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Abstract

In vivo configurations of dsDNA of bacteriophage viruses in a capsid are known to form hexagonal
chromonic liquid crystal phases. This article studies the liquid crystal ordering of viral dsDNA in an
icosahedral capsid, combining the chromonic model with that of liquid crystals with variable degree of
orientation. The scalar order parameter of the latter allows us to distinguish regions of the capsid with
well-ordered DNA from the disordered central core. We employ a state-of-the-art numerical algorithm
based on the finite element method to find equilibrium states of the encapsidated DNA and calculate
the corresponding pressure. With a data-oriented parameter selection strategy, the method yields phase
spaces of the pressure and the radius of the disordered core, in terms of relevant dimensionless parameters,
rendering the proposed algorithm into a preliminary bacteriophage designing tool. The presence of the
order parameter also has the unique role of allowing for non-smooth capsid domains as well as accounting
for knot locations of the DNA.

A Introduction

The discovery of liquid crystal phases formed by DNA in free solution as well as inside viral capsids led to
the chromonic denomination of a class of lyotropic liquid crystals. Different from liquid crystals consisting of
elongated, rod-like molecules found, for instance, in display devices, chromonic liquid crystals consist of disk,
plank-like molecules that form liquid crystal phases with varying concentration. The molecules stack to form
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cylindrical aggregates, and at even higher concentration, the cylinders cluster so their center axes align in a
hexagonal lattice, forming what is known as the hexagonal columnar liquid crystal phase. Experimental and
theoretical studies acquired over the last 30 years [22, 23, 25, 37, 39, 42, 36] have shown that encapsidated
DNA molecules form a columnar hexagonal liquid crystal phase. In particular, liquid crystalline phases in
bacteriophages were first proposed in [16], with an explicit reference to hexagonal packing made in [28] and
since then, consistent data have been accumulating [21, 20, 30, 37].

This article studies the liquid crystal ordering of viral dsDNA in a capsid with axial symmetry. We
use advanced liquid crystal models and their state-of-the-art numerical implementation to determine the
equilibrium structure of the DNA in the capsid and the forces that it sustains. The model is also aimed to
be used as a tool for the design and prediction of viral encapsidated DNA in response to the renewed interest
in bacteriophages in medicine and biotechnology. This goal guides our parameter selection strategy which is
also a main component of the work. The proposed method delivers a parameter phase space for the pressure
and the the size of the inner disordered core.

Icosahedral bacteriophages consist of a protein capsid whose assembly is followed by the packing, by means
of a molecular motor, of a single naked dsDNA molecule [41]. The DNA molecule inside the viral capsid is
found under extreme concentration, between 200 and 800 mg/ml [16], and pressure estimated in the range
between 40 and 60 atmospheres [10, 13]. Three factors contribute to the excess pressure found inside the viral
capsid: the decrease in entropy associated with the confinement imposed by the capsid, the high resistance of
the DNA molecule to bending beyond its persistence length and the self-repulsion of the DNA molecule [38].
At the time of infection the DNA is released by a mechanism that suggests a phase transition, possibly into a
’liquid-like’ state [23, 27, 40]. Both processes, packing and releasing of the genome depend greatly on how the
DNA molecule folds within the viral capsid; however our understanding of this folding remains very limited.

We develop an effective mechanical model of DNA encapsidation based on the theory of hexagonal chromonic
liquid crystals, combined with that of liquid crystals with variable degree of orientation. We characterize the
hexagonal columnar phase in terms of a triple of orthonormal vectors, n, m and p, the first giving the local
direction of the columnar axis, with m and p denoting lattice vectors of the orthogonal cross sections. The
unit vector n also represents the tangent vector to the DNA center curve at a point, with m and p repre-
senting the directions along which neighboring strands are found in the encapsidated arrangement. Moreover,
we include the scalar order parameter s ∈ (0, 1) that describes the degree of orientation of filaments in the
capsid [9]. The value s = 1 corresponds to (ideal) perfect alignment and s = 0 to the isotropic state, with no
alignment ordering, so it naturally lends itself to quantitatively distinguishing between the region of the capsid
with ordered DNA from the disordered central core. We point out that n,m and p are undefined at points
where s = 0. The order parameter in the model also yields a natural realization of the phase transition from
the ordered to the liquid-like state. Furthermore, the model allows for the capsid domain to be of icosahedral
shape, since s = 0 at the edges where the vector fields are not defined. Ordering of the DNA molecule at the
boundary as promoted by the capsid [7, 8, 25, 2] motivates our selection of the boundary conditions for the
fields of the problem.

In addition to the genome length L, and the volume V of the capsid, data at our disposal include cry-EM
images of the bacteriophage yielding the size and shape of the inner disordered region, the DNA density graphs
that dictate the number of concentric layers [4, 3, 8, 14] giving, in turn, the effective diameter d of the DNA.
We take the customary point of view that the DNA molecule is a semiflexible elastic polymer characterized by
the persistence length Lp which is about the size of the radius of the capsid. In the calculation of the bending
modulus k3, we also assume that the hydrated DNA fills the entire volume of the capsid [16], justifying our
selection of the maximum linear density m0.

The repulsive energy between different DNA strands is not explicitly present in the model but is accounted
for by the effective role of the parameters of the mechanical energy. We construct the latter in two different
stages. We first consider the total energy of encapsidation consisting of the bending energy penalty of the
DNA filament formulated in terms of the director field n, together with a normalized potential w(s) that
attains its minimum value at the ordered configuration, labeled as s = sa ≈ 1, and the maximum at s = 0,
reflecting the preference of the DNA to organize inside the capsid. A penalty is also associated with changes
in s resulting in a transition region between the coiled state and the melted core. However, under parameter
choices that provide good agreement between the values of experimental and the calculated disordered core
sizes, we find that, the pressure is underpredicted by a factor of 100 with respect to experimentally measured
values Finally, pressure measurements for different viruses are also available [5, 10, 11, 22, 43]. This leads us
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Figure 1: The graph on the left represents the DNA density of bacteriophage T5. It shows the radial density
distribution of DNA inside the viral capsid. The dashed line shows the density of an empty capsid. Figure
reproduced from [31]. The figure on the right is a schematic representation of the level surfaces ω=constant,
ϑ= constant, whose intersections provide the scaffolding that supports the DNA filament.

Virus Lp (nm) d nm L (nm) Rc (nm) r0/Rc Pressure(atm)

T4 52.8 2.4 55047.6 40.0 0.5500 28.70
T5 58.38 2.94 39423.8 42.0 0.4286 30.17
T7 52.88 2.6 12932.0 26.05 0.5889 44.02
ε15 53.9 2.55 12846.0 28.37 0.5735 40.41

Table 1: Physical measurements of four different bacteriophages.The symbol Lp denotes the persistence length
of a DNA chain of length L, effective diameter d, in a sphere-like capsid of radius Rc with a measured radius
r0 of the disordered core. T4 [24, 35]; T5 [8]; T7 [2]; ε15 [14]; P22 [19, 15].

to include an additional term in the energy penalizing distortions of the cross section formulated as quadratic
expressions of the gradients of the cross-sectional vectors ∇m and ∇p. The choice follows from the elastic
energy of hexagonal columnar phases proposed by de Gennes. It is the bulk and shear modulus, B and C,
present in the transverse elastic energy, that effectively account for the cohesive effects postulated in earlier
models of DNA encapsidation [17], [43] that, in turn, effectively account for the electrostatic interactions.

We find that the dimensionless energy restricted to spooling configurations involves three material con-
stants, b̂, γ̂0 and α, in addition to k3 that can be directly calculated from DNA data (Table 1). We determine

the orders of magnitude of b̂ and γ̂0 from the size of the disordered core of the T4 virus, as measured by
imaging. Likewise, the parameter α, used in scaling the elastic moduli B and C with respect to k3, is esti-
mated from experimental pressure values corresponding to the same virus. The numerical simulations deliver
phase spaces for the radius of the inner disordered core and the pressure, in terms of the parameters b and γ0

(Figures 2-4).
Earlier mathematical results on Ericksen’s model guarantee existence of a global minimizer of the total

energy [1]. In addition, numerical methods previously developed by Walker, et. al. [33, 34, 46] on such a
model extend to the present case and provide a convenient algorithm to predict packing configurations and
the pressure values that they sustain. Sine cryoelectron microscopy (cryo-EM) images for most bacteriophages
show multilayered spooling-like configurations on the outer layers of the packed genome [7, 2, 4, 3, 8, 22, 14],
we present numerical simulations of minimizing configurations with spooling geometry.

In section A, we give a brief review of the nematic and chromonic models of liquid crystals, to explain
and motivate our methods, with a special emphasis on Ericksen’s model that includes the variable degree of
orientation.
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In section B, we present the energy of packing, its scaling properties and the role of the spooling configura-
tions. In section C, we present our approach for estimating parameters, concluding with numerical simulations
that relate remaining phenomenological parameters to the radius of the disordered core. Section D uses shape
optimization tools to calculate the pressures near the capsid surface.

This work is motivated by earlier studies of free boundary problems of chromonic liquid crystals and
bacteriophages carried out in the Ph.D dissertation by Lindsey Hiltner [12].

A.1 Nematic liquid crystals

In the Oseen-Frank theory, equilibrium states of a nematic liquid crystal are minimizers of the Oseen-Frank
energy given by

E =

∫
Ω

W1(n,∇n) dx (1)

W1(n,∇n) =k1(divn)2 + k2(n · curln)2 + k3|n× curln|2

+ (k2 + k4)[tr([∇n]2)− (divn)2] (2)

The splay, twist and bend material constants, k1 > 0, k2 > 0 and k3 > 0, respectively, are associated with
the liquid crystal deformations that embody the corresponding geometries. The splay-bend term multiplying
k2 + k4 is a null Lagrangian and so, it depends on boundary values only. Defects in the Oseen-Frank theory
correspond to locations, points, lines or surfaces, where n = 0, that is where the molecular order is lost, giving
rise to locally disordered structures, that may have infinite energy.

In order to represent liquid crystal configurations where ordered and disordered states coexist as well as
assign finite energy to defects, it is convenient to introduce the order parameter s in the model, and the
energy associated with changes of order. For this, we will adopt Ericksen’s model (1991) of liquid crystals
with variable degree of orientation. It may be viewed as an extension of the Oseen-Frank model; alternatively,
it may also be interpreted as a restriction of that of Landau-deGennes to uniaxial states. In this model,
the equilibrium state of the liquid crystal material is described by the pair (s,n) minimizing a bulk-energy
functional

Eerk[s,n] :=
1

2

∫
Ω

s2W1(n,∇n) + b|∇s|2 dx + γ0

∫
Ω

w(s) dx, (3)

with W1 as in (2). The material constants b > 0 and γ0 > 0 are of the same of the general one, that contains
coupling terms of ∇n and ∇s. (A full description of the model can be found in [29] and its analysis can be
found in [34, 33, 46]).

The double well function w(s) is of class C2, defined on −1/2 < s < 1, that penalizes the phase transition
between the nematic and the isotropic phases. It is chosen so that it has a minimum at s = sa, sa being
the preferred order parameter value at a given temperature, or concentration; it has a maximum at s = 0
indicating the ordering preference of the DNA. We list its properties as follows [9, 1, 26]:

1. lims→1 w(s) = lims→−1/2 w(s) =∞,

2. w(0) > w(sa) = mins∈[−1/2,1] w(s) = 0 for some sa ∈ (0, 1),

3. w′(0) = 0.

Next, we discuss the approach to imposing boundary conditions. Rather than prescribing pointwise values
of the fields (n, s) on the boundary, that is, imposing strong anchoring boundary conditions, we appeal to
weak anchoring, which consists in penalizing the energy of departure of the boundary values from the ideal
ones [44]:

Ea(s,n) := Ea,n(s,n) + Ea,s(s),

Ea,n(s,n) :=
1

2

∫
Γ

s2
[
a⊥(ν · n)2 + a‖[1− (ν · n)2]

]
dS(x),

Ea,s(s) :=
1

2

∫
Γ

aori(s− sa)2dS(x),

(4)
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where ν is the oriented unit normal vector of Γ := ∂Ω. The first term a⊥ tends to align the minimizing
director field n perpendicular to ν, and the second term a‖ favors a parallel alignment. The last contribution
to the energy is needed to ensure that s does not trivially vanish on the interface, and so cause Ea,n(s,n) to
vanish as well [34, 6, 32]. The parameters a⊥, a‖, aori : Γ → [0,∞) may vary (in general), but here we take
them to be fixed constants.

In determining a configuration of a liquid crystal, one minimizes the total energy consisting of (3) added to
(4). A thorough study of existence of minimizer together with the numerical implementation of the minimizing
algorithm can be found in [34, 33, 46]. In particular, the theory allows for Ω to be of icosahedral shape, since
s = 0 at the edges where the vector fields are not defined.

A.2 Chromonic Liquid Crystals

We are concerned with hexagonal columnar phases of chromonic liquid crystals. The energy consists of the
Oseen-Frank contribution (or, the Ericksen’s model analog) together with an elastic energy of the cross-section
perpendicular to the columnar director field n. The latter also effectively includes the electrostatic repulsive
energy of the negatively charged DNA strands. We then represent the energy as

Echr = Eerk[n, s] + Eelas[∇u], (5)

where u represents the displacement vector associated with deformation of the cross section. The minimization
of the chromonic energy is done subject to the constraints

∇ · n = 0, and (∇× n) · n = 0. (6)

The splay of a liquid crystal is zero whenever dislocations do not occur, that is, the same number of filaments
that enter a unit area exit that cross-section. In the case of the hexagonal columnar phase, nonzero splay
would allow for deviations from the lattice structure. Twist is prohibited because of its incompatibility with
the two-dimensional lattice order in planes perpendicular to the director.

We conclude this section with the observation that the previously models described correspond to a con-
tinuum and do not reflect the discrete nature of the system made of filaments. These do not overlap except,
perhaps, in possible knot locations. In order to associate a minimizing set {n,m,p, s} to a DNA configuration,
given the inter-strang DNA spacing taken as its effective diameter, d > 0, we further introduce the scalar fields
ω, ϑ as solutions of the differential equations

dω

dm
=

2π

d
,

dϑ

dp
=

2π

d
, s 6= 0. (7)

Then, the intersections of level surfaces ω = constant, ϑ = constant give the location of the DNA strands.
Furthermore, the piecewise smooth curve r = r(ζ), ζ ∈ [0, L], such that

dr

dζ
= n(r(ζ)), r(0) = r0, (8)

describes the axis of the DNA. Here L > 0 represents the length of the genome and r0 its entry point in the
capsid. Restricting the elastic energy in (5) to discrete deformations of the level curves sustaining the DNA
filaments, we arrive at the expression

Eelas = B|∇(m + p)|2 + C|∇(m− p)|2, (9)

where B and C correspond to bulk and shear moduli, respectively.

B DNA encapsidation

We assume that the capsid corresponds to a bounded, axisymmetric region Ω ∈ R3 with ∂Ω representing the
piecewise smooth, faceted, viral capsid. We let l0 > 0 denote the length of the axis that connects the location
of the connector with its antipodal site in the viral capsid. Assuming the DNA is tightly packed inside the
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capsid, we adopt a continuum approach for representing the configuration of the DNA [17, 18]. To this end,
we let n represent the unit tangent vector of an “ensemble” of packed DNA strands. Moreover, we use the s
variable (degree-of-orientation) to represent how well ordered the DNA strands are, e.g. s = 0 indicates that
the DNA strands are oriented in all directions equally. Furthermore, the unit vectors {m,p} span the cross
sections perpendicular to the DNA axis, with its associated level curves representing strand locations.

B.1 Total energy

The model that we propose consists of the total free energy together with a list of constraints, expressed as
follows:

E =Eerk[s,n] + Ea(s,n) +

∫
Ω

[s2
(
B|∇(m + p)|2 + C|∇(m− p)|2

)
] dx, (10)

n ·m = 0, m · p = 0, n · p = 0. |n| = |m| = |p| = 1, (11)

We make the following choices for the parameters of the model:

k1 ≈ k2 � k3, k4 = 0, (12)

b ≈ k3, B ≈ k3 ≈ C, A := B + C = αk3, (13)

a0 := a⊥ = aori, a‖ = 0, a0 ≈ k3/Rc, (14)

where α > 0 in (13) is a scaling parameter latter determined using pressure measurements. The choices for
{ki}4i=1 indicate that divn and n · curln are almost negligible for the DNA coiling configurations that we
consider here. Dimensional analysis as well as information derived from Onsager’s theory of rigid rods will
further assist us in specifying relations (13). The selection of the anchoring constants (14) enforces tangential
(planar) boundary conditions for n, as this is consistent with DNA coiling inside capsids.

The bulk potential function w(s) : [0, 1]→ [0,∞) is modified to satisfy:

w(sa) = min
0≤s≤1

w(s) = 0, w is quadratic and convex near s = sa,

w(0) = 1, w has a local max at s = 0,
(15)

The optimal degree of orientation is chosen to be sa := 0.8.
The total energy of the DNA coiling system is

E [s,n,m,p,Ω] =
1

2

∫
Ω

s2
[
k1(divn)2 + k2(n · curln)2 + k3|n× curln|2

+ k2[tr([∇n]2)− (divn)2]
]
dx +

1

2

∫
Ω

b|∇s|2dx

+ γ0

∫
Ω

w(s) dx +
1

2
a0

[∫
Γ

s2(ν · n)2dS(x) +

∫
Γ

(s− sa)2dS(x)

]
+

1

2

∫
Ω

[
Bs2|∇(m + p)|2 + Cs2|∇(m− p)|2

]
dx.

(16)

B.2 Model simplification: spooling configurations

From now on, we consider axisymmetric capsids and spooling configurations. Adopting cylindrical coordinates
(r, θ, z), with the z-axis along the capsid, spooling DNA arrangements are characterized by p = ez. Further-
more, for such configurations, it is natural to set ν = er and n = eθ and s = sa on the boundary. Since
∇p = 0 and m = n × p, so |∇m| = |∇n|. We now define k̃i = ki + A, i = 1, 2, 3, with A as in (13). In
particular, note that

k̃3 = k3(1 + α). (17)

Finally, using the identity:

(n · curln)2 + |n× curln|2 + tr([∇n]2) = |∇n|2,
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we obtain

E [s,n,Ω] =
k̃3

2

∫
Ω

s2W̃1(n,∇n)dx +
1

2

∫
Ω

b|∇s|2dx + γ0

∫
Ω

w(s) dx

+
1

2
a0

[∫
Γ

s2(ν · n)2dS(x) +

∫
Γ

(s− sa)2dS(x)

] (18)

with

W̃1(n,∇n) = (k̃1/k̃3)(divn)2 + (k̃2/k̃3)(n · curln)2 + |n× curln|2

+ (k̃2/k̃3)[tr([∇n]2)− (divn)2].
(19)

B.3 Dimensional Analysis

Introducing a length scale L0 to be of the same order as Rc, and noting the following scalings:

Ω = L3
0Ω̂, Γ = L2

0Γ̂, ∂Ω0 = L2
0∂̂Ω0, ∇ =

1

L0
∇̂,

where ̂ denotes non-dimensional quantities, (18) becomes

E [s,n] = k̃3L0Ê [s,n]

Ê [s,n] :=
1

2

∫
Ω

s2W̃1(n,∇n) dx +
b̂

2

∫
Ω

|∇s|2dx + γ̂0

∫
Ω

w(s)dx

+
â0

2

[∫
Γ

s2(ν · n)2dS(x) +

∫
Γ

(s− sa)2dS(x)

]
,

(20)

where

b̂ =
b

k̃3

, γ̂0 =
L2

0

k̃3

γ0, k̂i =
k̃i

k̃3

, i = 1, 2, â0 =
a0L0

k̃3

=
100L0

Rc
, (21)

and we have dropped ̂ on all variables for convenience (the domains are now non-dimensional).

C Parameter estimates and numerical simulations

As for semiflexible polymers and its application to the DNA molecule, following Tzlil et al. [43] and [17], we
take the bending constant k3 as

k3 = KBTLpm0. (22)

The DNA cross-sectional length density, m0, is estimated by taking the ratio of the length of a DNA strand
to the volume of the container in which it is packed. Thus, for a perfectly packed DNA strand (i.e. no
empty space in the volume), the maximum value is m0 = 1/(π(d/2)2) = 1.85131 × 1017 m−2, where we
used an average DNA diameter of d = 2.6225 nanometers from Table 1. More realistically, for an average
bacteriophage genome (length 30.0624 micrometers) and average capsid head (radius 34.11 nanometers), we
get an average m0 = 1.809173 × 1017 m−2. Furthermore, taking an average persistence length of Lp = 54.49
nanometers, our effective bending constant is k3 = 4.058027× 10−11 J/m (assuming room temperature).

It is convenient to distinguish three types of parameters in the energy. First of all, k̃3 appears as a
multiplicative constant whose role will be adjusting the pressure. The ratios k̃1/k̃3, k̃2/k̃3 should be interpreted
as having large values to penalize the constraints (6). The ratio â0 = a0L0/k̃3 is used to enforce the planar
boundary conditions, so it also has a large penalty value.

For computations, we take k̃1 = k̃2 = 10k̃3, where k̃3 = k3(1 + α) (recall 13) and α > 0 is determined by
the pressure measurements (see Section D). The length scale L0 = Rc/0.4, where 0.4 is the non-dimensional

radius of the computational capsid domain; thus, â0 = 250. Moreover we explore the parameter range for b̂
and γ̂0 given by:

0.1 ≤ b̂ ≤ 5.0, 0.1 ≤ γ̂0 ≤ 20, (23)

C-7



Figure 2: The graphs show the role of the parameters b and γ0 in the model. In both cases, the curves indicate
the decrease in core radius with increasing parameter values, as a mechanism to lower the energy of the system.

and compare the predicted cores sizes with the available virus measurements shown in Table 1. The outcome
from the numerical simulations is summarized in Figure 2. Figure 3 shows how the internal “core radius” was
estimated for a particular choice for b and γ0. Figure 4 shows how the capsid pressure, and the core radius,
varies with b and γ0.

D Shape optimization

The minimum energy state of the packing problem is the one that minimizes E in (20) with respect to s and
n. With this, one can compute pressures in the capsid by perturbing E with respect to the domain Ω, i.e.
take shape derivatives [45].

More specifically, given a (non-dimensional) perturbation field V that deforms Ω, the shape variation

δΩÊ [s,n,Ω;V] gives the (non-dimensional) change in energy due to a change in the volume. For example, let
VΓ be a smooth vector field such that:

VΓ = ν, on Γ, and smoothly decays to zero inside Ω. (24)

Then, the dimensional change in energy due to expanding the outer boundary Γ is k̃3δΩÊ [s,n,Ω;VΓ] which
has units of force: J/m = N . Thus, the average (dimensional) pressure being exerted on the boundary of the
capsid Γ is

outer pressure =
1

L2
0|Γ|

k̃3δΩÊ [s,n,Ω;VΓ], (25)

where we note that |Γ| is the non-dimensional surface area of the capsid. Note that VΓ is normalized so that
|VΓ| = 1 on Γ. The particular form of the extension in (24) does not matter because ultimately the shape
derivative only depends on what happens at the boundary Γ by the Hadamard-Zolésio structure theorem [45].
The graphs of the pressure in terms of the parameters b and γ0 are shown in Figure 4.

E Conclusions

We constructed a model of encapsidation of viral DNA, that combines that of hexagonal chromonic liquid
crystals with the theory of liquid crystals with variable degree of orientation. The model is accompanied by a
rigorous, finite-element based, algorithm of energy minimization, with design and prediction capabilities that
may prove to be a real asset in applications. Due to the presence of the order parameter, the algorithm is able
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Figure 3: The graphs show two different profiles of the order parameter in the capsid domain. Left plot is of
s evaluated along a line through the equator of the capsid. The center of the capsid is located at 0, and the
capsid radius is normalized to 1. Since the maximum order corresponds to s = 0.8, we take the disordered
threshold at s = 0.4, which gives the ratio r0/Rc ≈ 0.496. Right plot: shows the order profile of the capsid
transitioning from order DNA (red) to disordered (blue) as a 2-D slice through the capsid equator.

Figure 4: Plots of core radius and capsid pressure. Left plot show curves of constant core radius for different
choices of b and γ0 overlaid on the pressure values. In the region where the core radius matches experiment, the
pressure values are also comparable to experimental values (from a minimum of about 26 atms to a maximum
of about 95 atms). The right plot is a 3-D view of the pressure. Note: α is chosen as 75, which fully determines
k̃3, to give a decent fit to all four viruses.
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to deal with very general faceted capsid domains, including the geometry of the packing motor features, and
also allow for the presence of knots in the DNA. The outcome of the model is a phase space for the radius of
the disordered core and the pressure near the boundary of the capsid, with the potential to aid in the design of
viral DNA to meet desired specifications. The model also allows for the exploration of large sets of parameters,
reiterating its value as a design tool. Follow up work addresses the presence of ions and the dynamics of DNA
ejection from the capsid.
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