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a b s t r a c t

The analytical representation of dynamic soil reaction to a laterally-loaded pile using 3D continuum
modeling is revisited. The governing elastodynamic Navier equations are simplified by setting the dy-
namic vertical normal stresses in the soil equal to zero, which uncouples the equilibrium in vertical and
horizontal directions and allows a closed-form solution to be obtained. This physically motivated ap-
proximation, correctly conforming to the existence of a free surface, was not exploited in earlier studies
by Tajimi, Nogami and Novak and leads to a weaker dependence of soil response to Poisson's ratio which
is in agreement with numerical solutions found in literature. The stress and displacement fields in the
soil and the associated reaction to an arbitrary harmonic pile displacement are derived analytically using
pertinent displacement potentials and eigenvalue expansions over the vertical coordinate. Both infinitely
long piles and piles of finite length are considered. Results are presented in terms of dimensionless
parameters and graphs that highlight salient aspects of the problem. A detailed discussion on wave
propagation and cutoff frequencies based on the analytical findings is provided. A new dimensionless
frequency parameter is introduced to demonstrate that the popular plane-strain model yields realistic
values for soil reaction only at high frequencies and low Poisson's ratios.

Published by Elsevier Ltd.
1. Introduction

The degree of accuracy in predicting the lateral response of a
pile subject to dynamic loading is strongly dependent on the re-
action of the surrounding soil to the pile motion. Given its sim-
plicity and versatility, the most well-known model capturing the
soil reaction is described in the pioneering work of Baranov [1]
and revisited by Novak [2]. The basic model assumes no variation
in response along the vertical coordinate, hence treating the soil
medium around the pile as a series of uncoupled incompressible
horizontal slices in the analysis. Consequently, the Baranov–Novak
model can be viewed as a plane strain case. Although this model
yields soil reactions in closed form, it has been shown that reliable
predictions are only obtained in the high frequency range.

To address the limitation identified above, the current study
seeks to provide a solution that builds upon the work of Tajimi [3],
Nogami and Novak [4], and Saitoh and Watanabe [5] which handle
the problem in three dimensions. Our pile is considered a vertical
cylinder and the soil is modeled as a continuum, taking into ac-
count all three components of soil displacement under the as-
sumption of zero dynamic vertical normal stresses. A similar as-
sumption was adopted in earlier studies [6,7], however, proposed
solutions were limited to the kinematic response of laterally loa-
ded piles. This physically motivated simplification is particularly
attractive, as it respects the boundary condition associated with
the presence of a stress – free soil surface and reduces the number
of governing equations to two – instead of three as found in the
classical elastodynamic theory [8,9]. Contrary to early studies
where the vertical soil displacement was set equal to zero [3,4,10],
in this work the assumption will be less restrictive: vertical soil
displacement is small, yet not zero. As shown in the following, this
approach overcomes the singularities of earlier models in the
important case of incompressible soil.

The equations of motion in the soil medium are then solved
analytically through pertinent eigen-expansions. Closed-form so-
lutions as a function of pile displacement amplitude are obtained
for the displacement field in the soil and the soil reaction to lateral
pile motion. The soil reaction is expressed in terms of a di-
mensionless soil reaction factor ( *)R which depends on pile slen-
derness, soil material damping, Poisson's ratio and excitation fre-
quency. The effect of these parameters on the reaction factor are
explored analytically and presented in dimensionless graphs. In
the dynamic regime, the real part of the reaction factor describes
the stiffness of the soil layer and the imaginary part describes the
corresponding damping. The reaction of the soil layer can be di-
rectly employed in the solution of the soil-pile interaction pro-
blems based on the boundary conditions at the pile head and tip,
and can be easily calculated for any given pile displacement profile
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Nomenclature

A B C D, , , integration constants depending on boundary con-
ditions and type of loading

d pile diameter
Es Young’s modulus of soil
Gs, *Gs real- and complex-valued shear modulus of soil
H thickness of soil layer
m̃s mass of an infinitesimal soil element in cylindrical

coordinates ( )θ ρr dr d dz s
p horizontal soil reaction to pile motion
qm soil frequency-dependent parameter
r radial or horizontal coordinate
t time variable
Vs, *Vs real-valued and complex-valued soil shear wave pro-

pagation velocity
w lateral pile displacement
Wm pile response Fourier coefficients

θu u,r soil displacement components (radial, tangential)
z vertical coordinate

Greek symbols

a a, m positive real-valued number (eigenvalues)
βs soil material damping
βr radiation damping
η ησ,s compressibility parameters
νs soil Poisson's ratio
ρs soil mass density
σ σ σθ, ,r z normal stresses in soil
τ τ τθ θ, ,z zr r shear stresses in soil
Φ Ψ, potential functions
ω cyclic excitation frequency
ω ω,m n m-th resonant and natural frequency
∇ Laplacian operator

Fig. 1. Problem considered: harmonically excited cylindrical vertical pile em-
bedded in soil stratum overlying a rigid base.
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[11]. Soil–pile interaction analysis has also been undertaken and
will be presented in a companion study. Empirical expressions for
dynamic soil reaction to lateral pile motion have been proposed,
among others, by Roesset [12], Dobry et al. [13], Gazetas and Dobry
[14,15], and Mylonakis [16]. Summaries of available information
are provided in Tajimi [17], Pender [18], Gazetas and Mylonakis
[19], Syngros [20], Guo [21] and more recently by Saitoh and
Watanabe [5] and Shadlou and Bhattacharya [22]. Additional in-
formation on the Tajimi model is provided by Akiyoshi [23], Ve-
letsos and Younan [6], Chau and Yang [24], Latini et al. [25], My-
lonakis [36], Anoyatis and Mylonakis [27] and Novak and Nogami
[37].

The scope of this paper is multi-fold: (i) to review the plane
strain model of Baranov–Novak and discuss under which condi-
tions its predictions are realistic; (ii) to derive an improved three-
dimensional elastodynamic solution with an emphasis on the
performance at high values of soil Poisson's ratio; (iii) to explain
the wave propagation mechanisms that develop in soil under the
influence of harmonic lateral pile oscillations; (iv) to extend the
solution to the important case of an infinitely long pile; (v) to
provide novel normalization schemes for soil reaction that lead to
results approaching a single master curve, as well as simplified
formulae that can be used in applications. Upon successful deri-
vation, the improved model will be used in a follow-up paper to
analyze the lateral harmonic oscillations of a single pile.
2. Problem definition

The soil–pile system considered in this study is described in
cylindrical coordinates as shown in Fig. 1: a vertical cylindrical pile
is embedded in a homogeneous soil layer overlying a rigid bedrock
and is subjected to a harmonic lateral movement

ω( ) = ( ) ωw z t w z e, , i t , where t is the time variable, ω is the cyclic
excitation frequency and i is the imaginary number ( = −i 1 ). The
soil layer of thickness H is treated as a continuum and is described
by its Young’s modulus Es, mass density ρs and Poisson’s ratio νs. In
dynamic analyses the soil is treated as a dissipative material with
hysteretic damping βs expressed through a complex-valued
Young's modulus ( )β* = +E E i1 2s s s . Note that for the problem at
hand a perfectly bounded interface between pile and soil is as-
sumed, although this assumption can be relaxed [26].
3. Model development

The equilibrium of forces acting on an arbitrary soil element
along the radial and tangential direction is expressed in terms of
Cauchy stresses as:

σ τ τ
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where θ= ( )u u r z t, , ,r r and θ= ( )θ ϑu u r z t, , , are the horizontal and
tangential soil displacements, σ σ θ= ( )r z t, , ,r r and σ σ θ= ( )θ θ r z t, , ,
are the normal stresses acting along r and θ , respectively;
τ τ θ= ( )r z t, , ,rz rz is the shear stress along z and perpendicular to r;
τ τ θ= ( )θ θ r z t, , ,r r is the shear stress along θ and perpendicular to r;
and τ τ θ= ( )θ θ r z t, , ,z z is the shear stress along z and perpendicular
to θ . Note that the last term in each equation associated with the
soil mass density ρs is accounting for the inertia of the soil in radial
and tangential direction under dynamic excitation.

Taking into account stress–strain relations in cylindrical co-
ordinates (see Appendix A) and considering harmonic soil
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response of the form θ ω= ( ) ωu u r z e, , ,r r
i t and θ ω= ( )θ θ

ωu u r z e, , , i t ,
Eq. (1) can be rewritten in terms of displacements in the following
form:
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where β* = +V V i1 2s s s is the complex-valued shear wave
propagation velocity in the soil.

In the above equations ηs is a dimensionless compressibility
coefficient which is solely a function of soil Poisson's ratio and is
associated with the effect of vertical soil displacement on stresses.
It is noted that unlike the vertical response mode where a number
of stress–displacement terms are set equal to zero in a corre-
sponding formulation [27], in the solution at hand setting σz equal
to zero is the only approximation involved. It is also worth men-
tioning that due to this approximation shear stress τrz ceases to be
zero at the soil surface, yet this violation typically has a minor
effect on the solution [6,7,11]. Additional discussion is provided in
the ensuing.

Following Graff [8], a degenerate Helmholtz decomposition
scheme is applied to uncouple the above set of partial differential
equations. To this end, horizontal and tangential displacements are
expressed in terms of two potential functions Φ and Ψ as shown
below:
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Substituting Eqs. (3) in (2) leads to the following new set of
uncoupled differential equations
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2 is the Laplacian operator. The solution

to the above equations can be obtained using the method of se-
paration of variables which allows the transformation of the par-
tial differential equations into a set of ordinary differential equa-
tions which are easier to handle. In the realm of this approach,
potential functions Φ and Ψ can be expressed as products of three
modular functions i.e., Φ θ Θ θ( ) = ( ) ( ) ( )r z R r Z z, , 1 1 1 and
Ψ θ Θ θ( ) = ( ) ( ) ( )r z R r Z z, , 2 2 2 , which yield the following equations:
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The above mathematical representation leads to the decom-
position of the partial differential equations into three ordinary
differential equations in r , θ and z:
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from which it arises that
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a and n being positive real numbers; q has dimensions of 1/length
and can be viewed as an attenuation parameter (wavenumber) for
radially propagating waves. Upon obtaining the general solutions
to the above equations [28], the potential functions are written as
follows:
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where ()In and ()Kn are the modified Bessel functions of the n-th
order and the first and second kind, respectively. Ai, Bi

( = …i 1,2,3, , 6) are constants to be determined from the boundary
conditions of the problem.

To ensure bounded response at large radial distances from the
pile ( → ∞)r , constants A1 and A4 associated with the modified
Bessel functions ()In must vanish. Considering the direction of pile
loading to be along θ = 0, constants A2 and B5 must vanish as well
to satisfy the conditions of zero radial and tangential displacement
components , ur and θu , at θ π= /2 and θ = 0, respectively. This
eliminates the trigonometric functions ( )sin and ( )cos in Eqs. (8a)
and (8b), respectively. This is in accordance with a positive dis-
placement ur ( >u 0r ) in the range π θ π− ≤ ≤/2 /2 and a negative
displacement ( <u 0r ) in the range π θ π≤ ≤/2 3 /2. Likewise, the
tangential displacement is positive ( >θu 0) in the range θ π≤ ≤0
and negative ( <θu 0) in the range π θ π≤ ≤ 2 . The above are valid
for =n 1.

The additional conditions of zero soil displacements at the base
of the soil layer and stress-free soil surface ( τ =θ 0r ) enforce

= =A A 03 6 and =aHcos 0 which, in turn, yields

π= ( − ) = ( )a
H

m m
2

2 1 , 1, 2, 3, ... 9m

where am are the eigenvalues of the system with
< < … <a a a aN1 2 3 (N being the total number of modes employed

in the analysis).
In light of the above, Eq. (8) simplify to

Φ θ= ( ) ( )B K q r a zcos sin 10am m m2 1

Ψ θ η= ( ) ( )A K q r a zsin sin 10bm m s m5 1

The differential equation with respect to z (Eq. (6c)) is re-
cognized as a Sturm–Liouville ((S–L)) equation with constant
coefficients. Since parameter a is not specified, finding the values
for which nontrivial solutions exist is part of the (S–L) theory. Such
values are called the eigenvalues of the boundary-value problem
and the corresponding solutions for function ( )Z z are the eigen-
functions (i.e., the "soil modes"). It is important to note that these
modes are not necessarily associated with dynamic soil response
(i.e., they are merely an orthogonal set of functions) and exist even



Fig. 2. First five modes of soil layer due to lateral pile motion.
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in the static case. Corresponding to each eigenvalue am a unique
eigenfunction Φ ( )zm exists which is called the m-th fundamental
solution. For the current problem the trigonometric functions

a zsin m are the normal modes (eigenfunctions)

Φ ( ) = ( )z sina z 11m m

which satisfy the ordinary differential equation (Eq. (6c)) with
respect to the spatial variable z and the boundary conditions of the
problem. The first five modes of vibration are depicted in Fig. 2,
where the points of zero displacement are the nodes of vibration
and the points of maximum vibration are the corresponding
antinodes.

The normal modes have the important property of orthogon-
ality which is described mathematically as follows

∫ Φ Φ( ) ( ) = ≠ ( = ) ( )z z dz m k m k0, , 1, 2, 3, ... 12
H

k m
0

It is anticipated that the solution should be obtained by the
superposition of all particular solutions (modes). Thus soil dis-
placement components ur and θu should be expressed as an in-
finite sum of Fourier terms including the soil modes Φ m and a term

θUr m, associated with the spatial variable r . Accordingly,

∑ ω Φ∝ ( ) ( )
( )

θ θ
=

∞

u U r z,
13

r m
m

r m m,
1

,

The solution will be obtained as a superposition of the parti-
cular solutions (“modes”, Eqs 15). Since soil modes form an or-
thogonal set, pile displacement w can be expressed through a
normal-mode expansion similar to soil response (Eq. (13))

∑ω ω Φ( ) = ( ) ( )
( )=

∞

w z W z,
14m

m m
1

where the frequency – varying coefficients Wm are measured in
units of length. Substituting Eq. (10) into Eq. (3), imposing com-
patibility of displacements in horizontal and tangential direction
i.e., ω ω( ) = ( )u d z w z/2,0, , ,r and π ω ω( ) = − ( )θu d z w z/2, /2, , , and
taking into account the orthogonality of soil modes, displacement
components ur , θu are obtained as
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which satisfy the symmetry conditions π π( − ) = ( )u r z u r z, /2, , /2,r r

and π( ) = ( )u r z u r z,0, , ,r r , where
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Am and Bm being the dimensionless constants

[ ] ( )η η η
=

( ) + ( )
( ) ( ) + ( ) ( ) + ( ) 17a

A
K s s K s

s K s K s s K s s K s K s
2

m
m m m

m m m s m s m s m m m

1 0

0 1 0 0 1

[ ] ( )
η η η

η η η

=
( ) + ( )

( ) ( ) + ( ) ( ) + ( ) 17b

B

K s s K s
s K s K s s K s s K s K s

2

m

m s m s m s

m m m s m s m s m m m

1 0

0 1 0 0 1

where =s q d/2m m (Eq. (7)) is a dimensionless parameter.

3.1. Compressibility coefficient

Mention has already been made to the study of Nogami and
Novak [4] where the vertical soil displacement uz was set equal to
zero and, thus, the corresponding normal strain was ε = 0z . This
assumption leads to the following expression for the compressi-
bility factor

( )
η

ν
ν

=
−

− ( )
2 1

1 2 18s
s

s

which expresses the square root of the ratio of the constrained
modulus M ((p-wave modulus)) to the shear modulus of the soil
material (i.e., η = M G/s s ). A problem arising from the use of this
equation is the sensitivity to Poisson's ratio, as ηs becomes in-
finitely large when νs approaches 0.5. This behavior is spurious
(e.g. leads to zero values of wavenumber q in Eq. (7)) and has not
been observed in rigorous numerical solutions of such problems,
e.g., [6,29,30]. It is important to note that despite that uz is as-
sumed to be zero, the specific solution is still three dimensional
(i.e. not plane strain) as the variation of the response with respect
to the vertical coordinate ( )z is finite – due to the shear coupling
among the various slices.

The alternative assumption of σ = 0z , [11], which complies with
a stress-free soil surface leads to finite vertical displacement which
yields:

η ν
ν

= −
− ( )

2
1 19s

s

s

Eqs. (18) and (19) are compared graphically in Fig. 3. Except



G. Anoyatis et al. / Soil Dynamics and Earthquake Engineering 87 (2016) 164–179168
where specifically indicated otherwise, the solutions presented
hereafter are based on Eq. (19).
4. Soil reaction

At the soil–pile interface, the amplitude of horizontal soil re-
action ω( )p z, resulting from the pile motion is expressed as
[4,6,26]

⎡⎣ ⎤⎦∫ω σ θ τ θ θ( ) = − − ( ) ( )
π

θp z d d, cos sin /2 20r r
0

2

,0 ,0

where σ σ θ ω= ( )d z/2, , ,r r,0 and τ τ θ ω= ( )θ θ d z/2, , ,r r,0 are the max-
imum radial normal stress and shear stress, respectively, acting at
the periphery of the pile
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/2 21
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/2 22
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where the dimensionless coefficients Sm and Tm are given by the
following expressions:
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Substituting the above expressions into Eq. (20) and noting that

∫ ∫θ θ θ θ π= =
π π

d dcos sin
0

2 2
0

2 2 , the horizontal soil reaction can be
written in the alternative form

∑ω π ω ω Φ( ) = * * ( ) ( ) ( )
( )=

∞

p z G R W z,
24

s
m

m m m
1

where *Rm is a complex valued soil reaction factor associated with
the m-th soil mode:
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

η η η η η η
η η η

* =
( ) + ( ) ( ) + ( ) + ( ) ( )

( ) ( ) + ( ) ( ) + ( ) ( )
σR s

K s s K s K s K s s K s K s

s K s K s s K s s K s K s

2 2

25
m m

m s m s m s m s m m m m s

m m m s m s m s m m m

2
2

1 0 1
2

1 0 1

0 1 0 0 1
ηs in Eq. (25) is denoted the secondary compressibility coeffi-
cient and is expressed as:

η
ν

=
− ( )σ
2

1 26s

Note that Eq. (26) corresponds to the compressibility factor ηs
adopted by Anoyatis and Mylonakis [27] for the axially-load pro-
blem. It is also important to note that in the alternative solution of
Nogami and Novak [4] the reaction factor *Rm is obtained from the
above expression using η η=σ s, where ηs is given from Eq. (18). In
both solutions the soil reaction factor depends mainly on soil
parameters (i.e., ν β V G, , ,s s s s), the excitation frequency ω and on
only one pile parameter, which is the diameter d.
In the dynamic regime, the complex-valued soil reaction factor
can be cast in the following equivalent forms

( ) ( ) ( )ω β* = * + * = ( ) + ( )R R i R R iReal Imaginary 1 2 27m m m m m

where ω( ) = ( * )R Real Rm m is the dynamic storage stiffness and
β ω( ) = ( * )R Imaginary R2 m m m is the corresponding loss stiffness. The

dimensionless parameter β = ( * ) ( * )Imaginary R Real R/2m m m defines an
equivalent damping ratio, which is analogous to percentage of
critical damping in a simple oscillator [31]. ω( )Rm can be inter-
preted as a frequency dependent spring and β ω ω( )R2 /m m as a
dashpot attached in parallel to the spring. Note that the damping
ratio βm is different from the soil material damping βs, and can be
alternatively expressed as ( )β β β= +m s r m

, where ( )βr m
, is the ra-

diation damping ratio associated with the m-th propagating mode.
β β≈m s is a special case which is valid only for frequencies in the
range ω ω< <0 m.

Recalling Eq. (25) soil reaction is expressed as
ω π( ) = ∑ ( )p z R G w z, m s . This shows that Rm can be viewed as a

dimensionless factor which modifies the soil stiffness Gs due to the
presence of the pile. In addition, it is clear that Rm is mode-de-
pendent which indicates that each mode has a different influence
on the soil stiffness. Expressing the soil reaction in the simple form

=p k w [k can be viewed as a Winkler modulus (in units of force
per length square)] allows us to write π= ( )k R Gm s, which shows
that an average depth-independent Winkle modulus multiplied by
the profile of displacement at the soil-pile interface yields the soil
reaction profile.
5. Wave propagation

When a pile oscillates energy is transmitted to the soil. Part of
this energy is stored in the soil in the form of dynamic deforma-
tions and the remaining part is lost, e.g., being transformed into
heat (material damping) or radiating to infinity in the form of
stress waves (radiation damping). An initial discussion presented
below treats the vertical and horizontal direction separately – in-
vestigating the contribution of each mode to the wave propaga-
tion, followed by a presentation of the combined wave effect.

5.1. Vertical direction

In vertical direction wave propagation is associated with the
term ωa z esin m
i t . This term describes an oscillating motion of the

m-th mode, which is of a stationary nature in space (i.e., along the
vertical axis z) and varies with time t . Using trivial mathematical
procedures, the above term may be rewritten in the alternative
form ( − )ω ω− ( − ) ( + )i e e /2i a z t i a z tm m . This equivalent representation
shows that each exponent represents a disturbance propagating in
the vertical direction. The first exponent describes a wave travel-
ing from the soil surface to the base, while the second term is
associated with a wave that follows the reverse path. Using the
principle of superposition these two opposite directional waves
which have the same frequency ω, wavenumber am and amplitude
form a standing wave. This wave does not travel vertically, but
stands still and oscillates horizontally. Hereby each mode m forms



Fig. 4. Schematic representation of the frequency spectrum in the m-th mode.

Fig. 5. Frequency spectrum for the five first modes in an undamped and a damped
soil medium.

Fig. 3. Variation of compressibility factor with Poisson's ratio.
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a vertically varying disturbance (dynamic deformation) which
varies with time. This not a traveling wave, thus no loss of energy
in terms of radiation damping occurs.

It can be easily deduced that at depths
= ( − ) ( − )Z H k m2 1 / 2 1m k, the amplitude of the motion is always

zero for the mode examined and these points are called the nodes.
Note that the index m refers to the m-th mode and the index k to
the number of nodes which appear in length H of the same mode.
Evidently, only one node exists at =z 0 for the 1-st mode ( = )m 1
whereas for the 2-nd mode ( = )m 2 , two nodes appear at =z 0 and

=z H2 /3, and so on (Fig. 2). Due to the boundary condition at the
base, the location =z 0 represents a node in all modes.

Analogously, depths described by = ( − ) ( − )Z H k m2 1 / 2 1m k,
are called antinodes and the wave amplitude is maximum. The
distance between two successive nodes or antinodes is equal to
the wavelength π a2 / m or ( − )H m4 / 2 1 for each mode. Note that
when rewriting the superscript of the exponential functions as

( + )ia z V tm m or − ( − )ia z V tm m , the term ω=V a/m m with dimen-
sions of velocity arises, which stands for the phase velocity of the
wave associated with a given mode m. This indicates that for a
given frequency ω each harmonic wave propagates with a mode-
specific velocity which is different for each mode. This reveals the
development of a distortion mechanism called modal dispersion
as the propagation velocity is not the same for all modes.

In conclusion, at each depth in the soil layer influx and efflux of
energy occurs due to upward and downward traveling waves. For
each mode these opposite directional waves form a standing wave,
which is characterized by nodes and anti-nodes. At the nodes in-
flux and efflux of kinetic energy is balanced, hence no motion
occurs. Nevertheless, strain still develops and changes with time.
The response of the soil is computed by superposition of N modes
(or a superposition of N standing waves). Consequently motion
develops at all depths.

5.2. Horizontal direction

In the horizontal direction the wave propagation is associated
with the term θUr m, (Eqs. (13) and (15)) and is mathematically
represented through the Bessel functions ( )K0 and ( )K1 and their
argument qm (Eq. 7). The variation of qm with frequency is sche-
matically illustrated in Figs. 4 and 5 for an undamped (β = 0s ) and
a damped ( ≠β 0s ) medium.

In absence of soil material damping (i.e., for an undamped
medium as shown in Fig. 4(a)), Eq. (7) may be rewritten as
η
ω ω= −

( )
q

V
1

28m
s s

m
2 2

where ω ω= ( − )m2 1m 1 and ω π= V H/2s1 are the m-th and 1-st
resonant frequencies of the system, respectively.

For ω ω< m, qm is real valued and decreases with increasing
frequency. At ω ω= m, qm drops to zero and a further increase in
frequency ( ω ω> m) yields purely imaginary wavenumbers

= ̅q iqm m, which increase with increasing frequency ( ̅qm being a real
number). ωm represent the transition from propagation to non-
propagation and is called the cutoff frequency of the m-th mode or
m-th resonant frequent of the system. Note that ω1 coincides with
the natural frequency of the deposit in shearing oscillations. No
wave propagation (i.e., radiation of energy) is observed for lower
frequencies. As shown later, ω1 is associated with a significant drop
in stiffness and an increase in damping due to the emergence of



Fig. 6. Effect of modes and pile slenderness on static soil resistance factor.
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traveling waves. For ω ω< m, θUr m, (Eqs. (13) and (15)) is responsible
for a monotonic decrease in soil response with increasing hor-
izontal distance from the pile axis and is not associated with wave
propagation in the medium. For ω ω> m, stress waves associated
with the m-th mode emerge from the soil-pile interface and pro-
pagate horizontally in the soil medium. At ω ω= m, =q 0m and
yields an infinite wavelength λ ( π= )q2 / m which for a finite fre-
quency ωm yields an infinite phase velocity V ( ω= )q/ m . This in-
dicates that at any resonant frequency ωm there is no spatial var-
iation in motion in r direction for the m-th mode. Since

ω ω( = ) =θU 1r m m, (Eq. (15)), the system undergoes harmonic mo-
tions and the contribution of the m-th mode to the soil vibration
can be expressed using the following simplified equation:

ω ω θ θ ω Φ( = ) = ( ) ( ) ( ) ( )θ
ωu W z ecos , sin 29r m m m m

i t
,

In presence of material damping βs, in the soil (i.e., damped
medium as shown in Fig. 4(b)), Eq. (7) may be approximated as
follows:

   
( )η

ω ω β ω≈ − +

( )

q
V

i
1

2

30

m
s s

m

real part

s

imaginary part

2 2
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Contrary to the undamped medium, the above equation yields
non-real-valued wavenumbers qm, even in the frequency range of
ω ω< m. Complex valued wavenumbers for damped soils cause a
monotonic reduction in soil displacement with radial distance,
which is found to be stronger than in an undamped medium. At
ω ω≈ m, ( )Real qm drops to a minimum (non-zero) value. For ω ω> m

the trend is reversed and ( )Real qm increases with frequency. On
the other hand, ( )Imaginary qm always increases with frequency. As
in the case of an undamped medium, for ω ω> m waves associated
with the m-th mode start to emerge from the soil-pile interface
and propagate horizontally in the soil medium, while qm is com-
plex valued instead of purely imaginary.

Fig. 5 presents the frequency spectrum for the first five modes
for an undamped medium and a medium with soil damping
β = 0.05s . Assuming that the complex valued qm can be written as

+ ̅q iqm m, it becomes evident that for a given frequency
< < … <q q q1 2 5 and ̅ > ̅ > … > ̅q q q1 2 5 , for both, an undamped

( β = 0s ) and a damped ( β = 0.05s ) medium.
Undamped medium (Fig. 5): At ω ω= 1, =q 01 while all +q m1

pertaining to higher modes attain positive real values. Further
increase in frequency ( ω ω ω< <1 2) yields a purely imaginary

= ̅q iq1 1, whereas the rest of wavenumbers +q m1 remain real valued.
Now the Bessel functions ( )K of complex argument represent
traveling waves in the radial direction – with an in-phase com-
ponent [ ( )]Re K and an out-of-phase, [ ( )]Im K – which emanate
from the pile periphery and radiate to infinity with continuously
decreasing amplitude. These waves control radiation damping. The
first resonance influences exclusively the first mode, while the
higher modes contribute only to a monotonic attenuation of soil
response with radial distance. An additional increase in frequency
( ω ω ω< <2 3) yields = ̅q iq2 2, which indicates that the second
mode contributes additionally to the loss of energy through ra-
diation. Likewise, with increasing frequency higher modes con-
tribute gradually to wave propagation ( qm gradually becomes
purely imaginary). The total effect is a superposition of all these
waves.

Damped medium (Fig. 5): All curves follow the trend described
in Fig. 4(b). Note that the largest deviation among the damped and
the undamped curve for each mode is observed close to the re-
sonant frequency ωm, and is becoming more significant at higher
modes. For ω ω< m the effect of material damping is minor and the
curves practically coincide.

Based on Eq. (13) and considering the variation in time the soil
response can be expressed as ω Φ∝ ∑ ( ) ( )θ θ

ωu U r z e,r m r m
i t

, , . For an
undamped soil layer ( β = 0s ) the following cases may be
examined:

a) for ω ω< m, the term θUr m, is real valued
b) at ω ω= m (resonances), =θU 1r m,

c) for ω ω> m, the term θUr m, is complex valued

Case (a). : When ω ω< m, the energy transmitted from pile oscil-
lations to the soil is stored in terms of dynamic deformations.

Case (b). : At resonant frequency ω ω= m, no spatial variation in
motion in r direction for the m-th mode exists. Since

ω ω( = ) =θU 1r m m, , the system undergoes only harmonic motions
(i.e., standing waves in the form of Φ ( ) ωz em

i t) and the contribution
of the m-th mode to the soil vibration can be expressed using the
simplified expression provided in Eq. (29).

Case (c). : When ω ω> m, traveling waves develop in the soil and
loss of energy occurs (radiation damping).

Note that in presence of soil material damping (β ≠ 0s ) and for
frequencies ω ω< m loss of energy is due to soil material damping.

6. Plane strain model

The basic assumption of the plane strain model is that all de-
rivatives with respect to the vertical coordinate are zero, thus no



Fig. 7. Effect of Poisson's ration on static soil resistance factor.
Fig. 8. Variation of real and imaginary part of soil reaction with frequency for se-
lected modes; Comparison with Nogami and Novak [4] and plane strain model;

=H d/ 50, β = 0. 01s .
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vertical and shear strains develop on the plane perpendicular to
the pile axis and only an incompressible horizontal soil slice of the
soil medium is considered in the analysis [1]. This model can be
viewed as mathematically accurate for an infinitely-long pile em-
bedded in a half space and subjected to uniform lateral displace-
ment along its whole length [32].

The Baranov–Novak soil restraining action can be expressed
through a complex valued reaction factor *R [32]:

* = ( ) ( ) + ( ) ( ) + ( ) ( )
( ) ( ) + ( ) ( ) + ( ) ( ) ( )

R s
K q K s s K q K s q K q K s

q K q K s s K q K s q s K q K s
4

31
2 1 1 1 0 0 1

0 1 1 0 0 0

where s and q are dimensionless frequency parameters

β η
=

+
=

( )
s

i

i
q

sa
2 1 2

and
32a,bs s

0

and ω= d Va / s0 is a dimensionless frequency and ηs is obtained
from Eq. (18).

Parameter *R is constant with depth and independent of the
conditions at the boundaries of the soil layer. Therefore, it cannot
capture the layer resonances and exhibits an asymptotic behavior
for ω → 0 (Fig. 8). In the low-frequency range the soil reaction
factor decreases rapidly with decreasing frequency and becomes
zero at ω = 0. Accordingly, the model cannot capture static stiff-
ness. This deficiency has been identified in earlier studies [4,16].

Evidently, this is not the case for a pile of finite length em-
bedded in a soil stratum overlying a stiff base. In this study, the soil
reaction varies with depth and its variation depends on the
boundary conditions at the two ends of the pile. Furthermore, it is
sensitive to the natural frequencies of the soil layer. The profile of
soil reaction in terms of dynamic stiffness and damping will be
examined in a companion paper. Note that the present solution
can be reduced to the plane strain model [4] by eliminating the
variation of soil displacement components in the vertical direction
(i.e., setting =a 0 in Eqs. (6c) and (7)).

Despite its simplicity, the plane strain model yields realistic
predictions for frequencies beyond cutoff (see ensuing discussion).
Thus, it can be viewed as a special case of the proposed more
complete solution, restricted to frequencies beyond cutoff. This is
an inherent weakness of the plane strain model, its assumptions
being valid only after wave propagation initiates in the medium
( >a acutoff0 ).

Note that soil reaction derived from the Baranov–Novak plane
strain model is expressed as ω π( ) = * *p G Rs . This is essentially the
complex Winkler modulus (dynamic Winkler spring stiffness and
dashpot) for laterally loaded piles, and will be investigated in a
follow up paper.
7. Numerical results

7.1. Static conditions

The effects of pile length, or equivalently the soil layer thick-
ness, and the selected soil mode on the static soil reaction factor



Fig. 9. Variation of dynamic soil reaction ω( )Rm and damping with frequency for
selected modes; Comparison with Nogami and Novak [4]; =H d/ 50, β = 0. 01s . Fig. 10. Variation of dynamic soil reaction ω( )Rm and damping with frequency for

selected modes; Comparison with Nogami and Novak [4]; =H d/ 50, β = 0. 01s .
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are investigated in Fig. 6. It is shown that for a given L d/ , higher
values of Rm correspond to higher modes. This trend is more
pronounced for short piles ( L d/ o10) where the reaction factor
pertaining to the 10-th mode is approximately five times higher
than the value for the 1-st mode. Comparison with the early so-
lution of Nogami and Novak [4] shows that the results of that
study are always higher than those obtained from the proposed
model. The deviation is stronger with decreasing pile length and
higher modes – the maximum deviation being observed for

=L d/ 5 and =m 10.
In Fig. 7 the effect of Poisson’s ratio on the static reaction factor

is investigated for two selected modes. It is shown that higher
values of vs always correspond to higher Rm for the range of pile
lengths considered. As anticipated, the lower the Poisson’s ratio
the better the agreement with the predictions of the earlier study
([4]).

7.2. Dynamic regime

Results for the soil reaction factor in the dynamic regime ob-
tained from the proposed solution are presented in Figs. 8–14. The
solution of Nogami and Novak [4] is added for comparison. Dif-
ferent representations of the soil reaction factor and frequency are
employed, which shed light into the physics of the problem. Some
general trends are observed: For each mode m, the dynamic soil
reaction factor (i.e., real part of soil reaction) decreases with in-
creasing frequency up to the m-th resonance, while for the same
frequency range, damping (i.e., imaginary part of soil reaction) is
practically unaffected by frequency and depends solely on the soil
material damping (since only “weak” traveling waves associated
with the m-th mode develop in the medium). At m-th resonance
the dynamic reaction Rm attains a local minimum, which is asso-
ciated with a distinct jump in damping due to energy radiation, as
horizontally traveling waves emerge in the soil medium.

The variation of the real and the imaginary part of dynamic soil
reaction with frequency for the first five modes pertaining to a
long pile is shown in Fig. 8. The frequency is normalized by the
first resonant frequency of the system, ω1. A strong dependence of
stiffness (i.e., real part of soil reaction) on the oscillation mode is
observed below the resonant frequency, while at the same fre-
quency range the damping (i.e., imaginary part of soil reaction) is
practically unaffected by frequency and is controlled by soil ma-
terial damping. With increasing frequency the dynamic reaction
factor becomes gradually independent of soil mode, with all
curves practically converging to a single curve at high frequencies.
As anticipated, results from the study of Nogami and Novak [4] are
always higher than those of the proposed model.

An alternative representation of the results presented in Fig. 8
is shown in Fig. 9, where the dynamic soil reaction factor is nor-
malized by its static value (ω = 0), and the loss of energy (ima-
ginary part) is normalized by twice the real part. It is observed that
this type of representation cannot capture the difference between
Nogami and Novak [4] and the proposed solution. This indicates
that the dynamic modifier expressed by the ratio

ω ω( ) ( = )R R/ 0m m is essentially identical in the two solutions and



Fig. 11. Variation of dynamic soil reaction ω( )Rm and damping with frequency for selected modes, pile slenderness and material damping.
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thus independent of the compressibility of the soil medium in the
vertical direction controlled by coefficient ηs.

A perhaps better representation for frequencies in the range
ω ω< <0 m is illustrated in Fig. 10, where the frequency is nor-

malized by a different value for each mode, namely, the m-th re-
sonant frequency for the m-th propagating mode. It is shown that
for dynamic soil reaction all results collapse to a single curve. Also,
damping is practically constant and controlled by soil material
damping.

The combined effect of soil material damping, pile length (layer
thickness) and mode of vibration is investigated in Fig. 11. For a
given L d/ higher values of soil material damping correspond to
higher values of the dynamic soil reaction factor R. This trend is
reversed for damping since β is not a dashpot coefficient but a
dimensionless performance index expressed as the ratio of the
imaginary part of the complex stiffness [ ( *)Imaginary R ] divided by
twice its real part ( R2 ) (Eq. (27)). Considering that the imaginary
part of the stiffness is practically unaffected by soil material
damping for a given pile or soil thickness (i.e., constant L d/ or H d/ ),
the behavior of β is governed by the dynamic stiffness R in the
denominator. Thus, higher dynamic stiffness curves correspond to
lower damping ratios. In addition, the effect of damping is stron-
ger for short piles ( =L d/ 5) in the high frequency range and for
higher modes (e.g., =m 3). At resonance (ω ω= 1 for the 1-st mode,
ω ω= 5 1 for the 3-rd mode) the dynamic reaction Rm attains a
minimum value, with the stronger drop pertaining to the lowest
material damping. Note that for the extreme case of zero material
damping the drop is maximum and Rm would reach zero.

The effect of mode number on dynamic soil reaction and
damping for a short ( =L d/ 10) and a long ( =L d/ 50) pile in an
undamped soil medium is presented in Fig. 12 (a) and (d). Note
that different normalization parameters are used for the frequency
below and beyond resonance: ω= d Va / s0 being the familiar di-
mensionless frequency parameter and ω= d Va /cutoff m m s, being the
cutoff frequency of each mode or m-th resonance. For frequencies
below m-th resonance all curves in Fig. 12 (a) start from unity, as
the dynamic stiffness is normalized with its static value (ω = 0),
and decreases monotonically with frequency. It is shown that
higher modes are associated with a higher decrease in stiffness.
This effect is more pronounced for short piles. Over the same
frequency range, damping is independent of frequency (Fig. 12(b))
and practically equals the soil material damping, i.e., all damping
curves converge to a single curve before resonance. Beyond the
cut-off frequency, waves start to propagate in the medium re-
sulting in a sudden increase in damping (Fig. 12(b)). It is shown
that the dynamic stiffness becomes insensitive to the soil thick-
ness H (Fig. 12(a)). This is an anticipated behavior, since the waves
emitted from the periphery of the oscillating pile tend to spread
out in a horizontal manner without regard for the vertical di-
mension [16,19]. This wave radiation pattern explains the very
good agreement observed between the plane strain model and the



Fig. 12. (a), (d) Effect of number in mode on soil reaction in dynamic regime ( β = 0s ); (b), (c) Schematic representation of variation of dynamic soil reaction and damping
ratio with novel dimensionless frequency parameters.
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Fig. 13. Effect of pile slenderness on soil reaction in dynamic regime; β = 0. 05s , ν = 0. 4s .
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more rigorous solution.
Fig. 12 (c) and (d) depicts the dimensionless soil reaction im-

pedances and suggest that: (i) below cut-off (ω ω< m) spring and
dashpot are best represented in the forms ω ω( ) ( = )R R/ 0m m and β ,
as functions of a / acutoff m0 , ; (ii) beyond cut-off (ω ω> m), stiffness is
best represented in the form ω( )Rm and both parameters as a

function of the dimensionless frequency function ( )−a acutoff m0
2

,
2 1/2

.
Note that the latter parameter has been successfully employed in
the representation of the vertical soil reaction in high frequencies
for the case of an axially-loaded pile in a homogeneous stratum
[27], but has not been explored in the lateral mode.

The effect of pile slenderness – or soil layer thickness – on soil
reaction factor of a damped medium is presented in Fig. 13. The
numerical results are based on the dimensionless frequencies in-
troduced in Fig. 12. Only the first mode is taken into account. For
frequencies below cutoff, longer piles or thicker strata always
correspond to higher values of dynamic soil reaction factor;
whereas for the damping coefficient all curves practically con-
verge. For frequencies beyond cutoff all curves converge into a
single curve and the soil reaction can be well captured by the
plane strain model.

The effect of Poisson's ratio on dynamic soil reaction and
damping ratio in the dynamic regime is investigated in terms of
the 1-st mode for a short and a long pile and shown in Fig. 14. For
frequencies below cutoff, variations in Poisson’s ratio do not affect
stiffness and damping (Fig. 14 a1, b1, c1). For frequencies beyond
cutoff, a minor effect of Poisson’s ratio on damping is observed at
high frequencies (Fig. 14 c2). On the other hand, the results in
Fig. 14 (a2) indicate that the effect is strong on dynamic soil re-
action, with higher values of vs resulting in higher stiffness.
However, an alternative representation of soil reaction shown in
Fig. 14 (b2) (dynamic soil reaction is normalized by static value)
shows that the influence of Poisson's ratio on “pure” dynamic
stiffness is observed only in the high frequency range and can be
considered negligible. The strong variations depicted in Fig. 14 (a2)
are attributed to the effect of Poisson's ratio on the static soil
reaction.
8. Simplified expression for R*(ω)

Results obtained from the proposed model as shown in Fig. 14
(a2) are plotted against predictions from the plane strain model in
Fig. 15 (a). Evidently, the plane strain model yields unrealistic re-
sults for the incompressible case, the parabolic-like decreasing
trend can be attributed to a "trapped mass" effect which is not
exhibited in the 3D model [33]. This is an inherent weakness of the
simpler model and it is suggested to use results obtained from Eq.
(31) only for Poisson's ratios less than 0.4.

In this study, a simplified expression for the soil reaction factor
is presented. Taking the limit ν → 0.5s Eq. (31) attains the
asymptotic form



Fig. 14. Effect of Poisson's ratio on dynamic soil reaction and damping; β = 0. 05s .
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which does not yield realistic results (Fig. 15(a)). Herein, the above
expression is modified to account for Poisson’s ratio. This can be
achieved by introducing a new semi empirical expression for the
parameter s

β η
=

+ ( ) ( )χ
s

i

i

a
2 1 2 34s s

0

which encompasses the compressibility parameter ηs and the
empirical parameter χ which is a function of the Poisson's ratio
only (Table 1). Results from Eqs. (34) and (35) are compared with
those obtained from the proposed model in Fig. 15 (b). The very
good agreement in the range ν< <0.1 0.4s and the improved
performance over the plane strain model for ν = 0.5s can hardly be
overstated.
9. Infinitely-long pile

The above solution can be readily extended to model an in-
finitely-long pile embedded in a half space. Although idealized,
this limit case is useful since the solution for infinitely long piles is
independent of the thickness of the soil layer (H/d) and covers all
flexible piles (actual pile length 4 active length). In this light, one
may assume that the solution for piles of finite length is useful
only for low values of pile slenderness L/d. A discussion on active
pile length is provided in Randolph [34], Velez et al. [35] and



Fig. 15. Effect of Poisson's ratio on dynamic soil reaction ω( )R ; (a) comparison with plane strain model; (b) comparison with simplified (improved) expression; β = 0. 05s .

Table 1
Values of empirical parameter χ as function of Poisson's ratio.

Poisson's ratio νs

0.1 0.2 0.3 0.4 0.5

χ 5 4 3 2 1

Fig. 16. 3D representation of dynamic soil reaction factor ω( )Ra with frequency and
α( )d ; β = 0. 01s , ν = 0. 4s .

Fig. 17. 3D representation of damping ratio βa with frequency and α( )d ; β = 0. 01s ,
ν = 0. 4s .
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Syngros [20].
For an infinitely long pile no distinct eigenmodes exist. Instead,

the solution for soil displacements and stresses is obtained by
integrating over all possible values of α. The soil reaction may be
written as follows:

∫ω π ω ω Φ( ) = * *( ) ( ) ( ) ( )α

∞
p z G R W z da, 35s

0

where *αR is the complex valued soil reaction factor (Eq. (25))
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R s
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2 2
a

s s s s s

s s s

2
2

1 0 1
2

1 0 1

0 1 0 0 1

where =s qd/2, and q obtained from Eq. (7). As for the case of a
soil layer ω( ) = ( *)R Real Ra a is the dynamic storage stiffness and
β = ( *) ( *)Imaginary R Real R/2a a a defines an equivalent damping ratio.

A three-dimensional representation of the dynamic soil reac-
tion and damping ratio as a function of the excitation frequency
and the parameter α is shown in Figs 16 and 17. Note that each
curve corresponds to a soil layer of finite length that is char-
acterized by a fictitious natural frequency, yet these natural fre-
quencies are suppressed upon integration in terms of Eq. (35). In
both graphs all natural frequencies are placed on a straight line for
which ω=a d d V/ s.
10. Conclusions

An approximate three-dimensional solution is developed for
the dynamic reaction of a homogeneous half space and a soil layer
over a rigid base to the laterally oscillating pile. Contrary to the
classical elastodynamic equations which cannot be solved analy-
tically, the proposed approach allows a closed form solution to be
obtained both for an infinitely long pile and a pile of finite length.
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The main findings of this study can be summarized as follows:

a) The main assumption adopted in this study is that the vertical
dynamic normal stress σz is zero. This approximation is com-
patible with the presence of a free surface and leads to a small,
yet finite vertical soil displacement. This overcomes the sen-
sitivity of earlier models to Poisson's ratio for nearly in-
compressible media.

b) From the interference of upward and downward traveling
disturbances associated with each mode m in the soil layer a
standing wave emerges. The total response is a superposition
of m-th standing waves, which is a spatially varying (stands
still and oscillates left and right), but not propagating dis-
turbance (not a traveling), and naturally no loss of energy in
terms of radiation damping occurs. The drop in dynamic soil
reaction and sudden increase in damping are associated with
the natural frequencies of the soil layer and the emergence of
traveling waves in the horizontal direction. The wave propa-
gation phenomenon was thoroughly discussed in this study
and was investigated by means of a frequency spectrum using
the first five modes.

c) A new dimensionless incremental frequency parameter

( )−a acutoff m0
2

,
2 1/2

was introduced for describing the soil reaction
in the high frequency range ( >a am cutoff m, ). It was shown that
this representation allows the reaction factor to exhibit the
same behavior regardless of actual soil layer thickness (or pile
length), value of Poisson’s ratio, soil material damping and
oscillation mode.

d) It was found that the dynamic soil reaction factor below cutoff
frequency is best normalized by the corresponding static
stiffness (ω = 0) as a function of dimensionless frequency ratio
a /acutoff m0 , . Beyond the cutoff frequency, the dynamic stiffness
can be best normalized by the soil’s shear modulus (no special
scheme is needed) and is best expressed as a function of in-
cremental frequency ( )−a acutoff m0

2
,

2 1/2
(Fig. 12). The only excep-

tion exists when investigating the effect of vs on dynamic soil
reaction, where a normalization with the static value is
required over the whole range of frequencies (Fig. 14). These
properties stem from the dependence of the solution on the
cutoff frequency of each mode and the gradual transformation
of the wave field emitted from the pile with increasing
frequency beyond resonance, from three-dimensional to
two-dimensional (plane strain).

e) It was also observed that with increasing frequency the plane
strain solution converges to the more rigorous solution.
However, significant discrepancies in stiffness appear, espe-
cially for short piles, for frequencies below cutoff and for the
particular case of =v 0.5s in the high frequency range.

f) A simple, improved expression for determining dynamic soil
reaction based on an asymptotic form of the classic plane
strain solution which takes into account the compressibility of
the soil was presented in Eqs. (33) and (34).

g) A solution for the dynamic soil reaction factor and the corre-
sponding damping ratio were derived for the case of an in-
finitely long pile in a half space. This is achieved by expressing
the soil response in terms of integrals instead of Fourier series,
as in the case of piles of finite length (Eq. (35)). Soil reaction
was then derived as a superposition of modular soil reactions
for all possible depths of soil layers to form a half space.
Appendix A

In cylindrical coordinates, normal strains are written in terms
of displacements via the well-known equations
ε = ∂
∂ ( )
u
r A.1ar

r

ε = ∂
∂ ( )
u
z A.1bz

z

ε
θ

= + ∂
∂ ( )θ

θu
r r

u1
A.1c

r

Based on the assumption of zero normal stress σz , normal strain
εz is written as

ε ε ε= − ( + ) ( )θK A.2z r0

and normal stresses σr and σθ can be expressed in terms of normal
strains εr and εθ in the form

⎡⎣ ⎤⎦σ η ε ε ε= * ( + ) − ( )σ θ θG 2 A.3ar s r
2

⎡⎣ ⎤⎦σ η ε ε ε= * ( + ) − ( )θ σ θG 2 A.3bs r r
2

where ν ν= ( − )K / 1s s0 is the coefficient of lateral pressure at rest
for an elastic material depending solely on Poisson's ratio; ησ is
also a function of Poisson's ratio, given by Eq. (26) in the present
formulation and Eq. (18) in the work by Tajimi.

Shear strains are written in terms of displacements as
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Shear stresses τ in terms of shear strains γ

τ γ= * ( )θ θG A.5az s z

τ γ= * ( )θ θG A.5br s r

τ γ= * ( )G A.5czr s zr

In light of Eq. (A.2a), the derivatives τ∂ ∂z/rz and τ∂ ∂θ z/z attain the
alternative forms

⎛
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which depend solely on the horizontal displacement components
ur and θu .

Substituting Eqs. (A.2), (A.3), (A.6) into the equilibrium equa-
tions (1), yields the Navier equations (2).
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