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Abstract

Modeling Asymmetry in the Rotation of Disk Galaxies

by

Brian DiGiorgio

Galaxy rotation has been studied for over a century, using spectroscopic mea-

surements to construct rotational models that describe the motions of their gas and

stars. However, only a small subset of this work has recognized that galaxies are not en-

tirely radially symmetrical, but are instead often disrupted in ways that simple velocity

field models cannot capture. In this dissertation, I describe my work modelling nonax-

isymmetric galaxy rotation and the astrophysical insights gained from these models.

Gravitational lensing distorts a galaxy’s velocity field in a manner distinct

from the distortions of its photometric shape, an effect called kinematic weak lensing.

This allows for the construction of a model that uses this difference to extract lensing

information about the system. I detail the properties and strengths of such a model,

finding that for mock observations of source galaxies at moderate redshifts, the signal-

to-noise of the lensing measurements improves by up to a factor of six over previous

works, enabling the possibility of future lensing studies independent of current weak

lensing systematic constraints.

I also describe the development of Nirvana, a Bayesian nonparametric veloc-

ity field fitting code designed to describe the bisymmetric motions present in barred

galaxies. Using a sample of barred galaxies from the MaNGA survey, I construct the

Nirvana-MaNGA sample, which is comprised of velocity field models of > 1000 local

xiii



barred galaxies, as well as a matched control sample of unbarred galaxies. Nirvana de-

termines bar strength and location independent of imaging, providing an independent

and direct test of dynamical models of higher-order noncircular motions in bars, agree-

ing with visual bar classifications on bar angle. I also find direct evidence of flattening in

stellar population gradients along bar kinematic axes as compared to surrounding disk

regions at the same radii, verifying results reliant on visual classifications and affirm-

ing the dynamic connection between the presence of bars and radial mixing of stellar

populations.
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Chapter 1

Introduction

When Vesto Slipher observed M31 and NGC 4594, better known now as the

Andromeda Galaxy and the Sombrero Galaxy, using the spectrograph at Lowell Obser-

vatory in 1914 (despite “exasperating circumstances”), he made the unexpected discov-

ery that the absorption lines in the galactic centers were slanted (Slipher 1913, 1914).

From these observations, he inferred that the Andromeda spiral nebula was rotating at a

velocity of ∼300 km/s, which he noted “is the greatest hitherto observed” and suggests

that “the spirals as a class have higher velocities than do the stars.”

Of course, it was not until more than a decade later that Hubble (1926) con-

clusively proved that these spiral nebulae were in fact other galaxies, so Slipher was

not aware at the time that he had invented the field of galaxy kinematics (Sofue &

Rubin 2001). The study of galaxies and how they rotate has yielded some of the most

monumental discoveries in astrophysics in the century since. This dissertation aims

to contribute to the century-long study of galaxy kinematics by using the information
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contained within the finer details of galaxy rotational data to learn about the galaxy, its

history, and the Universe it inhabits, and this introduction seeks to give a background

on how galaxy rotation has been studied and understood over time to better motivate

these advances.

1.1 The Flattening of Galaxy Rotation Curves

It has been known since the time of Kepler and Newton that rotational velocity

correlates directly with the overall mass of a system, and astronomers quickly applied

this logic to disk galaxies upon discovering their rotation. It was noticed as early as

1932 that the rotational velocity in the solar neighborhood in the Milky Way did not

match up with observed mass concentrations (Oort 1932), and this was confirmed in

extragalactic regimes a short time later when Oort (1940) found an “unknown flattening

of the attracting mass” in nearby elliptical galaxies.

However, given the difficulty in obtaining reliable rotation curves for large

numbers of galaxies at high spatial and spectral resolution, galaxy rotation was probed

instead with radio observations. Tully & Fisher (1977) famously used the width of

radio emission lines to construct a relation between disk galaxy absolute magnitude

and peak-to-peak width, which can be extrapolated to a relationship between mass and

maximum rotational velocity. The Tully-Fisher Relation (TFR) was a valuable tool for

determining distances to galaxies in the absence of other methods, as well as directly

linking a galaxy’s mass to its rotational properties.

It was not until the 1970s that large enough samples of kinematic measurements

2



were assembled to verify these results. By then, enough rotation curves had been

obtained to document a consistent rise in the outer rotation curves in late-type spirals

(Rubin et al. 1978), and to subsequently proclaim that it was “inescapable that non-

luminous matter exists beyond the optical galaxy” (Rubin et al. 1980), which we now

know as dark matter. They described the averaged rotation curves of their galaxy

sample using the TFR and found good agreement, but did not attempt to describe the

kinematics of the disks themselves.

1.2 Modeling Disk Rotation

It took until 1965 before the first two-dimensional representation of a galaxy’s

rotation was published (an H I map of M31 in Argyle 1965), but the wider availability

of these velocity fields in the 1970s and 1980s led to a rise in interest in quantitative

models of disk rotation. When using long-slit observations, it is simple enough to align

the spectroscopic observation with the galaxy’s major axis to capture the maximum

rotation and avoid trigonometric effects, but with 2D velocity fields, a full circular

model is necessary.

The first prominent use of such techniques was in Warner et al. (1973), who

assumed the disk component of the galaxy was infinitely thin, and divided the galaxy

into a series of annuli and the velocity measurements within each annulus are averaged,

using a least-squares optimizer to construct a global model with the best inclination

i, position angle, center, and systemic velocity Vsys. This thin disk model can be
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summarized in the following format:

Vobs = Vsys + V (r) cos θ sin i, (1.1)

where the observed velocity Vobs is constructed using only the extrapolated velocity

values V as a function of the on-sky projected and position angle-adjusted elliptical

polar coordinates r and θ. This approach was modified in Begeman (1987, 1989) to

allow for independent inclination and position angle values for each of the annular bins,

a so-called tilted ring model meant to capture features in velocity fields that changed

with radius.

In the 1990s, interest shifted from purely descriptive and non-parametric ve-

locity field models to predictive models based on dynamical theory. Such models often

relied on replacing the rotation curve function with a physics-based parametric function

in order to describe galaxies as a whole (Glazebrook 2013). One simple example of this

approach is the arctangent model from Courteau (1997), which is rooted in dark matter

halo profiles:

V (R) =
2

π
Vmax arctanR. (1.2)

A significantly more complex model is the “Universal Rotation Curve” from Persic et al.

(1996) based solely on luminosity:

V 2 = V 2
disk + V 2

halo (1.3)
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V 2
disk = V 2(Ropt)β

1.97x1.22

(x2 + 0.782)1.43
(1.4)

V 2
halo = V 2(Ropt)(1− β)(1 + α2)

x2

x2 + α2
(1.5)

x =
R

Ropt
(1.6)

α = 1.5

(
L

L∗

)1/5

(1.7)

β = 0.72 + 0.44 log
L

L∗
(1.8)

where Ropt is the radius encircling 83% of light. Though they differ significantly in

complexity, both of these models had success in describing rotation in large and widely-

varied samples of galaxies using only a small, successfully reproducing the TFR in the

visual regime.

These models give an insight into the dynamic and kinematic properties of the

galaxies they describe. For instance, a more rigorous approach based on the dynamics

of an exponential disk yields the following rotation curve model from Freeman (1970):

V (R) =

(
2GM

h

)1/2

x
(
I0(x)K0(x)− I1(x)K1(x)

)1/2
(1.9)

for disk scale length h and x = r/2h. Such a model allows for the direct determination

of the total disk mass M and a more direct look into the dark matter content of the

galaxy.
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1.3 Modeling Nonaxisymmetric Disks

One major sacrifice of the parametric rotation curve models described in the

previous section is that they are tailored to fit broad classes of galaxies at the expense

of describing the peculiarities within each galaxy where they deviate from the simplified

model. For instance, warps are portions of disks that deviate from ideal flat disks in the

z direction, spiral arms can cause higher-order disruptions in velocity fields that change

with both radius and azimuth, and inflows/outflows create noncircular motions that are

not described by the simple structure of Equation 1.1 (Teuben 2002).

Such nonaxisymmetric features (i.e. features that are not symmetrical about

the central axis of the disk) can be described by nonparametric models such as the

tilted ring model mentioned in the previous section. By allowing each annulus to behave

independently and have unique inclinations and position angles, the radial inclination

change caused by a warp or the azimuthal variations of spiral arms can be accurately

represented. However, on their own, these descriptive, nonparametric models do not

provide insight into the dynamical properties of the galaxy without further astrophysical

analysis. Other methods such as the Radon transform (Stark et al. 2018) are also able

to describe variations in disk parameters as a function of radius, but require further

analysis and classification to fully characterize their causes.

A particularly prominent example of an analysis framework that bridges the

gap between physics-based simplified parametric models and descriptive nonparamet-

ric models is kinemetry (Krajnović et al. 2006a). Extending the principles of Fourier

decomposition of nonaxisymmetric features that have been in common use in extended-
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source photometry for decades, kinemetry models small-scale perturbations in galactic

disks using higher-order spatial modes. As the highest spatial order N goes to infinity,

any 2D velocity field can be described to arbitrarily high precision using the rotation

curve model

V (R) =
N∑

n=1

Vn,t(R) cos(n(θ − ϕn)) + Vn,r(R) sin(n(θ − ϕn)), (1.10)

for spatial order n and position angle ϕn for each order. Kinemetry is able to describe ra-

dial motions and off-axis disks present in early-type galaxies, producing detailed models

with N = 5 (Krajnović et al. 2006a). However, we are again presented with the problem

of a model that is descriptive at the expense of physical basis. These descriptive models

allow for greater flexibility in physical models later on, but in order to directly extract

meaning from these fits, they must be restricted to apply only to perturbations with

astrophysical basis.

The velocity field model in Spekkens & Sellwood (2007) works similarly to

kinemetry but is restricted to N < 2, focusing primarily on bisymmetric distortions

caused by bars:

V (R) = Vt(R) cos θ − V2t(R) cos
(
2(θ − ϕb)

)
cos θ − V2r(R) sin

(
2(θ − ϕb)

)
sin θ. (1.11)

Adding second-order radial and tangential spatial terms V2r and V2t to a thin disk

model enables the characterization of radial flows along the bar major axis, a real

astrophysical effect, while not sacrificing physical meaningfulness by overfitting a model
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with unphysically high-order spatial terms. This model and the accompanying software

packages Velfit (Spekkens & Sellwood 2007; Sellwood & Sánchez 2010) and later DiskFit

(Sellwood & Spekkens 2015)) has been successful in reproducing barred velocity fields

(e.g. Bisaria et al. 2022; Garma-Oehmichen et al. 2022; Holmes et al. 2015).

Traditional velocity field models can also be modified to suit other specific

kinematic features of a galaxy. For instance, kinematic weak lensing (KWL) is the dis-

tortion of background galaxy velocity fields in the presence of a foreground gravitational

lens. Such distortions would create a nonaxisymmetric distortion in a tilted ring model

of the velocity field that could be used to measure lensing shear (Blain 2002). Modifica-

tion to the rotation curve model is thus necessary to extract this additional information

from the galaxy velocity field, otherwise such information will be lost.

This KWL modification can take a number of forms. Morales (2006) quantifies

the shear through the measurement of the angle between the kinematic major and minor

axes, which is no longer expected to be perpendicular in a sheared coordinate system.

Gurri et al. (2020) constructs a parametric velocity field model similar to Equation 1.2

but with an added fit parameter for lensing shear to capture the distortion in lensed

velocity fields.

1.4 Outline of This Work

Galaxy rotation can be modeled in such a way that we can learn about the

astrophysics of the underlying system, but the modeler must take special care that they

do not construct a model that does not accurately account for nonaxisymmetries present
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in the velocity field. Doing so would not only mischaracterize the data but also lose out

on valuable information contained within those asymmetries.

The structure of this dissertation is as follows: Chapter 2 details a novel kine-

matic weak lensing velocity field model that combines both kinematic and photometric

information to improve the fidelity of lensing shear models. Chapter 3 expands on pre-

vious kinematic models of bisymmetric velocity field distortions by creating the largest

sample of barred galaxy velocity field fits assembled to date, and Chapter 4 uses these

fits to directly tie stellar population gradient flattening to noncircular bar motions on a

large scale for the first time. Chapter 5 Summarizes these results and discusses future

lines of inquiry.
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Chapter 2

A Novel Framework for Modeling

Weakly Lensing Shear Using

Kinematics and Imaging at

Moderate Redshift

2.1 Introduction

Weak gravitational lensing is a powerful and increasingly utilized tool for mea-

suring how mass is distributed throughout the Universe (e.g. Mandelbaum 2018). Ap-

plications include use of cosmic shear to probe the mass density and the growth of

structure in the Universe (e.g. Troxel et al. 2018; Gatti et al. 2020; Hikage et al. 2019),

galaxy-galaxy lensing to characterize halo masses of galaxies in different stellar-mass
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regimes and perform 3× 2 correlation studies (e.g. Leauthaud et al. 2012; Krause et al.

2017), and cluster lensing profiles to measure cluster-scale halo mass profiles and halo

shapes (e.g. Umetsu et al. 2018; Mandelbaum et al. 2006). These science goals have

motivated large-scale weak-lensing surveys with new instruments, telescopes, and even

satellite missions. Major projects include the Hyper Suprime Cam (HSC, Aihara et al.

2018), the Kilo Degree Survey (KiDS, Kuijken et al. 2015), the Legacy Survey of Space

and Time (LSST, Ivezić et al. 2019), Euclid (Laureijs et al. 2011), the Nancy Grace Ro-

man Space Telescope (Spergel et al. 2015), and the Dark Energy Survey (DES, Krause

et al. 2017; Troxel et al. 2018; Gatti et al. 2020).

Weak-lensing surveys seek to measure distortions in a galaxy’s shape caused

by lensing shear, a geometric effect caused by the gravitational lensing of a background

source by mass in the foreground. To first order, this distortion results in background

galaxies becoming elongated in the direction tangential to the surface-density gradient

of the foreground mass distribution.

A number of factors complicate lensing measurements in conventional surveys

that use imaging to measure galaxy shapes. Weak lensing distortions only induce a

<1% change in observed ellipticity. Measurements at this level of precision are typi-

cally achieved by statistically stacking results from multiple sources, but our uncertain

knowledge of the intrinsic or “pre-lensed” galaxy ellipticity distribution (“shape noise”)

typically necessitates thousands of stacked sources to detect a lensing signal. Potential

biases become a greater concern with added complications, such as intrinsic alignments

of source galaxies with near-foreground dark matter structure (e.g., filaments) and sys-
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tematic errors in shape measurements resulting from instrumentation (e.g., Troxel &

Ishak 2015; Mandelbaum 2018). Very large samples are therefore required to drive

down statistical errors and test for systematics that can otherwise overwhelm the shear

signal.

For instance, the CLASH survey (Umetsu et al. 2014) used ∼104 background

galaxies around each of 20 foreground Abell clusters to recover mass density profiles

precise enough to constrain dark matter halo mass profiles. Meanwhile, cosmic shear

surveys like the DES (Troxel et al. 2018) use ∼107 galaxies to sufficiently characterize

their signal, but even these large samples remain susceptible to systematic biases. All

of these efforts require deep imaging over wide areas, typically carried out on 2 meter-

to 8 meter-class telescopes.g

The burgeoning subfield of kinematic weak lensing (KWL), also referred to as

“precision weak lensing” in the literature (Gurri et al. 2020, 2021), provides an additional

means of inferring lensing shear by measuring distortions in the projected velocity field

of source galaxies. Although KWL requires more expensive spectroscopic observations,

many fewer galaxies are needed to detect a signal. This is because the velocity field

encodes a trace of the galaxy’s original, pre-lensed coordinate space. The induced

lensing distortions can be fit directly, eliminating or at least dramatically reducing the

shape noise. If future weak-lensing analyses could make use of KWL, they could enable

higher spatial resolution maps of foreground mass, more sensitive mass measurements,

and independent checks on results from conventional imaging surveys (Huff et al. 2019).

The literature investigating applications of KWL has fallen into two regimes:
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high-spatial-resolution kinematic measurements on small samples, and lower-precision

kinematic measurements derived from large samples. The idea of KWL was first put

forward by Blain (2002), who determined that weak lensing shear would change the

symmetry of a galaxy’s rotational velocity as measured in an azimuthal ring of constant

radius. The idea was further developed by Morales (2006), who proposed measuring

the angle between the kinematic major and minor axes, which are no longer perpendic-

ular in a lensed galaxy. A similar idea was developed by de Burgh-Day et al. (2015),

who suggested searching for lensing-induced asymmetries in the reflection symmetries

of galaxy kinematic data. All these authors emphasize the potential of making a shear

measurement with a single galaxy and obtaining a measurement that would be indepen-

dent of shape noise. However, none of these studies reported a detection due to the small

size of lensing effects at nearby redshifts where the high-spatial-resolution spectroscopic

measurements required for precise measurements are most readily available.

Huff et al. (2019) instead proposes implementing KWL on a survey scale, con-

sidering large samples where individual measurements with less kinematic information

are statistically stacked. Building on the work of Huff et al. (2013), they propose tar-

geted measurements of lensing-induced differences in the projected velocity along the

major and minor axes. Wittman & Self (2021) performs a Fisher Matrix analysis of

this technique in a hypothetical DES-scale survey to derive theoretical limits on the

covariances of the derived lensing parameters.

In the first reported detection of kinematic weak lensing, Gurri et al. (2020)

stake out a middle ground in sample size versus per-galaxy information content. They
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collect and analyze 2D velocity fields of ∼20 galaxies at z < 0.15, and report a positive

mean shear amplitude detected at 2.5σ. They forward-model each source galaxy with

a rotating thin-disk model that allows shear to vary and apply their technique to se-

lected source galaxies likely to be sheared by foreground halos. The detection reported

by Gurri et al. (2020) is an exciting development in the young field of KWL, but also

highlights upcoming observational challenges. For instance, they find discrepancies be-

tween their theoretical and observed shear magnitudes, which they say likely arise from

a combination of intrinsic kinematic irregularities in their sample galaxies (“dynamical

shape noise”) and the scatter in the stellar-halo mass relation (see Gurri et al. 2021).

It will be difficult to obtain the kinds of highly-sampled and high-S/N velocity fields in

Gurri et al. (2020) for source galaxies at z ≲ 1, but it is at these redshifts where probes

of structure formation are most needed and the lensing kernel more favorable (Weinberg

et al. 2013).

With this challenge in mind, we build on the techniques of Gurri et al. (2020)

by introducing additional constraints from galaxy shape measurements into the KWL

formalism using a Bayesian forward model. We show that by including measurements

of the major-axis position angle of an ellipse fit to the surface brightness profile and

comparing it to the position angle derived for the sheared velocity field, we can improve

the per-galaxy shear S/N by several times in many cases. This motivates us to explore

the potential use case of measuring the mass and shape of galaxy cluster halos at z ∼ 0.3

(Bartelmann & Maturi 2017) with IFU observations of 50–100 galaxies at z ∼ 0.7.

Immediately valuable for studies of individual clusters, a future survey program could
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aid mass calibrations required for cluster cosmology (e.g. Bocquet et al. 2019) and opens

new possibilities for wide-scale KWL surveys at z ≲ 1 with a dedicated survey.

The chapter is structured as follows: Section 2.2 gives background on relevant

weak-lensing theory and introduces our formalism for how lensing affects the shape of

a galaxy. Section 2.3 studies the impact of lensing shear on the shape of a rotating

galaxy and compares the merits of different techniques for measuring kinematic shear

observables. Section 2.4 develops our modeling framework for including offsets between

the kinematic axes and axes derived from imaging for a given galaxy and characterizes

the improvement of the precision of lensing measurements and the important increase of

S/N that results. Section 2.5 gives a summary and looks forward to future applications

of the technique.

Throughout this chapter, we assume a Planck 2018 cosmology (Planck Collab-

oration et al. 2018) as implemented in the Colossus cosmology package from Diemer

(2018), with H0 = 67.36 km s−1 Mpc−1 and Ωm = 0.3111 at z = 0.

2.2 Weak Lensing Effects on Imaging

To understand the benefits image position angle measurements can have for

KWL, we first review key aspects of how lensing geometry changes the shape of galaxies.

Imaging-based lensing surveys typically model background galaxies as ellipses with a

measured on-sky position angle and ellipticity that are used to derive lensing amplitude.

This serves both as context for the current state of the field and as a basis for the

techniques developed in Section 2.4. For a more detailed treatment of the subject, see
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Bartelmann & Maturi (2017).

2.2.1 General Lensing Theory

Gravitational lensing is a well-established result of general relativity and its

effects have been well-characterized (Miralda-Escude 1991). Because photons travel

along geodesics, when they pass through regions of spacetime that have been distorted

by a mass distribution, the geodesic is deflected, curving their paths. So the observed

image of a background galaxy will be distorted by any foreground mass along the line

of sight.

If we assume that the characteristic scale of the foreground mass distribution

is small compared to the other relevant distance scales in the system — the angular

diameter distance from the observer to the foreground mass, DL, the distance from the

observer to the background source, DS , and the distance from the foreground mass to

the background source, DLS — we may adequately describe the system using the thin

lens approximation. This stipulates that the deflection of the photons in the system

happens in an infinitely thin plane located at the lens position and that the photon

travels in a straight line everywhere else. The magnitude of the angular deflection

relates to the projected surface density Σ of the 3D foreground mass distribution ρ,

where

Σ(ξ) =

∫
ρ(ξ, z)dz, (2.1)

for ξ =
√
x2 + y2 with x and y being the physical coordinates of the mass distribution
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on-sky and z being the line of sight vector from the observer. The angular deflection of

a photon is given by

α(ξ) =
4G

c2

∫
Σ(ξ′)

ξ − ξ′

|ξ − ξ′|2
d2ξ′. (2.2)

The deflection angle can also be given in terms of the lensing potential ψ as

α(θ) =
DS

DLS
∇θψ, (2.3)

where θ is the angular separation of the source as seen from the perspective of the

observer: θ = |ξ|/DL. For a point mass lens in the weak lensing regime, ψ can be

written as

ψ =
4GM

c2
DLS

DLDS
ln |ξ|. (2.4)

The magnitude of the lensing effect is often expressed in terms of the critical

surface mass density, which defines the characteristic angular scale of a lensing system:

Σcrit =
c

4πG

DS

DLDLS
. (2.5)

The distortion manifests itself in two ways. The first is the convergence κ, which has

magnitude κ = Σ/Σcrit and magnifies the background source. However, for the purposes

of this chapter, we will be more interested in the lensing shear.

The shear, as its name implies, distorts the coordinate system of the source,

changing its observed shape. This distortion can be broken into two separate compo-
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nents defined by their relation to the derivatives of the lensing potential:

γ+ =
1

2

(
∂2ψ

∂θ2x
− ∂2ψ

∂θ2y

)
, γ× =

∂2ψ

∂θx∂θy
. (2.6)

where θx and θy are perpendicular angular coordinates in the arbitrarily defined co-

ordinate system projected onto the lens plane. Following the formalism of Huff et al.

(2013), the shear aligned with the coordinate axes is called γ+, while the cross term

γ× is aligned with the diagonals of the coordinate system. For a simplified case of an

axisymmetric lens, the shear magnitude is given by

|γ| = ∆Σ

Σcrit
, (2.7)

where ∆Σ is the differential projected surface mass density, the difference between the

value of Σ at a given radius r0 and the mean Σ within that radius:

∆Σ = Σ̄(r < r0)− Σ(r0). (2.8)

In the simplified axisymmetric case, the two shear components can also be expressed as

γ+ = |γ| cos 2θ γ× = |γ| sin 2θ, (2.9)

with θ = tan−1(θy/θx). Positive and negative values for the shear result in distortions

in opposite directions. We assume |γ| < 0.1 in this chapter to remain in the weak-

lensing regime where the magnitude of the distortions are small and the small angle

approximation is still valid.
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2.2.2 Image Distortions

In the weak-lensing regime, the recognizable features of strong lensing, like

arcs and multiple images, give way to tiny distortions in background sources that are

usually only detectable through statistical methods applied to large samples. Weak

lensing effects are well-parameterized by a single transformation matrix that can be

applied to the coordinate system of the background source:

A =

1− κ+ γ+ γ×

γ× 1− κ− γ+

 (2.10)

If we do not care about the size and luminosity of the source, we may disregard the

convergence κ since it is small in the weak-lensing regime, so we may simplify A to be:

A ≈

1 + γ+ γ×

γ× 1− γ+

 . (2.11)

The effect of γ+ is to symmetrically elongate the source along the tangential axis1,

meaning the on-sky orientation of the source is not substantially affected. However, γ×

shears the source, causing an effective rotation.

We can apply this transformation to a toy model of a galaxy, a typical back-

ground source in a weak-lensing survey. We may model the galaxy as a circle inclined at

some angle relative to the observer, so it is seen simply as a series of concentric elliptical

isophotes, each satisfying

1Note that this is distinct from κ, which elongates the galaxy in all directions equally, causing a
perceived magnification.
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Figure 2.1: Representation of how shear from gravitational lensing affects the positions
of major and minor axes derived from kinematics and imaging/photometry. The orig-
inal orientation of the galaxy is shown as a dashed elliptical isophote, with the dashed
lines marking the positions of the unlensed major and minor axes (photometric and
kinematic are the same). A lens to the upper left of the galaxy applies a shear, dis-
torting the galaxy’s intrinsic coordinate system and velocity field contours according to
the transformation matrix A (Equation 2.11). The solid ellipse represents how a new
elliptical isophote would be fit to the sheared galaxy, along with its new imaged major
and minor axes. The colored contours represent the observed velocity field, with red and
blue indicating receding and approaching sides of the galaxy, respectively, and darker
colors indicating higher velocity magnitude. The point along the lensed isophote that
is measured as the lensed imaged major axis (filled black circle) was not on the major
axis of the unlensed galaxy (unfilled black circle), leading to a discrepancy between the
lensed axis observed in imaging and the kinematic axis (filled white circle). A similar
effect happens with the minor axis. The galaxy shown has an axis ratio q = 0.8 and the
shear applied is γ× = 0.1.
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1 = q2x2 + y2, (2.12)

where q is the axis ratio of the projected ellipse. Applying the shear transformation

matrix to this object, we find that, post-lensing, the coordinate system has become

x′ = A−1x for x = (x, y)T , so

1 ≈ q2x′2(1− 2γ+) + y′2(1 + 2γ×)− 2x′y′γ×(1 + q2), (2.13)

where we have dropped higher order terms in γ+ and γ× since we expect the magnitude

of these terms to be small in the weak lensing regime.

We then treat the deformation of the elliptical isophote as a rotation rather

than a shear. The general equation of an ellipse rotated by angle α relative to the origin

is

1 =

(
cos2 α

a2
+

sin2 α

b2

)
x2 +

(
sin2 α

a2
+

cos2 α

b2

)
y2

− 2 cosα sinα

(
1

b2
− 1

a2

)
, (2.14)

where a and b are the lengths of the major and minor axes, respectively. We may greatly

simplify this equation if we restrict ourselves to the weak-lensing regime. By assuming

α to be small, we can apply the small angle approximation and ignore higher order

terms in α. If we then multiply through by b2 to put everything in terms of the axis

ratio q = b/a and set b = 1 in arbitrary units, we have
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1 ≈ q2x2 + y2 − 2αxy
(
1− q2

)
. (2.15)

Equations 2.13 and 2.15 are identical except for the cross term. If we assume

that the shear can indeed be thought of as a rotation, we can set these two equations

equal to each other to find

α(1− q2) ≈ γ×(1 + q2) ⇒ α ≈ γ×
1 + q2

1− q2
. (2.16)

So the effect of the shear on an isophote can be well-approximated in the weak-lensing

regime as a rotation, as seen in Figure 2.1. The rotation angle is determined by γ×, which

depends on the magnitude of the overall shear, the relative positions of the foreground

lens and the background source, and the axis ratio of the background source, which are

in turn determined by Equation 2.9 and the inclination of the galaxy. The magnitude of

α is maximized when the background source has a low inclination, has a position angle

that is misaligned with the radial vector by 45◦, and when the foreground lens is more

massive.

The axis ratio q changes as a result of lensing as well, as seen by the effect of

the transformation matrix A on a point at (a, b):
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1 + γ+ γ×

γ× 1− γ+


a
b



=

(1 + γ× + γ+) a

(1 + γ× − γ+) b

 =

a′
b′

 , (2.17)

where we have defined (a′, b′) as the major and minor axis lengths of the lensed galaxy.

Thus, the lensed axis ratio q′ is

q′ =
b′

a′
=

(1 + γ× − γ+)

(1 + γ× + γ+)

b

a
≈

(
1− 2γ+

1 + γ×

)
q, (2.18)

where we have again exploited a Taylor series expansion to make a first order approxi-

mation. What observers see is the post-lensing axis ratio q′ rather than q, so we again

approximate to write this as

q ≈ q′

1− 2γ+
. (2.19)

We see that for small γ+, q ≈ q′, and because we will be concerned mostly with cases

where this is true, we will ignore the distinction between pre- and post-lensing axis

ratios for the remainder of the chapter.

However, neither the angular distortion nor the axis ratio distortion can be

directly measured in images of any single galaxy because nothing is known about its

original shape. Before the galaxy is lensed, it has some intrinsic position angle and ellip-
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ticity that provide the baseline for any lensing distortions. With conventional imaging

surveys, the only way we can perceive changes is by looking at the statistical properties

of the sample in aggregate. A large sample of galaxies under the same shear will show a

net alignment perpendicular to the induced shear that deviates from a random distribu-

tion of position angles. Measuring this net alignment is a primary goal of imaging-based

weak lensing surveys.

2.3 Weak Lensing Effects on Kinematics

While it is impossible to tell the difference between an elliptical isophote that

has been rotated and elongated due to lensing shear and one that was never sheared,

the same is not true for projected kinematics of a rotating disk. By taking spectroscopic

measurements across the face of a rotating galaxy, the relative velocity of different parts

of the galaxy can be determined from the Doppler shift of spectral features compared

to the systemic velocity of the galaxy.2 The kinematic measurements that make up

the velocity field are associated with specific coordinates in the galaxy’s intrinsic plane,

a relationship that is not broken by gravitational lensing. This probe of the galaxy’s

intrinsic geometry enables much more precise per-galaxy lensing measurements.

In what follows, our analysis is motivated by reducing the final statistical errors

on a galaxy’s shear measurement, as limited by the quality of the data. We do not treat

here the per-galaxy error that stems from intrinsic irregularities in the physical structure

of the galaxy. Features that deviate from the model used in the fit will bias the results

2In this chapter, we assume an infinitely thin, rotating disk. This assumption may cause problems
with highly inclined disks.
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regardless of the quality of the data. However, this dynamical shape noise (Gurri et al.

2020) is expected to be randomly distributed across a sample and should beat down as

the sample size increases. We will return to the role of statistical and systematic errors

in Section 2.4.2.

2.3.1 Kinematic Axis Distortion

Unlike the photometric measurements made by fitting isophotes, the trans-

formation of a galaxy’s velocity field cannot be modeled simply as a rotation of the

projected field. In order to illustrate the effect of shear on the velocity field, we examine

the behavior of two reference locations: a point on the major axis and one on the minor

axis.

A point on the major axis of the unlensed galaxy (unfilled white circle on

Figure 2.1) can be described by the coordinates (x, 0) for a rectilinear coordinate system

aligned with the major and minor axes. We define the on-sky angle of the major axis

in a particular reference frame to be the kinematic position angle (PA). Applying the

transformation matrix A to this coordinate location, we find that this point gets moved

to ((1 + γ+)x, γ×x) (filled white circle), so the angular displacement of the lensed major

axis from the original major axis is

θmaj = tan−1

(
γ×

1 + γ+

)
≈ γ×

1 + γ+
, (2.20)

where we have performed a Taylor series expansion of the inverse tangent and taken

just the first order since we expect the shear to be small in the weak-lensing regime.
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We can do a similar transformation to a point on the unlensed minor axis (0, y)

to find

θmin = tan−1

(
1− γ+
γ×

)
≈ π

2
− γ×

1− γ+
, (2.21)

where we have again performed a first-order Taylor series expansion.

We can again exploit Taylor series to expand Equations 2.20 and 2.21 with

respect to γ+:

θmaj ≈ γ×(1− γ+); θmin ≈ π

2
− γ×(1 + γ+). (2.22)

The dependence of the angular differences on γ+ is on the order of |γ|2 (assuming that

γ+ ≈ γ×, which is true for most galaxy-lens orientations). This means that we can

neglect the γ+ term3 and just write

θmaj ≈ γ×; θmin ≈ π

2
− γ×. (2.23)

These simple relations allow us to estimate the shear by measuring how much the axes

differ from being orthogonal, as was proposed by Morales (2006). In an ideal velocity

field, the angle between the major and minor kinematic axes should be

θ⊥ ≈ π

2
± 2γ×. (2.24)

3The same is true for the κ term that we have already neglected. If we had kept it, it would have
shown up in the denominator here as well and could be neglected with the same logic.
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If we could determine the position angles of the velocity maximum, minimum, and

zeros and see how they differ from perpendicularity using a technique like the Radon

transform (Stark et al. 2018) or kinemetry (Krajnović et al. 2006b), we could use the

above result to gain an estimate of the induced shear.

2.3.2 Sheared Velocity Field Fitting

We can produce a more complete picture of the shear of a velocity field if we

model the distortion of the entire galaxy rather than just its major and minor axes.

We construct a Bayesian forward model that allows us to utilize all of the velocity

measurements to obtain a best-fit sheared velocity field.

For the purpose of comparing different KWL techniques in our regime of in-

terest, we create a simulated observation of a galaxy. We consider a source galaxy at

z = 0.7 behind a 7 × 1014 M⊙ foreground cluster (approximately equal in mass to the

Coma cluster, Gavazzi et al. 2009) at z ∼ 0.3. We assume the mass profile of the cluster

follows a Navarro-Frenk-White profile (NFW, Navarro et al. 1997). Two-dimensional

emission-line kinematics are feasible at this redshift with 8m-class ground-based optical

telescopes (e.g., Contini et al. 2016). We assume an impact parameter of 0.3 Mpc in

the plane of the lens corresponding to a 1 arcminute separation from the cluster center,

which is the field of view in the MUSE wide-field configuration (Bacon et al. 2010). This

system yields a shear magnitude of |γ| = 0.0589. We assume that the kinematic major

axis of the background galaxy is at a 45◦ angle to the radial vector to the lens, meaning

γ× = 0.0589 and γ+ = 0. With this shear magnitude in mind, we explore what types of

measurements are possible.
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Figure 2.2: Left: A mock intrinsic velocity field to test our KWL shear extraction. This
galaxy was generated using the model in Equation 2.25 with parameters vmax = 220
km/s , i = 45◦, ϕ = 2 rad, h = 2 kpc, and vsys = 0 km/s. A shear of γ× = 0.0589 has
been applied to it. The overlaid contours show the error on the velocity measurements
in km/s, which are normalized to a central value of 5 km/s. The inverse variance on
the velocity measurements is assumed to be proportional to surface brightness, which
is modeled as a Sérsic profile of the same galaxy with n = 1 and Re = 2 kpc. The
velocity inverse variance has been normalized to 0.05 (km/s)−2, typical of a MaNGA
galaxy. Right: The velocity field from the left panel but smeared and sampled coarsely
to emulate an observation at z ∼ 0.7 with a FWHM of 0.7” on a MUSE-like instrument.
See details in Section 2.3.2.
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We assume that the inverse variances on the velocity measurements are pro-

portional to surface brightness, which we set as an n = 1 Sérsic profile. The scale,

inclination, and position angle of the Sérsic profile are defined by the same parameters

that define the mock velocity field. normalized to a peak value of 0.05 (km/s)−2, corre-

sponding to a velocity error of about 4.5 km/s at the center of the galaxy. This value

was chosen because it was the most common value for galaxies in MaNGA (Bundy et al.

2015) and should capture some of the errors from approximating rotation as a thin disk

as well.

For the velocity field, we first generate an idealized toy model of a rotating

galaxy using a simple model:

v(r, θ) =
2

π
vmax arctan

( r
h

)
sin i cos(θ − ϕ) + vsys. (2.25)

Here r and θ are polar coordinates of the spectroscopic measurements, vmax is the

asymptotic rotation speed, h is the characteristic scale radius, i is the inclination, ϕ is

the kinematic PA, and vsys is the systemic velocity of the galaxy. The positions of the

primary kinematic axes, the part of the velocity field model that the shear measurement

primarily relies on, are not sensitive to the specific shape of the rotation curve model.

We compared results from this model with the more complex empirically-derived Uni-

versal Rotation Curve from Persic et al. (1996) and found negligible difference for the

results of this work, as did Wittman & Self (2021) in their analysis. We then apply

the transformation matrix (Equation 2.11) to the data to shear the velocity field, an

effect more easily seen in Figure 2.1. For the remainder of this chapter, we will use
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this model to both simulate mock velocity fields and to fit our mock data, allowing the

model complete freedom to describe the mock galaxy.

To simulate a real ground-based observation, we first convolve the velocity field

with a Moffat point-spread function (PSF) with a full-width half maximum (FWHM) of

0.7” and β = 2.9 to the velocity field and inverse variance to model atmospheric distor-

tions, a very good night at a mountaintop observatory. We weigh the PSF convolution

using the observed surface brightness profile of the galaxy. We then assume a spatial

sampling of 0.2×0.2 arcsec2, the same as the wide field mode for MUSE, corresponding

to ∼1 kpc spatial resolution at redshift z = 0.7. We generate a velocity field with a

characteristic scale radius h = 2 kpc and apply a shear of γ× ≈ 0.06 to its spatial co-

ordinates. We assume measurements extending out to ∼2Re for an n = 1 Sérsic profile

also with Re = 2 kpc4, meaning we should have a grid of 8 × 8 spatial samples across

the field of the galaxy. We also apply this same PSF convolution step when fitting this

model to data in order to more accurately recover the input parameters.

We also apply random Gaussian errors in the measured velocity according to

the assumed inverse variance profile, perturbing the results from the ideal velocity field.

The resulting measurements, shown in Figure 2.2, qualitatively resemble actual data

taken by MUSE (see Contini et al. 2016, Fig. 5). Because we generate our mock data

from ideal rotation curve models, we do not expect per-galaxy systematic errors from

dynamical shape noise to be present, leaving only statistical errors. We do not apply

this step when fitting the model to the data, instead using the ideal unperturbed model.

4For all other mock galaxies generated in this chapter, we will always make the simplification that
the characteristic scale radius of the velocity field h and the effective radius of its surface brightness
profile Re are equal.
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To find the best velocity field parameters for each mock galaxy, we use the

Markov Chain Monte Carlo (MCMC) package emcee (Foreman-Mackey et al. 2013),

feeding in the velocity measurements across the face of a galaxy. We use the same

rotation curve model as was used to generate the velocity field, but we add shear by

simply applying the inverse of the transformation matrix given in Equation 2.11 to the

underlying coordinates of the measurements and letting γ× be a free parameter in the

fit. Because our velocity field model is sheared directly by the transformation matrix,

it is not affected by the approximations we made in Section 2.3.1. This, however, comes

at the price of analytic simplicity of the model.

We apply uniform priors to inclination and position angle to allow for random

variation in orientation. We use a Gaussian prior on asymptotic velocity with mean

200 km/s and standard deviation 100 km/s and is truncated at 0, parameters that are

loosely based off of the MaNGA sample (Bundy et al. 2015). We allow the rotation

scale to vary uniformly up to 4 arcseconds. For γ×, we apply a uniform prior bounded

at ±0.5 to allow for a reasonable amount of variation, but not so much as to allow the

model to fit any irregularities it sees in the data with unphysical amounts of shear. We

use a standard Gaussian likelihood function for comparing the model to the mock data

at each iteration. This model produces shear magnitudes and statistical errors that are

similar to those measured by Gurri et al. (2020) when applied to the same data.

With these assumptions, we apply our Bayesian velocity-field model to the

simulated data and recover the posteriors shown in black in Figure 2.3. We can see that

the posteriors include the true values for most of the model parameters, although only
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Figure 2.3: Black: The resulting posteriors from applying the Bayesian velocity field
model from Equation 2.25 with a free shear parameter to the simulated sheared galaxy
described in Section 2.3.2. Most posteriors are centered near their true values (shown
as blue lines), but the uncertainty is inflated by injected Gaussian errors, blurring from
the PSF, and low spatial resolution. This is especially apparent in inclination and shear.
Since the magnitude of the introduced errors greatly outweighs the signal from weak
lensing, the posterior for γ× has very poor precision and the statistical error dominates
the measurement. Red: The performance of the model is greatly improved when image
PA is included as described in Section 2.4. With a 3 degree error on the image PA, the
posteriors are noticeably more constrained than the kinematics-only model, especially
the shear, which has a factor of 5 reduction in spread, and the position angle ϕ. The
degeneracy between ϕ and γ× is also resolved.
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some appear near the median of the posterior distributions. Two primary factors in the

model precision are the effects of the PSF and the added Gaussian noise. Inclination

relies on the specific shapes of isovelocity contours, but much of their variation with

inclination is masked by the PSF. In addition, the width of the shear posterior σγ is

hampered by the relatively shallow velocity gradient, limited spatial resolution, and

a significant degeneracy with the kinematic position angle. So while we can use this

method to extract some of the parameters of the velocity field, we cannot fit our key

parameter of interest with much precision. More information on the shear is needed if

we want to lower statistical errors enough to produce a successful fit for data of this

spatial resolution.

2.4 Combining Imaging and Kinematics

2.4.1 Kinematic and Photometric Position Angle Offset

To better constrain the lensing distortion of the velocity field, we incorporate

the image distortion we explored in Section 2.2.2. Comparing the kinematic axis dif-

ferences derived in Equations 2.22 and 2.23 to the photometric angular difference from

Equation 2.16, we can see (as in Figure 2.1) that there is a difference between the angle

measured by fitting an isophote and the angle from the velocity field for the major and

minor axes:

∆θmaj = γ×
1 + q2

1− q2
− γ× = γ×

(
1 + q2

1− q2
− 1

)
=

2γ×q
2

1− q2
(2.26)
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∆θmin =

(
γ×

1 + q2

1− q2
+
π

2

)
−
(π
2
− γ×

)
= γ×

(
1 + q2

1− q2
+ 1

)
=

2γ×
1− q2

. (2.27)

The minor axis deviates more because the velocity field shearing effect goes in the oppo-

site direction of the apparent rotation of the image. A comparison of the dependencies

of ∆θ on γ× and q for the major and minor axes is seen in Figure 2.4. More face-on

galaxies have larger apparent rotation angles because their shape is easy to distort. A

slight elongation of an elliptical isophote in a given direction will have much more effect

on the orientation of the isophote if it starts off as relatively round rather than relatively

extended.

We can also see that these angular differences mainly depend on γ× and q.

We can then solve for the shear γ× in terms of the two observables: ∆θ (the difference

between measured kinematic axis and imaged axis) and the axis ratio q. The relationship

between γ× and the deflection of the major and minor axis position angles differ by a

factor of q2:

γ×,maj ≈
∆θmaj(1− q2)

2q2
(2.28)

γ×,min ≈ ∆θmin(1− q2)

2
. (2.29)

The dependencies we recover here agree well with Wittman & Self (2021) and we will use

them in the next section to derive an improved lensing inference based on a combination

34



0

5

10

15

20

m
aj

 (d
eg

)

Axis Ratio
0.2
0.5
0.7
0.8

0.00 0.05 0.10
×

0

10

20

30

m
in

 (d
eg

)

Figure 2.4: The angular difference between the imaged and kinematic axis for the
major axis (top) and minor axis (bottom) as a function of the shear γ× and the axis
ratio q = b/a. The magnitude of the rotation of the photometric axis increases more
quickly for more face-on galaxies because less elongated ellipses are more easily distorted
in an arbitrary direction than more elongated ellipses. The major axis shows slightly
less angular difference than the minor axis because the imaged and kinematic axes are
being shifted in the same direction, while for the minor axis, they are shifted in opposite
directions. This is also why the edge-on q = 0.2 line for the minor axis still shows some
difference.
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of imaging and kinematic measurements. By combining the imaging measurements of

position angle and axis ratio with velocity measurements of the kinematic position angle,

we can gain access to a constraint on the gravitational shear induced on the galaxy.

2.4.2 KWL Models with Imaging Information

We rerun the previously described Bayesian velocity field fitting models but

with added constraints on the difference between the kinematic and image PAs. We feed

the model a mock image position angle, setting the value by perturbing the expected

value derived using Equation 2.26 with a Gaussian error based on the assumed level of

photometric uncertainty. Commonly-used photometric codes like Galfit (Peng et al.

2002) often drastically under-report the magnitude of their PA errors. Accurate error

accounting must be done by comparing intrinsic PAs in simulated galaxies with the

values recovered by photometric fitting. Häussler et al. (2007) suggests that photometric

PA measurements have average errors between 1 and 6 degrees depending on image

depth, so we will largely restrict our analyses to that range.

We then allow the model to fit the angular difference between the kinematic

PA and the perturbed image PA with its shear parameter, incorporating the result as

a new Gaussian term in the likelihood function. With this added information, we see a

significant reduction in the width of the posteriors σγ , as shown by the red posteriors in

Figure 2.3. Adding in the image PA allows for the degeneracy between the kinematic

PA and the shear strength to be broken much more effectively, resulting in a factor of

5 reduction in σγ for an image PA with an error of 3 degrees. This vast reduction in

statistical errors has large implications for regimes where the measurement error would
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be dominated by statistical error.

These improvements persist even for larger PA errors, as shown in Figure

2.5. Within the range of expected image PA errors (shown as the shaded blue region),

we see a reduction in σγ by a factor of 2–6, meaning that a KWL technique utilizing

imaging shape information is more sensitive. We also see that for large image PA errors,

σγ approaches its value from before imaging information was added. As expected, as

uncertainty in the image PA measurement increases, the statistical error in the measured

shear tends towards what is obtained in a fit without image PA constraints.

In Figure 2.6, we explore differing combinations of image PA error and velocity

error for a relatively face-on source galaxy (30 degree inclination). Larger errors in

image PA or velocity measurement may come from shallower exposures, poor seeing or

angular resolution, or irregularities in the galaxy. At this low inclination, improvements

in image PA precision improve the KWL shear measurements as much or more than

improvements to the velocity precision, reducing the need for higher S/N or higher

resolution spectroscopy. Even with moderate image PA uncertainties on the order of

several degrees, the precision of KWL measurements can reach levels comparable to

those of velocity-field-only fits relying on kinematic measurements at a fraction of the

velocity error.

These gains are much larger for lower-inclination galaxies since their imaged

axes are much more distorted, allowing them to contribute more to the shear measure-

ment. Higher-inclination galaxies, as shown in Figure 2.7, gain less from their photo-

metric information because the magnitude of the angular deflection is greatly reduced,
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Figure 2.5: The gains in precision seen after adding information on image position
angle to our Bayesian KWL model for a mock galaxy like the one in Figure 2.2, in-
cluding the applied shear of γ× ≈ 0.06. The model that fits both the kinematic and
imaging distortion (blue line) has an error on the shear posterior σγ that is 3-6 times
smaller than the model with only kinematics (dashed line) was able to achieve within
the region of expected errors on image PA in real data (blue shaded area). If borne out
in real observations, this could lead to significant decreases in necessary sample sizes
and exposure times to obtain a given lensing S/N. For very large errors in image PA,
σγ tends back towards the value obtained with no imaging information.
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Figure 2.6: The change in the error on the shear measurement σγ for a mock velocity
field with simulated seeing with different amounts of error on the image PA and different
central velocity errors. The input shear is γ× ≈ 0.06 and the model velocity field
is identical to those used in previous figures except that it has a 30◦ inclination with
respect to the observer. The blue shaded region represents the expected range for image
PA errors in real observations. Smaller errors on the image PA lead to higher precision
in shear, as is expected. For larger image PA errors, the precision approaches the value
derived from just the velocity field, but the value it levels off at depends on the errors in
the velocity field itself and the inclination of the galaxy. For image PA errors expected
in real data, even poor-quality velocity fields can match the precision reached by very
good velocity field-only KWL measurements, presenting opportunities for exposure time
savings.
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forcing the shear measurement to rely more on kinematic distortion. The distribution

of inclinations within a population of randomly-oriented disks is uniform over sin i (Law

et al. 2009), so the inclination distribution of a random sample from a survey will be

weighted towards the high end, with a mean inclination angle of 1 radian (about 57◦)

or a mean axis ratio of q ≈ 0.54. So unless a survey sample is deliberately designed to

sample low-inclination galaxies, most galaxies will see improvements on par with Figure

2.7 rather than Figure 2.6.

Still, adding imaging information to KWL measurements for these higher-

inclination galaxies that would make up the majority of a random sample would cut

required exposure times dramatically for spectroscopic observations. If we assume that

S/N scales with the square root of exposure time, then even a factor of two improvement

in S/N from including the image PA can cut exposure time by a factor of four.

Comparison to Previous Work

As mentioned in Section 2.3.2, our kinematics-only model delivered similar

statistical errors as that of Gurri et al. (2020) when tested on their data, so to quantify

the benefits of our kinematics + imaging technique on presently-available data sets, we

again benchmark against their approach by modifying our mock data to better match

the Gurri et al. (2020) data. We move the source galaxy to z = 0.15 and the lens to

z = 0.03, increase the FWHM of the PSF to 1.5”, and increase the spatial element size

to 0.5” to roughly mimic their data set. We add mock image PA measurements, as we

have done for the rest of our mock data, and we assume an error on the image PA of 3

degrees, which is in the middle of the expected error range.
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Applying our kinematics + imaging algorithm to these simulated galaxies re-

sults in significantly improved statistical uncertainties. Our estimate on the resulting

σγ values are lower by a factor of ∼6 on a per-galaxy basis, consistent with the results

from higher redshift mock data in Figure 2.5. This result demonstrates that even for

existing data sets at lower redshifts, this technique can increase lensing precision.

However, our inclusion of imaging data does not address the dynamical shape

noise term. In order to account for this error, Gurri et al. (2020) estimate the magnitude

of the error using a different sample of unsheared galaxies, and find an amplitude that

is similar to the statistical error on a per-galaxy basis. This dynamical shape noise term

is added in quadrature to determine the final error for each galaxy in their sample. As

a result, our estimated factor of 6 improvement in the statistical error, when applied to

the full sample in Gurri et al. 2020, only increases their overall 2.5σ shear detection to

3σ.

2.4.3 Survey Design Considerations

While statistical error is small relative to systematic error for low redshift

samples, the same is not true at higher redshifts. Resolved spectroscopic measurements

become more difficult at higher redshifts due to lower spatial resolution and surface

brightness, resulting in higher statistical errors. So the gains made by our imaging +

kinematics model will be especially salient at increased redshifts, where there are the

added benefits of greater lensing magnitudes (thanks to more favorable lensing kernels)

and higher on-sky source densities, allowing for easier collection of larger sample sizes.

If we observe a 1×1 arcmin2 field near a galaxy cluster (e.g. using MUSE), we
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Figure 2.7: The same as Figure 2.6 but for a 45◦ and 60◦ galaxies. Higher-inclination
galaxies have a much smaller image distortion than lower-inclination galaxies, meaning
the model cannot rely on this information as much when constraining the shear. This
creates a much larger stratification in velocity error than for lower-inclination galaxies.
Overall, σγ values are larger, particularly in the 60◦ galaxy, but improvements to the
image PA observation have little effect.
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will catch tens of galaxies with velocity fields that are well-defined enough to perform our

KWL analysis. A multiplexed fiber IFU instrument like the proposed FOBOS (Bundy

et al. 2019) would be able to patrol a significantly wider field and collect velocity data

from only the most promising galaxies, enabling a larger sample in less overall exposure

time. We can stack the lensing information from the multiple galaxies to obtain higher

precision and reduce the random errors introduced by noise or galaxy irregularities

either by a weighted average of shear results (as was done in Gurri et al. 2020) or a

hierarchical Bayesian model that simultaneously fits all galaxies in a given spatial bin.

We expect these individual galaxy “dynamical shape noise” errors to average out to zero

in a large sample because they will be randomly and symmetrically distributed (Gurri

et al. 2020).

Figures 2.6 and 2.7 show that, with attainable observational errors and low

inclinations, it is possible to obtain a σγ value comparable in magnitude to the applied

shear, resulting in a ∼1σ KWLmeasurement per galaxy for the input shear of γ× ≈ 0.06.

However, if we stack multiple such measurements within a radial bin defined by a

selection of foreground lenses and assume that the source measurements are statistically

independent samples of the ensemble mass density profile of the lenses, then the error

on this galaxy–galaxy shear measurement should scale as n−1/2. So for a sample of

only n = 9 galaxies in a spatial bin, σγ should be lowered by a factor of 3, raising a

1σ detection to 3σ. This scaling should apply to the systematic error as well since we

expect individual galaxy errors to average to zero over a large sample.
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Source Redshift

Depending on the instrumentation, if we want to build a larger sample size,

higher source density on-sky may be beneficial if the number of independent pointings

can be minimized. Source density increases with redshift, as does the magnitude of

lensing effects according to Equations 2.5 and 2.7, but there is a trade-off because surface

brightness and physical size decrease with redshift. To explore this trade-off, we run our

KWL model that incorporates imaging information on the same mock galaxy placed at

a range of redshifts. We ignore complications from galaxy evolution like mass/radius

growth or dynamical changes. We simulate the observations of different inclination

source galaxies at the varying distances as if they are behind a lens at z = 0.3. We hold

the rest of the observational parameters constant, on-sky spatial resolution, image PA

error, central velocity error, and PSF width (unless specified). Maintaining constant

errors would require deeper exposures for both imaging and spectroscopy, which we do

not account for in this chapter.

Although closer source galaxies have smaller σγ uncertainties because of their

greater number of spatial resolution elements, Figure 2.8 shows that they deliver a

poorer S/N per galaxy because they are simply not sheared as much as more distant

galaxies. The top panel shows a high degree of S/N stratification in inclination because

the change in image PA is much greater for lower inclinations. We find that there is

modest gain in S/N for all inclinations with redshift before leveling off around z ∼ 0.7−1,

the redshift range assumed in this chapter, before keeping a relatively constant value

at higher z. This mirrors the trend seen in the overall shear magnitude seen as the red
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Figure 2.8: Top: The KWL S/N per galaxy for source galaxies at varying inclinations
with different redshifts behind a massive halo at z = 0.3. We maintain constant on-sky
spatial resolution, imaging and velocity errors, and PSF width, ignoring the effects of
surface brightness dimming and galaxy evolution. Error bars are based on the random
variation from running 10 identical velocity fields with distinct randomized errors. Mid-
dle: The 45◦ inclination galaxy from the top panel but with FWHM of the PSF varied
to simulate different observing conditions, still holding on-sky instrumental resolution
constant. Realistic observing conditions provide measurements that are a factor of 2–3
lower in S/N compared to an ideal observation without PSF smearing. Improving the
PSF by a factor of 2 with something like a ground-layer adaptive optics system to 0.35”
leads to S/N gains of about 50%. Bottom: The overall magnitude of the lensing shear,
shown in the red dashed line, increases with redshift, making the effects of KWL more
noticeable. The fraction of a square FWHM covered by a square kpc in the on-sky
plane of the source galaxy, shown in blue solid line, indicates that the PSF becomes
very large compared to the spatial scales of the source galaxy, worsening the quality of
the fit. S/N largely tracks with shear magnitude.
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dashed line in the bottom panel of Figure 2.8.

Another factor that influences precision is the FWHM of the spatial PSF of

the resolved kinematic field. The blue line in the bottom panel of Figure 2.8 shows that

as the source galaxy redshift increases, the size of the galaxy on-sky becomes smaller

relative to the size of the PSF, here represented as the ratio of the square FWHM

compared to the size of a square kpc in the plane of the galaxy. Reductions to the

FWHM result in higher surface brightness in many cases and more independence of the

spatial resolution elements of an IFU observation, which would improve the precision

of the velocity field fit even if the spatial sampling is not changed. These types of

gains could be obtained in the real world using a ground-layer adaptive optics system

(e.g. Chun et al. 2018; Hartke et al. 2020), which would lead to an improvement in

seeing by a factor of 1.5 to 2 over a several arcminute-wide field. In the middle panel

of Figure 2.8, we vary the FWHM to simulate different observing conditions, from an

ideal observation without seeing to a FWHM of 2”. We find modest gains in S/N with

better seeing, especially at moderate and higher redshifts. However, even fits with poor

seeing are able to locate the kinematic axes with acceptable precision, so the effects of

better seeing are limited. Still, the increase in surface brightness is valuable for driving

down exposure time.

Lens Redshift

To test KWL’s ability to probe lenses at various redshifts, we also simulate

systems where the source is held at a constant z = 1 for varying redshift lenses (Figure

2.9). We find similar dependencies on inclination and FWHM as in Figure 2.8. However,
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since shear magnitude scales with the angular diameter distances to the source and the

lens (Equation 2.5), shear magnitude peaks at z ∼ 0.3, falling off sharply from there. In

fact, due to how angular diameter distance is defined, for source galaxies further than

z ∼ 0.7, shear magnitude will always be largest for lenses at 0.2 < z < 0.3. So KWL, like

any other lensing technique, will be most sensitive to lenses at these moderate redshifts.

General Strategy

An ideal strategy for a KWL survey would likely be to target low-inclination

galaxies that benefit more from the gains imaging can provide. They should be regularly-

rotating blue spiral galaxies that are likely to have a high emission line flux for ease

of kinematic measurements. The targets should have regular, symmetric isophotes and

imaging sufficient to measure image position angles with 1–3 degree uncertainties. If the

source galaxy population reaches z ∼ 1, the ideal lens sample would have a redshift range

z = 0.2–0.7 to ensure shear magnitudes near the peak of the lensing kernel. Ideally, the

major-axis position angles of selected source galaxies should be misaligned with respect

to the on-sky direction to the lens center. A 45◦ offset maximizes the cross-term in the

shear. A full optimization of a KWL survey design would take into account the lens and

source redshift distributions, the intrinsic variation in galaxy shape, systematic errors

in individual galaxies due to dynamical shape noise, and observational constraints such

as seeing and exposure time as it relates to brightness dimming, distance, and size.
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2.5 Conclusion

We have demonstrated a new formalism for combining imaging and kinematic

information that significantly improves the S/N of kinematic weak-lensing observations.

Our Bayesian models fit both the kinematic distortion and the photometric offset caused

by lensing shear in a given galaxy, leading to decreases in per-galaxy statistical error

by a factor of 2 to 6 compared to kinematics alone. If borne out in real observations,

this approach opens the door for future studies to more effectively utilize kinematics-

based lensing observations of lens samples at moderate redshifts. Even with existing

instruments, the methodology appears promising for enabling probes of galaxy cluster

halo profiles with greater spatial resolution and S/N while mitigating many of the sys-

tematics that affect conventional lensing measurements, like shape noise and intrinsic

alignments. Ultimately, this will allow for individual, total mass measurements in the

weak-lensing regime for a greater number of clusters.

A purpose-designed survey on a new or existing instrument could provide the

observations necessary for a successful KWL measurement. Further study is needed to

determine the appropriate redshift range to balance shear magnitude and source den-

sity with spatial resolution and surface brightness, while more detailed galaxy rotation

models are needed to quantify the systematic effects of kinematic irregularities on KWL

measurements.
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Chapter 3

The Strength of Bisymmetric

Modes in SDSS-IV/MaNGA

Barred Galaxy Kinematics

3.1 Introduction

Galactic bars are smooth linear bisymmetric morphological features in the

central regions of disk galaxies (Binney & Tremaine 2008). A large fraction of disk

galaxies in the local Universe have bars, including the Milky Way (Blitz & Spergel

1991), with more massive, redder galaxies having larger bar fractions (Nair & Abraham

2010; Masters et al. 2011). Barred galaxies have been observed out to z > 2 (Guo

et al. 2023a), though studies disagree on whether bar fraction decreases with redshift or

remains steady (Melvin et al. 2014; Cameron et al. 2010; Sheth et al. 2008; Elmegreen
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et al. 2004).

Bars are inherently dynamical structures stemming from perturbations in a

galaxy’s gravitational potential that lead to destabilizing resonances in stellar orbits

(Athanassoula 2002) and the redistribution of angular momentum throughout the disk

(Kormendy & Kennicutt 2004). Spontaneous bar formation has been observed in galaxy

evolution simulations ranging from relatively simple models of galactic potentials (e.g.

Toomre 1981), to low-resolution n-body simulations (e.g. Sellwood & Wilkinson 1993),

to modern hydrodynamical simulations (e.g. Rosas-Guevara et al. 2022). Bars can also

form due to changes in galactic potential from major mergers or tidal disruptions (Bi

et al. 2022) and can evolve over the course of a galaxy’s lifetime.

The dynamical structure of bars can be seen through the motions of material

within the galaxy. Bars channel interstellar gas radially along their leading edge (Regan

et al. 1997), with gas flowing both inwards and outwards (Fragkoudi et al. 2016). This

radial motion also redistribute stellar populations within bars, flattening population

gradients within the bar as compared to the surrounding disk (Fraser-McKelvie et al.

2019). These motions may play a part in the early quenching of star formation in barred

galaxies (Fraser-McKelvie et al. 2020). These structures can also be studied using the

Tremaine-Wineberg method (Tremaine & Weinberg 1984), allowing for the determina-

tion of bar pattern speed and corotation radius in spatially-resolved spectroscopy of

samples of barred galaxies (e.g. Géron et al. 2023; Garma-Oehmichen et al. 2022).

The non-circular motions present in bars cannot be modeled accurately using

axisymmetric kinematic models that require a fixed position angle and inclination for
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the whole disk (e.g. Andersen & Bershady 2013). Stark et al. (2018) uses the Radon

transform to describe position angle variation as a function of radius for galaxies with

dynamical disturbances like bars or warps. These techniques can produce accurate mod-

els of nonaxisymmetric features in galaxy velocity fields by arbitrarily varying galaxy

properties such as position angle, inclination, and rotational velocity in each radial bin,

but these independently varying rings are not based on a parametric model. Kinemetry

(Krajnović et al. 2006a) uses the techniques of surface photometry to perform har-

monic decomposition of the higher-order spatial modes present in 2D velocity fields of

irregularly-rotating galaxies. Józsa et al. (2007) uses a series of independent tilted con-

centric rings to accurately model radial and azimuthal variations in galaxy kinematics.

Velfit (Spekkens & Sellwood 2007; Sellwood & Sánchez 2010, later DiskFit,

Sellwood & Spekkens 2015) instead proposes a single cohesive model for a galaxy’s

disk properties. Based on harmonic models from Schoenmakers et al. (1997), the Velfit

model has global values for inclination and position angle, instead accounting for kine-

matic distortions with added modes on top of the usual first-order (i.e. completing one

sinusoidal velocity oscillation per revolution) tangential velocity of a circularly-rotating

disk. They use only physically-motivated terms in their model, restricting it to fitting

either first-order radial term that accounts for net inflow/outflow or a combination of

second-order radial and tangential terms that are meant to represent bisymmetric mo-

tions within bars. These models have had success in describing non-circular motions

in radio observations of cold gas rotation in nearby galaxies (e.g. Bisaria et al. 2022;

Garma-Oehmichen et al. 2022; Holmes et al. 2015).
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In this paper, we build on these earlier kinematic models of non-circular mo-

tions to create Nirvana, a flexible code for modeling bisymmetric motions in barred

galaxies. We develop our model using a Bayesian forward modeling framework with

added constraints within the prior and tuning of the likelihood function that are adjusted

to produce more robust, physical-viable results. Additional features include point-

spread function (PSF) convolution, dispersion fitting, and surface brightness weighting

to make the model more easily applied to lower spatial resolution velocity fields. We

investigate the biases present in the model using mock data to calibrate results.

We apply the Nirvana model to a sample of barred galaxies from the SDSS-IV

MaNGA(Bundy et al. 2015). Using bar designations from volunteer classifications of

MaNGA galaxy morphology from GalaxyZoo: 3D (GZ:3D; Masters et al. 2021), we

attempt to fit the stellar and gas-phase velocity fields of all barred MaNGA galaxies

and model their non-circular motions with Nirvana, as well as a population-matched

sample of unbarred galaxies that we use as a control, generating corresponding samples

of velocity field models. We find elevated levels of bisymmetric motion in the barred

sample as compared to the unbarred control, and we find that galaxies with elevated

bisymmetric velocity terms generally match GZ:3D closely in bar position angle.

This paper is structured as follows: Section 3.2 summarizes the galaxy kine-

matic data we use and how we prepare it for modeling, as well as the assembly of the

samples of barred and unbarred galaxies. Section 3.3 describes our velocity model and

PSF convolution methods. Section 3.4 describes Nirvana’s fitting algorithm, including

the prior and likelihood functions in the Bayesian model. Section 3.5 discusses our eval-
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uations of the model’s effectiveness when compared to real and mock data. Section 3.6

provides a summary of our work and presents directions for future study.

3.2 MaNGA Data

3.2.1 MaNGA: Mapping Nearby Galaxies at Apache Point Observa-

tory

This paper utilizes data and data products from the Sloan Digital Sky Survey

IV (SDSS-IV; York et al. 2000; Blanton et al. 2017) and the Mapping Nearby Galaxies at

Apache Point Observatory survey (MaNGA Bundy et al. 2015). MaNGA uses integral

field spectroscopy to collect spatially-resolved spectra for ∼10,000 galaxies using the

BOSS spectrographs on the 2.5 m telescope at Apache Point Observatory (Gunn et al.

2006). Spectral observations have a resolution of R ∼ 2000 over a range of 3600 Å < λ <

10300 Å with variable exposure time to achieve the desired signal-to-noise ratio (SNR)

of 10 in the g-band (Bundy et al. 2015). Fibers are grouped into hexagonal bundles of

19 to 127 fibers that are 12” to 32” in diameter (Drory et al. 2015). Flux calibration and

sky subtraction are applied to the observed spectra using simultaneous observations of

standard stars and sky within the same field (Yan et al. 2016). The median full-width

half-maximum (FWHM) of the point-spread function (PSF) for MaNGA data cubes is

2.5”, which roughly corresponds to kiloparsec scales at the targeted redshifts (z < 0.15).

Observations are dithered and interpolated onto a 0.5” grid of spaxels.

The MaNGA sample is selected to be uniform over i-band absolute magnitude

and is divided into two subsamples: the Primary+ sample (∼2/3 of the total sample)
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that contains galaxies with spectral coverage out to ∼1.5 effective radii (Re), and the

Secondary sample (∼1/3 of the total sample) where observations extend out to ∼2.5

Re (Wake et al. 2017). Raw spectroscopic observations are reduced by the MaNGA

Data Reduction Pipeline (DRP; Law et al. 2016), and data products such as velocity

measurements are derived with the Data Analysis Pipeline (Westfall et al. 2019; Belfiore

et al. 2019). All data in this paper are from the seventeenth SDSS data release (DR17;

Abdurro’uf et al. 2022), which represents the final data release of the MaNGA survey

and contains MaNGA observations and data products from 10,010 unique galaxies. All

photometric data in this paper is from the NASA-Sloan Atlas (NSA; Blanton et al.

2011), which uses imaging from SDSS-I, II, and III.

In this paper, we utilize the hybrid binning scheme data products from the

DAP, which uses slightly different methods for creating stellar- and gas-phase line-of-

sight velocity measurements. For the stellar kinematics, spaxels are Voronoi binned

(Cappellari & Copin 2003) to a threshold g-band-weighted SNR of at least 10. These

bins are then deconstructed such that the gas kinematics are determined on a spaxel-

by-spaxel basis. Both velocity fields are calculated by simultaneously fitting all emis-

sion/absorption lines, meaning that all ionized gas tracers are assumed to have the same

velocity. For this reason, for the remainder of the paper, when we discuss velocity fields

derived from observations of nebular emission, we refer to them as “gas-phase” velocity

fields rather than velocity fields associated with a particular emission line. However,

each emission line is fit independently for surface brightness and velocity dispersion, so

we use the H-alpha values for these quantities when working with gas-phase velocity
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data.

3.2.2 Data Processing

Though the MaNGA DAP masks many imperfections in the maps it extracts

from the datacubes, there are still outliers in the data that inhibit our ability to produce

a successful fit.

Specifically, the DAP also sometimes produces velocity measurements for indi-

vidual spaxels that differ greatly from the neighboring spaxels due to systematic errors

caused by low SNR (Westfall et al. 2019; Belfiore et al. 2019). To identify these spurious

velocity measurements, we convolve a kernel to blur the kinematic data that is equiva-

lent to the reported PSF, smearing the data over a scale that should correspond to the

observational differences in the data. We then mask any spaxels where the magnitude

of the difference between the velocity and dispersion maps and their blurred counter-

parts, since any spaxels that differ too greatly from their neighbors must be nonphysical.

Through experimentation, we determined any spaxels with differences of more than 50

km/s are likely erroneous, so they are masked.

This process also necessitates the masking of any large spatial bins. Such bins

are frequently used on the outskirts of stellar velocity fields where the MaNGA DAP

groups spaxels together, attempting to reach a minimum required SNR for reliable

velocity dispersion measurement. However, because these bins cover such large areas,

the differences in velocity between adjacent bins can become large enough to trigger the

above clipping threshold, removing spaxels that otherwise contain high-fidelity velocity

measurements. For this reason, we mask any bins that consist of more than 10 spaxels.
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We then mask out any spaxels that have a surface brightness flux of less than

3× 10−19 ergs/s/cm2 per spaxel in the Hα flux map or an Hα amplitude-to-noise ratio

(ANR) of less than 5 for gas velocity fields, or 3×10−19 ergs/s/cm2/Å per spaxel in the

stellar flux map for stellar velocity fields. These values were experimentally determined

to best remove low-quality velocity measurements on the outskirts of galaxies.

Finally, we attempt to remove any regions of the velocity field that do not

appear to be part of the same rotating system as the rest of the galaxy. Many MaNGA

IFUs contain foreground/background sources or merging companions that have distinct

velocity fields from the main target, so it would be inappropriate to fit a single rotating

disk to the data. To mask these, we perform a preliminary fit to the kinematics using an

axisymmetric model and subtract the model from the data to obtain a map of the resid-

uals. If the data are well represented by this model, the residuals should be randomly

distributed along a Gaussian distribution according to the Central Limit Theorem, and

any deviations from Gaussianity represent possible signatures of asymmetry that we

may want to mask. In order to preserve the genuine bisymmetric features we are at-

tempting to model, we mask only the spaxels that differ from the mean of the residuals

by more than 10 standard deviations, a value we experimentally determined removes

unwanted companions but still preserves real bisymmetric features. After masking these

spaxels, we again fit the axisymmetric model and remove the outliers in the residuals,

repeating the process until the number of masked spaxels stabilizes.

If, at the end of this process, the galaxy is left with only 20% or less of its

original number of spaxels unmasked, the velocity field is considered to be unsuitable
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for velocity field fitting and it is not fit.

Our rotation curve models are piece-wise linear functions defined on a set

of concentric elliptical rings. To construct the radius of each ring, we determine the

position of the minor axis and inclination of the galaxy our preliminary axisymmetric

model (see above) and transform the spaxel/bin coordinates into in-plane elliptical

coordinates using Equations 3.1 and 3.2. We then subdivide these coordinates into

concentric rings using the method described further in Section 3.3. If more than 75%

of the spaxels in a given elliptical annulus are masked, all spaxels are discarded and

the relevant ring is removed. This prevents a small number of spaxels from having an

undue influence on the model, particularly in galactic outskirts. Any galaxies with 2 or

fewer elliptical rings are discarded for having insufficient spatial resolution.

3.2.3 Sample

Our goal is to assess the ability of Nirvana to accurately model and quantify

bisymmetric distortions in the velocity fields of MaNGA galaxies. To this end, we define

two galaxy samples, one of barred galaxies where we expect prominent bisymmetric

kinematic distortions, and a second matched control population of galaxies that do not

appear to be barred (see Section 3.2.4). To create these samples, we use the existing

Galaxy Zoo: 3D catalog (GZ:3D; Masters et al. 2021), a crowd-sourced project for

identifying morphological features in SDSS images of MaNGA galaxies. Volunteers

drew regions on images of all MaNGA galaxies from the SDSS-I/II survey (Gunn et al.

1998; York et al. 2000) to indicate which morphological feature each pixel belonged to,

yielding vote counts for each pixel that we can use to determine which galaxies have
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bars as well as the shape of the bar. We chose this catalog over others because it already

provides information on bar position and shape within the galaxy, allowing us to more

easily compare our models to existing imaging.

We define a pixel as being part of the bar if more than 20% of volunteers

designated it as such, and we define a galaxy as “barred” if it has more than at least

one spaxel that is part of a bar, the methodology recommended by Krishnarao et al.

(2020) and Masters et al. (2021). GZ:3D provides us not only with a binary classification

of barred versus unbarred galaxies but also with more detailed spatial information that

we will compare to our kinematic modeling results. In the MaNGA sample, there are

1593 such galaxies representing 14.1% of the total sample. Since MaNGA provides both

stellar and gas velocity maps, we model both using Nirvana, but fit the two tracers

independently.

Major mergers can greatly disrupt the internal kinematics of disk galaxies,

so we also remove any galaxies that are obviously undergoing a merger. GZ:3D has

volunteers mark the centers of any galaxies that are in the image of the target galaxy

and the surrounding area, so we remove any galaxies where the average number of centers

marked by volunteers was greater than 1.5, a threshold we experimentally determined

to work best. We find a total of 98 mergers in our original list of barred galaxies and

remove them from our final sample to reduce extra sources of non-circular motion.

After these cuts, Nirvana successfully converges on suitable velocity models for

973 stellar velocity fields (66.6% of the initial sample) and 1012 gas-phase velocity fields

(69.3%). 722 galaxies (49.4%) have both stellar and gas velocity fits, and 1263 unique
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galaxies have either a stellar or gas-phase velocity field model. These sets of successfully

fit galaxies represents our final Nirvana-MaNGA sample of barred galaxies that we will

work with for the remainder of this paper.

The cuts in our data processing tend to bias the Nirvana-MaNGA sample

away from redder galaxies because of their lower gas-phase emission flux, resulting in

a sample of galaxies that fall almost entirely within the “blue cloud” of galaxies on

the color-magnitude diagram. As shown in Figure 3.1, the majority of the sample lies

between 109 − 1011M⊙, as described by the elliptical Petrosian photometry data given

in the NASA-Sloan Atlas (NSA; Blanton et al. 2011). The sample is almost entirely

blue, as measured by the NSA elliptical Petrosian NUV − r, with only a few galaxies

in the green valley and red sequence. There are peaks in the mass distribution around

109.3 and 1010.4. The first peak corresponds to a mass range with large representation

in the overall MaNGA sample of blue galaxies, and the second indicates a bias towards

larger blue galaxies overall within the Nirvana sample.

3.2.4 Control Sample

To isolate the effect of galactic bars on our main sample, we construct a sample

of unbarred galaxies to serve as a control. Such a sample will allow us to compare the

strength of the bisymmetric distortions measured by Nirvana to our main sample, where

the bisymmetric distortions are expected to be more significant. This control should

therefore resemble the population of galaxies in our main sample, such that we can

effectively isolate the effect of the bars. To build the control sample, we match each

barred galaxy in the final sample to a galaxy with similar NSA elliptical Petrosian stellar
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Figure 3.1: Stellar masses and colors of the Nirvana gas-phase sample of barred galaxies
(green circles), the population-matched control sample (gray pluses), and the MaNGA
sample as a whole (contours). The sample galaxies lie almost entirely within the “blue
cloud,” with only a small number having green or red colors, and there is a greater
fraction of high-mass blue galaxies than in the overall MaNGA sample. The control
sample of unbarred galaxies is demographically extremely close to the Nirvana sample
by virtue of the matching process.
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mass, color, axis ratio (b/a), and effective radius (Reff) using linear sum assignment

(Crouse 2016), which produces a set of unique galaxy pairs with matched population

parameters.

For each of the parameters listed, we normalize the range of the MaNGA

population to fall roughly between 0 and 1.5 The end points of the normalized parameter

distributions are as follows:

• Color (NUV − r): 0 to 10.

• Log stellar mass: 108 to 1012M⊙.

• Effective radius: 0 to 18 arcsec.

• Axis ratio: 0 to 1.

The median distance between galaxy pairs in the normalized parameter space 0.038,

so the population statistics for the control sample are nearly identical to the barred

sample, as seen in Figures 3.1.

3.3 Bisymmetric Kinematic Model

To model non-circular motions in disk galaxies, we adopt a formalism based

on Spekkens & Sellwood (2007). Our models use a cylindrical coordinate system, with

the disk plan at z = 0, projected on the sky. To map the rectilinear on-sky spaxel

5Some ranges were chosen to capture the range of galaxies in the full MaNGA sample, so they may
appear oversized when considering just our sample of barred galaxies. However, changing the bounds
has only a small effect on the overall properties of the galaxies chosen for the control.
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coordinates onto the projected galaxy coordinates, we use the following transformations:

r =
[
(x− xc)

2 + (y − yc)
2
]1/2

(3.1)

θ = arctan

(
x sinϕ− y cosϕ

cos i (x cosϕ+ y sinϕ)

)
, (3.2)

for x and y center position xc and yc and on-sky position angle ϕ, measured from N

through E along the direction of the receding side of the major axis.

We split the velocity field V (r, θ) into its radial and tangential components

Vr(r, θ) and Vt(r, θ), additionally breaking each component down into its Fourier modes.

Spekkens & Sellwood (2007) show that some bisymmetric (second-order) terms are

degenerate with a first-order radial term. Here, we neglect the first-order radial term,

effectively assuming that most galaxies have no coherent radial inflows or outflows.

We limit our model to only the primary rotation term (first-order tangential)

and second-order terms to focus on the bisymmetric flows that are physically associated

with bars, rather than higher-order modes that may describe irregularities in velocity

fields more exactly (e.g. Krajnović et al. 2006a). However, Spekkens & Sellwood (2007)

note that sinusoidal models of order m projected in an elliptical coordinate system are

degenerate with models of order m± 1, so some third-order features are present in the

models. We address the first-order degeneracies in Section 3.4.2.
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The resulting model is shown below:

V (r, θ) = Vsys + sin i

[
Vt(r) cos θ

−V2t(r) cos
(
2(θ − ϕb)

)
cos θ

−V2r(r) sin
(
2(θ − ϕb)

)
sin θ

]
. (3.3)

The bisymmetric position angle ϕb is defined as the in-plane angular difference be-

tween the first- and second-order rotational terms. We also discretize the kinematic

components, Vt, V2t, and V2r, using a piece-wise linear function with breakpoints at

equally-spaced in-plane radii. The breakpoint radii are set such that their separation is

defined as half of the reconstructed FWHM of the MaNGA PSF along the minor axis

of the galaxy, thus Nyquist sampling the changes in velocity along the position angle

where they are most compressed. These breakpoint radii are linearly spaced along the

minor axis until the edge of the MaNGA IFU is reached, as described in Section 3.2.2.

Additional details regarding the construction of the kinematic models are addressed in

Section 3.4. We note that the inner-most breakpoint of the functions is at R = 0, and

we force all velocity components to be 0 km/s at this position.

Nirvana also goes beyond previous works by simultaneously modeling the ve-

locity dispersion of the input galaxy. In addition to providing a more complete kinematic

understanding of the galaxy, the dispersion also helps to more accurately model the ef-

fects of beam smearing by incorporating both spatial and spectral smearing in the final

velocity measurements. The increased fidelity and generality of our beam smearing also

differentiates Nirvana from prior work (e.g. Spekkens & Sellwood 2007). Since velocity
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dispersion is a second-order moment, we assume that it is radially symmetric (Binney

& Tremaine 2008). Therefore, we do not need a complex model to decompose it like

we do for the velocity, instead modeling it as a single piece-wise curve σ(r) defined over

the radius of the galaxy and projected in-plane. However, such simple axisymmetric

models may be limited in their ability to describe galaxies that are not axisymmetric

themselves.

Once the intrinsic models for velocity and dispersion have been generated, they

are convolved with the MaNGA PSF to include the effects of beam smearing, which can

be directly compared with the observed data. The convolutions performed are

Iobs = I ∗ P, (3.4)

Vobs =
(IV ) ∗ P
Iobs

, and (3.5)

σobs =

[
I(V 2 + σ2) ∗ P

Iobs
− V 2

obs

]1/2
, (3.6)

where ∗ is the convolution operator, P is the on-sky point-spread function, and the

quantities I, V , and σ are all intrinsic properties of the galaxy along the line-of-sight,

before convolution with the PSF. Note that a limitation of our model is that we do not

model the surface brightness, I, (cf. Varidel et al. 2019) and we do not have access to a

higher resolution observations of I; we use the observed surface-brightness distribution.
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3.4 Fitting Algorithm

The core function of Nirvana is to represent the input galaxy using the model

described above. To fit the above model to the data, we construct a Bayesian forward

model. We choose this formalism rather than a least-squares optimizer like Spekkens

& Sellwood (2007) because of its ability to compensate for local minima in the likeli-

hood, account for covariances between parameters, and utilize priors when navigating

probability space. We specifically chose the Bayesian code dynesty (Speagle 2020),

a Python package implementing nested sampling (Skilling 2004, 2006) utilizing multi-

ellipsoid bounds (Feroz et al. 2009) due to its strengths in describing high-dimensional

multi-modal likelihood spaces.

In this section, we describe the prior and likelihood functions used by Nirvana

as well as the biases and constraints that led to their design. An example of the results

from running the model is given in Section 3.4.3.

3.4.1 Priors

Position angles, velocities, and centers

To keep the fitting process relatively galaxy-agnostic, we endeavored to keep

the priors as uninformative as possible. We chose a uniform prior over all angles for

position angle ϕ rather than setting a narrower prior probability distribution based on

preliminary axisymmetric fits to allow for complicating factors such as irregular galaxy

shapes or non-circular motions that could lead to significant biases in the axisymmetric

position angle. Similarly, we use a uniform prior over all angles for the second order
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position angle ϕb since we do not have any information on the likely orientations of

higher order components for any of the galaxies.

Rather than attempting to construct an informed prior for the individual ve-

locity components based on predicted rotation curve shapes, we instead attempt to be

neutral and keep the model as free from parametric models as possible by using uni-

form priors over a reasonable velocity range. We allow the magnitudes of the individual

in-plane velocity components Vt, V2t, and V2r to vary between 0 and 400 km/s in each

bin, with the center bin held fixed at 0 km/s. Similarly, the prior on velocity dispersion

magnitude σ is uniform over 0 to 300 km/s.

We have found that axisymmetric fits are almost always capable of recovering

the systemic velocity well, so we restrict the Vsys to be within ±60 km/s of the value

returned by the preliminary fit. We also rely on the MaNGA IFU placement for the

position of the center of the galaxy, restricting the galactic center to be within a 4′′

square box surrounding the center of the MaNGA bundle. We determined the size

of the bounding box by noticing that in preliminary runs, almost all galaxy models

that had kinematic centers more than 2′′ from the IFU center were fit incorrectly, and

that the results from the fit were improved by restricting the position of the dynamical

center. Essentially all isolated galaxies are centered in the MaNGA IFU, and galaxies

with kinematic centers outside of this bounding box are almost always not isolated or

are undergoing a merger, making them unsuitable for our modeling approach.
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Inclination

The most restrictive prior we have placed on the fitting algorithm is on the

inclination, which we tie to the photometric inclination using a relatively tight Gaus-

sian prior. We derive the photometric inclination ip of each galaxy from its elliptical

Petrosian axis ratio q, as provided by the NASA-Sloan Atlas (Blanton et al. 2011). We

convert this value to a photometric inclination as follows:

cos2 ip =
q2 − q20
1− q20

, (3.7)

where q0 is the intrinsic oblateness of the galaxy. We do not have any information on

the value of q0 for each individual galaxy since such information would require detailed

dynamical modeling of each galaxy, though it tends to correlate with scale length in

late-type galaxies (Bershady et al. 2010). However, previous studies (e.g. Weijmans

et al. 2014; Padilla & Strauss 2008; Lambas et al. 1992) find that for rotating galaxies

like disks and fast-rotating ellipticals, q0 ≈ 0.20 − 0.25, so we choose a nominal value

of q0 = 0.2 for all galaxies in our model, similar to the Bershady et al. (2010) estimate

of about 0.06 to 0.20. These inclinations are more reliable than kinematically-derived

inclinations from axisymmetric fits that are sometimes adversely affected by kinematic

asymmetries.

We originally defined the prior as uniform distribution with bounds ±20◦ from

ip. However, inherent degeneracies in the Nirvana model cause a strong tendency to fit

galaxy inclinations that are significantly higher than either the input inclinations (in

the case of mock galaxies) or the inclination derived from photometry (in the case of
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real data), necessitating a stricter prior to counteract the bias. While we do not expect

perfect correspondence between the kinematic and photometric inclinations because

they are tracing different components of the galaxy’s structure, the systematic bias to

high inclination indicated an underlying problem with the current state of the priors.

As shown in the top panel of Figure 3.2, most models were driven to the upper limit of

this uniform prior.

To mitigate the bias, we instead used a Gaussian prior centered on the photo-

metric inclination and a 3◦ standard deviation. Unsurprisingly, this tighter constraint

leads to much closer agreement with the photometric inclination, with the bias reduced

to 4−5◦, as seen in Figure 3.2. A bias of this size is not much larger than that of existing

axisymmetric models (e.g. Andersen & Bershady 2013). However, if the photometric

and kinematic inclinations are indeed vastly different, e.g. in a galaxy with multiple

kinematically-decoupled components, this prior is still flexible enough to allow Nirvana

to fit the disk correctly.6 The bottom panel of Figure 3.2 shows a comparison between

the photometric inclinations of MaNGA galaxies calculated using Equation 3.7 and the

kinematic inclinations recovered by Nirvana. Due to the inherent degeneracy between

inclination and rotational velocity, these stronger priors also have an effect on the recov-

ered velocity profiles; the smaller model inclinations require larger velocity components

to match the same line-of-sight velocity observations.

6Such misaligned structures are more common in early-type galaxies (Corsini 2014), which are almost
entirely absent from the Nirvana-MaNGA sample, so this situation is unlikely to be a major factor when
Nirvana is applied to barred spirals.
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Figure 3.2: The effects of different inclination priors described in Section 3.4.1 on the
inclination recovered by Nirvana as compared to inclinations derived from photometry.
Top: A uniform prior centered on the photometric inclination with a width of ±20◦.
Nirvana has a significant tendency to produce inclinations that are much too high, often
running up against the prior bound. Middle: A Gaussian prior centered on the photo-
metric inclination with a standard deviation of 3◦ produces a much better agreement
with photometry while still allowing some freedom in the fit. Bottom: A comparison
between the inclinations derived from photometry and the inclinations recovered by
Nirvana in our sample of barred galaxies with a Gaussian prior. There is a systematic
bias of 4− 5◦, which is in line with biases seen in other similar models.
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3.4.2 Likelihood

The Nirvana likelihood function is based primarily on a standard Gaussian

likelihood. At each iteration of the fitting process, we generate a velocity field model

according to the steps outlined in Section 3.3 using the latest parameter guesses. We

then compute a χ2 value between the original data and the model, weighting each spaxel

by its velocity variance σ2v as reported by the MaNGA DAP with an extra error term

of 5 km/s added in quadrature, summing over all unmasked spatial elements to obtain

one value for the whole galaxy:

χ2
v =

∑ (V − Vmod)
2

σ2v
. (3.8)

We calculate separate χ2 likelihoods for the velocity and dispersion data, sub-

stituting in the square of the physical velocity dispersion

σ2 = σ2obs − σ2corr, (3.9)

where σobs is the velocity dispersion reported by the MaNGA DAP and σcorr is an

instrumental correction (Westfall et al. 2019).7 Using the reported errors on dispersion

σσ plus an extra error of 5 km/s added in quadrature, the resulting chi-squared term is

as follows:

χ2
v =

∑
elem.

(σ−σmod)
2

σ2σ
. (3.10)

7The correction factor for the gas kinematics is the instrumental resolution at the best-fitting line
wavelength; for the stellar kinematics, it is a correction that accounts for the difference in spectral
resolution between the MaNGA spectra and the stellar templates used to measure the kinematics.
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The resulting chi-squared terms are then added together as part of the final

likelihood. In addition to these chi-square terms, we include specific penalty functions

that mitigate biases and unphysical results discovered while testing our approach. Al-

though these penalties come at the expense of the objectivity of the modeling procedure,

they provide more robust final results. We describe each penalty, P1 and P2 in the fol-

lowing two subsections. The final likelihood function L is represented by:

logL = −χ2
v − χ2

σ − P1,v − P1,σ − P2. (3.11)

Smoothing penalty

To incentivize the model to produce smoother radial profiles, we impose a

penalty if the second derivative of the rotation curve shape is high for any of the com-

ponents. We approximate the second derivative by taking the difference between the

kinematic components in each bin and the mean of the values of the same component

in neighboring bins. The smoothing penalty P1 is the sum of the difference between the

mean for all bins, scaled by the magnitude of the velocity component in that bin and

weighted by a coefficient w1:

P1 = w1

Nbins∑
i

Vi − (Vi−1 + Vi+1)/2

Vi
. (3.12)

This penalty is applied for all velocity components as well as the velocity dispersion,

and the resulting penalty is subtracted from the log likelihood. We determined experi-

mentally that a weight of w1,v = 10 for velocity components and w1,σ = 1 for velocity
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dispersion results in fits that fit radial differences in velocity well but help to moderate

sharp discontinuities in the shapes of the velocity profiles.

Second-order velocity penalty

Testing of mock galaxies shows a notable covariance in the posteriors of the

inclination and the second-order radial component of the velocity V2r. The velocity

field residuals for an improper inclination have similar patterns to the effects of V2r,

resulting in Nirvana sometimes preferring to return inclinations that were too high and

then counteract the residuals from that mistake with elevated V2r values.

This can be seen in Figure 3.3, where galaxies with erroneously high inclina-

tions often also have higher V2r. We construct a set of mock galaxies by feeding model

parameters derived from real galaxies at similar inclinations (one unbarred disk and one

barred disk with elevated second-order velocity terms) back into the Nirvana code and

superimposing real residuals in order to mimic physical galaxies. We then use Nirvana

to fit these mock galaxies to test its ability to recover input parameters in realistic data.

As mentioned before, Nirvana shows a tendency to fit erroneously high inclinations by

utilizing similarly erroneous V2r values, as shown in Figure 3.3.

Additionally, in the limit where V2 ≡ V2t = V2r, we can use the angle-sum

identity to rewrite Equation 3.3 as:

Vlos − Vsys
sin i

= Vt cos θ − V2 cos(θ − 2ϕb). (3.13)

That is, the combination of the second-order components mimic a first-order tangential
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component that is phase-shifted by 2ϕb, commonly referred to as a position-angle warp.

This makes it possible for the model to effectively trade between Vt and V2 by adjusting

the relevant position angles, ϕ and ϕb. This degeneracy between mode m and modes

m± 1 was noted by Schoenmakers et al. (1997) and Spekkens & Sellwood (2007), and

we noted instances of this degeneracy influencing our model results during Nirvana

development.

We disincentivize the ability of the model to trade between first- and second-

order components by imposing a penalty on the likelihood for models that have second

order velocity terms that are large in comparison to the first order velocity using the

following term:

P2 = w2

∑
V=V2t,V2r

V̄ − V̄t
V̄t

, (3.14)

where barred quantities represent the means of the respective velocity profiles. w2 is

a separate coefficient that we experimentally determined should be set to w2 = 500 to

produce results that capture bisymmetric velocity distortions when they are present but

do not overfit them when they are not present.

3.4.3 Example Results

An example result from this model for barred MaNGA galaxy 8078-12703 is

shown in Figures 3.4 and 3.5 for gas-phase and stellar velocity fields respectively. The

nonaxisymmetry of the bar is obvious in both the image and the velocity field, where a

large central disturbance is visible in the otherwise orderly rotation of the disk. When

the Nirvana model is applied, it recovers a first-order tangential rotation curve that
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Figure 3.3: The effect of penalizing models that use high second-order velocities on the
inclination bias. We construct a set of mock galaxies using the Nirvana velocity fields
an unbarred galaxy (MaNGA plate and IFU number 7965-3704) with V2t and V2r close
to zero on top, and a barred galaxy with elevated central V2t and V2r (11021-3703)
on the bottom. We generate idealized models using these velocity profiles at different
inclinations and add real residuals and fit those mocks with Nirvana, allowing us to
compare input and output parameters. We find that when unfettered, Nirvana has a
tendency to produce erroneously high inclination models, which elevate V2r values due
to degeneracies. When we impose a penalty on high second-order velocity terms as
described in Section 3.4.2, the bias is greatly reduced.
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roughly resembles a conventional model for a disk galaxy, rising quickly to a maximum

value before leveling off at larger radii. The second-order components are present as a

relatively large component of the rotation in the central part of the galaxy, but their

influence quickly diminishes at larger radii as the influence of the bar lessens.

Figures 3.4 and 3.5 also demonstrate that, when compared to an axisymmetric

mode, Nirvana is able to more accurately model the observed 2D velocity field. The

axisymmetric model leaves large and spatially-correlated residuals, indicating that the

model is unable to capture all of the features seen in the data, whereas the Nirvana

model’s residuals are much smaller and much more randomly distributed. The maps

for the individual velocity modes of the Nirvana model as well as the components of

the actual MaNGA data those modes are fitting can be seen in Figures 3.4 and 3.5

for gas-phase and stellar velocity fields respectively. The shapes of the components of

the data generally match the shape of the velocity mode maps, justifying the physical

premise of our model.

The middle row of Figure 3.6 shows a breakdown of the separate velocity com-

ponents that make up the final velocity field model of the same galaxy. The bottom

row shows the residuals left when subtracting different combinations of rotational terms

from the original MaNGA data to leave only a single component in the data, yielding

views of each component of the data that Nirvana is modelling. Comparing the velocity

components of the second row to the residuals in the third row, we see close correspon-

dence between our model terms and the noncircular motions present in the central bar

region of the galaxy.
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Figure 3.4: The Nirvana model of the gas-phase velocity field of barred MaNGA galaxy
8078-12703. Top row: the SDSS image of the galaxy with the MaNGA IFU boundary
overlaid in magenta, and the gas-phase velocity field. Second row: An axisymmetric
model of the velocity field and the model residuals. Note the strong deviations near
the center. Third row: the best-fitting radial velocity profiles of the three velocity
components fit by the Nirvana model (Vt shown in solid black, V2t in dotted red, and V2r
in dashed green) with 1σ errors, along with the rotation curve found by our parametric
axisymmetric fitting algorithm (dot-dashed blue), and the rest of the parameters from
the Nirvana model with 1σ errors. Bottom row: the Nirvana velocity field model of the
galaxy, and the residuals from subtracting the Nirvana velocity model from the MaNGA
velocity field. Compared to the axisymmetric model, the residuals are significantly
reduced and are much less spatially correlated, indicating a more suitable model.
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Figure 3.5: The same as Figure 3.4 but for the stellar velocity field.
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Figure 3.6: The separate pieces of MaNGA data that are fed to the Nirvana model and
the individual components of the velocity field model. Top row: the MaNGA Hα ve-
locity field, velocity dispersion, and surface brightness. Top right: the bar classification
votes from Galaxy Zoo: 3D and resulting on-sky bar position angles from GZ:3D and
the independent Nirvana velocity model. Middle row: the Nirvana velocity field model,
and all of the individual components of the model broken out separately. Bottom row:
The residual of the velocity field model, and the component of the MaNGA velocity
data that corresponds to the above velocity component.
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3.5 Results

In this section, we discuss the performance of the model on real and simulated

galaxies in order to contextualize its results.

3.5.1 Projection biases

When modeling bisymmetric distortions in velocity fields caused by bar in disk

galaxies, the angular difference between the position angles of the major axis ϕ (the first

order velocity component) and the bar ϕb (the second order velocity component) greatly

affects how the bar appears in the line-of-sight velocity data. Bars that are diagonal

to the major axis will create obvious distortions in the velocity field, whereas bars

that are aligned or anti-aligned with the major or minor axis will only appear as small

fluctuations in the dominant first order rotational component, as shown in Figure 3.7.

Nirvana often models these disturbances without second-order velocity components,

leading to significant difficulties in accurately recovering aligned and anti-aligned bars,

as mentioned originally by Spekkens & Sellwood (2007).

In the set of mocks shown in Figure 3.8, we see that galaxies with ϕb values

that are close to aligned/anti-aligned, Nirvana has a preference for increasing relative

ϕb values between 0◦ and 45◦ and decreasing values between 45◦ and 90◦. The effect

of this is to bias ϕb to be closer to a 45◦ or 135◦ offset from ϕ than reality, and the

second-order velocity profiles for these biased bars are often less than the input velocity

profiles.

The origins of this bias are unclear. Because more diagonal ϕb produces a
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Figure 3.7: A comparison of different relative position angles between the dominant
first-order and secondary bar component in model velocity fields. These mock galaxies
are based off of the Nirvana rotation curves for MaNGA galaxy 8078-12703 with an
inclination of 45◦. For relative bar position angles that are not aligned with the major
or minor axis, the bisymmetric motion creates clear distortions in the shapes of the
isovelocity contours, allowing Nirvana to recognize the bisymmetric velocity component.
However, for bars aligned or anti-aligned with the major or minor axis (in-plane angular
difference of 0◦ or 90◦), the isovelocity contours only change in magnitude rather than
shape, an effect that can be modeled without a bisymmetric component. The 180◦

periodicity is also evident.
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Figure 3.8: The recovered relative position angles and errors on posteriors from a set
of mock galaxies similar to those shown in Figure 3.7 projected onto the plane of the
sky. Relative position angles that are roughly 45◦ are recovered faithfully, but diagonal
bars are always biased towards 45◦, sometimes leading to biases over 5 − 10◦. Aligned
and anti-aligned bars are difficult to distinguish in velocity data, leading to inflated or
unrealistic errors on bisymmetric position angle, but they have no inherent bias.
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Figure 3.9: Histograms showing the distribution of on-sky relative position angles re-
covered by Nirvana and Galaxy Zoo:3D for the entire sample of barred galaxies (top)
as well as broken down into inclination bins. Nirvana inherently biases towards bars
that are at a 45◦ angle to the major axis because those bars cause larger kinematic
asymmetries, but that small bias is overwhelmed by the large GZ:3D bias towards bars
that are aligned with the major axis. This bias arises because they are not as distorted
by projection effects and are thus easier for volunteers to identify. Both of these biases
worsen with inclination.
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stronger bisymmetric distortion than a more aligned one, Nirvana requires smaller sec-

ond order velocity components to explain the same bisymmetric features in the velocity

field. This minimizes the P2 penalty in the likelihood outlined in Section 3.4.2, yielding

a potentially more favorable outcome. However, when P2 is turned off in the code, the

bias still remains so this cannot be the explanation.

3.5.2 Comparison with imaging

In order to validate Nirvana’s bar position angles, we compare our results to

those of GZ:3D (Masters et al. 2021, see Section 3.2.3). Because GZ:3D treats each

pixel individually, the GZ:3D bars are irregular in shape, making it difficult to define

a bar position angle. We developed the following procedure (shown in figure 3.10) for

finding a representative bar position angle for each galaxy. First, we use the votes as

weights to find the weighted center of the bar mask, which we take to be the center

of the bar. Next, we divide the image into on-sky azimuthal bins, adding up the bar

votes within each bin to create an azimuthal distribution of bar votes. We then use

a Savitzky-Golay smoothing filter to remove higher order noise from this distribution

to obtain a more continuous curve. We then adjust the distribution so its maximum

is in the center, yielding a smooth and approximately symmetrical distribution of bar

votes. Finally, we calculate the weighted mean of the whole distribution, which gives us

our final bar position angle that is robust to visual inspection and relatively resistant

to irregular bar shapes and volunteer misclassifications. The process is summarized in

Figure 3.10.

The GZ:3D sample displays a bias towards bars aligned with the major axis
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Figure 3.10: A set of subplots summarizing the method used to distill the GZ:3D bar
classifications down to a single position angle for a galaxy. Top: The SDSS image of
MaNGA galaxy 8078-12703 overlaid with the extent of the MaNGA IFU (magenta),
the fraction of votes indicating the presence of a bar (dotted contours), the bisymmetric
position angle from the Nirvana model (white dashed) and the GZ:3D bar position angle
derived using this method (solid green). The weighted center of the bar votes is marked
as a green circle. Middle: The number of GZ:3D bar votes from volunteers that fall into
different azimuthal bins (black dashed) are smoothed to remove high-frequency noise
(green) and the peak number of smoothed votes is used as a first approximation for the
bar position angle (red dotted). Bottom: The azimuthal slices are recentered on this
approximation (black dashed) and the weighted center of the peak is calculated (red
dotted) to reduce the effect of asymmetric or bimodal peaks. This final position angle is
used as the bar position angle in the top subplot. More examples can be seen in Figure
3.12.
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that is present in the GZ:3D data set. Projection effects lead to a nonuniform distortion

in azimuthal angles in high inclination galaxies, meaning that even a uniform distribu-

tion of on-sky bar angles will become biased towards major axis bars when transformed

to in-plane coordinates. In addition, because bars along the minor axis are foreshortened

due to projection effects, they can be difficult to distinguish from a bulge in inclined

galaxies (Bureau & Freeman 1999; Binney & Tremaine 2008), leading to a likely underre-

porting of bars close to the minor axis by GZ:3D volunteers. These confounding factors

lead to a significant overrepresentation of bars that are closely aligned with the major

axis in the GZ:3D sample, which in turn introduces the same bias into the Nirvana-

MaNGA sample. Thus, we find a drastic dearth of bars perpendicular to the major

axis, especially at higher inclinations where projection effects are larger. This is seen

in the solid green histograms in Figure 3.9. Though this bias is complementary to the

Nirvana’s bar position angle bias detailed in Section 3.5.1, we still find correspondence

between the two bar classification techniques.

We find a little correspondence between the bar position angles between GZ:3D

and the Nirvana-MaNGA barred sample overall. However, the correspondence is greater

for galaxies with more bisymmetric motion. We define a subsample consisting of the 10%

of Nirvana-MaNGA barred galaxies with the highest gas-phase V2r values at 1/3 of their

radius (V2r ≳ 50 km/s). We choose this characteristic for constructing the subsample

because 1) bars are associated with radial motions; and 2) the influence of bars greatly

diminishes beyond corotation (Binney & Tremaine 2008), so we focus on the inner region

of the galaxy. Galaxies in this subsample display a much tighter correspondence with
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GZ:3D in bar position angle, and the remainder of the galaxies with comparatively

small second-order motions show little correlation, as shown in Figure 3.11. Thus, we

find that only a fraction of visually-identified galactic bars are accompanied by strong

non-circular motions according to Nirvana.

Several visual examples of GZ:3D/Nirvana bar correspondence within the high-

V2r subsample are found in Figure 3.12.

3.5.3 Velocity components

Nirvana finds higher second-order velocity components on average in the sam-

ple of barred galaxies than in the controlled sample of unbarred galaxies, indicating

that bars are indeed associated with second-order motions in some galaxies. This trend

can be seen in Figure 3.13. The median V2r magnitude measured at 1/3 of the Nirvana

model’s radius is significantly higher in the gas-phase velocity fields of barred galaxies,

with the upper tail of the distribution extending significantly higher indicating a greater

fraction of galaxies with larger non-circular motions. The difference is also present in

the stellar velocity fields but the difference is not as large, indicating that bars have a

lesser influence on stellar kinematics than gas kinematics.
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Figure 3.11: Comparisons between the bar position angles derived from Galaxy Zoo:
3D and the on-sky bisymmetric kinematic position angles derived from Nirvana for
gas-phase (top) and stellar (bottom) velocity fields for barred galaxies in MaNGA.
Our subsample of galaxies in top 10% of V2r magnitude (≳ 50 km/s) at 1/3 of their
radius (triangles) show a strong correspondence between kinematically-derived position
angles for bisymmetric terms in Nirvana and the imaging-derived bar position angles
from GZ:3D, while the Nirvana-MaNGA sample as a whole (circles) shows a weaker
correspondence. This indicates that when Nirvana recovers significant second-order
motions in a galaxy, it tends to agree with visual classifications on bar angle, although
the correspondence is tighter for gas-phase velocity fields than for stellar velocity fields.
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Figure 3.12: A random selection of SDSS images of Nirvana-MaNGA galaxies from the
subsample with the highest V2r magnitudes. Overlaid are the boundaries of the MaNGA
IFU (magenta), the GZ:3D bar position angle (solid green), the Nirvana bisymmetric
position angle (dashed white), the GZ:3D bar votes (dotted contours), and the MaNGA
plate and IFU identifiers. Some galaxies show a tight correspondence between the
visually-identified GZ bar and the kinematically-identified Nirvana bar, while others
show a large difference.
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Figure 3.13: The distributions of the magnitudes of second-order radial velocity profiles
at 1/3 the radius of the Nirvana models for both the Nirvana-MaNGA barred sample
(green squares) and the control sample (black pluses). Medians and 68% intervals are
marked for both gas-phase (solid lines) and stellar (dashed lines) velocity field models.
There are significant differences in radial motions for both gas and stellar velocity fields,
indicating that bars are indeed associated with non-circular motions, but the magnitude
of the motions is much greater for gas than for stars.
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3.6 Summary

The Nirvana software package is a Bayesian velocity field modeling code that

can reliably fit both circular and bisymmetric motions in 2D kinematic data for spiral

galaxies. We build on previous works (e.g. DiskFit, Spekkens & Sellwood 2007; Sellwood

& Spekkens 2015), adding further capabilities for lower-spatial-resolution kinematic data

like modeling velocity dispersion profiles and PSF convolution, and we use a Bayesian

framework with physically-informed priors to improve the reliability of our results. We

construct our Nirvana-MaNGA sample of over 1000 barred galaxies using the volunteer

classifications of barred galaxies from the GalaxyZoo: 3D catalog, along with a control

sample of MaNGA disk galaxies matched to the main sample in color, mass, effective

radius, and axis ratio. The Nirvana model has been tested against real and mock data

to produce reasonable and physically-motivated velocity field models for stellar and gas-

phase kinematics in a wide variety of spiral galaxies by using custom prior and likelihood

functions and sanitizing its own input data. The resultant models have only relatively

small biases in inclination and bar position angle that we explore above.

Nirvana’s on-sky second-order position angles show a correspondence with

imaging-based bar angles from GZ:3D despite notable biases from projection effects,

confirming a relationship between visually-identified bisymmetric structures and kine-

matic disturbances from non-circular motions. We also find that Nirvana reliably re-

covers more second-order velocity modes in barred galaxies than in unbarred galaxies,

validating the dynamical properties of bars in the largest sample of real galaxies yet

assembled. Nirvana finds significantly higher second-order velocity modes in gas-phase
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velocity fields than in stellar velocity fields and finds no non-circular terms in many

galaxies that would be visually classified as barred, warranting further investigation

into the effects of bars on different kinematic components in galaxy centers.

Our spaxel-by-spaxel maps of non-circular motion magnitudes in MaNGA

barred spirals allow further study of the influence of bars on other galaxy properties. It is

possible to directly search for a correlation between elevated non-circular motions within

bars and radial-mixing-driven flattening of stellar population gradients and other pop-

ulation differences in barred galaxies, as has been seen with existing visually-identified

barred galaxy samples (e.g. Fraser-McKelvie et al. 2019, 2020; Krishnarao et al. 2020).

Our physically-motivated measures of non-circular motions may also provide a new per-

spective on the influence of kinematic asymmetry on Tully-Fisher scatter (Bloom et al.

2017; Andersen & Bershady 2013), provide new methods for finding galactic inflows and

outflows, allow for new estimations of asymmetries in dark matter halos (Sellwood &

Sánchez 2010).

The Nirvana code can also easily be applied to other data sets as long as they

have information on kinematics, surface brightness, and PSF. The Nirvana-MaNGA

sample provides a comprehensive baseline of the kinematic properties of barred galaxies

in the local Universe, so a sample of Nirvana models of more distant galaxies would allow

for the study of the evolution of bar kinematics over the course of galactic evolution.
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Chapter 4

Characterizing Stellar Population

Gradients in

Kinematically-Identified Bars

4.1 Introduction

Most present-day disk galaxies have a galactic bar (Masters et al. 2011; Nair

& Abraham 2010) including the Milky Way (Blitz & Spergel 1991), a smooth linear

bisymmetric morphological feature in the galactic center (Binney & Tremaine 2008).

Bars appear to form from perturbations that cause instabilities in a disk galaxy’s grav-

itational potential, as seen in gravitational potential simulations, n-body simulations,

and hydrodynamical simulations (e.g. Toomre 1981; Sellwood & Wilkinson 1993; Rosas-

Guevara et al. 2022), and they create linear resonances in stellar orbits (Athanassoula
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2002) and redistribute angular momentum throughout the disk (Kormendy & Kennicutt

2004). Though studies disagree on whether the bar fraction decreases or remains steady

with redshift (e.g. Melvin et al. 2014; Cameron et al. 2010; Sheth et al. 2008; Elmegreen

et al. 2004), observation evidence shows evidence of bars at z > 2 (Guo et al. 2023a)

and stable, long-lived bars in the local Universe (Seidel et al. 2016; Gadotti et al. 2015;

Pérez et al. 2009).

Bars have been observed to correlate with many features in their host galaxies.

Galaxies with visually-identified bars have stellar populations that are overall redder,

older, and more metal-poor, with lower star formation rates and dust obscuration than

comparable galaxies without bars (Fraser-McKelvie et al. 2020; Kruk et al. 2018). Bars

may also be associated with quenching in the galactic core, with bars occurring more

often in gas-poor galaxies (Masters et al. 2012), more H I holes (Newnham et al. 2020),

and more LI(N)ER regions (Krishnarao et al. 2020), although these results are depen-

dent on bar age since Yu et al. (2022) find elevated central molecular gas and star

formation among galaxies with strong photometric bisymmetric distortions like bars,

likely caused by gas inflows. Bars are also correlated with mergers or tidal disruptions

in their hosts (Bi et al. 2022).

In addition to redistributing angular momentum and elongating stellar orbits,

bars also channel gas radially inwards and outwards along their leading edge (Fragkoudi

et al. 2016). This gas inflow may cause periods of significantly enhanced central star

formation (Coelho & Gadotti 2011; Ellison et al. 2011), and has been observed to cause

elevated star formation along the leading edge of the bar (Fraser-McKelvie et al. 2020).
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These flows are predicted to lead to flattened gas-phase metallicity and stellar population

gradients (Minchev & Famaey 2010; Friedli et al. 1994), and these predictions have been

borne out in long-slit spectroscopy across the bar major axis (Sánchez-Blázquez et al.

2011) and across boxy-peanut bulges that are associated with bars in edge-on disks

(Williams et al. 2012).

However, to fully understand the effects of a bar’s nonaxisymmetric motions on

the entirety of the surrounding disk, full two-dimensional spectroscopy is required. Sim-

ulations (e.g. Di Matteo et al. 2013; Kubryk et al. 2013) find both radial and azimuthal

metallicity variations caused by the dynamical disruption of bars. Observational studies

with spatially-resolved spectroscopy confirm this as well, with Seidel et al. (2016) finding

flattened iron and magnesium gradients along the bar axis using a sample of 16 galaxies

using the SAURON integral field unit (IFU). In addition, Fraser-McKelvie et al. (2019)

used a partial sample from the MaNGA survey and morphological classifications from

GalaxyZoo: 3D to compare bars with their surrounding disks, finding shallower age and

metallicity gradients along the bar axis.

However, despite studying an inherently kinematical phenomenon, all of these

previous studies use visual classification to identify their bars. This chapter seeks to

build on previous work in two ways. First, we utilize the final data release of SDSS-IV

MaNGA to work with the largest sample of 2D kinematic models of bars yet assembled.

Second, we base our bar identifications on the Nirvana-MaNGA sample (Chapter 3),

which uses a Bayesian forward model based on the nonaxisymmetric kinematic model

from Spekkens & Sellwood (2007) to decompose MaNGA galaxy rotation data into
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separate rotational modes, enabling the isolation of bisymmetric modes tied to bars.

Rather than relying on visual assessments of bar strength as tracers for radial motions,

we use kinematic models to directly quantify radial motions, providing the first large-

scale direct test of the relationship between bar bisymmetric motions and flattening of

stellar population gradients. Even while determining bar and disk regions independent

of imaging, we find flattened stellar age and metallicity gradients in agreement with

previous studies.

This chapter is structured as follows: Section 4.2 details the data and method-

ology of the MaNGA survey and the Nirvana-MaNGA sample. Section 4.3 outlines the

determination of dynamical regions in the galaxies, and Section 4.4 gives our proce-

dure for calculating population gradients. We detail our results in Section 4.5 before

summarizing and looking forward in Section 4.6.

4.2 Data

4.2.1 MaNGA: Mapping Nearby Galaxies at Apache Point Observa-

tory

This chapter relies on data and data products from the seventeenth data release

of the Sloan Digital Sky Survey IV (SDSS-IV DR17; York et al. 2000; Blanton et al. 2017;

Abdurro’uf et al. 2022) and the Mapping Nearby Galaxies at Apache Point Observatory

survey (MaNGA Bundy et al. 2015). MaNGA collected spatially-resolved spectra for

∼10,000 galaxies using the BOSS spectrographs on the 2.5 m telescope at Apache Point

Observatory (Gunn et al. 2006), with each IFU being a bundle of optic fibers grouped
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into hexagonal bundles of 19 to 127 fibers that are 12” to 32” in diameter (Drory

et al. 2015). Spectral observations have a resolution of R ∼ 2000 over a range of

3600 Å< λ < 10300 Å, and exposure times were varied to achieve the target signal-to-

noise ratio (SNR) of 10 in the g-band (Bundy et al. 2015). Simultaneous observations

of standard stars and sky within the same field allowed for flux calibration and sky

subtraction in the observed spectra(Yan et al. 2016). The point-spread function (PSF)

for MaNGA data cubes have a median full-width half-maximum (FWHM) of 2.5”, which

roughly corresponds to kiloparsec scales at the targeted redshifts (z < 0.15), though

observations are dithered and interpolated onto a 0.5” grid of spaxels.

The MaNGA sample on the whole was selected to be uniform over i-band ab-

solute magnitude. It is divided into two subsamples: the Primary+ sample (∼2/3 of

the total sample) with galaxies with spectral coverage out to ∼1.5 effective radii (Re),

and the Secondary sample (∼1/3 of the total sample) with observations extend out

to ∼2.5 Re (Wake et al. 2017). The raw spectroscopic observations are reduced by

the MaNGA Data Reduction Pipeline (DRP; Law et al. 2016), with the Data Analysis

Pipeline (Westfall et al. 2019; Belfiore et al. 2019) producing data products such as ve-

locity measurements. DR17 is the final data release of the MaNGA survey, containing

MaNGA observations and data products from 10,010 unique galaxies, and all photo-

metric data used in this chapter is from the NASA-Sloan Atlas (NSA; Blanton et al.

2011), which uses imaging from SDSS-I, II, and III.

The data in this chapter use a hybrid binning scheme data products from

the DAP that has different stellar- and gas-phase line-of-sight velocity measurement
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methodology. Spaxels in stellar kinematic measurements are Voronoi binned (Cappellari

& Copin 2003) to a threshold g-band-weighted SNR of at least 10, but gas kinematics

are determined on a spaxel-by-spaxel basis. All ionized gas tracers are assumed to have

the same velocity, so when we discuss kinematic information derived from observations

of nebular emission in the remainder of the paper, we refer to them only as “gas-phase”

velocity fields rather than as being associated with a particular emission line. However,

each emission line is fit independently for flux and velocity dispersion, so we are able

to use individual emission line fluxes. Spaxel-by-spaxel spectral indices are calculated

according to the methodology laid out in Worthey et al. (1994), Trager et al. (1998),

Burstein et al. (1984), and Faber et al. (1985).

4.2.2 Nirvana: Nonaxisymmetric Irregular Rotational Velocity Anal-

ysis

Nirvana is a velocity field fitting code detailed in Chapter 3 that is capable of

modeling first- and second-order rotational modes in 2D velocity data. Before modeling

the input galaxy, Nirvana applies a number of cuts and filters to prepare the data and

assess its suitability for modeling. It removes spaxels with erroneously outlying velocity

and velocity dispersion measurements, spaxels with low SNR, spaxels which deviate too

greatly from a one-component kinematic model of the data, and large Voronoi bins with

poorly-defined centers.

The galaxy is then decomposed into a series of in-plane annular bands. The

on-sky spaxel coordinates are projected using the inclination and position angle derived

from a basic axisymmetric model (see Westfall et al. in prep.), and the widths of the
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annuli are chosen to Nyquist sample the MaNGA PSF along the galaxy’s minor axis.

Any annuli that has more than 75% of its spaxels masked are removed. If fewer than

20% of the original data remains at the end of these cuts or if the galaxy has fewer

than 3 annuli, the galaxy is deemed to be unsuitable for fitting and is discarded. More

detailed descriptions of these cuts can be found in Chapter 3.

Nirvana then decomposes the spatially-resolved galaxy kinematics into a set

of three non-parametric rotation curves using a model based on Spekkens & Sellwood

(2007):

V (r, θ) = Vsys + sin i

[
Vt(r) cos θ

−V2t(r) cos
(
2(θ − ϕb)

)
cos θ

−V2r(r) sin
(
2(θ − ϕb)

)
sin θ

]
. (4.1)

The model is defined on the in-plane polar coordinates r and θ, which are projected

on-sky with an inclination i and a position angle ϕ. The rotational velocity components

Vt, V2t, and V2r are defined at edges of each of the annuli, interpolating for values in

between. Vt represents the first-order tangential rotational mode, while V2t and V2r

are the second-order tangential and radial modes respectively, with twice the angular

frequency. All velocity components share the same inclination, position angle, and

center, but the second-order components are offset from the first-order by a position

angle ϕb.

Velocity dispersion is modeled with a radially-symmetric piece-wise model de-

fined on the same annuli, and the velocity, velocity dispersion, and surface brightness
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are used to simulate PSF smearing on the model.

The galaxy kinematics are then fit using the Bayesian modeling code dynesty

(Speagle 2020), a Python package implementing nested sampling (Skilling 2004, 2006)

with multi-ellipsoid bounds (Feroz et al. 2009). Priors are largely uninformed except for

the inclination which is tied to the NSA-derived photometric inclination with a Gaus-

sian prior with a 3◦ standard deviation. Nirvana uses a standard Gaussian likelihood

for both the velocity and velocity dispersion models, with added penalties to encour-

age smooth rotation curves and discourage overzealous use of the second-order terms.

Further information on the performance and biases of the Nirvana model are given in

Chapter 3.

4.2.3 Nirvana-MaNGA Sample

The kinematic models used in this chapter are from the Nirvana-MaNGA sam-

ple, a group of 1263 barred MaNGA galaxies which have Nirvana models for either the

stellar or gas-phase velocity fields. These galaxies were selected using GalaxyZoo: 3D

(GZ:3D Masters et al. 2021), which used volunteer classifications to designate regions

of galaxies that appeared to be bars. Of the 1263 unique galaxies, 973 have stellar

velocity field models, 1012 have gas-phase velocity field models, and 722 galaxies have

both stellar and gas velocity models.

Biases in the GZ:3D sample of barred MaNGA galaxies and the Nirvana data

clipping algorithm lead to the vast majority of the sample being in the “blue cloud”

of galaxies on a standard color-magnitude diagram (see Figure 1 of Chapter 3). A

majority of the sample lies between 109−1011M⊙ according to NSA elliptical Petrosian
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photometry, with a bias towards the high-mass end of the distribution.

The Nirvana-MaNGA dataset also includes a control sample of galaxies matched

one-to-one with the main sample. These galaxies are unbarred according to GZ:3D are

selected to match as closely as possible in mass, color, effective radius, and axis ratio,

and they have nearly identical population statistics as the main sample.

Nirvana finds stronger bisymmetric motions on average in the main sample

than in the control, indicating that bars are indeed tied to bisymmetric motions on the

whole, although not all galaxies with visually-identified bars have large second-order

terms in their kinematic models. To focus specifically on the galaxies with the highest

levels of bisymmetric motion, we define a subsample of galaxies which are in the top

10% of second-order velocity at 1/3 of the radius of their largest valid annulus. For

these galaxies with strong bisymmetric motions, Nirvana agrees well with GZ:3D on

bar position angle.

More details on sample construction, composition, and properties can be found

in Chapter 3.

4.3 Nirvana Bar Regions

In order to study the effects of radial mixing in bars on stellar populations,

we must first define the the regions of galaxies affected by these motions. Unlike past

studies which relied on visually-identified bars to mark regions of high expected radial

mixing, the Nirvana-MaNGA sample allows us to directly quantify the bisymmetric

motions in each spaxel, giving a precise picture of the galactic regions that should be
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most impacted by the bar.

For each of the barred galaxies in the gas-phase Nirvana-MaNGA sample, we

construct a set of masks to isolate the bar, inner disk, center, and outer disk regions

similar to those used in Fraser-McKelvie et al. (2019). We define the bar axis as a linear

region surrounding the gas-phase on-sky bar position angle ϕ′b, and the bar radius as

the maximum radius at which the normalized second-order velocities Vnorm are greater

than its mean value across all annular bins, with Vnorm defined as

Vnorm =

√
V 2
2t + V 2

2r

Vt
=
V2
Vt
. (4.2)

The numerator of Vnorm, which we call V2, is defined as such because it represents the

resulting amplitude of a wave created by combining two sine waves with a phase offset

of 90◦. These velocity values are only defined by the Nirvana model at the edges of each

annulus, but are interpolated in between to create a smooth distribution across all radii

to give a more accurate bar radius.

The inner disk mask is defined as all spaxels that are at in-plane radii less than

the bar radius but are not part of the bar. The center mask is defined as all spaxels

with in-plane radii less than that of the innermost inner disk spaxel, and the bar mask

is defined as all spaxels within 2” of the bar axis that are not in the center. The outer

disk is all remaining spaxels outside of the bar radius. A visualization of these different

divisions is shown in Figure 4.1.

These masks show modest agreement with visual bar classifications. As rec-

ommended by Masters et al. (2021) and Krishnarao et al. (2020), we identify a given
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8078-12703
MaNGA IFU

Bar
Inner Disk
Outer Disk
GZ:3D

Figure 4.1: An overlay showing how the kinematically-derived masks compare with
SDSS imaging for barred MaNGA galaxy 8078-12703. The bar is shown in the red
outlined region, inner disk in green, and outer disk in blue. The white contour shows
the region marked as a bar by 20% of GZ:3D respondants, and the magenta hexagon
shows the rough outline of the MaNGA IFU.
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spaxel as part of a bar if more than 20% of GZ:3D volunteers classified it as inside the

bar. Galaxies in the Nirvana-MaNGA sample often display different bar radii than the

visually-identified bars, indicating that kinematic behavior may not always be tied to

visual morphology or that a more robust bar length definition is needed, but on the

whole the on-sky bar position angles are comparable (see Figure 11 of Chapter 3).

4.4 Stellar Population Gradients

In addition to the velocity, velocity dispersion, and surface brightness maps

used by Nirvana, the MaNGA DAP also produces spaxel-by-spaxel maps of spectral

indices. The method by which these are produced is described further in Section 4.2.1.

In this section, we use these spectral index maps to trace the gradients of various stellar

population parameters as a function of radius.

To define a gradient, we roughly follow the methodology of Fraser-McKelvie

et al. (2019) by first dividing the galaxy into a series of annuli with widths of 0.5”,

projecting the annuli on-sky using the best-fit inclination and position angles from the

Nirvana-MaNGA models of each galaxy. We then compute the weighted average of each

of the unmasked spaxels in each bin, using the inverse variances reported by the DAP to

calculate the weights, and we use the standard deviation of spectral index measurements

as the error on the average. We then use a Levenberg-Marquardt least-squares optimizer

(Moré 1978; Virtanen et al. 2020) to fit a line to the binned measurements, using the

slope of that line as the gradient of the data. An example of this method is shown in

Figure 4.2.

103



2 4 6 8 10 12 14 16
Radius (Major Axis arcsec)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

H

Bar
Inner Disk
Outer Disk

Figure 4.2: An example of the stellar population gradient fitting process for the same
galaxy as was shown in Figure 4.1. Points show the values of the Hβ spectral index,
with their color indicating which region of the galaxy they are in (bar in red, inner disk
in green, outer disk in blue). Dashed lines show the median Hβ values in each 0.5”
radial bin, with the shaded regions indicating the 1σ spread within each bin. The solid
lines show the best fit gradient to each set of binned values.
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We use Hβ as stellar age indicators and MgFe, as defined by

MgFe =
√
(Mgb(0.72× Fe5270 + 0.28× Fe5335), (4.3)

as a stellar metallicity indicator, both of which are largely insensitive to α/Fe ratio

changes (González 1993; Fraser-McKelvie et al. 2019). In addition, we use Dn4000 as

another stellar age indicator.

4.5 Results

Using the methods described in the previous section, we calculate gradients

for the different stellar population tracers for all galaxies with successful gas-phase

Nirvana models in the Nirvana-MaNGA sample in both their bar and inner disk regions,

separating out the galaxies that fall in our subsample of the top 10% of V2 values. We

then compare the stellar population gradients for the two regions for each galaxy, looking

for trends across the population by fitting a line using the Bayesian forward modeling

code emcee (Foreman-Mackey et al. 2013). We put a floor of 10−2 on gradient errors

to prevent unreasonably precise fits from having an outsized effect on the model. The

main results are summarized in Figure 4.3.

We find that for each of the stellar population parameters, the gradients in

barred regions tend to be shallower than the gradients in the inner disk regions, sup-

porting the conclusion that the radial motions within bars flatten stellar population

gradients compared to their surrounding disks. The correlation for Dn4000 is highest,

as represented by the Pearson R coefficient, with other parameters showing notably
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Figure 4.3: Comparisons between various stellar population parameters in
kinematically-identified bar regions (x axis) and in the surrounding disk regions (y axis)
for the metallicity tracer MgFe (left) and the stellar age tracers Hβ and Dn4000 (mid-
dle and right), with black points and lines showing the entirety of the Nirvana-MaNGA
gas-phase sample and the red showing our subsample of the 10% of galaxies with the
highest second-order terms. All gradients show slopes shallower than one-to-one, indi-
cating shallower stellar population gradients in bar regions than in the surrounding disk,
but only Hβ shows a large change from higher second-order velocities. The Pearson R
coefficient shows the strength of the correlations, with Dn4000 being the strongest.

weaker correlations. This kinematically-derived result agrees with the imaging-based

conclusions of Fraser-McKelvie et al. (2019).

We also find that increased second-order velocity motions in Nirvana models

largely do not affect the slopes of stellar metallicity gradients. The red triangles and

lines in Figure 4.3 show the galaxies in our high V2 subsample and their best-fit lines,

which is indistinguishable from the best-fit line for the whole sample for MgFe gradients,

meaning that the increased mixing has no effect on metallicity gradients. However, the

two stellar age indicators Hβ and Dn4000 have conflicting results, with Hβ showing a

large difference in slope with increased second-order motions while Dn4000 is largely

unaffected. We thus conclude that increased mixing has an uncertain effect on stellar

age gradients.

These conclusions are supported by directly investigating the relationship be-
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Figure 4.4: Relationships between peak second-order velocities V2 and various stellar
population tracers (MgFe on the left, Hβ in the middle, and Dn4000 on the right.
All show a trend with increasing peak V2, with MgFe and Dn4000 trending downwards
while Hβ trends upwards. This indicates mixed results between the relationship between
radial mixing and stellar age.

tween these stellar population tracers and the maximum value of the second-order ve-

locity components found by Nirvana, as seen in Figure 4.4. Each of the tracers we

use shows a trend for varying peak V2 values, with MgFe and Dn4000 gradient slope

trending downwards with increasing velocity and Hβ trending upwards. This again

shows a mixed picture for the relationship between stellar age and radial mixing while

supporting a flattening of metallicity gradients.

Though we cannot conclusively link elevated V2 levels to shallower stellar pop-

ulation gradients, the shallower gradients in the overall sample still validate the con-

clusion that bisymmetric motions caused by bars smooth out stellar populations along

the bar radius. Our bar masks are entirely kinematics-based and do not consider visual

bar strength, yet we arrive at the same conclusion as previous works without having to

assume that visual bars are directly tied to radial motions.
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4.6 Summary

Using the largest sample of kinematic models of barred galaxies yet assembled,

we investigate the connection between stellar population gradients and bar-driven radial

motions more directly than previous studies. We use the Nirvana-MaNGA sample

detailed in Chapter 3 to classify which regions of galaxies are associated with bars

and which are associated with the inner and outer disk in order to directly tie radial

measurements of stellar populations to kinematic behavior. Using 2D maps of MgFe,

Hβ, and Dn4000, we find that kinematically-identified bar regions have lower stellar

age and metallicity gradients than disk regions at the same radii, which agrees with

previous studies based on visual bar identification (e.g. Fraser-McKelvie et al. 2019;

Seidel et al. 2016; Sánchez-Blázquez et al. 2011; Williams et al. 2012) and simulations

(e.g. Di Matteo et al. 2013; Kubryk et al. 2013; Minchev & Famaey 2010; Friedli et al.

1994). Though we do not see a clear relationship between high second-order velocity

terms and shallow gradients, it is evident that stellar population gradients are flattened

along the bar axis so bisymmetric kinematics must play a role.

Further study on this topic has the possibility of clarifying some limitations

of the analysis of this paper. First, a more robust kinematic heuristic for bar length

and width would allow Nirvana-identified bars, allowing for more precise discrimination

between the bar and the surrounding disk and a more accurate determination of their

stellar population properties. A more detailed analysis of stellar populations beyond

basic spectral indices (e.g. with the full spectral fitting code Starlight, as in Fraser-

McKelvie et al. 2019) could also enable more precise understanding of stellar age and
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star-formation history along the bar. This would allow for comparisons with studies

that found star formation quenching in bars (Krishnarao et al. 2020) and variation

in metallicity gradients based on bar age (Yu et al. 2022). The extra dimension of

kinematics that the Nirvana-MaNGA sample adds to barred galaxy stellar population

studies opens up many possibilities to understand radial mixing more directly.
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Chapter 5

Summary and Future Studies

5.1 Summary

This dissertation examined how kinematic models that accurately represent

nonaxisymmetries in velocity fields are able to extract additional astrophysical informa-

tion from the systems they describe compared to simpler models. Without consideration

for how these added asymmetric features affect the overall characteristics of kinematic

data, these irregular features will be glossed over by velocity field models and their

information will be lost.

Chapter 1 gave a historical background on the history of the study of galaxy

kinematics, from early observations on the nature of galaxy rotation itself, to char-

acterizations of galaxy rotation curve flattening, to models for describing modern 2D

velocity fields and their asymmetries. Many different modifications have been made to

the simple rotating thin disk model to suit the purposes of the scientific question being

asked, whether it was using rotation curves motivated by halo mass profiles to obtain
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dynamical measurements, describing all galaxies in one “universal” parameter space, or

more accurately accounting for the components of the disk that were not so simple.

Chapter 2 details one such modification to the thin disk model. By adding

consideration for lensing shear to a Bayesian velocity field model, we were able to char-

acterize the effects of gravitational lensing on the velocity field of mock observations, a

practice called kinematic weak lensing (KWL). Chapter 2 improves on previous KWL

models by simultaneously considering both kinematic and photometric manifestations

of lensing, fitting the lensing shear in the velocity fields while also considering their

mismatch with position angle measurements derived from imaging. This added infor-

mation significantly increased the precision of our fit posteriors and broke degeneracies

between shear and other fit parameters, allowing for an increase in signal-to-noise of up

to a factor of six for mock observations.

Chapter 3 describes the creation of the Nirvana-MaNGA sample, the largest

sample yet assembled of bisymmetric models of barred galaxy velocity fields. Additional

velocity terms in the thin disk model are able to describe second-order rotational modes

present in galaxy bars, and the Nirvana velocity field fitting code goes further than

previous works by incorporating this model into a flexible Bayesian framework that

is able to characterize a wide range of galaxies with minimal supervision. We apply

Nirvana to a sample of barred galaxies in MaNGA, yielding ∼1000 models of barred

galaxies, which generally show elevated bisymmetric velocity components compared to

a matched control sample and which show agreement with visual classifications of bars.

Chapter 4 is the first application of the Nirvana-MaNGA dataset, using its

111



classifications of bar position angles and bisymmetric velocity components to investi-

gate stellar populations in bars and their surrounding disks. Past observational studies

show that stellar age and metallicity gradients are flattened along the visual bar axis

as compared to their surrounding disk, and dynamical simulations predict that radial

mixing along bars is responsible. The Nirvana-MaNGA sample enables the first direct

test of this dynamical theory, showing that kinematically-identified bars have shallower

population gradients than their surrounding disks and linking increased second-order

velocities to changes in population gradients. This is the first direct and explicit kine-

matical linking of bars’ noncircular motions to changes in stellar population gradients

in a large sample.

5.2 Future Work

The work contained in this dissertation opens up a number of further lines of

inquiry that I plan to address in the coming years.

5.2.1 Effects of Bars on KWL Errors

Gurri et al. (2021) studies the systematic errors that influence KWL measure-

ments, pointing out an obvious area for synergy between the two major projects in this

dissertation: large kinematic and morphological features in disks have the potential to

disrupt KWL measurements. The shear posterior in KWL models, including that of

Gurri et al. (2020) and our own detailed in Chapter 2, is highly sensitive to the position

angle of the disk, and large kinematic features like bars or warps often create distortions
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in velocity fields that can appear to be a change in disk position angle to a model that is

not equipped to account for them. These biased position angles could lead to spurious

KWL measurements, a phenomenon Gurri et al. (2021) calls “shape noise.”

By leveraging what we now know about noncircular motions in barred galaxies

from the Nirvana-MaNGA sample, it is possible to quantify the effects of this shape

noise on our KWL measurements. By replacing the velocity fields in our mock galaxy

observations in Chapter 2 with Nirvana-MaNGA velocity fields from Chapter 3, it will

be possible to directly measure how bars affect KWL measurements. The Nirvana model

allows for us to create disk galaxies with and without bisymmetric features from bars,

providing an opportunity to study the effect of adding a bar to a KWL measurement

in a controlled environment. This would improve our understanding of KWL errors on

more realistic galaxies to inform potential future observing programs.

5.2.2 KWL Pilot Study

Chapter 2 suggests that a KWL-based cluster mass measurement is possible

with only a relatively small number of velocity fields for moderate redshift background

galaxies. Such observations are difficult to come by because background source density

is relatively low and the resolved spectroscopic measurements necessary to construct a

velocity field are expensive in terms of telescope time.

However, a small number of suitable data sets that fulfill these criteria already

exist. For example, Mahler et al. (2018) presents a deep spectroscopic observation of

Abell 2744, a strong lensing cluster at z ∼ 3 using the MUSE wide-field IFU (Bacon

et al. 2010). They observed a 2′× 2′ area that already has high-quality Hubble Frontier

113



Field photometry for a total of 18.5 hours on-sky, resulting in a data cube that captures

detailed spectroscopic observations for background galaxies. The size and redshift ranges

of these background galaxies are similar to the populations explored in Chapter 2,

meaning our analysis techniques should be easily transferable.

Preliminary work on extracting kinematic information from this data set has

largely been successful. By applying a modified version of the MaNGA DAP to the

data cubes, velocity fields were able to be extracted for ∼100 background galaxies.

However, more work is needed in to extend our methods to be able to extract kinematic

information from several galaxies simultaneously. Our Bayesian framework lends itself

well to a hierarchical model that combines shear information for many galaxies into

one cluster mass measurement, so a simultaneous KWL fit may of many background

galaxies may be able to provide an independent halo mass determination for the system.

5.2.3 Additional Effects of Bars on Stellar Populations and Kinematics

Chapter 4 represents an initial foray into using the Nirvana-MaNGA sample

to probe the effects of bars on their host galaxies, but there are numerous other areas in

this category worthy of scientific consideration. For example, recent studies of visually-

identified barred galaxies in MaNGA show a correlation between the presence of a bar

and galaxy color, dust, metallicity, BPT classification, and age (Fraser-McKelvie et al.

2020; Krishnarao et al. 2020), and other studies have shown links to star formation

history central gas concentration (Kruk et al. 2018; Yu et al. 2022). Similar to Chapter

4’s independent verification of stellar population gradients using bisymmetric kinematics

rather than visual bars, it would also be valuable to directly link these observed galaxy
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characteristics to their kinematics.

There are also a number of other lines of study relating bars to kinematics.

A number of studies (e.g. Bloom et al. 2017; Andersen & Bershady 2013) have found

correlations between galaxy asymmetry and scatter from the TFR, so a detailed study

of asymptotic rotation speeds for barred galaxies using the Nirvana-MaNGA sample

could determine whether these results are due to properties of the disk or assumptions

in kinematic modeling. The Nirvana-MaNGA sample also has a large number of non-

parametric second-order rotation curves for central bars, enabling an empirical study

to determine a suitable physics-based parametric model for bar rotation curves. Such

a model should be rooted in dynamical models for noncircular bar motions so it could

give insight on the shape of the bisymmetric potential perturbation in the galaxy’s mass

distribution.

5.2.4 Modifications to the Nirvana Model

Nirvana was built specifically to describe noncircular motions in barred MaNGA

galaxies using a nonparametric bisymmetric velocity field model, but its underlying

framework is flexible enough to be adapted to other uses. For instance, were a paramet-

ric model like the one mentioned above to be developed, it could be incorporated into

the Nirvana framework and, along with a parametric first-order rotation curve model,

be used to fit the same sample of barred galaxies. Such a model would greatly reduce

the complexity of the model and the time taken to fit a galaxy and potentially lead to

easier physical characterization of the barred galaxy sample.

It is also trivial to modify the Nirvana kinematic model to fit first-order radial
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inflows and outflows. In Chapter 3, we assumed that the galaxies in the sample had no

significant mass inflows or outflows, but weak active galactic nuclei-drive gas outflows

called “red geysers” have been found in MaNGA spectroscopic studies (Cheung et al.

2016; Roy et al. 2021). Spekkens & Sellwood (2007) explored using a first-order radial

term rather than second-order velocity terms in their kinematic models, so the Nirvana

model could easily be replaced with one that is capable of describing these gas outflows

in existing red geyser samples and potentially finding as-yet undiscovered kinematic

signatures of other inflows or outflows in MaNGA data.

The Nirvana framework is also flexible enough to take in data from other

sources besides MaNGA. Any 2D velocity field with information on the spaxel coordi-

nates, PSF, surface brightness, and velocity dispersion should be suitable for modelling,

which includes data from many types of instruments. For instance, JWST has found

evidence of mature bars as far as z > 2 (Guo et al. 2023b), and ALMA has observed

velocity fields as far as z > 9 (Tokuoka et al. 2022), so the potential to study changes

in bar kinematics over cosmic time is obvious. Visual IFU measurements at greater

redshifts than the MaNGA sample, such as the aforementioned MUSE data or obser-

vations from the upcoming FOBOS (Bundy et al. 2019), also provide opportunities to

study bars beyond the regime represented in the Nirvana-MaNGA sample.
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González, J. J. 1993, PhD thesis, -

Gunn, J. E., Carr, M., Rockosi, C., et al. 1998, AJ, 116, 3040

Gunn, J. E., Siegmund, W. A., Mannery, E. J., et al. 2006, AJ, 131, 2332

Guo, Y., Jogee, S., Finkelstein, S. L., et al. 2023a, ApJ, 945, L10

—. 2023b, ApJ, 945, L10

Gurri, P., Taylor, E. N., & Fluke, C. J. 2020, MNRAS, arXiv:2009.10067

—. 2021, MNRAS, arXiv:2012.09175

Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Nature, 585, 357

Hartke, J., Kakkad, D., Reyes, C., et al. 2020, in Society of Photo-Optical Instru-

mentation Engineers (SPIE) Conference Series, Vol. 11448, Society of Photo-Optical

Instrumentation Engineers (SPIE) Conference Series, 114480V

120
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