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ABSTRACT OF THE DISSERTATION 

 
Applications and Development of the MMPBSA Method for Rational Drug Design 

 
By 

 
D’Artagnan Greene 

 
Doctor of Philosophy in Biological Sciences 

 
 University of California, Irvine, 2019 

 
Professor Ray Luo Irvine, Chair 

 
 
 

      The growing cost of new drugs has become a concern for the biopharmaceutical 

industry, which depends on innovation to sustain itself. As a result, computational methods 

have been increasingly implemented into the drug design workflow in an effort to reduce 

the cost of finding new lead candidates. Here, we focus on several applications and the 

development of the Molecular Mechanics Poisson-Boltzmann (MMPBSA) method for its use 

in rational drug design efforts. Chapter 1 demonstrates the use of computational methods 

in the analysis and design of anti-A𝛽𝛽 antibodies for their prospective use in the treatment 

of Alzheimer’s Disease. Chapter 2 applies our single dielectric implicit membrane model to 

MMPBSA calculations of the membrane-bound human purinergic platelet receptor, a 

prominent target for treating myocardial infarction and stroke. Chapter 3 documents the 

development, implementation, and application of a new heterogeneous dielectric implicit 

membrane model for MMPBSA calculations. Chapter 4 shows the validity of our method to 

parameterize the non-polar terms in a depth dependent manner within our implicit 

membrane model. This work as a whole demonstrates both the present utility and ongoing 

improvement of the MMPBSA method for its use in the rational design of new drugs.  
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INTRODUCTION 

The biopharmaceutical industry has become a leading source of economic activity in 

the United States, accounting for more than 1.3 trillion in total economic output in 2015 

while being a generator of high quality jobs, with its 800,000 workers receiving an average 

compensation of $129,527 in comparison to an average of $58,603 for workers in all 

industries1. What sustains this success is innovation; in particular, a primary focus is the 

ongoing development of new drugs to treat various ailments that do not currently have an 

effective treatment strategy.  

The growing cost of new drug discovery has become a concern as of late. It was 

recently estimated that bringing a single new drug to approval costs approximately $2.8 

billion dollars, and the total capitalized costs for new drug development have increased 

above general price inflation at an 8.5% annual rate2. Furthermore, rising drug costs and 

patent expirations have led to an increase in prescriptions of generic versions of popular 

old drugs. For example, prescriptions of generic drugs increased from 51% in 2002 to 67% 

in 2007, resulting in $113 billion lost in sales to generic substitution3. If these trends 

remain, it has been estimated that large pharmaceutical companies will only be able to 

recoup 26 cents with revenue generated from new products for every dollar lost in 

declining product revenue due to generic substitution4-5.  

In light of these issues, new approaches are being taken that are aimed at improving 

the efficiency of discovering new drugs6. Discovering new drugs has traditionally been an 

empirical process that depended on either luck, knowledge of a well characterized target, 

or carrying out expensive, brute-force high throughput screening searches for lead 

compounds7-9. Recently, computational methods have been implemented into the drug 
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design workflow with the aim to remove some of the guesswork associated with 

discovering promising new lead compounds. In this approach, rational insights gained from 

computational analysis direct drug development towards more promising targets, thereby 

reducing the cost of both lead generation and lead optimization10-11. Several of the 

computational methods employed to accomplish this are collectively referred to as 

structure-based drug design (SBDD) methods. SBDD methods make use of the knowledge 

acquired from computationally analyzing the interactions between a potential drug 

candidate (referred to more generally as a “ligand” molecule) and the three-dimensional 

structure of a protein macromolecule, which is obtained from such experimental methods 

as x-ray crystallography12, nuclear magnetic resonance (NMR) spectroscopy13, or cryo-

electron microscopy (cryo-EM)14-15.  

A central application in SBDD is carrying out a virtual screen of potential drug 

compounds to assist in lead generation10-11, 16-19. In a virtual screening method, a library of 

potential compounds, or fragments of compounds, are computationally docked to the 

known active site of a protein in an attempt to identify a new lead compound with a specific 

bioactivity against a certain target. In most common docking protocols, the ligand is 

allowed to be conformationally flexible to sample various orientations while the active site 

of the receptor is a static structure. This limitation was originally due to the increased 

computational expense of sampling conformations for the larger protein receptor. More 

recently, dynamical docking using molecular dynamics (MD) simulations is being employed 

to allow both the ligand and the receptor to sample conformational space simultaneously20-

24. Virtual Screening can be performed to narrow the initial chemical search space from a 

large library of potential compounds down to a few promising lead compounds that can be 
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tested for their effectiveness experimentally. Promising compounds can undergo further 

refinement through a process called lead optimization, where small changes are made to 

the compound of interest with the usual goal of optimizing its binding affinity or specificity 

for a selected target10-11. 

A method to analyze and rank the binding prospects of compounds is central to 

computational screening and lead optimization methods. For lead generation, large-scale 

virtual screening protocols typically use fast, empirical scoring methods to rank 

compounds25-27. These scoring methods can be relied upon to screen out compounds with 

obvious structural incompatibilities to the active site of interest. However, one drawback is 

they typically do not reliably reproduce the correct rank order of similar compounds. For 

lead optimization, more rigorous physics-based binding free energy calculations are 

typically used in place of the empirical scoring functions that are used in standard docking 

studies. The most prominent of these are thermodynamic integration (TI) and free energy 

perturbation (FEP) methods28-29. These methods are based on molecular dynamics (MD) 

simulations. In TI, the binding free energy is obtained by calculating the difference in 

energy brought about by slowly varying a suitably chosen parameter. A series of sequential 

MD simulations are carried out to sample each small change in the simulation due to the 

change in the parameter, and at the end of the process, the energy can be recovered by 

integrating over the full set of data. While such methods are considered to be the most 

accurate methods available for computational free energy calculations, they are also the 

most time-consuming, making them somewhat impractical to apply to any large set of 

ligands or to a large set of proposed structural modifications in a typical drug design 

endeavor28-29. 
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In between these two extremes are several approximation methods which speed up 

the calculation time by making simplifications to the calculation of binding free energies at 

the expense of accuracy. In the following, we focus on one common binding free energy 

calculation of this type, which is the Molecular Mechanics Poisson-Boltzmann Surface Area 

(MMPBSA) method28-36. The overall objective of the MMPBSA method is to calculate the 

free energy difference between the bound and unbound states of two molecules, [𝐴𝐴] and 

[𝐵𝐵], in a solvated environment:  

      [𝐴𝐴]𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + [𝐵𝐵]𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ⇄ [𝐴𝐴𝐵𝐵]𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.     (1)  

Under ideal circumstances, we would like to calculate the binding free energy, 

ΔG𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, by the direct application of eq. (1). However, in such an approach most of the 

total energy would be calculated for solvent-solvent interactions that do not contribute 

directly to the binding free energy calculation. In practice, a thermodynamic cycle may be 

used to divide the calculation of the binding free energy into separate steps, and the 

surrounding solvent is modeled implicitly to increase the efficiency of the calculation. 

In the MMPBSA method, the binding free energy for eq. (1) can be calculated using:  

ΔG𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ΔG𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑠𝑠𝑣𝑣𝑣𝑣 + ΔG𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑣𝑣𝑠𝑠𝑐𝑐𝑝𝑝𝑠𝑠𝑙𝑙𝑙𝑙 − ΔG𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑏𝑏𝑙𝑙𝑣𝑣𝑏𝑏𝑏𝑏 − ΔG𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑟𝑟𝑙𝑙𝑣𝑣𝑙𝑙𝑝𝑝𝑟𝑟𝑠𝑠𝑟𝑟.   (2)  

The first term on the right-hand side of eq. (2) directly measures the binding interaction 

between molecules [𝐴𝐴] and [𝐵𝐵] in a vacuum environment:  

ΔG𝑠𝑠𝑣𝑣𝑣𝑣 = ΔE𝑐𝑐𝑠𝑠𝑠𝑠𝑙𝑙𝑣𝑣𝑚𝑚𝑠𝑠𝑣𝑣𝑟𝑟 𝑐𝑐𝑙𝑙𝑣𝑣ℎ𝑣𝑣𝑏𝑏𝑏𝑏𝑣𝑣𝑠𝑠 − TΔS𝑏𝑏𝑠𝑠𝑟𝑟𝑐𝑐𝑣𝑣𝑠𝑠 𝑐𝑐𝑠𝑠𝑏𝑏𝑙𝑙 𝑣𝑣𝑏𝑏𝑣𝑣𝑠𝑠𝑎𝑎𝑠𝑠𝑏𝑏𝑠𝑠    (3)  

where the average interaction energy between [𝐴𝐴] and [𝐵𝐵] accounts for the first term on 

the right in eq. (3). An optional normal mode analysis can be carried out to estimate the 

entropy contribution for the second term on the right in eq. (3)37-38.  
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The last three terms on the right in eq. (2) correspond to the solvation free energy 

that is required to remove the solvent from [𝐴𝐴] and [𝐵𝐵] and to add the solvent back to the 

[𝐴𝐴𝐵𝐵] complex while carrying out the thermodynamic cycle. The solvation free energy is 

calculated by solving the linearized Poisson-Boltzmann equation to account for the 

electrostatic contribution30, 39-42, and there is also an additional, empirical non-polar 

interaction term that is added to account for the hydrophobic contribution43:  

ΔG𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ΔG𝑙𝑙𝑠𝑠𝑙𝑙𝑣𝑣𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑣𝑣𝑟𝑟𝑏𝑏𝑣𝑣 + ΔG𝑏𝑏𝑠𝑠𝑏𝑏−𝑝𝑝𝑠𝑠𝑠𝑠𝑣𝑣𝑟𝑟.     (4) 

Here, we will focus on the application and development of the MMPBSA method for 

use in rational drug design efforts. In Chapter 1, we will consider an application of the 

MMPBSA method towards the study and improvement of anti-amyloid beta (A𝛽𝛽) 

antibodies44. Anti-A𝛽𝛽 antibodies are being used as a prospective drug candidate to treat 

Alzheimer’s Disease (AD), a crippling neurological disease with no known treatment 

options45-47.  Here we show how a combination of fragment-based docking and MMPBSA 

binding free energy calculations can reproduce key experimental A𝛽𝛽 binding epitopes and 

how they can help illuminate mysterious binding trends. We also show how this approach 

can be used to generate new hypotheses in the field, such as predicting epitope cross-

binding trends or using MMPBSA as a tool to generate prospective mutations for the 

rational drug design of new anti-A𝛽𝛽 antibody drug candidates. 

 The remaining portion of this work is dedicated to the application and development 

of the MMPBSA method towards the analysis of membrane protein-ligand systems, with a 

particular focus on the study of G-protein coupled receptors (GPCRs). GPCRs are a primary 

drug target, with nearly 40% of all drug targets being classified as either GPCRs or nuclear 

receptors48-49. GPCRs are openly accessible to binding on the cell surface, making them a 
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very attractive drug target. Despite this, until very recently SBDD efforts for GPCRs have 

been minimal. This had to do with the difficulty in obtaining high quality structural data for 

membrane bound proteins in comparison to globular, water soluble proteins50. At present, 

these issues have been ameliorated to some extent, and crystal structures of all major 

classes of GPCRs are now available for SBDD studies51-54.  

The potential for computational methods to assist in the development of new GPCR 

drugs has been recently demonstrated by several groups55-57. As an example, Heifetz et al. 

incorporated analysis of MD simulations to improve a drug for OX1 vs. OX2 orexin receptor 

selectivity and used computational docking to assist in the discovery of novel MCH-1R 

antagonists for use in the treatment of diabetes58-59. Very recently, the potential of using 

MMPBSA for the study of GPCRs was evaluated using 20 GPCR structures with 934 known 

ligands60. While the authors concluded that MMPBSA remained a viable tool for SBDD, they 

found that the performance for GPCRs varied greatly depending on the system under study, 

and a low average correlation of 0.183 was obtained across all 20 structures60.  

One possible reason for the poor overall performance in this study was that the 

membrane proteins were simulated in a non-native, purely aqueous solvent, making use of 

the older Amber 99 force field. In recent years, the issue with using a non-native solvent for 

MD simulations of membrane proteins has been addressed with the introduction of an 

explicit membrane model into Amber 1461-63. This model allows users to place a membrane 

protein in its natural, hydrophobic membrane environment while carrying out MD 

simulations. In addition, recent work from our lab has focused on the introduction of an 

implicit membrane model into the PBSA module in Amber 1864-68. The introduction of an 

implicit membrane model into the Amber software suite creates a more physically relevant 
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implicit solvent environment to assist in the calculation of MMPBSA binding free energies 

for membrane protein-ligand systems. 

In Chapter 2, we examine an application for the MMPBSA method towards the 

calculation of binding free energies of membrane protein-ligand systems using a single 

dielectric implicit membrane model67. Here we use MMPBSA calculations to calculate the 

binding affinities of several agonist and antagonist ligands bound to the human purinergic 

platelet receptor (P2Y12R), an important drug target for the treatment of myocardial 

infarction or stroke69-72. We show that our single dielectric implicit membrane model and 

the MMPBSA method can be used to successfully rank order the binding affinities of several 

different compounds that are relevant to the drug design process. 

In Chapter 3, we document the development of an improved heterogeneous 

dielectric implicit membrane model for use in MMPBSA calculations of membrane protein-

ligand systems68. Our new model supersedes our previous uniform, single dielectric 

implicit membrane model by allowing the dielectric constant to vary with depth within the 

membrane. As an application of our method to various drug design systems, we calculated 

MMPBSA binding free energies for the human purinergic platelet receptor (P2Y12R) and 

two of the muscarinic acetylcholine receptors (M2R and M3R) bound to various antagonist 

ligands73. We found that the new heterogeneous dielectric membrane model has a stronger 

correlation with experimental binding affinities compared to the older single dielectric 

membrane model under otherwise identical simulation conditions.  

In Chapter 4, we briefly explore the future development of our implicit membrane 

model by further improving its accuracy via the parameterization of the non-polar van der 

Waals terms43, 74. 
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The application of MMPBSA methods towards rational drug design has been 

increasing as of late. This trend should only continue as advances in cryo-EM electron 

microscopy will allow access to more membrane protein systems for SBDD in the near 

future75. Membrane protein systems are large and computationally expensive to analyze, 

making the application of rigorous TI or FEP binding free energy calculations problematic. 

Our implicit membrane models make these large systems more accessible for lead 

generation and lead optimization-based binding free energy calculations, which can assist 

in the rational design of future drug candidates. 
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CHAPTER 1 

Computational Analysis for the Rational Design  

of Anti-Amyloid Beta (A𝜷𝜷) Antibodies 

Reprinted (adapted) with permission from Greene, D.; Po, T.; Pan, J.; Tabibian, T.; Luo, R. 

Computational Analysis for the Rational Design of Anti-Amyloid Beta (A𝛽𝛽) Antibodies. J. 

Phys. Chem. B 2018, 122, 4521-4536. Copyright 2018 American Chemical Society. 

ABSTRACT 

Alzheimer’s Disease (AD) is a neurodegenerative disorder that lacks effective 

treatment options. Anti-amyloid beta (A𝛽𝛽) antibodies are the leading drug candidates to 

treat AD, but the results of clinical trials have been disappointing. Introducing rational 

mutations into anti-A𝛽𝛽 antibodies to increase their effectiveness is a way forward, but the 

path to take is unclear. In this study, we demonstrate the use of computational fragment-

based docking and MMPBSA binding free energy calculations in the analysis of anti-A𝛽𝛽 

antibodies for rational drug design efforts. Our fragment-based docking method 

successfully predicts the emergence of the common EFRH epitope. MD simulations coupled 

with MMPBSA binding free energy calculations are used to analyze scenarios described in 

prior studies, and we computationally introduce rational mutations into PFA1 to predict 

mutations that can improve its binding affinity towards the pE3-A𝛽𝛽3−8  form of A𝛽𝛽. Two out 

of our four proposed mutations are predicted to stabilize binding. Our study demonstrates 

that a computational approach may lead to an improved drug candidate for AD in the 

future. 
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1.1 INTRODUCTION 

Alzheimer’s Disease (AD) is an incurable neurodegenerative disorder that leads to 

steady memory and cognitive function loss, culminating in death. At present there is no 

cure for AD, and there is a notable absence of treatment options that can reverse or 

effectively slow progression of the disease. At the level of brain tissue, AD is characterized 

by both the appearance of extracellular, fibrous plaques that are built up from the 

polymerization of amyloid beta (A𝛽𝛽) peptides1 and the appearance of intracellular 

neurofibrillary tangles that consist of hyperphosphorylated tau proteins2. Amyloid fibril 

deposits are hallmarks of several neurodegenerative diseases3, and the amyloid hypothesis 

states that an excessive buildup of A𝛽𝛽 plaques in the brain is responsible for the cognitive 

decline observed in AD patients. It suggests that clearing A𝛽𝛽 plaques from the brain would 

help inhibit or reverse progression of the disease. 

The amyloid hypothesis has been the leading theory driving therapeutic approaches 

for the treatment of AD for over two decades4. The most common therapeutic approach to 

AD treatment is immunotherapy5-7. Several active and passive anti-A𝛽𝛽 immunotherapies 

that target A𝛽𝛽 species in the brain have advanced to clinical trials, but the results thus far 

have been disappointing. The vaccine AN1792, which targeted a full-size A𝛽𝛽 1-42 peptide, 

advanced to human clinical trials in 2001 but was terminated in the phase II trial after 6% 

of the treated patients developed meningoencephalitis8. The result of the AN1792 trial led 

to the development of several passive immunization approaches over the next several 

years. Shorter regions of the A𝛽𝛽 sequence were used to develop monoclonal antibodies that 

target different cell types in the immune system. The N-terminal A𝛽𝛽1−15  sequence was used 

for A𝛽𝛽 specific B cell epitopes while A𝛽𝛽16−42 was used for A𝛽𝛽 specific T cell epitopes9. The 
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choice of the epitope has a crucial effect on the ability of the antibody to bind to its amyloid 

target species. The N-terminal epitope is accessible to antibody binding in aggregated 

forms of A𝛽𝛽 while the central and C-terminal epitopes are only able to bind to the antibody 

in monomeric, or perhaps small oligomeric, forms of A𝛽𝛽 due to the central and C-terminal 

epitopes being inaccessible in mature fibril structures.  

Initially, two anti-A𝛽𝛽 monoclonal antibodies advanced to clinical trials targeting 

distinct epitopes/species of A𝛽𝛽. Bapineuzumab primarily targets insoluble amyloid plaques 

via the hydrophilic N-terminal epitope of A𝛽𝛽1−5. Initial results looked promising, but during 

phase II of the clinical trial a serious side effect appeared as 10% of patients developed 

vasogenic edema10. Solanezumab targets soluble monomeric A𝛽𝛽 peptides via the 

hydrophobic central A𝛽𝛽16−24 epitope. In clinical trials, solanezumab had a much-improved 

safety profile as adverse side effects such as meningoencephalitis, microhemorrhage, and 

vasogenic edema were not obserseved11-12. On the other hand, questions about 

solanezumab’s efficacy in reducing neuritic plaque burden arose, and recently it was 

announced that the phase III trials for solanezumab had failed to show a significant benefit 

in slowing cognitive decline for mild-to-moderate AD patients13-16. 

The question of how to improve a monoclonal antibody to treat AD is not 

straightforward. Removing harmful side effects is one issue, but to complicate matters, A𝛽𝛽 

species exhibit a high degree of structural polymorphism, and several other A𝛽𝛽 species 

have emerged as potential disease-causing agents that would presumably need to be 

removed in an effective AD treatment17.  For example, normally rare, N-terminal truncated 

variants of A𝛽𝛽 have been found in much higher concentrations in the stable, neurotoxic A𝛽𝛽 

aggregates that are found in severe AD cases. For example, plaques can be enriched by as 
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much as 50% with the pE3-A𝛽𝛽 form of A𝛽𝛽18-19, and pE3-A𝛽𝛽 has become a target in antibody 

development20-22.  

The existence of such polymorphic amyloid targets implies that targeting a single 

epitope associated with a single A𝛽𝛽 species might not be enough for an antibody to treat AD 

effectively. At the moment, next generation monoclonal antibodies that can bind to multiple 

A𝛽𝛽 epitopes and species are currently in clinical trials. Gantenerumab binds at nanomolar 

affinity to several A𝛽𝛽 species (with a KD of 0.6 nM for A𝛽𝛽 fibrils, 1.2 nM for A𝛽𝛽 oligomers, 

and 17 nM for A𝛽𝛽 monomers), and it recognizes two epitopes within A𝛽𝛽: the N-terminal 

EFRHDSGYEV sequence and a central region from the sequence VFFAEDVGSN23. Similarly, 

crenezumab, despite being generated by immunization with the N-terminal A𝛽𝛽1−16  

epitope24-25, has been shown to bind to monomeric and oligomeric forms of A𝛽𝛽 via the 

central A𝛽𝛽 epitope7, 25-26. Due to similarities it shares with solanezumab, the ability to bind 

to the central epitope of A𝛽𝛽 has been emphasized in studies of crenezumab27, and a co-

crystal structure of crenezumab (more specifically, CreneFab) was recently obtained bound 

to an A𝛽𝛽 peptide containing the central epitope26. Nevertheless, crenezumab has also been 

shown to bind to amyloid fibril species25-26, which is puzzling since the central epitope is 

not readily accessible for binding in mature fibril structures. Recently, aducanumab was 

heralded as possibly the first “successful” anti-A𝛽𝛽 antibody as it was able to clear A𝛽𝛽 

plaques thoroughly at the highest dosage and was shown to reduce cognitive decline in an 

early Phase III clinical trial that took place over the course of a year28. Aducanumab has 

been reported to bind to both N-terminal and central epitopes of A𝛽𝛽, accounting for 

binding to both fibril and oligomeric forms of A𝛽𝛽29. 
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In this study, we have taken a computational approach to explore how an anti-A𝛽𝛽 

antibody may bind to one or more A𝛽𝛽 epitopes in its antigen-combining site and to 

demonstrate how to computationally predict rational mutations aimed at modifying the 

antigen-combining site in rational drug design efforts. Using computational techniques, we 

explored several open questions from the literature including: 1) which residues in A𝛽𝛽1−42  

are most important in the initial binding event that anchors A𝛽𝛽 to a given antibody 

structure?, 2) how might antibodies like gantenerumab, crenezumab, and aducanumab 

bind to both the hydrophillic N-terminal and hydrophobic central epitopes?, and 3) can we 

predict a useful mutation that improves the binding affinity of a polymorphic form of A𝛽𝛽 

towards an anti-A𝛽𝛽 antibody? 

To address the first question, we employed an unbiased, fragment-based docking 

method to probe the antigen-combining site of various anti-A𝛽𝛽 antibodies using single 

amino acid residues. To address the second question, we ran molecular dynamics (MD) 

simulations using the available crystal structures of gantenerumab and crenezumab bound 

to short A𝛽𝛽 peptides23, 26 (a crystal structure of aducanumab was not available for us to 

analyze at this time). Using Amber 1630, we carried out Molecular Mechanics Poisson 

Boltzmann Surface Area (MMPBSA) binding free energy calculations to help us explore the 

possibility that both N-terminal and central A𝛽𝛽 epitopes are recognized by each antibody. 

For the third question, we built on the study of PFA1 bound to A𝛽𝛽2−7  and pE3-A𝛽𝛽3−8 that 

was carried out previously by Gardberg et al.31 Their work gained inspiration from a study 

by Clark et al. where it was demonstrated that a combination of computational and 

experimental mutagenesis techniques could be used to improve the binding affinities of 

therapeutic antibodies32. The study by Gardberg et al., where the goal was to improve the 
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binding affinity between pE3-A𝛽𝛽3−8  and PFA1, was an accessible test case given that the 

sequence, charge characteristics, and binding pose for pE3-A𝛽𝛽3−8 are similar to the 

wildtype. The authors offered several suggestions for point mutations that may produce a 

mutant form of PFA1 with an enhanced affinity for pE3-A𝛽𝛽3−8.31 To aid in the selection of 

prospective mutant PFA1 antibodies, a computational approach can provide a way to probe 

the interactions between an A𝛽𝛽 peptide and an anti-A𝛽𝛽 antibody. It can also act as a means 

to test the efficacy of point mutations made to the antigen-combining site before 

committing to testing them in the lab. This cost effective, rational approach to predicting 

mutant antibodies might be a key to producing the most effective drug candidate for this 

disease in the long term. 

1.2 METHODS 

1.2.1 Computational docking of amino acid residues to anti-A𝜷𝜷 antibodies 

We carried out an unbiased, fragment-based computational docking study to 

examine the initial binding characteristics of the antigen-combining site for various anti-A𝛽𝛽 

antibodies. 16 amino acids were individually docked to each antibody, comprising the full 

A𝛽𝛽 1-42 monomer sequence. Each single amino acid residue was generated using the 

sequence command in xleap from Amber 1630. Three types of amino acid residue fragments 

were initially tested using our docking protocol: 1) the default amino acid residue that 

contained charged N- and C-terminal groups on the backbone, 2) a neutralized version 

where methyl groups were attached to both the N- and C-terminal groups to remove the 

backbone charges, and 3) a non-physiological fragment where two hydrogens on the N-

terminus and an oxygen on the C-terminus were omitted from the structure. We compared 

the results of the docking for a few test residues using each method above to the actual 



23 
 

binding sites observed in the holo PFA1 and PFA2 crystal structures and also to the leading 

ligand-free hotspots found by submitting the PFA1 and PFA2 apo structures to the FTMap 

server33-34. Of the three options, we found that method 3 worked the best. For method 1, 

the zwitterionic terminal backbone charges were capable of binding to antibody hot spots 

in place of the side chain functional groups, and while method 2 neutralized the terminal 

backbone charges, we found that some fragments were unable to bind to certain hot spots 

due to steric issues brought about by the attached methyl groups. Method 3 removed both 

the terminal charges and the steric issue of adding a methyl group to the backbone. 

Therefore, residues were generated using method 3 for our full analysis.  

We should note that there are other possible ways to generate single amino acid 

fragments that were implemented in other computational studies, such as removing the 

backbone entirely and replacing the alpha carbon with a proton35. In order to obtain a 

single amino acid fragment that behaves more like an amino acid in the middle of a longer 

peptide sequence as opposed to a terminal amino acid, the side chain for each amino acid 

should be unaltered in the fragment while the effect of the backbone should be minimized 

in some way to prevent it from interfering or competing with the binding of the side chain. 

  After obtaining an amino acid residue, Open Babel36 was used to convert pdb files to 

pdbqt files for both the antibody and the residue, and then the residue was docked to the 

antibody using Autodock Vina/SMINA37. The residue was allowed to search the entire 

antibody surface within a 100 Å3 box that was centered on the antigen-combining site with 

a search exhaustiveness of 128. Using the default settings in Autodock Vina/SMINA, the top 

nine docked results for each residue, ranked by their most stable binding free energy 

values, were subsequently used for our analysis.  
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To carry out a comparison study with a variety of anti-amyloid antibodies, this 

method was performed on the previously published crystal structures of bapineuzumab, 

solanezumab, gantenerumab, crenezumab, ponezumab, PFA1, and PFA2 in both the holo 

and apo forms (if available) of each structure (PDB IDs: 4OJF, 4XXD, 5CSZ, 5VZX, 5VZY, 

3UOT, 2IPU, 2IPT, 2R0W, and 2IQ9). The PDB file for each antibody complex was edited 

prior to docking to remove everything except for the residues of the isolated antibody 

structure. 

1.2.2 Molecular dynamics simulations 

To prepare the various complexes that were used in this study for MD simulations, 

the program Modeller38 was used to accomplish two purposes: 1) to model in any missing 

residues that were not present in the original PDB file, and 2) if applicable, to generate a 

homology model containing a new A𝛽𝛽 peptide that was not present in the original PDB file. 

Prior to using Modeller, the PDB file was processed to remove everything except for the A𝛽𝛽 

peptide-antibody complex. After using Modeller, the structure was further processed using 

the program xleap in Amber 16 to add in hydrogens, water, counter ions, and disulfide 

bonds. A TIP3P water box was constructed using the solvatebox command to ensure that 

all atoms in the starting structure were no less than 12 Å from the edge of the water box. 

Counter ions (i.e. chloride ions) were added to the solvated system to give a total net 

charge of zero. Disulfide bonds were added between pairs of residues that were indicated 

as having disulfide bonds in the accompanying PDB files. For the pE3-A𝛽𝛽3−8  model (PDB ID: 

3EYS), antechamber was used to parameterize the pyroglutamate (PCA) moiety.   

For each MD run, a 1000 step minimization was carried out with 500 steps of 

steepest descent followed by 500 steps of conjugate gradient using a non-bonded cutoff of 
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8.0 Å. The system was then heated up to a constant 300 K over a period of 50 ps under NVT 

conditions employing the Langevin thermostat. The density was equilibrated over an 

additional 50 ps under NTP conditions, and an equilibration under NVT conditions was 

undertaken for approximately 250 ns.  Finally, a 50 ns production run was carried out to 

bring the total simulation time to 300 ns. Due to the size and high conformational flexibility 

of both the amyloid peptide and the antibody, and the extensive use of homology modeling, 

a long equilibration/production run was needed in order to achieve acceptable 

convergence for our MMPBSA binding free energy calculation (see MD method validation 

in Results and Discussion). Afterwards, the MD trajectory of our production run was 

visualized using UCSF Chimera39. In addition, to characterize alterations in binding patterns 

in the antigen-combining sites of our peptide-antibody structures, residue-to-residue 

percent occupancy calculations were carried out between select residues in the A𝛽𝛽 peptide 

and on the antibody surface. These calculations used a cutoff distance of 10 Å over 5000 

frames collected at equal intervals from the 50 ns production run. This relatively high 

cutoff distance was chosen due to the high conformational flexibility of certain ligands in 

the antigen-combing site which led to a difficulty in identifying specific binding 

interactions; as a result, we do not use this measure to indicate such binding interactions 

per say, but rather, a low percent occupancy indicates a major decrease in the likelihood 

that the two residues in question can participate in such a binding interaction at a given 

site. 

1.2.3 MMPBSA binding free energy calculations 

5000 frames, taken at equal intervals over the 50 ns production run, were used to 

calculate the MMPBSA binding free energy40-45 for each A𝛽𝛽 peptide-antibody complex. All 
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PBSA calculations were carried out using the PBSA program46-54 in the AMBER 16 

package.30, 55 For this calculation, inp = 2 was used for the non-polar solvation model,56-57 

radiopt = 0 was used for the intrinsic atomic radii, and the ionic strength was set to 100 

mM. All other settings were kept at the default values used in Amber 16.30, 55 Due to the 

rather high uncertainties in normal mode analysis, the entropy contribution was neglected 

in our binding affinity calculations. Experimental binding affinities were compared to our 

calculated binding affinities by converting KD values into binding free energies using: 

∆𝐺𝐺 = RTln(KD) 

where R = 1.987 * 10-3 kcal mol-1 K -1, T = 300 K, and KD is the dissociation constant in units 

of M. 

1.3 RESULTS 

1.3.1 Computational docking of amino acid residues to anti-A𝜷𝜷 antibodies 

To address the question of which amino acids are key to the initial binding and 

anchoring of an A𝛽𝛽 peptide to an anti-amyloid antibody, we carried out an unbiased 

fragment-based computational docking search using all 16 unique amino acid residues that 

appear in the A𝛽𝛽1−42  sequence. To minimize conformational effects from the polypeptide 

ligand, we chose to dock single amino acid residue fragments to the antibody surface. The 

goal in carrying out this step is to determine which single amino acid(s) are most important 

to the initial binding event. Previous studies have indicated that antibodies that exhibit 

promiscuous binding with extended peptide epitopes have a tendency to rely on a small 

number of key semi-conserved anchor residues on the peptide when binding58-59. The 

ability to identify key anchor residue(s) provides an important clue towards understanding 

how certain anti-A𝛽𝛽 antibodies can initially recognize both the N-terminal and central A𝛽𝛽 
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epitopes despite the low sequence similarity between the two regions. Two criteria from 

the output were considered to be relevant in determining the likelihood that an amino acid 

will bind with high affinity to the antigen-combining site of the antibody: 1) which residues 

have the strongest binding interaction at the antigen-combining site?, and 2) which 

residues find the antigen-combining site most consistently?  

TABLE 1.1 Top binding affinities for single amino acid residues bound  

to the antigen-combining site of anti-A𝜷𝜷 antibodies 

 

Binding free energies are given in units of kcal/mol while the corresponding amino acid is 

indicated by using the standard single letter amino acid code. All of the structures given are 

based on the holo crystal structure form of the antibody except for those marked “(apo)” 

which are based on the apo crystal structure. Antibody abbreviations: PFA1 = protofibril 

antibody 1, PFA2 = protofibril antibody 2, BAPI = bapineuzumab, SOLA = solanezumab, 

GANT = gantenerumab, CREN = crenezumab, PONE = ponezumab. The A𝛽𝛽 1-42 amino acid 

sequence is also provided where residues in the N-terminal epitope are highlighted in red, 

residues in the central epitope are highlighted in blue, and residues that appear in both 

epitopes are highlighted in green. 
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TABLE 1.1 lists the most stable binding affinities for the top 10 ranked amino acid 

residues bound to the antigen-combining sites of ten anti-A𝛽𝛽 antibody structures. From 

TABLE 1.1, we observe that approximately 95% of the amino acid residues that are ranked 

in the top 5 appear in the A𝛽𝛽 1-23 region while 13% of the amino acid residues that are 

ranked in the top 5 appear in the A𝛽𝛽 24-42 region. Furthermore, 57% of the amino acid 

residues that are ranked in the top 5 are found in the N-terminal DAEFRH epitope while 

39% appear in the central KLVFFAED epitope. In particular, nine out of the ten antibodies 

have at least three out of four residues in the EFRH sequence appear in their top 5 ranking; 

the only exception is gantenerumab where E and H are tied for sixth place. These results 

are consistent with the noted tendency of the N-terminal DAEFRH epitope to bind to most 

anti-A𝛽𝛽 antibodies60. 

In TABLE 1.2, we examine the number of docked amino acids found at the antigen-

combining site for each residue across the 10 different anti-A𝛽𝛽 antibodies. If we consider 

only the amino acids that were able to dock at the antigen-combining site more than half of 

the time, 79% appear in the A𝛽𝛽 1-23 region while 47% appear in the A𝛽𝛽 24-42 region. Of 

the residues that found the correct binding site more than half the time, 39% are found in 

the N-terminal DAEFRH epitope while 46% appear in the central KLVFFAED epitope. In 

contrast to TABLE 1.1, which displayed similar results in the residue ranking for each 

antibody, TABLE 1.2 displayed clear differences between the different highly ranked 

residues docked to different antibodies and even showed some noticeably large differences 

for the holo and apo forms of the same antibody. These latter differences are presumably 

due to differences in the specific conformation of the antibody in the holo and apo crystal 

structures. It is worth pointing out that while charged and aromatic residues appear to 
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dominate the top ranks in TABLE 1.1, the ability of fragments to find the active site, as 

observed in TABLE 1.2, does not correlate as strongly with polarity as many polar and 

non-polar residues tend to locate the antigen-combining site with similar ease.  

TABLE 1.2. Number of docked structures found at the  

antigen-combing site of anti-A𝜷𝜷 antibodies 

 

The number of docked structures for each amino acid residue that were found in the 

antigen-combining site of the antibody are reported in the table above. Each amino acid is 

indicated by using the standard single-letter amino acid code. Antibody abbreviations: 

PFA1 = protofibril antibody 1, PFA2 = protofibril antibody 2, BAPI = bapineuzumab, SOLA = 

solanezumab, GANT = gantenerumab, CREN = crenezumab, PONE = ponezumab. The A𝛽𝛽 1-

42 amino acid sequence is also provided where residues in the N-terminal epitope are 

highlighted in red, residues in the central epitope are highlighted in blue, and residues that 

appear in both epitopes are highlighted in green. 

 

An examination of TABLES 1.1 and 1.2 reveals an important trend in the binding 

pattern that appears to be consistent across the various antibodies that we have studied; 

the top two residues on A𝛽𝛽 1-42 that have the most stable binding free energy are either 
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phenylalanine or tyrosine in all cases, and both residues are also near the top of the 

residues that are consistently docked to the antigen-combining site. Since phenylalanine 

and tyrosine are structurally identical except for a hydroxyl group, the strong binding free 

energy points to the presence of an aromatic binding pocket on the antibody that is 

important for binding A𝛽𝛽. The existence of such a binding pocket has been pointed out 

before as a key binding site for phenylalanine by several anti-A𝛽𝛽 antibody 

crystallographers23, 26, 60-61. In addition, the two prominent A𝛽𝛽 epitopes, the N-terminal 

DAEFRH epitope and the central KLVFFAED epitope, correspond to the only two locations 

in the A𝛽𝛽 1-42 sequence where phenylalanine appears. Our docking results, taken together 

with these observations, point towards phenylalanine as a leading candidate for the most 

important anchor residue in the initial binding of A𝛽𝛽 epitopes to an anti-amyloid antibody. 

1.3.2 MD method validation 

Although the computational docking of single amino acid residues may give us some 

insight as to which amino acids might bind first to the antigen-combining site of an anti-A𝛽𝛽 

antibody, it does not necessarily help us understand how binding affinity emerges for an 

extended polypeptide. After the first residue in a polypeptide binds to the antigen-

combining site, a previously accessible, high affinity binding site now becomes unavailable 

to other residues, and the binding of the first residue also restricts the search space where 

other residues can bind. In addition, our docking protocol lacks many key factors, such as 

the presence of water and the conformational motion of the full polypeptide and antibody, 

which have both been identified as being important factors in determining the selectivity of 

A𝛽𝛽 peptide-antibody binding60.  
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Therefore, to study the binding affinity of extended A𝛽𝛽 peptides to amyloid 

antibodies, we turned to MD simulations and MMPBSA binding free energy calculations 

using the Amber 16 software suite30. First, we needed to validate our computational 

approach using previously published experimental data. To do this, we compared our 

MMPBSA binding free energy calculations to the full set of experimental binding affinities 

reported in the study carried out by Gardberg et al.  on PFA1 and PFA2 bound to various 

A𝛽𝛽 peptides61. FIGURE 1.1 shows the correlation of our MMPBSA calculations with the 

experimental data (the numerical data are given in TABLE 1.3).  

 

FIGURE 1.1. Method validation for MMPBSA free energy calculations of various A𝜷𝜷 

peptides bound to the antibodies PFA1 and PFA2. The original PFA1, PFA2, and pE3-

A𝛽𝛽3−8  crystal structures (PDB IDs: 2IPU, 2R0W, and 3EYS) served as the basis for 

constructing homology models for all the other bound peptide structures. Our calculated 

MMPBSA binding free energy values were compared to the experimental binding affinity 

values reported by Gardberg et al. for their entire data set.61 All free energy values are 

given in units of kcal/mol. 
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With a Pearson’s R value of 0.95, our MMPBSA calculations show very good 

agreement with the trend seen in the experimental binding affinity data. FIGURE A.1 

shows the convergence of our MMPBSA free energy values taken over the entire 50 ns 

production run. It is seen that our data set shows reasonable convergence over this time 

frame. One data point, for the A𝛽𝛽1−8 peptide bound to PFA1, converged very slowly and 

underwent a substantial change in its binding affinity over the 50 ns MMPBSA calculation.  

 

 

 

 

 

 

 

 

 

 

The results of MMPBSA binding free energy calculations and experimental values are given 

in units of kcal/mol. Experimental values were taken from Gardberg et al.61 and were 

converted to free energy values as described in METHODS. * denotes cases where the 

experimental binding affinity values were reported as a range, and we used the average 

value of that range as the experimental binding affinity. ** denotes the experimental value 

TABLE 1.3. Method validation for MMPBSA 

calculations of A𝜷𝜷 peptides bound  

to PFA1 and PFA2 

Complex Structure MMPBSA Experiment 
PFA1 (A𝛽𝛽1−8) -14.3 -10.2** 
PFA1 (A𝛽𝛽2−7) -10.9 -9.7* 
PFA1 (pE3-A𝛽𝛽3−8) -3.9 -7.6 
PFA1 (Grip1) -6.7 -7.5 
PFA1 (Ror2) -17.7 -10.5 
PFA2 (A𝛽𝛽1−8) -14.0 -10.4** 
PFA2 (A𝛽𝛽2−7) -9.5 -9.1* 
PFA2 (pE3-A𝛽𝛽3−8) -4.0 -6.7 
PFA2 (Grip1) -1.4 -6.9 
PFA2 (Ror2) -10.8 -9.7 
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given for A𝛽𝛽1−40  binding to both PFA1 and PFA2. The standard error of the mean was 0.1 

kcal/mol for each structure. 

 

To verify that the MMPBSA result for A𝛽𝛽1−8 bound to PFA1 had converged properly, 

we collected 10 ns of additional MD simulation data and ran a 60 ns MMPBSA calculation 

using the simulation data from 250 ns to 310 ns. The 60 ns MMPBSA result showed that the 

50 ns MMPBSA result had indeed already converged (see FIGURE A.2). In general, we 

found that running MD simulations for a total simulation time of 300 ns, and using 5000 

frames taken from the last 50 ns for MMPBSA calculations, was sufficient to produce 

acceptable convergence for our data.  This became the standard protocol that we used for 

any subsequent analysis. 

1.3.3 The importance of phenylalanine to the stable binding of A𝜷𝜷𝟐𝟐−𝟕𝟕 to PFA1 

To test the importance of phenylalanine to A𝛽𝛽 peptide-antibody binding, we studied 

an experimental scenario discussed by Gardberg et al.61. The authors carried out a binding 

assay for A𝛽𝛽2−7 and several other A𝛽𝛽2−7 sequence variants bound to PFA1. They 

demonstrated that the binding affinity was lowered (from 60 nM to 3400 nM), but not 

completely abolished, when the wild type sequence, AEFRHD, was changed to the human 

glutamate receptor interacting protein 1 (or Grip1) sequence, AKFRHD. This was surprising 

since the charge characteristics completely changed from the negative glutamate residue to 

the positive lysine residue in the Grip1 peptide60. On the other hand, no binding to PFA1 

was observed at all when AEFRHD was mutated to AEIRHD (the Position 4 or Pos4 mutant) 

despite the swapping of two non-polar hydrophobic residues60-61. We constructed 

homology models for the Grip1 and Pos4 mutants, carried out MD simulations, calculated 
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the MMPBSA binding free energies for each, and compared the results to the A𝛽𝛽2−7 

MMPBSA binding free energy from our method validation. TABLE 1.4 shows that the 

MMPBSA binding affinities qualitatively reproduce the experimental results from the 

Gardberg study quite well.  

TABLE 1.4. The importance of phenylalanine in the 

binding of A𝜷𝜷𝟐𝟐−𝟕𝟕 to PFA1 

 

 

 

The results of MMPBSA binding free energy calculations, in units of kcal/mol, are given to 

demonstrate the severity of the phenylalanine Pos4 mutation (AEIRHD) in the binding of 

A𝛽𝛽2−7  to the antibody PFA1. The less severe Grip1 mutation (AKFRHD) was also included 

for comparison. The crystal structure of A𝛽𝛽2−8 bound to PFA1 (PDB ID: 2IPU) was used 

both for constructing the wildtype A𝛽𝛽2−7 peptide and for generating the homology models 

of the two other A𝛽𝛽 peptide mutants. Experimental values were taken from Gardberg et 

al.31, 61 and were converted to free energy values as described in METHODS. The standard 

error of the mean was 0.1 kcal/mol for each structure. 

 

To examine why the Pos4 (AEIRHD) mutation is much more severe than the Grip1 

(AKFRHD) mutation, we first constructed RMSD plots of the 50 ns production runs for each 

of the three relevant structures. The average RMSD values for the two mutants, Grip1 and 

Pos4, are clearly higher than the average RMSD for the A𝛽𝛽2−7  structure indicating a larger 

degree of structural change from the initial structure for the two mutants (see FIGURE 

A𝛽𝛽 Peptide MMPBSA Experiment 
A𝛽𝛽2−7  (AEFRHD) -10.9 -9.7 
Grip1 (AKFRHD) -6.7 -7.5 
Pos4 (AEIRHD) 6.8 No Binding 
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A.3). However, the RMSD plots provide no indication that the Pos4 mutant has a 

significantly lower binding affinity than the Grip1 mutant. 

 

 

FIGURE 1.2. Comparison of the binding pose for A𝜷𝜷𝟐𝟐−𝟕𝟕 peptide variants bound to 

PFA1.  Three A𝛽𝛽 peptides are shown bound to PFA1: (A) A𝛽𝛽2−7, (B) Grip1, and (C) the Pos4 

mutant. All three images were taken at the halfway point of the production portion of the 

MD simulation. 
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Next, the MD trajectories of the three complexes were visualized and compared with 

one another. It was observed that both mutant residues were no longer able to bind to their 

original binding pockets in comparison to the wildtype A𝛽𝛽2−7  peptide. FIGURE 1.2 shows a 

representative frame, taken from the halfway point of the MD trajectory, to illustrate the 

situation for each structure. In the Grip1 structure, the binding pocket and the lysine 

residue have separated from each other indicating that the binding contact between the 

two has been disrupted (see FIGURE 1.2B). However, the rest of the residues in the A𝛽𝛽2−7 

sequence remain bound in their proper orientations (in agreement with structural 

observations made by Gardberg at al.61), which suggests that the loss or alteration of the 

single glutamate binding interaction is the major cause of the decreased binding affinity of 

PFA1 for Grip1.  

The Pos4 mutation is more complicated. We note first that the isoleucine residue is 

displaced outside of the deep phenylalanine binding pocket (FIGURE 1.2C). Another 

noteworthy difference is that, when the isoleucine residue was pushed out of the pocket, 

the front half of the A𝛽𝛽 peptide chain rotated. The glutamate residue disassociated from its 

normal binding pocket and was found instead binding to a nearby binding pocket that 

normally binds to either aspartate or alanine, which appear at positions 1 and 2 of the full 

A𝛽𝛽1−8 peptide respectively (FIGURE 1.3). Our unbiased computational docking data 

predicted that the Pos4 mutant would have a larger destabilizing effect on the binding 

affinity compared to the Grip1 mutant. From TABLE 1.1, phenylalanine had a top binding 

affinity of -5.9 kcal/mol and -6.1 kcal/mol for the holo and apo forms of PFA1 respectively, 

while glutamate had a top binding affinity of -4.5 kcal/mol and -4.8 kcal/mol for the holo 

and apo forms. However, the change in orientation of the binding pose in the Pos4 mutant 
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for the full peptide clearly could not be captured by calculating the binding affinity for a 

single amino acid residue docked to the antibody surface. 

 

FIGURE 1.3. Electrostatic contacts for A𝜷𝜷𝟏𝟏−𝟖𝟖 bound to PFA1.  A surface map of PFA1 is 

provided which shows the key electrostatic contacts made between the PFA1 antibody and 

charged residues in A𝛽𝛽1−8. The N-terminal aspartate residue (D1) on the A𝛽𝛽 peptide 

appears in the lower right corner of the figure. Negatively charged regions are depicted in 

red while positively charged regions are shown in blue. Coulombic Surface Coloring was 

used to depict electrostatic contacts on the antibody surface where the scale ranges from -

10 kcal/mol*e (red, negative region) to 0 kcal/mol*e (white, neutral region) to 10 

kcal/mol*e (blue, positive region). 

 

1.3.4 Analysis of gantenerumab and crenezumab binding to multiple A𝜷𝜷 epitopes 

Using our prior observation that phenylalanine is a very important residue for the 

binding of A𝛽𝛽 peptides to anti-amyloid antibodies, we also examined the antigen-

combining sites of gantenerumab and crenezumab with the aim of discovering how these 
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two antibodies might bind to both N-terminal and central epitopes of A𝛽𝛽 peptides. We first 

ran MD simulations and calculated MMPBSA binding free energies for both gantenerumab 

and crenezumab bound to the A𝛽𝛽 peptides observed in their crystal structures (PDB IDs: 

5CSZ and 5VZY). Afterwards, we generated homology models containing the other 

prominent A𝛽𝛽 epitope that was not present in the original crystal structure for both 

gantenerumab and crenezumab.  

 

 

 

 

 

 

 

The crystal structures of N-terminal A𝛽𝛽 (DAEFRHDSGYE) bound to gantenerumab (PDB ID: 

5CSZ) and central A𝛽𝛽 (EVHHQKLVFFAEDVG) bound to crenezumab (PDB ID: 5VZY) were 

used both to calculate the MMPBSA binding free energy for the crystal structure-based 

complexes and for generating the four homology models of the transposed epitopes for 

each. Only the most stable of the four homology models of the transposed epitopes for each 

antibody were used for analysis. These are listed as gantenerumab forward and 

crenezumab reverse 2. The other structures were less stable and were omitted from our 

analysis (data not shown). The colored type for phenylalanine reveals the residue that was 

used to line up the phenylalanine residue in each homology model to the phenylalanine 

residues(s) in the original crystal structure (residues that are colored the same indicate the 

TABLE 1.5. MMPBSA binding free energy results for N-terminal 

and central A𝜷𝜷 peptides bound  

to gantenerumab and crenezumab 

Complex Structure MMPBSA Experiment 
gantenerumab (DAEFRHDSGYE) -33.8 -10.7 
gantenerumab forward (HHQKLVFFAEDV) 1.8 - 
crenezumab (EVHHQKLVFFAEDVG) -15.2 -11.7 
crenezumab reverse 2 (SDHRFEAD) -3.1 - 
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phenylalanine residue that was used for the alignment). Experimental binding free 

energies are given for the antibody structures bound to the monomer form of A𝛽𝛽23, 26. The 

results of MMPBSA binding free energy calculations are given in units of kcal/mol. The 

standard error of the mean was 0.1 kcal/mol for each structure. 

 

Four homology models that featured the new peptide were generated where:  1) 

each new A𝛽𝛽 peptide was modeled in both forward and reverse orientations across the 

antigen-combining site, and 2) the location of phenylalanine residues in the A𝛽𝛽 epitopes 

were used for the initial alignment in the antigen-combining site. Calculated MMPBSA 

binding free energies are given in TABLE 1.5 while the convergence for our MMPBSA 

values is demonstrated in FIGURE A.4. Only the most stable homology model of the 

transposed A𝛽𝛽 peptide bound to each antibody was used for analysis; we have labeled 

them as “gantenerumab forward” and “crenezumab reverse 2” to reflect their initial 

alignment. The other transposed epitope structures were less stable and were deemed 

unsuitable for further analysis (data not shown).  

The N-terminal peptide, DAEFRHDSGYE, bound to gantenerumab yielded a 

calculated binding free energy of -33.8 kcal/mol. FIGURE 1.4 compares the initial pose of 

the wildtype N-terminal peptide bound to gantenerumab (FIGURE 1.4A and 1.4B) to 

snapshots taken at the first, middle, and last frames of the MD production run (FIGURE 

1.4C, 1.4D, 1.4E, and 1.4F) for our most stable model of gantenerumab bound to the 

central A𝛽𝛽 peptide. The source of the strong binding affinity for the N-terminal A𝛽𝛽 peptide 

seems apparent from an examination of FIGURE 1.4B as the antigen-combining site of 

gantenerumab exhibits several positive (blue) electrostatic contact sites on its surface that 
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correlate with the many negatively charged aspartate and glutamate (red) residues that 

appear on the N-terminal A𝛽𝛽 peptide. Calculated percent occupancy values for various sites 

can be found in TABLE A.1.  

 

FIGURE 1.4. Gantenerumab bound to both N-terminal and central A𝜷𝜷 peptides.  

Gantenerumab is shown bound to the A𝛽𝛽 peptide containing the N-terminal epitope (PDB 

ID: 5CSZ) in the first frame of the MD simulation in (A) and (B). Structures (C), (D), (E), and 

(F) show the most stable central A𝛽𝛽 peptide bound to gantenerumab in the forward 

sequence (HHQKLVFFAEDV) across the gantenerumab antigen-combining site taken from 

the first frame (C and D), the middle frame (E), and the last frame (F) of the MD production 

run. In all structures, the N-terminus end of the peptide appears towards the bottom of the 
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antigen-combining site while the C-terminus appears near the top. Coulombic Surface 

Coloring was used to depict electrostatic contacts on the antibody surface where the scale 

ranges from -10 kcal/mol*e (red, negative) to 0 kcal/mol*e (white, neutral) to 10 

kcal/mol*e (blue, positive). The residues on the peptide were colored as acidic (red), basic 

(blue), or neutral (white). 

 

Comparing the original N-terminal A𝛽𝛽 peptide binding pose in FIGURE 1.4B to the 

binding pose of the transposed central A𝛽𝛽 peptide in FIGURE 1.4D, 1.4E, and 1.4F, we see 

that most of these electrostatic contacts have been lost when the central A𝛽𝛽 peptide is 

bound as it does not contain as many charged residues as the N-terminal peptide. However, 

there appear to be at least two potential binding interactions when the central A𝛽𝛽 peptide 

is bound to gantenerumab: E22 to R57 and F19 to F119 (both from the VFFAED portion of 

the epitope) appear to be close enough to interact in both structures. The percent 

occupancy for E3 to R57 of 100% when the N-terminal A𝛽𝛽 peptide is bound only drops to 

85.58% for E22 to R57 when the central A𝛽𝛽 peptide is bound, and the percent occupancy 

for F4 to F119 of 96.12% when the N-terminal A𝛽𝛽 peptide is bound actually increased to 

99.92% for F19 to F119 when the central A𝛽𝛽 peptide is bound.  However, it is worth noting 

that D23 appears to be competing to some extent with E22 for occupancy near the R57 

binding site as indicated by a noticeable 45.54% occupancy for D23 to R57 when the 

central A𝛽𝛽 peptide is bound.  In our figures, this competition can even be seen, as E22 is 

clearly bound to the pocket in FIGURE 1.4E whereas D23 is bound to that same site in 

FIGURE 1.4F. Outside of these two interactions, a likely interaction for the N-terminal 

peptide between R5 and Y93, with a percent occupancy of 100% (see FIGURE 1.4B), is 
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clearly lost for the central A𝛽𝛽 peptide in FIGURE 1.4D, 1.4E, and 1.4F as the possible 

corresponding interaction between K16 and Y93 has a 0% occupancy.  

The above observations suggest that the FAED region of the alternate A𝛽𝛽 epitope 

still may form at least a few binding contacts with the gantenerumab antigen-combining 

site. This is in qualitative agreement with experimental observations for gantenerumab, 

which display an epitope in the VFFAEDVGSN region, but do not display an epitope 

emerging from neighboring regions of the central epitope sequence that include the 

sequence HHQKL for instance23. The much less stable binding free energy of 1.8 kcal/mol 

that we obtained for the central A𝛽𝛽 peptide bound to gantenerumab is also consistent with 

the observation that gantenerumab is unable to bind and alter soluble A𝛽𝛽 levels in contrast 

to what was observed for solanezumab, which preferentially recognizes the central A𝛽𝛽 

epitope23, 62. 

The central A𝛽𝛽 peptide bound to crenezumab yielded a calculated binding free 

energy of -15.2 kcal/mol. The transposed N-terminal peptide had a weaker binding free 

energy of -3.1 kcal/mol. While the calculated free energy was smaller for the N-terminal 

peptide, the gap in free energy between the bound N-terminal and central A𝛽𝛽 peptides was 

much smaller for crenezumab than it was for gantenerumab. It is noteworthy to mention 

that the most stable transposed N-terminal peptide was obtained when the phenylalanine 

residue in the reverse N-terminal epitope, SDHRFEAD, was aligned with F20 in the original 

central A𝛽𝛽 epitope, HHQKLVFFAEDV, prior to model building. Binding in this reverse sense 

in the antigen-combining site of an anti-A𝛽𝛽 antibody has been noted before as solanezumab 

binds to the central A𝛽𝛽 peptide in this reverse sense compared to the orientation adopted 

by the N-terminal peptide in gantenerumab.60 The original binding pose of the central A𝛽𝛽 
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peptide bound to crenezumab is shown in FIGURE 1.5A and 1.5B. This may be compared 

to the binding pose observed for the N-terminal peptide bound to crenezumab during the 

production portion of our MD simulation in FIGURE 1.5C, 1.5D, 1.5E, and 1.5F. Compared 

to the initial binding pose of the central A𝛽𝛽 peptide bound to crenezumab, it is seen that the 

binding site of crenezumab has had to distort considerably to bind to the N-terminal A𝛽𝛽 

peptide in an alternate conformation. 

 

FIGURE 1.5. Crenezumab bound to both central and N-terminal A𝜷𝜷 peptides.  

Crenezumab is shown bound to the A𝛽𝛽 peptide containing the central epitope (PDB ID: 

5VZY) in the first frame of the MD simulation in (A) and (B). Structures (C), (D), (E), and (F) 

show the N-terminal A𝛽𝛽 peptide bound to crenezumab in the reverse sense (SDHRFEAD) 

across the crenezumab antigen-combining site as observed in the first frame (C and D), the 
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middle frame (E), and the last frame (F) of the MD production run. In structures (A) and 

(B), the N-terminus end of the peptide appears towards the bottom of the antigen-

combining site while the C-terminus appears near the top. For (C), (D), (E), and (F), the N-

terminus end appears towards the upper left of the antigen-combining site while the C-

terminus end appears towards the lower right of the antigen-combining site. Coulombic 

Surface Coloring was used to depict electrostatic contacts on the antibody surface where 

the scale ranges from -10 kcal/mol*e (red, negative region) to 0 kcal/mol*e (white, neutral 

region) to 10 kcal/mol*e (blue, positive region). The residues on the peptide were colored 

as acidic (red), basic (blue), or neutral (white). 

 

The pattern in potential binding interactions for crenezumab is qualitatively similar 

to what we saw before with gantenerumab, but in general the percent occupancy for the 

various sites that we examined are usually higher for the transposed A𝛽𝛽 peptide bound to 

crenezumab. For comparison with TABLE A.1, the results of percent occupancy 

calculations for crenezumab are available in TABLE A.2. The percent occupancy is 99.0% 

for F19 to V94 when the central A𝛽𝛽 peptide is bound and is 100% for F4 to V94 when the 

N-terminal A𝛽𝛽 peptide is bound. The negatively charged E3 residue also appears to be 

attracted to a nearby binding pocket as seen in FIGURE 1.5E and 1.5F; the percent 

occupancy for E22 to N52 is 100% when the central A𝛽𝛽 peptide is bound and only drops to 

92.28% for E3 to N52 when the N-terminal peptide is bound. In addition, the D23 to N53 

percent occupancy of 36.94% when the central A𝛽𝛽 peptide is bound has actually increased 

to 86.3% for D1 to N53 when the N-terminal A𝛽𝛽 peptide is bound. Also, similar to the 

situation for gantenerumab, the positively charged residue in the alternate peptide does 
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not stably bind to crenezumab. The percent occupancy of 100% for K16 to D101 when the 

central A𝛽𝛽 peptide is bound drops to 0% for R5 to D101 when the N-terminal A𝛽𝛽 peptide is 

bound. 

In an attempt to understand why we were able to obtain a slightly stable binding 

free energy for the reverse epitope bound to crenezumab, it is noteworthy to point out the 

electrostatic similarities between the N-terminal DAEFRHD epitope and the reverse 

sequence of the central epitope KLVFFAED, which when written out in reverse becomes 

DEAFFVLK. When both sequences are compared in this way, it becomes apparent that the 

first four amino acids in the N-terminal sequence and the first four amino acids in the 

reverse central epitope sequence are very similar to each other, with DAEF and DEAF 

differing only by switching the internal positions of the alanine and glutamate residues. 

However, despite this similarity, the inability to interchange the binding of key arginine 

and lysine residues elsewhere in the sequence may help explain how crenezumab achieves 

its preference for the central A𝛽𝛽 peptide. The inability for lysine and arginine residues to 

cross bind for both gantenerumab and crenezumab is likely due to a difference in the 

positioning of these residues in both the sequence and three-dimensional space; the 

arginine residue appears next to the DAEF sequence in the N-terminal epitope 

(DAEFRHDS) whereas the lysine residue appears three residues away from the 

corresponding FAED sequence in the central epitope (HHQKLVFFAEDV). 

1.3.5 Predicting the binding affinity between pE3-A𝜷𝜷𝟑𝟑−𝟖𝟖 and PFA1 mutants 

With an eye towards the future, we wanted to see if we could use a visual inspection 

of our MD simulations to rationally plan out single amino acid mutations that improve the 

calculated MMPBSA binding free energy between an anti-A𝛽𝛽 antibody and a polymorphic 
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A𝛽𝛽 species. Such a computational approach has been successfully demonstrated before32, 

and it is a cost-effective way to probe for antibody mutations that could potentially 

improve the binding strength and specificity of an antibody for an additional A𝛽𝛽 target. The 

most promising mutants that are identified may then be produced and tested in a 

laboratory to confirm the predicted improvement in binding affinity at a later point.  

In order to illustrate this approach, we examined a question posed by Gardberg et al. 

in their study of pE3-A𝛽𝛽3−8 bound to the anti-protofibril antibody, PFA1. In that study, the 

pE3-A𝛽𝛽3−8 amyloid peptide was shown to bind to PFA1 with less affinity (KD = 3000 nM) 

than the wild type A𝛽𝛽2−7 peptide (KD = 60 nM)31. pE3-A𝛽𝛽3−8 is still considered to be 

dangerous due to its prominent presence in Alzheimer’s plaques, and a mutant antibody 

that can bind to both A𝛽𝛽 species with high affinity would be more desirable as a potential 

drug candidate. To probe for such a mutant, we first ran a preliminary MD simulation of 

PFA1 bound to pE3-A𝛽𝛽3−8 and compared it to a MD simulation of PFA1 bound to A𝛽𝛽1−8 that 

had been used previously in our method validation. Of particular interest in the MD 

simulation for A𝛽𝛽1−8 was that the glutamate residue was found to be localized fairly well 

inside of its binding pocket as would be expected from analyzing the initial structure (see 

FIGURE 1.3). In contrast, the MD simulation for pE3-A𝛽𝛽3−8 revealed that the terminal 

pyroglutamate (PCA3) residue was engaged in a tug-of-war of sorts between the glutamate 

binding pocket and another nearby binding pocket that normally belongs to either alanine 

or aspartate.  

 Based on the MD simulations, we proposed that the difference in the observed 

binding affinity was caused by either: 1) the PCA3 residue in pE3-A𝛽𝛽3−8  lacking the full 

negative charge of the glutamate residue, weakening its attraction to the glutamate binding 
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pocket, or 2) the loss of alanine in pE3-A𝛽𝛽3−8, opening up the possibility for PCA3 to be 

attracted away from the glutamate binding pocket towards the other nearby unoccupied 

binding pocket. On these grounds, we computationally introduced two sets of single amino 

acid substitution mutations into the binding pocket of PFA1, carried out MD simulations, 

and calculated the MMPBSA binding free energies between the mutant structures and the 

pE3-A𝛽𝛽3−8 peptide. The first two mutants, Y59A and N60A on the H chain, were designed to 

weaken the attraction of PCA3 towards the other nearby binding pocket. The next two 

mutants, S92K and H93K on the L chain, were designed to strengthen the positive 

electrostatic character in the glutamate binding pocket.  

 

 

 

 

 

 

 

 

 

 

 

The crystal structure of pE3-A𝛽𝛽3−8 bound to PFA1 (PDB ID: 3EYS) was used both for the 

wildtype pE3-A𝛽𝛽3−8 -PFA1 complex and for generating the homology models of the four 

pE3-A𝛽𝛽3−8-PFA1 mutant complexes. The crystal structure of A𝛽𝛽2−8  (PDB ID: 2IPU) was 

TABLE 1.6. MMPBSA binding free energy results for 

A𝜷𝜷𝟏𝟏−𝟖𝟖, A𝜷𝜷𝟐𝟐−𝟕𝟕, and pE3-A𝜷𝜷𝟑𝟑−𝟖𝟖 bound to the wildtype 

and several mutant forms of PFA1 

Complex Structure MMPBSA 
A𝛽𝛽1−8-PFA1 wildtype -14.3 
A𝛽𝛽2−7 -PFA1 wildtype -10.9 
pE3-A𝛽𝛽3−8-PFA1 wildtype -3.9 
pE3-A𝛽𝛽3−8-PFA1 mutant (Y59A (H chain)) -8.4 
pE3-A𝛽𝛽3−8-PFA1 mutant (N60A (H chain)) -10.2 
pE3-A𝛽𝛽3−8-PFA1 mutant (S92K (L chain)) 5.3 
pE3-A𝛽𝛽3−8-PFA1 mutant (H93K (L chain)) -2.7 
A𝛽𝛽1−8-PFA1 mutant (N60A (H chain)) -18.0 
A𝛽𝛽2−7 -PFA1 mutant (N60A (H chain)) -8.3 
A𝛽𝛽1−8-PFA1 mutant (Y59A (H chain)) -16.7 
A𝛽𝛽2−7 -PFA1 mutant (Y59A (H chain)) -9.7 
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used to generate the homology models of the A𝛽𝛽1−8 and A𝛽𝛽2−7  peptides bound to the N60A 

and Y59A mutant forms of PFA1. The results of MMPBSA binding free energy calculations 

are given in units of kcal/mol. The standard error of the mean was 0.1 kcal/mol for each 

structure. 

 

The MMPBSA results are given in TABLE 1.6, convergence plots for the calculated 

MMPBSA binding free energies are shown in FIGURE A.5, and the results of percent 

occupancy calculations are available in TABLE A.3. Two out of the four proposed mutants 

were able to lower the calculated binding free energy by an appreciable amount, predicting 

that these mutations will stabilize the bound structure. The calculated binding free energy 

for pE3-A𝛽𝛽3−8  bound to the N60A PFA1 mutant was -10.2 kcal/mol, and the calculated 

binding free energy for the Y59A PFA1 mutant was -8.4 kcal/mol. These were both more 

favorable than the binding free energy of -3.9 kcal/mol calculated for pE3-A𝛽𝛽3−8  bound to 

the PFA1 wildtype structure. The more favorable binding free energies were also 

comparable to values we obtained of -14.3 kcal/mol and -10.4 kcal/mol for the original 

wild type A𝛽𝛽1−8 and A𝛽𝛽2−7 peptides bound to PFA1 respectively.  

Examining the MD trajectories (FIGURE 1.6) revealed that our N60A mutation 

worked out more or less as we expected. The PCA3 residue was now localized closer to the 

two histidine residues near the glutamate binding pocket for the majority of the simulation 

time. For the N60A mutant, the percent occupancy for PCA3 to H27D of 97.9% and for 

PCA3 to H93 of 99.9% were large increases over the corresponding wildtype values of 

19.7% and 44.0% respectively. In addition, the percent occupancy for PCA3 to S58, a 
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residue near the N60A mutation site, was reduced from 50.9% in the wildtype to 8.6% in 

the N60A mutant.  

 

FIGURE 1.6. Snapshots from the MD trajectories of pE3-A𝜷𝜷𝟑𝟑−𝟖𝟖 bound to wild type and 

mutant forms of PFA1. The structures here are visualized as snapshots taken at 10 ns, 30 

ns, and 50 ns during the production run of the MD simulation. 
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In a somewhat similar way, our Y59A mutant appeared to stabilize PCA3 by 

reducing its movement, but this time the PCA3 residue localized more towards the other 

nearby binding pocket, on the central right side, as indicated by an increase in percent 

occupancy from 50.9% to 81.0% for PCA3 to S58. Unlike in the N60A mutant, the PCA3 

residue showed only a modest increase in its localization towards the H27D and H93 

residues with percent occupancy values of 25.8% and 62.4% compared to 19.7% and 

44.0% in the wildtype respectively. 

The other two mutations are not predicted to improve the binding affinity of pE3-

A𝛽𝛽3−8  towards the mutant antibody. The S92K mutant had a calculated binding free energy 

of 5.3 kcal/mol that indicated a strong destabilization of the bound structure. For the S92K 

mutant, we note that the PCA3 to H27D percent occupancy decreased considerably from 

19.7% to 1.0%, and also the PCA3 to L96 percent occupancy increased from 17.3% to 

76.1%, indicating that perhaps an increase in percent occupancy at this particular site, 

which happens to be the phenylalanine binding site, is disruptive to binding.  

The H93K mutant was also destabilized as its calculated binding free energy of -2.7 

kcal/mol was a bit lower than that of the wild type pE3-A𝛽𝛽3−8  peptide bound to PFA1. It 

failed to pull PCA3 residues towards the H27D and H93 locations as we intended; the PCA3 

to H27D percent occupancy was lowered from 19.7% in the wildtype to 0% in the H93K 

mutant while the PCA3 to K93 (the position which was previously H93) percent occupancy 

was lowered from 44.0% in the wildtype to 9.8% in the H93K mutant. Analysis of the MD 

trajectory also revealed that the pE3-A𝛽𝛽3−8  peptide had undergone drastic changes in its 

binding pose for the H93K mutant. The entire backbone of pE3-A𝛽𝛽3−8 was flipped outwards 

toward the solvent, which allowed the PCA3 residue to move into the deep central binding 
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pocket, displacing phenylalanine. The PCA3 to L96 percent occupancy increased to 100% 

for the H93K mutant compared to 17.3% in the wildtype.  

 

 

FIGURE 1.7. Snapshots from the MD trajectories of A𝜷𝜷𝟏𝟏−𝟖𝟖 and A𝜷𝜷𝟐𝟐−𝟕𝟕 bound to wild 

type and mutant forms of PFA1. The structures here are visualized as snapshots taken at 

10 ns, 30 ns, and 50 ns during the production run of the MD simulation. 
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Given the rather large changes in binding pose and affinity for the pE3-A𝛽𝛽3−8  

peptide towards our PFA1 mutants, it is also reasonable to ask what changes might take 

place for the binding of the original wild type A𝛽𝛽1−8 and A𝛽𝛽2−7 peptides to our two 

successful mutant antibodies. This is an important issue if we wish to find a single antibody 

that is capable of binding with high affinity to multiple A𝛽𝛽 species. We therefore also 

examined MD simulations and calculated MMPBSA binding free energies for A𝛽𝛽1−8 and 

A𝛽𝛽2−7   bound to our N60A and Y59A mutant forms of PFA1. The binding free energies are 

given in TABLE 1.6, representative snapshots from the MD trajectories are shown in 

FIGURE 1.7, and the results of percent occupancy calculations for both wild type and 

mutant forms are available in TABLE A.4 and A.5 for A𝛽𝛽1−8 and A𝛽𝛽2−7  respectively. 

For both mutants, the binding affinity for A𝛽𝛽1−8 was actually predicted to be 

improved over the wildtype PFA1 antibody. The calculated binding free energy for A𝛽𝛽1−8 

bound to the N60A PFA1 mutant was -18.0 kcal/mol, and the calculated binding free 

energy for the Y59A PFA1 mutant was -16.7 kcal/mol. One possible explanation for such an 

increase in binding affinity is that the percent occupancy of D1 to N27 increased to 99.9% 

in the N60A mutant and to 83.8% in the Y59A mutant compared to 79.1% in the wildtype. 

In contrast, both mutations are predicted to slightly destabilize the binding of the A𝛽𝛽2−7  

peptide as the calculated binding free energy for A𝛽𝛽2−7  bound to the N60A PFA1 mutant 

was -8.3 kcal/mol, and the calculated binding free energy for the Y59A PFA1 mutant was -

9.7 kcal/mol. A plausible explanation is that the mutation interfered with the binding of 

alanine, which is present in A𝛽𝛽2−7 , and also that a compensating D1 to N27 interaction is 

completely missing for this case. Nevertheless, if we compare the computed binding free 

energies of the wild type PFA1 for A𝛽𝛽1−8, A𝛽𝛽2−7 , and pE3-A𝛽𝛽3−8  species to that of our N60A 
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and Y59A mutants, we predict a general increase in the binding affinity for our various A𝛽𝛽 

species to the mutant antibodies albeit with a modest sacrifice in affinity for A𝛽𝛽2−7. 

1.4 DISCUSSION 

In the preceding sections, we have shown how fragment-based docking and MD 

simulations, accompanied by MMPBSA binding free energy calculations, can assist in the 

study of anti-A𝛽𝛽 antibodies for rational drug design efforts. Employing a fragment-based 

docking method provided us with a means to dock single amino acid residues in an 

unbiased fashion to the surface of anti-A𝛽𝛽 antibodies to probe for key anchoring residues 

that are involved in the initial binding interaction. Our docking approach borrows heavily 

from current ideas being used in computational fragment-based drug design. In these 

methods, potential binding sites are located by probing the surface of a large protein 

receptor using small fragments of a ligand as opposed to attempting to dock the entire 

ligand33-34. A potential disadvantage to using small fragments to probe the receptor is a 

decrease in the binding selectivity for the ligand; additional binding sites other than the 

primary site of interest are often identified as potential binding sites63. On the other hand, 

conformational possibilities for a small fragment are much lower than for a larger ligand, 

and it has been shown that the leading hot spots identified using computational fragment-

based methods correlate well with actual ligand binding sites34. In the present case, we 

were fortunate to be examining antibodies where the location of the ligand binding site was 

already known beforehand. 

The primary shortcoming of using single amino acid fragment-based docking to 

study the binding of peptide ligands is that spatial and conformational information that is 

important to the binding of the full peptide is lost. For example, our MD simulation of A𝛽𝛽2−7 
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peptide variants bound to PFA1 suggested that the large decrease in binding affinity of the 

Pos4 mutant was not solely due to a disruption of the single phenylalanine binding 

interaction as several neighboring amino acid binding interactions were also disrupted. 

Attempting to dock dipeptide (or larger) fragments from the full amino acid sequence to 

test for spatial effects introduces additional complications to the docking protocol. For 

example, multiple possibilities now exist when ranking dipeptide fragments, such as the 

first amino acid binding to a pocket, but not the second, or both amino acids binding to 

separate pockets simultaneously. An additional conformational search step of the dipeptide 

ligand might be carried out in advance of the binding affinity calculation to optimize the 

binding pose, but this would come at the cost of greatly increasing both the difficulty and 

computational expense of applying this approach64-65.  

For situations where only an apo crystal structure of the antibody is available to 

study, docking single amino acids might yield some useful information as to which amino 

acids are crucial to the binding of an extended epitope. We showed that this approach was 

able to predict the emergence of the EFRH epitope observed in many anti-A𝛽𝛽 antibodies. In 

particular, phenylalanine emerged as a dominant interaction, displaying the most stable 

binding free energy and very consistently docking into the antigen-combining sites of all 

ten antibodies. This observation that phenylalanine is a central anchor in the binding of A𝛽𝛽  

peptides to anti-A𝛽𝛽 antibodies is corroborated by experimental observations from various 

crystallographers23, 26, 60-61. However, we believe that using MD simulations and MMPBSA 

calculations to probe the ligand binding properties in holo structures is highly preferable, if 

this option is available, since the binding pose of the full peptide ligand is already 

established in this case.  
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 The most noteworthy observation from our MD exploration of A𝛽𝛽 epitope cross 

binding was that our data indicated that crenezumab may bind to both N-terminal and 

central A𝛽𝛽 epitopes, although the binding to the N-terminal region is predicted to be much 

weaker. This topic is of interest because cross binding between these two epitopes may be 

related to aducanumab’s reported ability to bind to both oligomeric and fibril A𝛽𝛽 species, 

and this may be a factor in its more optimistic outlook as a drug candidate. Additionally, it 

has been observed experimentally that crenezumab has a puzzling ability to bind to both 

soluble monomers and oligomers, using the central epitope of A𝛽𝛽, and to insoluble amyloid 

plaques where it is believed that only the N-terminal epitope is readily accessible25-26. This 

behavior contrasts sharply with solanezumab which can only bind to soluble monomers 

using the central epitope of A𝛽𝛽 and not to fibril structures via the N-terminal epitope.  

To explain the cross binding to both fibril and oligomeric species observed for 

crenezumab, Ultsch et al. suggested that the A𝛽𝛽 fibril species may have defects that expose 

the central A𝛽𝛽 epitope along the fiber axis to allow crenezumab to bind to it in a few 

locations26. While this is certainly possible, the slightly stable MMPBSA binding affinity that 

we observed for binding the N-terminal peptide to crenezumab presents an alternative 

explanation; a weak binding affinity for the N-terminal epitope would give crenezumab a 

chance to bind to fibril structures to some extent. Although crenezumab’s binding affinity 

for the fiber form would be lower than for the monomer or oligomer forms that bind via 

the central epitope, the high effective concentration of potential N-terminal binding sites 

along a fiber axis could still account for the sporadic fiber binding pattern observed by 

Ultsch et al.26. We should note that other possibilities for cross binding to fibers exist than 

the two proposed above. Ma et al. has  recently pointed out that crenezumab can recognize 
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the A𝛽𝛽 13-16 epitope which may also be exposed in fibers to allow the antibody to bind66. It 

is important to note that our analysis assumed that a conserved interaction between the 

antibody and phenylalanine was maintained if cross binding occurred, but this assumption 

may not necessarily hold if A𝛽𝛽 13-16 is responsible for cross binding. An interesting feature 

of the A𝛽𝛽 13-16 epitope is that it contains two side by side histidine residues, implying that 

a strong pH dependence for fiber binding may help decide experimentally between this 

possibility and the others mentioned above. 

Concerning our MD methodology, our analysis of gantenerumab and crenezumab is 

necessarily more limited and qualitative than our analysis of the PFA1 system. In contrast 

to our study of PFA1, we lacked a full set of experimental binding affinities that would have 

allowed us to validate our gantenerumab and crenezumab data and draw more 

quantitative conclusions for this portion of the study. In addition, while we have identified 

a few short sequences in the N-terminal and central A𝛽𝛽 epitopes that may initiate a cross 

binding event, other important aspects that can affect binding selectivity, in particular the 

role of entropy in conformational selection for the full extended polypeptide sequence60, 66-

68, still need to be quantified and studied in more detail. In our MD simulations, we 

observed a large amount of conformational flexibility in the both the bound A𝛽𝛽 peptides 

and the amyloid antigen-combining sites of our various model systems. Such 

conformational movement made it difficult to obtain converged free energy values for our 

system, which required long 300 ns MD simulations and extensive 50 ns MMPBSA 

calculations to obtain acceptable convergence. We also used residue-to-residue percent 

occupancy values in our analysis, as opposed to more precise atom-to-atom calculations, 

due to the large amount of conformational flexibility that we observed. However, available 
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methods that attempt to quantify these effects for protein-ligand interactions in the form of 

entropy calculations are unsatisfactory43, and much effort is currently aimed at improving 

the accuracy and efficiency of such calculations69-72. In particular, the single trajectory 

MD/MMPBSA method that we have employed does not take into account any significant 

conformational changes that may occur between the bound and unbound states, and the 

multi-trajectory method that attempts to address this issue is known to have major issues 

with convergence71. Therefore, omitting entropy calculations is a standard practice when 

we apply the single trajectory MD/MMPBSA approach as we have done here and in past 

work43, 73. A truly deep understanding of binding selectivity will need to take into account 

entropic effects in a more quantitative manner, and finding a way to accurately quantify the 

entropic effects in a highly flexible system like this would be an interesting avenue for a 

future study.   

Finally, we computationally introduced rational mutations into the PFA1 antibody in 

an attempt to predict mutants that will improve the binding affinity of PFA1 towards the 

pE3-A𝛽𝛽 species of A𝛽𝛽. Given the high conformational flexibility of both the A𝛽𝛽 peptide and 

the antibody itself, predicting useful mutations from static crystal structures would be 

difficult, if not impossible, to do. On the other hand, visual inspection of the MD simulations 

of the amyloid-antibody complex allowed us to rationally identify potential mutation hot 

spots on the antibody surface with relative ease. Two out of the four mutants we tested are 

predicted to stabilize the binding of pE3-A𝛽𝛽3−8  to PFA1. However, this came at a slight cost 

as the computed binding affinity for A𝛽𝛽2−7  is predicted to be slightly lower in the mutant 

antibodies. In practice, this may not be much of an issue, as a compromise between the 

binding of A𝛽𝛽 species for a given antibody can be circumvented entirely by going beyond 
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the single antibody approach. Instead, a cocktail of similar antibodies can be used to target 

various key A𝛽𝛽 species in a treatment regime. In this case for instance, both wildtype and 

N60A mutant forms could be used together in a proposed treatment option to maximize 

effectiveness.  

Our results here only serve to illustrate the potential for applying a computational 

method to help design prospective mutant structures; many other possible mutations may 

exist that can impact the binding of pE3-A𝛽𝛽3−8 in a similar or even better way. If a 

computational pre-screening approach such as this is carried out, it should produce a list of 

potential hot spot mutations that can then be tested in the lab to confirm the predicted 

effectiveness. If the results from the lab correlate with the predicted computational results, 

it may lead to an improved drug candidate with a greater potential to treat AD. 

1.5 CONCLUSIONS 

Anti-A𝛽𝛽 antibodies are currently the most advanced treatment option on the 

horizon for patients suffering from AD. The recent positive clinical results reported for 

adacanumab indicate the potential for these drugs to be effective at clearing plaque burden 

and reducing cognitive decline. The main issues at present are the serious autoimmune 

side effects associated with certain anti-A𝛽𝛽 antibodies and the presence of important 

polymorphic forms of A𝛽𝛽 that may not bind to an antibody drug candidate with the same 

high affinity as its primary A𝛽𝛽 target, decreasing its effectiveness. 

Although it remains a possibility to obtain new antibody drug candidates from 

standard drug screening procedures, these are expensive and time-consuming endeavors 

to undertake, and there is no way of knowing what impact the drug will have on a human 

population until a very late stage of drug development. Alternatively, there exists the 
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possibility to rationally modify and improve current anti-A𝛽𝛽 antibody drugs that have 

already undergone clinical trials and whose strengths and weaknesses as a drug candidate 

are at least somewhat understood.  

For the purpose of rationally improving anti-A𝛽𝛽 antibody drugs, we have outlined a 

computational approach for studying the antigen-combining site of anti-A𝛽𝛽 antibodies 

using fragment-based docking and full molecular dynamics simulations accompanied by 

MMPBSA binding free energy calculations. Our fragment-based docking method 

successfully predicted the emergence of the common EFRH epitope, and its application 

identified phenylalanine in particular as a key anchoring residue. In our study of A𝛽𝛽2−7  

peptide variants bound to PFA1, we showed that MD simulations were capable of 

reproducing experimental observations as well as providing new insights into previously 

observed experimental results. We also demonstrated that MD simulations can be used as a 

tool to assist in exploratory research aimed at unravelling the cross-binding of different A𝛽𝛽 

epitope sequences to certain anti-A𝛽𝛽 antibodies and to predict useful mutations to 

engineer into anti-A𝛽𝛽 antibody drug candidates. Computational methods are a cost-

effective way to study the binding properties of anti-A𝛽𝛽 antibodies whose crystal 

structures have previously been made available for analysis, and they may be an important 

tool when it comes to optimizing prospective drug candidates in the future. 
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CHAPTER 2 

Modeling Membrane Protein-Ligand Binding Interactions:  

The Human Purinergic Platelet Receptor 

Reprinted (adapted) with permission from Greene, D.; Botello-Smith, W. M.; Follmer, A.; 

Xiao, L.; Lambros, E.; Luo, R. Modeling Membrane Protein-Ligand Binding Interactions: The 

Human Purinergic Platelet Receptor. J. Phys. Chem. B 2016, 120, 12293-12304. Copyright 

2016 American Chemical Society. 

ABSTRACT 

Membrane proteins, due to their roles as cell receptors and signaling mediators, 

make prime candidates for drug targets. The computational analysis of protein-ligand 

binding affinities has been widely employed as a tool in rational drug design efforts. 

Although efficient implicit solvent-based methods for modeling globular protein-ligand 

binding have been around for many years, the extension of such methods to membrane 

protein-ligand binding is still in its infancy. In this study, we extended the widely used 

Amber/MMPBSA method to model membrane protein-ligand systems, and we used it to 

analyze protein-ligand binding for the human purinergic platelet receptor (P2Y12R), a 

prominent drug target in the inhibition of platelet aggregation for the prevention of 

myocardial infarction and stroke. The binding affinities, computed by the Amber/MMPBSA 

method using standard parameters, correlate well with experiment. A detailed 

investigation of these parameters was conducted to assess their impact on the accuracy of 

the method. These analyses show the importance of properly treating the non-polar 

solvation interactions and the electrostatic polarization in the binding of nucleotide 

agonists and non-nucleotide antagonists to P2Y12R. Based on the crystal structures and the 
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experimental conditions in the binding assay, we further hypothesized that the nucleotide 

agonists lose their bound magnesium ion upon binding to P2Y12R, and our computational 

study supports this hypothesis. Ultimately, this work illustrates the value of computational 

analysis in the interpretation of experimental binding reactions. 

2.1 INTRODUCTION 

Membrane proteins provide a range of important functions as cell receptors, 

signaling proteins, transmembrane channels, and more.  Their roles as receptors and 

signaling proteins make them particularly relevant as candidates for drug targets. 

However, the study of membrane proteins is more complicated than the study of globular 

proteins. Particularly, the presence of the membrane complicates structural studies, both 

experimentally and computationally. The presence of the membrane makes it more difficult 

to employ experimental techniques such as NMR and X-ray crystallography. For instance, 

the signal from the membrane must be disentangled from that of the protein when using 

NMR, and membrane proteins are notoriously difficult to crystallize. For computational 

studies, modeling of the membrane becomes an important consideration.  

An active area of computational studies of proteins is the prediction of protein-

ligand binding affinities. The Amber 161 and AmberTools 162 suites currently provide the 

capability of performing such calculations for globular proteins via the widely used 

MMPBSA module3-8. The consideration of solvation effects in these computational 

approaches is quite important. It is relatively common knowledge that solvent-solute 

interactions provide the primary driving force for producing and maintaining the properly 

folded structures of proteins9-11.  
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Inclusion of the solvent into a computational model or simulation can generally be 

classified into one of two different categories: explicit and implicit solvation. In explicit 

solvation, each atom or molecule of the solvent is modeled individually. While this is 

generally agreed to be the most accurate method, one is often not interested in the 

properties of the solvent itself, but rather in the behavior it induces upon the solute. 

Unfortunately, accurately capturing statistically meaningful characteristics requires 

sampling either from ensembles of trajectories or from a single very long trajectory. 

Implicit solvents provide an attractive alternative wherein the effects of the solvent are 

modeled as a continuum10-26. While the fine-grained details of individual solvent-solute 

particle interactions are lost, the relevant statistically averaged effects may still be 

captured when a properly parameterized and transferrable model is used. In addition, 

since the individual solvent molecules are no longer modeled directly, there are far fewer 

particles to simulate which reduces the sampling challenges in molecular simulations. 

In the case of membrane proteins, the membrane must also be included when 

modeling solvation effects27-33. In general, the molecules that make up a lipid membrane 

are much more complex than water or other small organic solvents, and this increases the 

computational expense of their inclusion. Thus, there has been much effort put into the 

development and testing of implicit membrane solvent models27-33. Implicit membranes 

have appeared in several recent computational studies as they can assist in finding the 

proper native fold of a membrane protein for structural studies and calculations34-36.  

Implementation of an implicit membrane is currently available in packages such as APBS32, 

Delphi33, 37, and both the Amber 161 and AmberTools 162 suites. With the implementation 
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of an implicit membrane model into the Amber/PBSA program38-42, the implicit membrane 

model can be more readily interfaced with the existing MMPBSA framework3-8. 

One of the key features to consider in implicit solvent models is the modeling of 

electrostatic interactions. This is most readily accomplished by employing the Poisson-

Boltzmann equation (PBE)43-60. In cases where the ion concentration is relatively low (a 

few hundred millimolar or less), this equation may be approximated as the linear PBE:  

                                                             ∇ ∙ 𝜀𝜀∇𝜙𝜙 =  −4𝜋𝜋𝜌𝜌0 +  𝜀𝜀𝜈𝜈𝜅𝜅2𝜙𝜙                                                         (1) 

where . Here 𝜈𝜈 denotes the solvent, and 𝐼𝐼 = 𝑧𝑧2𝑣𝑣 represents the ionic strength of 

the solution. The PBE-based solvent models have many biological applications. For 

example, they have been applied to the prediction of pKa values for ionizable groups in 

biomolecules61-65, solvation free energies66, 67, binding free energies68-73, and protein 

folding and design74-83. Even in its simplified linear form, solving the PBE is a non-trivial 

endeavor. Due to its complexity, there is no general closed form solution; a numerical 

solution must be sought with the exception of very simplified geometries27, 38-40, 42, 48, 59, 60, 

84-115. A semi-analytical Generalized Born (GB) equation was also developed to approximate 

the PBE solution and is quite popular in biomolecular applications.  

In order to apply the PBE or GB frameworks to implicit membrane solvent models, 

an additional dielectric region must be added (see FIGURE 2.1). The appropriate dielectric 

constant of the membrane region is generally thought to be quite low relative to the bulk 

solvent dielectric constant that is typically set to be between 60 (mimicking SPC water 

models) and 80 (typical for TIP3P models)116-119. Various dielectric constant profiles were 

explored during the development of GB implicit membrane models116, 118, 120, and it was 
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demonstrated that a simple two dielectric constant model can reproduce electrostatic free 

energies relatively well by modeling the membrane as a slab like region with a uniform 

dielectric constant of about 2. Models with 3 or more layers have been shown to improve 

the accuracy of the results; however, beyond three layers, the improvement was shown to 

be marginal118. 

 

 

FIGURE 2.1.  Dielectric constant regions in the P2Y12R system. The protein/ligand is 

shown in yellow (dielectric: epsin), the implicit membrane is shown in red (dielectric: 

epsmem), and the surrounding implicit water solvent is shown in blue (dielectric: epsout). 

 
A complete implementation of an implicit membrane under the Amber/PBSA 

program38-42 requires implementation of appropriate membrane to protein non-polar 

solvation free energy terms121. While development of these terms is still underway, it is not 
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expected to impact binding free energy calculations for protein-ligand systems in which the 

binding pocket is sequestered away from the membrane in the protein interior. Thus, such 

systems make good candidates for testing the electrostatic free energy calculations 

provided by the current implementation of the implicit membrane model within the 

Amber/PBSA program38-42.  

While three-dimensional structures for globular proteins are quite abundant, such 

data is less prevalent for membrane proteins. To validate the Amber/PBSA program, and 

the MMPBSA framework for membrane protein applications, it is necessary to find a 

protein for which experimental binding affinities and structures of the associated protein-

ligand complexes are both available. Recently, a study on the human purinergic platelet 

receptor (P2Y12R) was reported122, 123, providing crystal structures of the receptor bound 

to three different ligands and experimental measurements of dissociation constants for the 

wild type, several select mutants, and two additional ligands. Several antithrombotic drugs 

target P2Y12R to inhibit platelet aggregation for the purpose of preventing myocardial 

infarction and stroke. However, limitations of these drugs have motivated the development 

of a new generation of P2Y12R inhibitors124, 125. Thus, computational modeling, based on the 

latest structural and functional data, will further facilitate developmental efforts aimed in 

this direction. 

This work documents both the development of an MMPBSA algorithm for 

membrane protein-ligand binding applications and the validation of the algorithm using 

P2Y12R complexes with nucleotide agonists and non-nucleotide antagonists. We analyze 

the sensitivity and the quality of predicted binding affinities with respect to several key 

polar and non-polar components in the MMPBSA framework. In addition, we also analyze 
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the role of magnesium ions in the binding of nucleotide agonists to P2Y12R. Our results 

show the application of protein-ligand binding affinity prediction methods towards 

interpreting experimental binding affinities. 

2.2 METHODS 

2.2.1 Preparation of the P2Y12R complex structures 

Three separate crystal structures of P2Y12R122, 123, two complexed with agonist 

ligands: 2-methylthio-adenosine-5'-triphosphate and 2-methylthio-adenosine-5’-

diphosphate (2MeSATP and 2MeSADP respectively) and one with an antagonist ligand: 

AZD-1283 (AZD), were downloaded from the protein databank. As was noted in the 

corresponding literature122, 123, each of the crystal structures contained several sequence 

gaps for which no structure could be resolved. The program Modeller126 was used to 

generate initial structures for these gaps. These homology models were then merged into 

the crystal structures using the Multi-SEQ127 module in the program VMD128. The single 

point mutation D294N was modeled in the Amber/LEAP program1, 2, 129. 

In addition to the ligands obtained from the three P2Y12R crystal structures, two 

additional antagonist ligands, with reported binding affinity data122, were docked to the 

receptor from the P2Y12R-AZD crystal structure. The structure for Ticagrelor (TIQ) was 

extracted from a previously published crystal structure130 (PDB ID: 5ALB). The structure 

for PSB-0739 (PSB) was generated using MarvinSketch131 to produce a 2D structure file 

which was subsequently converted into a 3D structure file using the OpenEye toolkits132. 

The structures were independently docked to the receptor using AutoDock Vina/SMINA133. 

The ligands in the three P2Y12R complex structures (2MeSATP, 2MeSADP, and AZD) 

were extracted to individual structure files for parameterization. Two additional ligands, 
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PSB and TIQ, were obtained from the docking analysis documented above. The two 

agonists are simple derivatives of ATP and ADP, so their parameters were obtained from 

the literature134 except for the atomic charges for the 2-methylthio-adenine group. For the 

rest of the ligands, the Amber/ANTECHAMBER135 program was used to generate force field 

parameters. 

2.2.2 Preparation of the lipid membrane model 

P2Y12R is found embedded within platelet outer membranes. The membrane 

environment for P2Y12R was modeled with an explicit all-atom model for the molecular 

dynamics (MD) simulation and with an implicit continuum model for the post-processing 

binding affinity calculation. Construction of the explicit all-atom membrane model was 

accomplished using the CHARMM-GUI membrane builder web server136. The membrane 

was constructed with a POPC, POPS, and POPE ratio of 3:2:3 and a cholesterol to lipid ratio 

of 2:5137. Sphingomyelin lipids were not included since their force field parameters were 

not yet available. 

The aqueous phase of the P2Y12R membrane protein-ligand system was modeled 

using an explicit all-atom approach with the TIP3P model along with sufficient potassium 

and chloride ions to mimic a roughly 150 millimolar KCl concentration. The constructed 

membrane protein-ligand system was loaded into the LEAP1, 2, 129 program for the 

generation of simulation force field topology and coordinate files. 

2.2.3 MD simulation protocol 

Each system was first minimized using 500 steps of steepest descent followed by 

500 steps of conjugate gradient optimization. All residues taken directly from the crystal 

structures were held fixed. Residues generated from homology modeling were left 
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unrestrained, along with all solvent molecules including membrane lipids, water molecules, 

and ions. After minimization, heating was performed in two phases. In the first phase, 

systems were brought up to 100 K over 2500 time steps (5 ps) under the NTV condition 

using a Langevin thermostat with a collision frequency of 1.0 per ps. This was followed by 

heating from 100 K to 303 K over 100 ps under the NPT condition with anisotropic 

pressure scaling using the Berendsen barostat with a pressure relaxation constant of 2.0 ps 

and a target pressure of 1.0 atm. In both cases, a cutoff radius of 10 Å was used when 

computing non-bonded interactions. All these preparation simulations were performed 

using the MPI parallelized SANDER program from the Amber 16 suite1, 2, 129.   

After the initial heating was completed, it was necessary to equilibrate the 

membrane density prior to the production run. The production run utilized Amber’s GPU 

accelerated PMEMD program that does not allow frequent updating of the box size1, 2, 129. 

Density equilibration was performed over 10 identical 500 ps NTP simulations at a 

constant temperature of 303 K. As with heating and minimization, portions of the protein 

substructure containing coordinates from the crystal structure were held fixed. Afterwards, 

all restraints were removed, and a 20 ns equilibration run using the GPU accelerated 

PMEMD program was performed to fully relax the system. Finally, a 10 ns production run 

was used for the MMPBSA calculation, which was found to be sufficient to achieve the 

averaging required for free energy calculations (FIGURE B.1). In order to take full 

advantage of the GPU accelerated code, a Monte-Carlo thermostat was employed instead of 

the Berendsen thermostat used during the previous simulation phases. 
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2.2.4 Binding free energy calculations 

Binding free energies were computed using the SANDER/PBSA module in the 

Amber 2016 release1, 2, 129. The production run trajectory was post processed with 

CPPTRAJ138 in order to remove the solvent, membrane, and counter ions from the receptor-

ligand complex. 1000 frames, taken at equal intervals over the 10 ns production run, were 

processed using SANDER/PBSA to compute molecular mechanics potential energies and 

solvation free energies.  

 

FIGURE 2.2. Thermodynamic cycle of the MMPBSA method for a membrane protein-

ligand system. The membrane protein is depicted in yellow, the ligand is depicted in 

orange, the implicit membrane is shown in red, the water solvent is shown with blue, and 

the vacuum is shown with black. ∆𝐺𝐺0 values are labelled for the various transitions from 

one state to another. 
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The binding free energy for the protein-ligand complex was computed as the 

difference between the complex free energy and the sum of the receptor and ligand free 

energies as shown schematically in FIGURE 2.2 for the membrane protein-ligand system. 

The SANDER/PBSA calculations were conducted either inside the implicit 

membrane/water solvent or the pure implicit water solvent according to the following 

thermodynamic cycle:          

            ∆𝐺𝐺𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠
0 =  ∆𝐺𝐺𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏,𝑠𝑠𝑣𝑣𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣

0 +  ∆𝐺𝐺𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠,𝑒𝑒𝑠𝑠𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
0 − ∆𝐺𝐺𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 ,𝑒𝑒𝑒𝑒𝑙𝑙𝑣𝑣𝑏𝑏𝑏𝑏

0 −  ∆𝐺𝐺𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 ,𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑟𝑟
0 .  (2) 

The solvation free energies were calculated using 

                                                       ∆𝐺𝐺𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠0 =  ∆𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
0 + ∆𝐺𝐺𝑏𝑏𝑒𝑒0                                             (3) 

where the electrostatic terms, ∆𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
0 ,were calculated using the linearized PBE solver as 

implemented in PBSA38-42. The non-polar solvation terms, ∆𝐺𝐺𝑏𝑏𝑒𝑒0 , were calculated using 

either the classical model or the modern model as documented previously139. It is worth 

pointing out that FIGURE 2.2 shows that the ligand-binding site of the protein is in the 

aqueous phase. This implies that the standard non-polar solvent models, optimized for 

solvation in water, are reasonable approximations. However, it is not unusual to observe 

binding cavities buried deep within the lipid bilayer. These binding reactions will require a 

recalibration of the non-polar solvent model, and this scenario will be explored in a future 

study. 

The calculated binding free energies were then compared against the experimental 

results122. The experimental dissociation constants, KD, were converted to appropriate 

binding free energies using the formula: 

        ∆𝐺𝐺 = RTln(KD)      (4) 

where R is the gas constant, and T is the temperature. 
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2.2.5 Estimation of the free energy penalty upon the loss of Mg2+ 

It is well known that both ATP and ADP have a tendency to form a complex with a 

magnesium ion in solution140-142. However, in the crystal structures for 2MeSATP and 

2MeSADP bound to P2Y12R, magnesium ions were notably absent. Nevertheless, the 

experimental binding affinity data for 2MeSATP and 2MeSADP bound to P2Y12R was 

obtained in the presence of 10mM MgCl2122. When the experimental binding affinity 

measurements were carried out, the presence of magnesium ions in solution may have 

imposed an energetic penalty on the ligands 2MeSATP and 2MeSADP; if either compound 

was bound to a magnesium ion in solution, the bound magnesium ion would have to be 

removed before the ligand could bind to the P2Y12R active site in the same manner that was 

observed in the crystal structure. 

In order to estimate the magnitude of this penalty, we modeled the removal of the 

bound magnesium ion from both 2MeSATP and 2MeSADP in solution as a binding affinity 

calculation. The overall reaction is given as: 

                 Mg(2MeSAXP) +  P2Y12R → (2MeSAXP)P2Y12R + Mg2+  (5)   

where AXP = ATP or ADP depending on the ligand in question, and ∆𝐺𝐺5 is the overall free 

energy change for this reaction. We can separate the removal of Mg2+ and the binding of the 

ligand to P2Y12R into two steps: 

                      Mg(2MeSAXP)→ 2MeSAXP + Mg2+    (6)   

       2MeSAXP +  P2Y12R → (2MeSAXP)P2Y12R    (7) 

with the free energy change for equation (6) given as ∆𝐺𝐺6, and the free energy change for 

equation (7) given as ∆𝐺𝐺7. Following Hess’s Law, we can sum equations (6) and (7) to 

recover equation (5), and similarly, we can obtain the overall binding free energy as: 
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    ∆𝐺𝐺5 =  ∆𝐺𝐺6 + ∆𝐺𝐺7.              (8) 

To carry out the free energy calculation for equation (6), the 2MeSATP and 

2MeSADP ligands were isolated from their respective complex structures. The bound 

magnesium ion was placed above and in between neighboring phosphate oxygen atoms on 

the ligand using UCSF Chimera143. The MD simulation, and MMPBSA binding free energy 

calculation, was carried out as described previously. 

2.2.6 Additional computational details 

In each PBSA calculation, a grid spacing of 0.5 Å was used with a grid to solute 

dimension ratio (fillratio) of 1.5. The geometric multigrid solver option was employed with 

a convergence threshold of 1.0 x 10-3, and electrostatic focusing was turned off. All PB 

calculations were conducted using the periodic boundary condition in the PBSA program38-

42 in the Amber 2016 suite1, 2, 129. 

The solvation system physical constants were set up as follows. The membrane was 

modeled as a solid slab of 40 Å. The water relative dielectric constant (epsout) was fixed at 

80.0. The water phase ionic strength (istrng) was set to be 150 mM. The lower dielectric 

region within the molecular solutes was defined using the classical solvent excluded 

surface model with a water solvent probe of 1.4 Å and a membrane solvent probe of 2.7 Å, 

which is used to account for the larger effective size of a lipid molecule when compared to a 

water molecule. Further details for extending the classical solvent excluded surface model 

to membrane systems will be discussed in a separate publication. The default weighted 

harmonic averaging was employed to assign dielectric constants for boundary grid edges to 

reduce grid dependence. Charges and radii were assigned using the same parameters as 

the simulation topology files. 
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The accuracy of the computed binding free energies was assessed by comparing the 

RMSD of the calculated versus the experimental values. The Pearson correlation coefficient 

(R), the slope, and the associated p-value of the linear regression were also analyzed. These 

were computed for both the absolute binding free energies (ΔG) and the relative binding 

free energies (ΔΔG) for two different P2Y12 receptors (wild type and mutant D294N) and 

five different ligands (2MeSATP, 2MeSADP, PSB, TIQ, and AZD). 

2.3 RESULTS AND DISCUSSION 

2.3.1 Impact of the non-polar solvation model 

 

FIGURE 2.3. Parameter optimization for the non-polar solvation model, inp (epsin = 

20, epsmem = 4). The R value indicates the correlation for the data set at the given inp 

value. 

 

While electrostatic interactions play a major role in PBE-based implicit solvent 

models, various non-polar interactions, such as cavity surface tension and dispersion must 

also be accounted for. The PBSA module of Amber currently provides two options for 
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computing non-polar solvation energy terms. The first method (inp = 1) uses a linear 

function of the solvent accessible surface area/volume144. The second, more sophisticated, 

method (inp = 2) decomposes the non-polar contribution into separate cavity and 

dispersion terms for better transferrable modeling of the non-polar solvation effects121. To 

test the relative effectiveness of these two methods, two sets of computations were run 

using inp = 1 or inp = 2 with all other parameters set at their optimal values. 

FIGURE 2.3 shows the values of the Pearson correlation coefficient when inp = 1 or 

inp = 2 are used in the analysis. Additional metrics to assess the agreement are provided in 

TABLE 2.1. Using the classical method, inp = 1, the RMSDs are 59 and 8 kcal/mol (for ΔG 

and ΔΔG respectively) with the magnesium correction, and 62 and 11 kcal/mol without the 

magnesium correction. The modern method, inp = 2, yields RMSDs of 19 and 6 kcal/mol 

with the magnesium correction, and 23 and 10 kcal/mol without. The lower RMSD values 

indicate a better agreement using inp = 2.  

TABLE 2.1. Effect of the non-polar solvation model on  

absolute (ΔG) and relative (ΔΔG) binding affinities 

 

Results that are corrected for the removal of the magnesium ion appear in columns 2-6 

while the results that do not take into account the magnesium correction appear in 

columns 7-11. RMSD values are given in units of kcal/mol. The raw data used to generate 

these results is available in Appendix B (TABLE B.1). 
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The same trend holds for the p-value of the correlation; inp = 1 gives p-values of 

0.13 with the magnesium correction and 0.20 without the correction while inp2 yields p-

values of 0.0067 and 0.061 respectively. In addition, the R values for inp = 1 are 0.51 and 

0.44 with and without the magnesium correction respectively while the corresponding R 

values for inp2 are 0.79 and 0.61. In this case, the higher R values for inp = 2 indicate a 

stronger correlation. Taken together, the modern inp = 2 method clearly yields improved 

results over the classical inp = 1 method for our system. 

2.3.2 Impact of the protein dielectric constant 

 

FIGURE 2.4. Parameter optimization for the protein dielectric constant, epsin (inp = 

2, epsmem = 4). The R value indicates the correlation for the data set at the given epsin 

value. 

 

At neutral pH, P2Y12R and all associated ligands except AZD and TIQ are non-neutral 

in solution. For neutral receptor and ligand systems, the protein dielectric constant is 

typically assigned to a relatively low value, such as 1 or 2. Charged systems often require a 

higher dielectric constant to be assigned to the protein in order to compensate for the lack 
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of polarization treatment in typical MMPBSA calculations. To test the effect of the protein 

dielectric constant upon binding prediction efficacy, a series of calculations was performed 

with protein dielectric constants of 1, 2, 4, 6, 8, 12, 16, 20, and 24 while all other 

parameters were held at their optimal values.  

TABLE 2.2. Effect of the protein dielectric constant on 

absolute (ΔG) and relative (ΔΔG) binding affinities 

 

Results that are corrected for the removal of the magnesium ion appear in columns 2-6 

while the results that do not take into account the magnesium correction appear in 

columns 7-11. RMSD values are given in units of kcal/mol. The raw data used to generate 

these results is available in Appendix B (TABLE B.2). 

 

FIGURE 2.4 and TABLE 2.2 show that a general improvement in the agreement 

with experiment can be obtained by increasing the protein/solute dielectric constant to 

about epsin = 20. This is indicated by the lowering of the RMSD and p-values and an 

increase in the value of the correlation coefficient in comparison to these same metrics 

when measured at nearby epsin values. It is noted that raising the protein dielectric 

constant has a particularly profound effect on the agreement with heavily charged ligands 

such as 2MeSATP and 2MeSADP in our system as often observed when modeling binding 
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reactions involving charged ligands/active sites in globular proteins6, 8, 145, 146. The 

agreement is also expected given that the binding pocket of P2Y12R is still in the water-

soluble region of the protein. However, it is worth noting that this finding may not hold for 

membrane proteins with membrane-accessible binding pockets. High quality structure and 

affinity data would be necessary to establish a standard practice for such cases. 

2.3.3 Impact of the membrane dielectric constant 

Currently, the implicit membrane model implemented in PBSA allows for only a 

single membrane region. While this may be extended with relative ease in the future, this 

study focuses on the single membrane dielectric constant protocol.  

 

FIGURE 2.5. Parameter optimization for the membrane dielectric constant, epsmem 

(inp = 2, epsin = 20). The R value indicates the correlation for the data set at the given 

epsmem value.  

 

This protocol follows the classical solvent excluded surface definition of molecular 

surface, in analogy to globular proteins. In doing so, it was reasonable to examine 
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membrane dielectric constants of 1, 2, 4, and 7 with all other parameters set to their 

optimal values. 

From examination of FIGURE 2.5 and TABLE 2.3, it is evident that the accuracy of 

the binding affinity calculations is less sensitive to changes in the membrane dielectric 

constant in comparison to the differences observed when changing the non-polar solvation 

model and the protein dielectric constant. Although there is a detectable improvement in 

the RMSD, p-value, and the correlation coefficient for epsmem = 4, other epsmem values 

are comparable to each other. Again, the finding here may be attributed to the water-

accessible nature of the binding pocket in P2Y12R. It is expected that membrane-accessible 

binding may behave quite sensitively to the membrane dielectric constant. 

TABLE 2.3. Effect of the membrane dielectric constant on 

absolute (ΔG) and relative (ΔΔG) binding affinities 

 

Results that are corrected for the removal of the magnesium ion appear in columns 2-6 

while the results that do not take into account the magnesium correction appear in 

columns 7-11. RMSD values are given in units of kcal/mol. The raw data used to generate 

these results is available in Appendix B (TABLE B.1). 

 

2.3.4 Effect of the magnesium correction 

Finally, we address the effect of modeling explicit binding of the two nucleotide 

agonists to the magnesium ion. FIGURES 2.3-2.5 and TABLES 2.1-2.3 show that modeling 
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the removal of a magnesium ion, as described in the Methods section, leads to much higher 

R values, lower p values, and lower RMSD values compared to the uncorrected data across 

the board. The effect of the magnesium correction can be seen most clearly in FIGURES 2.6 

and 7 as the data points for 2MeSATP and 2MeSADP rise in free energy to improve the 

agreement with the linear trend established by the other less charged or neutral ligands.  

 

 

FIGURE 2.6. Absolute binding free energy (ΔG) correlation plots (inp = 2, epsin = 20, 

and epsmem = 4). The plot that was corrected for the removal of the magnesium ion 

appears on the left while the plot that did not take into account the magnesium correction 

appears on the right. 

 

FIGURE 2.6 compares the absolute binding free energies (∆G) between our 

calculated MMPBSA values and the experimental results while FIGURE 2.7 provides an 

analogous comparison using the relative binding free energies (∆∆G).  
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FIGURE 2.7. Relative binding free energy (ΔΔG) correlation plots (inp = 2, epsin = 20, 

and epsmem = 4). The plot that was corrected for the removal of the magnesium ion 

appears on the left while the plot that did not take into account the magnesium correction 

appears on the right. 

 

The large systematic bias inherent in MMPBSA binding affinity calculations 

manifests itself as both a large slope and a large y-intercept in FIGURE 2.6. Using the 

relative free energy values in FIGURE 2.7 removes the large y-intercept while keeping the 

slope and overall correlation the same. It is clear that the rather large error in the 

uncorrected set is due to the binding data obtained from 2MeSATP and 2MeSADP.  When 

the correction is applied, the agreement improves specifically because it counteracts the 

extremely favorable electrostatic interactions with these two ligands in the standard 
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MMPBSA calculation. Note that this is so even when a very high apparent protein dielectric 

constant is used. 

Our hypothesis that the bound magnesium ion is lost upon 2MeSATP and 2MeSADP 

binding to P2Y12R is based on inspection of the complex crystal structures, and the fact that 

the binding assay was conducted in the presence of 10mM MgCl2122. This is supported by 

our computational modeling of the binding reactions, which utilizes standard setups of the 

widely used MMPBSA method. It should be noted that our binding affinity modeling was 

conducted without the normal mode entropy analysis. This analysis usually does not 

contribute favorably to the overall agreement with experiment due to the approximation 

used6, 8, 145. Additionally, it is possible that binding-induced conformational changes cannot 

be fully taken into account by the widely used single-trajectory approach. The more 

extensive multi-trajectory approach, or more high-end free energy simulation methods 

with enhanced sampling, will be explored in the future. 

Nevertheless, additional structural analysis shows that P2Y12R is indeed an 

interesting case. FIGURE 2.8 compares the electrostatic potential at the binding site for 

P2Y12R bound to 2MeSATP123 (FIGURE 2.8A, PDB ID: 4PY0) with two other proteins which 

have a magnesium ion bound to ATP in their binding sites: G protein-coupled receptor 

kinase 1, GRK1147 (FIGURE 2.8B, PDB ID: 3C4X), and Flagella-related protein H, FlaH148 

(FIGURE 2.8C, PDB ID: 4YDS). It can be seen in FIGURES 2.8B and 2.8C that a negatively 

charged region (red) is present in both GRK1 and FlaH to stabilize the magnesium ion in 

the binding site. However, no comparable region appears that would stabilize a magnesium 

ion in P2Y12R as FIGURE 2.8A shows that the ligand binding site for P2Y12R is 

electropositive (blue). The electropositive nature of the P2Y12R active site might explain 
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why the P2Y12R crystal structures, with bound 2MeSATP or 2MeSADP, were obtained 

without a magnesium ion to begin with.   

 

 

FIGURE 2.8: Cross-sectional comparison of the ATP binding site for A) P2Y12R, B) GRK1, 

and C) FlaH. Blue and red coloring reflects a net positive or negative charge, carbon bonds 

are shown in cyan, phosphorus bonds are depicted in orange, and the magnesium ions are 

shown in green. 
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On the other hand, it is also reasonable to question whether the binding poses 

observed in the crystal structures are the active forms in the binding assay. Indeed, the 

authors of the crystal structure study speculated that their P2Y12R-2MeSADP structure 

might be in an “agonist-bound inactive state” based on the positions of certain helices in 

comparison with other structures.123 

However, the binding poses observed in the crystal structure active sites do make 

physical sense in that the electrostatic interactions between the highly negatively charged 

ligands and the many positively charged side chains in the P2Y12R active site are favorable 

for binding. Absence of additional reactants or additional experimental measurements (i.e. 

NMR), it is difficult to justify a mechanism that contradicts the binding poses observed in 

the existing high quality structural data. 

2.4 CONCLUDING REMARKS AND FUTURE DIRECTIONS 

In this study, the widely used Amber/MMPBSA procedure was extended to model 

membrane protein-ligand binding affinities; in particular, it was used to model the binding 

of several ligands to the human purinergic platelet receptor, P2Y12R. A good agreement 

with experimental binding affinities was observed. A detailed investigation of simulation 

parameters was conducted to assess their impact on the accuracy of the MMPBSA results. 

The reported optimization procedure also illustrated the various details that should be 

considered while applying the MMPBSA method in studies of other membrane protein 

systems.   

Testing of the non-polar solvent model indicates that the modern dispersion/cavity 

method (inp = 2), which separately models dispersion and hydrophobic interactions, yields 

improved agreement with experiment all around as compared with the classical, but 
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simpler, linear response model (inp = 1). These results suggest that the modern approach is 

preferred when performing binding free energy calculations for membrane protein-ligand 

systems, or at least it is preferred for ligand binding cavities that are fully exposed to water, 

an observation that is consistent with studies of globular proteins8.  

An investigation of protein dielectric constants led to an optimized value of 20. This 

is due to the highly charged and partially exposed nature of the active site of P2Y12R, and 

this is also consistent with many previous studies of globular proteins6, 8, 145, 146. The 

introduction of a higher protein/solute dielectric constant is a reasonable, but crude, 

treatment of the screening effect of electrostatic interactions due to polarization of 

electronic, orientational, and solvent-exchange origins. The screening effect reduces 

otherwise very favorable electrostatic interactions, rendering these interactions 

comparable to hydrophobic interactions in most biochemical systems.  

A similar investigation of membrane dielectric constants led to an optimized value 

of 4. This is within the 1-4 range that is indicative of highly hydrophobic regions of 

membranes, and it agrees well with other values reported in the literature30, 117, 119, 149. It is 

worth noting that an epsmem value of 1, 2, or even 7 can be used without sacrificing much 

accuracy as the effect of changing the membrane dielectric constant is more subtle in 

comparison to changes in the protein dielectric constant. This result seems reasonable for 

our system. An active site exposed on the protein surface should be somewhat separated 

from the hydrophobic, non-polar region in the surrounding lipid bilayer, and therefore, the 

effect of the membrane dielectric constant on the binding free energy should be more 

modest. Finally, it is worth noting that the magnesium correction had no influence on the 

trends observed in the analysis of simulation parameters. If the uncorrected data is 
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analyzed on its own in FIGURES 2.3-2.5 and TABLES 2.1-2.3, we see the same general 

trends that we see when we analyze the corrected data on its own.  

We hypothesized that the bound magnesium ion is lost when 2MeSATP or 2MeSADP 

bind to P2Y12R. This was based on inspection of the complex crystal structures, and the fact 

that the binding assay was conducted in the presence of 10mM MgCl2122. This is supported 

by our modeling study of the binding reactions, which uses standard setups from a widely 

employed method. Additional structural analysis shows that P2Y12R is indeed an 

interesting case. The electropositive nature of its active site might explain why the P2Y12R 

complex structures were obtained without magnesium ions. Nevertheless, the approach we 

have taken above is just one possible way to resolve the anomaly in the 2MeSATP and 

2MeSADP binding affinities. Another possibility is that the bound magnesium ion may 

remain in the P2Y12R binding site upon 2MeSATP and 2MeSADP binding. This is akin to 

reducing the net charges of the two highly charged ligands. However, in this situation the 

remaining charges of the ligands are still very high, and the electrostatic interactions 

remain highly favorable, even when a high apparent protein dielectric constant is used, 

leading to poor overall agreement with experiment (data not shown). Of course, this 

possibility also contradicts the magnesium-free binding of 2MeSATP and 2MeSADP 

observed in the P2Y12R crystal structures. 
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CHAPTER 3 

Heterogeneous Dielectric Implicit Membrane Model  

for the Calculation of MMPBSA Binding Free Energies 

Reprinted (adapted) with permission from Greene, D.; Qi, R.; Nguyen, R.; Qiu, T.; Luo, R. 

Heterogeneous Dielectric Implicit Membrane Model for the Calculation of MMPBSA Binding 

Free Energies. J. Chem. Inf. Model. 2019, 59, 3041-3056. Copyright 2019 American Chemical 

Society. 

ABSTRACT 

Membrane-bound protein receptors are a primary biological drug target, but the 

computational analysis of membrane proteins has been limited. In order to improve 

Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) binding free energy 

calculations for membrane protein-ligand systems, we have optimized a new 

heterogeneous dielectric implicit membrane model, with respect to free energy simulations 

in explicit membrane and explicit water, and implemented it into the Amber software suite. 

This new model supersedes our previous uniform, single dielectric implicit membrane 

model by allowing the dielectric constant to vary with depth within the membrane. We 

calculated MMPBSA binding free energies for the Human Purinergic Platelet Receptor 

(P2Y12R) and two of the muscarinic acetylcholine receptors (M2R and M3R) bound to 

various antagonist ligands using both membrane models, and we found that the 

heterogeneous dielectric membrane model has a stronger correlation with experimental 

binding affinities compared to the older model under otherwise identical conditions. This 

improved membrane model increases the utility of MMPBSA calculations for the rational 

design and improvement of future drug candidates. 
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3.1 INTRODUCTION 

Membrane proteins connect the internal environment of a cell to the surrounding 

medium. In doing so, they act as receptors of extracellular ligands, transporters that allow 

the passage of small molecules, enzymes that catalyze chemical reactions, and more1. The 

accessibility of membrane-bound protein receptors on the cell surface has made them a 

primary biological drug target. It is estimated that nearly 40% of all drug targets are either 

class I G-protein coupled receptors or nuclear receptors while 60% of all drug targets 

appear on the cell surface2.  

In rational drug design efforts, the computational analysis of protein-ligand binding 

affinities has become an important tool. Efficient, implicit solvent-based methods for 

modeling globular protein-ligand binding have been employed for many years, but the 

extension of such methods to membrane protein-ligand binding is far less developed 

despite its pharmacological importance. A complication that has held back the 

development of implicit solvent models for membrane proteins is that they are much more 

difficult to implement; the surrounding membrane must be taken into account along with 

the aqueous environment in the solvation model. Another factor is that the total number of 

membrane protein crystal structures available in the RCSB Protein Data Bank (PDB) is less 

than 3% of the total number of proteins deposited in the database3, 4. This reflects the 

experimental difficulties in obtaining viable structures of membrane bound proteins5. 

Nevertheless, over 92% of current drug targets are reported to be similar to known 

proteins in the PDB, which suggests a strong structural coverage of druggable membrane 

proteins for use in rational drug design2. In addition, methodological improvements to 

cryo-electron microscopy (cryo-EM) within the last few years have opened up the 
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possibility that several high-profile membrane proteins which have resisted crystallization 

will be available for study in the near future6. 

Recently, our lab implemented an implicit membrane model into the Amber 16 

software suite7, 8 that allowed users to calculate the Molecular Mechanics Poisson-

Boltzmann Surface Area (MMPBSA) binding free energy of a membrane protein-ligand 

system9-12. PBSA based implicit solvent models have been used in a wide variety of 

biological applications including the prediction of pKa shifts13, 14, solvation free energies15-

18, protein folding19-26, and binding free energies27-30. In PBSA calculations, the electrostatic 

interaction term is calculated using the Poisson-Boltzmann equation (PBE)31-36, which is 

frequently approximated as the linear PBE: 

                                                   ∇ ∙ 𝜀𝜀∇𝜙𝜙 =  −4𝜋𝜋𝜌𝜌0 +  𝜀𝜀𝜈𝜈𝜅𝜅2𝜙𝜙      (1) 

where 𝜅𝜅2 =  8𝜋𝜋𝑒𝑒
2 𝐼𝐼

𝜀𝜀𝜈𝜈𝑘𝑘𝐵𝐵𝑇𝑇
. In eq. (1) 𝜈𝜈 refers to the solvent, and the ionic strength is given as 𝐼𝐼 =

𝑧𝑧2𝑣𝑣. It can be seen in eq. (1) that the PBE has a dependency on the dielectric constant (𝜀𝜀), 

and an accurate selection of the dielectric constant will therefore have a direct impact on 

the accuracy of the overall PBSA calculation. 

In Amber 16, our implicit membrane was modeled as a uniform slab with a single, 

low dielectric constant. While an important first step, a single dielectric implicit membrane 

model cannot effectively reconcile the low dielectric membrane core region, which consists 

of long non-polar hydrocarbon tails, with the high dielectric membrane periphery region, 

which contains polar and charged headgroups37-39. The hydrophobic core of the membrane 

has been described as having a low dielectric constant of around 2 while the polar 

headgroup region of the membrane has been reported as having a much higher dielectric 

constant, with estimates in the range of 80-100039, 40. It has been demonstrated that these 
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different dielectric properties can affect the interactions of small molecules with the 

membrane at different depths within the membrane. For instance, this difference in 

membrane structure can lead to qualitatively different permeabilities at different depths 

within the membrane when compared to membranes consisting of more uniformly 

structured alkane components38, 41-45. This is especially a concern for our intended 

application as many binding interactions take place at the interface between water and 

protein at the periphery, in the vicinity of phospholipid headgroups, as opposed to in the 

low dielectric membrane interior. 

 

FIGURE 3.1. The evolution of a heterogeneous dielectric implicit membrane model. 

An explicit solvent model (left image) is first approximated by using an implicit solvent 

model where the solvent is treated as a dielectric continuum surrounding a molecule of 

interest, such as methane (purple and white). As a first approximation, the implicit solvent 

model (middle image) may consist of an aqueous phase (blue) with a high dielectric 

constant and a single, uniform membrane slab region (tan) with a single, low dielectric 

constant. To better approximate the heterogeneous nature of the explicit phospholipid 

membrane, the implicit solvent model can be improved by dividing the membrane slab 
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region into several small layers (right image) with each layer containing a different value of 

the dielectric constant that has been optimized for that layer. 

 

The inherent inaccuracies of using a single dielectric membrane model can be 

lessened by implementing a heterogeneous dielectric membrane model that assigns a local 

dielectric constant that varies with depth within the phospholipid membrane (FIGURE 

3.1)46-50. Here, we introduce such a heterogeneous dielectric implicit membrane model into 

Amber 18. In our present approach, we calibrate our implicit membrane model by 

calculating the free energy of de-charging the side chains of all 20 common amino acid 

residues at a given depth within the membrane. The optimal dielectric constant at a given 

depth is obtained from the global minimum of the root mean square deviation (RMSD) 

between the free energy for de-charging that is calculated in both the implicit and explicit 

membrane. This approach follows the philosophy of modern force field development by 

focusing on model compounds. In this case, we calibrate a variable dielectric profile in our 

implicit membrane model using a full set of parameterized amino acid side chains to 

represent the chemical properties of full-size membrane proteins. Of course, subsequent 

studies should pay attention to the transferability of the new implicit membrane model to 

different protein and ligand molecules, akin to what has been done for explicit membrane 

models. This current approach does allow for a more direct calibration of the membrane 

compared to prior methods which used a generic test charge39, 40, 48.  

The implementation of a heterogeneous dielectric implicit membrane model into 

the Amber PBSA framework is aimed at creating a much more accurate membrane 

environment for MMPBSA binding free energy calculations of membrane protein-ligand 
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systems. To examine the impact of the new membrane model on this calculation for a few 

relevant test cases, we have calculated MMPBSA binding free energies for two G-protein 

coupled receptor systems, the human purinergic platelet receptor (P2Y12R) and two 

muscarinic acetylcholine receptors (M2R and M3R) bound to various antagonist ligands, 

using both the new heterogeneous dielectric membrane model and the old uniform 

dielectric membrane model.  

 

FIGURE 3.2. Model of the antagonist-bound P2Y12R system used in our MD 

simulations.  A) Side view and B) Top down view of a snapshot taken from the production 

portion of the explicit MD trajectory for the P2Y12R receptor (yellow) bound to the AZD-

1283 ligand (cyan). Nitrogen headgroup atoms that were used to calculate the average 

membrane thickness are shown in blue. Water has been omitted from this image for clarity.  

 

P2Y12R is a prominent membrane bound receptor that is targeted for platelet 

aggregation inhibition in the treatment of myocardial infarction and stroke. Several 

antithrombotic drugs target P2Y12R, but limitations of these drugs have motivated the 

development of a new generation of P2Y12R inhibitors51-53. The muscarinic acetylcholine 
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receptor M3R is a target for antagonist drugs involved in treating chronic pulmonary 

disease. A desire to enhance selectivity for M3R over the structurally similar M2R subtype, 

which modulates heart rate, has fueled a structure-guided approach to antagonist ligand 

design54.  

 

 

FIGURE 3.3. Model of the antagonist-bound M2R and M3R systems used in our MD 

simulations.  A) Side view and B) Top down view of a snapshot taken from the production 

portion of the explicit MD trajectory for the M2R receptor (yellow) bound to the QNB 
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ligand (cyan). C) Side view and D) Top down view of a snapshot taken from the production 

portion of the explicit MD trajectory for the M3R receptor (yellow) bound to the QNB 

ligand (cyan). Nitrogen headgroup atoms that were used to calculate the average 

membrane thickness are shown in blue. Water has been omitted from this image for clarity. 

 

For our membrane comparison, the P2Y12R receptor has an open binding site that is 

exposed to water (FIGURE 3.2) whereas the closed binding site for M2R and M3R is buried 

a bit deeper into the membrane (FIGURE 3.3). These systems allow us to test the 

performance of our MMPBSA calculations at different depths within our membrane models. 

In the future, computational modeling may play a key role in the drug design process, and 

here we demonstrate how our improved membrane model increases the accuracy of 

MMPBSA calculations which can be used in the rational design of future drug candidates. 

3.2 METHODS 

3.2.1 Preparation of amino acid sidechains 

 Our first step towards obtaining a heterogeneous dielectric profile was to calculate 

the free energy difference for de-charging an amino acid side chain, from 100% of its 

original charge to 0% of its original charge, at a given depth within an explicit all-atom 

membrane model. With the exception of glycine and proline, each amino acid in the 

standard library in Amber was edited using xleap to remove the common peptide backbone 

from the amino acid, isolating each amino acid side chain. For each isolated amino acid side 

chain, a proton was added to the beta carbon. The charge on the added proton was adjusted 

to match that of other beta carbon protons, and the charge on the beta carbon itself was 

adjusted to give the side chain as a whole the correct total net charge of the natural side 
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chain at pH = 755. Glycine and proline were unedited due to the lack of a beta carbon for 

glycine, and due to the cyclization of the side chain and backbone in the case of proline. 

These two amino acids were used to test the effect of de-charging the peptide backbone. 

3.2.2 Z-restraint, de-charging MD simulations in explicit solvent 

 Each amino acid side chain was placed into a model membrane to perform z-

restraint simulations where the center of mass of the side chain was restrained by a square 

potential at a certain height on the z-axis38, 39, 43, 56. Our explicit membrane model consisted 

of 36 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) phospholipids in each leaflet of 

the bilayer for a total of 72 phospholipids used in the membrane model as a whole 

(FIGURE C.1). Although the overall length of the DMPC phospholipid is slightly smaller 

than the more common 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) 

phospholipids, DMPC membrane models have been shown to have very similar properties 

when compared to membrane models that use DPPC phospholipids57-59. The explicit DMPC 

membrane model itself was generated using the CHARMM-GUI membrane builder with the 

Amber Lipid 14 force field as described in the Amber lipid membrane tutorial56, 60-62. The 

membrane was flanked by 1440 TIP3P water molecules on each side of the membrane to fit 

inside an approximately 50x50x80 Å3 box56. Potassium ions were added to neutralize the 

system if necessary. 

The center of mass of the bilayer membrane was calculated relative to the N31 atom 

in the phosphatidylcholine headgroups of each phospholipid in the bilayer, and this center 

of mass was subsequently set as z = 0 Å. An amino acid side chain was then placed at a 

certain height on the z-axis relative to the center of mass of the bilayer56. We chose to place 

our side chain at 5 Å intervals along the z-axis (at z = 0, 5, 10, 15, 20, and 25 Å) to split the 
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membrane into 6 regions for sampling that roughly corresponded to the midpoint of: the 

hydrocarbon core region (split up into three sub-regions: 0 to 2.5 Å, 2.5 to 7.5 Å, and 7.5 to 

12.5 Å), the hydrocarbon and ester interface region (12.5 to 17.5 Å), the 

phosphatidylcholine headgroup region (17.5 to 22.5 Å), and the bulk water solvent (22.5 to 

27.5 Å) (FIGURE C.1). After a side chain was placed into the membrane model at a given 

height, a 10,000 step minimization was carried out using 5,000 steps of steepest descent 

followed by 5,000 steps of conjugate gradient. The particle mesh Ewald method (PME) was 

employed with a real space cutoff of 10.0 Å, but otherwise, the default options were used 

for all solvated simulations. The lipid and amino acid side chain molecules were held fixed 

as the system was heated in two steps. First, the system was heated from 0 K to 

approximately 100 K for 5.0 ps using the Langevin thermostat in the NVT ensemble. The 

system was then heated from 100 K to 303 K for 100 ps using the Langevin thermostat in 

the NPT ensemble with anisotropic pressure scaling and a pressure relaxation time of 2.0 

ps.  

After heating, an equilibration step using semi-isotropic pressure scaling was 

performed whereby all restraints on the lipids were removed while a center of mass 

restraint was applied to the amino acid side chain at the appropriate z-value. This restraint 

was a harmonic potential (𝑉𝑉) of the form: 

                                                         𝑉𝑉 =  𝑘𝑘(𝑅𝑅− 𝑟𝑟)2     (2) 

where the option was set to apply the restraint only on the z-axis, 𝑟𝑟 was set as the target 

equilibrium z-value, the range 𝑅𝑅 of the potential was set to -99 Å < 𝑅𝑅 < 99 Å, and the initial 

value of the spring constant  𝑘𝑘 was set to 2.5 kcal/(mol Å2). In order to improve the 

convergence of our free energy calculations, the spring constant was gradually ramped up 
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during the equilibration step. Specifically, we carried out an initial short equilibration for 

20 ps with 𝑘𝑘 = 2.5 kcal/(mol Å2), then an additional short 20 ps equilibration with 𝑘𝑘 = 25 

kcal/(mol Å2), and finally, an extensive equilibration was performed for approximately 100 

ns with 𝑘𝑘 = 100 kcal/(mol Å2).  Subsequent free energy calculations demonstrated that, if 

the results had converged properly within the timeframe of the calculation, ramping up the 

spring constant in this way did not appreciably alter the calculated free energy values 

(TABLE C.1).  

After equilibration, we proceeded to uniformly reduce the charges on all of the 

atoms in the amino acid side chain from 100% to 0% in successive 10% decrements. For 

each 10% reduction in charge, MD simulations in the NVT ensemble were carried out in 20 

ns intervals. From each 20 ns trajectory, the first 10 ns was discarded, and the second 10 ns 

was retained for use in our subsequent free energy calculations. For the free energy 

calculations, a total of 1,000 snapshots, taken at equal intervals from each of the retained 

10 ns trajectories, were used for analysis where the energy was extracted from each 

snapshot using SANDER in Amber 18. 20 ns for each interval was deemed sufficient for 

such calculations; doubling our data collection to 40 ns for each interval, and using 20 ns 

for the free energy calculations, did not substantially change our results (TABLE C.2). In 

addition, our inspection of the saved trajectories revealed that bulky side chains such as 

tryptophan and tyrosine were sampling different orientations during the de-charging runs, 

which is an apparent concern for studying these molecules in the membrane environment. 

We did encounter difficulties obtaining converged free energy values at times, for example 

some data points for charged residues (TABLE C.2) had clear deviations when comparing 

our 20 ns and 40 ns data. Nevertheless, our total simulation times of 300 ns (using 20 ns 
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steps) and 500 ns (using 40 ns steps) were among the longest used for calculations of this 

type, and even in a few worst-case scenarios, the calculated free energy values converged 

to within a few kcal/mol. 

3.2.3 BAR free energy calculations in explicit solvent 

 To further assist with the convergence of our free energy calculations, we used the 

Bennet Acceptance Ratio (BAR) calculation to calculate the free energy difference for each 

10% de-charging decrement63. The BAR calculation can be described as a self-consistency 

problem where the value of C is chosen to best satisfy the following relations: 

                       ∆𝐺𝐺 =  ln
∑ 𝑓𝑓�𝑈𝑈𝑖𝑖−𝑈𝑈𝑗𝑗+𝐶𝐶�𝑗𝑗
∑ 𝑓𝑓�𝑈𝑈𝑗𝑗−𝑈𝑈𝑖𝑖+𝐶𝐶�𝑖𝑖

+ 𝐶𝐶,    (3) 

                                      ∆𝐺𝐺 = 𝐶𝐶,     (4) 

                                                𝑓𝑓(𝑙𝑙) = 1
1+ 𝑒𝑒𝑥𝑥

,     (5) 

where 𝑏𝑏 refers to the initial state and 𝑗𝑗 to the final state for any two consecutive states in 

the de-charging procedure, and where an equal number of frames was sampled in each 

state. Here, 𝑈𝑈𝑒𝑒 −𝑈𝑈𝑗𝑗 in ∑ 𝑓𝑓�𝑈𝑈𝑒𝑒 −𝑈𝑈𝑗𝑗 + 𝐶𝐶�𝑗𝑗  refers to the difference in energy values calculated 

for each of the 1,000 frames in the ensemble of trajectory 𝑗𝑗 (trajectory 𝑗𝑗 is the MD 

trajectory of the amino acid side chain at the final, 10% lower, charge) where the energies 

were calculated using both sets of charges (𝑈𝑈𝑒𝑒  representing the energy calculated using the 

higher charge, and 𝑈𝑈𝑗𝑗 the energy calculated using the 10% lower charge). Similarly, 𝑈𝑈𝑗𝑗 −𝑈𝑈𝑒𝑒  

in ∑ 𝑓𝑓�𝑈𝑈𝑗𝑗 − 𝑈𝑈𝑒𝑒 + 𝐶𝐶�𝑒𝑒  refers to the difference in energy values calculated for each of the 

1,000 frames in the ensemble of trajectory 𝑏𝑏 (trajectory 𝑏𝑏 is the MD trajectory of the amino 

acid side chain at the initial, higher charge) with the energies calculated using the initial 

(𝑈𝑈𝑒𝑒) and final (𝑈𝑈𝑗𝑗) charges as described previously. 𝐶𝐶 is then a fitting parameter which is 
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chosen in order to satisfy eqs. (3) and (4). The total cost of de-charging an amino acid side 

chain from 100% to 0% can then be obtained by summing over all of the de-charging 

decrements in the entire data set: 

                                   ∆𝐺𝐺total =  ∑ ∆𝐺𝐺𝑘𝑘𝑘𝑘      (6) 

with each ∆𝐺𝐺𝑘𝑘 representing the change in free energy for a step involving a 10% decrease 

in the charge of an amino acid side chain. 

3.2.4 PBSA-BAR free energy calculations in implicit solvent 

 Using our uniform, single dielectric implicit membrane model, we calculated the 

total free energy of de-charging an amino acid side chain from 100% to 0% at a given z-

value using the PBSA-BAR procedure64. Our goal was to perform this calculation for a large 

number of different dielectric constants to find out which dielectric constant was optimal at 

a given z-value. Since the number of individual PBSA calculations that needed to be carried 

out was large, we reduced the number of frames for each individual calculation from 1,000 

to about 50 evenly spaced frames from the original trajectory. In the 50 processed 

trajectory frames, auto-imaging was used to center the trajectory frames at the C110 atom 

located in a myristoyl group near the center of the lipid bilayer, and all ions, water, and 

explicit membrane molecules were removed.  

For the PBSA calculations65-78, a 120x120x160 Å3 box was constructed with the 

amino acid side chain placed relative to the previously calculated center of mass of the 

membrane. In addition to using a large box size, we also increased the ratio between the 

dimension of the finite-difference grid and that of the solute bounding box to 4.0 for this 

portion of the analysis, following the recommendation in the Amber manual for small 

ligand systems. The implicit membrane thickness was obtained by calculating the average 
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explicit membrane thickness over the whole trajectory. This was accomplished by 

calculating the location of the center of mass of the N31 atoms in the phosphatidyl choline 

headgroups at the top of the membrane, repeating the same calculation for the bottom of 

the membrane, and taking the difference between the two. The protein and aqueous 

solvent dielectric constants were set at 1 and 80 respectively while the membrane 

dielectric constant was changed for each separate run. The aqueous solvent probe was set 

to 1.4 Å while the membrane solvent probe was set to 2.70 Å12.  

For each individual amino acid side chain in the bulk water solvent at z = 25 Å, the 

radii of the side chain atoms were uniformly scaled to give the minimum difference in the 

total free energy for de-charging the side chain in explicit and implicit solvents. This 

optimized radius scaling factor was then used for all subsequent PBSA calculations at all 

other z-values.  Using SANDER, the energy from PBSA calculations was extracted from the 

trajectory snapshots, and eqs. (3)-(6) were used to calculate ∆Gtotal as described previously. 

3.2.5 RMSD calculations 

 As a quantitative estimate of the error at a given z-value between the explicit and 

implicit ∆𝐺𝐺total results, we calculated the root mean square deviation (RMSD) across our 

data set of amino acid side chains using the standard formula: 

                   RMSD =  �
∑ (∆𝐺𝐺total(implicit) 𝑖𝑖−∆𝐺𝐺total(explicit)𝑖𝑖)2𝑖𝑖

𝑁𝑁
   (7) 

where 𝑏𝑏 represents amino acid 𝑏𝑏 and where 𝑁𝑁 represents the total number of amino acids 

included in the calculation (taken to be either 20 or 15 depending on whether acidic and 

basic amino acids were included in the calculation). Eq. (7) was used to calculate the RMSD 

for our free energy calculations at different membrane dielectric constant values. The 
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specific value of the membrane dielectric constant that gave the minimum RMSD at a given 

z-value was taken to be the best fit membrane dielectric constant and was used to 

construct our dielectric profile for the implicit membrane model as a whole. 

3.2.6 Implementation of the dielectric profile into PBSA 

 Given the discrete, z-depth dependent membrane dielectric data set, we performed 

interpolation using two different schemes to get a smoothed profile. The first scheme was a 

piecewise cubic Hermite interpolating polynomial (PCHIP) fitting, which passed through all 

data points79. The second scheme was a second-order spline fitting, which generated an 

overall smoothed fitting but did not necessarily pass through the data points80. In addition, 

to maintain a zero-slope boundary condition in the latter method, we replaced the second-

order spline within the fitting range of z = 2.5-5.0 Å with a cubic spline. 

The advantage of using a PCHIP fitting over a cubic spline fitting is that the fitted 

function is smooth enough, but less oscillatory, to capture the monotonic dielectric change 

inside the membrane. The PCHIP algorithm preserves monotonicity in the interpolation 

data and does not overshoot if the data is not smooth79. However, while the first derivatives 

are guaranteed to be continuous, the second derivatives may jump at knots. To determine 

the derivatives 𝑓𝑓𝑘𝑘′ at the points 𝑧𝑧𝑘𝑘, let ℎ𝑘𝑘 = 𝑧𝑧𝑘𝑘+1 − 𝑧𝑧𝑘𝑘 and 𝑏𝑏𝑘𝑘 = (𝑎𝑎𝑘𝑘+1 − 𝑎𝑎𝑘𝑘)/ℎ𝑘𝑘 be the 

slopes at internal points 𝑧𝑧𝑘𝑘 where 𝑎𝑎𝑘𝑘 refers to the dielectric constant. If the signs of 𝑏𝑏𝑘𝑘  and 

𝑏𝑏𝑘𝑘−1 are different, or either of them equals zero, then 𝑓𝑓𝑘𝑘′ = 0. Otherwise, 𝑓𝑓𝑘𝑘′ is given by the 

weighted harmonic mean: 

   𝑤𝑤1+𝑤𝑤2
𝑓𝑓𝑘𝑘
′ = 𝑤𝑤1

𝑏𝑏𝑘𝑘−1
+ 𝑤𝑤2

𝑏𝑏𝑘𝑘
     (8) 

where 𝑤𝑤1 = 2ℎ𝑘𝑘+ℎ𝑘𝑘−1 and 𝑤𝑤2 = ℎ𝑘𝑘+2ℎ𝑘𝑘−1. The end slopes are generally set using a one-

sided scheme where in our case both of the end slopes equal zero81. 
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The spline fitting was implemented to get an overall smoothed fitting in a least 

squares manner. The fitted spline (𝑠𝑠𝑝𝑝𝑠𝑠(𝑧𝑧)) uses a representation in the B-spline basis. In 

our case, six B-spline basis functions were constructed for the fitting range z = 2.5-20.0 Å. 

The smoothing condition 𝑠𝑠 = 0.01 was used to choose the number of knots that are 

determined by satisfying: 

          ∑ 𝑤𝑤𝑒𝑒×�𝑎𝑎𝑒𝑒 − 𝑠𝑠𝑝𝑝𝑠𝑠(𝑧𝑧𝑒𝑒)�
2 ≤ 𝑠𝑠𝑒𝑒      (9) 

where 𝑤𝑤𝑒𝑒 is the weight for spline fitting, which in our case was equal for each 𝑏𝑏, and 𝑎𝑎𝑒𝑒 is the 

dielectric constant from our test set. The final spline, 𝑠𝑠𝑝𝑝𝑠𝑠(𝑧𝑧), was constructed using a linear 

combination of the six B-spline basis functions. The full data range used to fit PCHIP was z = 

0-25.0 Å while for spline it was z = 2.5-20.0 Å. The fitted piecewise functions were coded 

into the PBSA program in the Amber 18 package. Note that in practice the membrane 

thickness can vary depending on the membrane model used in the simulation, and so, to 

match the overall membrane thickness to the user specified thickness value in the 

software, we allow the inner membrane core region (originally sampled at a z-depth of 0 Å 

to 2.5 Å) to be stretchable with a dielectric constant of 1.0. The two fittings were 

implemented in the programs SciPy 1.1.0 and SymPy 1.282, 83. 

3.2.7 The natural abundance of each amino acid in different membrane regions 

 While analyzing our results, we also calculated the natural abundance of each amino 

acid found in membrane proteins within our specific z-value ranges using a library of 

structures downloaded from MemProtMD4, 58. The purpose for doing this was to examine 

the abundance of different types of amino acids in each range in order to see the effect of 

leaving out acidic and basic amino acids from our dielectric profile in the hydrophobic core 

region. We used a total of 482 MemProtMD structures, representing the bulk of unique 
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MemProtMD structures that were available at the time of our analysis. Redundant 

structures that were available on MemProtMD, and a few abnormal structures where the 

protein had clearly not been placed properly within the membrane, were not included in 

our analysis. 

Each MemProtMD structure was centered at z = 0 Å by subtracting the average z-

coordinate of all membrane atoms from the original z-coordinate of each individual atom in 

the structure file. Individual amino acid residues from the membrane proteins were sorted 

into 5 bins depending on their location along the z-axis (corresponding to bins of 0 to 2.5 Å, 

2.5 to 7.5 Å, 7.5 to 12.5 Å, 12.5 to 17.5 Å, and 17.5 to 22.5 Å), and we counted the number of 

amino acid residues that appeared in each bin. The probability that a specific amino acid 

appeared within a given z-value range was taken as the number of times that it appeared 

divided by the sum of all 20 amino acids that appeared within that range, i.e.: 

                               𝑝𝑝𝑒𝑒 =  𝑣𝑣𝑖𝑖
∑ 𝑣𝑣𝑖𝑖𝑖𝑖

     (10) 

where 𝑝𝑝𝑒𝑒 represents the probability of finding amino acid 𝑏𝑏, 𝑐𝑐𝑒𝑒 is the total number of times 

that amino acid 𝑏𝑏 appeared within the specified z-value range, and the sum is taken over all 

20 amino acids. 

It should be noted at this point that additional complications to this calculation, such 

as distinguishing between external amino acids on the surface of the protein and internal 

amino acids on the protein interior, and separating alpha helical transmembrane proteins 

from beta barrel transmembrane proteins, were not explicitly taken into account in our 

analysis84; our results were averaged over both external and internal amino acids and 

across both of the main membrane protein types. However, despite this more simplistic 

approach, we note that our final results (FIGURE C.2) still accurately reflect the observed 
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trends in the distribution of membrane protein amino acids that were reported on 

previously in the literature58, 84. 

3.2.8 MMPBSA calculations for the P2Y12R and M2R/M3R test systems 

 To test the effect of the heterogeneous dielectric membrane model on MMPBSA 

calculations85-90, we carried out MMPBSA calculations for the human purinergic platelet 

receptor (P2Y12R) and two muscarinic acetylcholine receptors (M2R and M3R) bound to 

various antagonist ligands using the MMPBSA.py module in Amber 18. Models of P2Y12R 

bound to the antagonist ligands: AZD-1283 (AZD), PSB-0739 (PSB), and Ticagrelor (TIQ) 

were derived from a previously published crystal structure (PDB ID: 4NTJ)53. Both the 

model preparation and the molecular dynamics simulation protocol that we employed for 

this test system were described in detail in our previous publication11.  

The M2R and M3R protein models with the antagonist ligands 3-quinuclidinyl-

benzilate (QNB) and tiotropium were derived from previously available crystal structures 

(PDB IDs: 4DAJ, 5ZHP, and 3UON). For the M2R model (derived from 3UON), the 

cytoplasmic domain was cleaved in order to place the center of mass of the protein in close 

proximity to the center of mass of the model membrane system to facilitate the MMPBSA 

calculation. The compound 6B antagonist that was used to demonstrate M2R/M3R 

selectivity by Liu et al. was constructed by modifying the QNB ligand present in the 3UON 

crystal structure54. The ligands were transplanted from one crystal structure to another by 

performing an alignment of the M2R and M3R crystal structures using UCSF Chimera91 

before making the substitution of one ligand for another. The parameterization of the 

antagonist ligands, membrane model preparation (for a 64x64 DPPC bilayer), and single 

trajectory MD simulations were performed in the usual way based on the Amber lipid 
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membrane tutorial and other standard MD and MMPBSA protocols as described 

previously11, 61. For the P2Y12R system, we used a 20 ns equilibration step which was 

followed by a 10 ns production step, and 1,000 evenly spaced frames from the production 

step were used in our MMPBSA calculations. Due to the use of a docked complex in our 

M2R and M3R analysis, we increased the equilibration step to 90 ns before carrying out a 

10 ns production step. This was followed by the extraction of 1,000 evenly spaced frames 

from the production step for our MMPBSA analysis. 

For the MMPBSA calculations for both systems, we tested three implicit membrane 

models: the uniform, single dielectric membrane model with the membrane dielectric 

constant set to 4, the heterogeneous dielectric membrane model using the PCHIP fitting, 

and the heterogeneous dielectric membrane model using the spline fitting. The average 

membrane thickness was calculated relative to the N31 atoms in the explicit phospholipid 

membrane as described above. Other PB settings were as follows: the protein dielectric 

constant was set to 2, the ionic strength was set to 150 mM, the ratio between the 

dimension of the finite-difference grid and that of the solute bounding box was set to  1.5, 

the geometric multigrid solver was used to solve the linear systems10, electrostatic focusing 

was switched off, periodic boundary conditions were used, the atom-based cutoff distance 

to remove short ranged finite difference interactions, and to add pairwise charge-based 

interactions, was set to 7.0 Å, the atom-based cutoff distance for van der Waals interactions 

was set to 99.0 Å, the total electrostatic energies and forces were computed using the 

particle-particle particle-mesh (P3M) procedure92, Bondi radii from the parameter 

topology file were used, and the pore searching algorithm was turned off. All other PB 

parameters were set to their default values in MMPBSA.py for Amber 18. Our binding 
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affinity modeling was carried out without the optional normal mode entropy analysis as 

this analysis usually does not contribute favorably to the overall agreement with 

experiment due to the approximation used89, 93-94. Our results were compared to 

experimental binding free energies published in the literature53, 54. 

3.3 RESULTS AND DISCUSSION 

3.3.1 BAR results for de-charging amino acid side chains in an explicit membrane 

 Before turning to our implicit membrane models, we first examine the BAR results 

obtained from an analysis of our explicit all-atom MD simulations. As calculated using the 

BAR method, the total free energy change, ∆𝐺𝐺total, for de-charging a given amino acid side 

chain from 100% to 0% as a function of the z-value (with z = 0 Å corresponding to a plane 

at the center of the membrane bilayer) is given in TABLES C3 and C4. From the data, we 

see that the ∆𝐺𝐺total values were at a minimum at the center of the membrane (z = 0 Å) and 

reached a maximum in the polar headgroup region (z = 20 Å) or in the bulk aqueous 

solvent (z = 25 Å) for all amino acids regardless of their type.  

Note that the ∆G values given in TABLES C3 and C4 include both Coulomb and 

reaction field contributions. This makes comparisons of reaction field energies between 

various amino acid side chains difficult. This is not important for our optimization of the 

membrane model, but focusing on reaction field energies helps us to compare our results to 

the literature values to assess the accuracy of our approach. To focus on the reaction field 

energies, we used the data in TABLES C3 and C4 to calculate the relative ∆𝐺𝐺total values 

between placing each amino acid side chain at the center of the membrane, which 

approximates a low dielectric vacuum environment (see TABLE 3.1) with a relatively large 

accessible free volume95, and at any other z-value using: 
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                                    ∆∆𝐺𝐺total (z𝑖𝑖) =  ∆𝐺𝐺total (z𝑖𝑖) −  ∆𝐺𝐺total (z = 0 Å)   (11) 

where ∆𝐺𝐺total (z = 0 Å)  represents the ∆𝐺𝐺total value for a given amino acid side chain at z = 0 Å 

in TABLE C.3 or C.4, and  ∆𝐺𝐺total(z𝑖𝑖)  represents the ∆𝐺𝐺total value for that side chain at z = 𝑏𝑏 

in TABLE C.3 or C.4, where 𝑏𝑏 can take on values of z = 0, 5, 10, 15, 20, or 25 Å.  ∆∆𝐺𝐺total (z𝑖𝑖)  

is the relevant quantity to use to analyze reaction field energies. 

 

FIGURE 3.4. The difference in ∆𝑮𝑮𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭  values for de-charging an amino acid side chain 

at height z. ∆∆𝐺𝐺total  represents the net difference in the de-charging free energy between 

placing an amino acid side chain at height z compared to placing it at the center of the 

membrane, at a height of  z = 0 Å. The trend for each amino acid sidechain is indicated using 

the standard three letter amino acid code. The trends for glycine and proline represent 

both the sidechain and the amino acid backbone as the backbone was not removed in these 

two cases while the backbone was removed for all other amino acids. 
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The numerical values obtained by performing this calculation are given in TABLES 

C5 and C6, and a plot of ∆∆𝐺𝐺total  vs. z for each amino acid is given in FIGURE 3.4.  From 

FIGURE 3.4, we can see that the increase in ∆∆𝐺𝐺total  at higher z-values tends to depend on 

the net overall charge of the amino acid type, with a smaller dependence on the structural 

differences between individual amino acid side chains. For example, the top four amino 

acids in FIGURE 3.4 correspond to the four fully charged amino acids. Other amino acids 

cluster similarly by type. We note that glycine and proline were both used to test the effect 

of the amino acid backbone as it was not removed for either residue, and the polarity of the 

backbone likely earned both residues inclusion into a more polar group.  

The overall trend in FIGURE 3.4 seems clear: the more polar the amino acid side 

chain, the more expensive the free energy penalty to de-charge that side chain in a more 

polar environment at higher values of z. This result seems reasonable as de-charging a 

charged amino acid side chain in water (z = 25 Å) from 100% to 0% effectively means 

removing favorable interactions between the charged side chain and water while replacing 

them with less favorable interactions between the de-charged, now non-polar, side chain 

and water. On the other hand, de-charging an inherently non-polar amino acid side chain in 

water does not incur the same penalty as the non-polar side chain already has nearly zero 

net charge to begin with. Placing charged side chains deeper into the membrane 

environment progressively lessens the penalty for de-charging the side chain in all cases. In 

this case, the fully de-charged side chain ends up in a more favorable, similarly non-polar 

membrane environment regardless of its initial charge characteristics.  
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Our results are in good agreement with amino acid insertion free energy profiles 

reported in the literature. Bemporad et al. in 200443 reported a maximum difference in free 

energy of insertion of 0-10 kcal/mol for non-polar molecules and 15-25 kcal/mol for polar 

molecules using the CHARMM force field. Tieleman et al. in 200955 reported a maximum 

difference of approximately 2-5 kcal/mol for non-polar residues, 3-7 kcal/mol for polar 

and aromatic residues, and 12-20 kcal/mol for charged residues. A more recent, 2017 

comparison96 of free energy insertion profiles using modern versions of the GROMOS, 

CHARMM, and Amber force fields gave maximum free energy difference estimates of 0-10 

kcal/mol for non-polar, aromatic, and polar amino acids and 10-15 kcal/mol for charged 

amino acids using Amber 14. All of these results are consistent with our maximum ∆∆G 

results at z = 25 Å (see FIGURE 3.4 and TABLES C5 and C6).  

The accuracy of current free energy calculation methods is subject to improvement. 

For the calibration of our new heterogeneous dielectric membrane model, we employ 

standard free energy calculation techniques that facilitate comparisons with our past work, 

but we note that improvements that address issues with these calculations, such as 

electrostatic artifacts that arise with the use of periodic boundary conditions (PBC) with 

the PME method are actively being addressed in recent years97-99. Here we have tried to 

minimize the impact of such artifacts by using large box sizes and increasing the size of the 

fill ratio used in our PBSA calculations.  In addition, note that our free energy difference 

calculations only consider the effect of de-charging the solute; the total free energy change 

should also take into account cavity formation and the van der Waals interactions. The 

calibration of these non-polar terms is a subject that will be addressed in a future study. 
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3.3.2 PBSA results for de-charging amino acid side chains in an implicit membrane 

 

 

FIGURE 3.5. RMSD between ∆𝑮𝑮𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭  values calculated using PBSA-BAR and Explicit 

BAR for various dielectric constants at different z-values. RMSD values were calculated 

using eq. (7) over a set of amino acids using the following two schemes: 1) all 20 amino 

acid side chains (circles), and 2) 15 amino acid side chains, where all acidic and basic 

amino acids were excluded from the calculation (triangles). All RMSD values were reported 

in units of kcal/mol. All z-values (plots A-E) were given in units of Å. The x-axis was plotted 

logarithmically in order to fit a wide range of dielectric constant values on each plot. 
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After obtaining our MD trajectories from de-charging each amino acid side chain 

from 100% to 0% at a given z-value, we also calculated ∆𝐺𝐺total at that z-value for each 

amino acid side chain using different values of the membrane dielectric constant while 

employing our uniform, single dielectric implicit membrane model and the PBSA module. 

Following this, eq. (7) was used to calculate the RMSD between the implicit PBSA-BAR 

results and the explicit BAR results at each z-value for each dielectric constant that we 

used. The results for the RMSD calculation are plotted in FIGURE 3.5. From FIGURE 3.5, 

the value of the dielectric constant that led to a minimum in the RMSD plot at a given z-

value was taken as the optimum dielectric to use at that z-value. The optimized dielectric 

values obtained from these plots at the given z-values (FIGURE 3.5A-3.5E) are listed in 

TABLE 3.1.  

TABLE 3.1. Optimum values of the dielectric constant 

within the implicit membrane 

z (Å) Method 1 Method 2 Method 3 
0 4 1 1 
5 6 2 2 

10 9 4 4 
15 20 8 20 
20 80 >200 80 

 

Initially, two dielectric profiles were constructed based on the method for calculating the 

RMSD using eq. (7): Method 1) where all 20 amino acid side chains were used to find the 

optimum dielectric constant at each z-value, and Method 2) where 15 amino acid side 

chains were used to find the optimum dielectric constant, with all acidic and basic amino 

acids excluded from this calculation at all depths. For the final profile (Method 3), we used 
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the optimized dielectric values from Method 1 for z = 15 and 20 Å, and from Method 2 for z 

= 0, 5, and 10 Å. 

 

Note that a disparity existed between the optimized dielectric values for the full set 

of 20 amino acids in the first method (Method 1) versus the values obtained when acidic 

and basic amino acids were excluded from the calculation (Method 2). Dielectric values in 

Method 1 were generally higher than Method 2 inside the membrane until the trend 

reversed in the headgroup region of the membrane. The higher value of the dielectric 

constants in the membrane interior when charged amino acids were included (Method 1) 

was likely caused by a larger penetration of water, owing to the well-studied formation of 

water defects when charged groups are restrained within the membrane (FIGURE C.3)57, 

100-102. A fair amount of water naturally penetrates into the headgroup region of the 

membrane to solvate the polar and charged portions of the phospholipid that appear there. 

Here we see that the optimum dielectric in Method 1 for the full set of amino acids 

converges to a dielectric constant of 80, to match the bulk water solvent as had been 

assumed in other models of the headgroup region in the past48. 

The optimum dielectric constant for non-polar amino acids was consistently lower 

within the membrane until it suddenly rose sharply to a value that exceeded 200 in the 

headgroup region. Such a sharp increase in the optimum dielectric constant to 200 or 

above in the headgroup region had been previously reported in the literature39, 40, notably 

as high as 300-1,000 when a Lennard-Jones test particle with a small net charge was used 

as a probe molecule39. In our data set, amino acids such as alanine and isoleucine, with very 

small ∆𝐺𝐺total values, did not reach a minimum below a dielectric constant of 200 in the 
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headgroup region. However, the choice of a dielectric constant in this region appears to be 

less critical than in the hydrophobic core region as raising the dielectric constant from 100 

to 200 and above had a minimal effect on the accuracy of our calculated RMSD (FIGURE 

3.5E). This reflects a slower change in the electrostatic energy at higher dielectric values 

due to the 1/𝜀𝜀 dependence on the calculated energy as pointed out previously by Tanizaki 

and Feig48. Therefore, keeping the dielectric constant at 80 in the headgroup region still 

seems suitable, as doing so gives a greater benefit to lowering the RMSD when charged 

amino acids are included versus the penalty incurred for using a less-than-optimal 

dielectric constant for the non-polar side chains in this region.  

TABLE 3.2. RMSD results for PBSA-BAR calculations 

using the heterogeneous dielectric membrane model 

z (Å) 
RMSD 

all 20 amino acids 
RMSD 

15 AAs (no acidic or basic AAs) 
memopt = 2 memopt = 3 memopt = 2 memopt = 3 

0 11.256 11.978 0.579 0.431 
5 6.196 6.112 0.796 0.785 

10 1.204 1.237 0.732 0.778 
15 0.667 0.580 0.631 0.590 
20 0.493 0.555 0.251 0.263 
25 0.049 0.056 0.015 0.013 

 

The results of PBSA-BAR calculations using the heterogeneous dielectric implicit 

membrane model with the PCHIP fitting (memopt = 2) and the spline fitting (memopt = 3). 

RMSD values for this data set were calculated using eq. (7).  The first and second columns 

give the RMSD values for calculations that included all 20 amino acid side chains while the 

third and fourth columns omit all of the acidic and basic amino acid side chains in the 

RMSD calculations. All RMSD values are reported in units of kcal/mol. 
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To assist us in determining which of the optimal dielectric constants to use for the 

remaining regions, we calculated the natural abundance of amino acids in each of our 

sampling regions of the membrane using the majority of the membrane protein structures 

available in the MemProtMD database. FIGURE C.2 shows that the natural abundance of 

acidic and basic amino acids in the hydrophobic core region (z = 0-12.5 Å) was low, while it 

rose noticeably in the polar ester and headgroup regions (z = 12.5-22.5 Å). After 

considering the large error in the RMSD when charged acidic and basic amino acids were 

included (see TABLE 3.2), we chose to exclude charged amino acids in the hydrophobic 

core region at z = 0, 5, and 10 Å when determining the optimum dielectric constant. In the 

polar headgroup region, acidic and basic amino acids were much more abundant, and so 

we included them in our determination of the optimal dielectric constant at z = 15 and 20 

Å. The final dielectric profile that we used is listed in TABLE 3.1 as Method 3. 

3.3.3 Implementation of the heterogeneous dielectric membrane into Amber 

Given the discrete z-depth dependent membrane dielectric data set [(0, 1.0), (2.5, 

1.0), (5.0, 0.5), (10.0, 0.25), (15.0, 0.05), (20.0, 0.0125), (25.0, 0.0125)], where (z-value, 

1/dielectric) forms a coordinate pair with z = 0 Å defined as the membrane center, we 

performed an interpolation using two different schemes to get a smoothed dielectric profile 

to implement into Amber 18. The fitted curves are shown in FIGURE 3.6 while the 

equations for the fitted profiles are provided in FIGURE C.4. As can be seen in FIGURE 3.6, 

the PCHIP approach intends to be true to the actual data, but leads to a busy profile. The 

spline approach intends to address the uncertainty in the sampled dielectric constants, 

which is due to the sampling uncertainty in the free energy simulations, and has a 

smoother profile. 
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After the fitted piecewise functions were coded into the PBSA program in Amber 18, 

we repeated our PBSA-BAR calculations for our set of amino acid side chains using the 

heterogeneous dielectric membrane with the PCHIP fitting or the spline fitting as our 

membrane model in place of the uniform dielectric membrane model. The results are 

presented in TABLE 3.2. In TABLE 3.2, we see that the global RMSD values calculated 

using 15 out of 20 amino acids (excluding acidic and basic amino acids) were less than 1 

kcal/mol at all z-values within the membrane.  

 

FIGURE 3.6. PCHIP and Spline fittings of a z-depth dependent membrane dielectric 

profile.  Fittings for the dielectric constant are given in terms of the inverse dielectric 

constant (1/𝜀𝜀) while z-values are given with z = 0 Å corresponding to the center of the 

membrane and with z = 25 Å corresponding to the bulk aqueous solvent. The PCHIP fitting 

closely follows the trend established in the data whereas the spline fitting has been 

smoothed. 

 

When acidic and basic amino acids were included in the calculation, the RMSD 

values were less than 1 kcal/mol from z = 15-25 Å while it was approximately 1 kcal/mol at 
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z = 10 Å. Below 10 Å, the RMSD rose sharply in the membrane core when acidic and basic 

amino acids were included in the calculation. Therefore, as mentioned previously, we chose 

to exclude charged amino acids from the determination of the optimum dielectric constant 

in the membrane core region. Based on the natural distribution of such amino acids in the 

hydrophobic core region (FIGURE C.2), we expect this rise in the RMSD in the core region 

for charged amino acids to not be a major issue for the majority of membrane proteins. 

Nevertheless, this limitation must be kept in mind as our model would not be expected to 

perform well if the system of interest explicitly involved buried, charged groups in the 

hydrophobic core. For such cases, more advanced methods that account for membrane 

deformation and water penetration into the membrane core need to be implemented103-105. 

In the meantime, the effect of increased water penetration into the membrane for buried 

charged residues can be crudely approximated using our current model by reducing the 

value of the membrane thickness in the MMPBSA calculation below that of the true average 

thickness of the membrane. This would shift the high dielectric region of our implicit 

membrane model further down into the core of the membrane to account for the deeper 

penetration of water into the membrane for systems that contain buried charged residues. 

3.3.4 MMPBSA results for the P2Y12R and M2R/M3R test systems 

To assess the performance of our new heterogeneous membrane model in 

comparison to our old uniform membrane model, we carried out MD simulations followed 

by MMPBSA calculations to calculate the binding free energies for two relevant drug design 

test systems. The numerical results of our MMPBSA calculations are provided in TABLES 

3.3 and 3.4, correlation plots that compare our results with experimental binding affinities 



142 
 

are provided in FIGURES 3.7 and 3.8, and convergence plots for our MMPBSA calculations 

are available in the Supporting Information (FIGURES C.5-C.11).  

TABLE 3.3. Results of MMPBSA calculations for  

antagonist ligands bound to P2Y12R 

Structure 
∆G (MMPBSA) 

∆G (Exp.) 
memopt = 1  memopt = 2  memopt = 3  

P2Y12R WT (AZD) -21.1 -16.0 -15.8 -10.16 
P2Y12R D294N (AZD) -17.6 -15.6 -15.7 -10.10 

P2Y12R WT (PSB) -10.5 -11.0 -10.6 -9.35 
P2Y12R D294N (PSB) -6.8 -8.2 -7.6 -9.34 

P2Y12R WT (TIQ) -14.8 -8.3 -8.4 -8.96 
P2Y12R D294N (TIQ) -16.3 -11.6 -11.5 -9.25 

 

MMPBSA calculations were carried out using SANDER in MMPBSA.py for the P2Y12R test 

system using the uniform, single dielectric membrane model (memopt = 1), the 

heterogeneous dielectric membrane model with the PCHIP fitting (memopt = 2), and the 

heterogeneous dielectric membrane model with the spline fitting (memopt = 3). For the 

uniform, single dielectric membrane model, the membrane dielectric constant was set to 4 

while in all three models the protein dielectric constant was set to 2. The experimental 

binding free energies were obtained from the literature53.WT refers to the wildtype 

structure of P2Y12R while D294N refers to the mutant structure of P2Y12R. The antagonist 

ligand bound to P2Y12R is listed in parentheses. All binding free energies are reported in 

units of kcal/mol.  

 

For the human purinergic platelet receptor (P2Y12R) bound to various antagonist 

ligands, TABLE 3.3 and FIGURE 3.7 reveal that the heterogeneous dielectric membrane 
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models, memopt = 2 and memopt = 3, produced a tighter grouping of data points and a 

higher correlation with experiment, with R = 0.92 and R = 0.91 respectively, when 

compared to the uniform, single dielectric membrane model, memopt = 1, which had a 

correlation of R = 0.59.  

 

 

FIGURE 3.7. Binding free energy correlation plots for the P2Y12R test system.  PBSA 

binding free energy correlation plots are provided for the antagonist-bound P2Y12R system 

using the uniform, single dielectric membrane model (memopt = 1), the heterogeneous 

dielectric membrane model with the PCHIP fitting (memopt = 2), and the heterogeneous 

dielectric membrane model with the spline fitting (memopt = 3). For the uniform, single 

dielectric membrane model, the membrane dielectric constant was set to 4 while in all 

three models the protein dielectric constant was set to 2. The experimental binding free 

energies were obtained from the literature53. 

 

We note that the deviation of the slopes from unity and the large values of the y-

intercepts represent the large systematic errors inherent in MMPBSA free energy 

calculations when they are compared to experimental binding affinity data. We believe they 
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should be significantly reduced after entropy can be accurately estimated90, 93.  The lack of 

electronic polarization can also be similarly addressed with residue-specific variable 

dielectric protein models106, and both protein models can be combined together when 

using the heterogeneous dielectric membrane model in the future.  

For the M2R and M3R receptors bound to a variety of antagonist ligands, TABLE 3.4 

and FIGURE 3.8 reveal similar trends in that five out of the six data points using the new 

model cluster closer together leading to a higher correlation with experiment of R = 0.72 

and R = 0.73, using memopt = 2 and 3 respectively, when compared to the uniform, single 

dielectric membrane model, memopt = 1, which had a correlation of R = 0.49. One data 

point for the M2R receptor bound to compound 6B was excluded from FIGURE 3.8 as its 

calculated MMPBSA binding free energy was a far outlier in comparison to the rest of the 

trend (see TABLE 3.4).  

TABLE 3.4. Results of MMPBSA calculations for 

antagonist ligands bound to M2R and M3R 

Structure 
∆G (MMPBSA) 

∆G (Exp.) 
memopt = 1 memopt = 2 memopt = 3 

M3R (QNB) -28.9 -35.3 -35.7 -13.6 
M3R (TIO) -31.6 -32.3 -32.4 -13.3 
M3R (C6B) -33.4 -36.0 -36.3 -13.3 
M2R (QNB) -46.7 -43.9 -43.9 -13.7 
M2R (TIO) -36.8 -36.8 -36.9 -13.5 

*M2R (C6B) -38.4 -36.2 -36.5 -10.5 
 

MMPBSA calculations were carried out using SANDER in MMPBSA.py for the M2R and M3R 

test system using the uniform, single dielectric membrane model (memopt = 1), the 

heterogeneous dielectric membrane model with the PCHIP fitting (memopt = 2), and the 
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heterogeneous dielectric membrane model with the spline fitting (memopt = 3). For the 

uniform, single dielectric membrane model, the membrane dielectric constant was set to 4 

while in all three models the protein dielectric constant was set to 2. The experimental 

binding free energies were obtained from the literature54. The antagonist ligand bound to 

M2R or M3R is listed in parentheses. All binding free energies are reported in units of 

kcal/mol. * was excluded from FIGURE 3.8. 

 

Our MMPBSA calculation predicted that compound 6B should bind slightly stronger 

to M2R than M3R whereas the experimental result has compound 6B binding to M3R with 

a Ki of 0.2 nM and to M2R with a much weaker binding affinity, indicated by a Ki of 21 nM. 

However, we note that experimentally the drug compound 1B (which was a designed 

precursor to compound 6B) had a binding affinity for M2R that was greater than it was for 

M3R with Ki values of 0.19 nM and 0.63 nM respectively, closer to what we observed in our 

MMPBSA calcualtions54.  

 

 

FIGURE 3.8. Binding free energy correlation plots for the M2R/M3R test system.  

PBSA binding free energy correlation plots are provided for the antagonist-bound 
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M2R/M3R test system using the uniform, single dielectric membrane model (memopt = 1), 

the heterogeneous dielectric membrane model with the PCHIP fitting (memopt = 2), and 

the heterogeneous dielectric membrane model with the spline fitting (memopt = 3). For the 

uniform, single dielectric membrane model, the membrane dielectric constant was set to 4 

while in all three models the protein dielectric constant was set to 2. Note that the trend 

shown only contains five out of the six data points for the M2R/M3R test system as the 

M2R structure bound to C6B was a far outlier to the rest of the trend. The experimental 

binding free energies were obtained from the literature54. 

 

Li et al. interpreted the difference in the foregoing experimental binding affinity 

results for compound 1B and compound 6B as having to do with the flexibility of an 

aromatic ring in compound 1B that could adopt a conformation that interacted via pi 

stacking with a phenylalanine in the active site of M2R. Compound 6B was designed to be 

conformationally restricted in order to prevent this interaction in M2R, and this was a 

factor that led to a large decrease in binding affinity for M2R when comparing the two 

compounds54. The focus on a specific phenylalanine residue was based on the observation 

that the active site of M3R is structurally almost identical to M2R except for the 

replacement of this phenylalanine residue with a leucine residue in M3R.  

We did not see such an effect lowering the binding affinity of compound 6B for M2R 

in comparison to M3R in our MMPBSA binding free energy calculations. One reason may 

have to do with one of the underlying assumptions when using the single trajectory MD 

method for our MMPBSA calculations, which is that the sampled states of the bound 

conformations of both the protein and ligand in the complex are assumed to be similar to 
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the conformations of the apo protein and ligand in solution107, 108. It seems reasonable to 

suggest that this assumption would probably not hold up well in a case where the ligand 

suffers from a conformational restriction that apparently only manifests itself in the M2R, 

but not in the, structurally very similar, M3R active site.   

 

FIGURE 9. Snapshots of compound 6B bound to the M2R and M3R receptors from our 

MD simulations.  Aligned, superimposed snapshots of compound 6B bound to the M2R 

and M3R receptors were taken just before the heating step (image A for M2R and image C 

for M3R) and the very last frame of the production run (image B for M2R and image D for 
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M3R) from the explicit MD trajectory.  When the initial binding pose in the starting 

structure was based on the pose of QNB from the 3UON crystal structure, the receptors 

were shown in yellow and compound 6B was shown in orange. When the initial binding 

pose of compound 6B was determined by minimizing compound 6B in a vacuum 

environment before redocking it to the protein surface, the receptor was shown in cyan 

while compound 6B was given in dark blue. The structures were aligned with each other 

for this comparison using UCSF Chimera91. 

 

Perhaps another limitation of our study is that we started our MD simulations using 

the pre-fitted active site conformations for both the protein and ligand geometries that 

were observed in the original crystal structures. We did not have the true binding pose of 

compound 6B available from our crystal structures, and so we constructed it using the 

known binding pose of QNB from the crystal structure 3UON. This is a reasonable starting 

point if the crystal structure represents the “true” binding pose of the ligand in the active 

site, but it also introduces a bias in that the system will have a tendency to fluctuate about 

the conformation present in the original crystal structure while perhaps being kinetically 

excluded from sampling different conformations that might be relevant in the true binding 

interaction. 

 In an attempt to test the effect of introducing a potential conformational bias into 

our analysis, we erased the “QNB memory” of the active site binding pose for compound 6B 

by minimizing the conformation of compound 6B in a protein-free, vacuum environment. 

We then redocked compound 6B into the active site of M2R and M3R using Autodock 

Vina/SMINA109.  In FIGURE 3.9, the initial binding pose is seen to be qualitatively similar 
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using either method when viewed after minimization and prior to the start of our MD 

simulations. However, by the end of our production run, it can be seen that noticeable 

differences in the final binding pose are apparent when comparing the two methods. In 

FIGURE 3.9, noticeable changes in the receptor structures are also apparent as the loops 

above the active site are shifted depending on which method was used to place compound 

6B into the active site at the start of the simulation. 

The MMPBSA results after redocking compound 6B, given in TABLE C.7, also 

revealed a noticeable difference in binding affinity compared to our earlier approach, but 

the results overall were still somewhat inconclusive. On one hand, the MMPBSA binding 

free energy for the redocked compound 6B bound to M2R increased by about 39% for 

memopt = 1 and 21% for memopt = 2 and 3 over the values given when using QNB as a 

reference for the initial pose, clearly showing that using even a slightly different initial 

binding pose at the start of the MD simulation can have an effect on our final calculated 

result. In addition, the increase in binding free energy for compound 6B bound to M2R 

brought the calculated MMPBSA value into much closer agreement with the rest of the 

trend established in FIGURE 3.8. However, the MMPBSA binding free energy for the 

redocked compound 6B bound to M3R also increased similarly, by 33% for memopt = 1 

and 19% for memopt = 2 and 3. We note that this change was slightly more pronounced for 

M2R than it was for M3R. This difference restored the proper order of binding between the 

two ligands when using the new membrane model as compound 6B was now shown to be 

binding at a higher affinity to M3R in comparison to M2R as expected from the 

experimental results (TABLE C.7). However, the numerical values of the two MMPBSA 

calculations were still within 1 kcal/mol of each other after redocking using the new 
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membrane model. Even though their relative binding order had switched, these close 

numerical values still predict that the binding affinity of compound 6B to M2R and M3R 

should be similar based on the rest of our trend in FIGURE 3.8. This does not agree with 

the much larger gap in affinity that was observed experimentally. Our results do suggest 

that the binding affinity is very sensitive to the positioning of compound 6B in the active 

site, and that subtle differences in the ability of M2R and M3R to accommodate the shape of 

compound 6B may lead to noticeable structural differences in the positioning of loop 

regions near the active site of the receptor.  

For the present purpose of comparing the performance of our heterogeneous 

dielectric and uniform dielectric membrane models using the standard single trajectory MD 

and MMPBSA approach, this one data point was a far outlier using either membrane model. 

Omitting it from our analysis should not grossly alter the present trends that we have 

observed in the comparison of our two membrane models in both FIGURE 3.7 and FIGURE 

3.8, which contained eleven other data points spread across our three model systems. In 

the future, more extensive studies will have to be carried out to assess the performance of 

these two membrane models on a wider variety of systems. 

3.4 CONCLUSION 

 The use of MMPBSA binding free energy calculations for membrane protein-ligand 

systems in rational drug design is likely to increase in the near future. This is due to the 

pharmacological importance of membrane-bound protein receptors as drug targets and to 

improved methodology in cryo-EM that will rapidly contribute to the repository of 

membrane protein structures available for computational study. In anticipation of an 

increasing demand for MMPBSA calculations for membrane proteins, we have 
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implemented a heterogeneous dielectric implicit membrane model into the Amber 

software suite. We obtained our depth-dependent dielectric profile for this new model by 

minimizing the RMSD between the results of explicit and implicit free energy calculations 

at various depths within the membrane model. This model supersedes our previous 

uniform, single dielectric implicit membrane model with a more physical definition of a 

depth-dependent dielectric profile, and we showed that our new heterogeneous dielectric 

membrane model can lead to an improved correlation for a series of antagonist ligands 

bound to the P2Y12R and M2R/M3R test systems when compared to the correlation 

obtained using the old uniform dielectric membrane model under otherwise identical 

conditions. 

Our heterogeneous membrane model has addressed a few major shortcomings in 

our prior approach using the single dielectric membrane model11. Although we had 

obtained a good agreement with experimental binding affinities for our P2Y12R test system 

in our prior study, our simple membrane model was unphysical in that our ligands had to 

be placed outside of the membrane environment to simulate the lack of a polar headgroup 

region in our single dielectric membrane model. If the user was to use the actual average 

thickness of the membrane as a parameter in the MMPBSA calculations, we observed that 

the agreement with experimental binding affinities decreased, since in reality our ligands 

actually did bind within the membrane in the polar headgroup and ester regions. In our old 

model, inserting our ligand within the membrane region placed it into a low dielectric 

environment of 1-4 instead of in an environment of 20-80 to match the true dielectric 

environment of the ligand when bound in the active site.  
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In addition to creating a more realistic and physical depth-dependent model, this 

new model also avoids complications with the old model that can greatly influence the 

accuracy of MMPBSA free energy calculations, such as fluctuations in the z-axis positions of 

atoms that may appear within the sampling trajectory of the bound ligand. In the old 

model, the dielectric constant would change sharply from a high dielectric constant of 80 to 

a low dielectric constant of 1-4 at the interface between membrane and water whereas in 

the new heterogeneous model this transition gradually takes place over a distance of about 

10 Å.  

The potential for developing an automated process for carrying out MMPBSA 

calculations using the new membrane model will likely prove to be important for rational 

drug design efforts. To increase the utility of the method, the user needs to be able to place 

a ligand in an accurate environment for MMPBSA calculations without having to do a lot of 

manual adjusting of the local dielectric environment while still obtaining physical, 

meaningful results. Our current model is a step in that direction, and this model can be 

further improved by calibrating the non-polar contribution to the free energy calculations 

in a depth-dependent manner and treating other aspects such as entropy and polarization 

in the future. 
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CHAPTER 4 

Calibration of the Non-Polar Terms for the 

Heterogeneous Dielectric Implicit Membrane Model 

4.1 INTRODUCTION 

The Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) method 

allows users of the Amber software to calculate protein-ligand binding free energies using: 

     ∆𝐺𝐺𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 =  ∆𝐺𝐺𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏,𝑠𝑠𝑣𝑣𝑒𝑒 + ∆𝐺𝐺𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠    (1) 

where ∆𝐺𝐺𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠  is the binding free energy for the association of a protein with a ligand in 

a solvated environment, ∆𝐺𝐺𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏,𝑠𝑠𝑣𝑣𝑒𝑒  is the binding free energy for the association in a 

vacuum environment, and ∆𝐺𝐺𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠  accounts for the solvation free energy. In MMPBSA, the 

solvation free energy is calculated in an implicit solvent environment to speed up the 

calculation1-7. To serve this purpose, the solvation free energy term is further subdivided 

into polar and non-polar components: 

∆𝐺𝐺𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 =  ∆𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + ∆𝐺𝐺𝑏𝑏𝑒𝑒 .    (2) 

∆𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 accounts for the free energy of solvation due to electrostatic solvent-solute 

interactions and is calculated using the Poisson-Boltzmann equation8-14. ∆𝐺𝐺𝑏𝑏𝑒𝑒  is an 

empirical term that represents the free energy of solvation due to hydrophobic effects15. 

 Recently, we have implemented an implicit solvent model into the Amber software 

suite which allows user to calculate MMPBSA binding free energies for membrane protein-

ligand systems16-19. The use of an implicit solvent model for membrane proteins is 

complicated by the fact that the membrane must be modeled along with the surrounding 

aqueous environment. To calibrate an implicit membrane to better reproduce electrostatic 
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effects, our first implicit membrane model used a single, low dielectric constant to 

parameterize a rectangular slab representing the membrane, which was then surrounded 

by an implicit aqueous solvent environment with a high dielectric constant16-17. Next, we 

introduced a heterogeneous dielectric implicit membrane model which allowed the 

dielectric constant to vary with depth inside the membrane slab19. This change provided a 

more accurate implicit representation of a biological membrane, which consists of a low 

dielectric membrane interior that transitions to a high dielectric headgroup region on the 

membrane periphery.  

The next step in improving our MMPBSA binding free energy calculations for 

membrane protein-ligand systems is to calibrate the non-polar terms for this new 

heterogeneous membrane model in a depth-dependent manner20. Properly parameterizing 

non-polar terms for an implicit solvent is known to be a key issue, especially for 

phenomenon that take place deep within the hydrophobic membrane core. For example, to 

overcome energetic inaccuracies from a study of transmembrane alpha helices when using 

polar and vacuum implicit solvent models, a non-polar implicit solvent model was 

developed by Efremov et al. that mimicked the hydrocarbon core of a membrane21-23. More 

recently, several non-polar implicit membrane models have been featured in a wide range 

of applications such as membrane protein native state discrimination24, peptide 

translocation25, protein folding26, NMR structure calculations27, and transmembrane helix 

association20. 

Two different non-polar implicit solvation models are currently available in Amber7.  

The first of these is a classical method. This classical method has its roots in a study by Lee 

and Richards who found that the accessibility of solvent molecules to the protein surface is 
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proportional to the surface area of the protein28. This finding was exploited by later 

investigators to simplify non-polar free energy calculations. For example, Cramer and 

Truhlar grouped the effects of cavity formation, dispersion interactions, and solute-induced 

restructuring of water into a single semi-empirical cavity surface tension term in their 

calculations29.  

Typically, the non-polar component of the solvation free energy is approximated 

using a linear relationship involving the Solvent-Accessible Surface Area (SASA)30-31. The 

SASA is obtained by rolling the center of a solvent probe sphere over the solute surface32. 

The expression used to calculate the non-polar solvation free energy is then given by: 

∆𝐺𝐺𝑏𝑏𝑒𝑒 =  𝛾𝛾(SASA) + C     (3) 

where ∆𝐺𝐺𝑏𝑏𝑒𝑒  is the non-polar solvation free energy, 𝛾𝛾 is a surface tension coefficient, and C 

is an offset that accounts for the solvation free energy when considering a point solute (i.e. 

when SASA = 0).  

 While the classical model is widely employed, the correlation between solvation free 

energies calculated with implicit and explicit solvation using this method was found to be 

poor15, 33. A second, more modern, method was developed based on the work of Gallicchio 

et al. who replaced the single SASA term with two terms that split the calculation of the 

non-polar solvation free energy into repulsive and attractive effects34-35: 

∆𝐺𝐺𝑏𝑏𝑒𝑒 =  ∆𝐺𝐺𝑟𝑟𝑒𝑒𝑒𝑒 + ∆𝐺𝐺𝑣𝑣𝑒𝑒𝑒𝑒 .    (4) 

In eq. (4), ∆𝐺𝐺𝑏𝑏𝑒𝑒  is the non-polar solvation free energy, ∆𝐺𝐺𝑟𝑟𝑒𝑒𝑒𝑒  accounts for solvent-solute 

repulsion, and ∆𝐺𝐺𝑣𝑣𝑒𝑒𝑒𝑒  accounts for solvent-solute attraction due to dispersion forces. One 

way to carry out this calculation is to employ the Weeks-Chandler-Anderson (WCA) 

scheme36. In this approach, ∆𝐺𝐺𝑟𝑟𝑒𝑒𝑒𝑒  is described using the SASA relationship given in eq. (3) 
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while ∆𝐺𝐺𝑣𝑣𝑒𝑒𝑒𝑒  is approximately obtained by integrating the attractive part of the Lennard-

Jones potential over the solvent-occupied volume15, 20, 34. 

 Both of the non-polar models in Amber are currently parameterized for globular 

protein-ligand systems in an aqueous implicit solvent environment. Here, we aim to further 

improve the accuracy of our MMPBSA calculations for membrane protein-ligand systems 

by parameterizing the non-polar terms within a membrane implicit solvent environment. 

Our approach builds off of the method that we used to calibrate the dielectric constant in 

our heterogeneous dielectric implicit membrane model. In that method, representative side 

chains of amino acid residues were held fixed at various depths within an explicit 

membrane during a molecular dynamics (MD) simulation19-20, 37. The free energy for de-

charging the amino acid side chain at a certain depth, from 100% to 0% of its original 

charge, was calculated using the BAR method. The explicit solvent was then replaced with 

an implicit solvent, and the previous procedure was repeated where the PBSA module in 

Amber was used to calculate the de-charging free energy. The best fit dielectric constant at 

each membrane depth was then selected to minimize the root mean square deviation 

(RMSD) between the explicit and implicit results. 

 Here, we start with a test set of neutralized amino acid side chains that were 

obtained at the end of the de-charging step in our prior method, and we carry out a softcore 

thermodynamic integration (TI) method to obtain an estimate of the non-polar 

contribution to the free energy of solvation38-40. As before, we repeat the procedure to 

calculate the free energy using our implicit membrane model and obtain scaling 

parameters for our non-polar terms that minimize the RMSD between the two results. At 

the time of this writing, our softcore TI methodology in Amber is currently being improved 
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and revised, and so our results here should be treated as preliminary. With that caveat in 

mind, we aim to demonstrate that our present approach will allow us to calibrate the non-

polar terms in our implicit membrane model in a depth-dependent manner using the 

softcore TI method. 

4.2 METHODS 

In order to validate our approach to parameterizing our implicit membrane solvent 

to best match the energies calculated using an explicit membrane solvent, we carried out 

explicit MD simulations for several amino acid side chains using an updated version of the 

TI softcore method (pmemd.sc) in Amber that was still under development at the time of 

this study. 11 amino acids in total were used in our current test set although only 9 were 

used in the highly polar/aqueous regions for z = 20-25 Å (see TABLE 4.1). Details on how 

our explicit membrane model was set up and how our amino acid side chains were 

prepared, restrained within the membrane at various depths, and de-charged during MD 

simulations can be found in our prior publication19. In this setup, z = 0 Å corresponds to the 

center of the hydrophobic membrane core while the polar headgroup region of the 

membrane transitions to the aqueous solvent on the periphery of the membrane between z  

= 15-25 Å. The initial parameter topology and coordinate files for our present study were 

obtained from the endpoint of our de-charging protocol from our prior study. All 𝜆𝜆 values 

in pmemd.sc were sampled using MD simulations as 𝜆𝜆 progressed from 0 to 1 for a total of 

16 sampled trajectory windows.  Initially, MD simulations were carried out for 𝜆𝜆 step sizes 

of 10 ns and 20 ns to check for convergence, and we used 20 ns in all of our subsequent 

analysis. 
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After the MD simulations, our trajectories were post processed to extract the energy 

from each frame. This was performed both in the explicit solvent and in the gas phase 

where all water, ions, and lipids had been removed. The Bennet Acceptance Ratio (BAR) 

method was employed to assist in the convergence of our calculated free energy values41. 

The free energy of solvation, ∆𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 , was taken as the difference between the fully 

solvated and vacuum free energy values: 

∆𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 =  ∆𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − ∆𝐺𝐺𝑙𝑙𝑣𝑣𝑠𝑠 .   (5) 

We then proceeded to calculate free energy values, ∆𝐺𝐺𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 , for the gas phase 

MD run using our initial structure (𝜆𝜆 = 0) placed inside both of our implicit membrane 

models (inp = 1 for the classical model and inp = 2 for the modern model) with the PBSA 

module in Amber. A parameter 𝛼𝛼 was also introduced to scale the calculated ∆𝐺𝐺𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠  

values. For inp = 1, 𝛼𝛼 is applied to scale the overall free energy, ∆𝐺𝐺𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 , but for inp = 

2, we can calibrate each of the two terms in eq. (4) separately to fine tune the agreement. In 

this work, we scaled the ∆𝐺𝐺𝑟𝑟𝑒𝑒𝑒𝑒  term using an 𝛼𝛼 parameter, and then we compared the 

overall ∆𝐺𝐺𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠  afterwards to ∆𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 . For inp = 2, the dispersion term ∆𝐺𝐺𝑣𝑣𝑒𝑒𝑒𝑒  can 

also be adjusted to maximize agreement with the explicit solvent results, but adjustments 

to this term will be carried out at a later point. For each value of 𝛼𝛼, the RMSD between the 

explicit and implicit results was calculated using: 

RMSD =  
∑ (∆𝐺𝐺𝑒𝑒𝑥𝑥𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒 ,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠− ∆𝐺𝐺𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒 ,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 )𝑖𝑖
𝑁𝑁
𝑖𝑖

𝑁𝑁
.    (6) 

The sum in eq. (6) is over each amino acid 𝑏𝑏 out of the 𝑁𝑁 amino acid side chains that were 

used in our test set at a given depth. 
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4.3 RESULTS AND DISCUSSION 

In order to demonstrate the suitability of our method for parameterizing the non-

polar terms in our implicit membrane model, we must first examine the BAR results 

obtained for our test set of amino acid side chains using an explicit solvent. TABLE 4.1 

demonstrates the convergence for our calculated ∆𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠  values using a 𝜆𝜆 step size of 

10 ns or 20 ns in our softcore TI protocol. 

TABLE 4.1 Convergence data for ∆𝑮𝑮𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 ,𝒔𝒔𝒔𝒔𝒆𝒆𝒔𝒔 

 

Calculated ∆𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠  free energy values are reported in units of kcal/mol for 𝜆𝜆 step sizes 

of 10 ns or 20 ns in our softcore TI protocol. The error (Err.) is reported as the difference 

between the 20 ns and 10 ns values. The identity of each amino acid (AA) is indicated using 

the single letter code. Data is marked not available (N/A) for amino acids that were not 

included in our z = 20 Å and z = 25 Å data sets.  

 

TABLE 4.1 shows that the errors between the ∆𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠  values that were 

calculated using a 𝜆𝜆 step size of 10 ns or 20 ns were generally small. The highest errors 

appeared for bulky amino acid side chains such as tryptophan, phenylalanine, and 

10 ns 20 ns Err. 10 ns 20 ns Err. 10 ns 20 ns Err. 10 ns 20 ns Err. 10 ns 20 ns Err. 10 ns 20 ns Err. 
A 0.81 0.77 -0.04 0.80 0.81 0.01 0.86 0.85 0.00 0.73 0.71 -0.03 0.34 0.28 0.06 0.25 0.28 -0.03
Q 3.49 3.38 -0.10 3.81 3.67 -0.14 3.95 4.02 0.07 3.77 3.79 0.01 2.87 2.73 0.14 2.50 2.39 0.11
G 1.75 1.80 0.06 1.90 1.88 -0.03 1.94 1.93 -0.01 1.63 1.61 -0.02 N/A N/A N/A 0.68 0.64 0.04
H 4.73 4.73 0.00 5.05 5.12 0.07 5.40 5.44 0.04 5.19 5.39 0.21 5.01 5.08 -0.07 3.42 3.54 -0.12
L 1.25 1.26 0.02 1.38 1.37 -0.02 1.47 1.37 -0.10 0.99 1.10 0.10 0.59 0.43 0.15 0.46 0.44 0.02
M 2.52 2.55 0.02 2.71 2.73 0.01 2.83 2.91 0.07 2.54 2.60 0.06 N/A N/A N/A N/A N/A N/A
F 4.75 4.75 0.00 5.14 5.14 0.00 5.42 5.12 -0.30 3.74 3.47 -0.27 0.57 0.41 0.16 0.40 0.47 -0.07
S 1.33 1.34 0.01 1.45 1.45 0.00 1.51 1.52 0.01 1.38 1.30 -0.08 1.00 0.96 0.04 0.77 0.76 0.01
T 1.63 1.66 0.04 1.66 1.76 0.10 1.81 1.88 0.07 1.53 1.61 0.08 1.45 1.47 -0.02 0.84 0.80 0.04
W 7.65 7.53 -0.11 8.41 8.42 0.01 9.06 8.89 -0.16 3.96 3.74 -0.22 5.00 4.51 0.49 N/A N/A N/A
V 1.01 1.07 0.05 1.15 1.20 0.06 1.16 1.13 -0.03 0.81 0.96 0.15 0.44 0.32 0.12 0.38 0.34 0.04

AA 
z = 15 Å z = 20 Å z = 25 Åz = 5 Å z = 10 Åz = 0 Å
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glutamine, which also had three out of the four largest ∆𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠  values. The relatively 

small errors across the entire set indicated good convergence, and 20 ns was seen to be an 

acceptable size to use for 𝜆𝜆 in our softcore TI method. 

 TABLE 4.2 gives the results for the optimization of our classical non-polar model 

(inp = 1). Within the hydrophobic membrane core region (z = 0-10 Å), we see that the 

RMSD between ∆𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠  and ∆𝐺𝐺𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠  (𝛼𝛼 = 1) in Amber can be lowered by scaling 

the 𝛼𝛼 parameter to a higher value, between 2.50-3.00.  

TABLE 4.2 RMSD values for a given value of the scaling parameter α  

using the classical non-polar implicit membrane model 

z = 0 Å z = 5 Å z = 10 Å z = 15 Å z = 20 Å z = 25 Å 

α  RMSD α  RMSD α  RMSD α  RMSD α  RMSD α  RMSD 

1.00 2.45 1.00 2.78 1.00 2.98 1.00 1.80 1.00 1.77 1.00 1.02 

2.62 1.53 2.85 1.71 2.98 1.83 2.14 1.19 1.63 1.60 1.00 1.02 

 

The RMSD between ∆𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠  and ∆𝐺𝐺𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠  using the classical non-polar method 

(inp = 1) is shown for a given value of the scaling parameter 𝛼𝛼. 𝛼𝛼 = 1 corresponds to the 

current parameterization in Amber while the other value corresponds to the value of 𝛼𝛼 that 

gives the lowest RMSD for our test set of 11 amino acids (for z = 0-15 Å) and 9 amino acids 

(for z = 20 and 25 Å). 

 

TABLE 4.2 also shows that the trend of scaling 𝛼𝛼 upward to improve the RMSD 

reverses at higher values of z as the membrane transitions into the polar headgroup region 
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(z = 15-20 Å), and finally into the bulk aqueous solvent (z = 25 Å). In particular, we note 

that at z = 25 Å, the current parameterization is already seen as optimized (i.e., 𝛼𝛼 = 1 is 

already the optimal value). This makes sense since the non-polar terms are indeed 

optimized for an aqueous solvent at present in Amber. It should therefore be expected that 

no major optimization is needed in the aqueous solvent at z = 25 Å for the non-polar terms, 

and that this is so further serves to validate our present approach for parameterizing the 

non-polar terms in both the aqueous and membrane implicit solvent environments. 

TABLE 4.3 RMSD values for a given value of the scaling parameter α  

using the modern non-polar implicit membrane model 

z = 0 Å z = 5 Å z = 10 Å z = 15 Å z = 20 Å z = 25 Å 

α  RMSD α  RMSD α  RMSD α  RMSD α  RMSD α  RMSD 

1.00 2.60 1.00 2.90 1.00 3.09 1.00 2.03 1.00 2.41 1.00 1.86 

1.12 2.19 1.14 2.34 1.15 2.46 1.07 1.87 1.02 2.17 0.94 1.72 

 

The RMSD between ∆𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠  and ∆𝐺𝐺𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠  using the modern non-polar method 

(inp = 2) is shown for a given value of the scaling parameter 𝛼𝛼. 𝛼𝛼 = 1 corresponds to the 

current parameterization in Amber while the other value corresponds to the value of 𝛼𝛼 that 

gives the lowest RMSD for our test set of 11 amino acids (for z = 0-15 Å) and 9 amino acids 

(for z = 20 and 25 Å). 

 

The results for the preliminary optimization of our modern non-polar implicit 

membrane model (inp = 2) are given in TABLE 4.3. We see that in general the same trends 
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appear as for the classical model in that the optimal value of the scaling parameter 

increases at higher depths within the hydrophobic core region (z = 0-10 Å) before the 

optimal 𝛼𝛼 decreases down to a value slightly below unity in the aqueous solvent (z = 25 Å). 

It is interesting to note that the improvement in the RMSD is much more noticeable when 

scaling the classical model as opposed to the modern model. In the modern model, the 

optimized scaling parameters are all close to the default of 𝛼𝛼 = 1 at every membrane depth. 

 

 

FIGURE 4.1. Optimal 𝜶𝜶 scaling parameters as a function of z.  The optimal scaling 

parameter values for 𝛼𝛼 using both the classical non-polar model (inp = 1) and the modern 

non-polar model (inp = 2) are given along the z-axis. The hydrophobic membrane center is 

located at z = 0 Å, which extends to the membrane periphery at z = 20 Å, which is 

surrounded by the bulk water solvent at z = 25 Å.  

 

As we mentioned in the METHODS section, we have yet to treat the dispersion term 

in eq. (4), so our current results for the modern model reflect the scaling of the repulsion 
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term only.  Nevertheless, we see in TABLE 4.3 that adjusting 𝛼𝛼 for the ∆𝐺𝐺𝑟𝑟𝑒𝑒𝑒𝑒  term alone in 

our modern model is enough to lower the RMSD, albeit not to the same extent that we saw 

for our classical model in TABLE 4.2. We expect that we will be able to lower the RMSD 

further by adjusting both ∆𝐺𝐺𝑟𝑟𝑒𝑒𝑒𝑒  and ∆𝐺𝐺𝑣𝑣𝑒𝑒𝑒𝑒  for the final calibration of the modern non-polar 

implicit membrane model. The scaling trends in TABLES 4.2 and 4.3 for 𝛼𝛼 as a function of z 

depth are summarized in FIGURE 4.1. 

4.4 CONCLUSION 

To further improve our MMPBSA calculations for membrane protein-ligand systems, 

we have demonstrated a method that allowed us to re-parameterize the non-polar terms 

within our implicit membrane solvent environment. The approach involved restraining 

single amino acid sidechains at a certain depth within an explicit membrane environment, 

carrying out softcore TI on the side chain to give an estimate of the non-polar free energy 

as ∆𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 , turning on our implicit membrane model to calculate  ∆𝐺𝐺𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 , 

scaling ∆𝐺𝐺𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠  with a parameter 𝛼𝛼, and finally, calculating the RMSD to find the value 

of 𝛼𝛼 that minimizes the difference between the explicit and implicit calculated free energy 

results. We found that this approach allowed us to lower the RMSD at every sampled depth 

within the implicit membrane for both the classical and modern non-polar implicit 

membrane models in Amber. 

Our current results are preliminary, as our softcore TI method is undergoing 

improvement and our approach for improving the modern implicit membrane model is 

incomplete as the calibration of the dispersion term ∆𝐺𝐺𝑣𝑣𝑒𝑒𝑒𝑒   has yet to be addressed. 

Nevertheless, we have shown that the current approach can be used to calibrate the non-

polar terms in our implicit membrane models, which upon completion will improve the 
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utility of MMPBSA for binding free energy calculations in studies involving membrane 

protein-ligand systems in the future. 
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SUMMARY AND CONCLUSIONS 

To combat the rising cost of new drug development, the biopharmaceutical industry 

has increasingly employed computational methods to assist in lead generation and lead 

optimization. A major focus is on the application and development of methods that rank 

prospective leads by their ability to bind to a selected target with high affinity and/or 

selectivity. While fast, empirical scoring methods are typically used for lead generation due 

to the high number of potential compounds that must be screened, more rigorous, physics-

based binding free energy calculations are typically preferred for lead optimization. 

Thermodynamic Integration (TI) and Free Energy Perturbation (FEP) methods are the 

most accurate methods available for binding free energy calculations, but they are also 

slow and difficult to implement. Other approximation methods are available that sacrifice 

some accuracy in order to speed up the calculation process. Here we have focused on the 

application and development of the Molecular Mechanics Poisson-Boltzmann Surface Area 

(MMPBSA) method for its use in rational drug design efforts.  The MMPBSA method allows 

users to calculate the binding free energy for the formation of a protein-ligand complex via 

a thermodynamic cycle where the effect of the surrounding solvent is modeled implicitly to 

speed up the calculation.  

In our first study, the MMPBSA method was applied to the computational analysis of 

anti-amyloid beta (A𝛽𝛽) antibodies. We showed that fragment-based docking using single 

amino acid residues could predict the emergence of the common EFRH epitope observed 

for anti-A𝛽𝛽 antibodies. In particular, phenylalanine emerged as a dominant anchor residue 

for all 10 anti-A𝛽𝛽 antibodies that we studied. To test the importance of phenylalanine in the 

binding of A𝛽𝛽 to an anti-A𝛽𝛽 antibody, we recreated an experimental study by Gardberg et 
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al.  where we calculated the MMPBSA binding free energies of several A𝛽𝛽2−7  peptide 

variants bound to the protofibril antibody 1 (PFA1) antibody. Our MMPBSA calculations 

correlated well with experimental binding affinities, and an analysis of the Molecular 

Dynamics (MD) trajectories gave insight as to why the loss of phenylalanine in A𝛽𝛽2−7  

abolished its binding to PFA1. 

The MMPBSA method was further applied to another experimental scenario 

involving A𝛽𝛽 epitope cross binding. While some anti-A𝛽𝛽 antibodies are known to 

exclusively bind to the N-terminal epitope in fibers (such as bapinezumab) or to the central 

epitope for smaller oligomeric species (such as solanezumab), other antibodies are 

believed to bind to both epitopes to some extent. We examined the possibility that epitope 

cross binding may occur for two recent anti-A𝛽𝛽 antibodies, gantenerumab and 

crenezumab. For gantenerumab, our calculated MMPBSA binding affinities predicted that 

the N-terminal epitope was strongly preferred over the central epitope. Experimentally, 

gantenerumab was known to bind to fibers via the N-terminal epitope, but unlike 

solanezumab, it did not bind to water soluble amyloid species via the central epitope. For 

crenezumab, the difference in calculated binding affinity was less extreme. Experimentally, 

crenezumab was known to bind to water soluble amyloid species via the central epitope, 

but surprisingly, it also exhibited sporadic binding to amyloid fibers. This was puzzling as 

the central epitope was believed to be sequestered away in mature fibers. Our MMPBSA 

results suggested that crenezumab may still bind to the N-terminal epitope, but the binding 

interaction would be predicted to be much weaker compared to the central epitope. Due to 

the high effective concentration of N-terminal epitope targets in a solution containing 
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mature fibers, a weak binding to N-terminal species is one possible way to account for the 

fiber binding patterns that were observed experimentally for crenezumab. 

Aside from using MMPBSA calculations to assist in rationalizing experimental 

observations, we also demonstrated their use in predicting the effectiveness of proposed 

mutations to assist in the improvement of anti-A𝛽𝛽 antibodies. We rationally introduced 

mutations to the PFA1 antibody in an effort to increase its calculated binding affinity for 

the pE3-A𝛽𝛽3−8  epitope. Two out of our four proposed mutations were predicted to stabilize 

binding to pE3-A𝛽𝛽3−8. These mutations were also predicted to improve the binding affinity 

for A𝛽𝛽1−8 while suffering a modest sacrifice in affinity for A𝛽𝛽2−7. An extension of such 

methods may yield a series of PFA1 variants that can be tested in the lab to experimentally 

confirm the predicted increase in binding affinity. Taken together, these results 

demonstrated the utility of the MMPBSA method in the study of anti-A𝛽𝛽 antibodies and 

suggested that it can play a key role in both the analysis and optimization of future anti-A𝛽𝛽 

drug candidates. 

In our second study, we switched our focus to the application of MMPBSA to the 

calculation of binding free energies for membrane protein-ligand systems. Here we applied 

our single dielectric implicit membrane model in the analysis of the human purinergic 

platelet receptor bound to several agonist and antagonist ligands. The effect on the 

correlation of the calculated MMPBSA binding free energies with experimental binding 

affinities was studied with respect to changing the non-polar solvation model, the protein 

dielectric constant, and the membrane dielectric constant. We found that the modern non-

polar solvation model clearly outperformed the classical non-polar solvation model. For the 

protein dielectric constant, we found a peak optimization at a high value of 20. This was 
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likely due to the presence of the two heavily charged nucleotide agonists; raising the 

dielectric constant to such a high value helped to compensate for the lack of polarization 

treatment in our current version of Amber. The effect on the membrane dielectric constant 

was more modest. While we did find an optimum value, we noted that other values of the 

membrane dielectric constant still worked well. The insensitivity to the membrane 

dielectric constant likely had to do with the exposure of the active site to water in this 

study. 

Even with the above three parameters optimized, the overall correlation between 

the agonists and antagonists was still low, with the agonists falling far below the linear 

trend established by the antagonist ligands. One possible explanation was that we had to 

model the removal of magnesium ion from the agonists. The experimental binding affinities 

were obtained in the presence of magnesium ions while magnesium was noticeably absent 

in the agonist crystal structures that we used in our binding free energy calculations. 

Correcting for the removal of a magnesium ion from the agonists generally improved the 

correlation for our full data set while its application did not alter any of the optimized 

parameter values that we discussed previously. This study demonstrated that a high 

correlation can be achieved for a membrane protein-ligand system when using our single 

dielectric implicit membrane model. 

In our third study, we developed a new heterogeneous dielectric implicit membrane 

model and applied it to two relevant G-protein coupled receptor (GPCR) membrane 

protein-ligand systems. This model improved upon our single dielectric implicit membrane 

model by introducing a membrane dielectric constant that varied with depth inside the 

implicit membrane. This new model captured the heterogenous nature of a phospholipid 



187 
 

membrane, which features a low dielectric hydrophobic core that transitions to a high 

dielectric headgroup region on the membrane periphery. Our heterogeneous model was 

obtained by de-charging the sidechains of all 20 amino acids in explicit solvent, calculating 

the free energy change using the Bennet Acceptance Ratio (BAR) method, and comparing 

the result to a free energy calculation using the PBSA-BAR method with our implicit 

membrane model. The best fit dielectric constant was chosen at each sampled membrane 

depth based on the value that gave the lowest RMSD value across the entire data set. A 

dielectric profile was then constructed to interpolate the data across the membrane as a 

function of depth, and this was implemented into Amber 18. We tested the performance of 

our new heterogeneous dielectric implicit membrane model and our older single dielectric 

implicit membrane model using two GPCR test systems bound to several antagonist 

ligands. The new heterogeneous model outperformed the older single dielectric model in 

both cases.  

In our final study, we gave a first glimpse at future developments that are aimed at 

improving our implicit membrane model even further. Here we examined the potential to 

calibrate the non-polar terms for our membrane model in a depth-dependent fashion. 

Parameterizing the non-polar terms has the potential to improve the accuracy of MMPBSA 

calculations, especially when it comes to ligands that bind to an active site deep in the 

membrane core. 

The MMPBSA method is already a popular technique for calculating the binding free 

energy for globular protein-ligand systems. With the rise of cryogenic electron microscopy 

(cryo-EM) as an experimental technique, structures of membrane-bound proteins should 

soon become more available for use in drug discovery programs. Large biological systems, 
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such as membrane protein receptors, can benefit greatly from using an implicit solvent to 

speed up the calculation time in binding free energy calculations.  Here we have chronicled 

our further development of an implicit membrane model for use in MMPBSA calculations. 

Having improved the treatment of the dielectric constant in this work, the non-polar terms 

will next be configured to optimize our membrane model in a depth-dependent manner. 

Other efforts aimed at improving the implicit membrane model, such as addressing 

polarization in the Amber force field, are also ongoing. As the accuracy of the calculation 

improves, the MMPBSA method will become an increasingly viable option for calculating 

binding free energies in drug discovery efforts for the foreseeable future. 
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APPENDIX A 

TABLE A.1. Percent occupancy results for N-terminal and  

central A𝜷𝜷 peptides bound to gantenerumab 

  Aβ residue gant residue Chain % Occupancy 
gant R5 Y93 L 100 
gant D7 N94 L 94.2 
gant E3 R57 H 100 
gant E11 R57 H 72.3 
gant F4 F113 H 96.1 
gant (forward) K16 Y93 L 0.0 
gant (forward) E22 N94 L 65.4 
gant (forward) D23 R57 H 45.5 
gant (forward) E22 R57 H 85.6 
gant (forward) F19 F113 H 99.9 

 
The residue-to-residue percent occupancy was calculated between each pair of residues 

using a 10 Å cutoff over 5000 frames collected at equally spaced intervals from the 50 ns 

production run. A𝛽𝛽 residues were labeled to match the standard A𝛽𝛽1−42  numbering 

sequence while gantenerumab residues and chain designations were labeled to match the 

original PDB file (PDB ID: 5CSZ). The N-terminal A𝛽𝛽 peptide was bound in its original pose 

from the crystal structure in gant while the most stable central A𝛽𝛽 peptide bound to 

gantenerumab (1.8 kcal/mol) was used for comparison in gant (forward). 
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TABLE A.2. Percent occupancy results for N-terminal and 

 central A𝜷𝜷 peptides bound to crenezumab   

  Aβ residue cren residue Chain % Occupancy 
cren E11 R54 L 100 
cren F19 V94 L 99.0 
cren E22 N52 H 100 
cren E22 N53 H 100 
cren D23 N52 H 100 
cren D23 N53 H 36.9 
cren K16 D101 H 100 
cren (reverse2) D8 N28 L 100 
cren (reverse2) H6 Y27D L 100 
cren (reverse2) F4 V94 L 100 
cren (reverse2) D1 N52 H 100 
cren (reverse2) D1 N53 H 86.3 
cren (reverse2) E3 N52 H 92.3 
cren (reverse2) E3 N53 H 1.5 
cren (reverse2) R5 D101 H 0.0 

 
The residue-to-residue percent occupancy was calculated between each pair of residues 

using a 10 Å cutoff over 5000 frames collected at equally spaced intervals from the 50 ns 

production run. A𝛽𝛽 residues were labeled to match the standard A𝛽𝛽1−42  numbering 

sequence while crenezumab residues and chain designations were labeled to match the 

original PDB file (PDB ID: 5VZY). The central A𝛽𝛽 peptide was bound in its original pose 

from the crystal structure in cren while the most stable N-terminal A𝛽𝛽 peptide bound to 

crenezumab (-3.1 kcal/mol) was used for comparison in cren (reverse2). 

 
 
 
 
 
 
 
 
 



191 
 

TABLE A.3. Percent occupancy results for pE3-A𝜷𝜷𝟑𝟑−𝟖𝟖 bound to  

PFA1 wild type and mutant antibodies 

 
 
 

 

 

 

 

 

The residue-to-residue percent occupancy was calculated between each pair of residues 

using a 10 Å cutoff over 5000 frames collected at equally spaced intervals from the 50 ns 

production run. A𝛽𝛽 residues were labeled to match the standard A𝛽𝛽1−42  numbering 

sequence while PFA1 residues and chain designations were labeled to match the original 

PDB file (PDB ID: 3EYS). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

  Aβ 
residue  

PFA1 
residue  

Chain % Occ. 
(WT) 

% Occ. 
(N60A) 

% Occ. 
(Y59A) 

% Occ. 
(H93K) 

% Occ. 
(S92K) 

pE3-Aβ 3-8 PCA3 H27D L 19.7 97.9 25.8 0 1.0 
pE3-Aβ 3-8 H6 H27D L 74.9 100 100 98.3 99.9 
pE3-Aβ 3-8 H6 Y32 L 62.5 100 100 100 100 
pE3-Aβ 3-8 H6 S92 L 32.2 100 100 100 100 
pE3-Aβ 3-8 PCA3 H93 L 44.0 99.9 62.4 9.8 98.2 
pE3-Aβ 3-8 PCA3 L96 L 17.3 7.1 22.4 100 76.1 
pE3-Aβ 3-8 F4 L96 L 35.0 100 100 100 100 
pE3-Aβ 3-8 R5 D54 H 100 100 100 100 100 
pE3-Aβ 3-8 PCA3 S58 H 50.9 8.6 81.0 100 76.6 
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TABLE A.4. Percent occupancy results for A𝜷𝜷𝟏𝟏−𝟖𝟖 bound to  

PFA1 wild type and mutant antibodies 

 
  Aβ residue  PFA1 residue Chain % Occupancy 

(WT) 
% Occupancy 
(N60A) 

% Occupancy 
(Y59A) 

Aβ 1-8 D1 N27 L 79.1 99.9 83.8 
Aβ 1-8 E3 H27D L 100 100 100 
Aβ 1-8 H6 H27D L 100 100 100 
Aβ 1-8 H6 Y32 L 100 100 100 
Aβ 1-8 H6 S92 L 100 100 100 
Aβ 1-8 E3 H93 L 100 100 100 
Aβ 1-8 E3 L96 L 0.1 0 0 
Aβ 1-8 F4 L96 L 100 100 100 
Aβ 1-8 R5 D54 H 100 100 100 
Aβ 1-8 E3 S58 H 0 0 0 

 
The residue-to-residue percent occupancy was calculated between each pair of residues 

using a 10 Å cutoff over 5000 frames collected at equally spaced intervals from the 50 ns 

production run. A𝛽𝛽 residues were labeled to match the standard A𝛽𝛽1−42  numbering 

sequence while PFA1 residues and chain designations were labeled to match the original 

PDB file (PDB ID: 2IPU).  
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TABLE A.5. Percent occupancy results for A𝜷𝜷𝟐𝟐−𝟕𝟕 bound to  

PFA1 wild type and mutant antibodies 

 
  Aβ Residue  PFA1 Residue  Chain % Occupancy 

(WT) 
% Occupancy 
(N60A) 

% Occupancy 
(Y59A) 

Aβ 2-7 E3 H27D L 100 100 100 
Aβ 2-7 H6 H27D L 100 100 100 
Aβ 2-7 H6 Y32 L 100 100 100 
Aβ 2-7 H6 S92 L 100 100 100 
Aβ 2-7 E3 H93 L 100 100 100 
Aβ 2-7 E3 L96 L 0.1 0 0 
Aβ 2-7 F4 L96 L 100 100 100 
Aβ 2-7 R5 D54 H 100 100 100 
Aβ 2-7 E3 S58 H 0 0 0 

 
The residue-to-residue percent occupancy was calculated between each pair of residues 

using a 10 Å cutoff over 5000 frames collected at equally spaced intervals from the 50 ns 

production run. A𝛽𝛽 residues were labeled to match the standard A𝛽𝛽1−42  numbering 

sequence while PFA1 residues and chain designations were labeled to match the original 

PDB file (PDB ID: 2IPU).  
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FIGURE A.1. Convergence plots of MMPBSA calculations for various A𝜷𝜷 peptides 

bound to the antibodies PFA1 and PFA2.  Cumulative MMPBSA binding free energies 

were calculated at each 1 ns time step during the 50 ns production run of the MD 

simulation in order to validate our MD protocol. 
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FIGURE A.2. MMPBSA convergence plot for the production run of A𝜷𝜷𝟏𝟏−𝟖𝟖 bound to 

PFA1. The convergence for A𝜷𝜷𝟏𝟏−𝟖𝟖 bound to PFA1 appeared questionable in FIGURE A1, 

and so we extended the total simulation time to 310 ns and ran a 60 ns MMPBSA 

calculation to verify that our result had indeed converged. The MMPBSA binding free 

energy for A𝜷𝜷𝟏𝟏−𝟖𝟖 bound to PFA1 is shown to converge just before 50 ns.  
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FIGURE A.3. RMSD plots for A𝜷𝜷𝟐𝟐−𝟕𝟕 peptides bound to PFA1.  The Grip1 and Pos4 

mutants of A𝛽𝛽2−7  both have larger RMSD values on average in comparison to PFA1 bound 

to the normal A𝛽𝛽2−7  peptide. The RMSD plots shown above comprise the entire 50 ns 

production run and were calculated with reference to the initial structure/frame of the 300 

ns MD simulation. The RMSD values are reported in units of Angstroms (Å). 
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FIGURE A.4. Convergence plots of MMPBSA calculations for N-terminal and central 

A𝜷𝜷 peptides bound to gantenerumab and crenezumab. Cumulative MMPBSA binding 

free energies were calculated at each 1 ns time step during the 50 ns production run of the 

MD simulation. 
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FIGURE A.5. Convergence plots of MMPBSA calculations for A𝜷𝜷𝟏𝟏−𝟖𝟖, A𝜷𝜷𝟐𝟐−𝟕𝟕, and pE3-

A𝜷𝜷𝟑𝟑−𝟖𝟖 bound to wild type and mutant forms of PFA1.  Cumulative MMPBSA binding free 

energies were calculated at each 1 ns time step during the 50 ns production run of the MD 

simulation. 
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APPENDIX B 

 
TABLE B.1. Raw data that were used for TABLES 2.1 & 2.3 

INP=2 INP=1 
    EPSIN=20 EPSIN=20 EPSIN=20 EPSIN=20 EPSIN=20 

  
Ref. 
118 EPSMEM=1 EPSMEM=2 EPSMEM=4 EPSMEM=7 EPSMEM=4 

4PXZ_WT -9.49 -43 ± 5 -42 ± 5 -38 ± 6 -39 ± 5 -75 ± 5 

4PXZ_D294N -9.73 -43 ± 4 -42 ± 4 -37 ± 5 -39 ± 4 -76 ± 5 
4PY0_WT -9.50 -48 ± 6 -46 ± 6 -39 ± 6 -42 ± 6 -84 ± 6 
4PY0_D294N -9.72 -50 ± 5 -48 ± 5 -43 ± 6 -43 ± 5 -83 ± 5 

4NTJ_WT -10.29 -37 ± 4 -35 ± 4 -34 ± 4 -32 ± 3 -71 ± 3 
4NTJ_D294N -10.12 -31 ± 3 -31 ± 3 -31 ± 3 -30 ± 3 -67 ± 3 
4NTJ_WT_PSB -9.00 -22 ± 3 -23 ± 3 -23 ± 3 -24 ± 3 -62 ± 3 

4NTJ_D294N_PSB -9.33 -26 ± 4 -26 ± 4 -26 ± 3 -26 ± 3 -67 ± 3 
4NTJ_WT_TIQ -8.70 -22 ± 3 -21 ± 3 -21 ± 3 -21 ± 3 -61 ± 3 
4NTJ_D294N_TIQ -9.25 -27 ± 3 -26 ± 3 -25 ± 3 -25 ± 3 -65 ± 3 

2MeSADP_MG N/A -10 ± 4 -10 ± 4 -10 ± 4 -10 ± 4 -9 ± 4 

2MeSATP_MG N/A -6 ± 4 -6 ± 4 -6 ± 4 -6 ± 4 -5 ± 4 
 

All values shown are free energy values (∆𝐺𝐺) for the binding affinity in units of kcal/mol. 
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TABLE B.2. Raw data that were used for TABLE 2.2 

 
 

All values shown are free energy values (∆𝐺𝐺) for the binding affinity in units of kcal/mol. 

 

 

 

 

 

 

 

 

 

 

 

 

EPSIN=1 EPSIN=2 EPSIN=4 EPSIN=6 EPSIN=8 EPSIN=12 EPSIN=16 EPSIN=20 EPSIN=24

Ref. 118 EPSMEM=4 EPSMEM=4 EPSMEM=4 EPSMEM=4 EPSMEM=4 EPSMEM=4 EPSMEM=4 EPSMEM=4 EPSMEM=4

4PXZ_WT -9.49 -220 ± 17 -135 ± 9 -73 ± 15 -69 ± 5 -59 ± 5 -46 ± 5 -44 ± 5 -38 ± 6 -38 ± 5

4PXZ_D294N -9.73 -147 ± 16 -102 ± 9 -56 ± 13 -61 ± 5 -55 ± 5 -47 ± 4 -43 ± 4 -37 ± 5 -38 ± 4

4PY0_WT -9.50 -252 ± 42 -156 ± 20 -79 ± 13 -79 ± 8 -67 ± 7 -55 ± 6 -48 ± 6 -39 ± 6 -41 ± 6

4PY0_D294N -9.72 -189 ± 15 -128 ± 8 -79 ± 11 -73 ± 5 -64 ± 5 -54 ± 5 -49 ± 5 -43 ± 6 -43 ± 5

4NTJ_WT -10.29 -1 ± 4 -19 ± 3 -31 ± 7 -30 ± 3 -31 ± 3 -32 ± 3 -32 ± 3 -34 ± 4 -32 ± 3

4NTJ_D294N -10.12 -8 ± 4 -21 ± 3 -28 ± 4 -29 ± 3 -29 ± 3 -30 ± 3 -30 ± 3 -31 ± 3 -30 ± 3

4NTJ_WT_PSB -9.00 15 ± 7 -3 ± 5 -13 ± 4 -17 ± 3 -19 ± 3 -21 ± 3 -22 ± 3 -23 ± 3 -24 ± 3

4NTJ_D294N_PSB -9.33 19 ± 7 -4 ± 4 -16 ± 4 -20 ± 4 -22 ± 3 -24 ± 3 -25 ± 3 -26 ± 3 -26 ± 3

4NTJ_WT_TIQ -8.70 3 ± 5 -10 ± 3 -17 ± 3 -19 ± 3 -20 ± 3 -21 ± 3 -21 ± 3 -21 ± 3 -21 ± 3

4NTJ_D294N_TIQ -9.25 0 ± 6 -14 ± 4 -21 ± 3 -23 ± 3 -24 ± 3 -25 ± 3 -25 ± 3 -25 ± 3 -25 ± 3

6AD_MG N/A -54 ± 3 -31 ± 2 -19 ± 3 -15 ± 3 -13 ± 3 -11 ± 3 -10 ± 3 -10 ± 4 -9 ± 4

6AT_MG N/A -92 ± 5 -47 ± 2 -24 ± 3 -17 ± 3 -13 ± 4 -9 ± 4 -7 ± 4 -6 ± 4 -6 ± 4

INP=2
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FIGURE B.1. Representative convergence plots of MMPBSA binding free energy (∆𝑮𝑮) 

values versus the simulation time of the production run. 
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APPENDIX C 

TABLE C.1. The effect of ramping up the spring  

constant on de-charging ∆𝑮𝑮 calculations 

 
 
Three separate runs were conducted where lysine and arginine were decharged from 

100% to 90% at z = 25 Å (in the bulk aqueous solvent) following an approximately 100 ns 

equilibration step. In the first run, the spring constant 𝑘𝑘 was set to 2.5 kcal/(mol Å2) during 

the equilibration and was held constant for the remainder of the MD simulation. In the 

second run, the spring constant was set to 2.5 kcal/(mol Å2) for 20 ps and was 

subsequently ramped up to 25 kcal/(mol Å2) and held there for the remainder of the MD 

simulation. In the third run, the spring constant was set to 2.5 kcal/(mol Å2) for the first 20 

ps, 25 kcal/(mol Å2) for an additional 20 ps, and then was set to 100 kcal/(mol Å2) for the 

remainder of the MD simulation. Following the equilibration step, the simulation was 

extended in two further 20 ns steps with the amino acid side chain at 100% and 90% of its 

original charge respectively. The last 10 ns of each step was used to calculate the free 

energy difference for de-charging (∆𝐺𝐺100−90% ) using the BAR method. 

 

 

 

spring constant (equilibration protocol) lysine arginine 
𝒌𝒌  
(kcal/(mol Å2)) 

∆𝑮𝑮𝟏𝟏𝟏𝟏𝟏𝟏−𝟗𝟗𝟏𝟏% 
(kcal/mol) 

∆𝑮𝑮𝟏𝟏𝟏𝟏𝟏𝟏−𝟗𝟗𝟏𝟏% 
(kcal/mol) 

2.5 (100 ns) 5.57 37.38 
2.5 (20 ps), 25 (100 ns) 5.62 37.30 
2.5 (20 ps), 25 (20 ps),100 (100 ns) 5.57 37.18 
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TABLE C.2. The convergence of explicit BAR free energy difference  

calculations for de-charging amino acid side chains when placed  

at a given z-value in a DMPC membrane 

 

The results of BAR free energy difference calculations for de-charging four charged amino 

acids and one polar amino acid from 100% to 0% (∆𝐺𝐺total) at the stated z-value are shown 

in the table above. Two different sets of data were reported; the first calculation used the 

last 10 ns of 20 ns of trajectory data (1,000 frames) while the second used the last 20 ns of 

40 ns of trajectory data (2,000 frames) for each individual step involving a 10% reduction 

in the charge of the amino acid. The center of the membrane corresponds to a z-value of 0 

Å, and a z-value of 25 Å corresponds to the bulk aqueous solvent. These results for the four 

charged amino acids represent the agreement for the worst-case examples of convergence 

from our data set (owing to the placement of a fully charged amino acid side chain within 

the non-polar membrane environment) while the polar glutamine represents the 

agreement for the next worst-case example. ∆𝐺𝐺total values are reported in units of 

kcal/mol. 
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TABLE C.3. ∆𝑮𝑮𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭  values for de-charging non-polar and  

aromatic amino acid side chains in explicit solvent 

 

 
non-polar, aliphatic aromatic 

z (Å) GLY ALA PRO VAL LEU ILE MET PHE TYR TRP 
0 -17.1 0.0 -9.5 11.5 32.1 -0.2 -0.7 -0.5 18.7 -9.3 
5 -14.7 0.0 -6.2 11.5 32.1 -0.2 -0.4 -0.1 20.9 -6.9 

10 -12.8 0.0 -6.4 11.5 32.2 -0.2 0.2 0.4 22.2 -6.0 
15 -10.7 0.0 -5.0 11.5 32.2 -0.2 0.5 1.2 24.3 -3.6 
20 -9.5 0.0 -3.2 11.5 32.2 -0.2 1.0 2.2 24.6 -2.4 
25 -9.5 0.0 -2.8 11.5 32.2 -0.2 1.0 2.0 24.2 -3.0 

 

∆𝐺𝐺total values represent the total free energy change (including both the Coulomb and 

reaction field contributions) for uniformly de-charging an amino acid side chain from 

100% to 0% at the given z-value. z-values are measured vertically relative to a plane at the 

center of the membrane bilayer that is set at z = 0 Å. The membrane region corresponds to 

values of z within the range 0-20 Å while 25 Å corresponds to the bulk aqueous solvent 

region. All ∆𝐺𝐺total values have units of kcal/mol. 
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TABLE C.4. ∆𝑮𝑮𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭  values for de-charging polar, acidic, and  

basic amino acid side chains in explicit solvent 

 

 
polar, uncharged acidic basic 

z (Å) SER THR CYS ASN GLN ASP GLU LYS HIS ARG 
0 -5.1 13.7 -6.3 87.9 60.4 57.5 39.5 14.2 10.9 176.9 
5 -3.4 15.2 -6.2 91.8 64.8 65.2 47.7 19.9 14.0 182.6 

10 -0.8 17.5 -5.2 94.3 67.2 70.6 49.7 24.6 15.7 186.1 
15 0.4 18.7 -4.5 96.6 68.9 72.9 55.4 27.2 17.8 190.4 
20 1.3 19.5 -4.3 98.0 70.6 75.7 56.2 29.1 19.2 193.5 
25 1.0 19.5 -4.2 97.9 70.6 76.3 57.3 28.7 19.4 192.2 

 

∆𝐺𝐺total values represent the total free energy change (including both the Coulomb and 

reaction field contributions) for uniformly de-charging an amino acid side chain from 

100% to 0% at the given z-value. z-values are measured vertically relative to a plane at the 

center of the membrane bilayer that is set at z = 0 Å. The membrane region corresponds to 

values of z within the range 0-20 Å while 25 Å corresponds to the bulk aqueous solvent 

region. All ∆𝐺𝐺total values have units of kcal/mol. 
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TABLE C.5. ∆∆𝑮𝑮𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭  values for de-charging non-polar and  

aromatic amino acid side chains in explicit solvent 

 

 
non-polar, aliphatic aromatic 

z (Å) GLY ALA PRO VAL LEU ILE MET PHE TYR TRP 
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
5 2.4 0.0 3.3 0.0 0.0 0.0 0.2 0.3 2.2 2.4 

10 4.2 0.0 3.2 0.0 0.0 0.0 0.8 0.9 3.5 3.3 
15 6.3 0.0 4.6 0.0 0.1 0.0 1.2 1.6 5.6 5.8 
20 7.5 0.0 6.3 0.1 0.1 0.0 1.6 2.7 5.9 6.9 
25 7.6 0.0 6.8 0.0 0.1 0.0 1.6 2.4 5.5 6.4 

 

∆∆𝐺𝐺total values represent the relative total free energy change (where the z = 0 Å data for 

each sidechain was subtracted from all z values in TABLE C.3) for uniformly de-charging 

an amino acid side chain from 100% to 0% at the given z-value. z-values are measured 

vertically relative to a plane at the center of the membrane bilayer that is set at z = 0 Å. The 

membrane region corresponds to values of z within the range 0-20 Å while 25 Å 

corresponds to the bulk aqueous solvent region. All ∆∆𝐺𝐺total values have units of kcal/mol. 
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TABLE C.6. ∆∆𝑮𝑮𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭  values for de-charging polar, acidic, and  

basic amino acid side chains in explicit solvent 

 

 
polar, uncharged acidic basic 

z (Å) SER THR CYS ASN GLN ASP GLU LYS HIS ARG 
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
5 1.7 1.5 0.2 3.9 4.5 7.7 8.2 5.7 3.1 5.7 

10 4.3 3.8 1.1 6.4 6.8 13.2 10.2 10.4 4.8 9.1 
15 5.4 5.0 1.8 8.7 8.6 15.4 15.9 13.0 6.9 13.5 
20 6.4 5.8 2.1 10.1 10.2 18.3 16.7 14.9 8.3 16.5 
25 6.1 5.8 2.1 10.0 10.2 18.8 17.7 14.5 8.5 15.2 

 

∆∆𝐺𝐺total values represent the relative total free energy change (where the z = 0 Å data for 

each sidechain was subtracted from all z values in TABLE C.4) for uniformly de-charging 

an amino acid side chain from 100% to 0% at the given z-value. z-values are measured 

vertically relative to a plane at the center of the membrane bilayer that is set at z = 0 Å. The 

membrane region corresponds to values of z within the range 0-20 Å while 25 Å 

corresponds to the bulk aqueous solvent region. All ∆∆𝐺𝐺total values have units of kcal/mol. 
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TABLE C.7. Results of MMPBSA calculations for compound 6B 

ligands bound to M2R and M3R 

 

Structure 
∆G (MMPBSA) ∆G 

(Exp.) 
Ki 

(nM) memopt = 1 memopt = 2 memopt = 3 
M3R (C6B) -33.4 -36.0 -36.3 -13.3 0.20 
M2R (C6B) -38.4 -36.2 -36.5 -10.5 21 

M3R (Redocked C6B) -22.3 -29.2 -29.6 -13.3 0.20 
M2R (Redocked C6B) -23.6 -28.5 -28.8 -10.5 21 

 
MMPBSA calculations were carried out using SANDER in MMPBSA.py for the M2R and M3R 

test system using the uniform, single dielectric membrane model (memopt = 1), the 

heterogeneous dielectric membrane model with the PCHIP fitting (memopt = 2), and the 

heterogeneous dielectric membrane model with the spline fitting (memopt = 3). For the 

uniform, single dielectric membrane model, the membrane dielectric constant was set to 4 

while in all three models the protein dielectric constant was set to 2. The experimental 

binding free energies were obtained from the literature40. The antagonist ligand bound to 

M2R or M3R is listed in parentheses. The original compound 6B (C6B) binding pose was 

constructed using the binding pose of QNB from the crystal structure as a base whereas the 

redocked compound 6B (Redocked C6B) binding pose was constructed by minimizing 

compound C6B in a vacuum environment before docking it to the active site using 

Autodock Vina/SMINA. All binding free energies are reported in units of kcal/mol. 
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FIGURE C.1. DMPC phospholipid membrane model. We chose to place our amino acid 

side chain at 5 Å intervals along the z-axis (at z = 0, 5, 10, 15, 20, and 25 Å) for sampling 

within our DMPC membrane model to split the membrane into 6 regions that roughly 

corresponded to the midpoint of: the hydrocarbon core region (split up into three 

subregions: 0 to 2.5 Å, 2.5 to 7.5 Å, and 7.5 to 12.5 Å), the hydrocarbon and ester interface 

region (12.5 to 17.5 Å), the phosphatidylcholine headgroup region (17.5 to 22.5 Å), and the 

bulk water solvent (22.5 to 27.5 Å). Note that a traditional depiction of DMPC as shown in 

(A) does not take into account typical distortions in the structure due to variations in lipid 

packing and compression of the headgroup region as a result of intermolecular choline-

phosphate interactions. A sample frame of a DMPC molecule from one of our MD 

simulations is shown in (B) to illustrate these common characteristics. 
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FIGURE C.2. Natural distribution of amino acids within membrane proteins at a given 

z-value range inside a membrane bilayer.  The distribution of amino acids within 

membrane proteins in a membrane bilayer was calculated using 482 membrane protein 

structures that were downloaded from the MemProtMD database. Given that z = 0 Å 

corresponded to a plane at the center of the membrane bilayer, the number of amino acid 

residues that appeared within a certain range along the z-axis were counted 

(corresponding to bins of 0 to 2.5 Å, 2.5 to 7.5 Å, 7.5 to 12.5 Å, 12.5 to 17.5 Å, and 17.5 to 

22.5 Å). Charged acidic and basic amino acids become noticeably more abundant as the 

surface of the membrane was approached at higher values of z. 
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FIGURE C.3. The formation of a membrane defect due to placing a charged amino acid 

in the hydrophobic core of a phospholipid membrane. At one extreme, such as the non-

polar methyl side chain in alanine (left), the hydrophobic core of the phospholipid bilayer 

remains free of water, leading to a lower estimate of the dielectric constant in the core 

region. However, at the other extreme, such as when the side chain of arginine is placed in 

the core region (right), a water defect forms in the membrane to stabilize the charge. The 

greater penetration of water into the core region can lead to higher estimates of the 

dielectric constant in the core region when charged species are used as a probe molecule. 
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FIGURE C.4. Equations for the fitted membrane dielectric profiles. The fitted 

membrane dielectric profiles, 𝑓𝑓(𝑧𝑧), as a function of depth (𝑧𝑧) are displayed using both the 

PCHIP and spline approaches. Using the heterogeneous dielectric membrane model for 

MMPBSA calculations, the PCHIP fitting can be turned on by setting the membrane option 

(memopt) to 2 while the spline fitting can be turned on by setting the membrane option to 

3. A value of z = 0 Å refers to the membrane center where z = 25 Å corresponds to the bulk 

water solvent. For spline fitting, the range z = 2.5-5.0 Å was replaced with a cubic spline to 

get a first derivative of zero at the point z = 2.5 Å while still maintaining the same 

derivative with the second-order spline fitting on the right side at the point z = 5.0 Å. The 

coefficients in both of the fitted profiles have been rounded to three digits for clarity. 
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FIGURE C.5. Convergence plots of MMPBSA calculations for AZD-1283 bound to wild 

type and mutant forms of P2Y12R. Cumulative MMPBSA binding free energies were 

calculated at each 0.1 ns time step increment during the 10 ns production run of the MD 

simulation. MMPBSA calculations were carried out using the uniform, single dielectric 

membrane model (memopt = 1), the heterogeneous dielectric membrane model with the 

PCHIP fitting (memopt = 2), and the heterogeneous dielectric membrane model with the 

spline fitting (memopt = 3). Note that for AZD-1283 bound to D294N, the curves for 

memopt = 2 and 3 overlap very closely to the point where the curve for memopt = 2 is 

barely visible underneath the curve for memopt = 3. 
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FIGURE C.6. Convergence plots of MMPBSA calculations for PSB-0739 bound to wild 

type and mutant forms of P2Y12R. Cumulative MMPBSA binding free energies were 

calculated at each 0.1 ns time step increment during the 10 ns production run of the MD 

simulation. MMPBSA calculations were carried out using the uniform, single dielectric 

membrane model (memopt = 1), the heterogeneous dielectric membrane model with the 

PCHIP fitting (memopt = 2), and the heterogeneous dielectric membrane model with the 

spline fitting (memopt = 3). 
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FIGURE C.7. Convergence plots of MMPBSA calculations for Ticagrelor bound to wild 

type and mutant forms of P2Y12R. Cumulative MMPBSA binding free energies were 

calculated at each 0.1 ns time step increment during the 10 ns production run of the MD 

simulation. MMPBSA calculations were carried out using the uniform, single dielectric 

membrane model (memopt = 1), the heterogeneous dielectric membrane model with the 

PCHIP fitting (memopt = 2), and the heterogeneous dielectric membrane model with the 

spline fitting (memopt = 3). Note that for ticagrelor bound to D294N, the curves for 

memopt = 2 and 3 overlap very closely to the point where the curve for memopt = 2 is 

barely visible underneath the curve for memopt = 3. 
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FIGURE C.8. Convergence plots of MMPBSA calculations for 3-quinuclidinyl-benzilate 

bound to M2R and M3R. Cumulative MMPBSA binding free energies were calculated at 

each 0.1 ns time step increment during the 10 ns production run of the MD simulation. 

MMPBSA calculations were carried out using the uniform, single dielectric membrane 

model (memopt = 1), the heterogeneous dielectric membrane model with the PCHIP fitting 

(memopt = 2), and the heterogeneous dielectric membrane model with the spline fitting 

(memopt = 3). Note that for 3-quinuclidinyl-benzilate bound to M2R the curves for memopt 

= 2 and 3 overlap very closely to the point where the curve for memopt = 2 is barely visible 

underneath the curve for memopt = 3. 
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FIGURE C.9. Convergence plots of MMPBSA calculations for tiotropium bound to M2R 

and M3R.  Cumulative MMPBSA binding free energies were calculated at each 0.1 ns time 

step increment during the 10 ns production run of the MD simulation. MMPBSA 

calculations were carried out using the uniform, single dielectric membrane model 

(memopt = 1), the heterogeneous dielectric membrane model with the PCHIP fitting 

(memopt = 2), and the heterogeneous dielectric membrane model with the spline fitting 

(memopt = 3). Note that for tiotropium bound to M2R the curves for memopt = 2 and 3 

overlap very closely to the point where the curve for memopt = 2 is barely visible 

underneath the curve for memopt = 3. 
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FIGURE C.10. Convergence plots of MMPBSA calculations for compound 6B bound to 

M2R and M3R. Cumulative MMPBSA binding free energies were calculated at each 0.1 ns 

time step increment during the 10 ns production run of the MD simulation. MMPBSA 

calculations were carried out using the uniform, single dielectric membrane model 

(memopt = 1), the heterogeneous dielectric membrane model with the PCHIP fitting 

(memopt = 2), and the heterogeneous dielectric membrane model with the spline fitting 

(memopt = 3). 
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FIGURE C.11. Convergence plots of MMPBSA calculations for the redocked compound 

6B bound to M2R and M3R.  Cumulative MMPBSA binding free energies were calculated 

at each 0.1 ns time step increment during the 10 ns production run of the MD simulation. 

MMPBSA calculations were carried out using the uniform, single dielectric membrane 

model (memopt = 1), the heterogeneous dielectric membrane model with the PCHIP fitting 

(memopt = 2), and the heterogeneous dielectric membrane model with the spline fitting 

(memopt = 3). 
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