a simplified illustration of the attention mechanism. For each time step t
in the output sequence, the attention scores αt,1, . . . , αt,L are calculated. In this
diagram, only attention scores for t = 2 are shown.

et al. (2015). The encoder’s and decoder’s hidden states at time i and t, respectively,

are concatenated and used as the input to the neural network, namely:

αt,i = softmax
(
wT tanh (W [st;hi])

)
,

where W and w are the weight matrix and vector of the first and the second layer of

the neural network, respectively. The learned weights indicate the level of influence

of the individual words in the input sequence on the prediction of the word at time

step t of the decoder. The model thus learns a soft alignment between the source

and the target sequence.

4.1.2 Transformer

Even though, on the relatively small datasets we work with, we do not

necessarily expect the transformer (Vaswani et al., 2017) model to perform better

54

than RNNs, we switched to running experiments with this model primarily for its

significantly faster training, without sacrificing performance. Here we only give a

high-level description of the transformer model and refer the reader to Vaswani et al.

(2017) for full details of the architecture.

The primary difference of a transformer-based encoder-decoder from an

RNN-based one is that it has no sequential dependencies, which is what gives it

its superior parallelizable properties. Both the encoder and the decoder is a stack

of multi-head self-attention blocks with normalization. The self-attention layer in

the decoder blocks uses masking, and each block has an additional encoder-decoder

attention layer that allows the decoder to peek at the relevant parts of the input

sequence. Since the self-attention layers in the transformer do not know the concept

of a sequence, the model uses positional encoding to inject sequential information

into the input embeddings, representing thus the word order in the input sequence.

4.2 Adaptive Delexicalization

We enhance the ability of our models to generalize the learned concepts to

unseen MRs by delexicalizing the training data. For each dataset we train our models

on, we identify categorical and numeric slots whose values are always mentioned

verbatim in the utterance, and replace the corresponding values in both the MR and

the utterance with placeholder tokens. The placeholders are eventually replaced in

the generated utterance in a post-processing step by copying the values from the

original MR. Examples of such slots would be name in the E2E dataset, screensize

in the TV dataset, or developer in ViGGO.

Previous work identifies categorical slots in general as good candidates for

55

delexicalization (Wen et al., 2015b; Nayak et al., 2017). However, we chose not

to delexicalize those categorical slots whose values can be expressed in alternative

ways, such as “less than $20” and “cheap”, or “on the riverside” and “by the river”.

Excluding these from delexicalization may lead to a slightly increased number of

incorrect realizations, but it encourages diversity of the model’s outputs by giving

it a freedom to choose among alternative ways of expressing a slot value in different

contexts. This, however, assumes that the training set contains a sufficient number

of examples exhibiting this type of alternation so the model could learn that certain

phrases are synonymous.

As Nayak et al. (2017) point out, delexicalization affects the sentence plan-

ning and the lexical choice around the delexicalized slot value. For example, the

realization of the slot food[Italian] in the phrase “serves Italian food” is valid,

while the realization of food[fast food] in “serves fast food food” is clearly unde-

sired. Similarly, a naive delexicalization can result in “a Italian restaurant”, whereas

the article should be “an”. Another problem with articles is singular versus plural

nouns in the slot value. For example, the slot accessories in the TV dataset, can

take on values such as “remote control”, as well as “3D glasses”, where only the

former requires an article before the value.

We tackle this issue by defining different placeholder tokens for values re-

quiring different treatment in the realization. For instance, the value “Italian” of the

food slot is replaced by 〈slot vow cuisine food〉, indicating that the value starts

with a vowel and represents a cuisine, while “fast food” is replaced by 〈slot con food〉,

indicating that the value starts with a consonant and cannot be used as a term for

cuisine. The model thus learns to generate “a” before 〈slot con food〉 and “an”

before 〈slot vow cuisine food〉 when appropriate, as well as to avoid generating

56

the word “food” after food slot placeholders that do not contain the word “cuisine”.

All these rules are general and can automatically be applied across different slots

and domains.

4.3 Semantic Utterance Reranking

Rather than predicting a single most likely utterance, our models perform

beam search during inference and produce thus a pool of possible utterances ex-

pressing the information in the given MR. While these utterance candidates have

a probability score calculated by the model, we found that relying entirely on this

score often results in a candidate being picked that is objectively worse than a lower

scoring utterance (e.g., one missing a slot mention or realizing a slot incorrectly). We

therefore adjust the score, multiplying it by the utterance’s alignment score which

takes the slot alignment into consideration:

salign =
N

(Nn + 1) · (Nd + 1)
,

where N is the number of all slots in the input MR, and Nn and Nd represent

the number of non-aligned and duplicate slot mentions, respectively. As indicated

in Section 3.2.5, our slot aligner can calculate Nn as the number of slots whose

correct mentions it does not observe in the generated utterance (i.e., they are either

missing or incorrect), while Nd is determined by identifying slots that are mentioned

repeatedly.

57

4.4 Model Ensembling

In order to further improve the quality of the generated utterances, we

ensemble multiple individually trained models and combine their predictions. We

primarily use this technique with the LSTM-based models, two of which we put

in an ensemble alongside a model with a convolutional neural network (CNN) en-

coder (LeCun et al., 1998; Gehring et al., 2017). The two LSTM models in the

ensemble system are trained for a different number of steps each, but have otherwise

the same parameters.

Since the models are in completely different states at a given time step dur-

ing decoding, it is not possible to combine their predictions at token level. Therefore,

we accumulate the top 10 fully generated utterances from each model using beam

search, and allow the semantic reranker to rank all candidate utterances, as detailed

in Section 4.3. Finally, our system outputs the utterance that receives the highest

score after reranking.

4.5 Evaluation

Depending on the nature of the experiments, we make use of both auto-

matic metrics and human evaluation to obtain a more accurate performance assess-

ment. We report the results of the automatic evaluations on the standard NLG

metrics listed in Table 4.1 along with their brief definitions. Although these metrics

have repeatedly been shown to only inconsistently correlate with human judgments

in NLG tasks that involve longer and more creative texts (Liu et al., 2016; Wiseman

et al., 2017; Novikova et al., 2017a), the results of the E2E NLG Challenge (Dušek

et al., 2020) showed that the winning system according to human evaluation scored

58

Metric Definition

BLEU
(Papineni et al., 2002)

Geometric mean of N-gram precision scores (with
N up to 4) with brevity penalty.

ROUGE-L
(Lin and Och, 2004)

Sentence-to-sentence longest common subsequence
F-score.

METEOR
(Banerjee and Lavie, 2005)

Recall-heavy unigram F-score with stem and syn-
onym matching, and word-order penalty.

CIDEr
(Vedantam et al., 2015)

Cosine similarity of TF-IDF weighted N-grams
(with N up to 4) with stem matching.

Table 4.1: Simplified definitions of reference-based automatic metrics used in our
evaluations.

the highest in some of the automatic metrics as well (Dušek et al., 2018). In addition

to the standard automatic metrics, we also evaluate our models’ outputs on the slot

error rate (SER), as defined in Section 3.2.6.

We begin by providing more details on our system configurations, and

then evaluate the system performance on the E2E and the ViGGO dataset. We first

evaluate our complete system, Slug2Slug (Juraska et al., 2018), in the context of

the E2E NLG Challenge we participated in, and then we move on to analyze the

individual effects of the various techniques and components described in Chapters 3

and 4. Finally we look into how effective transfer learning is from E2E to ViGGO.

Note that we did not switch to the transformer architecture until after the

challenge, and therefore only our more recent experiments – in particular those on

the ViGGO dataset – were performed using this model. All of our model’s results

are averaged over 3 independent runs, unless stated otherwise.

4.5.1 System Configuration

In our experiments with LSTM-based models, both the encoder and the

decoder have 4 layers and 512 cells per layer, and the encoder is bidirectional and

uses 512-dimensional input embeddings. The transformer, on the other hand, is a

59

BLEU METEOR ROUGE CIDEr SER

TGen 0.659 0.448 0.685 2.234 N/A

Slug2Slug 0.662 0.445 0.677 2.262 0.91%

Table 4.2: Slug2Slug, our LSTM/CNN ensemble system trained with sample split-
ting, compared to TGen, the baseline system in the E2E NLG Challenge.

small 2-layer one with 8 heads and using 256-dimensional embeddings, which proved

to perform on par, if not slightly better than the large LSTM model. While in the

LSTM models we settled on a dropout of 0.1, the transformer performed best with

the value set to 0.2. For training both types of models we used the Adam optimizer

with a custom learning rate schedule including a brief linear warm-up and a cosine

decay.

After experimenting with different beam search parameters, we settled on

the beam size of 10. We employed length normalization of the beams as defined

in Wu et al. (2016) in order to encourage the decoder to favor longer sequences. The

brevity penalty providing the best results on the E2E dataset was 0.6, whereas for

ViGGO it was 1.0.

4.5.2 E2E Dataset Experiments

In terms of automatic metrics (see Table 4.2), our system performed com-

parably to the strong baseline model, TGen (Dušek and Jurč́ıček, 2016), in the E2E

NLG Challenge. Nevertheless, systems which score similarly according to automatic

metrics can produce utterances that are significantly different because these metrics

fail to capture many of the characteristics of natural sounding utterances. Therefore,

for a better assessment of the quality of our system’s generated outputs, we present

the results of a comprehensive human evaluation of the models’ outputs in terms of

both naturalness and quality, carried out by the challenge organizers.

60

Human Evaluation. Quality examines the grammatical correctness and ade-

quacy of an utterance given an MR, whereas naturalness assesses whether a gen-

erated utterance could have been produced by a native speaker, irrespective of the

MR. To obtain these scores, crowdworkers ranked the outputs of 5 randomly selected

systems from worst to best. The final scores were produced using the TrueSkill algo-

rithm (Sakaguchi et al., 2014) through pairwise comparisons of the human evaluation

scores among the 20 competing systems.

Our system achieved the highest quality score in the E2E NLG Chal-

lenge, and was ranked second in naturalness.1 The system’s performance in quality

(the primary metric) was significantly better than the competition according to the

TrueSkill evaluation, which used bootstrap resampling with a p-level of p ≤ 0.05.

Comparing these results with the scores achieved by the baseline model in quality

and naturalness (5th and 6th place, respectively) reinforces our belief that models

that perform similarly on the existing automatic metrics can exhibit vast differences

in the structural complexity of their generated utterances.

4.5.2.1 Ensembling

Testing our ensembling approach reveals that reranking predictions pooled

from multiple different models produces an ensemble model that is overall more

robust than the individual submodels. The submodels fail to perform well in all

metrics at once, whereas the ensemble system is more consistent across the different

metric types (Table 4.3).2 Most importantly, the ensemble model decreases the

1The system that surpassed ours in naturalness was ranked the last according to the quality
metric.

2Since the reference utterances in the test set were kept secret for the E2E NLG Challenge,
we carried out the evaluation using the validation set, which was, nevertheless, used neither for
training nor tuning the model.

61

BLEU METEOR ROUGE SER

LSTM1 0.6661 0.4644 0.7018 0.116%

LSTM2 0.6493 0.4649 0.6995 0.145%

CNN 0.6636 0.4700 0.7107 0.232%

Ensemble 0.6576 0.4675 0.7029 0.087%

Table 4.3: Automatic metric scores of 3 different models and their ensemble, tested
on the validation set of E2E. LSTM2 differs from LSTM1 in that it was trained
longer.

BLEU METEOR ROUGE CIDEr SER

LSTM

– 0.628 0.449 0.680 2.231 3.26%

d 0.655 0.454 0.675 2.195 0.00%

ss 0.654 0.454 0.680 2.225 0.00%

Transf.

– 0.591 0.453 0.672 2.035 1.42%

d 0.664 0.453 0.681 2.248 0.00%

ss 0.660 0.451 0.683 2.230 0.00%

Table 4.4: Our LSTM and transformer models evaluated on the E2E dataset, with no
training data preprocessing (–), with denoising only (d), and with sample splitting
as well (ss).

proportion of incorrectly mentioned slots compared to its individual submodels.

4.5.2.2 Sample Splitting and Denoising

As we noted in Section 3.2.3, our sample splitting technique for augmenting

the training set automatically performs denoising as well, so as to eliminate slots

that are not recognized by the slot aligner during the splitting instead of being

assigned to an arbitrary pseudo-sample. In order to be able to discern the effect of

the sample splitting itself we train the same model on (1) the original E2E training

set, (2) the denoised training set, and (3) the denoised training set augmented with

pseudo-samples via sample splitting. All three instances are then evaluated on the

original E2E test set.

The results in Table 4.4 indicate that the sample splitting with denoising

62

significantly increases the performance of a sequence-to-sequence model on the E2E

dataset, whether it is an LSTM-based one or a transformer. The improvement is

most noticeable in the BLEU metric, but especially the SER, which dropped all the

way to zero when training the models on a denoised training set (with or without

sample splitting). However, the results also show that the denoising by itself has

an equal effect. We therefore conclude that the addition of more granular pseudo-

samples, created through sample splitting, to the training set provides, in fact, no

benefit for a neural model. As a consequence of this finding, and considering the

ViGGO dataset is already very clean in terms of slot mentions, we do not use sample

splitting and denoising in our later experiments on ViGGO.

We also note that the small transformer model performs on par with the

TGen and Slug2Slug models (see Table 4.2 for comparison). Compared to an individ-

ual LSTM model, the transformer in fact performs marginally better. An interesting

observation is, however, that the transformer made significantly fewer errors than

the LSTM when trained on the original training set, but was greatly outperformed

on the other metrics. With training data denoising though, we were able to achieve

zero slot errors with both an LSTM and a transformer model on the E2E test set,

whereas the SER of the original outputs of the Slug2Slug system is almost 1%.

4.5.3 ViGGO Dataset Experiments

In the experiments on our recently collected ViGGO dataset, we use the

transformer model exclusively. The baseline results for the ViGGO dataset are

reported in Table 4.5. The automatic metric scores are in general lower than on the

E2E dataset, which can most likely be attributed to the smaller number of reference

utterances available.

63

Without reranking With reranking SER

B M R C SER B M R C SER red.
W

O
T Ao3 0.518 0.384 0.631 2.480 6.32% 0.519 0.388 0.631 2.531 2.55% 2.48×

Bo5 0.524 0.387 0.638 2.494 6.71% 0.521 0.391 0.638 2.545 2.48% 2.71×

W
T

Ao3 0.523 0.386 0.630 2.533 3.84% 0.527 0.389 0.634 2.584 1.80% 2.14×
Bo5 0.523 0.384 0.625 2.522 3.94% 0.527 0.388 0.631 2.581 1.75% 2.25×
Ens – – – – – 0.526 0.389 0.634 2.555 1.46% –

Table 4.5: Results of our experiments on the ViGGO dataset. WOT and WT
denotes models trained without and with transfer learning, respectively. Despite
individual models (Bo5 – best of 5) and ensembles (Ens) often having better scores,
we consider the Ao3 (average of 3) results the most conclusive.

Human Evaluation. We let two expert annotators with no prior knowledge of

the ViGGO dataset evaluate the outputs of our model. Their task was to rate 240

shuffled utterances (120 generated utterances and 120 human references) each on

naturalness and coherence using a 5-point Likert scale. We define naturalness as a

measure of how much one would expect to encounter an utterance in a conversa-

tion with a human, as opposed to sounding robotic, while coherence measures its

grammaticality and fluency. Out of the 120 MRs in each partition, 40 were of the

inform type, with the other 8 DAs represented by 10 samples each. In addition to

that, we had the annotators rate a sample of 80 utterances from the E2E dataset

(40 generated and 40 references) as a sort of a baseline for the human evaluation.

With both datasets, our model’s outputs were highly rated on both natu-

ralness and coherence (see Table 4.6). The scores for the ViGGO utterances were

overall higher than those for the E2E ones, which we understand as an indication

of the video game data being more fluent and conversational. At the same time, we

observed that the utterances generated by our model tended to score higher than

the reference utterances, though significantly more so for the E2E dataset. This is

likely a consequence of the ViGGO dataset being cleaner and less noisy than the

E2E dataset.

64

Naturalness Coherence

Ref. Gen. Ref. Gen.

E2E 4.48 4.67 4.57 4.77

ViGGOinf 4.85 4.83 4.85 4.93

ViGGO 4.68 4.74 4.78 4.84

Table 4.6: Naturalness and coherence scores of our model’s generated outputs com-
pared to the reference utterances, as per the human evaluation. ViGGOinf corre-
sponds to the subset of inform DAs only.

In an additional evaluation of ViGGO, we asked the annotators to classify

the utterance samples into the 9 DA groups. For this task they were provided with

a brief description of each DA type. The annotators identified the DA incorrectly

in only 7% of the samples, which we interpret as a confirmation that our DAs are

well-defined. Most of the mistakes can be ascribed to the inherent similarity of the

recommend and the suggest DA, as well as to our model often generating give opinion

utterances that resemble the inform ones.

Qualitative Analysis Among all 9 DAs, the one posing the greatest challenge for

our model was give opinion, due to its high diversity of reference utterances. Despite

the occasional incoherence, it learned to produce rich and sensible utterances, for

instance “Little Nightmares is a pretty good game. Tarsier Studios is a talented

developer and the side view perspective makes it easy to play.”. An example of a

recommend utterance our model has generated is: “Since you seem to be a fan of

sport racing simulators on the PC, I thought you might like F1 2014 too. Have you

heard about the game?”.

Since our baseline model does not implement any form of a copy mecha-

nism, it fails on instances with out-of-vocabulary terms, such as the values of the

specifier slot in the test set. These, in fact, account for almost half of the errors

65

indicated by the SER metric in Table 4.5. Therefore, more robust models have good

potential for improving on our scores.

4.5.3.1 Utterance Reranking

The results in Table 4.5 confirm the positive impact of generated utterance

reranking on the SER. The reduction of erroneous slot mentions by the factor of up

to 2.5 is a significant benefit, especially considering it is not at the expense of the

scores in the other metrics. In fact, we observe a clear trend of CIDEr scores being

boosted when utterance reranking is used.

4.5.3.2 Transfer Learning

In order to improve the performance of our model on the ViGGO dataset,

we experimented with the pretraining of our model on a large replicated video game

dataset, as described in Section 3.2.4. While the benefits of transfer learning were not

clearly visible when training models on the entire ViGGO dataset (see the bottom

half of Table 4.5), the SER along with CIDEr score were still significantly improved.

On the other hand, when we fine-tuned the pretrained model on the inform-only

subset, the improvement was huge across all metrics, including more than 2 BLEU

points, and a drop in SER from 1.83% to 0.83%, with a further decrease to 0.53%

achieved with an ensemble model (see Table 4.7).

We thus showed that the performance increase on the entire dataset comes

primarily from the inform DAs. However, constituting less than 30% of the test

set, it leads to an overall small boost. We therefore conclude that pretraining on a

large out-of-domain dataset is only effective on DAs of the same type, although it is

possible that a positive effect could be observed on other DAs too in an extremely

66

BLEU METEOR ROUGE CIDEr SER

WOT
Ao3 0.609 0.434 0.681 3.236 1.83%

Bo5 0.608 0.434 0.681 3.332 1.42%

WT

Ao3 0.631 0.440 0.696 3.316 0.83%

Bo5 0.645 0.442 0.709 3.404 0.71%

Ens 0.629 0.440 0.699 3.317 0.53%

Table 4.7: Results of our experiments on the subset of the ViGGO dataset with
inform DAs only. WOT and WT denote models trained without and with transfer
learning, respectively.

data-starved scenario.

We also note that the model’s scores on the inform DAs of the video game

dataset are comparable to those achieved on the full E2E dataset, despite there

being nearly 20 times less training data, more slots, and the reference utterances

being on average significantly longer.

4.6 Summary

Building on the successful attentional encoder-decoder framework for se-

quence-to-sequence learning, we developed a robust NLG system that outperformed

all competing systems in a data-to-text NLG shared task. We achieved this by using

model ensembling, adaptive delexicalization of input data, and the many benefits

of the automatic slot aligner. We further tested our model on ViGGO, setting a

baseline for this new dataset, and used it to demonstrate the benefits of transfer

learning for domain transferability. We showed that by pretraining our model on

a modified version of the E2E dataset and subsequently fine-tuning it on ViGGO,

we can achieve a significantly better performance and higher semantic accuracy on

ViGGO than by training the model on ViGGO alone.

67

Chapter 5

Stylistic Control

Both a benefit and a pitfall of neural NLG models is that they are good

at reducing noise in the training data. When they are trained on a sufficiently

large dataset, they learn to generalize and become capable of applying the acquired

knowledge to unseen inputs. The more data the models are trained on, the more

robust they become, which minimizes the effect of noise in the data on their learning.

However, the higher amount of training data can also drown out interesting stylistic

features and variations that may not be very frequent in the data. In other words,

a deep learning model, being statistical, will prefer producing the most common

sentence structures, i.e., those which it observed most frequently in the training

data and is thus most confident about.

In this chapter, we explore different ways of making language generated by

neural models more natural and varied. To this end, we first develop text analysis

methods that systematically characterize types of sentences in the training data.

We then automatically label the training data with the help of the slot aligner

described in Chapter 3, and a handful of domain-independent rules for discourse

marker extraction, in order to allow us to conduct two kinds of experiments with

68

our neural language generator: (1) we test the effect of training the system with

different stylistic partitions and quantify the effect of smaller, but more stylistically

controlled training data; (2) we propose a method of labeling the style variants

during training using auxiliary input tokens, and show that we can modify the style

of the output using our stylistic labels. We contrast these methods, showing how

they vary in terms of semantic quality and stylistic control. These methods promise

to be usable with any sufficiently large corpus as a simple way of producing stylistic

variation.

Being one of the largest datasets of its kind, we consider E2E the best

available resource to perform the above experiments on. As pointed out earlier in

Section 2.1, due to its size, as well as the data collection methods used, the E2E

dataset manifests more interesting stylistic variations in the crowdsourced utter-

ances. We also take advantage of the fact that it offers multiple alternative ways of

expressing the information in each MR – which implies different styles too – when

selecting the subset of examples for training with a particular purpose of stylistic

variation.

5.1 Stylistic Selection

We note that the E2E dataset is significantly larger than what is needed for

a neural model to learn to produce syntactically and semantically correct utterances

in this domain. Thus we seek a way to help the model learn more than just to

be correct; we strive to achieve higher diversity of the utterances generated by the

model through stylistic selection of the training examples. We start by characterizing

variation in the crowdsourced dataset and detecting what opportunities it offers for

69

Domain Utterance

Video
game

An excellent adventure RPG you can play from either a bird’s eye
view or in third person is Final Fantasy VII. It’s available on Steam
for PC, and you can play it on your PlayStation too.

TV
You might like the Dionysus 44 television that has an a+ eco rating
and 720p resolution, while only using 32 watts in power consumption.

Laptop
For the price of 449 dollars, you could purchase the Satellite Hypnos
38 laptop.

People
Born in the London Borough of Havering, Alex Day started perform-
ing in 2006.

Food
Sago is the main ingredient in binignit, but sweet potatoes are also
used in it.

Table 5.1: Examples of utterances in different datasets/domains, exhibiting inter-
esting discourse phenomena.

the model to learn more advanced sentence structures. Table 5.2 illustrates some of

the stylistic variation that we observe, which we describe in more detail below. We

then assess the level of desirability of specific discourse phenomena in our context,

and devise rules based on the utterance’s dependency parse to extract examples

that exhibit those stylistic phenomena. This gives us the ability to create subsets of

examples with an arbitrary combination of stylistic features that we are interested in.

We then explore the extent to which we can make the model’s outputs demonstrate

these stylistic features.

5.1.1 Stylistic Variation in the E2E Dataset

This section gives an overview of different discourse phenomena in the

E2E dataset that we consider relevant in the context of a task-oriented dialogue in

the restaurant domain. The majority of these would, however, generalize to other

domains too, since they appear not only in summaries of restaurants, but also, for

example, in those of TVs, laptops (Wen et al., 2016), people, food (Gardent et al.,

2017), as well as video games (see examples in Table 5.1). The extraction rules we

70

Category Utterance

Aggregation
Located in the city centre is a family-friendly coffee shop called
Fitzbillies. It is both inexpensive and highly rated.

Contrast
The Rice Boat is a Chinese restaurant in the riverside area. It
has a customer rating of 5 out of 5 but is not family friendly.

Fronting
With a 1 out of 5 rating Midsummer House serves Italian
cuisine in the high price range, found not far from All Bar One.

Subordination
Wildwood pub is serving 5 star food while keeping their
prices low.

Exist. clause
In the city center, there is an average priced, non-family-friendly,
Japanese restaurant called Alimentum.

Imperative/
modal

In Riverside, you’ll find Fitzbillies. It is a passable, afford-
able coffee shop which interestingly serves Chinese food. Don’t
bring your family though.

Table 5.2: Examples of the categories of discourse phenomena extracted from E2E
utterances.

have implemented can thus be widely used in data-to-text language generators. We

split the sentence features into the following six categories (an example of each is

given in Table 5.2):

• Aggregation: Discourse phenomena grouping information together in a more

concise way. This includes specifiers such as “both” or “also”, as well as ap-

position and gerunds. Another type of aggregation uses the same quantitative

adjective for characterizing multiple different qualities (such as “It has a low

customer rating and price range.”).

Note that some of the following categories contain other markers that also

represent aggregation.

• Contrast: Connectors and adverbs expressing concession or contrast between

two or more properties, such as “but”, “despite”, “however”, or “yet”.

• Fronting: Fronted adjective, verb and prepositional phrases, typically high-

lighting properties of the entity (e.g., restaurant) before its name is given. In

71

this category we also include specificational copular constructions, which are

formulations with inverted predication around a copula, bringing a particular

property of the entity in the front (e.g., “A family friendly option is The Rice

Boat.”).

• Subordination: Clauses introduced by a subordinating conjunction (such as

“if” or “while”), or by a relative pronoun (such as “whose” or “that”).

• Existential clause: Sentences formulated using the expletive “there”.

• Imperative and modal verb: Sentences involving a verb in the impera-

tive form or a modal verb, making the utterance sound more personal and

interactive.

5.1.2 Discourse Marker Weighting

Many human-authored utterances naturally contain multiple of the dis-

course phenomena described in Section 5.1.1. We would thus also prefer our system

to be able to generate such utterances, as opposed to ones only containing a sin-

gle discourse phenomenon of interest, especially if it is a common one, such as the

existential clause. We therefore devise a weighting schema for different groups of

discourse markers, whose purpose is to represent the markers’ general desirability in

the output utterances, as well as to counteract the sparsity of some of the markers

compared to others. In other words, the weighting is supposed to ensure that all the

most desirable utterances are picked from the training set during the selection, but

some that only contain less interesting, and typically more prevalent, discourse phe-

nomena would be omitted in favor of the more complex ones. Our reasoning behind

this is that the greater the proportion of the most desirable discourse phenomena in

the stylistically selected training set, the more confidently the model is expected to

72

Category Subset of discourse markers
Pro-

portion
Wei-
ght

Aggregation

“also, both, neither,...”, quantitative adjectives 1.8% 3

apposition 4.6% 2

gerund 11.2% 2

Contrast “but, however, despite, although,...” 5.4% 3

Fronting fronted adjective/prepositional/verb clause 14.5% 2

Subordination
subordinating conjunction 2.9% 2

relative pronouns 19.3% 1

Existential
clause

expletive “there” 10.0% 1

Imperative/
modal

imperative 1.0% 2

modal verb 4.1% 2

Table 5.3: The weighting schema for different discourse markers for each introduced
category of discourse phenomena. For each set of markers we indicate the heuristi-
cally determined proportion of reference utterances in the training set they appear
in.

generate utterances in which they are present.

For illustration, let us assume there are eight different reference utterances

for an MR. All of them will be scored based on the discourse markers they contain,

but only those that score above a certain threshold will be selected, while the rest

will be ignored. The purpose of that is to encourage the model to learn to use, say, a

contrastive phrase if there is an opportunity for it in the MR, and not be distracted

by other possible realizations of the same MR, which are not as elegant. Thus,

we can set the weighting schema in such a way that sentences containing only, for

example, “which” or an existential clause, will not be picked. However, if there is no

high scoring utterance for an MR, the utterance with the highest score is selected

regardless so that the model would not miss the opportunity to learn from any MR

examples.

Our final weighting schema – determined through a combination of the

discourse markers’ frequency in the dataset, their intra-category variation, as well

73

as their general desirability in the particular domain of our task – is specified in

Table 5.3. When there are discourse markers from multiple subsets present in the

utterance, the weights are accumulated. It is then the total weight that is used to

determine whether the utterance satisfies a given stylistic threshold or should be

eliminated. The weights can be tuned for any new domain according to the above

or any other factors.

5.2 Input Data Annotation

5.2.1 Contrastive Relation

One of the discourse phenomena whose actualization could benefit from

explicit indication of when it should be applied, is the contrastive relation between

two (or more) slot mentions in the utterance. There are several reasons why such a

comparison of specific slots would be desired in the restaurant domain. One of them

is to provide emphasis that one attribute is positive, whereas the other is negative.

Another natural reason in dialogue systems could be to indicate that the closest

match to the user’s query that was found is a restaurant that does not satisfy one of

the requested criteria. A third instance is when the value of one attribute creates the

expectation of a particular value of another attribute, but the latter has in reality

the opposite value.

Some of the above could presumably be learned by the model if sufficient

training data was available. However, they involve fairly complex sentence constructs

with various potentially confusing rules for the neural network. The slightly more

than 2K examples with a contrasting relation may easily be considered noise by

the model among the tens of thousands of examples in the E2E dataset. Hence,

74

we augment the input MRs given to the model with the information about which

particular slots should be put into a contrastive relation. We hypothesize that this

explicit indication will help the model to learn to apply contrasting more easily

despite the small proportion of training examples exhibiting the property.

In order to extract the information from the training utterance as precisely

as possible, but in an automated fashion, we make use of our slot aligner yet again,

this time using the positional information to identify two slots that are in a con-

trastive relation. For the relation we only consider the two scalar slots (priceRange

and customerRating), plus the Boolean slot familyFriendly. Whenever a con-

trastive relation appears to the aligner to involve a slot other than the above three,

we discard it as an undesirable utterance formulation. Depending on the values of

the two identified slots, we assign the example either of the following labels:

• Contrast: If the slots have different values on a 3-point positivity scale that

they can be mapped to (familyFriendly is only mapped to {1, 3}). An ex-

ample would be customerRating being “low” (→ 1) and familyFriendly

having the value “yes” (→ 3),

• Concession: If the slots have an equivalent value. For instance, customer-

Rating being “5 out of 5” (→ 3) and priceRange having the value “cheap”

(→ 3).

The label is added in the form of a new auxiliary slot in the MR, containing the

names of the two corresponding slots as its value, such as 〈contrast〉 [priceRange

customerRating].

75

User
query

Is there a family-friendly Indian restaurant nearby?

Response
with no
emphasis

The Rice Boat in city centre near Express by Holiday Inn is serving
Indian food at a high price. It is family-friendly and received a
customer rating of 1 out of 5.

Response
with
emphasis

A family-friendly option is The Rice Boat. This Indian cuisine
is priced on the higher end and has a rating of 1 out of 5. They
are located near Express by Holiday Inn in the city centre.

Table 5.4: Example of emphasizing the information about family-friendliness in an
utterance conveying the same content.

5.2.2 Emphasis

Another property that it might be desirable in practice to have enforced in

generated utterances is emphasis. Through fronting discourse phenomena, such as

specificational copular constructions or fronted prepositional phrases, certain infor-

mation about the entity can be emphasized at the beginning of the utterance. This

could be used to make the dialogue system’s responses sound more context-aware

and thus natural. Consider the following example in the restaurant domain. Assume

the user asks the system for a recommendation of a family-friendly Indian restau-

rant (see Table 5.4). Considering the user explicitly specifies the “family-friendly”

requirement in the query, it is arguably more natural for the system response to be

in the form of the second example in the table rather than the first.

We argue that the order of the information given in a response matters,

depending on the context of the conversation, and should not be entirely arbitrary.

That motivated us to identify instances in the training set where some information

about the restaurant is provided in the utterance before its name. Using the slot

aligner we extract the information about which slot(s) the opening segment of the

utterance represents. Subsequently, we augment the corresponding flattened input

to the model with additional 〈emph〉 tokens immediately before the slots that should

76

be emphasized in the generated utterance. This additional annotation will give the

model an incentive to learn to realize such slots at the beginning of the utterance

when desired. From the perspective of the dialogue manager in a dialogue system, it

simply needs to indicate slots to emphasize along with the generated MR whenever

applicable.

5.3 Evaluation

5.3.1 Style Subsets

In the initial experiments, we trained a model on the reduced training set,

which only contains utterances filtered out based on the weighting schema defined

in Table 5.3. Setting the threshold to 2, we obtained a training set of 17.5K exam-

ples, which is approximately 40% of the original training set. Although this heavily

reduced training set had a higher concentration of more desirable reference utter-

ances, it was not quite sufficient to achieve the desired effect. However, many of the

discourse relations, including contrast, apposition, and fronting, appeared multiple

times in the utterances generated from the test set, which was not the case for a

model trained on the full training set.

Therefore, our next step was to verify whether our model is capable of

learning all the concepts of the discourse phenomena individually and apply them

in generated utterances. To this end, we repeatedly trained a model on subsets of

the E2E dataset, each containing only examples with a specific group of discourse

markers, as listed in the second column of Table 5.3. We then evaluated the outputs

on the correspondingly reduced test set, using the same method we used for iden-

tifying examples with specific discourse markers, as described in Section 5.1.1. In

77

other words, we identified what proportion of the generated utterances did exhibit

the desired discourse relation.

The results show that the model is indeed able to learn how to produce var-

ious advanced sentence structures that are, moreover, syntactically correct despite

being trained on a rather small training set (in certain cases less than 2K exam-

ples). In all of the experiments, 97–100% of the generated utterances conformed to

the style the model was trained to produce. Any occasional incoherence that we ob-

served (e.g., “It has a high customer rating, but are not kid friendly.”) was actually

picked up from poor reference utterances in the training set. The only exception

in the syntactic correctness was the Imperative/modal category. Since this is one

of the least represented categories among the six, and due to the particularly high

complexity and diversity of the utterances, the model trained exclusively on the

examples in this category generated a significant proportion of slightly incoherent

utterances.

5.3.2 Data Annotation

The first set of experiments we performed with the data annotation in-

volved explicit indication of emphasis in the input (see Section 5.2.2). As the results

in Table 5.6 show, the model trained on data with emphasis annotation reached an

almost 98% success rate of generating an utterance with the desired slots empha-

sized.1 In order to get a better idea of the impact of the annotation, notice that

the same model trained on non-annotated data does not produce a single utterance

with emphasis; instead it produces utterances in the usual rigid style, which always

starts with the name of the restaurant (see Table 5.5).

1There were 3,309 slots across all the test MRs that were labeled as to-be-emphasized.

78

MR
name [Wildwood], eatType [coffee shop], food [English],
priceRange [moderate], customerRating [1 out of 5], near
[Ranch]

Reference
A low rated English style coffee shop around Ranch called
Wildwood has moderately priced food.

No emph.
annotation

Wildwood is a coffee shop providing English food in the mod-
erate price range. It is located near Ranch.

With emph.
annotation

There is a low rated English coffee shop near Ranch called
Wildwood. It has a moderate price range.

Table 5.5: Examples of generated utterances with or without emphasis annotation.
The MR’s slots to be emphasized before the restaurant name, and the corresponding
slot realizations, are in bold.

Emph. realiz. SER

Reference 100.00% 8.48%

No emph. 0.00% 3.45%

With emph. 97.85% 5.82%

Table 5.6: Comparison of the emphasis realization success rate (precision) and the
slot error rate (SER) in the generated outputs using data annotation against the
reference utterances, as well as the outputs of the same model trained on non-
annotated data.

We notice that the error rate of the slot realization rises (from 3.45% to

5.82%) when the annotation is introduced. Nevertheless, it is still lower than the

error rate among the reference utterances in the test set, in which over 8% of slots

have missing mentions. Thus we find it acceptable considering the desired stylistic

improvement of the output utterances.

The experiments with contrastive relation annotation also show a signif-

icant impact of the added labels on the style of the utterances generated by our

model. However, the success rate of the realization of a contrast/concession formu-

lation was only 49.12%, and the slot error rate jumped up to 8.34%. The contrast

and concession discourse relations being syntactically more complex, and at the

same time being less prevalent among the training utterances, it is understandable

that it is more difficult for the model to learn how to use them properly.

79

priceRange customerRating Frequency

less than £20 low 2,153

£20–25 3 out of 5 919

moderate 3 out of 5 1,282

more than £30 high 1,329

more than £30 5 out of 5 921

Table 5.7: Combinations of the slot values for which aggregation would be possible.
Note that only the combinations with a non-zero frequency are listed.

5.3.3 Aggregation

One of the aggregation discourse markers that we identified as contributing

to the stylistic variation in an interesting way is, unfortunately, very sparsely repre-

sented in the E2E dataset. It is the last aggregation type described in the category

overview in Section 5.1.1. Its scarcity in the training set would not make it feasible

to train a successful neural model on the subset of the corresponding examples only.

Nevertheless, we analyze the potential for this aggregation in the train-

ing set. Since there are only two scalar slots in this dataset, priceRange and

customerRating, we obtain the frequencies of their value combinations. Both of

these take on values on a scale of 3, however, the values are different for each of the

slots. Moreover, there are two sets of values for both slots throughout the dataset.

We observed, however, that the values between the two sets are used somewhat

interchangeably in the utterances, e.g., “low” seems to be a valid expression of the

“less than £20” value of the priceRange slot, and vice versa.

As can be seen in Table 5.7, the potential for this type of aggregation is

rather limited. Although the 6,604 examples in which a feasible value combination

can be found corresponds to over 15% of the training set, due to the values not

matching exactly between the two slots, aggregation was not elicited in the human-

authored utterances. Moreover, a high value in the customerRating means it is

80

a positive attribute, while in the priceRange slot it indicates a negative attribute.

We conjecture this might have also deterred the crowdworkers who produced the

utterances from aggregating the values together.

5.4 Summary

In this chapter, we presented two different methods of giving a neural

language generation system greater stylistic control. Our results indicate that the

data annotation method has a significant impact on the model being able to learn

how to use a specific style and sentence structures, without an unreasonable impact

on the semantic error rate. Both methods are a convenient way for achieving the

goal of stylistic control when training a neural model with an arbitrary existing large

corpus.

81

Chapter 6

Semantically Attention-Guided

Decoding for Data-to-Text NLG

This chapter picks up the semantic accuracy thread started in Chapter 3.

As we could see in our experiments in Chapter 5, increased diversity in generated

utterances tends to come at the cost of their faithfulness to the input. With a

reliable way of automatically detecting errors in model outputs, however, we may

be able to optimize for both at the same time.

Several different approaches to enhancing semantic accuracy of neural end-

to-end models have been proposed for data-to-text NLG over the years. The most

common approach to ensuring semantic quality relies on over-generating and then

reranking candidate outputs using criteria that the model may not have been ex-

plicitly optimized for in training. Reranking in NLG models is typically performed

by creating an extensive set of rules, or by training a supplemental classifier, that

indicates for each input slot whether it is present in the output utterance (Wen

et al., 2015a; Dušek and Jurč́ıček, 2016; Juraska et al., 2018; Agarwal et al., 2018;

Kedzie and McKeown, 2020; Harkous et al., 2020).

82

Wen et al. (2015b) proposed an extension of the underlying LSTM cells

of their sequence-to-sequence model to explicitly track, at each decoding step, the

information mentioned so far. The coverage mechanism (Tu et al., 2016; Mi et al.,

2016; See et al., 2017) penalizes the model for attending to the same parts of the

input based on the cumulative attention distribution in the decoder. Chisholm

et al. (2017) and Shen et al. (2019) both introduce different sequence-to-sequence

model architectures that jointly learn to generate text and reconstruct the input

facts. An iterative self-training process using data augmentation (Nie et al., 2019;

Kedzie and McKeown, 2019) was shown to reduce semantic NLG errors on the E2E

dataset. Among the more recent efforts, the jointly-learned segmentation and align-

ment method of Shen et al. (2020) improves semantic accuracy while simultaneously

increasing output diversity. Kedzie and McKeown (2020) use segmentation for data

augmentation and automatic utterance planning, which leads to a reduction in se-

mantic errors on both the E2E and ViGGO datasets.

Also related to our problem of controlling for semantic accuracy is the line

of work researching controllable neural language generation, in which the constrained

decoding strategy is often used, rescoring tokens at each decoding step based on a

set of feature discriminators (Ghazvininejad et al., 2017; Baheti et al., 2018; Holtz-

man et al., 2018). Nevertheless, this method is typically used with unconditional

generative LMs, and hence does not involve input-dependent constraints.

In this chapter, we study the behavior of attention in large pretrained lan-

guage models (LMs) fine-tuned for a data-to-text NLG task, and how it relates to the

semantic accuracy in their outputs. We show that encoder-decoder models equipped

with cross-attention (i.e., an attention mechanism in the decoder looking back at

the encoder’s outputs) are, in fact, aware of the semantic constraints, yet standard

83

decoding methods do not fully utilize the model’s knowledge. The method we pro-

pose extracts interpretable information from the model’s cross-attention mechanism

at each decoding step, and uses it to infer which slots have been correctly realized

in the output. Coupled with beam search, we use the inferred slot realizations to

rescore the beam hypotheses, preferring those with the fewest missing or incorrect

slot mentions.

In contrast to previous work, our approach does not rely on model modifi-

cations, data augmentation, or manual annotation. Our method is novel in that it

utilizes information that is already present in the model itself to perform semantic

reranking. Although our approach also exploits the cross-attention between the en-

coder and the decoder, it differs from the coverage mechanism in that it does not

require any modifications to the language generation model itself. In Section 6.1.1 we

also demonstrate certain nuances of cross-attention, which the coverage mechanism

may not be able to account for.

6.1 Semantic Attention-Guided Decoding

While we will evaluate the SeA-GuiDe method on ViGGO, E2E, and Mul-

tiWOZ, we develop the method by careful analysis of the cross-attention behavior

of different pretrained generative LMs fine-tuned on the ViGGO dataset. The mo-

tivation for selecting ViGGO for developing the method was that it is the smallest

dataset, but it provides a variety of DA and slot types (as shown in Table 2.1 in

Chapter 2). The models used for the analysis were the smallest variants of T5 (Raf-

fel et al., 2020) and BART (Lewis et al., 2020). We saved the larger variants of the

models, as well as the other two datasets, for the evaluation.

84

(a) Verbatim slot mention
(1st layer).

(b) Paraphrased slot mention
(3rd layer).

(c) Unrealized slot mention
(4th layer).

Figure 6.1: Visualization of cross-attention weight distribution for the 6-layer T5-
small (trained on the ViGGO dataset) in 3 different scenarios. The left column in
each corresponds to the input tokens, and the right to the tokens generated by the
decoder. The darker the blue background shade, the greater the attention weight.
Note that the weights are aggregated across all attention heads by extracting the
maximum.

6.1.1 Interpreting Cross-Attention

Attention (Bahdanau et al., 2015; Luong et al., 2015) is a mechanism that

was introduced in encoder-decoder models (Sutskever et al., 2014; Cho et al., 2014) to

overcome the long-range dependencies problem of RNN-based models. It allows the

decoder to effectively condition its output tokens on relevant parts of the encoder’s

output at each decoding step. The term cross-attention is primarily used when refer-

ring to the more recent transformer-based encoder-decoder models (Vaswani et al.,

2017), to distinguish it from the self-attention layers present in both the encoder

and the decoder transformer blocks. The cross-attention layer ultimately provides

the decoder with a weight distribution at each step, indicating the importance of

each input token in the current context.

Our results below will show that visualizing the attention weight distribu-

tion for individual cross-attention layers in the decoder – for many different inputs

85

– reveals multiple universal patterns, whose combination can be exploited to track

the presence, or lack thereof, of input slots in the output sequence. Despite the dif-

ferences in the training objectives of T5 and BART, as well as their different sizes,

we observe remarkably similar patterns in their respective cross-attention behavior.

Below, we describe the three most essential patterns (illustrated in Figure 6.1) that

we use in SeA-GuiDe.

6.1.1.1 Verbatim Slot Mention Pattern

The first pattern consistently occurs in the lowest attention layer, whose

primary role appears to be to retrospectively keep track of a token in the input

sequence that the decoder just generated in the previous step. Figure 6.1a shows an

example of an extremely high attention weight on the input token “third” when the

decoder is deciding which token to generate after “What is it about third” (which

ends up being the token “person”). This pattern, which we refer to as the verbatim

slot mention pattern, can be captured by maximizing the weight over all attention

heads in the decoder’s first layer.

6.1.1.2 Paraphrased Slot Mention Pattern

Paraphrased slot mentions, on the other hand, are captured by the higher

layers, at the moment when a corresponding token is about to be mentioned next.

Essentially, as we move further up the layers, the cross-attention weights gradually

shift towards input tokens that correspond to information that is most likely to follow

next in the output, and capture increasingly more abstract concepts in general.

Figure 6.1b shows an example of the rating slot’s value “poor” paraphrased in

the generated utterance as “distasteful”; the first high attention value associated

86

Figure 6.2: Example of the decoder paying equal attention (in the 5th layer of the
6-layer T5-small) to two slots in the input sequence when deciding what to generate
next after “What is it about”.

with the input token “poor” occurs when the decoder is about to generate the “dis”

token.

At certain points during generation, however, the attention in the upper-

most layers is distributed fairly evenly among multiple slots, because any of them

could lead to a coherent continuation of the sentence. For example, the generated

utterance in Figure 6.2 could have started with “What is it about vehicular combat

games played from a third-person perspective that. . . ”, where the genres slot is

output before the player perspective slot.

In order to recognize a paraphrased mention, without incorrectly capturing

other slots considered, we propose averaging the cross-attention weights, using only

the bottom half of the layers (e.g., layers 1 to 3 in the T5-small model).

87

6.1.1.3 Unrealized Slot Mention Pattern

The third pattern alleviates any undesired side effects of identifying para-

phrased mentions using the second pattern, i.e., slots incorrectly assumed to be

mentioned. Figure 6.1c illustrates an unrealized slot (platforms) being paid at-

tention to in several decoding steps. The cross-attention weight distribution for the

“Xbox” token in the 4th layer, shows that the decoder considered mentioning the

slot at step 5 (e.g., “Since you’re an Xbox fan and like multiplayer games,. . . ”), as

well as step 8 (e.g., “. . . into multiplayer games on Xbox,. . . ”). The second pattern,

depending on the sensitivity setting (see Section 6.1.2), might infer the platforms

slot as a paraphrased mention at step 5 and/or 8.

However, the platforms slot’s value is also paid attention to when the

decoder is about to generate the EOS token and, importantly, without any high

attention weights associated with other slots at this step. This suggests that the

model is aware that it omitted that slot. However, at that point, the decoder is

more confident ending the sentence than realizing the missed slot after generating a

question mark. This unrealized slot mention pattern is most likely to occur in the

higher cross-attention layers, but not necessarily, so it is more effective to capture

it by averaging the attention weights over all layers (at the last decoding step).

Note on Boolean Slots. With any of the three patterns described above, Boolean

slots, such as has multiplayer in Figure 6.1c, typically have a high attention

weight associated with their name rather than the value. This observation leads to

a different treatment of Boolean slots, as described below.

88

6.1.2 Slot Mention Tracking

We use the findings of the cross-attention analysis for automatic slot men-

tion tracking in the decoder. During decoding, for each sequence, the attention

weights associated with the next token to be generated are aggregated as per Sec-

tion 6.1.1. Using configurable thresholds, the aggregated weights are then binarized,

i.e., set to 1 if above the threshold, and 0 otherwise. This determines the sensitivity

of the pattern recognition. Optionally, all but the maximum weight can be set to 0,

in which case only a single input token will by implied even if the attention mass

is spread evenly across multiple tokens. Finally, the indices of binarized weights

of value 1, if any, are matched with their corresponding slots depending on which

slot-span in the input sequence they fall into.

To automatically extract slot spans, we parse the input MRs on-the-fly –

which is trivial given the structured nature of MRs – as each batch is being prepared

for inference, and create a list of slot spans for each MR in the batch.1 In fact, we

indicate the spans for slot names and slot values separately, and for list-values down

to individual list elements, for a higher specificity. Since Boolean slot mentions are

tracked by their name rather than value, we also indicate for each slot whether it

is Boolean or not. This information can be provided explicitly to the data loader,

otherwise it is automatically inferred from the dataset’s ontology based on all the

possible values for each slot.

1This is done on token level, and the result varies thus from model to model depending on its
tokenizer.

89

Verbatim Paraphrased Unrealized

Layer agg.
1st layer

only
avg. over bottom

half of layers
avg.

Head agg. max. max. max.

Bin.
threshold

0.9
0.4 (T5-small) 0.3

(BART-base)
0.1

Bin. max. yes no no

Table 6.1: Final configuration of parameters used in each of the 3 mention-tracking
components. The “Bin. max.” row indicates whether only the maximum weight is
kept during binarization, or all above the threshold.

6.1.2.1 Mention-Tracking Components

The three mention-tracking components, each of which operates on differ-

ent attention layers and uses a different weight aggregation and binarization strat-

egy, are summarized in Table 6.1. These components are executed in sequence and

update one common slot-tracking object.

The first component, which tracks verbatim mentions, operates on the first

attention layer only, with a high binarization threshold. Slot mentions identified

by this component are regarded as high-confidence. The second component tracks

paraphrased mentions, which are identified as slot mentions with low confidence,

due to the partial ambiguity in mention detection using the second pattern (see

Section 6.1.1.2). The third component only kicks in when the EOS token is the

most probable next token. At that point, it identifies – with high sensitivity – slots

that were not realized in the sequence (e.g., the platforms slot in Figure 6.1c), and

removes the corresponding mention record(s). Only low-confidence mentions can be

erased, while high-confidence ones are final once they are detected.

90

6.1.3 Semantic Reranking

Combining the slot mention tracking with beam search, for each input MR

we obtain a pool of candidate utterances along with the semantic errors inferred at

decoding time. We then rerank the candidates and pick the one with the fewest

errors, resolving ties using the length-weighted log-probability scores determined

during beam search.

6.2 Evaluation

Besides ViGGO, which we use for fine-tuning the decoding (slot-tracking)

parameters of the proposed SeA-GuiDe method, we evaluate its effectiveness for

semantic error reduction on two unseen and out-of-domain datasets: E2E and Mul-

tiWOZ. Table 2.1 in Chapter 2 gives an overview of all three datasets’ sizes and

properties.

6.2.1 Data Preprocessing

When preprocessing input MRs before fine-tuning a pretrained model or

running inference with such a model, we convert the MR’s structured format into

a more natural language. This turned out to significantly increase the performance

compared to using the raw MRs, which we attribute to these large LMs being pre-

trained on textual data in natural language, without seeing much structured data.

Below, we briefly describe the process.

We first parse the DA types, if present, and all slots and their values from

the dataset-specific format into an intermediate list of slot-and-value pairs, keeping

the original order. Although typically indicated in the MR differently from slots,

91

we treat the DA type as any other slot (with the value being the DA type itself,

and assigning it the name “intent”). Next, we rename any slots that do not have

a natural-language name (e.g., “priceRange” to “price range”, or “has mac release”

to “has Mac release”). Slot values are left untouched. We perform this slot name

conversion to take advantage of the pretrained LMs’ ability to model the context

when the input contains familiar words, as opposed to feeding it code names with

underscores and no spaces. It changes them into natural-language phrases which

the LM will understand better, otherwise it would not be able to associate them

with any of the words and phrases it encountered during pretraining. Finally, we

convert the updated intermediate list of slots and their values to a string. The ‘|’

symbol is used for separating slot-and-value pairs from each other, while the ‘=’ is

used within each pair to separate the value from the slot name. The result for an

MR from ViGGO can look as follows:

intent = request explanation | rating = poor | genres = vehicular combat

| player perspective = third person

6.2.2 Experimental Setup

In our experiments, we fine-tune T5 and BART models of varying sizes on

the above datasets’ training partitions, select the best model checkpoints based on

the BLEU score they achieve on the respective validation set, and evaluate them on

the test sets while using different decoding methods for inference. For beam search

decoding, including when used as part of SeA-GuiDe, we use beam size 10 and

early stopping, unless stated otherwise. All of our results are averaged over 3 runs

with random initialization.

The pretrained models that we fine-tuned for our experiments are the Py-

92

Layers Heads
Hidden
state
size

Total
param-
eters

Batch
size

Learning
rate

Epochs

T5-
small

6+6 8 512 ≈ 60M 32/64/64 2 × 10−4 20/20/30

BART-
base

6+6 12 768 ≈ 139M 32/32/32 1 × 10−5 20/20/25

T5-
base

12+12 12 768 ≈ 220M 16/16/ – 3 × 10−5 20/20/ –

BART-
large

12+12 16 1024 ≈ 406M 16/ – / – 4 × 10−6 20/ – / –

Table 6.2: Overview of the model specifications and the training parameters used
in our experiments. Batch size and the number of epochs are indicated per dataset
(ViGGO/E2E/MultiWOZ).

Torch implementations in the Hugging Face’s Transformers library2 (Wolf et al.,

2020). The model sizes are indicated in Table 6.2. We trained all models using a

single Nvidia RTX 2070 GPU with 8 GB of memory and CUDA version 10.2. The

training parameters too are summarized in Table 6.2. For all models, we used the

AdamW optimizer with a linear decay after 100 warm-up steps. The maximum

sequence length for both training and inference was set to 128 for ViGGO and E2E,

and 160 for MultiWOZ.

6.2.3 Automatic Evaluation Metrics

We evaluate our trained models’ performance with the standard NLG met-

rics BLEU, METEOR, ROUGE-L, and CIDEr. To ensure a fair comparison with

the MultiWOZ baselines (Peng et al., 2020; Kale and Rastogi, 2020), we additionally

report BLEU scores calculated using the RNNLG evaluation script3, which their re-

spective authors used in their own evaluation. We denote it BLEUR in our results

tables.

In order to measure the proposed decoding method’s performance in se-

2https://huggingface.co/transformers/
3https://github.com/shawnwun/RNNLG/

93

https://huggingface.co/transformers/
https://github.com/shawnwun/RNNLG/

mantic error reduction, we use our slot aligner from Chapter 3. We use it to count

missing, incorrect, and duplicate slot mentions, and determine the slot error rate

(SER) as the percentage of these errors out of all slots in the test set’s MRs (see

Section 3.2.6). The slot aligner is rule-based and took dozens of man-hours to de-

velop, but it is robust and extensible to new domains, so it works on all three test

datasets. With the slot aligner we can calculate SER automatically for all our model

outputs across all datasets and configurations tested, which would be infeasible to

have human annotators do.

Besides SER evaluation, we use the slot aligner for beam search candidate

reranking as one of our baselines. Due to the handcrafted and domain-specific

nature of the slot aligner, beam search with this reranking has a distinct advantage

over SeA-GuiDe, which can be used for any domain out of the box. We therefore

consider the results when using the slot-aligner reranking to be an upper bound for

SeA-GuiDe in terms of SER, rather than a baseline.

We also note that Kale and Rastogi (2020) calculated SER on utterance

level, rather than slot level, and that using exact slot value matching in the utterance.

We thus wrote a script to also perform this type of naive SER evaluation, in addition

to our slot aligner-based SER evaluation. We report its results as SERE.

6.2.4 SeA-GuiDe Parameter Tuning

Each of the three mention-tracking components described in Section 6.1.2.1

has four configurable parameters, which we tuned by testing T5-small and BART-

base, fine-tuned on the ViGGO dataset and equipped with SeA-GuiDe for infer-

ence. The parameter optimization was based on the insights obtained in Section 6.1.1

and a subsequent grid search, with results in Table 6.1.

94

For attention weight aggregation, we experimented with summing, averag-

ing, maximizing, and normalizing. We determined averaging over layers and maxi-

mizing over heads to be the best combination for all three components. As for the

binarization thresholds, Figure 6.3 shows the most relevant slice of the grid search

space for each component, leading to the final threshold values.

To show the effect of each slot-tracking component, we perform an ablation

study with individual components disabled.4 As the plot in Figure 6.3a demon-

strates, the 1st component by itself reduces the SER the most, but at the expense

of the BLEU score, which decreases as the SER does – to the point where BLEU

drops below 0.54 when the SER is at its lowest (0.91%), that is with a threshold of

0.9. For reference, the SER and the BLEU score achieved with beam search only are

2.04% and 0.543, respectively. Adding the 2nd component brings the BLEU score

up to above 0.545, nevertheless the SER jumps to 1.39%. Finally, enabling the 3rd

component too has a negligible negative effect on BLEU, but reduces the SER to

1.09%.

Figure 6.3b shows that the 2nd component gives optimal performance when

its threshold is set to around 0.3. This setting maximizes BLEU, while keeping SER

low. Beyond 0.3 the BLEU score starts dropping fast, and with a threshold of greater

than 0.5, the 2nd component has barely any effect anymore. Similarly, Figure 6.3c

shows the threshold value of 0.1 to be optimal in the 3rd component, when optimizing

for both metrics. Thresholds higher than 0.3 cut off almost all aggregated weights

in this component, virtually disabling it.

95

(a) Threshold optimization for the 1st com-
ponent (verbatim mentions), with the other
components enabled or disabled. When en-
abled, the 2nd component’s threshold was
fixed at 0.3, and that of the 3rd at 0.1. Note
that the threshold of 1.0 is equivalent to the
1st component being disabled, as attention
weights are in the [0.0, 1.0] range.

(b) Threshold optimization for the 2nd com-
ponent (paraphrased mentions), with the
1st component’s threshold of 0.2, 0.5 and 0.8,
and that of the 3rd component fixed at 0.1.

(c) Threshold optimization for the 3rd com-
ponent (unrealized mentions), with the
2nd component’s threshold of 0.2, 0.3 and
0.4, and that of the 1st component fixed at
0.5.

Figure 6.3: Effects of different parameter configurations of the 3 mention-tracking
components on SER and BLEU of utterances generated by BART-base fine-tuned
on ViGGO.

96

(a) ViGGO. With greedy search decoding,
the SER is 1.65% and 2.70% for T5 and
BART, respectively.

(b) E2E. With greedy search decoding, the
SER is 1.60% and 1.97% for T5 and BART,
respectively.

Figure 6.4: Effect of different beam sizes on the SER using different reranking
methods on the ViGGO and E2E datasets.

6.2.5 Effects of Beam Size on SeA-GuiDe

Since SeA-GuiDe uses beam search to generate the pool of candidates

that it later reranks, we analyzed the effect of increasing the beam size on the SER

of the final utterances. As Figure 6.4a shows for the ViGGO dataset, SeA-GuiDe

certainly benefits from increasing the beam size from 5 to 10, but the benefit shrinks

substantially (or disappears entirely, in case of T5-small) when further increased to

20.

On the E2E dataset, decoding using SeA-GuiDe is even more effective in

reducing SER than on ViGGO. Across all beam sizes, its performance is comparable

to beam search with slot aligner reranking, and there is also only a limited gain from

increasing the beam size to 20 (see Figure 6.4b). It is worth noting that, using beam

search with no reranking, the SER dramatically increases with the increasing beam

size. This is likely caused by the relatively heavy semantic noise in the E2E training

set, resulting in more slot errors in the generated utterances the less greedy the

decoding is. Some form of semantic guidance is thus all the more important for the

4The 3rd component has no effect without the 2nd, so we do not consider the combination where
only the 2nd is disabled.

97

model in this scenario.

6.3 Results

To maximize the performance of the models using SeA-GuiDe, the bina-

rization thresholds (and possibly other parameters of the mention-tracking compo-

nents) can be optimized for each model and dataset on the validation set. In our

evaluation, however, we focused on demonstrating the effectiveness of this decoding

method out of the box. That being said, even common decoding methods, such

as simple beam search or nucleus sampling (Holtzman et al., 2019), usually benefit

from parameter optimization (e.g., beam size, or the p-value) whenever used with a

different model or dataset.

6.3.1 SeA-GuiDe Performance

While developing the SeA-GuiDe method we analyzed the behavior of

cross-attention on both the T5-small and the BART-base model; interestingly, the

decoding performs best for both with nearly the same configuration. The only

difference is the 2nd component’s binarization threshold (see Table 6.1), accounting

for the fact that BART-base has 50% more attention heads than T5-small, which

causes the attention weights to be more spread out.

The upper half of Table 6.3 compares the two models’ performance with

SeA-GuiDe vs. other decoding methods, as well as against three state-of-the-art

baselines. As the results show, both models, when using SeA-GuiDe, significantly

reduce the number of semantic errors in the generated outputs compared to using

greedy search (≈ 3.4 and 2.5 times in case of T5 and BART, respectively) or sim-

98

ple beam search (≈ 1.9 times both). As expected, the slot-aligner (SA) reranking

achieves even better results thanks to the handcrafted rules it relies on. In addi-

tion, the overall high automatic metric scores suggest that the fluency of utterances

generated using SeA-GuiDe does not suffer.

Finally, compared to the baseline models, T5-small performs on par with

the state-of-the-art DataTuner in terms of automatic metrics, yet maintains a 3.4-

times lower SER. This corresponds approximately to K&M baseline’s SER, whose

automatic metrics, however, are significantly worse. BART-base outperforms T5-

small according to most metrics, but its SER is more than double.

6.3.2 Cross-Model Robustness

In addition to T5-small and BART-base, we fine-tune a larger variant of

each of the models, namely, T5-base and BART-large (see Section 6.2.2 for model

specifications), on the ViGGO dataset, and evaluate their inference performance

when equipped with SeA-GuiDe. We do not perform any further tuning of the de-

coding parameters for these two models, only slightly lower the binarization thresh-

olds (as we did for BART-base) to account for the models having more attention

heads and layers. The thresholds we use for the 2nd and 3rd components are ⟨0.3, 0.1⟩

and ⟨0.2, 0.05⟩ for T5-base and BART-large, respectively.

The results in the lower half of Table 6.3 show that these two larger models,

fine-tuned on ViGGO, benefit from SeA-GuiDe beyond just the effect of beam

search. T5-base performs significantly better across the board than its smaller T5

variant when using greedy search decoding, so there is less room for improvement

to begin with. In fact, the SER using greedy search is so low (0.61%, in contrast to

T5-small’s 1.65%) that beam search causes it to increase. Nevertheless, SeA-GuiDe

99

Model BLEU METEOR ROUGE CIDEr SER ↓

S2S 0.519 0.388 0.631 2.531 2.55%

DT 0.536 0.394 0.640 2.700 1.68%

K&M 0.485 0.380 0.592 2.454 0.46%

T
5
-s
m
a
ll

GS 0.519 0.387 0.631 2.647 1.65%

BS 0.540 0.392 0.636 2.685 0.95%

SA 0.541 0.393 0.637 2.695 0.24%

SG 0.541 0.393 0.637 2.695 0.49%

B
A
R
T
-b
a
se GS 0.524 0.386 0.635 2.629 2.70%

BS 0.544 0.393 0.639 2.679 2.02%

SA 0.547 0.394 0.639 2.704 0.39%

SG 0.545 0.393 0.639 2.698 1.07%

T
5
-b
a
se

GS 0.527 0.394 0.639 2.682 0.61%

BS 0.534 0.394 0.636 2.664 0.66%

SA 0.536 0.394 0.637 2.672 0.19%

SG 0.536 0.394 0.637 2.670 0.46%

B
A
R
T
-l
a
rg
e GS 0.508 0.378 0.616 2.452 5.50%

BS 0.535 0.391 0.628 2.612 1.78%

SA 0.538 0.394 0.631 2.659 0.27%

SG 0.533 0.391 0.627 2.613 1.41%

Table 6.3: Models tested on the ViGGO dataset using different decoding meth-
ods: greedy search (GS), beam search with no reranking (BS), beam search with
slot-aligner reranking (SA), and SeA-GuiDe (SG). Baselines compared against are
Slug2Slug (Juraska et al., 2019) (S2S), DataTuner (Harkous et al., 2020) (DT), and
Kedzie and McKeown (2020) (K&M). The best results are highlighted in bold for
each model. SER scores of baselines reported by the authors themselves, rather
than calculated using our slot aligner, are highlighted in italics, and they do not
correspond exactly to our SER results.

100

Model BLEU METEOR ROUGE CIDEr SER ↓

S2S 0.662 0.445 0.677 2.262 0.91%

SR
1 0.686 0.453 0.708 2.370 N/A

K&M 0.663 0.453 0.693 2.308 0.00%

T
5
-s
m
a
ll

GS 0.670 0.454 0.692 2.244 1.60%

BS 0.667 0.453 0.694 2.361 2.85%

SA 0.675 0.453 0.690 2.341 0.02%

SG 0.675 0.453 0.690 2.340 0.04%

B
A
R
T
-b
a
se

GS 0.667 0.454 0.694 2.276 1.97%

BS 0.670 0.454 0.701 2.372 3.39%

SA 0.680 0.453 0.695 2.350 0.02%

SG 0.680 0.453 0.695 2.347 0.08%

T
5
-b
a
se

GS 0.668 0.459 0.692 2.282 1.85%

BS 0.667 0.453 0.697 2.387 3.94%

SA 0.682 0.454 0.691 2.375 0.03%

SG 0.682 0.454 0.691 2.374 0.05%

Table 6.4: Models tested on the E2E dataset, compared against the following base-
lines: Slug2Slug (Juraska et al., 2018) (S2S), SR

1 (Shen et al., 2019), and Kedzie and
McKeown (2020) (K&M).

improves on both, while slightly boosting the other automatic metrics as well.

The almost twice-as-large BART-large model performs rather poorly in our

experiments, in fact, significantly underperforming its smaller variant.5 We therefore

refrain from drawing any conclusions for this model, although SeA-GuiDe offers a

definite improvement in SER over simple beam search.

6.3.3 Domain Transferability

We achieve similar results when evaluating across domains. Table 6.4 shows

that using SeA-GuiDe with all three models fine-tuned on E2E reduces the SER

5We observed that it frequently misrepresents names, such as “Transportal Tycoon” instead of
“Transport Tycoon”, which we think may be the consequence of the extremely small size of the
ViGGO training set relative to the model’s size.

101

Model BLEU BLEUR METEOR SER ↓ SERE ↓

SCG N/A 0.308 N/A 0.53% N/A

K&R N/A 0.351 N/A N/A 1.27%
T
5
-s
m
a
ll

GS 0.367 0.351 0.325 1.15% 1.36%

BS 0.359 0.344 0.323 1.06% 1.19%

SA 0.360 0.344 0.323 0.41% 0.63%

SG 0.360 0.344 0.323 0.60% 0.85%

B
A
R
T
-b
a
se GS 0.372 0.356 0.326 1.18% 1.17%

BS 0.363 0.346 0.323 1.12% 1.02%

SA 0.364 0.347 0.324 0.40% 0.60%

SG 0.363 0.347 0.323 0.63% 0.72%

Table 6.5: Models tested on MultiWOZ, compared against the following baselines:
SC-GPT (Peng et al., 2020) (SCG) and Kale and Rastogi (2020) (K&R).

down to almost zero, with performance for the other metrics comparable to the state-

of-the-art baseline.6 In fact, SeA-GuiDe is nearly as effective at reducing errors

in this dataset as the heuristic slot aligner (SA). Table 6.5 compares our models

against two recent baselines on the MultiWOZ dataset, where the effectiveness of

SeA-GuiDe on SER reduction is comparable to that on the ViGGO dataset. All

in all, on both the E2E and the MultiWOZ dataset, our models equipped with

SeA-GuiDe for inference perform similarly to the best baselines for both SER and

the other metrics at the same time, whereas the baselines individually perform well

according to one at the expense of the other.

6.3.4 Slot Error Detection Examples

Table 6.6 shows several utterances generated for corresponding input MRs

in the video game domain, along with the errors SeA-GuiDe detected, if any. In

the first example, all slots are correctly mentioned, and SeA-GuiDe agrees. This

6We were unable to successfully train BART-large on E2E due to the memory limitations of
our computational resources.

102

utterance was ultimately selected during reranking over the beam search’s choice,

“The Room is an excellent first person point-and-click puzzle game.”, which has one

of the genres omitted.

The second example again showcases a successful identification of all slot

mentions by SeA-GuiDe, this time in an utterance where our heuristic slot aligner

incorrectly found an error in the has linux release slot mention (presumably

confused by the negation shortly before the keyword “Linux”).

The third example shows that SeA-GuiDe is not confused by the differ-

ence between “excellent” (input slot value) and “amazing” (the corresponding slot

realization), and it correctly identifies that the player perspective slot is not

mentioned.

In the fourth example, SeA-GuiDe fails to recognize the incorrect mention

of the has linux release slot. This is the most common mistake our decoding

method makes.

The final example does not contain any errors, yet the heuristic slot aligner

was confused by the negation formulation (as “I wish it was”) and identified the

available on steam slot as incorrect, while SeA-GuiDe did not. This demon-

strates the robustness of SeA-GuiDe beyond exact matching. Yet despite the

individual slots being mentioned semantically correctly, the generated utterance as

a whole does not sound quite right. A better utterance would be something along

the lines of “Mirror’s Edge Catalyst is a disappointment, I really wish they released

it on Steam as well.”.

All in all, SeA-GuiDe chooses semantically correct utterances that are

fluent and adequate, except for the rare case like in the last example.

103

give opinion (name[The Room], rating[excellent], genres[indie, point-and-
click, puzzle], player perspective[first person])

The Room is an excellent indie point-and-click puzzle game. The first person
perspective makes it easy to play.

Errors: N/A

verify attribute (name[Small World 2], rating[poor], has linux release[yes])

You said earlier that you disliked Small World 2. Are you generally not fond of
Linux games?

Errors: N/A

request explanation (rating [excellent], genres [adventure, hack-and-slash, in-
die], player perspective [third person])

What is it about indie hack-and-slash adventure games that you find so amazing?

Errors: player perspective

inform (name[RollerCoaster Tycoon], rating[good], genres[simulation,
strategy], platforms[Xbox, PC], available on steam[no], has linux re-
lease[yes], has mac release[no])

RollerCoaster Tycoon is a good simulation strategy game for Xbox and PC. It is
not available on Steam, Linux, or Mac.

Errors: N/A (incorrect)

give opinion (name [Mirror’s Edge Catalyst], rating [poor], avail-
able on steam [no])

Mirror’s Edge Catalyst is a pretty bad game, I really wish it was available on
Steam.

Errors: N/A

Table 6.6: Examples of slot-mention tracking results using SeA-GuiDe. Each gray
row is the input MR for the corresponding utterance in the subsequent row.

104

6.4 Discussion

In the previous section, we showed that SeA-GuiDe is highly effective

at reducing semantic errors across different models and domains, and that without

compromising on the generated utterances’ fluency. On datasets other than E2E, it

does not quite match the performance of beam search combined with our slot aligner-

based reranking, but then again, the slot aligner is a hand-crafted tool with complex

rules, requiring a good deal of domain knowledge, and suffering thus significantly in

scalability. While these two decoding methods have a lot in common – both being

based on beam search and subsequent candidate reranking – their difference lies in

the identification of slot mentions; SeA-GuiDe identifies them automatically during

the decoding, utilizing the model’s cross-attention weights at each step, as opposed

to relying on string-matching rules post decoding, which need to be extended for

any new domains.

6.4.1 Inference Performance

Despite working conveniently out of the box, SeA-GuiDe would ideally

not come with a significant computational overhead caveat. In order to assess this,

we measure the inference running time of the T5-small model fine-tuned on ViGGO.

For all beam search-based methods (including SeA-GuiDe), the beam size was set

to 10, and early stopping was enabled.

The results in Figure 6.5a show a distinct but expected overhead across

all batch sizes when running inference on a GPU. The overall increase in runtime

is 11–18% over beam search with slot aligner-based reranking, which is the method

computationally most similar to SeA-GuiDe, as it too involves reranking on top

105

(a) Inference using a GPU (RTX 2070 with
8 GB of memory).

(b) Inference using a CPU (8-core Ryzen 7
2700X with 32 GB of RAM).

Figure 6.5: Running time of T5-small performing inference on the ViGGO test
set using different decoding methods and batch sizes. “No reranking” stands for
simple beam search, while “Slot aligner” denotes beam search with slot aligner-
based reranking. Model and data loading is excluded from the running times.

of beam search. The slot aligner-based reranking itself adds a constant amount of

16 seconds on top of simple beam search, which corresponds to an 11–40% increase

for the range of batch sizes in the plot.

When performing the same inference on a CPU, on the other hand, the

overhead SeA-GuiDe introduces to beam search is no greater than that of the slot

aligner-based reranking (see Figure 6.5b). This suggests that further optimization

of SeA-GuiDe for GPU, especially by minimizing the communication between the

GPU and the CPU during the decoding, could bring the overhead of SeA-GuiDe

inference on a GPU down to the same level as that of the slot aligner-based reranking.

Considering the large improvement in semantic accuracy the SeA-GuiDe

method delivers in the tested models, we deem the observed computational overhead

reasonable and acceptable.

6.4.2 Limitations of SeA-GuiDe

SeA-GuiDe’s ability to recognize slot errors is limited to missing and

incorrect slot mentions, which are the most common mistakes we observed models

106

to make on the data-to-text generation task. Duplicate slot mentions are hard

to identify reliably because the decoder inherently pays attention to certain input

tokens at multiple non-consecutive steps (such as in the example in Figure 6.1b).

And arbitrary hallucinations are entirely beyond the scope of this method, as there

is no reason to expect cross-attention to be involved in producing input-unrelated

content, at least not in a foreseeable way.

As we see in example #4 in Table 6.6, Boolean slots occasionally give

SeA-GuiDe a hard time, as the decoder appears not to be paying a great deal of

attention to Boolean slots’ values throughout the entire decoding in many cases. We

plan to investigate if the performance can be improved for Boolean slots, perhaps

by modifying the input format or finding a more subtle slot mention pattern.

6.5 Summary

In this chapter, we presented a novel decoding method, SeA-GuiDe7, that

makes a better use of the cross-attention component of the already complex and

enormous pretrained generative language models to achieve significantly higher se-

mantic accuracy for data-to-text NLG, while preserving the otherwise high quality of

the output text. It is an automatic method, exploiting information already present

in the model, but in an interpretable way. Here we summarize the strengths of

SeA-GuiDe:

• It drastically reduces semantic errors in the generated text (shown on the E2E,

ViGGO, and MultiWOZ datasets);

• It is domain- and model-independent for encoder-decoder architectures with

7Our SeA-GuiDe code is available at: https://github.com/jjuraska/data2text-nlg

107

https://github.com/jjuraska/data2text-nlg

cross-attention, as shown on different sizes of T5 and BART;

• It works out of the box, but is parameterizable, which allows for further opti-

mization;

• It adds only a small performance overhead over beam search decoding;

• Perhaps most importantly, it requires no model modifications, no additional

training data or data preprocessing (such as augmentation, segmentation, de-

noising, or alignment), and no manual annotation.

Although SeA-GuiDe is not as effective at detecting semantic errors as our slot

aligner described in Chapter 3, it is a significantly more scalable method that offers

large gains in model outputs’ faithfulness to their respective inputs with minimal

effort.

108

Chapter 7

Diversity-Promoting NLG Inference

7.1 Motivation

In Chapter 5, we presented two different methods of giving a neural NLG

system greater stylistic control. By limiting the training set to only examples that

exhibit certain properties, we saw that a neural model was able to produce utter-

ances with the same properties. Our experiments with the input data annotation

method also showed a positive impact on the model’s ability to generate utterances

with a specific style or using a specific sentence structure, without an unreasonable

impact on the semantic accuracy. This suggests that, when the model is trained on

a large and varied training set, it chooses not to generate more interesting utter-

ances, presumably because they are seen in fewer contexts during training and thus

the model is less confident about them during inference. This is reflected by the

lower probabilities the model assigns to less common words, phrases, and ultimately

discourse relations.

In other words, while a neural model may default to producing utterances

that look rather generic, since it is most confident using language commonly seen

109

during training, it does not mean it is not capable of producing more complex and

varied utterances, perhaps with the help of a different decoding strategy. If at any

time step of the model’s inference we look at the probability distribution of the

next token, computed by the decoder, we would sometimes see that the model is

considering multiple tokens that are more or less equally reasonable in the given

context. Figure 7.1 shows three examples of a whole generated sequence with the

probability of each token.

What we can immediately observe in the plots is that the decoder is highly

confident about the next token whenever it is generating a common word or phrase,

such as “role-playing” or the name of a game. In many other places, the probability

– and with it the model’s confidence – dramatically drops, as there are typically

several words that could coherently continue the sentence in the given context. For

example, in the first utterance (Figure 7.1a) after “Do you feel”, instead of “the same

way about” the decoder could have decided to continue with “kind of the same way”,

“similarly about” or “that way about”, but also a more different formulation, such as

“like most tactical shooters . . . are not that fun in general?”. The probability of the

token “the” as the next token is less than 30% in this context, as there are multiple

perfectly valid tokens the decoder could have chosen instead. It is easy to see that

the decisions the decoder makes at these points can entirely change the structure of

the remainder of the utterance. Take, for instance, the very beginning of the third

utterance (Figure 7.1c). It is with a much lower confidence that the model picked

“mentioned” as the second token than the token “said” in the first utterance (0.18

vs. 0.69), yet it resulted in an entirely correct and coherent utterance, and that with

a more interesting realization of the rating[average] slot. Most standard inference

algorithms would, nevertheless, prefer the first utterance over the other. And why

110

(a) Greedy search.

(b) Nucleus sampling with p = 0.8, example #1.

(c) Nucleus sampling with p = 0.8, example #2.

Figure 7.1: Token probabilities in 3 different utterances generated by a T5-small
model for the same input MR with different inference methods. Note on T5’s tok-
enizer: we use <> to denote T5’s special token that represents a standalone word
boundary (typically represented as a space once decoded), although T5’s tokens of-
ten include a word boundary symbol at the beginning, which we omitted for better
readability. For example, in the token pair (“shoot”, “ers”), the former would have
it while the latter would not, indicating that the two tokens should form one word.

111

is that?

The simplest approach to inference is greedy decoding, which picks the to-

ken with the highest probability at each time step until it reaches the end of the

sequence (typically by generating the special end-of-sequence token). As is the case

with greedy algorithms in general, this does not guarantee that the utterance is one

with the overall highest probability though.1 A more robust approach, and most

commonly adopted one in sequence-to-sequence NLG models, is beam search. At

each time step, it keeps a pool of n best candidate partial sequences, where n is

typically less than or equal to 10. Though this strategy can help the decoder find

sequences with a higher overall probability, presumably corresponding to better ut-

terances, it still focuses on locally optimal choices. In other words, it is not able

to anticipate a lower-probability partial sequence ending up being a more probable

whole sequence than others, and often ignores it. In theory, errors from these short-

sighted decisions, referred to as myopic bias (He et al., 2017), during inference could

lead to a relatively poor final utterance even if we held a perfect NLG model.

With the now widespread use of encoder-decoder models in NLG, there has

been certain effort to address the issue of myopic bias during inference in various

NLG tasks in recent years. Li et al. (2016b) propose a modified beam search in

which they penalize partial sequences that originate from the same ancestors, i.e.,

utterances that share the same prefix, whereby they enforce diversity among the

final candidates. Li et al. (2017a) and He et al. (2017) both developed a reinforce-

ment learning method for predicting the future BLEU score of a partial sequence,

and use it to guide the decoding at each time step. Similarly, the decoding strategy

1The probability of an utterance is determined as the product of the individual token prob-
abilities in the sequence, but since this can become an extremely small number, a sum of their
log-probabilities is typically used instead.

112

proposed in Wang et al. (2018) estimates the future reward of a partially generated

sequence, but based on its probability of appearing in a wider beam. These alter-

native approaches are shown to be effective to a certain degree in promoting greater

diversity among the generated candidates in abstractive summarization, dialogue

response generation, as well machine translation.

An alternative approach to decoding in NLG relies on sampling. There are

various sampling methods that can be used, but they have a common objective –

to produce significantly more varied outputs. With sampling, instead of choosing a

token that maximizes the utterance’s probability at each time step, the decoder may

pick a less probable token as long as it satisfies certain constraints. A constraint

can be that the token is, for example, among a certain number of the most probable

tokens (∼ top-K sampling, described in Fan et al. (2018)), or among the most proba-

ble tokens within a certain cumulative probability mass (∼ top-p/nucleus sampling,

introduced in Holtzman et al. (2019)). If the constraints are strict, the output will

end up not being very different from using the methods from the previous para-

graphs. On the other hand, if the constraints are loose, the outputs have a good

chance of introducing semantic errors and becoming incoherent. Finding a middle

ground that would work consistently, leading to diverse outputs without semantic

errors across all the possible inputs, is typically very difficult, if not impossible.

An ideal inference method for NLG would promote diversity, while main-

taining a high quality – not necessarily probability though – in terms of fluency, co-

herence and semantics. Revisiting Figure 7.1, we can see that with greedy search the

lowest probability of a token is slightly below 0.3, while the token probabilities reg-

ularly dip well below 0.2 in the two nucleus sampling examples. The log-probability

of the utterance produced using greedy search is −9.42, while that of the other two

113

is −19.02 and −25.56, respectively, yet all three of them are fluent and semanti-

cally equivalent.2 This shows that, while striving for the most probable utterance

is a safe strategy likely to avoid errors, there is an abundance of opportunities to

produce more interesting utterances if we do not optimize for the probability. In

data-to-text NLG, there are often countless perfectly valid paraphrases for any given

utterance, and, as we see, the range of their probabilities can be relatively wide. At

the same time, in the same probability range, for every good utterance we will find

one that is incorrect or incoherent, because one error will not drag the probability of

an otherwise strong utterance down substantially. We therefore argue that, in order

to tap the diversity potential, it is not safe to rely solely on sampling; not without

some sort of supervision that would guide it around the “land mines” in the field of

potentially superior utterances.

To this end, in contrast to the above methods that modify the beam search,

predict the quality of a sequence based on its prefix, or use sampling on its own, we

propose an approach based on Monte-Carlo Tree Search (Coulom, 2006). By using

it in conjunction with a neural NLG model whose inference can be parallelized,

we intend to take advantage of this algorithm’s superior sampling properties, and

make its application to inference feasible in real time. The three primary benefits

we expect to obtain using this approach are: (1) a greater output diversity thanks

to its guided sampling, (2) the ability to optimize for an arbitrary metric, such as

semantic accuracy, and (3) a better overall output quality as a result of this method

operating on whole sequences to make decisions, as opposed to making final decisions

in a left-to-right fashion during decoding. In the following section, we describe the

2The utterance probability inherently decreases with its increasing length. However, all three
utterances in this example are almost equally long (in terms of the number of tokens), so the length
is not the reason for the large log-probability differences observed.

114

Monte-Carlo Tree Search method and our proposed application of it to the NLG

task at hand.

7.2 Batch Monte-Carlo Tree Search Inference

We start this section by introducing the original Monte-Carlo Tree Search

(MCTS) algorithm, as defined in Coulom (2006) and Kocsis and Szepesvári (2006),

followed by a description of our proposed modifications. MCTS works with a search

tree data structure, where edges correspond to actions, and nodes represent states

the actions lead to. In our language generation scenario, an action can be understood

as adding a token, and a state is simply a sequence of tokens, i.e., a partial utterance.

An end state thus corresponds to a whole utterance, and we denote such nodes in

our diagrams with a cross.

7.2.1 MCTS Algorithm

Classic MCTS consists of four phases which are repeated until the algo-

rithm is terminated (see Figure 7.2). The terminating condition is typically set as

the longest acceptable running time, or a fixed number of iterations. In the first

phase, starting from the root node, an action is iteratively selected based on the

tree policy, until a not fully explored node, i.e., a node with at least one possible

action that has not been previously taken from the node, is encountered. Subse-

quently, this selected node is expanded in the second phase, which means an action

is randomly picked and a corresponding new leaf node is added to the tree.3 This

leaf node then serves as the starting point for the playout simulation in phase three.

3Note that an action can also be picked which leads to an already existing node, in which case
no node is added.

115

Figure 7.2: The 4 phases of the original MCTS, executed iteratively. Image credit:
Browne et al. (2012).

A light playout is performed by simply choosing random actions until an end state

is reached, whereas a heavy playout performs the action selections in an informed

way, e.g., using heuristics. The playout’s end state is then evaluated. Finally, in the

fourth phase, the result is backpropagated from the leaf node where the simulation

started back to the root. During the backpropagation, all nodes along the way to

the root get updated based on the result, incrementing also their counters of how

many times they have been visited. These two values serve then as an indicator of

how good the subtree rooted in a given node is.

The tree policy used in the selection phase is very essential to MCTS. It

is responsible for determining which child node is the most “urgent” and should

thus be visited next. The policy is typically designed to balance exploitation and

exploration. In other words, it guides the tree search to sample from subtrees with

good potential, but not forgetting to visit unexplored branches of the tree too, as

those can potentially lead to even better finds. The most popular choice of a tree

policy is Upper Confidence Bound for Trees (UCT) (Kocsis and Szepesvári, 2006),

116

defined for a node v as follows:

UCT = argmax
v′∈v.children

Q(v′)

N(v′)
+ c

√
2 lnN(v)

N(v′)
,

where Q(v) is the accumulated reward in v, and N(v) is its visit count. The first

term in the formula corresponds to exploitation, as it is high for a child node with

a high average reward. The second term is high for a child node with few visits

compared to v, and corresponds thus to exploration. The exploration coefficient c

then serves to balance the amount of exploitation and exploration to be performed

in the tree search. The UCT tree policy picks the child node of v that maximizes

the value calculated by the formula.

7.2.2 Batch Modification

Our proposed modification of the MCTS algorithm differs from the original

version primarily in three aspects:

1. It performs a large batch of simulations at once,

2. It involves sampling in the tree policy so that the simulations would start from

different nodes (see Figure 7.3),

3. Nodes corresponding to all states passed through in a playout are added to

the tree instead of just the start node.

Additionally, due to the parallel nature of the search, the four stages are performed

in a slightly different order. The following paragraphs describe each of the phases

in more detail.

117

Figure 7.3: Illustration of Batch-MCTS sampling utterances from different parts
of the search tree in parallel. Some of the nodes representing an end state have a
possible utterance indicated according to the sequence prefix.

Selection. The first phase differs from the original only in that it is repeated B

times, where B is the batch size. It identifies a batch of nodes in the tree that

should be further explored. These can be the roots of promising subtrees (based on

previous simulations), as well as unexplored nodes whose subtrees have not yet been

visited during the search (see Figure 7.4a). In order to obtain a batch of various

nodes, it is crucial that the tree policy involves sampling, or else the same node will

be selected over and over B times. At the same time, it is okay for the same node

to appear in the batch more than once, considering the subsequent simulations are

assumed to involve sampling too and thus to return different sequences even when

executed from the same start node.

118

(a) Selection (b) Simulation

(c) Expansion (d) Backpropagation

Figure 7.4: The 4 phases of our proposed Batch-MCTS algorithm. Nodes corre-
sponding to an end state are crossed. Empty white nodes represent known states
(i.e., the probability of the action leading to them is known) that have not yet been
visited. Edges in (c) that are crossed out indicate pruned actions.

119

Simulation. For the batch of selected nodes (whose states correspond to sequence

prefixes), this phase performs simultaneous heavy playouts until the end state is

reached in each sequence (see Figure 7.4b). The heavy playouts are where the

trained NLG model we run the inference for comes into play. It generates a batch of

utterances for the same input, either from the very beginning or as a continuation

of a partial utterance provided. The model thus needs to support the following:

(1) output sequence prefix forcing, so as to be able to generate conditioned on an

input MR as well as a given utterance beginning, (2) sampling in the decoder, in

order to generate a batch of different utterances (this can be temperature-based,

nucleus, or other sampling), and (3) batch decoding mode.

Expansion. Since our simulation performs heavy playouts, we add nodes corre-

sponding to all actions taken during the playouts to the tree, starting from the

selected nodes. Besides the actual actions taken in a playout, we also add their

sibling nodes corresponding to other possible actions to the tree, since the batch

decoding in the previous phase will have calculated the probability of all possible

actions from each state during a playout. In this phase, the algorithm thus has an

opportunity to prune the search space by removing – or rather not creating – nodes

led to by actions with a probability below a certain threshold. If using top-K or

nucleus sampling, the sibling nodes to add can simply correspond to the limited set

of actions considered in the sampling. See Figure 7.4c for an illustration of the above

concepts.

Backpropagation. At the beginning of the final phase, the candidate utterance in

each of the new leaf nodes after the expansion is scored. The score can be calculated

120

by any automatic evaluation metric that solely relies on the generated utterance and

its corresponding MR to assess the utterance’s quality. Subsequently, all nodes be-

tween the leaf node and the root have their rewards and visit counts updated (see

Figure 7.4d). This is repeated for each leaf node corresponding to the end state of

a playout from the simulation phase.

Batch-MCTS iterates over these four phases a fixed number of times I,

specified as an input parameter. Similarly, the batch size B is another input pa-

rameter. The algorithm keeps a pool of n-best candidate utterances discovered, and

updates them at the end of each iteration. Unlike in the standard MCTS, where

the tree is updated with each “run” (performing one playout), in Batch-MCTS the

tree remains unchanged for all runs within the same batch; that is until the end of

an iteration, when it changes considerably.

7.2.3 Discussion

Due to potential node access conflicts, only the first two phases can be

fully parallelized. Nevertheless, it is the simulation phase that is the most compute-

intensive, and all the others are expected to only take a fraction of the time. With

an access to a GPU, the heavy playouts in the simulation phase can be executed

concurrently, since they are entirely independent. Therefore, it is important for

the underlying NLG model to support batch decoding. Depending on the GPU

specifications, however, the batch parallelization will become less effective beyond a

certain batch size. For optimal performance, it is therefore important to configure

the batch size and number of iterations according to the hardware used.

Finally, we should note that the purpose of the Batch-MCTS inference,

121

unlike many other applications of MCTS, is not to merely determine what the best

action might be in a given state based on sampled simulations, but to find a whole

sequence of actions (i.e., a whole utterance) that is as good as possible in the large

space of possible sequences. This is a consequence of the heavy playouts, which

allow for a highly informed search rather than random, and the fact that our task is

equivalent to a one-player game. The latter means that we do not need to account

for adversarial moves following each of the selected actions. Instead, if the tree

search discovers a strong candidate utterance, it is a real one, not a hypothetical

one that could still be prevented from being generated.

7.3 Summary

This chapter motivated the need for a new NLG inference method that

would be able to take advantage of more of the knowledge a model acquires from

the training data. Standard inference methods typically either (1) focus on maximiz-

ing the probability of the generated sequence of tokens, which often results in dull

and repetitive utterances, or (2) they try to stimulate diversity through sampling,

which inevitably leads to incoherence and errors in utterances whose rate increases

with the diversity. Since they perform the generation in a single left-to-right pass,

their token selection at each time step is more or less final. For sampling methods,

this means that once a mistake is made, it cannot be undone. For greedy and beam

search decoding, this results in a bias towards the most common formulations at

utterance beginnings, even if it leads to an overall less desirable utterance by the

end of the decoding. Moreover, we showed there is, in fact, likely an abundance

of opportunities among lower-confidence model outputs for more interesting utter-

122

ances that are semantically correct and perfectly fluent. Naturally, if the utterance

probability drops too much, the output can be expected to contain disfluencies or

be missing a fact or two.

We proposed a method based on Monte-Carlo Tree Search (MCTS) as an

alternative that may be able to realize an NLG model’s potential better. In con-

trast to the standard methods, it performs inference in multiple passes, evaluating

the candidates at the end of each and improving on them in the next. It prompts

the trained model to generate batches of largely adequate and varied candidates,

and uses an automatic metric to find the best among them and guide the search

to the most promising utterance prefixes. While model outputs in NLG are tradi-

tionally evaluated using reference-based metrics, such as BLEU, which compare the

generated texts with human-authored reference utterances, for evaluating candidate

utterances in MCTS we do not have the luxury of using references. We must use a

referenceless metric that relies on the input MR and the utterance itself only. Tak-

ing advantage of parallelism, the proposed Batch-MCTS inference is expected to be

computationally feasible in real time with the right hardware.

In the next chapter, we describe and test different ideas for an automatic

referenceless metric that distinguishes between good and bad candidates among

utterances generated from the same MR. The chapter after that then evaluates the

performance of the Batch-MCTS inference with multiple variants of the referenceless

metric integrated for state evaluation.

123

Chapter 8

Referenceless Automatic Evaluation

Metric for Data-to-Text NLG

In Chapter 7, we described in detail a proposed inference method, Batch-

MCTS, for data-to-text NLG. This method requires guidance in its search for good

candidate utterances. In this chapter, we will discuss a novel referenceless metric

that we incorporate into Batch-MCTS to guide it toward fluent and semantically

accurate utterances.

A data-to-text NLG model is typically trained on a parallel corpus of in-

puts and corresponding reference texts. During inference, however, it only has a

previously unseen input (MR in our case), and the knowledge of the language struc-

ture and correspondence to inputs that the model acquired from the training set, to

guide its generation. It does not have access to reference utterances beyond training.

That extends to Batch-MCTS too when it is used by the system to generate utter-

ances. It is therefore essential for our proposed inference method that we develop

a robust referenceless metric that can distinguish good utterances candidates from

inadequate ones.

124

A sequence-to-sequence model learns during training to produce utterances

that are relevant and of generally expected structure, i.e., utterances that have

content corresponding to the input and mention it in an expected sense, which is

represented by the generated utterance’s conditional probability computed by the

model. If the conditional probability is too low, the utterance is most likely incorrect

and inadequate. However, even among the ones with a high probability according

to the model we would still find substantial differences in various aspects, including

if and how the input content is mentioned, and we would find utterances of various

styles and with various sentence structures. At the same time, less common but

perfectly valid utterance formulations will typically be generated by the model with

a lower confidence because of their lower prevalence in the training data. As a

consequence, such utterances will also have a lower conditional probability, but we

do not want to ignore them. In fact, these are often more natural-sounding outputs

than those the model predicts with the highest confidence. This is supported by

the fact that humans do not strive to simply use the most predictable words in the

given context when composing a sentence (Holtzman et al., 2019), instead they may

try to use more varied language that avoids sounding repetitive, as we discussed at

the beginning of Chapter 7.

It is our goal to promote this natural language diversity in generated ut-

terances using Batch-MCTS inference, while maintaining the high adequacy as de-

termined by the trained encoder-decoder model. In order to achieve that, we use

the model’s conditional probabilities to guide the tree search to largely adequate

utterance candidates, and then eliminate any with flaws as identified using an ap-

propriate evaluation metric. While for the evaluation of an NLG system’s perfor-

mance reference-based metrics are typically used – which compare outputs against

125

human-written references – during the inference we only have the generated ut-

terance itself, along with the corresponding input, to determine how it compares

against other highly probable candidates generated by the model.

There are several different approaches to designing such a referenceless

metric that we consider and describe in the next section. We then proceed to

thoroughly analyze the performance of a new method that we propose for automatic

semantic accuracy evaluation, an important component of a robust referenceless

metric for data-to-text NLG.

8.1 Referenceless Metric Components

The most common flaws in generated utterances with a high conditional

probability are missing and incorrect slot realizations, as well as hallucinated con-

tent, the latter being a more frequent issue in large pretrained models that are

nowadays commonly used for NLG tasks. Hence, the metric must account for this

aspect and penalize utterances with any such semantic inaccuracies. However, opti-

mizing aggressively for slot realization accuracy might lead to preferring utterances

with deficiencies in fluency and coherence. Especially if we lower our expectations

of the conditional probability – with the goal of encouraging even more diverse ut-

terances – the “largely adequate” candidates may even contain occasional syntactic

errors. Therefore, a second useful component of the metric would be penalizing

utterances for poor grammar and language in general. In this section, we provide

more details and ideas on how these two components of a referenceless metric can

be implemented.

126

8.1.1 Syntactic Fluency

We start by discussing the component responsible for syntactic fluency,

which is completely independent of the input MR, and only focuses on the language

aspect of the utterance. To assess an utterance’s fluency and overall coherence, we

propose using a language model (LM). By calculating the model’s perplexity (PPL)

on generated utterances, we can evaluate how confident the model is about the text

being “good”. The LM’s notion of “goodness” depends on what data it was trained

on, i.e., if it is trained on a small domain-specific dataset, it will only find those

texts good that closely resemble those in the dataset, and any other text will have

a high perplexity. On the other hand, if it is trained on millions of human-written

documents (articles, books, web pages, etc.), the LM is expected to become very

good at recognizing virtually any text being disfluent or incoherent, as long as it is

in the same language as the data it was trained on.

Whenever there is a grammatical error or an incoherent phrase in a text, the

LM will have a low probability associated with the offending word, which translates

to a high word perplexity. The perplexity of a text T = (w1, w2, . . . , wn) is formally

defined as the exponentiated average negative log-probability of a sequence of words:

PPL(T) = exp

{
− 1

n

n∑
i=1

log pθ(wi|w<i)

}
,

where pθ(wi|w<i) is the probability of the i-th word in the context of all previous

words w<i in the text, and these conditional probabilities are calculated by an LM

with parameters θ. Internally, LMs typically work with tokens, which may or may

not correspond to words, and are often smaller units, such as syllables or single

characters.

127

We consider the following three ways of utilizing an LM for the purposes

of our evaluation metric for syntactic fluency:

1. Use a large pretrained language model. This approach would make the

metric domain-agnostic (at least as far as the syntactic fluency component

is concerned), but it may suffer in accuracy when applied to domain-specific

data. The LM may end up scoring well-formed utterances lower if they contain

rare, domain-specific terms, phrases or formulations. This could possibly be

balanced out by combining its perplexity with the NLG model’s own perplexity

scores, which will reflect the expected structure of utterances and terminology

learned from the training set.

2. Train a small in-domain model. This is an opposite extreme of the previ-

ous approach, where an LM would be trained on a (typically small) in-domain

dataset only, thus ensuring that the model does not penalize what is consid-

ered a good utterance in the given domain. Two major drawbacks of this

approach are that (1) the sentence probabilities determined by the LM would

not differ significantly from the generator model, which is essentially a condi-

tional LM, as it would be trained on the same dataset, and (2) it would make

the metric less scalable by requiring the LM to be retrained for every new

domain/dataset.

3. Fine-tune a large pretrained model on in-domain data. Combining

the benefits of both of the above approaches, this might provide the most

adequate sentence scores. And while it addresses the first drawback described

in the “small in-domain LM” approach, the second one would apply here as

well, limiting the usability of the metric by requiring the LM to be fine-tuned

128

for different domains. Perhaps this could be, however, turned into a simple,

streamlined procedure that would be executed as a one-time initialization of

the metric before the first use in a new domain.

As for the model implementations, LMs pretrained on huge amounts of

textual data in an unsupervised way have become ubiquitous over the past few

years in the field of NLG, so we can take advantage of one of the numerous off-

the-shelf models trained on hundreds of millions of sentences. We will primarily

investigate the utility of transformer-based general-purpose pretrained LMs, such as

GPT-2 (Radford et al., 2019) or BERT (Devlin et al., 2019). While it is possible

that the fact that BERT taking advantage of bidirectional context encoding makes it

unsuitable for an NLG task, it has been successfully adapted to sentence scoring by

using masking appropriately, as in Shin et al. (2019) for automatic speech recognition

candidate reranking.

8.1.2 Semantic Accuracy

Semantic accuracy of an utterance in data-to-text generation is a very

important aspect in deciding whether the utterance is good or not. Some data-

to-text generation tasks might involve content selection, wherein the model has to

correctly decide which content from the input to use and which to ignore, depending

on the context. In our case though, all of the information in the input MR is

supposed to be realized in the corresponding generated utterance, as no additional

context is provided.

Determining whether all slots in an MR were correctly realized in an ut-

terance may, however, not always be an easy task for a model without a deeper

understanding of the language and context. Table 8.1 shows a few examples of how

129

MR

verify attribute (name [Little Nightmares], rating [average], has multiplayer [no])

Possible utterance #1

I know you found Little Nightmares merely okay. Would you say that is the case with all
games that don’t have a multiplayer mode?

Possible utterance #2

So you thought Little Nightmares was just an average game. I wonder, are you in general
not a big fan of games without multiplayer?

Possible utterance #3

You mentioned earlier you weren’t that fond of Little Nightmares. Do you feel the same
way about most games that are single-player only?

Possible utterance #4

Hey, I remember you telling me that Little Nightmares was just meh. Do you wish it at
least had multiplayer so you could play it with friends?

Table 8.1: MR with multiple utterance examples, each of which correctly mentions
the has multiplayer slot (and its negative polarity) in a very different way.

the mention of a particular slot may vary for the same MR. One can imagine it takes

fairly complex rules to capture certain slot mentions reliably using a rule-based sys-

tem, yet statistical and neural models that are trained to identify slot mentions on

one particular dataset may also have a hard time correctly recognizing mentions

in utterances that deviate from the distribution of formulations in the training set.

The situation can become even trickier when, for example, multiple Boolean slots

with different polarities get mentioned together or aggregated in the utterance, such

as in “. . . was released for Xbox and PC, but not Steam, with multiplayer support.

While the game has a Mac release, a Linux version is not available.”.

There are four automatic methods that we consider to measure the accu-

racy of slot realization in an utterance given an input MR:

1. Heuristic slot aligner. Our automatic slot aligner, described in Chapter 3,

is designed to identify words and phrases in an utterance that correspond to

mentions of slots in the input MR. Iterating thus over all the slots in the MR,

we can easily determine if all of them were correctly realized in a generated

130

utterance. However, the slot aligner will not recognize hallucinations in an

utterance, i.e., information not grounded in the input MR. Although in theory

we could modify the slot aligner to recognize information in an utterance that

corresponds to a slot not present in the MR – by reversing and adjusting its

rules and semantic dictionary for certain slot types – it would be limited to

just the dataset’s ontology and it would still not be capable of recognizing

general hallucinations. And hallucinations are more likely to be encountered

in this era of large pretrained language models than a mention of an extra

slot from the ontology. In fact, hallucination detection is in general a rather

difficult problem, unless the dataset’s language is very rigid or template-based.

Aside from the lack of ability to identify hallucinations, the main drawback of

the heuristic slot aligner is the need for manually populating and extending a

semantic dictionary before using it in a new domain.

2. Statistical aligner. Training a statistical aligner, such as one of those popular

in machine translation before deep learning models took over (Brown et al.,

1993; Dyer et al., 2013; Gelling and Cohn, 2014), could make this component

more scalable. A related approach introduced in Wiseman et al. (2018) might

also be applicable; they use a neural hidden semi-Markov model to associate

phrases with the latent states that frequently generate them. Nevertheless, for

each new domain a statistical aligner would have to be retrained.

3. Neural text-to-data model. A natural attempt to improve on a statistical

aligner would be to build a deep learning model with the same purpose. How-

ever, instead of finding a word/phrase alignment, the model could be trained

to predict the MR, or simply a list of slot names, from an utterance. In this

131

way the semantic accuracy of an utterance would be determined by comparing

the generated MR with the original input MR. This is related to the concept

of speaker-listener models, which was applied to the data-to-text NLG task

in Shen et al. (2019). Although a neural model might be able to achieve a

superior accuracy, it would make the metric even more cumbersome than a

light-weight statistical aligner that can be trained faster and in a determinis-

tic way. Additionally, both the statistical and the neural model’s performance

may suffer on data that does not resemble the distribution in the training

set, which may be the case with utterances containing unusual formulations or

disfluencies as a result of sampling being used in the model’s inference method.

4. Reference-based metrics with pseudo-references. We propose a novel

approach that takes advantage of existing reference-based metrics such as

BLEU or BERTScore, i.e., metrics that compare a generated text with a ref-

erence text (or a set of them), typically written by humans, in order to assess

how good an utterance produced by a model is. However, instead of human-

authored references we compare the generated utterances directly against the

input MRs, though in a modified format. There are various ways an MR

could be linearized and presented to metric scorers as such a pseudo-reference,

with the simplest being a concatenation of the slot values with spaces between

them. While the metrics are expected to produce rather low scores on such

text pairs, it is the relative score difference between a correct utterance and

one that has a semantic error that matters. If a metric can reliably score good

utterances higher against a pseudo-reference than utterances with errors, then

we can use it as a heuristic to rank a pool of candidate utterances by semantic

132

accuracy. We provide further details on this approach, along with experiments

and a thorough analysis of the suitability of various existing metrics for this

purpose in Section 8.2.

These four approaches to automatically assessing semantic accuracy of ut-

terances generated from MRs cover the spectrum of scalability, from predominantly

domain-specific but highly accurate, to domain-agnostic but only approximate. Each

of them has its pros and cons, as discussed in the above paragraphs, and each will

have its own merit in a different setting, depending on the data-to-text NLG task

at hand, the number of domains that should be supported, or where and how the

generated texts are going to be used.

What they do have in common is that they all focus solely on the informa-

tion in an MR being correctly realized in the corresponding utterance. Depending

on the model (or the reference-based metric in the last approach), they may be

able to take advantage of contextual language information, but none of them would

identify an incoherent utterance with grammatical errors as long as it mentions all

the slots. Luckily, this is exactly where the syntactic fluency component described

in Section 8.1.1 comes into play.

8.1.3 Other Aspects of Generated Utterances

While we consider syntactic fluency and semantic accuracy to be the two

most essential characteristics of a good generated utterance in the data-to-text NLG

setting, there are certainly many other aspects it might be desirable to enforce in

generated outputs and thus to evaluate them for. In the legal and medical domains,

it might be the formalness of an utterance, whereas in dialogue systems it might be

the style or personality an utterance exhibits and which should remain consistent

133

throughout a conversation. Nevertheless, these are domain- and task-specific and

therefore, in this work, we focus on the two that are universally important.

8.2 Reference-Based Metrics With Pseudo-References

In this section we describe in detail our novel referenceless metric for as-

sessing semantic accuracy of an utterance introduced in Section 8.1.2, and evaluate

its effectiveness experimentally. This method uses standard reference-based metrics

(e.g., BLEU, METEOR, or BERTScore) to evaluate the semantic quality of model-

generated utterances by comparing them to pseudo-references automatically created

from the corresponding MRs.

Pseudo-references can be composed from MRs in various ways. Since we

will be using metrics that are meant to be used with natural-language texts, we need

to make the pseudo-references look as much like a natural text as possible. At the

same time, we need to keep the process simple and avoid introducing domain- or

DA-specific phrases as “glue” between the slots. In fact, when DA type indications

are present in a dataset’s MRs, we drop them when creating pseudo-references, as

they do not provide content information that could be matched by reference-based

metrics.

Considering the MRs we work with are flat (i.e., not hierarchical)1, the lin-

earization into a pseudo-reference is straightforward and amounts to concatenating

the slots names and/or values. Nevertheless, there are three aspects we experiment

with in this process of creating pseudo-references:

1. Using slot values only vs. prepending slot names to the corresponding values.

1MRs with DA types encapsulating slot-value pairs, such as is the case in ViGGO and Multi-
WOZ, become flat after removing the DA types.

134

2. Comma vs. space as the value (or slot-value pair) separator.

3. Boolean slot handling, since their value is not meaningful on its own, and it

would not be natural if a value like “yes” or “true” simply followed the slot

name. We therefore opt for the following formulation of Boolean slots in a

pseudo-reference:

• When the slot value is positive, only the slot name is used in the pseudo-

reference.

• When the slot value is negative, we prepend “not” to the slot name, e.g.,

“not multiplayer”.

For Boolean slots we follow this format independently of whether the remaining

slots have their names included in the pseudo-reference.

Table 8.2 provides a few examples of pseudo-reference formats we experi-

ment with. Notice in example #3 that we verbalize the slot names when they are

used in the pseudo-reference. That means we convert them to natural-language

words or phrases. This is very dataset-dependent but can often be achieved by

simply removing underscores from multi-word slot names and using single-word slot

names without any conversion. For Boolean slots we opt for verbalizations that keep

just the most salient part of the slot name, typically just a single word, e.g., “mul-

tiplayer” instead of “has multiplayer” for the slot name has multiplayer. This

in general results in more fluent negations when prepending “not” to the verbalized

slot name.

Any slot name conversions we do here are identical to those that we already

perform during MR preprocessing for model fine-tuning, since pretrained language

models benefit from verbalized slot names in our experience, leading to a better

135

MR

inform (name [SpellForce 3], release year [2017], genres [real-time strategy, role-
playing], player perspective [bird view], platforms [PC], available on steam
[yes], has linux release [no], has mac release [no])

Pseudo-reference variant #1 (space-separated, slot values only)

SpellForce 3 2017 real-time strategy, role-playing bird view PC Steam not Linux not Mac

Pseudo-reference variant #2 (comma-separated, full Boolean slot names)

SpellForce 3, 2017, real-time strategy, role-playing, bird view, PC, available on Steam,
not has Linux release, not has Mac release

Pseudo-reference variant #3 (comma-separated, slot names included)

name SpellForce 3, release year 2017, genres real-time strategy, role-playing, player per-
spective bird view, platforms PC, Steam, not Linux, not Mac

Reference utterance example

SpellForce 3 is a 2017 role-playing real-time strategy with the traditional bird view. It
was released for PC only. Although available on Steam, this game does not run on Linux
or Mac.

Table 8.2: MR with multiple pseudo-reference examples, each using different com-
position rules, indicated in parentheses. For comparison with an actual utterance,
the table also shows one reference utterance example from the ViGGO dataset.

performance. In the pseudo-utterance variant #2 in Table 8.2, it is easy to see

how using full Boolean slot names may lead to disfluent formulations, as mentioned

above.

8.2.1 Pseudo-Reference Perturbations

In order to evaluate the ability of reference-based metrics to detect se-

mantic errors in generated utterances when comparing them to pseudo-references

proposed above, we run a series of experiments with perturbed pseudo-references.

By performing small modifications to the pseudo-references, we can simulate various

errors that may occur in utterances generated by an NLG model, such as fact omis-

sions or hallucinations. This will help us evaluate how sensitive different metrics

are to such semantic errors when using pseudo-references instead of proper reference

utterances. We perform the evaluation, using the following steps:

1. Calculate baseline metric scores by using a dataset’s reference utterances as

136

predictions, and pseudo-references generated from corresponding MRs as ref-

erences.

2. Create a set of systematically perturbed pseudo-utterances (see a detailed

overview below), calculate metric scores using these as references, and measure

the relative changes from the baseline scores achieved when using original

pseudo-references.

3. Verify that the metrics produce very low scores when using pseudo-references

generated from random MRs.

There are several common types of semantic errors that can be simulated

by perturbations to the pseudo-reference (as opposed to modifying the utterance),

avoiding thus the possibility of introducing incoherence in the utterance. Perturba-

tions are performed by modifying one or more slots in the MR before concatenating

it into a pseudo-reference. Below is a definition of all the perturbations we use in

our evaluation, and which semantic error each of them corresponds to (Table 8.3

shows an example for each of them):

• Insertion: picks up to k random slots from the dataset’s ontology that are

not present in the MR2, along with a random value for each of them, and

inserts them at random positions in the MR.

– Simulates a fact omission in the generated utterance.

• Substitution: replaces the value of k randomly chosen slots in the MR with a

different value that the slots could possibly take on according to the dataset’s

ontology.

– Simulates an incorrect mention in the generated utterance.
2The number of slots inserted may be less than k in case there are fewer than k slots in the

ontology that can be added to the MR without repeating one of the MR’s slot.

137

• Deletion: deletes up to k randomly chosen slots in the MR.3

– Simulates a hallucination in the generated utterance.

• Boolean negation: inverts the polarity of k Boolean slots in the MR, if any

are present.

– Simulates an incorrect polarity of a Boolean slot mention, which

tends to be a common mistake models make, especially when multiple

Boolean slots are aggregated in the utterance.

• Slot shuffle: randomly reorders the slots in the MR.

– There is no semantic difference the slot order in an MR implies. While

MR-to-text datasets often come with slots in a fixed order within MRs,

the task typically does not enforce any particular order in which the

slots should be mentioned in the corresponding utterance. Figuring out a

natural order of mentioning the slots is normally a part of the MR-to-text

generation task, i.e., something NLG models are expected to learn along

with how to mention them.

If k is greater than the number of slots and Boolean slots in an MR, the substitution

and Boolean negation perturbations modify all the slots and Boolean slots, respec-

tively. In our evaluation we limit k to 1, as modifying more than one slot at a time

only makes the task of detecting slot errors easier for the metrics.

We also note that there is no straightforward automatic way to simulate

duplication errors (i.e., repeated slot mentions) in the generated utterance without

possibly affecting the fluency and grammaticality of the utterance, and we therefore

omit this error type from our analysis. Nevertheless, a duplication can be loosely

3If the MR has n slots, we delete at most n−1 slots, even if k ≥ n, otherwise the pseudo-reference
would become empty.

138

Pseudo-reference
SpellForce 3 2017 real-time strategy, role-playing bird view PC
Steam not Linux not Mac

Insertion
SpellForce 3 2017 excellent real-time strategy, role-playing bird
view PC Steam not Linux not Mac

Substitution
SpellForce 3 2017 adventure bird view PC Steam not Linux not
Mac

Deletion
SpellForce 3 2017 real-time strategy, role-playing PC Steam not
Linux not Mac (“bird view” deleted)

Boolean negation
SpellForce 3 2017 real-time strategy, role-playing bird view PC
Steam not Linux Mac (“not” before “Mac” not present)

Slot shuffle
Steam 2017 not Mac SpellForce 3 bird view real-time strategy,
role-playing not Linux PC

Table 8.3: Examples of perturbed pseudo-references, with k = 1 (slot shuffle affects
all slots irrespective of k). Perturbations are highlighted in blue bold font, or ex-
plained in parentheses, as appropriate.

considered a variant of a hallucination error, and results from the deletion pertur-

bation experiments are therefore expected to be at least partially representative of

the metrics’ ability to recognize duplicate slot mentions.

Now that we have the perturbations in pseudo-references defined, let us

have a look at how they correspond to errors in utterances and how they will al-

low us to measure a reference-based metric’s performance in estimating semantic

accuracy. What we would expect from a good semantic accuracy metric is a combi-

nation of several properties that it demonstrates consistently. Such a metric should

be sensitive to fact omissions (i.e., demonstrate a high recall), but at the same

time sensitive to hallucinations (i.e., demonstrate a high precision). It should be

insensitive to slot mention order and robust to synonymous expressions, not scoring

an utterance lowly for not using the words in the pseudo-utterance verbatim. A

full list of desired properties and how to assess them by comparing utterances with

perturbed pseudo-references can be seen in Table 8.4.

139

Desired metric property Corresponding pseudo-reference criterion

Sensitivity to fact omissions (recall) Score should drop significantly for insertions

Sensitivity to incorrect mentions (re-
call + precision)

Score should drop significantly for substitutions

Sensitivity to hallucinations (preci-
sion)

Score should drop significantly for deletions

Insensitivity to slot mention order
Score should not change significantly when the
order of slots in the pseudo-reference changes

Robustness to Boolean slot mention
polarity

Score should drop when the utterance mentions
the opposite value of a Boolean slot than indi-
cated in the pseudo-reference, regardless of the
given polarity being positive or negative

Robustness to synonyms
Score should not change significantly if a seman-
tically equivalent phrase is used in the utterance
to express information in the pseudo-reference

Ability to clearly recognize complete
unrelatedness

Score should drop far more (ideally close to zero)
when evaluating an utterance using a random
pseudo-reference

Table 8.4: An overview of the ideal semantic accuracy metric behavior and how it
translates to a metric’s performance when comparing an utterance with a perturbed
pseudo-reference.

8.2.2 Evaluation

Metrics. We evaluate the effectiveness of the proposed method to determine the

semantic accuracy of an utterance, introduced earlier in this section, by testing it

with several reference-based metrics: BLEU, METEOR, ROUGE-N, ROUGE-L,

BERTScore and BLEURT. Some of them were already introduced earlier in Ta-

ble 4.1, as we use them for standard reference-based automatic evaluation of our

model outputs, and the remaining ones are described in Table 8.5. For ROUGE-N

we report the results for N ∈ {1, 2}, and we report the precision, the recall and the

F1 version of BERTScore. We enable baseline rescaling when calculating BERT-

Score in order for the metric to produce values in a wider range and thus for us to

see score changes more clearly.4

4Before rescaling, BERTScore tends to output values in a rather limited range, such as between
0.8 and 1.0. After rescaling, the values are typically between 0.0 and 1.0, although they may fall
slightly outside this range in extreme cases. See Zhang et al. (2020a) for more details.

140

Metric Definition

ROUGE-N
(Lin and Hovy, 2003)

N-gram recall, i.e., number of N-grams co-occurring in a
candidate and a reference divided by the total number of
N-grams in the reference.

BERTScore
(Zhang et al., 2020a)

Average of maximum pairwise cosine similarities between
a candidate’s and a reference’s tokens’ contextual embed-
dings. Offers precision, recall and F1-score versions.

BLEURT
(Sellam et al., 2020)

A learned metric that utilizes contextual embeddings to
score a candidate on how well it conveys the meaning
of a reference. Pretrained on large amounts of synthetic
sentence-pair data with automatic metric scores, and fur-
ther fine-tuned on data with human ratings.

Table 8.5: Simplified definitions of additional reference-based automatic metrics
that we employ for semantic accuracy evaluation. They operate on a pair of texts:
a candidate (the one being evaluated) and a reference (typically human-authored,
but in our case a pseudo-reference automatically created from an MR).

Experimental setup. Since most of the perturbations modify a randomly chosen

slot in the MR before creating a pseudo-reference, we evaluate the metrics across

5 independent runs. Within each run, all metric scores are calculated on the same

set of perturbed pseudo-references, so as to make the comparison as fair as possi-

ble. We perform all experiments on the validation partition of the ViGGO dataset,

which contains 238 unique MRs, each with 3 reference utterances, for a total of 714

examples in each run.

Results format. Along with absolute metric scores, we report relative score

changes with respect to non-perturbed pseudo-references. Relative scores are more

useful for recognizing how a metric reacts to a perturbation in pseudo-references,

yet absolute scores also offer insights into a metric’s behavior, especially across dif-

ferent sets of experiments, such as using different pseudo-reference formats. For all

perturbations except for slot shuffle we want the metrics to maximize the negative

difference. As mentioned earlier, the slot order in the pseudo-reference does not

141

matter, therefore the relative change for the slot shuffle perturbation would ideally

remain as close to zero as possible.

Throughout the rest of this section, we present and discuss the results of

experiments using 4 different pseudo-reference formats – the combinations of using

vs. not using slot names, and comma vs. space as the value (or slot-value pair)

separator. We also look into the effects of data lowercasing on the metric scores.

Finally, we try different model sizes for the two neural metrics, BERTScore and

BLEURT, to see if it has a significant impact on the metrics’ performance.

8.2.2.1 Performance of Reference-Based Metrics Using Pseudo-References

We start the evaluation by looking at how different metrics are affected

by different perturbations in pseudo-references. Figure 8.1 shows a comprehensive

overview of the results across all the above-mentioned metrics using the simplest

pseudo-reference format (variant #1 from Table 8.2).

The first thing we observe is that most scores are in the metrics’ lower

range (the full range being 0 to 1), which makes perfect sense considering we are

not comparing utterances with other utterances but with pseudo-references, which

lack the fluency of natural language and only contain content words, making them

substantially different from the utterances. One exception is ROUGE-1, which is a

unigram recall metric and thus may benefit from the reference only having salient

words which are most likely to be present in the utterance as well.

Fact omissions, substitutions, and hallucinations. Looking at the relative

score changes in the bottom half of the table in Figure 8.1, we can instantly see that

different types of metrics follow different trends for different semantic errors. Sub-

142

Figure 8.1: Scores calculated by various metrics comparing human-written utter-
ances from the ViGGO validation set to perturbed pseudo-references created
from the corresponding MRs (using space as the separator and no slot names).
The upper half of the table shows the absolute values of metric scores averaged
over 5 independent runs, while the bottom half shows the relative score change
with respect to the no-perturbation baseline (yellow row labeled “None” at the
top). Greater negative changes (good, except for slot shuffle) are highlighted in an
increasingly darker shade of blue, and non-negative changes (bad, except for slot
shuffle) are highlighted in red.

143

stitutions are generally recognized well by all the metrics, with a 17–30% negative

relative change on average. However, it is the recall-based metrics, i.e, ROUGE-N

and BERTScore-recall, that most clearly identify fact omissions (∼ insertion per-

turbation), while hallucinations (∼ deletion perturbation) are something precision-

based metrics excel at detecting, i.e., BLEU and BERTScore-precision. METEOR,

ROUGE-L and BERTScore-F1, being F1-based metrics, tend to perform relatively

well on all of these three semantic errors. That being said, the ability of ROUGE-L

to detect fact omissions is poor compared to that of METEOR and BERTScore,

while BERTScore recognizes hallucinations much more clearly than the other two.

Although not corresponding to any of the three metric categories, BLEURT be-

haves most similarly to F1-based metrics, i.e., able to recognize all of the above

three semantic errors in general, yet not as clearly as BERTScore.

Boolean negations. Boolean slots are different from the other slot types in that

they always require their salient part (usually corresponding to a part of the slot

name) to be mentioned in the utterance, which typically has to be accompanied

by a negation when the value is “false” or “no”.5 This makes it arguably more

difficult for automatic metrics to identify the cases when these slots are mentioned

incorrectly, i.e., with the opposite polarity. Out of the 714 examples in the ViGGO

validation set, only 309 contain one or more Boolean slots, so the relative score

changes for the Boolean negation perturbation are in general lower, since they are

averaged over the whole set. BLEU and ROUGE-L only demonstrate a negative

relative change of less than 1%, while BERTScore, with a 2.67% negative change,

significantly outperforms all the other metrics (see Figure 8.1). In fact, we notice

5It is possible in some cases, however, to use a different word/phrase instead of a negation, such
as “single-player” for the has multiplayer slot with a value “no”.

144

that both the precision and the recall component of BERTScore achieve a similar

negative difference in the 2.5–3% range, which suggests that BERTScore can de-

tect Boolean negations regardless of being true-to-false or false-to-true: a missing

negation in the utterance is presumably detected by the recall component, and an

extra negation by the precision component. The ratio of Boolean slots with a true

value and a false value in the validation set is nearly 1 : 1, with 219 and 213 slots,

respectively.

Slot shuffle. Since metric scores should not be affected by the slot order in a

pseudo-reference, there should ideally be no relative score change for the slot shuffle

perturbation at all. Nevertheless, as Figure 8.1 shows, this turns out to be the case

for the ROUGE-1 metric only. ROUGE-2, BLEU and METEOR all show a change

of less than 0.6% in either direction, which is certainly acceptable. ROUGE-L,

however, scores pseudo-references with shuffled slots significantly lower (−12.12%),

which is a consequence of this metric looking for the longest common subsequence

between the two texts – an operation where the slot mention order matters.6 Neural

metrics are also greatly affected by the slot order. While BLEURT scores decrease

on average by 3.41%, BERTScore drops by more than 9% after shuffling slots. This

drastic fall, while undesirable from the perspective of a semantic accuracy metric,

can probably be explained away by the change in the tokens’ contextual embeddings

that happens when the slots get shuffled. Considering most of the words in a pseudo-

reference are salient words, their context changes dramatically with any word order

modification. However, as we show in our later experiments, including slot names

in pseudo-references – for BERTScore in particular – drastically reduces the relative

6Apparently, slots are often mentioned in the reference utterances in a similar order to that in
the corresponding MRs, since the ROUGE-L score drops after shuffling the slots.

145

change for this perturbation (down to 3 times lower levels), and that without a

negative impact on the relative changes for the other perturbations.

Reference shuffle. Reference shuffling is a perturbation performed on pseudo-

reference level, as opposed to slot level. The experiments with this perturbation serve

as a sanity check that the metrics recognize a pseudo-reference being completely un-

related to an utterance. The “within DA” variant shuffles pseudo-references within

the same DA type only, which helps partially preserve the pseudo-reference length

distributions. As we can see in the bottom two rows in Figure 8.1, all metrics pass

the test, reporting negative relative score differences between 62% and 97%, and even

over 100% in case of BERTScore, since it is possible for the scores of this metric to

become slightly negative. Perhaps even more relevant is the fact that all the metrics,

except for BLEURT, score random pseudo-utterances close to zero. BLEURT, being

a metric trained on text pair ratings, presumably does not drop to zero unless one

of the texts is an empty string, and thus even two completely unrelated texts still

get a score well above zero. BLEURT’s practical lower bound being significantly

higher than zero appears to also be the primary reason for its relative score changes

for all perturbations being less prominent than those of BERTScore.

8.2.2.2 Qualitative Evaluation of Boolean Negations and Synonyms

Here we perform a manual analysis of how the metrics handle two phenom-

ena that cannot be evaluated easily in an automated fashion.

Boolean slot negations. We saw earlier that, based on relative score changes av-

eraged over the whole validation set, BERTScore appeared to be the best metric at

recognizing Boolean slot negations. Nevertheless, the score changes across all met-

146

Figure 8.2: Metric score changes for 3 different utterances when a Boolean slot
is negated in the pseudo-utterance (“not multiplayer” → “multiplayer”). Each of
the three examples shows both versions of the pseudo-reference, with the incorrect
slot mention highlighted in blue in the utterances with perturbed pseudo-references.
Metric scores for the pairs with a perturbation are highlighted in green when they
reduce substantially, yellow when they reduce slightly, and red when they stay the
same or increase.

147

rics, including BERTScore, were too small to make a sound conclusion. Therefore,

we inspect how the metrics react for a sample of utterances when a Boolean slot

in their corresponding pseudo-reference is negated. Figure 8.2 shows an example of

three different utterances for the same MR. Each of these utterances demonstrates

a different realization of the Boolean slot has multiplayer[no], verbalized in the

pseudo-utterances as “not multiplayer”, but none of the utterances contains this

phrase verbatim. For overlap-based metrics this means the slot mention is only

partially matched (because the word “not” has no exact match in the utterances),

so their score remains unchanged or actually incorrectly increases on the perturbed

pseudo-reference which omits the “not”. Both of the neural metrics, however, handle

the situation appropriately, at least in case of 1b and 2b. The third utterance men-

tions the Boolean slot as “single-player only”, which apparently confuses BLEURT

but not BERTScore. In all three cases, BERTScore drops significantly, clearly indi-

cating that the utterances {1,2,3}b are inferior in semantic accuracy with respect to

their pseudo-references. That being said, there are scenarios that even BERTScore

fails to handle correctly, such as those involving aggregations of multiple Boolean

slots in an utterance.

Slot mention paraphrases. The behavior of the metrics on different but seman-

tically equivalent slot mentions is difficult to evaluate automatically. We therefore

again turn to studying a sample of utterances for which we systematically manipulate

the pseudo-reference in different ways that will help us see if the metrics correctly

understand paraphrased mentions. We re-evaluate the utterances using these per-

turbed pseudo-references, and analyze how the metric scores change. An example

of two different utterances for the same MR, along with their respective pseudo-

148

Figure 8.3: Metric score changes for 2 utterances with different slot mention para-
phrases, when the slot is deleted (“bird view”) or substituted in the pseudo-utterance
(“bird view” → “side view”). Both examples thus show 3 versions of the pseudo-
reference, with the extra slot mention highlighted in red, and the incorrect slot men-
tion highlighted in blue in the utterances with perturbed pseudo-references. Any
non-verbatim slot mentions are in boldface. Metric scores for the pairs with a per-
turbation are highlighted in green when they reduce substantially (≥ 10%), yellow
when they reduce slightly (< 10%), and red when they stay the same or increase.

149

references, can be seen in Figure 8.3. The first perturbation we test the metrics

with is deletion. A metric’s score remaining unchanged, or increasing, after deleting

a slot in the pseudo-reference, implies that the metric is not aware of the slot being

correctly mentioned in the utterance. Looking at rows 1b and 2b, we see that that’s

the case with most of the overlap metrics, except for ROUGE-L, in this example,

and even BLEURT fails in row 1b. Second, by substituting the slot value with a

different one, we check if the metrics differentiate between a correct and an incorrect

slot mention. If the score does not drop, it suggests that the metric regards even the

correct slot value paraphrase as incorrect. As we can see in case of 1c, all metrics

seem to find the phrase “top down view” equally relevant to “bird view” as to “side

view”, or, surprisingly, even more to “side view” in case of both neural metrics. The

scores in 2c show a different story, as the slot mention “bird’s eye perspective” has

the word “bird” in common with the pseudo-reference in 2a, but not in 2c. This is

enough for most of the metrics to catch the semantic difference, nevertheless BLEU,

METEOR and ROUGE-2 still fail. We conclude that neural metrics, especially

BERTScore, are more robust in recognizing various equivalent slot mentions. While

the example in Figure 8.3 gives the impression that even ROUGE-L performs sim-

ilarly well, that appears to be due to the particular order of slot mentions in these

two utterances, because ROUGE-L failed in virtually all the other examples that we

examined where BERTScore and/or BLEURT correctly recognized the paraphrases.

8.2.2.3 Pseudo-Reference vs. Raw MR Format

Although a pseudo-reference looks more similar to an utterance than an MR

does, it is not much more than a list of content words after all, just like an MR is, but

without special separator symbols and with Boolean slots formulated in a different

150

Figure 8.4: Scores calculated by various metrics comparing human-written utter-
ances from the ViGGO validation set to their corresponding MRs with DA types
removed. The upper half of the table shows the absolute values of metric scores
averaged over 5 independent runs, while the bottom half shows the relative score
change with respect to the no-perturbation baseline (yellow row labeled “None” at
the top). Greater negative changes (good, except for slot shuffle) are highlighted in
an increasingly darker shade of blue, and non-negative changes (bad, except for slot
shuffle) are highlighted in red.

way. Understandably then, the reader may wonder if creating pseudo-references

provides any significant benefits in the semantic evaluation of an utterance. We

therefore also carried out an experiment in which we calculated all the reference-

based metric scores comparing the reference utterances directly with their respective

MRs. We try using MRs without the DA type indications as well, considering they

are not likely to aid in the semantic evaluation using reference-based metrics.

An overview of the metric scores and their relative changes on perturbed

151

MRs is shown in Figure 8.4. We show the results using MRs without DA types, as

we observed that omitting the DA from the MR has a few benefits over using the

full MRs:

• Metric scores are overall higher.

• BLEU score actually decreases for hallucinations instead of increasing.

• A slight increase in most relative ROUGE score differences.

• BERTScore has an almost 2-times lower relative score difference for shuffled

slots (4.11% vs. 7.85%), which would ideally be zero. At the same time,

however, there is an almost 10% drop in relative difference for fact omissions,

and a ca. 20% drop for hallucinations.

• BLEURT exhibits an up to 15% increase in relative score differences, but also

an about 2.5-times larger relative difference for shuffled slots (2.67% vs. 1.07%).

We note that all the metrics are, however, able to detect a good amount of semantic

errors already by simply comparing utterances with the corresponding MRs.

The pseudo-reference format most similar to an MR is the one that in-

cludes slot names, so we compare the results of the MR experiments with those

using pseudo-references with slot names (Figure 8.5). The first thing to notice is

that, for most of the metrics, the scores are significantly lower than when using

pseudo-references with slot names. More importantly though, there are a number

of crucial differences in the relative score changes across the board. Table 8.6 lists

the differences broken down by metric. We can see that pseudo-references are a

clear winner here, with only a few aspects in which they appear to underperform

raw MRs. We attribute this to the more sentence-like nature of pseudo-references,

in particular the verbalized slot names and reworded Boolean slots. Nevertheless,

152

Metric Raw MRs
Pseudo-references with slot

names

BLEU

Lower scores overall;
significantly less effective at
detecting hallucinations (6%
vs. 25% relative difference);
fails to detect negations of

Boolean slots

Fails to detect fact omissions

METEOR

Drastically lower scores overall;
ca. 25% smaller relative score
difference for fact omissions;
fails to detect negations of

Boolean slots

Ca. 25% smaller relative score
difference for hallucinations

ROUGE-
N

Slightly lower scores overall;
fails to detect most negations
of Boolean slots; ROUGE-2
fails to detect hallucinations

Up to 15% smaller relative
score differences for fact

omissions

ROUGE-L

Slightly lower scores overall; ca.
12% smaller relative score

difference for hallucinations;
fails to detect negations of

Boolean slots

Ca. 16% smaller relative score
difference for fact omissions

BERTScore

Significantly lower recall scores
(but bigger relative

differences); 10–25% smaller
relative score difference for

substitutions and
hallucinations (F1); ca. 25%

bigger relative score difference
when slots are shuffled

Lower precision scores (but
bigger relative differences); ca.

10% smaller relative score
difference for fact omissions

BLEURT

Lower scores overall; up to 25%
smaller relative score

differences for fact omissions,
substitutions and

hallucinations; fails to detect
negations of Boolean slots

Table 8.6: Major differences in metric behavior between using raw MRs (without
the DA type) and pseudo-references (with slot names).

153

special symbols present in MRs appear to also drag the metrics’ performance down,

especially those that are recall-based or recall-heavy, such as BERTScorerecall and

METEOR.7

8.2.2.4 Effects of Including Slot Names

Now that we have established the benefits of using a pseudo-reference over

an MR, let us have a look at different pseudo-reference formats, starting with in-

cluding slot names vs. using slot values only. Comparing Figures 8.1 and 8.5 we

see that the result of using slot names is overall lower scores, especially those of

recall-based metrics. Nevertheless, this is expected because this format adds a lot

of extra words to pseudo-references which, in case of the ViGGO dataset, are rarely

mentioned in the corresponding utterances.

Looking at the relative score changes, most metrics exhibit a slightly more

prominent difference for insertion perturbations when slot names are included, but

a slightly less prominent one for deletions. Substitutions and Boolean negations also

see a minor decrease when slot names are included. However, including slot names

has one notable benefit for the BERTScore metric: for the slot shuffle perturbation,

it brings the score difference much closer to zero, specifically from around 9% down

to 2–3%, depending on the separator used.

Overall, speaking in terms of utterance errors, including slot names in

pseudo-references may be considered mildly beneficial in emphasizing the metric

score change caused by fact omissions, which normally only leads to a low to mod-

erate drop in scores (as opposed to the moderate to high drop for substitutions and

hallucinations). Although metric scores for utterances with substitutions and hallu-

7The ROUGE metric script removes non-alphanumeric characters before calculating the score,
hence the relatively small difference in its scores despite being recall-based.

154

Figure 8.5: Scores calculated by various metrics comparing human-written utter-
ances from the ViGGO validation set to perturbed pseudo-references created
from the corresponding MRs (using space as the separator and including slot
names). The upper half of the table shows metric scores averaged over 5 indepen-
dent runs, while the bottom half shows the relative score change with respect to the
no-perturbation baseline (yellow row labeled “None” at the top). Greater negative
changes (good, except for slot shuffle) are highlighted in an increasingly darker shade
of blue, and non-negative changes (bad, except for slot shuffle) are highlighted in
red.

155

cinations show a lower difference when slot names are included, this can be deemed

less consequential, since these relative changes are in general substantially greater

than for the other errors.

Among all the metrics, it is BERTScore that benefits the most from slot

names in the pseudo-utterance. Its F1 version is minimally affected on substitutions

and hallucinations, but the 18% boost for fact omissions is significant. Finally, the

more than 3-fold difference reduction for shuffled slots is an important improve-

ment, making BERTScore behave in a more desired way, considering the order of

slot mentions in the utterance is completely independent of the slot order in the

pseudo-reference. We believe these gains in performance come from the use of con-

textual embeddings in the BERTScore metric, which allows it to make use of the

additional information in the form of slot names despite them not being mentioned

in the utterance, which overlap-based metrics cannot take advantage of. Moreover,

including slot names presumably creates a more stable context around each slot

value, resulting in smaller swings in the contextual embeddings when the slots are

shuffled.

8.2.2.5 Effects of Different Slot Separators

So far, we have shown results of experiments with pseudo-references using

a space between slots. The only other separator that would arguably be suitable in

a pseudo-reference, which is supposed to resemble a sentence, is comma (followed

by a space).

Our experiments with comma-separated slots, whether including slot names

or not, show no benefits over simply using a space. We observe no meaningful dif-

156

ference in scores for BLEU, ROUGE8 and BLEURT. METEOR scores are, however,

significantly lower overall with the comma separator, and the relative score difference

for hallucinations drops by as much as a half. BERTScore is overall slightly higher

but relative score differences are 5–15% smaller with the comma separator, and on

Boolean negations up to 30% smaller. This last effect is difficult to explain, but

our guess is the use of commas in pseudo-references may be excessive and unnatural

from the perspective of BERTScore’s language model, and may thus be negatively

affecting the matches between contextual token embeddings in the pseudo-reference

and the utterance.

All in all, using comma as the slot separator in pseudo-references does not

seem to be beneficial to the semantic error detection. In fact, it makes some relative

score changes less prominent in case of METEOR and BERTScore.

8.2.2.6 Effects of Lowercasing

Converting the utterance and the pseudo-reference to lowercase before cal-

culating metric scores only affects neural metrics. Overlap-based metrics usually

automatically lowercase the texts, as that is the only way for them to recognize

that the same word capitalized at the beginning of a sentence in one text and in

lowercase in the middle of a sentence in the other text are actually a match. A

downside of lowercasing is, however, that the metrics cannot differentiate between

common words that are a part of a title and those that are not. Neural metrics

using contextual token embeddings have a great advantage in this situation.

For both BERTScore and BLEURT the scores become overall lower when

data is lowercased. BERTScore’s relative F1 score difference for fact omissions is

8ROUGE metrics are presumably not affected because of the punctuation being removed by
the script.

157

smaller when lowercased, which is the scenario with the lowest relative difference

among the three primary perturbations. The difference is, however, higher for sub-

stitutions and hallucinations. With slot names included, the trends are similar,

but shuffling slots causes the relative change to double in magnitude (yet it still

remains lower than without using slot names). No substantial difference can be

seen for BLEURT. Relative score changes tend to merely become slightly smaller

for the fact omissions and substitutions, and slightly bigger for hallucinations, when

lowercased.

In summary, lowercasing utterances and pseudo-references only has a no-

table effect on BERTScore, which seems to be slightly thrown off by it, presumably

because the text case makes a difference in the contextual embeddings (e.g., “Jack”

vs. “jack”, or “meteor” vs. “METEOR”). We therefore conclude that it is better for

neural metrics to keep the texts’ original case.

8.2.2.7 Effects of Importance Weighting in BERTScore Calculation

The BERTScore metric can optionally have importance weighting of to-

kens enabled, with the goal of preferring matches of salient words over matches of

stop-words and other common words. It is calculated using inverse document fre-

quency (IDF) on all references, in our case all pseudo-references of the validation

set. The IDF score of a token w is calculated as follows:

IDF(w) = − log
1

N

N∑
i=1

1[w ∈ ri] ,

where {ri}Ni=1 is the set of all N pseudo-references and 1[·] is the indicator function.

For details on how the IDF weights are incorporated into the BERTScore calculation,

158

we refer the reader to Zhang et al. (2020a).

Considering our pseudo-references do not contain stop-words and most of

their content is made of salient words, IDF weighting might not quite work as desired

in our scenario. We evaluate its effects nonetheless, using all 4 pseudo-reference

formats described earlier. The following paragraph summarizes our findings.

In general, with IDF weighting enabled, the precision component of BERT-

Score significantly drops while recall goes up, but the effect on the F1 scores is

relatively small. However, the relative F1 score change increases for fact omis-

sions, substitutions, as well as hallucinations by up to 20%, whereas it decreases for

Boolean negations by up to 20%. The gains from IDF weighting are less significant

when slot names are included in pseudo-references though. In fact, in the case of

hallucinations, the relative change is smaller with IDF weighting, both when using

comma and space as the separator. We speculate that slot names actually play a

somewhat important role in determining the semantic accuracy using BERTScore

because it is them that would be expected to be downweighted the most via IDF,

but doing so actually has a negative impact on the relative score differences caused

by perturbations.

In conclusion, IDF weighting, surprisingly, has a desirable effect on BERT-

Score in our scenario under most circumstances. Unfortunately, it cannot be taken

advantage of during single-input inference (as opposed to running inference on a

whole test set) because of the lack of references to calculate IDF weights on.

8.2.2.8 Effects of Model Size

The two neural metrics in our experiments, BERTScore and BLEURT, are

both powered by a pretrained language model. BERTScore works with a variety of

159

transformer-based models, ranging from BERT (Devlin et al., 2019) and its many

variants to XLNet (Yang et al., 2019) to encoder-decoder models like T5 (Raffel

et al., 2020). At the time of writing, the best-performing model – recommended

by the authors for results that correlate best with human ratings9 – is a DeBERTa

model (He et al., 2020) fine-tuned on the MNLI corpus (Williams et al., 2018) for

the natural language inference task. BLEURT, on the other hand, uses a RemBERT

model (Chung et al., 2020) fine-tuned on both synthetic and human-annotated WMT

data (see Sellam et al. (2020) for more details). At the time of writing, the BLEURT-

20 model checkpoint is recommended by the authors for the best results.10 In our

final set of experiments, we evaluate the performance of BERTScore and BLEURT

on our semantic accuracy task, using the recommended models of varying sizes. The

results are summarized in Figure 8.6.

BERTScore. We compare the recommended DeBERTa model (deberta-xlarge-

mnli, ca. 750M parameters) with its smaller version (deberta-large-mnli, ca. 400M

parameters). The bigger model gives overall lower absolute scores, but the relative

score changes are greater for all perturbations (up to 20% for deletions, and up to

60% for Boolean negations). The slot shuffle perturbation, however, also results in a

greater relative score change (by up to 25%), which is not desired. Considering the

gains in relative differences are in a similar range for all the perturbations (except

for Boolean negations), we would not expect the bigger model to necessarily per-

form better than the smaller model in differentiating between utterances that are

semantically accurate and those that are not. An exception might be recognizing

wrong polarity of Boolean slot mentions, where the bigger model might be more

9https://github.com/Tiiiger/bert_score
10https://github.com/google-research/bleurt

160

https://github.com/Tiiiger/bert_score
https://github.com/google-research/bleurt

Figure 8.6: Scores calculated by neural metrics comparing human-written utter-
ances from the ViGGO validation set to perturbed pseudo-references created
from the corresponding MRs (using space as the separator and no slot names).
The upper half of the table shows metric scores averaged over 5 independent runs,
while the bottom half shows the relative score change with respect to the no-
perturbation baseline (yellow row labeled “None” at the top). Greater negative
changes (good, except for slot shuffle) are highlighted in an increasingly darker shade
of blue, and non-negative changes (bad, except for slot shuffle) are highlighted in
red.

161

accurate, given the 60% relative change increase. However, we note that we only

observed such a high increase when using the comma separator, while with the space

separator it was just below 10%.

BLEURT. We compare the three distilled models of BLEURT-20 provided by the

authors: D12 (ca. 167M parameters), D6 (ca. 45M parameters), and D3 (ca. 30M

parameters). They run 3–20 times faster, while correlating 10–25% less with human

ratings, than the full model. Among the three of them, the two bigger ones perform

similarly, while the smallest one underperforms in two perturbations. In fact, D6

achieves slightly greater relative score differences than D12 across all perturbations

except for slot shuffle, where a smaller difference is actually desired. We observe the

same trends regardless of the separator used in the pseudo-references. D3’s relative

score change for substitutions is lower, but it is the Boolean negations where it lags

the most behind the two bigger models. All in all, the D6 model appears to be the

best choice among the three distilled model variants for our purposes of semantic

accuracy scoring.

8.3 Slot Aligner-Based Semantic Accuracy Metric

We look separately at the heuristic slot aligner as a method for semantic

accuracy evaluation, as proposed earlier in Section 8.1.2, where we described four

different approaches to measuring semantic accuracy. While using a reference-based

metric together with pseudo-references (as described and evaluated in detail in Sec-

tion 8.2) is a domain-agnostic method that can be used out of the box, the slot

aligner approach leans on heuristic rules and a semantic dictionary. Although this

affects its scalability, having been developed for semantic accuracy evaluation and

162

Figure 8.7: Slot error rate (SER) calculated by our heuristic slot aligner comparing
human-written utterances from the ViGGO validation set to perturbed MRs. The
middle column shows SER (as the proportion of erroneous slot mentions out of all
slots) averaged over 5 independent runs, with 0% being the best and 100% the
worst possible value. The right column shows the relative SER change with respect
to the no-perturbation baseline (i.e., using the original MRs) whose SER is 1.73%.
Negative changes are highlighted in blue, and non-negative changes in red.

reranking, the slot aligner is expected to work very effectively. Since it operates

directly on MRs, we test it here on perturbed MRs in the same way we tested

reference-based metrics on perturbed pseudo-references in the previous section.

8.3.1 Evaluation

A quick glance at the results in Figure 8.7 confirms that the slot aligner’s

ability to identify fact omissions, substitutions and Boolean negations is excellent,

but as expected, it misses all hallucination errors (which correspond to the deletion

perturbation).11 The substitution perturbation changes one slot in each of the 714

examples in the ViGGO validation set, which corresponds to approximately 24.71%

of all 2, 889 slots across all MRs in the set. This matches almost perfectly with the

SER for this perturbation (24.8%). The insertion perturbation adds 714 slots that

are not mentioned in the utterances, which corresponds to approximately 19.82%

11Although the slot aligner is able to detect certain duplicate slot mentions, it is not designed
to recognize hallucinations in general.

163

of the new total of 3, 603 slots. This value slightly deviates from 21.04%, which we

explain below. As far as Boolean negations are concerned, 309 examples contain at

least one Boolean slot and have thus one negated. This amounts to approximately

10.7% of all slots, which is close enough to the 11% of erroneous slots reported for

this perturbation by the slot aligner. Shuffling slots in the MRs does not affect the

SER.

We note that according to the slot aligner there are 50 errors in the ViGGO

validation set (∼ 1.73% of all slots), the vast majority of which are in the rating

slot. This slot can be realized in a great number of different ways, also depending

on the DA type of the MR, not all of which are successfully understood by the slot

aligner. These are, however, phrases and formulations that are rather uncommon

in the dataset and hence are rarely reproduced by fine-tuned NLG models. As we

showed earlier in a human evaluation of the slot aligner, its accuracy is near per-

fect on model outputs. Nevertheless, analyzing the performance of the slot aligner

on perturbed data of the validation set means that the 50 incorrect errors will be

counted along with the errors introduced through perturbations, and thus inflat-

ing the error percentages reported by the slot aligner, as we saw in the previous

paragraph. There are the two main reasons why the SER reported for substitu-

tions (24.8% vs. 24.71%) is not significantly higher, as opposed to that of insertions

(21.04% vs. 19.82%). In certain cases, a substitution is technically a deletion, such

as when it replaces a list slot’s value with a value that is a subset of the original list

(e.g., “adventure, indie, platformer” → “adventure, platformer”). Moreover, when

the substitution perturbation affects a slot that the aligner considered erroneous to

begin with, it will not increase the error count from the slot aligner’s perspective.

It is clear from the results and discussion above that the heuristic slot

164

aligner is not a perfect method for measuring semantic accuracy, but a very effective

one nonetheless in detecting fact omissions, substitutions and Boolean negations.

8.4 Discussion

In this chapter, we described our proposed approach to referenceless eval-

uation of utterances, to be used in a stochastic inference method like Batch-MCTS,

to discriminate between adequate and inadequate generated utterance candidates.

The metric combines two components: one focusing on the fluency of the utterance,

and the other on its semantic accuracy. We intend for our referenceless metric to be

effective, but at the same time sufficiently easy to use so as to encourage its adoption

in other domains and tasks, where applicable. Hence, for fluency, we opt for the

perplexity calculated by a large pretrained language model, as it offers both scala-

bility and high competence at determining general language fluency. For semantic

accuracy, we proposed and evaluated a method that automatically creates pseudo-

references from input MRs and utilizes existing reference-based metrics to assess

an utterance’s semantic quality. In addition to this method, we integrate the slot

aligner-based semantic scoring too into our Batch-MCTS inference, which is highly

accurate but not as scalable, representing one end of the spectrum of approaches we

discussed in Section 8.1.2. The performance of the other two approaches would be

expected to fall somewhere in between, just like their scalability does.

In Figure 8.8, we provide a summary of all the metrics we considered for the

pseudo-reference-based evaluation of semantic accuracy. It gives a compact overview

of how effective each of them was in our experiments at recognizing various semantic

discrepancies in utterances, while not being thrown off by different formulations that

165

Figure 8.8: An overview of the overall performance of N-gram overlap and neural
metrics in pseudo-reference-based semantic evaluation. Dark and light green shades
highlight good and acceptable behavior, respectively, yellow shade denotes a not
very clear or inconsistent distinction, while red means the metric fails altogether.
For comparison, although not a pseudo-reference-based metric, we include SER, the
slot error rate metric computed by our slot aligner.

are semantically equivalent to the input information. The two neural metrics among

them, BERTScore and BLEURT, are clearly superior to N-gram overlap-based met-

rics, all of which fail to recognize most errors in Boolean slot mentions and tend to

consider valid paraphrases as semantic errors. That being said, the neural metrics

do not excel in these two departments either, as we showed in Section 8.2.2.1, but

they frequently demonstrate a superior understanding of semantically equivalent ex-

pressions and can more reliably distinguish the polarity of a Boolean slot mention,

as exemplified in Section 8.2.2.2. We attribute this ability to their contextual em-

beddings trained on large amounts of text, however, we speculate that it is these

embeddings that are also responsible for making these metrics sensitive to how slots

are ordered in the pseudo-reference. As a result, there is a chance that these met-

rics will score an utterance with an error higher than a similar semantically correct

utterance that mentions the slots in a different order. Nevertheless, we found in

Section 8.2.2.4 that in BERTScore the negative effect of this can be mitigated by

166

including slot names in the pseudo-references.

From among the overlap-based metrics, METEOR emerges as the most

robust one in our setting. Unlike any of the other metrics in this category, it is

reasonably reliable in identifying fact omissions, substitutions and hallucinations.

This can partially be attributed to the fact that METEOR calculates an F1 score,

rather than precision (such as BLEU) or recall (such as ROUGE-N). METEOR’s

other strength is the strategy of backing off to word stems and synonyms during

word matching, but it turns out not to be robust enough in our experiments with

paraphrases nonetheless. ROUGE-L, while also an F1-based metric, suffers from

the strong dependency on word order which is largely irrelevant when comparing

utterances against pseudo-references.

Generally speaking, the main weakness of the recall-oriented metrics is the

inability to detect hallucinations, whereas precision-oriented metrics tend to favor

shorter utterances, even if it is at the expense of matching all the facts in the

reference.12 Since F1-based metrics, including BERTScore, calculate a harmonic

mean of precision and recall, these negative effects are not as prominent in them. Yet,

given a fixed-length pseudo-reference and two semantically equivalent utterances, an

F1-based metric is still more likely to penalize the more verbose one among them,

since they will have a similar recall, but the precision will be lower in the verbose

one due to a smaller proportion of its words having a match in the reference.

As an alternative approach to semantic accuracy evaluation, in Section 8.3

we evaluated the slot error rate (SER) calculated by our heuristic slot aligner on

the same perturbations as the pseudo-reference-based metrics. As expected, it per-

formed very well on fact omissions, substitutions, as well as Boolean slot negations,

12Hence the brevity penalty in BLEU.

167

confirming its suitability for use as a metric guiding the Batch-MCTS inference to

semantically accurate candidates. Compared to the pseudo-reference-based metrics,

the SER metric has just one major weakness and that is hallucination detection,

which the slot aligner is not designed to handle. On the other hand, this metric

is significantly less scalable and requires a certain amount of manual work, and

possibly domain expertise, in order to extend it to a new domain.

Finally, there is one more important distinction between the SER metric

and the pseudo-reference-based metrics. While the former calculates a score that

directly corresponds to the semantic accuracy of an utterance, the latter produces

a score that is only meaningful relative to that of a similar utterance. The pseudo-

reference approach is highly dependent on the utterance and pseudo-reference being

compared: different utterances of different lengths, and evaluated against different

pseudo-references, are expected to yield substantially different scores, but that does

not mean that the one with a lower score is less semantically accurate than the

other. Therefore, even with the best reference-based metric, it is only effective

when ranking a pool of similar utterances generated from the same MR, whereas

comparing the scores of two unrelated utterances would be meaningless.

Next, we will describe and evaluate experiments with different variants

of the automatic referenceless metric integrated into our Batch-MCTS inference

proposed in Chapter 7, and see what effect they have on the tree search performance.

Going forward, we will focus on the two neural metrics, BERTScore and BLEURT,

which emerged as the most robust ones in the pseudo-reference experiments we

conducted in this chapter. In addition to that, we will also test Batch-MCTS with

the slot aligner’s SER, which represents a different approach to calculating semantic

accuracy, using the MR itself instead of pseudo-references.

168

Chapter 9

Batch-MCTS Inference Evaluation

In Chapter 7, we proposed and described a Monte-Carlo Tree Search-based

inference method for NLG, as an alternative to the standard beam search and sam-

pling methods that either ignore the output diversity or the semantic accuracy. With

Batch-MCTS1 we intend to reduce this gap and make generated utterances more di-

verse without a negative impact on their coherence and semantic accuracy. MCTS,

however, needs a means of evaluating utterance candidates so that it knows if it is

searching in the right direction or not. For this purpose we developed an automatic

referenceless metric, described and evaluated in Chapter 8, that ranks utterances

based on their quality. It consists of two components, one being a general-purpose

language model (evaluating the fluency), and the other a standard neural NLG met-

ric that compares utterances with a pseudo-reference created from the corresponding

MR (estimating the semantic accuracy). An alternative metric we experiment with

in the semantic accuracy component is the slot error rate calculated by the slot

aligner from Chapter 3.

In this chapter, we put all of the above together and evaluate the perfor-

1Our Batch-MCTS implementation is available at: https://github.com/jjuraska/mcts-nlg

169

https://github.com/jjuraska/mcts-nlg

mance of Batch-MCTS equipped with the proposed referenceless metric, comparing

it with multiple other inference methods. We start by giving an overview of our ex-

periments and evaluation criteria, and we then present the results along with their

analysis and discussion.

9.1 Experimental Setup

9.1.1 MCTS Parameters

Our proposed Batch-MCTS inference method is highly configurable, and

so we investigate the effects of various parameters taking on different values. The

two most important parameters are the batch size and the number of iterations.

We experiment with batch sizes between 4 and 128, which corresponds to 4–128

parallel playouts – each of which generates an utterance candidate – per iteration.

Unlike in typical MCTS applications, the benefits of running Batch-MCTS for many

iterations are rather limited. There are two main reasons for this: (1) Batch-MCTS

uses heavy playouts, i.e., highly informed simulations that lead to generally good

candidates (utterances), as opposed to random ones; and (2) the batch modification

means that each iteration explores a number of candidates equal to the batch size

instead of just one. We therefore run our experiments with 1, 2 and 4 iterations.

Among the more internal MCTS parameters, there are different choices

that can be made for the sampling and pruning strategy, the tree policy, as well

as the reward aggregation. For sampling in playouts, i.e., utterance decoding, we

settled on nucleus sampling with p = 0.8. As a form of pruning we only expand

the search tree with nodes corresponding to the subset of tokens sampled from at

each decoder step (see the description of the expansion phase in Section 7.2.2). We

170

keep the default tree policy, UCT, described in Section 7.2.1), with the exploration

coefficient set to 1.0. As for the node reward aggregation, we experimented with

averaging over utterance scores in a node’s subtree and with keeping the maximum

among the scores, but we observed no significant difference in the overall Batch-

MCTS performance. In all the experiments whose results we report, we use the

averaging mode.

9.1.2 MCTS State Evaluation Metric

The utterance evaluation metric to guide Batch-MCTS that we proposed

in Chapter 8 has two components. For the fluency component we use the aver-

age token perplexity calculated by the GPT-2 pretrained language model (Radford

et al., 2019). In comparison with two other language models we considered for this

component, XLNet (Yang et al., 2019) and BART (Lewis et al., 2020), GPT-2 was

predicting by far the best perplexity values. In general, being a decoder-only autore-

gressive language model, GPT-2 is best suited for the task of evaluating the fluency

of a text.

The second component of the metric measures the semantic accuracy of an

utterance by comparing it to a pseudo-reference composed from the corresponding

MR. Our experiments in Chapter 8 showed the use of BERTScore and BLEURT

for the comparison to be the most effective among other reference-based metrics

we considered. To calculate BERTScore, we choose the deberta-large-mnli model

because of its smaller size, and for BLEURT we use the D6 model variant. We

disable IDF weighting in BERTScore, but we test the effects of using it with and

without baseline rescaling. In addition to pseudo-reference-based evaluation, we also

experiment with the slot aligner-based semantic evaluation in this component.

171

Since perplexity needs to be minimized, but BERTScore and BLEURT

maximized, we invert the perplexity score when combining it with the semantic

accuracy component into our referenceless utterance evaluation metric:

score(ŷ|x) =
SA(ŷ|x)

PPL(ŷ)
,

where SA(ŷ|x) is the semantic accuracy score, calculated by BERTScore or BLEURT,

for an utterance ŷ generated from an input MR x. The objective of Batch-MCTS

thus is to maximize this score in the tree search. When using SER for the semantic

accuracy component, the metric calculation changes to the following:

score(ŷ|x) =
1

PPL(ŷ) ·
(
1 + ERR(ŷ|x)

) ,

where ERR(ŷ|x) is the number of slot errors determined by the slot aligner for an

utterance ŷ generated from an MR x.

9.1.3 Data-to-Text NLG Model

Using an Nvidia RTX 2070 GPU with 8 GB of memory limits the size

of models that we can effectively run the inference on, since we need to have three

neural models loaded at the same time: one for the PPL calculation, another one for

BERTScore or BLEURT, and of course the NLG model itself. All of our experiments

with Batch-MCTS are thus performed with one concrete NLG model – a fine-tuned

T5-small model which is sufficiently small to fit into the GPU memory along with

the other two models and which we previously used for experiments with our SeA-

GuiDe method in Chapter 6. For details about the model’s parameters and the

172

Test set references Greedy search outputs

Vocab
Vocab
(delex.)

Unique
(delex.)

Vocab
Vocab
(delex.)

Unique
(delex.)

ViGGO 1,292 951 428 590 206 39

E2E 987 955 232 116 64 2

Table 9.1: Vocabulary size and unique word statistics for the reference utterances
of the ViGGO and E2E test sets, along with the same statistics for the outputs of a
fine-tuned T5-small model on the test sets using greedy decoding. Columns denoted
“delex.” show the statistics for a delexicalized test set and output set, i.e., with
utterances having categorical slot mentions (e.g., game/restaurant names, release
year, food type, etc.) replaced with a special placeholder (different for each slot
type).

training regime we therefore refer the reader back to Section 6.2.2.

9.1.4 Datasets

We train the NLG model and evaluate its performance with different in-

ference methods on two datasets, ViGGO and E2E, both introduced in Chapter 2.

Despite ViGGO being a substantially smaller than E2E, models trained on this

dataset typically use a larger vocabulary in their outputs, partly due to the 9 DA

types used (as opposed to just 1 DA type in E2E). That being said, the vocabulary

in these datasets is rather limited, considering each of them focuses on a single do-

main (video games and restaurants, respectively). Yet models tend to learn to use

only a fraction of it confidently in their outputs, resulting in a smaller vocabulary

still.

The vocabulary differences are illustrated in Figure 9.1. We note that the

ViGGO test set has 1,083 reference utterances, and E2E has 4,693, however, both

datasets contain multiple references per MR. There are 359 and 630 unique MRs

in the ViGGO and E2E test set, respectively, and the set of model outputs only

contains one utterance per unique MR. Therefore, the comparison of these statistics

173

is not entirely fair between a test set references and the corresponding model outputs.

Nevertheless, it still demonstrates that the vocabulary is substantially less diverse in

the model outputs. Consider, for example, the ViGGO dataset, for which the model

output set is exactly a third of the size of the test set references, yet the delexicalized

vocabulary across the model outputs is only about 22%, and the number of unique

words only 9%, of their test set counterparts.

Both of these datasets have a reasonably small test set, allowing us to run

experiments with many different MCTS configurations, and to execute multiple runs

for each configuration. This is particular important because Batch-MCTS relies on

sampling. For all the experiments that involve sampling, the results we report are

averaged over 3 independent runs.

9.2 Evaluation

In this section, we provide details on the baselines for our experiments, and

we give an overview of the automatic metrics we use and the human evaluation we

perform to assess the performance of our proposed inference method compared to

the baselines.

9.2.1 Baselines

In order to evaluate how Batch-MCTS performs, we compare it with mul-

tiple other inference algorithms, some of which we already mentioned earlier as

standard methods for inference in NLG. These will serve as baselines in terms of

overall quality, semantic accuracy and diversity of utterances that an NLG model

can produce. All of the methods described below perform the utterance decoding in

174

a left-to-right fashion.

Greedy search. The simplest inference method is greedy search, which has the

decoder select the most probable token at each time step of generating an utterance

until it produces the end-of-sequence token, at which point it stops. More formally,

the i-the token in the utterance being generated is chosen as follows:

wi = argmax
w∈V

pθ(w|w<i, x) ,

where pθ(w|w<i, x) is the probability of the i-th token given input x and all tokens

w<i generated so far in the utterance by an NLG model with parameters θ, and V

is the model’s vocabulary.

Beam search. A more robust extension of greedy search is beam search, which

does a better job at identifying high-probability tokens hidden behind low-probability

ones, possibly leading thus to an utterance with a higher overall probability. It

achieves this by simultaneously keeping track of B most probable beam hypotheses

(i.e., partial utterances in our case), instead of choosing the token with the high-

est probability at each time step. The hypotheses are updated at each time step

with the most probable single-token extensions across all current hypotheses. Beam

search ultimately produces a set of B utterances, which allows for further reranking

according to different criteria, such as semantic accuracy, if desired.

Diverse beam search. While beam search can find better solutions than greedy

search, the top B candidates it generates often differ only marginally from each other

(especially with a lower B), and that usually towards the end of the utterance. To

175

overcome this shortcoming, Vijayakumar et al. (2018) proposed a modified version

of beam search that promotes diversity among the beam hypotheses. They do this

by partitioning the beam hypotheses into G equally-sized subsets, where G ≤ B,

and enforcing dissimilarity between them. The amount of desired diversity among

the candidate utterances can be controlled by the diversity strength parameter λ,

which modifies the weight of the dissimilarity term in the objective function. The

dissimilarity between groups can be calculated in various ways, but by default it

penalizes tokens selected for hypotheses in other groups at the same time step, which

the authors claim to perform better than several other more complex functions. For

more details, we refer the reader to Vijayakumar et al. (2018). Diverse beam search

can, in theory, lead to an even more probable utterance being discovered than the

standard beam search would find, but we are primarily interested in this method for

its diversity-promoting properties.

Nucleus sampling. Sampling-based decoding chooses the i-th token according to

the conditional probability distribution across the vocabulary at time step i:

wi ∼ pθ(w|w<i, x) ; ∀w ∈ V .

Unrestricted sampling can, however, quickly lead to disfluency and incoherence. To

minimize the chance of sampling an ill-fitted word in the given context, Holtzman

et al. (2019) introduced nucleus sampling. This method filters the smallest possible

subset of tokens whose cumulative probability exceeds certain probability p (hence

sometimes referred to as top-p sampling), provided as a parameter. The token is

then sampled from this limited set Vtop-p of the most probable tokens with the

176

probability mass redistributed among them. This results in a dynamic resizing of

the token set to sample from at each time step depending on the current context.

Nucleus sampling thus improves over top-K sampling, a different approach suggested

by Fan et al. (2018), which samples from a fixed set of the K most probable tokens at

each time step. Similar to beam search, with nucleus sampling we can also produce

a pool of candidates (independently sampled) to be reranked based on other criteria.

9.2.2 Automatic Metrics

For the purposes of automatic evaluation of generated utterances, we use

several of the previously mentioned metrics: BLEU, METEOR, BLEURT, BERT-

Score and language model perplexity (PPL). To calculate corpus-BLEU and ME-

TEOR we use the E2E NLG Challenge evaluation script2. For the two reference-

based neural metrics, BERTScore and BLEURT, we use their respective Python

packages, bert score and bleurt. In contrast to using these metrics for state eval-

uation in Batch-MCTS, here we opt for the larger versions of their models, namely

deberta-xlarge-mnli for BERTScore and D12 for BLEURT. We calculate BERTScore

without IDF weighting and baseline rescaling.

While the first four metrics serve mainly for evaluating the semantics

and faithfulness to the inputs (indirectly by comparing the generated utterances

to human-written references), PPL measures the overall language fluency of the

utterances irrespective of the inputs. To calculate this metric we utilize the imple-

mentation of the GPT-2 language model in the Transformers library (Wolf et al.,

2020). We use the medium-sized variant of the model (gpt2-medium). Note that

PPL increases as the model’s confidence about the tokens it generates decreases,

2https://github.com/tuetschek/e2e-metrics

177

https://github.com/tuetschek/e2e-metrics

so in general, we want PPL to be as low as possible. However, in a setting where

the model output diversity is of interest, higher PPL (but still reasonably low) may

merely imply the use of rarer words and formulations, which may make an utterance

all the more interesting.

In addition to the standard metrics above, we also report the slot error rate

(SER) calculated by our heuristic slot aligner. This is calculated on a corpus level

as the proportion of erroneous slots out of all slots in the test set. This is therefore

a metric that we want the generated utterances to minimize, ideally achieving 0%.

9.2.3 Diversity Metrics

Our primary objective in this chapter is to investigate to what degree

Batch-MCTS is capable of increasing the diversity of model outputs without it being

at the expense of their fluency and semantic accuracy. Since we have established a

set of automatic metrics that we will use in our experiments for evaluating fluency

and semantic accuracy, what remains now is for us to introduce metrics to gauge

the diversity. We measure the diversity of the language used in model outputs by

calculating different corpus statistic across all of the utterances generated by a model

for a test set. The metrics we report are the following:

• Vocabulary size. The number of distinct words across all utterances.

• Bigram vocabulary size. The number of distinct bigrams across all utter-

ances.

• Distinct-N. Introduced in Li et al. (2016a), this metric calculates the ratio

of distinct N-grams to the total number of N-grams across all utterances. We

report it for N ∈ {1, 2}.

• Unique-N. The number of N-grams occurring only once across all utterances.

178

We report this metric for N ∈ {1, 2}.

• Unique utterance templates. This metric requires utterances to be delex-

icalized, i.e., have slot mentions replaced with a placeholder (see below for

details). It then calculates what proportion of these utterance “templates”

are unique among all the outputs. This metric, introduced in Oraby et al.

(2019), reveals how varied the general structure of utterances is in the model

outputs.

• Average utterance length. The average number of words in the utter-

ances. Although this is not a diversity metric per se, we include it here, as it

characterizes a corpus in a similar way vocabulary size does.

For the first four metrics, we calculate the scores on delexicalized utterances as

well. A delexicalized utterance has certain slot mentions replaced with a special

placeholder word, which is different for each slot type, such as |developer| for a

mention of the developer slot in the ViGGO dataset. In general, we delexicalize

categorical, numeric and list slots (e.g., name, release year or platforms), but

leave Boolean and scalar slots (e.g., has multiplayer or rating) untouched be-

cause their mentions often cannot be identified in the utterance by simply matching

the slot value.

9.2.4 Human Evaluation Criteria

We use automatic metrics to evaluate vast amounts of outputs across a

great number of experiments in order to study general trends across different Batch-

MCTS configurations and to identify the most promising ones among them. After

narrowing it down to a few candidates for which we would like to judge the quality

of the model outputs more accurately and to compare them with the baselines, we

179

carry out a human evaluation. This evaluation consists in manually annotating

generated utterances according to a set of criteria corresponding to different types

of errors that can occur in an utterance.

We tuned the criteria across 3 trial annotations, each performed on model

outputs (generated using Batch-MCTS with 3 different configurations) for the whole

ViGGO test set, i.e., 1, 077 examples in total.3 We eventually settled on 8 error types

across 4 categories: DA errors, slot errors, semantic errors and syntactic errors,

described in Table 9.2. These categories cover all the errors we encountered in the

trial annotations, which there were a few hundred of. The model outputs used in

the trials are not part of the human evaluation in Section 9.4.7.

9.3 Standard Inference Method Experiments

Before diving into experiments with Batch-MCTS, we provide a compre-

hensive overview of how the baseline inference methods described in Section 9.2.1

compare to each other on the ViGGO dataset. We split the results into two tables,

one with the automatic semantic accuracy and fluency metrics (Figure 9.1), and the

other showing the diversity metrics (Figure 9.2). Figure 9.1 includes the vocabulary

size too as a representative of the diversity metrics, in order to allow the reader

to view the relationships between semantic accuracy, fluency and diversity all in

one place. As we will later see in Figure 9.2, all the diversity metrics are strongly

correlated with the vocabulary size.

3There are 359 unique MRs in the ViGGO test set.

180

Error type Description

DA error

Utterance formulated in a way inconsistent with the corre-
sponding DA type definition/expectations in the context
of the dataset. This is typically a domain-specific error,
and may require a strong familiarity with the dataset to
be recognized.

S
lo

t

Duplicate
mention

Undesirable repeated mention of the same slot in the ut-
terance (not an error if the DA type requires/allows it for
the given slot).

Incorrect
mention

Slot mention with a different value than indicated in the
input MR. This includes, among others, negated mentions
of Boolean slots and partial mentions of list slots (i.e.,
when not all the elements listed in the value are men-
tioned).

Omission Missing slot mention.

S
em

an
ti

c

Hallucination
Information in the utterance that cannot be inferred from
the input MR, even if it is technically true/factual and not
contradicted by the input.

Incoherence

Illogical, inconsistent, or unclear expression (e.g., “I enjoy
playing adventure games, but I don’t like them.” or “It
is a first-person shooter and is played from a bird’s eye
view.”). An incoherence can reach across sentences.

S
y
n
ta

ct
ic

Fluency /
grammar

Grammatical error, missing/incorrect article, wrong
preposition, unexpected word, unfinished sentence, gib-
berish, etc.

Punctuation /
capitalization

Incorrect/unexpected capitalization of a letter or a word
(e.g., name of a game in lowercase), or missing/incorrect
essential punctuation (e.g., a period used at the end of
a direct question). We are lenient with commas and hy-
phens, and typically do not consider them to be errors,
unless, say, missing from the name of a game (i.e., “M-
rated” and “M rated” would both be considered correct).

Table 9.2: Classification and description of the final set of error types we distinguish
in the human evaluation of generated utterances.

181

9.3.1 Semantics vs. Diversity

Assuming that the vocabulary size faithfully represents the overall diversity

of the model outputs, we observe a very clear inverse relationship between diversity

and semantic accuracy across the four inference methods. As Figure 9.1 shows, using

beam search produces outputs whose combined vocabulary is around 560 words, i.e.,

the lowest among all the methods, whereas its BLUE, METEOR, BERTScore and

BLEURT scores are the highest, often with a significant lead over the other methods.

The fluency, as measured by the PPL metric, follows generally the same trend as the

reference-based automatic metrics (only with PPL it is the lower the better). Finally,

the slot error rate (SER) is highly dependent on whether the semantic reranking of

generated candidates was used after decoding or not. Looking at the results without

reranking, we see that SER increases hand-in-hand with the diversity. Reranking

typically forces down the SER close to zero, but considering the slot aligner focuses

on detecting fact omissions and substitutions, model outputs with SER of 0% can

still be incoherent or contain hallucinations. Over the following few paragraphs, we

describe in more detail the effects of the individual inference methods.

Greedy search. Greedy search, being the most naive decoding method, will serve

more as a baseline to compare the other methods with. Notably, the diversity is not

the lowest using greedy search, as one might have expected, however, SER is in the

higher range.

Beam search. Beam search leads to significant improvements in all metrics ex-

cept for the vocabulary size. This is presumably a consequence of beam search

optimizing for the overall utterance probability even more aggressively than greedy

182

Figure 9.1: Overview of T5-small’s performance with different inference methods
on ViGGO. The methods shown are greedy search (GS), beam search (BS), diverse
BS (DBS), and nucleus sampling (NS), with different parameters and with semantic
reranking on or off (performed by our slot aligner in the internal baselines). For NS,
10 independent candidates were generated when reranking was enabled. The header
indicates scores calculated on the test set where applicable. The upper portion of the
table also lists three external model baselines for comparison: Slug2Slug (Juraska
et al., 2018) and two variants of DataTuner (Harkous et al., 2020), all of which use
BS for inference. In the bottom row, the correlation coefficient for SER omitting
reranked results is indicated in parentheses. SER and PPL have negative correlation
with BLEU because these two metrics are to be minimized.

183

search, which further diminishes the generation of less common words. While in our

experiments we observed a difference in scores between using B = 5 and B = 10,

increasing the beam size further seems to have virtually no benefit at all.4 As we

can see in the row for “BS (B = 20)” with reranking enabled in Figure 9.1, it is only

the SER metric that may slightly benefit from this, since among 20 candidates the

slot aligner has a higher chance of finding a semantically accurate utterance than

among just 10.

Diverse beam search. As expected, diverse beam search (DBS) increases the

model outputs’ diversity over standard beam search, but not dramatically. In fact,

the vocabulary size did not even reach that of greedy search, except when using B =

20 and λ = 5.0, which represents the case with the most aggressive diversification.

We attribute this to the fact that DBS promotes diversity within the B candidates it

generates, but that does not necessarily propagate to corpus-level diversity, as DBS

still optimizes for the overall utterance probability within each set of B candidates.

Nevertheless, considering the jump in SER from 0.95% (using beam search) to 1.29–

1.58% in exchange for the modest increase in diversity, we believe sampling from the

B candidates instead of using the top one would likely only lead to more semantic

errors. In terms of the other metrics, DBS is in the middle of the pack, comparable

to greedy search, although PPL remains on par with that of beam search outputs,

if not slightly better. We also experimented with using fewer groups than the beam

size (i.e., setting G such that G < B), but the increase in overall diversity ended up

being even lower, and hence we do not show the results.

4We note that this observation is specific to the T5-small model and the ViGGO dataset, and
they cannot be generalized. It may well be the case that on a different dataset, using B = 20 would
still lead to additional gains.

184

Nucleus sampling. The scores calculated for utterances generated with nucleus

sampling vary widely depending on the p-value (see the bottom 6 rows in Figure 9.1).

For p = 0.3 the results are similar to greedy search, which is not surprising given that

nucleus sampling with p = 0 is equivalent to greedy search, and 0.3 is a rather small

probability mass that probably rarely accommodates more than the single most

probable token from the distribution. With the two higher p-values things become

more interesting. Increasing the probability mass to 0.5 leads to a modest boost

to the diversity (624 vs. 590, i.e., 6% over greedy search), at a minimal cost to the

reference-based metrics. The semantic accuracy suffers though, with SER exceeding

2%. Reranking helps here by forcing SER down to 0.15% and even slightly improving

most of the other metrics. Finally, with p = 0.8, which is the same value we use in

the playouts of the Batch-MCTS inference, we achieve a highly superior diversity

(688 vs. 590, i.e., a 17% increase over greedy search). This, however, comes at the

expense of all other metrics, with BLEU dropping by more than 10% of the greedy

search value (from 0.519 to 0.467) and PPL jumping up by 4 points. Although,

with reranking, the SER drops all the way to zero, these outputs may be riddled

with hallucinations and incoherent phrases, given these drastic reductions in metric

scores. This we determine through a manual evaluation of these utterances, whose

results we discuss in Section 9.4.

9.3.2 Other Diversity Metrics

Although in Section 9.3.1 we evaluated the effects of different inference

methods on the overall vocabulary size across all generated utterances, we will now

take a look at the remaining diversity metrics described in Section 9.2.3. First of

all, we would like to bring attention to the fact that all the other diversity metrics

185

Figure 9.2: Overview of T5-small’s output diversity using greedy search (GS), beam
search (BS), diverse BS (DBS), and nucleus sampling (NS) inference on the ViGGO
dataset. The header indicates scores calculated on the test set. For further clarifi-
cations we refer the reader to the description of Figure 9.1.

186

are very strongly correlated with the vocabulary size (with the Pearson correlation

coefficient r ∈ [0.9561, 0.9984]), except for the average utterance length, which, with

r = 0.75, is strongly correlated (see the bottom row in Figure 9.2). As discussed

earlier, the average length is not a diversity metric per se, so its lower correlation

with the vocabulary size is expected.

The vocabulary size of delexicalized utterances correlates almost perfectly

with the regular vocabulary size, but it offers a few useful insights. First, by com-

paring the sizes of the two vocabulary versions we can see that about 400 words

actually correspond to names of games, developers, and other categorical video-

game-related attributes, which are not present in the delexicalized version.5 This

metric thus illustrates an increase in diversity better than the regular vocabulary,

since the above-mentioned set of 400 words remains constant across all experiments.

It is the rest of the vocabulary that is variable and indicates thus the real diversity

of the language used in the model outputs. In case of greedy search, this amounts to

206 words (see row “GS” in Figure 9.2). On the other hand, using nucleus sampling

with p = 0.8, the delexicalized vocabulary size is 311. This corresponds to a 51%

increase in diversity, as opposed to the 17% that we reported in the previous section

using the regular vocabulary, and paints a more accurate picture of the difference

in their language diversity.

The number of unique utterance templates is overall very high among the

model outputs, but it still increases from 96.28% when using greedy search to 99.35%

with nucleus sampling, and drops to 94.61% with beam search. This is further

evidence for nucleus sampling encouraging more diverse utterance formulations, and

5Conversely, the delexicalized vocabulary has words the standard version does not – the special
slot mention placeholders for the 9 slots that we delexicalize.

187

beam search making them more repetitive.

9.3.3 Summary

The observations across standard inference metrics in this section provide

evidence for our conjecture that it is hard to achieve higher diversity among gener-

ated utterances without negatively affecting their semantic accuracy. To quantify

the strength of the inverse relationship between these two aspects of generated utter-

ances, we calculated the Pearson correlation coefficient between the vocabulary size

and the BLEU metric (see the bottom row in Figure 9.1). With r = −0.9845, there

is a very strong negative correlation, implying that while one of them increases, the

other one decreases. All the other metrics strongly correlate with BLEU, including

the fluency metric (PPL). The reference-based metrics all correlate very strongly

with each other, with METEOR and BLEURT having the lowest correlation among

all the pairs (r = 0.9366). BLEURT, in general, correlates the least with the other

three metrics.

Although we provided the test set statistics in the table headers in Fig-

ures 9.1 and 9.2, in the case of most diversity metrics they are not directly com-

parable with the model output scores because there are 3 times more utterances in

the test set than in any model output set (which has a single utterance per MR).

Despite that, we can tell that the diversity of the human-written references is sig-

nificantly greater than that of the generated utterances, even when using nucleus

sampling with p = 0.8. The delexicalized vocabulary of the references is more than

3-times bigger than that of the nucleus sampling outputs (951 vs. 311), yet we could

not expect nucleus sampling to triple the vocabulary size of its outputs by having

it generate 3 independent utterances per input MR. In order to achieve that, those

188

3 candidate utterances would have to use non-intersecting vocabularies, which is

virtually impossible since they are supposed to be paraphrases of each other. In

addition to the vocabulary size difference, the delexicalized references also contain

disproportionately more unique words and bigrams (see columns Unique-1:delex and

Unique-2:delex in Figure 9.2).

We also come to a conclusion that, especially for a small dataset like

ViGGO, comparing diversity metric scores calculated on delexicalized utterances

gives us a better idea about variations in the language used in utterances produced

with different decoding techniques. Due to the very strong correlations observed

among the metrics, going forward, for a better readability, we will only be reporting

a small subset of them when evaluating model outputs.

9.4 Batch-MCTS Experiments

In the previous section, we compared the baseline inference methods with

each other and determined which metrics are the most informative. Throughout this

section we will thus be contrasting the Batch-MCTS results only with the baselines

most relevant to the experiment at hand. We continue presenting our analyses on

the ViGGO dataset, and we later discuss any differences we observe using the E2E

dataset.

Throughout this section, we will be using the IMCTS ×BMCTS notation to

refer to Batch-MCTS configurations with IMCTS iterations and batch size BMCTS,

for example, 4 × 32 for a configuration with 4 iterations and batch size 32.

189

(a) Average score of the top 10 candidates. (b) Average score of the best candidate.

Figure 9.3: Average scores of the top 10 candidates vs. average scores of the best
candidate only, using different numbers of MCTS iterations but fixed total numbers
of samples. Batch size is implied by the number of iterations and samples, e.g.,
(4 iter., 128 samples) =⇒ 32. The evaluation metric used was PPL+BERTScore.
The scores are multiplied by 10, for a better readability, considering the reciprocal
of PPL results in a small value. The scores are averaged over 3 independent runs of
the Batch-MCTS inference for each configuration.

9.4.1 MCTS Metric Optimization

In order to verify that the Batch-MCTS algorithm works as expected, we

look into how the average score of the internal utterance evaluation metric, which

MCTS optimizes for, changes with an increasing batch size and number of iterations.

Figure 9.3 plots the average scores for the PPL+BERTscore variant of the metric,

which is calculated by multiplying BERTScore of an utterance candidate ŷ, given

input x, with the reciprocal of the utterance’s PPL (since PPL is being minimized):

scorePPL+BS(ŷ|x) =
BERTScore(ŷ, x)

PPLGPT-2(ŷ)
.

They are calculated across all generated utterances for the ViGGO test set. The

two plots show the scores averaged over the top 10 candidates MCTS found for each

input, and averaged over just the best candidates.

As we can see in Figure 9.3a, the average scores steadily increase as the

190

total number of samples increases, but there is only a marginal difference between 1

and 4 iterations (with batch size 128 and 32, respectively). Looking at the plot with

the average best candidate scores (Figure 9.3b), we observe a similar overall incline,

yet the incline is the steeper the more iterations MCTS uses. This becomes most

apparent at 128 samples, at which point the lines appear to be divergent, suggesting

that the benefit of a greater number of iterations will continue increasing with the

number of samples. Since the configurations 1×128 and 4×32 end up sampling the

same number of candidates during the inference, the latter identifying candidates

with a higher score is a proof that the MCTS algorithm is effective at optimizing

for the given metric.6 On the other hand, the differences are rather small. This

is a consequence of the MCTS playouts being heavy, i.e., the candidate utterance

generation is highly informed (by the NLG model’s learned probabilities), leading

to very strong candidates right from the first iteration.

While this ability of Batch-MCTS to optimize for the internal evaluation

metric is promising, we cannot say with certainty if it translates to overall better

utterances. To determine that, we will evaluate the generated utterances using

external metrics. But before jumping into that, we would like to point out one

more thing in this analysis. Although the plot lines in Figure 9.3b, and possibly

also in Figure 9.3a, are divergent, at sample size 16 the 1-iteration configuration

almost always performs best (we observed this with other metric variations as well).

Our interpretation of this is that, with only 4 or 8 samples in the first iteration (in

the 4 × 4 and 2 × 8 configuration, respectively), there is a more limited variation

among the utterance beginnings that the MCTS gets to expand on and further

6Remember that MCTS with just a single iteration is equivalent to nucleus sampling with
reranking by the metric score.

191

explore in the subsequent iterations. By the time the sample size and, with it, the

batch size, doubles, the higher-iteration configurations do not suffer from this initial

disadvantage anymore. This highlights the importance of the batch size in Batch-

MCTS. In general, the higher the batch size the better, but after a certain threshold

the benefit of a higher number of iterations will likely take over that of increasing

the batch size. The threshold will vary from dataset to dataset.

9.4.2 PPL With BERTScore

Let us now look at how different metrics score the final utterances gener-

ated with Batch-MCTS, and how these model outputs fare against the baselines.

Using PPL to guide MCTS, as part of the internal evaluation metric, we expect the

utterance candidates to be relatively diverse, and therefore choose nucleus sampling

(NS) as the most relevant baseline inference method to compare the results with.

Figure 9.4 shows the results for the following metrics: METEOR, BLEURT, SER,

and the vocabulary size of delexicalized utterances. In the plots, we also include the

scores for Batch-MCTS guided by PPL only, so that we could gauge the effect of

the BERTScore component of the MCTS metric.

First, let us focus on the differences between individual Batch-MCTS con-

figurations. In the plots, all configurations with the same number of iterations are

shown as a separate series. For the PPL+BERTScore configurations, we will be

looking at the three orange series, corresponding to 1, 2 and 4 iterations with vary-

ing batch sizes. What we immediately see is that with an increasing number of

iterations, the scores become worse across all metrics except for the vocabulary size,

where it improves (see Figures 9.4a, 9.4b, 9.4c vs. Figure 9.4d). This suggests that

the MCTS algorithm indeed promotes diversity, however, not without taking a toll

192

(a) METEOR. (b) BLEURT.

(c) Slot error rate (SER ↓). (d) Vocabulary size (delexicalized).

Figure 9.4: Metric scores for utterances generated with Batch-MCTS using two
variants of the state evaluation metric: PPL+BERTScore (PPL+BS for short)
and PPL only. The number of iterations is indicated in parentheses after the name
of the metric, and the batch size is implied by the number of iterations and samples.
The baselines here are nucleus sampling (NS) with p ∈ {0.5, 0.8}.

193

on the utterances’ semantic accuracy. We conjecture this effect may be a conse-

quence of the metric used to guide the MCTS. Nevertheless, the scores gradually

become worse here also as the number of samples increases. This, surprisingly, is

the case with the vocabulary size as well.

Moving on to comparing the Batch-MCTS scores with those achieved with

NS, we note that the scores across all PPL+BERTScore configurations are closest to

NS with p = 0.8, i.e., the most diversity-promoting one. While in the METEOR and

BLEURT scores there are relatively small differences, SER is where NS significantly

outperforms Batch-MCTS (see Figure 9.4c). To make things even worse for Batch-

MCTS, its outputs’ vocabulary size remains 8–14% smaller (Figure 9.4d). On the

other hand, among the metrics not shown, we should mention that PPL scores range

from 24 (with sample size 128) to 30 (with sample size 16) for Batch-MCTS outputs,

whereas for NS with p = 0.8 PPL is 41.05. This is a significant difference, but not at

all surprising given the fact that PPL is a part of the metric Batch-MCTS optimizes

for.

Next, let us evaluate the contribution of the BERTScore component in

the MCTS metric by comparing the PPL+BERTScore variant with the PPL-only

variant. Since BERTScore represents the metric’s semantic accuracy component, we

are most interested in how it affects the SER scores. Comparing the three orange

series with the three blue series in Figure 9.4c, we see that BERTScore is responsible

for a drastic reduction in SER, specifically from about 5.5–11% (when using PPL

only) down to 3.2–5.7%, which amounts to an almost 50% reduction of semantic

errors. That being said, the resulting SER range is still too high. Besides SER, the

BERTScore component significantly improves the METEOR and BLEURT scores

as well (see Figures 9.4a and 9.4b). It does, however, drag the vocabulary size down

194

from a level that was about 10% higher than that of the NS outputs. Considering

the overall poor scores of the PPL-only variant though, we suspect that its use of

the larger vocabulary is actually counterproductive and incoherent.

Finally, we observe a strong impact of the BERTScore component on the

length of the generated utterances, encouraging them to be shorter. The average

utterance length dropped from 25–26.5 to 22.5–23.5 words, which is, nevertheless,

closer to the average utterance length in the test set (23.85 words). This effect is

presumably a direct consequence of comparing utterance candidates with pseudo-

references, which only contain content words, and thus any extra words in the ut-

terance will be considered hallucinations by BERTScore. Therefore, the longer the

utterance, the lower the BERTScore, as it is only looking for content words in the

utterance.

9.4.3 PPL With BLEURT

Swapping BERTScore for BLEURT in the role of semantic accuracy in

Batch-MCTS has a negative impact on its performance across all metrics, including

SER, which ranges from 4–7%, depending on the configuration. The vocabulary size

remains slightly above the levels of NS with p = 0.8, but there is no solace in that

considering the overall weaker performance than the NS baseline. We speculate that

this may be a consequence of the smaller range of values BLEURT uses in practice

when scoring utterances. Increasing the weight of the BLEURT component in the

metric could possibly address this, nevertheless we leave the component weighting

for future work.

195

9.4.4 PPL With SER

Since the PPL+BERTScore metric variant does not successfully guide the

MCTS to semantically accurate utterances, we experiment with substituting the

slot aligner for the BERTScore component, and see if the SER metric offers better

direction in semantic accuracy. To ensure a fair comparison with the baselines,

we choose their counterparts with semantic reranking, i.e., those that also take

advantage of the slot aligner. Below, we analyze what changes in metric scores

swapping BERTScore for SER brings. Figure 9.5 summarizes the results across the

same four metrics as Figure 9.4.

Before discussing the Batch-MCTS scores, we note that the NS baselines

(p = 0.5 and p = 0.8) with reranking have overall slightly higher scores across all

metrics than previously without reranking, but most importantly, their SER drops

to 0.24% and 0.02%, respectively. With the slot aligner component, it is now a more

even game for Batch-MCTS. Its METEOR scores are only slightly below those of NS

(p = 0.8), and SER hovers just above zero (see Figures 9.5a and 9.5c). In BLEURT,

however, Batch-MCTS lags behind the NS baselines (Figure 9.5b). At the same

time, probably the most interesting observation is that the SER component of the

MCTS state evaluation metric helps preserve the vocabulary size, which stays in

a similar range to when using only PPL to guide the MCTS (compare Figure 9.5d

with 9.4d). As a result, the vocabulary is 6–11% bigger than that of the NS baseline.

Overall, using the slot aligner in place of BERTScore as the semantic accu-

racy component of the MCTS metric leads to dramatic changes across all metrics.

Besides reducing SER from the 3–5% range, the vocabulary is up to 60 words richer.

These changes are accompanied by a moderate increase in METEOR and a moderate

196

(a) METEOR. (b) BLEURT.

(c) Slot error rate (SER ↓). (d) Vocabulary size (delexicalized).

Figure 9.5: Metric scores for utterances generated with Batch-MCTS using
the PPL+SER state evaluation metric variant, along with PPL+BERTScore
(PPL+BS for short) for comparison. The number of iterations is indicated in
parentheses after the name of the metric, and the batch size is implied by the
number of iterations and samples. The baselines here are nucleus sampling (NS)
with p ∈ {0.5, 0.8} and with slot aligner-based reranking enabled.

197

decrease in BLEURT, which makes it rather difficult to come to a conclusion about

coherence, and even the true semantic accuracy (including hallucinations). The av-

erage length of utterances generated with this variant of Batch-MCTS ranges from

24.98 to 27.43 words, which is significantly greater than the 22.5–23.5 words with

the PPL+BERTScore metric variant, suggesting that hallucinations may indeed be

what keeps the vocabulary size inflated.

One final observation we have from the plots in Figure 9.5 is that the

vocabulary size and SER remain virtually flat across different sample sizes instead

of becoming worse, as was the case with the PPL+BERTScore variant. BLEURT’s

rate of decline remains approximately the same, while METEOR becomes decidedly

flatter. Ideally, the metric scores would be increasing with the number of samples,

not decreasing.

9.4.5 Adding Model’s Own PPL

In the previous two experiments, we saw that using BERTScore as the

semantic accuracy component in the MCTS metric is relatively effective, although

not as much as SER. It appears, however, that it is PPL that pulls Batch-MCTS

in a wrong direction – to utterances that do not compare well with the references

and that decrease in semantic accuracy, yet do not make up for it with a higher

diversity. We can see this clearly in Figure 9.4, where most of the metric scores for

all the PPL configurations (blue) become sharply worse as the number of samples,

as well as the number of MCTS iterations, increases. Perhaps, that would have been

acceptable if the vocabulary size increased correspondingly, but that is not the case

(Figure 9.4d).

The PPL metric must have a rather different idea of what a good utterance

198

looks like in our particular domain. Additional evidence for this lies in the fact that,

guided by PPL only, Batch-MCTS generates utterances that score on average in the

17–22 range in PPL (which the MCTS optimized for), whereas the average PPL

across the human-authored utterances in the test set is 43.49. The GPT-2 model

behind the PPL metric may deem the references significantly less probable, but,

having been written and revised by humans, they are unlikely to be less fluent.

There might still be use for PPL though, as long as it is “tamed” by an additional

metric.

We therefore experiment with adding the model’s own perplexity (mPPL)

as a third component in the MCTS state evaluation metric. The scoring function

thus becomes:

scoreP+mP+S(ŷ|x) =
1

PPLGPT-2(ŷ) · mPPL(ŷ) ·
(
1 + ERR(ŷ|x)

) .

In theory, this should make Batch-MCTS more aware of candidate utterances that

are fluent and natural in the given domain, while retaining a certain amount of the

general diversity-promoting property from the PPL component.

Let us examine how this MCTS metric variant affects the balance of se-

mantic accuracy and diversity in the generated utterances. Figure 9.6 compares the

new results with those using PPL+SER in order to demonstrate the effect of adding

the new mPPL component to the metric. Both METEOR and BLEURT this time

remain relatively flat across different total numbers of samples, while SER gener-

ally decreases with more samples explored. These are all desirable trends, however,

the vocabulary size gradually declines (Figure 9.6d). Perhaps more relevant is the

fact that the vocabulary is 15–20% smaller than without the mPPL component. In

199

(a) METEOR. (b) BLEURT.

(c) Slot error rate (SER ↓). (d) Vocabulary size (delexicalized).

Figure 9.6: Metric scores for utterances generated with Batch-MCTS using the
PPL+mPPL+SER (P+mP+S for short) state evaluation metric variant, along
with PPL+SER for comparison. The number of iterations is indicated in parenthe-
ses after the name of the metric, and the batch size is implied by the number of itera-
tions and samples. The baselines here are nucleus sampling (NS) with p ∈ {0.5, 0.8}
and with slot aligner-based reranking enabled.

200

all the other metrics though, the current variant significantly outperforms the one

without mPPL (Figures 9.6a, 9.6b and 9.6c).

Looking at the scores with respect to the baselines, the results are, in fact,

promising. According to METEOR and BLEURT, the model outputs are closer in

overall quality to those generated by NS with p = 0.5, yet in SER and vocabulary

size they are closer to NS with p = 0.8, which is the better one according to these

two metrics. This, combined with the fact that the vocabulary size without using

the mPPL component was higher than that of NS with p = 0.8, suggests that, using

the current state evaluation metric variant, we could find a Batch-MCTS configu-

ration that could produce outputs with a diversity on par with NS (p = 0.8) but

better semantic accuracy.7 This could presumably be achieved by giving the mPPL

component a slightly lower weight, in order to allow for more diversity. However,

instead of optimizing for this with the goal of matching the vocabulary size of the NS

(p = 0.8) baseline, we perform a manual evaluation of the generated utterances, as

this will likely offer additional insights into how they compare in different semantic

and syntactic aspects that cannot be captured by automatic metrics. The results

and discussion of the manual evaluation will follow in Section 9.4.7.

9.4.6 Replacing GPT-2 PPL With Model’s Own PPL

In our final set of experiments, we study the effect of removing the GPT-2

PPL component from the MCTS state evaluation metric and letting the model’s own

PPL (mPPL) take full control of the fluency aspect of the metric. This will, natu-

rally, limit the diversity because mPPL will score the same utterances the highest

7Although SER is as low as 0.02% for NS with p = 0.8, as we pointed out previously, the SER
metric has its limitations and various semantic errors, such as hallucinations and incoherence, will
slip through its fingers. Therefore, we consider a combination of multiple metrics, e.g., METEOR,
BLEURT and SER here, a better indicator of the utterances’ overall quality.

201

as greedy or beam search would. However, together with a semantic accuracy-

oriented component, such as BERTScore or SER, it has the potential to guide the

sampling-based search to more diverse model outputs than diverse beam search,

while maintaining the same semantic accuracy.

Considering the overall shift of metric scores for outputs generated using

mPPL instead of GPT-2 PPL, we switch to comparing the results with beam search

(BS), diverse beam search (DBS), and nucleus sampling with p = 0.3. All three of

these are relatively close to each other in terms of metric scores, with BS being the

best among them in METEOR, BLEURT, and SER, but with the lowest vocabulary

size (see Figure 9.7). Nucleus sampling is on the opposite end of the spectrum, with

the biggest vocabulary but the lowest performance in the remaining metrics. DBS

is in between, closer to the NS performance in all metrics but vocabulary size. We

report the results on the mPPL+BERTScore metric variant and later briefly discuss

the differences when SER is used in BERTScore’s place.

Model PPL. Let us first look at how Batch-MCTS performs when we let the NLG

model guide the search algorithm by itself, i.e., using mPPL to compare utterance

candidates. As the total number of samples increases, the scores of the model

outputs improve steadily in all metrics except for the vocabulary size, which is on

a steady decline instead (see the three blue series in the Figure 9.7 plots). The

scores vary substantially across different configurations, which makes comparing

concrete configurations with individual baselines more practical.8 With the 4 × 4

configuration (i.e., corresponding to the data points of “mPPL (4)” at 16 samples),

Batch-MCTS achieves NS levels of diversity while significantly outperforming NS in

8Considering all the scores are averaged across 3 independent runs, any unusual performance
spikes from a “lucky run” for a particular configuration should be at least partially smoothed out.

202

(a) METEOR. (b) BLEURT.

(c) Slot error rate (SER ↓). (d) Vocabulary size (delexicalized).

Figure 9.7: Metric scores for utterances generated with Batch-MCTS using two vari-
ants of the state evaluation metric: mPPL+BERTScore (mPPL+BS for short)
and mPPL only. The number of iterations is indicated in parentheses after the
name of the metric, and the batch size is implied by the number of iterations and
samples. The baselines here are beam search (BS) with B = 20, diverse BS (DBS)
with B = 20 and λ = 1.0, and nucleus sampling (NS) with p = 0.3.

203

all other metrics (including BLEU, BERTScore and PPL, which are not plotted),

except for METEOR where it is 0.0014 below. Comparing with DBS, configurations

2×16 and 2×32 (i.e., “mPPL (2)” at 32 and 64 samples) result in a richer vocabulary

and superior performance in the other three metrics at the same time. As for the BS

baseline, the 1× 128 and 2× 64 configurations get very close to the BS performance

across all metrics, yet with an 8% greater language diversity. These results, including

BLEU, BERTScore and PPL scores, are summarized in Figure 9.8.

Model PPL + BERTScore. After adding the BERTScore component, we ob-

serve very similar general trends, but slightly shifted (see the three orange series

in Figure 9.7 plots). In case of BLEURT and SER, this variant performs overall

better, while the model outputs are scored lower by METEOR. The diversity is also

negatively affected, dropping by 5–10%. What is most notable about this variant

is that in most of the configurations Batch-MCTS achieves significantly higher di-

versity with a lower SER than BS. The best example would probably be the 4 × 16

configuration with the vocabulary size of 188 (in contrast to BS’s 172) SER of 0.88%

(vs. 1.02%). While BLEURT is only marginally lower for the Batch-MCTS outputs

in this configuration, there is a bigger difference in METEOR. We therefore cannot

conclude with a high confidence, just based on these automatic metrics, which of

these two is more semantically faithful to the inputs.

Model PPL + SER. With access to a tool like our slot aligner, the performance

of Batch-MCTS further improves. In contrast to the mPPL+BERTScore variant,

mPPL+SER consistently achieves zero SER under all configurations, which we stress

is not the case with all baselines equipped with slot aligner-based reranking. In fact,

204

Figure 9.8: Overview of the best Batch-MCTS configurations with the mPPL and
mPPL+BERTScore (mP+BS for short) state evaluation metric. The baselines,
shown in light gray rows, are beam search (BS), diverse BS (DBS), and nucleus
sampling (NS).

only DBS reaches 0%, whereas BS drops to 0.22% and NS (p = 0.3) stays above

1%. In addition to eliminating slot errors, mPPL+SER in general slightly improves

on the mPPL-only variant (see the blue series in Figure 9.7) in all aspects, with

certain configurations even surpassing BS in the METEOR metric. Meanwhile, the

scores of the reranking-enhanced baselines do not shift much compared to their

values in Figure 9.7, except for the SER metric, as described above. This further

increases the edge the various Batch-MCTS configurations have over their respective

baselines described in detail in the previous paragraphs. The best configurations

using mPP+SER are summarized in Figure 9.9.

Summary In Sections 9.4.2 through 9.4.5, we evaluated the performance of Batch-

MCTS using GPT-2 PPL as the primary fluency component, but what we discovered

is that this metric actually guides the algorithm away from good solutions, leading

to overall mixed results depending on the semantic accuracy component. Here we

therefore experimented with replacing the PPL metric with the NLG model’s own

PPL. This inevitably led to a lower diversity in model outputs, but a significantly

205

Figure 9.9: Overview of the best Batch-MCTS configurations with the
mPPL+SER (mP+S for short) state evaluation metric. The baselines, shown
in light gray rows, are beam search (BS), diverse BS (DBS), and nucleus sampling
(NS), all with slot aligner-based reranking.

higher quality overall. As we show in Figures 9.8 and 9.9, the Batch-MCTS inference

method, in different configurations, became thus superior to three standard methods

that optimize more for semantic accuracy than for diversity. Batch-MCTS generates

significantly more diverse utterances than beam search, while maintaining the same

performance across the metrics, and possibly with a higher semantic accuracy. At

the same time, Batch-MCTS can match or even improve on the diversity achieved

by nucleus sampling with p = 0.3, while radically improving the semantic accuracy

and, with it, achieving a slightly higher scores in other metrics as well. Finally,

diverse beam search gets outperformed by our method across the board, whether it

is diversity, semantic accuracy, or BLEU scores.

9.4.7 Human Evaluation

So far throughout this section, we have performed a thorough analysis of

the performance of Batch-MCTS compared to other inference methods, but only

using automatic evaluation metrics. As we know, they are not the most reliable

method to evaluate NLG outputs, especially when the score differences between the

206

outputs of two systems – or, in our case, two inference methods – are relatively small

(see Section 1.4 for a more detailed discussion). Moreover, our slot aligner cannot

detect hallucinations and, due to it operating on word/phrase level, recognizing

incoherence and contradictions are also beyond its scope. Hence, we do not expect

the SER scores that we observed in our experiments to be telling the whole story

about semantic accuracy in the generated utterances. For a more accurate picture,

we turn to human evaluation of the model outputs generated using different Batch-

MCTS configurations, as well as those generated with standard inference methods,

for comparison.

We wrapped up Section 9.4.5 with a conclusion that, based on automatic

metric scores, Batch-MCTS outputs generated using the PPL+mPPL+SER state

evaluation metric looked promising when compared to the most diversity-promoting

baseline, NS (p = 0.8). We therefore systematically annotate the model outputs for

8 different types of errors (see Section 9.2.4). For Batch-MCTS, we annotate two

configurations, 1×128 and 4×32, so as to determine what effect a higher number of

iterations has if the number of samples is fixed. For the 4×32 configuration, we also

experiment with sampling from the top 5 and top 10 candidates at the end of the

inference, in an attempt to increase the diversity. The results, including automatic

metrics for comparison, are summarized in Figure 9.10.

All Batch-MCTS configurations have a relatively even distribution of errors

across the four error categories (DA, semantic, etc.). Among slot errors, duplicate

and incorrect errors are the most common types. We observed that incorrect men-

tions typically happen in DAs that mention the rating slot twice (e.g., give opinion

or verify attribute), when the two mentions are inconsistent (e.g., “you disliked”

paired with “are you a big fan of”). In this case, when at least one of the men-

207

(a) Errors in utterances (absolute numbers). The total number of errors is indicated in the
last column. For reference, the test set has 359 MRs with 1, 370 slots in total across all of
them.

(b) Automatic metrics, including a few diversity metrics.

Figure 9.10: Results of the human evaluation comparing the outputs of Batch-
MCTS using 5 different configurations and those of 3 standard inference methods:
diverse beam search (DBS) and two variants of nucleus sampling (NS), all equipped
with semantic reranking. The last two rows of each table correspond to randomly
sampling from the top 5 and top 10 Batch-MCTS candidates. The error types are
explained in Table 9.2.

208

tions is found to be faithful to the input MR, the slot aligner considers the slot

mentioned correctly. Incoherence dominates the semantic error category, whereas

hallucinations are surprisingly rare. The give opinion DA is the primary source of

incoherence, as it is the most difficult DA in the ViGGO dataset to realize correctly

due to its more open-ended nature, compared to the other DAs, and thus highly

varied utterances in the training set. Finally, in the syntactic category, grammatical

errors and various instances of disfluency occur substantially more frequently than

punctuation and capitalization errors.

Comparing the outputs of different Batch-MCTS configurations (see the

last four rows in Figure 9.10a), we can see a significant overall reduction in errors

when running MCTS for 4 iterations with batch size 32 (∼ 76 total errors) instead

of a single iteration with batch size 128 (∼ 96 errors). This suggests that the MCTS

algorithm, guided by the PPL+mPPL+SER metric, is beneficial in finding better

utterances. The automatic metric scores, however, imply the opposite, i.e., that the

1 × 128 configuration produces better utterances (Figure 9.10b). That is especially

the case with BLEU (0.453 vs. 0.442), while METEOR, BERTScore and BLEURT

only show minor differences. When sampling from the top 5 or 10 final candidates,

the vocabulary size indeed increases, but so does the number of errors. Sampling

from the top 10 seems to be no worse than top 5, yet it increases the vocabulary

size more dramatically. We have also annotated one set of model outputs with the

PPL+SER metric guiding the MCTS, which led to a significantly higher diversity

(vocabulary size 337), but the generated utterances had by far the most errors (156),

more than a double of Batch-MCTS with PPL+mPPL+SER and the same 4 × 32

configuration.

The best configuration of Batch-MCTS to compare with the NS (p = 0.8)

209

baseline is the 4×32 configuration with top-10 candidate sampling. Their vocabulary

sizes are matching at 294 words, but the NS outputs have 24% more errors (112

vs. 90). That apparently does not prevent the BLEU score from being 2.5 points

higher than that of the Batch-MCTS outputs. Among the reference-based metrics,

only METEOR and BLEURT correctly reflect that the Batch-MCTS outputs are

superior. For the regular 4 × 32 configuration, which has the least errors (76),

BLEU score is even lower, whereas METEOR and BLEURT scores see a further

increase. Noticing the difference in utterance lengths between the Batch-MCTS

outputs and the NS baseline, we come to a conclusion that BLEU, being a precision

metric, simply prefers shorter utterances. Indeed, the Pearson correlation coefficient

between BLEU and the average utterance length across the 8 rows in Figure 9.10b

is r = −0.94, indicating a very strong negative correlation.

As far as the correlation with the total number of errors is concerned,

BLEU has by far the weakest (r = −0.791) and BLEURT the strongest correlation

(r = −0.946), with METEOR in second place (r = −0.930) and BERTScore in

third (r = −0.905).9 One might expect the number of errors to increase with

the average utterance length, yet none of the four error classes correlates strongly

with the utterance length individually. There is, however, a non-significant strong

correlation between the total number of errors and the utterance length (r = 0.68

with p-value of 0.064).

Finally, we observe that the GPT-2 PPL metric is not at all a good in-

dicator of utterance quality in our domain. Its scores fail to capture system-level

incoherence or syntactic errors. Compare, for example, the PPL+SER configuration

9The correlations are negative because we are maximizing the metric scores, but minimizing
the number of errors.

210

(156 errors and PPL of 18.81) with DBS (62 errors but PPL of 36.7). PPL only has

a very weak correlation with incoherence or the number of syntactic errors. Using

PPL to guide MCTS in utterance fluency does not appear to be very effective ei-

ther, considering the number of syntactic errors in the Batch-MCTS outputs is not

significantly lower than in the NS (p = 0.8) outputs, except for the regular 4 × 32

configuration (Figure 9.10a). Although incoherence is substantially less prevalent

in the Batch-MCTS outputs (17–26 vs. 38), this may also be the effect of the other

state evaluation metric components, i.e., mPPL or SER in this case.

9.4.8 Qualitative Analysis

So far, we have been evaluating the model outputs exclusively based on

various metrics and semantic criteria. But what do these generated utterances

actually look like when using different inference methods?

In Table 9.3, we can compare the outputs of the same model using different

inference methods. These utterances were generated for an MR with one of the

simpler DAs (request) and only two slots, yet we can see that each inference method

resulted in a substantially different utterance. While all of them are fluent and

faithful to the input MR, the Batch-MCTS output stands out with its more elegantly

formulated question (“Is there a game that you found to be soothing to play?”)

than what the other methods produced (e.g., “What’s a soothing game. . . ?” or “Do

you know of any soothing games. . . ?”). Furthermore, the second sentence of the

utterance contains a nice elaboration “that I can play with my older kids”, which

sounds very natural in this context.10 Nevertheless, the Batch-MCTS utterance

10Although one might be inclined to consider this phrase a borderline hallucination, since “older
kids” is implied by the ESRB slot’s “E 10+” value but having kids is not implied by the MR.
Nevertheless, we consider this analogical to the has multiplayer[yes] slot realization “You can
play this game multiplayer with your friends.”, which we consider valid in the context of ViGGO.

211

MR
request (esrb [E 10+ (for Everyone 10 and Older)], speci-
fier [soothing])

Reference #1
Did you play any Everyone 10 and up games that were par-
ticularly soothing this year?

Reference #2
What’s a soothing rated E10+ game I can play with my
brothers?

Reference #3
I’m looking for an E 10+ rated game that is soothing, do
you know of any?

GS What’s a soothing E 10+ game you’ve played lately?

BS (B = 20)
What do you think is the most soothing E 10+ game you
know of?

DBS (B = 20,
λ = 1.0)

Do you know of any soothing games rated E 10+ (for Every-
one 10 and Older)?

NS (p = 0.5)
Have you ever played a game that was rated E 10+ and was
really soothing?

NS (p = 0.8) What’s a soothing game rated E 10+?

Batch-MCTS
Is there a game that you found to be soothing to play? I’m
looking for something E 10+ that I can play with my older
kids?

Batch-MCTS
(top 10 sample)

What do you think is the most soothing E 10+ game you’ve
played lately?

Table 9.3: Example utterances generated for the same MR in the ViGGO test set
(with the request DA type) using different inference methods. Batch-MCTS outputs
are shown for the 4 × 32 configuration using the PPL+mPPL+SER metric variant.
The other inference methods are greedy search (GS), beam search (BS), diverse BS
(DBS) and nucleus sampling (NS), with parameters indicated in parentheses. For
comparison, the 3 human-written reference utterances from the test set are included
as well.

212

has a punctuation error in the form of a question mark at the end of a statement.

On the other hand, the utterance sampled from the top 10 candidates generated

using Batch-MCTS (see the last row in the table) is more similar to the utterances

generated by other inference methods; in fact, this particular utterance is a blend

between the beam search and greedy search outputs. Finally, we note that the

utterance generated with NS (p = 0.8) is particularly terse in this example, which is

somewhat surprising and demonstrates that this inference method – using the most

lenient sampling approach – produces outputs that are more hit-or-miss than others.

We also show example utterances generated for an MR with a more in-

teresting DA type (give opinion) in Table 9.4. We note that give opinion is more

open-ended than the other DAs in ViGGO, allowing for a significantly greater va-

riety of MR realizations, which also makes it the most difficult DA for models to

generate correct and fluent utterances for, as we observed in our manual annotation.

With inference methods that maximize utterance probability, the utterances typi-

cally degenerate into inform-style utterances with no personal evaluation or opinion

expression (compare the GS, BS, DBS, and even NS (p = 0.5) rows in the table with

the three reference utterances). The NS (p = 0.8) output starts off in a promising

way, but soon becomes incoherent (“the first person perspective is the one that I’ve

tried was The Room”) and remains incoherent even in the second sentence. Our

Batch-MCTS method, on the other hand, despite internally also using nucleus sam-

pling with p = 0.8, produces fully coherent and semantically correct give opinion

utterances for the same MR. The one sampled from the top 10 candidates (in the

last row), although less verbose and more inform-like than the top candidate (in the

“Batch-MCTS” row), contains a personal evaluation (“one of my favorite games”)

and qualifies thus as a give opinion DA, similar to the style of reference #3. In

213

MR
give opinion (name [The Room], rating [excellent], gen-
res [indie, point-and-click, puzzle], player perspective
[first person])

Reference #1

I thought that a first person perspective would be a bad fit
for an indie point-and-click puzzle game, but in The Room
it instead just added to the unique experience and made it
one of the best games I’ve ever played.

Reference #2

Man, I loved The Room. Such an innovative first person
puzzle game. I know the indie scene has been particularly
enamored with point-and-click games as of late, but trust me
when I say this one stands head and shoulder above the rest.

Reference #3
The Room was absolutely amazing. Indie first person point-
and-click puzzle games like that are my favorite.

GS
The Room is an excellent indie point-and-click puzzle game.
It’s a first person game, and it’s a first person game.

BS (B = 20)
The Room is an excellent indie first person point-and-click
puzzle game.

DBS (B = 20,
λ = 1.0)

The Room is an excellent indie point-and-click puzzle game.
It’s a first person game, and it’s a first person game.

NS (p = 0.5)
The Room is an excellent first person point-and-click puzzle
game.

NS (p = 0.8)

I love Indie point-and-click puzzle games, and the first person
perspective is the one that I’ve tried was The Room. It’s one
of my favorite games of all time, and the indie one I know
was just really great.

Batch-MCTS

The Room is one of the best indie point-and-click puzzle
games I’ve ever played. I like indie games that have a first
person perspective, and the point-and-click genre is just a
huge hit.

Batch-MCTS
(top 10 sample)

The Room is one of my favorite games. It’s an indie point-
and-click puzzle game that you play from a first person per-
spective.

Table 9.4: Example utterances generated for the same MR in the ViGGO test set
(with the give opinion DA type) using different inference methods. Batch-MCTS
outputs are shown for the 4 × 32 configuration using the PPL+mPPL+SER metric
variant. The other inference methods are greedy search (GS), beam search (BS),
diverse BS (DBS) and nucleus sampling (NS), with parameters indicated in paren-
theses. For comparison, the 3 human-written reference utterances from the test set
are included as well.

214

contrast, references #1 and #2 are more verbose and free-form, which, from our

observations using smaller pretrained LMs, is beyond the ability of the models fine-

tuned on the ViGGO dataset to reproduce in their outputs in a coherent way.

Although these were just two examples from the test set, in our manual

annotation results we observed overall better coherence in utterances generated by

Batch-MCTS than NS with p = 0.8. This is also reflected by the lower number of

incoherence errors in Table 9.10a for the Batch-MCTS outputs than there are for the

NS outputs. On the other hand, we noticed that, while the diversity of Batch-MCTS

outputs is overall comparable to those generated with NS, the utterance variety

within certain DAs (e.g., confirm or request explanation) is rather low because they

all use similar formulations. This, however, suggests that by stimulating diversity

of utterances for the same DA type, we may be able to achieve a further increase

in overall Batch-MCTS output diversity. In order to promote more variety on the

DA level, we could, for example, enforce low similarity among the utterances in the

Batch-MCTS candidate pool, when being updated at the end of each iteration. We

leave these experiments to future work.

9.4.9 E2E Comparison

Although we studied the performance of Batch-MCTS in different settings

and configurations primarily using a model trained on the ViGGO dataset, we con-

ducted experiments with the E2E dataset as well. We only report the most important

differences compared to the ViGGO experiments.

The biggest difference we observe is that using GPT-2 PPL is actually

effective on the E2E dataset. Both on its own and combined with BERTScore,

it guides the MCTS to diverse utterances that have dramatically higher semantic

215

(a) METEOR. (b) BLEURT.

(c) Slot error rate (SER ↓). (d) Vocabulary size (delexicalized).

Figure 9.11: Metric scores for utterances generated with Batch-MCTS on the
E2E dataset using two variants of the internal utterance evaluation metric:
PPL+BERTScore (PPL+BS for short) and PPL only. The number of itera-
tions is indicated in parentheses after the name of the metric, and the batch size
is implied by the number of iterations and samples. The baselines here are diverse
beam search (DBS) with B = 20 and λ = 5.0, and nucleus sampling (NS) with
p = 0.8.

216

accuracy than the baselines. As the plots in Figure 9.11 reveal, using PPL only

(∼ the three blue series) produces utterances with a substantially larger vocabulary

than even nucleus sampling (NS) with p = 0.8, while reducing the SER from 4.36% to

the 2.42–3.19% range, depending on the configuration. METEOR remains higher,

but BLEURT drops below the scores achieved with NS. Adding the BERTScore

component, on the other hand, helps further increase the semantic accuracy: SER

drops to 1.16–1.6%, and METEOR and BLEURT both significantly increase over

the PPL-only variant’s performance (see the three orange series in Figure 9.11). As

expected, such large gains in semantic accuracy do not come for free – the vocabulary

size dropped by 15–30%. While this is a drastic drop, it is at a level slightly above

the diverse beam search (DBS) baseline in terms of diversity, but in a league of its

own according to the the other metrics.11

Switching from GPT-2 PPL to the model’s own PPL (mPPL) drastically

reduces the effectiveness of BERTScore in its role of semantic guidance. Considering

E2E is a very noisy dataset, with a relatively high proportion of errors in the refer-

ences, an NLG model trained on E2E inevitably learns to reproduce these errors. As

a result, mPPL leads the MCTS to utterances with increasingly more errors. The

Boolean slot familyFriendly) is responsible for virtually all of the slot errors, and

BERTScore (as well as BLEURT) only has a limited ability to recognize those, as we

saw in Chapter 8. Hence, the model outputs generated with the mPPL+BERTScore

metric variant exhibit only a less than 10% improvement in SER than using mPPL

by itself. Replacing BERTScore with the slot aligner, which is highly accurate in

detecting Boolean slot errors, the story is similar to that on the ViGGO dataset, yet

11On the E2E dataset, DBS produces significantly more diverse utterances than standard BS.
For comparison, DBS with B = 20 and λ = 5.0 results in a delexicalized vocabulary size of 105
words, whereas with BS (B = 20) it only reaches 60, with greedy search 68, and with NS (p = 0.5)
81 words.

217

with Batch-MCTS having an even more pronounced edge over the various baselines.

9.5 Discussion

This chapter combined the methods proposed and described in Chapters 7

and 8 into a full-fledged inference method, which we conducted extensive experi-

ments with and thoroughly evaluated by comparing it with multiple standard infer-

ence methods across various criteria. Using several different variants of the MCTS

state evaluation metric, our experiments revealed interesting, and to a certain degree

unexpected, results that we summarize and discuss below.

Our first finding is that optimizing strongly for PPL clearly leads the Batch-

MCTS inference astray, presumably imposing sentence structures on the generated

utterances that are preferred by the GPT-2 model, but in a direction away from the

desired outputs in our domain. With PPL being part of the optimization metric in

Batch-MCTS, the model outputs exhibit substantially lower PPL than that of the

outputs generated using any of the baseline inference methods. Although we consider

PPL to be a fluency metric, the difference between, say, 19 (∼ Batch-MCTS outputs)

and 37 (∼ beam search), though seemingly large, does not necessarily imply superior

fluency in the Batch-MCTS outputs. For comparison, PPL of the human-authored

reference utterances in the test set is 43.49. All these values are in a relatively

low PPL range. Therefore, the lower PPL in these experiments likely only reflects

the fact that the utterance formulations are those preferred by the GPT-2 model,

which calculates the PPL scores, based on its training data distribution. That

being said, we used the smallest version of the GPT-2 model in the experiments we

reported our results on, and perhaps using the larger variants instead would lead

218

(a) Semantic accuracy vs. diversity in Batch-
MCTS outputs using the mPPL metric
variant. The light blue dot corresponds to
an mPPL+BERTScore configuration.

(b) BLEURT vs. diversity in Batch-MCTS
outputs using the mPPL metric vari-
ant. The light blue dot corresponds to an
mPPL+BERTScore configuration.

(c) Semantic accuracy vs. diversity in Batch-
MCTS outputs using the mPPL+SER
metric variant.

(d) BLEURT vs. diversity in Batch-MCTS
outputs using the mPPL+SER metric
variant.

Figure 9.12: Semantic accuracy and diversity trade-off in model outputs produced
by Batch-MCTS compared to 3 baselines: beam search (BS), diverse BS (DBS) and
nucleus sampling (NS) with p = 0.3. The blue dots represent various Batch-MCTS
configurations, corresponding to those in Figures 9.8 and 9.9.

to a more desired behavior. In fact, we observed a definite improvement across all

metrics when we replaced the smallest GPT-2 model with its medium version, which

promises a potentially desirable behavior of Batch-MCTS with a sufficiently large

language model.

Due to our hardware constraints, we explored a different direction instead.

We tried adding the NLG model’s PPL as a third component to the metric, in order

to impose more control over the generated utterances and tap more into the knowl-

edge of the NLG model learned from the training data, instead of leaving it entirely

219

to GPT-2. This proved rather effective, and prompted us to experiment with entirely

replacing GPT-2 PPL with the model’s own PPL, which we had originally not in-

tended to. Using the model’s PPL on its own to guide Batch-MCTS, we were able to

outperform both the standard and diverse beam search, as well as nucleus sampling

with p = 0.3, when considering the diversity and the semantic accuracy performance

at the same time (see scatter-plot visualizations in Figures 9.12a and 9.12b). With

SER included for semantic guidance, Batch-MCTS became even more robust and

easily exceeded the performance of the standard methods even when equipped with

semantic reranking (see Figures 9.12c and 9.12d).

Through our manual annotation of 8 different types of errors in generated

utterances, we found that Batch-MCTS can produce outputs as diverse as NS with

p = 0.8, yet with a significantly lower overall error rate. Besides that we confirmed

that GPT-2 PPL is not a suitable evaluation metric in our domain, as evidenced

by its very weak correlation with both syntactic and semantic errors. Even more

interestingly, we showed that BLEU behaves in a severely undesirable way, scoring

system outputs more according to their length than the errors present in them.

BLEURT and METEOR, on the other hand, were very strongly correlated with

the actual errors in the annotated outputs, making them likely the best choice for

evaluating generated utterances, at least in the domain of the ViGGO dataset.

To conclude these three chapters on Batch-MCTS, we developed a highly

configurable and effective inference method, which can optimize for an arbitrary

metric or a combination of multiple metrics. Although we achieved a superior per-

formance compared to standard inference methods, there is a number of potential

improvements to Batch-MCTS that could lead to further performance and diversity

gains. Besides using a larger language model, normalization and weighting of the

220

state evaluation metric’s components could provide better control, while tuning the

numerous MCTS parameters (such as the exploration coefficient or the p-value of

the internal nucleus sampling) could lead to a better balance between diversity and

semantic accuracy.

221

Chapter 10

Conclusions and Future Work

Dialogue systems require high semantic fidelity of their responses, so as to

remain true to the real world or the knowledge for the task at hand, as well as to

the context of the conversation. If they provide the user with incorrect or contra-

dicting information, they will quickly lose the user’s trust. Task-oriented dialogue

systems typically rely on data-to-text natural language generation (NLG), produc-

ing responses conditioned on structured input data that specifies the dialogue act

type and content to be expressed in the response. While large pretrained generative

language models (LMs), such as GPT-2 or T5, perform excellently at generating

fluent text, when fine-tuned for such a data-to-text NLG task, even they often fail

to produce an utterance that correctly mentions all the information provided in the

input and avoids including extraneous information not grounded in the input.

The majority of previous work in neural data-to-text NLG focuses on op-

timizing model outputs to resemble a limited set of reference texts, which implicitly

ensures that their semantic accuracy is relatively low, but it neglects the important

aspect of diversity altogether. The aim of conversational AI, after all, is to allow

people to interact with different types of technology through language, i.e., in a way

222

natural to humans, yet the experience will not feel natural unless the language used

by the AI exhibits the variety and creativity of human speech.

In this thesis, we showed that the diversity of model outputs in data-to-

text NLG tends to be a fraction of that observed in human-written references for the

same inputs. Moreover, explicitly optimizing for semantic accuracy typically drives

the already rather low diversity further down. We therefore explored ways to make

the generated utterances faithful to their inputs, while using richer language, closer

to that of humans. We developed new methods that help data-to-text NLG models

automatically assess and enforce semantic accuracy, yet allow for higher language

diversity in the generated utterances.

In this final chapter, we summarize our findings, including the limitations

of our proposed methods, and we discuss possible future directions of the work.

10.1 Conclusions

10.1.1 Overview

In Chapter 1, we defined the task of MR-to-text generation and motivated

the need for diversity in a dialogue system’s responses, while simultaneously ensur-

ing their highest possible semantic accuracy. We also provided an overview of the

state-of-the-art approaches to language generation, reviewed previous work on se-

mantic control and stylistic variation in NLG, and discussed a variety of automatic

metrics commonly used for evaluating model outputs in data-to-text NLG and their

limitation. In Chapter 2, we introduced the data-to-text datasets we would use for

training and testing of our models throughout the thesis, including ViGGO, a new

corpus we created to address some of the limitations of the existing datasets. We

223

described our slot aligner – a heuristic tool we developed for automatically finding

a semantic alignment between an utterance and the corresponding input MR – and

the various tasks it can be used for, in Chapter 3. In Chapter 4, we went over the

different architectures of our models and evaluated them on the E2E and ViGGO

datasets as baselines for our subsequent experiments. We then studied the effects of

two different stylistic control methods on the diversity and semantic accuracy of the

model outputs in Chapter 5. In Chapter 6, we presented and evaluated SeA-GuiDe,

a new method for attention-based encoder-decoder models to track the semantic ac-

curacy of a generated utterance during the decoding. In Chapters 7–9, we described

Batch-MCTS, a new diversity-promoting inference method based on Monte-Carlo

Tree Search, then studied the behavior of different automatic referenceless metrics

to guide the MCTS algorithm to fluent and semantically correct utterances, and

finally, thoroughly evaluated Batch-MCTS combined with the best three metrics,

comparing its with standard inference methods.

In this thesis, we focused on the task of generating an utterance from

a structured meaning representation (MR), nevertheless, we expect most of our

proposed methods, perhaps with small modifications, to generalize to other data-to-

text problems.

10.1.2 Semantic Accuracy

To achieve high semantic accuracy in generated utterances, neural mod-

els for data-to-text NLG have invariably been reliant on extrinsic components or

methods, which typically require training a separate classifier or changing the NLG

model’s architecture. While the slot aligner (Chapter 3) we developed early on is

such an extrinsic method, it served for multiple other purposes throughout the thesis

224

than just increasing the semantic accuracy of the generated utterances. The other

method we proposed, SeA-GuiDe (Chapter 6), can be used out of the box on an

already trained model and in any domain, as it merely enhances the way how the

model takes advantage of the knowledge learned from the training data during in-

ference. Here we go over these two methods and how effective each of them is in

improving semantic accuracy.

First, the slot aligner uses heuristic rules and a dictionary of semantically

equivalent expressions to detect slot mentions in the utterance. It categorizes slots

into 5 general types (Boolean, numeric, scalar, categorical, and list), handling each

of them in a different way. This part of the slot aligner is domain-agnostic, and

merely requires that for each new dataset/domain it is indicated which slots are of

which type. To further increase the slot aligner’s accuracy in a new domain, its

semantic dictionary can be populated with alternative expressions for specific slots

and their values. Since the slot aligner identifies the exact slot mention positions,

it can be used for training data manipulation or augmentation, such as splitting

utterances into individual sentences and associating each sentence with a new MR

consisting only of slots mentioned in the sentence. Most importantly though, the slot

aligner can be used to calculate the slot error rate (SER) for generated utterances,

evaluating thus their semantic accuracy. We used SER as one of our automatic

evaluation metrics in virtually all experiments throughout the thesis, revealing that

standard off-the-shelf reference-based metrics, such as BLEU or ROUGE, are not

very sensitive to slot errors (omissions, substitutions, etc.), unless multiple of them

are present in an utterance. They can easily end up rating an utterance with an

error higher than one that is faithful to the MR but has less in common with the

corresponding references. A human evaluation of the slot aligner, on the other

225

hand, showed that it is 95–100% accurate in identifying errors the ViGGO, E2E and

MultiWOZ datasets.

Another useful application of the slot aligner is in candidate utterance

ranking. With any of our models, we can overgenerate utterances (such as by using

beam search, nucleus sampling or our Batch-MCTS inference) and then rerank the

pool of candidate utterances based on the number of errors detected in them by the

slot aligner. Using a transformer-based model trained from scratch on the ViGGO

dataset, reranking helped reduce SER almost 3-fold, with ca. 2.5% of slots remaining

erroneous, mostly because of out-of-vocabulary issues. With pretrained LMs (T5 and

BART) that we fine-tuned on ViGGO, the reranking consistently brings down SER

almost to zero on the E2E dataset (from about 3–4% when using beam search),

0.2–0.4% on ViGGO (typically a 4–5-fold reduction from beam search), and 0.4%

on MultiWOZ (corresponding to an almost 3-fold reduction). As we mentioned

above, standard reference-based metrics are largely insensitive to slot errors, but

getting rid of errors through reranking, we still observed a small bump in METEOR,

BERTScore and BLEURT scores on ViGGO, and a significant one in BLEU on the

E2E dataset.

In contrast to the slot aligner, SeA-GuiDe requires virtually no manual

adaptation in a new domain. It works by automatically extracting interpretable

information from the attention weights at each time step during decoding, inferring

from it which slot in the input MR was mentioned at that step, if any, and marking

it in the MR. The slots that remain unmarked at the end of the decoding are

considered to have been mentioned incorrectly or not at all. When SeA-GuiDe is

combined with beam search, this information can be directly used to rerank the pool

of candidate utterances according to their inferred semantic accuracy. By testing

226

SeA-GuiDe on three datasets (ViGGO, E2E and MultiWOZ), using two different

models (T5 and BART) of two different sizes each, we showed that this method

is highly domain-transferable and model-independent. The reduction in SER with

SeA-GuiDe is on par with the slot aligner on the E2E dataset (i.e., down to almost

zero), and almost 2-fold for the smallest models on ViGGO and MultiWOZ both

(compared to beam search). These are large improvements in semantic accuracy, not

to mention SeA-GuiDe tends to also slightly improve the other automatic metric

scores, similar to the slot aligner.

Although developed with data-to-text NLG in mind, with some simple

input preprocessing, SeA-GuiDe may be effective in text-to-text generation tasks

as well. For instance, if we first determine where the most salient phrases (e.g., noun

phrases, adjectives, etc.) are located in the input text, then SeA-GuiDe can be

used to track their mentions during the inference the same way it does in data-to-

text NLG. Some of the biggest advantages of SeA-GuiDe over other methods for

semantic control are that: (1) it is domain- and model-independent (for encoder-

decoder architectures), (2) it requires no model modifications, additional training

data or manual annotation, and (3) it adds only a relatively small performance

overhead over the standard beam search decoding, which it, however, dramatically

outperforms in semantic accuracy and slightly in the standard metrics too.

10.1.3 Evaluation Metrics and Diversity

As we saw in our semantic accuracy evaluation, using the slot aligner or

SeA-GuiDe to reduce SER in model outputs had no negative impact on the au-

tomatic metric scores (BLEU, BERTScore, etc.). However, we observed an ever-

present trade-off between the automatic metrics and the diversity of utterances

227

generated by an NLG model when using standard inference methods. For exam-

ple, beam search typically improves the metric scores and SER over greedy search

outputs, but the diversity drops. With nucleus sampling, on the other hand, the

diversity shoots up dramatically, but at the expense of the automatic metrics, which

fall far below the greedy search levels. SER also tends to increase in this case, unless

semantic reranking is used.

It is important to keep in mind that SER is only effective at detecting fact

omissions and incorrect slot mentions. Through manual evaluation of model outputs,

we determined that hallucinations, incoherence and disfluencies are still present in

utterances with zero SER and low automatic metric scores. The automatic metrics

are reference-based, however, so maximizing their scores merely corresponds to max-

imizing the lexical similarity of a generated utterance to a small set of references.

Our conclusion therefore is that neither automatic metrics (especially BLEU) nor

SER by itself gives an accurate idea of a generated utterance’s quality. We tried

adding language model perplexity (calculated by GPT-2) to the mix, but this metric

turned out to be even more inconsistent, scoring human-written references signifi-

cantly worse than model outputs with errors. The perplexity of a language model

evidently does not directly correspond to the evaluated text’s fluency, per se, as is

commonly assumed. It is clear that none of the currently available automatic met-

rics can replace human evaluation in accuracy and reliability, yet they are the only

practical way to at least estimate the general utterance quality trend among dif-

ferent model or inference method configurations in experiments. Diversity metrics,

although not showing anything about the overall quality of model outputs, are at

least consistent in indicating the language diversity across a set of utterances, since

they are neither reference-based not language model-dependent. All throughout our

228

evaluations, we considered the vocabulary size as a representative of the diversity

metrics, since most of them were very highly correlated with the vocabulary size.

Considering the above findings, we tried an approach that promotes utter-

ance diversity, while keeping SER as low as possible and maintaining reference-based

metric scores in reasonable ranges. We developed Batch-MCTS (Chapter 7), an in-

ference method based on Monte-Carlo Tree Search (MCTS), which utilizes sampling,

to increase diversity, along with informed tree search that can optimize for an arbi-

trary metric (e.g., fluency or semantic accuracy, or their combination). The MCTS

algorithm is guided by a referenceless utterance evaluation metric, which we designed

and verified the stand-alone performance of in a thorough analysis in Chapter 8. We

used LM perplexity for its fluency component, and experimented with different stan-

dard metrics comparing utterance candidates with pseudo-references (automatically

built from MRs) for the semantic accuracy component. Among the different vari-

ants of the referenceless semantic accuracy component we tried, we found the neural

metrics BERTScore and BLEURT to be the most robust. Besides these two, we

also experimented with SER, which is a referenceless metric by nature. Generally

speaking, this metric composed of LM perplexity and BERTScore/BLEURT can

readily be used for a referenceless utterance evaluation outside of our Batch-MCTS

inference use case.

Our extensive evaluation of Batch-MCTS guided by the different variants of

the referenceless metric in Chapter 9 revealed several strengths of this novel method

over standard inference methods. We note that there is no single configuration of

Batch-MCTS that would beat all the baselines (i.e., achieve diversity of nucleus

sampling with p = 0.8, while maintaining automatic metric scores on par with beam

search outputs). Nevertheless, with different configurations, Batch-MCTS can do

229

overall significantly better than any configuration of any standard inference method.

We showed that, on the ViGGO dataset, Batch-MCTS guided by BERTScore out-

performs diverse beam search in terms of diversity and semantic accuracy at the

same time, while also offering superior performance in automatic metrics too. It

can also match the diversity of nucleus sampling with p = 0.3, while significantly

increasing semantic accuracy, as well as most of the automatic metric scores. Other

configurations then approach beam search in automatic metric scores and exceed it

in diversity and semantic accuracy. With SER instead of BERTScore for semantic

guidance, Batch-MCTS became even more robust and easily exceeded the perfor-

mance of the standard methods even when equipped with semantic reranking. To

achieve the above performance of Batch-MCTS, we had to replace GPT-2 perplexity

with the NLG model’s own perplexity as the fluency component – for similar reasons

to those that make it a poor evaluation metric of generated utterances in our task,

discussed in an earlier paragraph.

In a human evaluation, we found that, when Batch-MCTS outputs match

the high diversity of nucleus sampling with p = 0.8, the generated utterances contain

significantly fewer actual errors overall (across 8 different categories of semantic

and syntactic errors), despite the Batch-MCTS outputs scoring 3 points lower in

BLEU. This further stresses the importance of human evaluation, especially when

the inference employs sampling-based methods, resulting in diverse outputs that are

penalized by most standard reference-based evaluation metrics.

On the E2E dataset, using GPT-2 perplexity is actually effective, guiding

the MCTS to utterances with up to 20% larger vocabulary than even nucleus sam-

pling with p = 0.8, yet reducing SER from 4.36% to the 2.42–3.19% range. With a

different configuration, SER drops to 1.16–1.6%, i.e., far below that of diverse beam

230

search, with 15% higher diversity nonetheless and substantially higher automatic

metric scores.

All in all, our experiments showed that Batch-MCTS is a promising method

for inference in NLG. It successfully optimizes for a chosen metric, and generates

diverse utterances with a higher semantic accuracy than standard inference methods

do. It is flexible and highly configurable, and leverages parallel processing, thanks

to which it is feasible in real time.

10.1.4 Limitations of Our Work

Although we demonstrated the strengths of the methods we proposed and

evaluated in this thesis, here we summarize some of the most important limitations

of our work that should be considered before using these methods:

• Our heuristic slot aligner has a limited scalability. As pointed out multiple

times throughout the thesis, it is domain-transferable, but it can involve a

significant amount of manual work and domain knowledge if the new domain

has a large ontology. Adapting the slot aligner to a new domain requires

categorizing all possible slots into the 5 classes the slot aligner recognizes, and

populating its semantic dictionary with synonyms and paraphrases for possible

values, where applicable. While this is feasible for relatively small domains,

it would become rather impractical if we tried to do it for a domain with a

thousand different slots.

• The SeA-GuiDe decoding method is only compatible with encoder-decoder,

and ideally transformer-based, model architectures due to its dependence on

the cross-attention mechanism. Furthermore, as discussed in Section 6.4.2,

231

SeA-GuiDe’s effectiveness on Boolean slots is limited, and its design does not

allow it to detect hallucinations (which is the case with the slot aligner too).

Finally, we observed that sampling during decoding confuses the tracking abil-

ity of SeA-GuiDe, which is the main reason for us not having experimented

with it in Batch-MCTS.

• The running time of the Batch-MCTS inference increases approximately lin-

early with the number of iterations, which cannot be parallelized, yet the main

benefit of the MCTS algorithm lies in more iterations, as it is at the end of one

iteration and the beginning of the next that candidate utterances get evalu-

ated (and tree node rewards get calculated) and MCTS applies the tree policy

to decide what parts of the search tree to explore next.

• Speaking of runtime performance, our Batch-MCTS experiments were limited

to the smallest pretrained language models, i.e., T5-small for the NLG model,

and the smallest GPT-2 variant for the fluency component of the referenceless

metric. In our preliminary experiments with GPT-2-medium, however, we

saw a definite improvement in Batch-MCTS performance, and the gains could

further stack when using Batch-MCTS with a larger and more capable NLG

model. For example, as we showed in Section 6.3.2, T5-base is massively

more semantically accurate than T5-small without reranking, which would

presumably translate to overall better utterance candidates sampled in Batch-

MCTS playouts, leaving more room for emphasizing utterance diversity.

• When comparing model outputs in terms of language diversity, we evaluated

diversity metrics on corpus level, i.e., on all the model outputs for the entire

test set. This may, however, obscure variation, as well as hide repetitiveness,

232

in word choice and sentence structure within clusters of related inputs, such

as inputs of the same DA type. Calculating per-DA diversity across the test

set may thus offer a more accurate picture of the language variation in the

model outputs. Alternatively, the average diversity within the pool of top K

candidates generated by an inference method, across the whole test set, could

be another more accurate way of assessing the inference method’s diversity-

promoting properties.

• All of our experiments were performed on data in English, nevertheless we

expect our methods to work in principle with other languages as well. In

Batch-MCTS, however, we rely on pretrained language models for measuring

text fluency, as well as semantic accuracy in the form of the neural metrics

BERTScore and BLEURT. These language models are typically pretrained on

English data only, but some of them have multilingual versions, such as M-

BERT (Pires et al., 2019), mBART (Liu et al., 2020b) and mT5 (Xue et al.,

2021), which could be used for automatic evaluation of utterances in up to 100

other languages. Yet for many low-resource languages, we may not be able

to take advantage of a large pretrained model and would have to resort to

using standard N-gram overlap metrics instead, which, as we showed, are not

as effective as neural metrics. With a few modifications, our slot aligner would

also work with other languages and would thus remain a valid alternative for

the semantic accuracy component.

• With the rapid progress in deep learning and a wide adoption of large lan-

guage models, dialogue systems are gradually shifting closer to end-to-end

response generation, i.e., bypassing a discrete dialogue manager component.

233

NLG in these systems is performed directly from the conversation context and

an external knowledge base as inputs, delegating the decision making about

the content selection and the form of the response entirely to the NLG model

itself (Dinan et al., 2018; Gopalakrishnan et al., 2019; Zhao et al., 2020; Li

et al., 2022b). These approaches are more scalable than MR-to-text genera-

tion, but lack controllability, and the creation of training data for this type of

NLG task is very expensive. Our methods for enforcing semantic accuracy are

largely incompatible with this approach to NLG, however, we would expect

the diversity-promoting Batch-MCTS inference method to be equally effective

as in MR-to-text NLG.

• Finally, there is the set of challenges faced in the evaluation of NLG model

outputs. Automatic metrics are always a limiting factor due to their usual

dependence on human-written utterances, but human evaluation is typically

only possible on a small scale. Even then, humans may end up doing an un-

satisfactory job, if they are not experts in the domain and/or the task. Hence,

we performed the majority of the analyses in this thesis using a variety of

automatic metrics, which only reflect the overall quality of utterances approx-

imately, and we only turned to human evaluation in a few very specific cases,

typically involving model outputs identified as the best by the automatic met-

rics. We avoided crowdsourced evaluation, preferring instead two or three

expert annotators familiar with the task/domain.

234

10.2 Future Work

We showed that the Batch-MCTS method we proposed and evaluated

across Chapters 7–9 already outperforms individual standard inference methods,

such as beam search or nucleus sampling. In this section, we outline several ideas

that may further increase its gains in performance.

10.2.1 Modifications to Batch-MCTS

Batch-MCTS is a highly configurable inference method, with a number of

different parameters and modules that can be modified. Below, we describe some of

the ideas that we did not have an opportunity to implement and test, grouped by

different aspects of Batch-MCTS.

MCTS parameters. The MCTS algorithm has multiple parameters that modify

the way the tree search is conducted, such as the exploration coefficient or the tree

policy. In addition to these standard parameters, Batch-MCTS can use different

node selection methods (e.g., only selecting leaf nodes to start playouts from), or

alternative node reward aggregation methods (e.g., keeping the maximum score in

a subtree instead of averaging). In our preliminary experiments with some of these,

we did not observe any significant differences compared to the default settings in

terms of the best candidate . Nevertheless, this could change with the batch size, the

increasing number of iterations, as well as the model size and the state evaluation

metric, so performing a more comprehensive hyperparameter tuning could possibly

reveal parameter settings with which Batch-MCTS performs better than with the

default ones we used in the experiments in this thesis.

235

State evaluation metric. When combining the fluency and semantic accuracy

scores for the MCTS state evaluation metric, we use the reciprocal of perplexity

so as to be maximizing the score and to convert it to the [0, 1] range. However,

this results in only a very small part of the [0, 1] range being used. Ideally, the

perplexity metric would be normalized before being combined with other scores,

such as BERTScore or BLEURT, both of which use most of the [0, 1] range. One

possible way to normalize perplexity scores would be by calculating the minimum

and maximum values across utterances generated for the training set inputs using

nucleus sampling. Normalized scores would allow for the components of the state

evaluation metric to be weighted in order to, for example, put more importance on

semantic accuracy in the candidate utterances.

Sampling in playouts. The sampling employed during playouts is the main con-

tributing factor to the candidate utterance diversity in Batch-MCTS. In all of our

experiments, we used nucleus sampling with a fixed p-value of 0.8. While this does

a good job at promoting diversity, we noticed that this value is high enough to

cause the decoder to be considering hundreds of tokens at some time steps, among

which many may be a poor choice leading to incoherence. There are at least a few

methods we could try in order to avoid this situation, while preserving most of the

sampling-induced diversity: (1) by combining nucleus sampling with top-K sampling

to reduce the chance of introducing incoherence when the token probability distri-

bution has a heavy tail; (2) by reducing the p-value of the nucleus sampling and

slightly increasing the sampling temperature, so as to ensure the lower-probability

tokens among those within the p probability mass get sampled more frequently; (3)

by decaying the p-value or the sampling temperature over the length of the sequence

236

or, alternatively, over the MCTS iterations.

SeA-GuiDe for semantic guidance. Although we mentioned that sampling neg-

atively affects the ability of SeA-GuiDe to correctly track slot mentions in the gen-

erated utterance, the drop in performance happens between p = 0.5 and 0.8. This

suggest that it could still work reliably as the semantic accuracy component in the

MCTS state evaluation metric, as long as the p-value of the nucleus sampling is set

to a slightly lower value. SeA-GuiDe showed the biggest gains for the T5-small

and BART-base models, so it could be effective as part of Batch-MCTS particularly

for these smaller models.

Diversity. On the ViGGO dataset, we had to introduce the NLG model’s own per-

plexity into the state evaluation metric in order for Batch-MCTS to start performing

better. The consequence of this was, however, a drastic reduction in utterance di-

versity, as the model’s perplexity started guiding the MCTS more toward the most

probable utterances. We hypothesize that the diversity could be better preserved if,

instead of the whole-utterance perplexity, we focused on a smaller contiguous win-

dow of tokens with the lowest probability in the utterance. This is motivated by the

fact that interesting utterances often contain low-probability tokens, but they are

typically followed by relatively high-probability tokens. On the other hand, when

an utterance contains an incoherence, the token probabilities remain low across a

longer subsequence of tokens. The lowest probability of a contiguous subsequence

of a fixed number of tokens (e.g., 10) could thus be a useful component for the

metric, penalizing candidate utterances with a low-probability segment (likely an

incoherence), as opposed to penalizing utterances that are less probable because of

237

a few uncommon words. Other ways of encouraging greater diversity among the

candidate utterances could involve adding a diversity metric as a component in the

state evaluation metric, or enforcing diversity within the pool of best candidates

Batch-MCTS maintains between iterations.

10.2.2 Reinforcement Learning With Batch-MCTS

Inspired by the success of DeepMind’s AlphaGo (Silver et al., 2016, 2017),

AlphaZero (Silver et al., 2018) and MuZero (Schrittwieser et al., 2020) systems that

consistently achieve superhuman performance at Go, chess and visually complex

Atari games, we think the combination of deep reinforcement learning (Arulkumaran

et al., 2017; Sutton and Barto, 2018) and MCTS may be an interesting avenue

to explore even in NLG. Reinforcement learning (RL) is a learning strategy for

sequential decision-making problems in which the reward is not known until an

end state is reached. After all, in data-to-text NLG (or any NLG task, for that

matter) the model makes a sequence of decisions about which token to use next

when generating an utterance, while at the same time, it is impossible to tell from

a partial utterance whether the final utterance is going to be good or not. The

objective of an RL model is to learn to predict which action (token, in our case) in

the given state would ultimately lead to the best outcome (i.e., utterance), even if

it means taking an action with a negative immediate reward (such as generating a

token with a lower conditional probability).

Here we outline two possible ways of using MCTS to train an RL-based

NLG model on top of a standard trained encoder-decoder. Each of them uses the

concept of a value network, which in conventional RL is a model that predicts the

reward that could be accumulated from a given state until an end state is reached.

238

In other words, it predicts the future reward for the current state, which in case of

NLG corresponds to the score of a whole utterance.

In the first approach, we propose training a value network fθ(x, ŷ<t) to

produce a single scalar value – the predicted whole-utterance score – given an input

x and a prefix ŷ<t (i.e, a partial utterance), similar to He et al. (2017). To this

end, random prefixes are first generated from the inputs in the training set using a

trained NLG model. Subsequently, Batch-MCTS with heavy playouts, as described

in 7.2.2, is performed from the state corresponding to each of the prefixes. The score

of the best candidate the tree search finds then becomes the value v of the value

network:

v = fθ(x, ŷ<t) = argmax
y′∈Y: y′<t=ŷ<t

score
(
y′, y(x)

)
p(y′|x) ,

where Y is the space of whole utterances, score
(
y′, y(x)

)
is the generated utterance’s

score on a [0, 1] scale given the reference utterance y(x) for input x, and p(y′|x) is

the conditional probability calculated by the NLG model. In case of a referenceless

metric, the term y(x) would be replaced by just the input x. Finally, once the

value network is trained, it can be used during inference to replace the decoder’s

conditional probabilities when making token predictions, or in a linear combination

with them.

The second approach, inspired by the AlphaGo Zero system (Silver et al.,

2017), differs from the first one in that the value network is trained to produce, along

with the future reward prediction v, a vector p of action probabilities pa = P (a|s)

in the given state s, i.e., (p, v) = fA
θ (x, ŷ<t). The training process for this value

network involves generating an utterance from the input x token by token, while at

each time step t, Batch-MCTS would serve as the policy determining the probability

239

distribution πt of the next token in the current context. Once an end state is reached,

the generated utterance y′ is evaluated. Then the score z = score
(
y′, y(x)

)
and

the search probability distributions π are used to update the parameters θ of the

value network through gradient descent so as to maximize the similarity of (p, v) to

(π, z). Such a trained value network would be used for inference directly, replacing

the original NLG model entirely. Since the value network outputs a probability

distribution for the next token, the distribution can be sampled from in order to

achieve additional diversity.

240

Bibliography

Shubham Agarwal and Marc Dymetman. 2017. A surprisingly effective out-of-the-

box char2char model on the e2e nlg challenge dataset. In Proceedings of the 18th

Annual SIGdial Meeting on Discourse and Dialogue, pages 158–163.

Shubham Agarwal, Marc Dymetman, and Eric Gaussier. 2018. Char2char generation

with reranking for the e2e nlg challenge. In Proceedings of the 11th International

Conference on Natural Language Generation, pages 451–456.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony

Bharath. 2017. Deep reinforcement learning: A brief survey. IEEE Signal Pro-

cessing Magazine, 34(6):26–38.

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. 2015. Neural machine

translation by jointly learning to align and translate. In 3rd International Con-

ference on Learning Representations, ICLR 2015.

Ashutosh Baheti, Alan Ritter, Jiwei Li, and William B Dolan. 2018. Generating

more interesting responses in neural conversation models with distributional con-

straints. In Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing, pages 3970–3980.

Anusha Balakrishnan, Jinfeng Rao, Kartikeya Upasani, Michael White, and Rajen

241

Subba. 2019. Constrained decoding for neural nlg from compositional representa-

tions in task-oriented dialogue. In Proceedings of the 57th Annual Meeting of the

Association for Computational Linguistics, pages 831–844.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf

Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider.

2013. Abstract meaning representation for sembanking. In Proceedings of the 7th

linguistic annotation workshop and interoperability with discourse, pages 178–186.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An automatic metric for mt eval-

uation with improved correlation with human judgments. In Proceedings of the acl

workshop on intrinsic and extrinsic evaluation measures for machine translation

and/or summarization, pages 65–72.

Kevin K Bowden, Jiaqi Wu, Wen Cui, Juraj Juraska, Vrindavan Harrison, Brian

Schwarzmann, Nick Santer, and Marilyn Walker. 2018. Slugbot: Developing a

computational model and framework of a novel dialogue genre. In Alexa Prize

SocialBot Grand Challenge 2 Proceedings.

Peter F Brown, Vincent J Della Pietra, Stephen A Della Pietra, and Robert L

Mercer. 1993. The mathematics of statistical machine translation: Parameter

estimation. Computational linguistics, 19(2):263–311.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, et al. 2020. Language models are few-shot learners. Advances in neural

information processing systems, 33:1877–1901.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I

242

https://www.amazon.science/alexa-prize/proceedings/slugbot-developing-a-computational-model-and-framework-of-a-novel-dialogue-genre
https://www.amazon.science/alexa-prize/proceedings/slugbot-developing-a-computational-model-and-framework-of-a-novel-dialogue-genre

Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-

rakis, and Simon Colton. 2012. A survey of monte carlo tree search methods.

IEEE Transactions on Computational Intelligence and AI in games, 4(1):1–43.

Pawe l Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, Iñigo Casanueva, Stefan

Ultes, Osman Ramadan, and Milica Gasic. 2018. Multiwoz-a large-scale multi-

domain wizard-of-oz dataset for task-oriented dialogue modelling. In Proceedings

of the 2018 Conference on Empirical Methods in Natural Language Processing,

pages 5016–5026.

Michael Buhrmester, Tracy Kwang, and Samuel D Gosling. 2011. Amazon’s me-

chanical turk: A new source of inexpensive, yet high-quality, data? Perspectives

on psychological science, 6(1):3–5.

Ozan Caglayan, Pranava Swaroop Madhyastha, and Lucia Specia. 2020. Curious

case of language generation evaluation metrics: A cautionary tale. In Proceedings

of the 28th International Conference on Computational Linguistics, pages 2322–

2328.

Chris Callison-Burch, Miles Osborne, and Philipp Koehn. 2006. Re-evaluating the

role of bleu in machine translation research. In 11th conference of the european

chapter of the association for computational linguistics, pages 249–256.

David L Chen and Raymond J Mooney. 2008. Learning to sportscast: a test of

grounded language acquisition. In Proceedings of the 25th international conference

on Machine learning, pages 128–135.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey,

George Foster, Llion Jones, Mike Schuster, Noam Shazeer, Niki Parmar, et al.

243

2018. The best of both worlds: Combining recent advances in neural machine

translation. In Proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), pages 76–86.

Wenhu Chen, Jianshu Chen, Yu Su, Zhiyu Chen, and William Yang Wang. 2020.

Logical natural language generation from open-domain tables. In Proceedings of

the 58th Annual Meeting of the Association for Computational Linguistics, pages

7929–7942.

Andrew Chisholm, Will Radford, and Ben Hachey. 2017. Learning to generate one-

sentence biographies from wikidata. In Proceedings of the 15th Conference of the

European Chapter of the Association for Computational Linguistics: Volume 1,

Long Papers, pages 633–642.

Kyunghyun Cho, Bart van Merriënboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase represen-

tations using rnn encoder-decoder for statistical machine translation. In EMNLP.

Hyung Won Chung, Thibault Fevry, Henry Tsai, Melvin Johnson, and Sebastian

Ruder. 2020. Rethinking embedding coupling in pre-trained language models. In

International Conference on Learning Representations.

Rémi Coulom. 2006. Efficient selectivity and backup operators in monte-carlo

tree search. In International conference on computers and games, pages 72–83.

Springer.

Heriberto Cuayáhuitl, Nina Dethlefs, Helen Hastie, and Xingkun Liu. 2014. Training

a statistical surface realiser from automatic slot labelling. In Spoken Language

Technology Workshop (SLT), 2014 IEEE, pages 112–117. IEEE.

244

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan

Salakhutdinov. 2019. Transformer-xl: Attentive language models beyond a fixed-

length context. In Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics, pages 2978–2988.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert:

Pre-training of deep bidirectional transformers for language understanding. In

Proceedings of the 2019 Conference of the North American Chapter of the Asso-

ciation for Computational Linguistics: Human Language Technologies, Volume 1

(Long and Short Papers), pages 4171–4186.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela Fan, Michael Auli, and Jason

Weston. 2018. Wizard of wikipedia: Knowledge-powered conversational agents.

In International Conference on Learning Representations.

Ondřej Dušek, David M Howcroft, and Verena Rieser. 2019. Semantic noise matters

for neural natural language generation. In Proceedings of the 12th International

Conference on Natural Language Generation, pages 421–426.

Ondřej Dušek and Filip Jurč́ıček. 2016. Sequence-to-sequence generation for spoken

dialogue via deep syntax trees and strings. In Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 2: Short Pa-

pers), pages 45–51.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser. 2017. Referenceless qual-

ity estimation for natural language generation. In 1st Workshop on Learning to

Generate Natural Language. ICML.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser. 2018. Findings of the E2E

245

NLG challenge. In Proceedings of the 11th International Conference on Natu-

ral Language Generation, pages 322–328, Tilburg University, The Netherlands.

Association for Computational Linguistics.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser. 2020. Evaluating the state-

of-the-art of end-to-end natural language generation: The e2e nlg challenge. Com-

puter Speech & Language, 59:123–156.

Chris Dyer, Victor Chahuneau, and Noah A Smith. 2013. A simple, fast, and effective

reparameterization of ibm model 2. NAACL HLT 2013, pages 644–648.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi, Sanchit Agarwal, Shuyang

Gao, Adarsh Kumar, Anuj Goyal, Peter Ku, and Dilek Hakkani-Tur. 2020. Mul-

tiwoz 2.1: A consolidated multi-domain dialogue dataset with state corrections

and state tracking baselines. In Proceedings of The 12th Language Resources and

Evaluation Conference, pages 422–428.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hierarchical neural story gener-

ation. In Proceedings of the 56th Annual Meeting of the Association for Compu-

tational Linguistics (Volume 1: Long Papers), pages 889–898.

Maryam Fazel-Zarandi, Shang-Wen Li, Jin Cao, Jared Casale, Peter Henderson,

David Whitney, and Alborz Geramifard. 2017. Learning robust dialog policies in

noisy environments. NIPS 2017 Workshop on Conversational AI.

Thiago Castro Ferreira, Claire Gardent, Nikolai Ilinykh, Chris van der Lee, Simon

Mille, Diego Moussallem, and Anastasia Shimorina. 2020. The 2020 bilingual,

bi-directional webnlg+ shared task: Overview and evaluation results (webnlg+

246

2020). In Proceedings of the 3rd International Workshop on Natural Language

Generation from the Semantic Web (WebNLG+), pages 55–76.

Jessica Ficler and Yoav Goldberg. 2017. Controlling linguistic style aspects in neural

language generation. In Proceedings of the Workshop on Stylistic Variation, pages

94–104.

Markus Freitag, George Foster, David Grangier, Viresh Ratnakar, Qijun Tan, and

Wolfgang Macherey. 2021. Experts, errors, and context: A large-scale study of

human evaluation for machine translation. Transactions of the Association for

Computational Linguistics, 9:1460–1474.

Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini.

2017. Creating training corpora for micro-planners. In Proceedings of the 55th An-

nual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), Vancouver, Canada. Association for Computational Linguistics.

Milica Gašić, Simon Keizer, Francois Mairesse, Jost Schatzmann, Blaise Thomson,

Kai Yu, and Steve Young. 2008. Training and evaluation of the HIS POMDP dia-

logue system in noise. In Proceedings of the 9th SIGDIAL Workshop on Discourse

and Dialogue, pages 112–119. Association for Computational Linguistics.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.

2017. Convolutional sequence to sequence learning. In Proceedings of the 34th

International Conference on Machine Learning-Volume 70, pages 1243–1252.

Douwe Gelling and Trevor Cohn. 2014. Simple extensions and POS tags for a

reparameterised IBM model 2. In Proceedings of the 52nd Annual Meeting of

247

the Association for Computational Linguistics (Volume 2: Short Papers), pages

150–154, Baltimore, Maryland. Association for Computational Linguistics.

Marjan Ghazvininejad, Xing Shi, Jay Priyadarshi, and Kevin Knight. 2017. Hafez:

an interactive poetry generation system. In Proceedings of ACL 2017, System

Demonstrations, pages 43–48.

Karthik Gopalakrishnan, Behnam Hedayatnia, Qinlang Chen, Anna Gottardi, San-

jeev Kwatra, Anu Venkatesh, Raefer Gabriel, and Dilek Hakkani-Tür. 2019.

Topical-chat: Towards knowledge-grounded open-domain conversations. Proc.

Interspeech 2019, pages 1891–1895.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li. 2016. Incorporating copying

mechanism in sequence-to-sequence learning. In Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-

pers), volume 1, pages 1631–1640.

Hamza Harkous, Isabel Groves, and Amir Saffari. 2020. Have your text and use it

too! end-to-end neural data-to-text generation with semantic fidelity. In Proceed-

ings of the 28th International Conference on Computational Linguistics, pages

2410–2424.

Vrindavan Harrison, Juraj Juraska, Wen Cui, Lena Reed, Kevin K Bowden, Jiaqi

Wu, Brian Schwarzmann, Abteen Ebrahimi, Rishi Rajasekaran, Nikhil Varghese,

et al. 2019. Athena: Constructing dialogues dynamically with discourse con-

straints. In Alexa Prize SocialBot Grand Challenge 3 Proceedings.

Di He, Hanqing Lu, Yingce Xia, Tao Qin, Liwei Wang, and Tie-Yan Liu. 2017.

248

https://www.amazon.science/alexa-prize/proceedings/athena-constructing-dialogues-dynamically-with-discourse-constraints
https://www.amazon.science/alexa-prize/proceedings/athena-constructing-dialogues-dynamically-with-discourse-constraints

Decoding with value networks for neural machine translation. In Advances in

Neural Information Processing Systems, pages 178–187.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2020. Deberta:

Decoding-enhanced bert with disentangled attention. In International Conference

on Learning Representations.

Matthew Henderson, Blaise Thomson, and Steve Young. 2014. Robust dialog state

tracking using delexicalised recurrent neural networks and unsupervised adapta-

tion. In Spoken Language Technology Workshop (SLT), 2014 IEEE, pages 360–

365. IEEE.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural

computation, 9(8):1735–1780.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2019. The cu-

rious case of neural text degeneration. In International Conference on Learning

Representations.

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine Bosselut, David Golub, and

Yejin Choi. 2018. Learning to write with cooperative discriminators. In Proceed-

ings of the 56th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 1638–1649.

David Howcroft, Crystal Nakatsu, and Michael White. 2013. Enhancing the ex-

pression of contrast in the SPaRKy restaurant corpus. In Proceedings of the 14th

European Workshop on Natural Language Generation, pages 30–39.

David M Howcroft, Anja Belz, Miruna-Adriana Clinciu, Dimitra Gkatzia, Sadid A

Hasan, Saad Mahamood, Simon Mille, Emiel Van Miltenburg, Sashank San-

249

thanam, and Verena Rieser. 2020. Twenty years of confusion in human evaluation:

Nlg needs evaluation sheets and standardised definitions. In Proceedings of the

13th International Conference on Natural Language Generation, pages 169–182.

Shui Hu, Yang Liu, Anna Gottardi, Behnam Hedayatnia, Anju Khatri, Anjali

Chadha, Qinlang Chen, Pankaj Rajan, Ali Binici, Varun Somani, Yao Lu, Prerna

Dwivedi, Lucy Hu, Hangjie Shi, Sattvik Sahai, Mihail Eric, Karthik Gopalakr-

ishnan, Seokhwan Kim, Spandana Gella, Alexandros Papangelis, Patrick Lange,

Di Jin, Nicole Chartier, Mahdi Namazifar, Aishwarya Padmakumar, Sarik Ghaz-

arian, Shereen Oraby, Anjali Narayan-Chen, Yuheng Du, Lauren Stubell, Savanna

Stiff, Kate Bland, Arindam Mandal, Reza Ghanadan, and Dilek Hakkani-Tur.

2021. Further advances in open domain dialog systems in the fourth alexa prize

socialbot grand challenge. In Alexa Prize SocialBot Grand Challenge 4 Proceed-

ings.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii,

Yejin Bang, Andrea Madotto, and Pascale Fung. 2022. Survey of hallucination in

natural language generation. arXiv preprint arXiv:2202.03629.

Juraj Juraska, Kevin Bowden, Lena Reed, Vrindavan Harrison, Wen Cui, Omkar

Patil, Rishi Rajasekaran, Angela Ramirez, Cecilia Li, Eduardo Zamora, Phillip

Lee, Jeshwanth Bheemanpally, Rohan Pandey, Adwait Ratnaparkhi, and Marilyn

Walker. 2021. Athena 2.0: Contextualized dialogue management for an Alexa

Prize SocialBot. In Proceedings of the 2021 Conference on Empirical Methods in

Natural Language Processing: System Demonstrations, pages 124–133.

Juraj Juraska, Kevin K Bowden, and Marilyn Walker. 2019. ViGGO: A video game

250

https://www.amazon.science/publications/further-advances-in-open-domain-dialog-systems-in-the-fourth-alexa-prize-socialbot-grand-challenge
https://www.amazon.science/publications/further-advances-in-open-domain-dialog-systems-in-the-fourth-alexa-prize-socialbot-grand-challenge

corpus for data-to-text generation in open-domain conversation. In Proceedings

of the 12th International Conference on Natural Language Generation.

Juraj Juraska, Panagiotis Karagiannis, Kevin Bowden, and Marilyn Walker. 2018.

A deep ensemble model with slot alignment for sequence-to-sequence natural lan-

guage generation. In Proceedings of the 2018 Conference of the North Ameri-

can Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long Papers), pages 152–162.

Juraj Juraska and Marilyn Walker. 2018. Characterizing variation in crowd-sourced

data for training neural language generators to produce stylistically varied out-

puts. In Proceedings of the 11th International Conference on Natural Language

Generation, pages 441–450.

Juraj Juraska and Marilyn Walker. 2021. Attention is indeed all you need: Seman-

tically attention-guided decoding for data-to-text nlg. In Proceedings of the 14th

International Conference on Natural Language Generation, pages 416–431.

Jad Kabbara and Jackie Chi Kit Cheung. 2016. Stylistic transfer in natural lan-

guage generation systems using recurrent neural networks. In Proceedings of the

Workshop on Uphill Battles in Language Processing: Scaling Early Achievements

to Robust Methods, pages 43–47.

Mihir Kale and Abhinav Rastogi. 2020. Text-to-text pre-training for data-to-text

tasks. In Proceedings of the 13th International Conference on Natural Language

Generation, pages 97–102.

Katharina Kann, Sascha Rothe, and Katja Filippova. 2018. Sentence-level fluency

251

evaluation: References help, but can be spared! In Proceedings of the 22nd

Conference on Computational Natural Language Learning, pages 313–323.

Chris Kedzie and Kathleen McKeown. 2019. A good sample is hard to find: Noise

injection sampling and self-training for neural language generation models. In

Proceedings of the 12th International Conference on Natural Language Generation,

pages 584–593.

Chris Kedzie and Kathleen McKeown. 2020. Controllable meaning representation to

text generation: Linearization and data augmentation strategies. In Proceedings

of the 2020 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 5160–5185.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and Richard

Socher. 2019. Ctrl: A conditional transformer language model for controllable

generation. arXiv preprint arXiv:1909.05858.

Chandra Khatri, Behnam Hedayatnia, Anu Venkatesh, Jeff Nunn, Yi Pan, Qing

Liu, Han Song, Anna Gottardi, Sanjeev Kwatra, Sanju Pancholi, et al. 2018.

Advancing the state of the art in open domain dialog systems through the alexa

prize. In 2018 Alexa Prize Proceedings.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. 2020. Reformer: The efficient

transformer. In International Conference on Learning Representations.

Levente Kocsis and Csaba Szepesvári. 2006. Bandit based monte-carlo planning. In

European conference on machine learning, pages 282–293. Springer.

Ioannis Konstas and Mirella Lapata. 2013. A global model for concept-to-text gen-

eration. J. Artif. Intell. Res.(JAIR), 48:305–346.

252

Gerasimos Lampouras and Andreas Vlachos. 2016. Imitation learning for language

generation from unaligned data. In Proceedings of COLING 2016, the 26th In-

ternational Conference on Computational Linguistics: Technical Papers, pages

1101–1112.

Irene Langkilde and Kevin Knight. 1998. Generation that exploits corpus-based

statistical knowledge. In COLING 1998 Volume 1: The 17th International Con-

ference on Computational Linguistics.

Jey Han Lau, Alexander Clark, and Shalom Lappin. 2017. Grammaticality, accept-

ability, and probability: A probabilistic view of linguistic knowledge. Cognitive

science, 41(5):1202–1241.

Hugo Laurençon, Lucile Saulnier, Thomas Wang, Christopher Akiki, Albert Vil-

lanova del Moral, Teven Le Scao, Leandro Von Werra, Chenghao Mou, Ed-

uardo González Ponferrada, Huu Nguyen, et al. 2022. The bigscience corpus

a 1.6 tb composite multilingual dataset.

Rémi Lebret, David Grangier, and Michael Auli. 2016. Neural text generation from

structured data with application to the biography domain. In Proceedings of the

2016 Conference on Empirical Methods in Natural Language Processing, pages

1203–1213.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-

based learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324.

Chris van der Lee, Albert Gatt, Emiel van Miltenburg, Sander Wubben, and Emiel

Krahmer. 2019. Best practices for the human evaluation of automatically gener-

253

ated text. In Proceedings of the 12th International Conference on Natural Lan-

guage Generation (INLG’19), Tokyo, Japan. Association for Computational Lin-

guistics.

Leo Leppänen, Myriam Munezero, Mark Granroth-Wilding, and Hannu Toivonen.

2017. Data-driven news generation for automated journalism. In Proceedings of

the 10th international conference on natural language generation, pages 188–197.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-

hamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart: Denois-

ing sequence-to-sequence pre-training for natural language generation, translation,

and comprehension. In Proceedings of the 58th Annual Meeting of the Association

for Computational Linguistics, pages 7871–7880.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and William B Dolan. 2016a.

A diversity-promoting objective function for neural conversation models. In Pro-

ceedings of the 2016 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, pages 110–119.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016b. A simple, fast diverse decoding

algorithm for neural generation. arXiv preprint arXiv:1611.08562.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2017a. Learning to decode for future

success. arXiv preprint arXiv:1701.06549.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018. Delete, retrieve, generate:

A simple approach to sentiment and style transfer. In Proceedings of the 2018

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies.

254

Wei Li, Wenhao Wu, Moye Chen, Jiachen Liu, Xinyan Xiao, and Hua Wu. 2022a.

Faithfulness in natural language generation: A systematic survey of analysis, eval-

uation and optimization methods. arXiv preprint arXiv:2203.05227.

Xiujun Li, Yun-Nung Chen, Lihong Li, Jianfeng Gao, and Asli Celikyilmaz. 2017b.

End-to-end task-completion neural dialogue systems. In Proceedings of the Eighth

International Joint Conference on Natural Language Processing (Volume 1: Long

Papers), pages 733–743.

Yu Li, Baolin Peng, Yelong Shen, Yi Mao, Lars Liden, Zhou Yu, and Jianfeng Gao.

2022b. Knowledge-grounded dialogue generation with a unified knowledge repre-

sentation. In Proceedings of the 2022 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies,

pages 206–218, Seattle, United States. Association for Computational Linguistics.

Percy Liang, Michael I Jordan, and Dan Klein. 2009. Learning semantic corre-

spondences with less supervision. In Proceedings of the Joint Conference of the

47th Annual Meeting of the ACL and the 4th International Joint Conference on

Natural Language Processing of the AFNLP, pages 91–99.

Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham. 2021. Jurassic-1: Technical

details and evaluation. White Paper. AI21 Labs.

Chin-Yew Lin and Eduard Hovy. 2003. Automatic evaluation of summaries us-

ing n-gram co-occurrence statistics. In Proceedings of the 2003 human language

technology conference of the North American chapter of the association for com-

putational linguistics, pages 150–157.

Chin-Yew Lin and Franz Josef Och. 2004. Automatic evaluation of machine trans-

255

https://aclanthology.org/2022.naacl-main.15
https://aclanthology.org/2022.naacl-main.15

lation quality using longest common subsequence and skip-bigram statistics. In

Proceedings of the 42nd Annual Meeting on Association for Computational Lin-

guistics, page 605. Association for Computational Linguistics.

Chia-Wei Liu, Ryan Joseph Lowe, Iulian Serban, Michael Noseworthy, Laurent Char-

lin, and Joelle Pineau. 2016. How not to evaluate your dialogue system: An em-

pirical study of unsupervised evaluation metrics for dialogue response generation.

In EMNLP.

Qi Liu, Matt J Kusner, and Phil Blunsom. 2020a. A survey on contextual embed-

dings. arXiv preprint arXiv:2003.07278.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvinine-

jad, Mike Lewis, and Luke Zettlemoyer. 2020b. Multilingual denoising pre-training

for neural machine translation. Transactions of the Association for Computational

Linguistics, 8:726–742.

Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effective approaches

to attention-based neural machine translation. In Proceedings of the 2015 Con-

ference on Empirical Methods in Natural Language Processing, pages 1412–1421.

François Mairesse, Milica Gašić, Filip Jurč́ıček, Simon Keizer, Blaise Thomson, Kai

Yu, and Steve Young. 2010. Phrase-based statistical language generation using

graphical models and active learning. In Proceedings of the 48th Annual Meeting

of the Association for Computational Linguistics, pages 1552–1561.

François Mairesse and Marilyn Walker. 2007. Personage: Personality generation

for dialogue. In Proceedings of the 45th Annual Meeting of the Association of

Computational Linguistics, pages 496–503.

256

François Mairesse and Steve Young. 2014. Stochastic language generation in dialogue

using factored language models. Computational Linguistics, 40:763–799.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. 2020. On

faithfulness and factuality in abstractive summarization. In Proceedings of the 58th

Annual Meeting of the Association for Computational Linguistics, pages 1906–

1919.

Hongyuan Mei, Mohit Bansal, and Matthew R Walter. 2016. What to talk about

and how? selective generation using lstms with coarse-to-fine alignment. In Pro-

ceedings of the 2016 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, pages 720–730.

Haitao Mi, Baskaran Sankaran, Zhiguo Wang, and Abe Ittycheriah. 2016. Coverage

embedding models for neural machine translation. In Proceedings of the 2016

Conference on Empirical Methods in Natural Language Processing, pages 955–

960.

Nikita Moghe, Siddhartha Arora, Suman Banerjee, and Mitesh M Khapra. 2018.

Towards exploiting background knowledge for building conversation systems. In

Proceedings of the 2018 Conference on Empirical Methods in Natural Language

Processing, pages 2322–2332.

Soichiro Murakami, Akihiko Watanabe, Akira Miyazawa, Keiichi Goshima, Toshi-

hiko Yanase, Hiroya Takamura, and Yusuke Miyao. 2017. Learning to generate

market comments from stock prices. In Proceedings of the 55th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers), pages

1374–1384.

257

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand Sivaprasad, Chi-

achun Hsieh, Xiangru Tang, Aadit Vyas, Neha Verma, Pranav Krishna, et al.

2021. Dart: Open-domain structured data record to text generation. In Proceed-

ings of the 2021 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, pages 432–447.

Neha Nayak, Dilek Hakkani-Tür, Marilyn Walker, and Larry Heck. 2017. To plan

or not to plan? discourse planning in slot-value informed sequence to sequence

models for language generation. Proc. Interspeech 2017, pages 3339–3343.

Feng Nie, Jin-Ge Yao, Jinpeng Wang, Rong Pan, and Chin-Yew Lin. 2019. A simple

recipe towards reducing hallucination in neural surface realisation. In Proceedings

of the 57th Annual Meeting of the Association for Computational Linguistics,

pages 2673–2679.

Xing Niu and Marine Carpuat. 2017. Discovering stylistic variations in distributional

vector space models via lexical paraphrases. In Proceedings of the Workshop on

Stylistic Variation, pages 20–27.

Jekaterina Novikova, Ondřej Dušek, Amanda Cercas Curry, and Verena Rieser.

2017a. Why we need new evaluation metrics for NLG. In Proceedings of the

2017 Conference on Empirical Methods in Natural Language Processing, pages

2241–2252.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. 2017b. The E2E dataset:

New challenges for end-to-end generation. In Proceedings of the 18th Annual

SIGdial Meeting on Discourse and Dialogue, pages 201–206.

Jekaterina Novikova, Oliver Lemon, and Verena Rieser. 2016. Crowd-sourcing NLG

258

data: Pictures elicit better data. In Proceedings of the 9th International Natural

Language Generation conference, pages 265–273.

Shereen Oraby, Vrindavan Harrison, Abteen Ebrahimi, and Marilyn Walker. 2019.

Curate and generate: A corpus and method for joint control of semantics and

style in neural NLG. In Proceedings of the 57th Annual Meeting of the Association

for Computational Linguistics, pages 5938–5951, Florence, Italy. Association for

Computational Linguistics.

Shereen Oraby, Sheideh Homayon, and Marilyn Walker. 2017. Harvesting creative

templates for generating stylistically varied restaurant reviews. In Proceedings of

the Workshop on Stylistic Variation, pages 28–36. Association for Computational

Linguistics.

Shereen Oraby, Lena Reed, Shubhangi Tandon, TS Sharath, Stephanie Lukin, and

Marilyn Walker. 2018. Controlling personality-based stylistic variation with neural

natural language generators. In Proceedings of the 19th Annual SIGdial Meeting

on Discourse and Dialogue, pages 180–190.

Daniel S Paiva and Roger Evans. 2004. A framework for stylistically controlled

generation. In Natural Language Generation, pages 120–129. Springer.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a

method for automatic evaluation of machine translation. In Proceedings of the 40th

annual meeting of the Association for Computational Linguistics, pages 311–318.

Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann, Manaal Faruqui, Bhuwan Dhin-

gra, Diyi Yang, and Dipanjan Das. 2020. ToTTo: A controlled table-to-text

259

generation dataset. In Proceedings of the 2020 Conference on Empirical Methods

in Natural Language Processing (EMNLP), pages 1173–1186.

Steffen Pauws, Albert Gatt, Emiel Krahmer, and Ehud Reiter. 2019. Making ef-

fective use of healthcare data using data-to-text technology. In Data Science for

Healthcare, pages 119–145. Springer.

Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun Li, Jinchao Li, Michael Zeng,

and Jianfeng Gao. 2020. Few-shot natural language generation for task-oriented

dialog. In Proceedings of the 2020 Conference on Empirical Methods in Natural

Language Processing: Findings, pages 172–182.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019. How multilingual is multi-

lingual bert? In Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics, pages 4996–5001.

Vassilis Plachouras, Charese Smiley, Hiroko Bretz, Ola Taylor, Jochen L Leidner,

Dezhao Song, and Frank Schilder. 2016. Interacting with financial data using

natural language. In Proceedings of the 39th International ACM SIGIR conference

on Research and Development in Information Retrieval, pages 1121–1124.

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei

Zhang, and Ming Zhou. 2020. Prophetnet: Predicting future n-gram for sequence-

to-sequencepre-training. In Findings of the Association for Computational Lin-

guistics: EMNLP 2020, pages 2401–2410.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI

Blog, 1(8).

260

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael

Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of

transfer learning with a unified text-to-text transformer. Journal of Machine

Learning Research, 21:1–67.

Sudha Rao and Joel Tetreault. 2018. Dear Sir or Madam, may I introduce the

GYAFC dataset: Corpus, benchmarks and metrics for formality style transfer. In

Proceedings of the 2018 Conference of the North American Chapter of the Asso-

ciation for Computational Linguistics: Human Language Technologies, volume 1,

pages 129–140.

Vikas Raunak, Arul Menezes, and Marcin Junczys-Dowmunt. 2021. The curious

case of hallucinations in neural machine translation. In Proceedings of the 2021

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, pages 1172–1183.

Lena Reed, Shereen Oraby, and Marilyn Walker. 2018. Can neural generators for

dialogue learn sentence planning and discourse structuring? In Proceedings of the

11th International Conference on Natural Language Generation, pages 284–295.

Ehud Reiter and Anja Belz. 2009. An investigation into the validity of some metrics

for automatically evaluating natural language generation systems. Computational

Linguistics, 35(4):529–558.

Ehud Reiter, Somayajulu Sripada, Jim Hunter, Jin Yu, and Ian Davy. 2005. Choos-

ing words in computer-generated weather forecasts. Artificial Intelligence, 167(1-

2):137–169.

Verena Rieser and Oliver Lemon. 2010. Natural language generation as planning

261

under uncertainty for spoken dialogue systems. In Empirical methods in natural

language generation, pages 105–120. Springer.

Ananya B Sai, Akash Kumar Mohankumar, and Mitesh M Khapra. 2022. A survey

of evaluation metrics used for nlg systems. ACM Computing Surveys (CSUR),

55(2):1–39.

Keisuke Sakaguchi, Matt Post, and Benjamin Van Durme. 2014. Efficient elicitation

of annotations for human evaluation of machine translation. In Proceedings of the

Ninth Workshop on Statistical Machine Translation, pages 1–11. Association for

Computational Linguistics.

Natalie Schluter. 2017. The limits of automatic summarisation according to rouge.

In Proceedings of the 15th Conference of the European Chapter of the Association

for Computational Linguistics: Volume 2, Short Papers, pages 41–45.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Lau-

rent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore

Graepel, et al. 2020. Mastering atari, go, chess and shogi by planning with a

learned model. Nature, 588(7839):604–609.

Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get to the point:

Summarization with pointer-generator networks. In Proceedings of the 55th An-

nual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), pages 1073–1083, Vancouver, Canada. Association for Computational

Linguistics.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020. Bleurt: Learning robust

262

https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099

metrics for text generation. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, pages 7881–7892.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Controlling politeness

in neural machine translation via side constraints. In Proceedings of the 2016

Conference of the North American Chapter of the Association for Computational

Lingui stics: Human Language Technologies, pages 35–40.

Pararth Shah, Dilek Hakkani-Tür, Gokhan Tür, Abhinav Rastogi, Ankur Bapna,

Neha Nayak, and Larry Heck. 2018. Building a conversational agent overnight

with dialogue self-play. arXiv preprint arXiv:1801.04871.

Mandar Sharma, Ajay Gogineni, and Naren Ramakrishnan. 2022. Innovations in

neural data-to-text generation. arXiv e-prints, pages arXiv–2207.

Sheng Shen, Daniel Fried, Jacob Andreas, and Dan Klein. 2019. Pragmatically

informative text generation. In Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies, Volume 1 (Long and Short Papers), pages 4060–4067.

Xiaoyu Shen, Ernie Chang, Hui Su, Cheng Niu, and Dietrich Klakow. 2020. Neural

data-to-text generation via jointly learning the segmentation and correspondence.

In Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, pages 7155–7165.

Joonbo Shin, Yoonhyung Lee, and Kyomin Jung. 2019. Effective sentence scor-

ing method using bert for speech recognition. In Asian Conference on Machine

Learning, pages 1081–1093.

263

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van

Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,

Marc Lanctot, et al. 2016. Mastering the game of go with deep neural networks

and tree search. nature, 529(7587):484.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew

Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Grae-

pel, et al. 2018. A general reinforcement learning algorithm that masters chess,

shogi, and go through self-play. Science, 362(6419):1140–1144.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,

Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.

2017. Mastering the game of go without human knowledge. Nature, 550(7676):354.

Aaron Smith, Christian Hardmeier, and Jörg Tiedemann. 2016. Climbing mont

bleu: the strange world of reachable high-bleu translations. In Proceedings of the

19th annual conference of the European association for machine translation, pages

269–281.

Amanda Stent, Matthew Marge, and Mohit Singhai. 2005. Evaluating evaluation

methods for generation in the presence of variation. In international conference on

intelligent text processing and computational linguistics, pages 341–351. Springer.

Amanda Stent, Rashmi Prasad, and Marilyn Walker. 2004. Trainable sentence plan-

ning for complex information presentation in spoken dialog systems. In Pro-

ceedings of the 42nd annual meeting on association for computational linguistics,

page 79. Association for Computational Linguistics.

264

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning

with neural networks. Advances in neural information processing systems, 27.

Richard S Sutton and Andrew G Barto. 2018. Reinforcement Learning: An Intro-

duction, second edition. MIT press.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kul-

shreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,

et al. 2022. Lamda: Language models for dialog applications. arXiv preprint

arXiv:2201.08239.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu, and Hang Li. 2016. Modeling

coverage for neural machine translation. In Proceedings of the 54th Annual Meet-

ing of the Association for Computational Linguistics (Volume 1: Long Papers),

volume 1, pages 76–85.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In

Proceedings of the 31st International Conference on Neural Information Process-

ing Systems, pages 6000–6010. Curran Associates Inc.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. 2015. Cider:

Consensus-based image description evaluation. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages 4566–4575.

Ashwin Vijayakumar, Michael Cogswell, Ramprasaath Selvaraju, Qing Sun, Stefan

Lee, David Crandall, and Dhruv Batra. 2018. Diverse beam search for improved

description of complex scenes. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 32(1).

265

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks. In

Advances in Neural Information Processing Systems, pages 2692–2700.

Marilyn Walker, Amanda Stent, François Mairesse, and Rashmi Prasad. 2007. In-

dividual and domain adaptation in sentence planning for dialogue. Journal of

Artificial Intelligence Research, 30:413–456.

Peng Wang, Junyang Lin, An Yang, Chang Zhou, Yichang Zhang, Jingren Zhou, and

Hongxia Yang. 2021. Sketch and refine: Towards faithful and informative table-

to-text generation. In Findings of the Association for Computational Linguistics:

ACL-IJCNLP 2021, pages 4831–4843.

Qingzhong Wang and Antoni B Chan. 2019. Describing like humans: on diversity

in image captioning. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 4195–4203.

Zongsheng Wang, Yunzhi Bai, Bowen Wu, Zhen Xu, Zhuoran Wang, and Baoxun

Wang. 2018. A prospective-performance network to alleviate myopia in beam

search for response generation. In Proceedings of the 27th International Conference

on Computational Linguistics, pages 3608–3618.

Tsung-Hsien Wen, Milica Gašić, Dongho Kim, Nikola Mrkšić, Pei hao Su, David

Vandyke, and Steve Young. 2015a. Stochastic language generation in dialogue

using recurrent neural networks with convolutional sentence reranking. In In

Proceedings of SIGdial. Association for Computational Linguistics.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Lina M. Rojas-Barahona, Pei-Hao

Su, David Vandyke, and Steve Young. 2016. Multi-domain neural network lan-

guage generation for spoken dialogue systems. In Proceedings of the 2016 Confer-

266

ence of the North American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies, pages 120–129.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-Hao Su, David Vandyke, and

Steve Young. 2015b. Semantically conditioned lstm-based natural language gen-

eration for spoken dialogue systems. In Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing, pages 1711–1721.

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage chal-

lenge corpus for sentence understanding through inference. In Proceedings of the

2018 Conference of the North American Chapter of the Association for Compu-

tational Linguistics: Human Language Technologies, Volume 1 (Long Papers),

pages 1112–1122.

Sam Wiseman, Stuart Shieber, and Alexander Rush. 2017. Challenges in data-to-

document generation. In Proceedings of the 2017 Conference on Empirical Methods

in Natural Language Processing, pages 2253–2263.

Sam Wiseman, Stuart Shieber, and Alexander Rush. 2018. Learning neural tem-

plates for text generation. In Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing, pages 3174–3187.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,

Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, et al.

2020. Transformers: State-of-the-art natural language processing. In Proceedings

of the 2020 Conference on Empirical Methods in Natural Language Processing:

System Demonstrations, pages 38–45.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,

267

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff

Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan

Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George

Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex

Rudnick, Oriol Vinyals, Gregory S. Corrado, Macduff Hughes, and Jeffrey Dean.

2016. Google’s neural machine translation system: Bridging the gap between

human and machine translation. arXiv preprint arXiv:1609.08144.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya

Siddhant, Aditya Barua, and Colin Raffel. 2021. mt5: A massively multilingual

pre-trained text-to-text transformer. In Proceedings of the 2021 Conference of

the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, pages 483–498.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,

and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language

understanding. Advances in neural information processing systems, 32.

Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara, Raghav Gupta, Jianguo Zhang,

and Jindong Chen. 2020. Multiwoz 2.2: A dialogue dataset with additional anno-

tation corrections and state tracking baselines. In Proceedings of the 2nd Workshop

on Natural Language Processing for Conversational AI, pages 109–117.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi.

2020a. Bertscore: Evaluating text generation with bert. In International Confer-

ence on Learning Representations.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao,

268

Jianfeng Gao, Jingjing Liu, and William B Dolan. 2020b. Dialogpt: Large-scale

generative pre-training for conversational response generation. In Proceedings of

the 58th Annual Meeting of the Association for Computational Linguistics: System

Demonstrations, pages 270–278.

Xueliang Zhao, Wei Wu, Can Xu, Chongyang Tao, Dongyan Zhao, and Rui Yan.

2020. Knowledge-grounded dialogue generation with pre-trained language models.

In Proceedings of the 2020 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pages 3377–3390.

269

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Natural Language Generation Approaches
	Semantic Control in NLG
	Stylistic Variation in NLG
	Automatic Metrics for Data-to-Text NLG Evaluation
	Contributions
	Overview of the Thesis

	Data-to-Text NLG Corpora
	E2E Dataset
	ViGGO: A Conversational Data-to-Text Corpus
	Dataset Overview
	Data Collection
	Training/Validation/Test Split

	ViGGO vs. E2E
	Discussion
	Summary

	Automatic Semantic Aligning
	Heuristic Slot Aligner
	Boolean Slots
	Numeric Slots
	Scalar Slots
	Categorical Slots
	List Slots

	Aligning Tasks
	Finding Slot Alignment
	Training Data Denoising
	Training Data Augmentation
	Cross-Domain Dataset Replication
	Utterance Reranking
	Evaluation of Slot Realization Accuracy

	Slot Aligner Evaluation
	Summary

	Sequence-to-Sequence Models for NLG
	Encoder-Decoder Architecture
	Recurrent Neural Network With Attention
	Transformer

	Adaptive Delexicalization
	Semantic Utterance Reranking
	Model Ensembling
	Evaluation
	System Configuration
	E2E Dataset Experiments
	ViGGO Dataset Experiments

	Summary

	Stylistic Control
	Stylistic Selection
	Stylistic Variation in the E2E Dataset
	Discourse Marker Weighting

	Input Data Annotation
	Contrastive Relation
	Emphasis

	Evaluation
	Style Subsets
	Data Annotation
	Aggregation

	Summary

	Semantically Attention-Guided Decoding for Data-to-Text NLG
	Semantic Attention-Guided Decoding
	Interpreting Cross-Attention
	Slot Mention Tracking
	Semantic Reranking

	Evaluation
	Data Preprocessing
	Experimental Setup
	Automatic Evaluation Metrics
	SeA-GuiDe Parameter Tuning
	Effects of Beam Size on SeA-GuiDe

	Results
	SeA-GuiDe Performance
	Cross-Model Robustness
	Domain Transferability
	Slot Error Detection Examples

	Discussion
	Inference Performance
	Limitations of SeA-GuiDe

	Summary

	Diversity-Promoting NLG Inference
	Motivation
	Batch Monte-Carlo Tree Search Inference
	MCTS Algorithm
	Batch Modification
	Discussion

	Summary

	Referenceless Automatic Evaluation Metric for Data-to-Text NLG
	Referenceless Metric Components
	Syntactic Fluency
	Semantic Accuracy
	Other Aspects of Generated Utterances

	Reference-Based Metrics With Pseudo-References
	Pseudo-Reference Perturbations
	Evaluation

	Slot Aligner-Based Semantic Accuracy Metric
	Evaluation

	Discussion

	Batch-MCTS Inference Evaluation
	Experimental Setup
	MCTS Parameters
	MCTS State Evaluation Metric
	Data-to-Text NLG Model
	Datasets

	Evaluation
	Baselines
	Automatic Metrics
	Diversity Metrics
	Human Evaluation Criteria

	Standard Inference Method Experiments
	Semantics vs. Diversity
	Other Diversity Metrics
	Summary

	Batch-MCTS Experiments
	MCTS Metric Optimization
	PPL With BERTScore
	PPL With BLEURT
	PPL With SER
	Adding Model's Own PPL
	Replacing GPT-2 PPL With Model's Own PPL
	Human Evaluation
	Qualitative Analysis
	E2E Comparison

	Discussion

	Conclusions and Future Work
	Conclusions
	Overview
	Semantic Accuracy
	Evaluation Metrics and Diversity
	Limitations of Our Work

	Future Work
	Modifications to Batch-MCTS
	Reinforcement Learning With Batch-MCTS

