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Co-expression pan-network reveals genes 
involved in complex traits within maize 
pan-genome
H. Busra Cagirici1, Carson M. Andorf2,3* and Taner Z. Sen1,4* 

Abstract 

Background: With the advances in the high throughput next generation sequencing technologies, genome-wide 
association studies (GWAS) have identified a large set of variants associated with complex phenotypic traits at a 
very fine scale. Despite the progress in GWAS, identification of genotype-phenotype relationship remains challeng-
ing in maize due to its nature with dozens of variants controlling the same trait. As the causal variations results in 
the change in expression, gene expression analyses carry a pivotal role in unraveling the transcriptional regulatory 
mechanisms behind the phenotypes.

Results: To address these challenges, we incorporated the gene expression and GWAS-driven traits to extend the 
knowledge of genotype-phenotype relationships and transcriptional regulatory mechanisms behind the phenotypes. 
We constructed a large collection of gene co-expression networks and identified more than 2 million co-expressing 
gene pairs in the GWAS-driven pan-network which contains all the gene-pairs in individual genomes of the nested 
association mapping (NAM) population. We defined four sub-categories for the pan-network: (1) core-network con-
tains the highest represented ~ 1% of the gene-pairs, (2) near-core network contains the next highest represented 
1–5% of the gene-pairs, (3) private-network contains ~ 50% of the gene pairs that are unique to individual genomes, 
and (4) the dispensable-network contains the remaining 50–95% of the gene-pairs in the maize pan-genome. Strik-
ingly, the private-network contained almost all the genes in the pan-network but lacked half of the interactions. We 
performed gene ontology (GO) enrichment analysis for the pan-, core-, and private- networks and compared the 
contributions of variants overlapping with genes and promoters to the GWAS-driven pan-network.

Conclusions: Gene co-expression networks revealed meaningful information about groups of co-regulated genes 
that play a central role in regulatory processes. Pan-network approach enabled us to visualize the global view of the 
gene regulatory network for the studied system that could not be well inferred by the core-network alone.

Keywords: Co-expression network, Pan-network, Maize, Pan-genome, GWAS, Complex traits, Tassel branch number, 
Starch

Background
Maize is one of the most widely cultivated grains in the 
world, serving as a staple feed and food source [1]. The 
success of maize as a crop is due to a diverse genome 
that has gone through thousands of years of trait selec-
tion by indigenous people in Southern Mexico [2], 
followed recently by decades of hybridization and molec-
ular breeding. In addition to being a major carbohydrate 
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source, maize is a vital model organism for genetics 
studies [3, 4]. Maize has many advantages over other 
model organisms including the ease of creating con-
trolled crosses and inbreds, extreme genetic diversity, 
easy to measure phenotypes, and a rich set of genetic and 
genomic resources [5, 6]. Diverse germplasms are avail-
able around the world, for example through the USDA-
ARS, National Genetic Resources Program (https:// www. 
ars- grin. gov/) and the International Maize and Wheat 
Improvement Center (CIMMYT - Mexico) [7].

With the advances in the high throughput next gen-
eration sequencing technologies, the current challenge 
in genomics studies has shifted from genotyping to the 
data processing and the mining for the valuable informa-
tion from the fully assembled diverse populations. One 
such population is the maize nested association map-
ping (NAM). The NAM population contains 25 diverse 
founder inbred lines where each was crossed with the 
reference genome, B73 and selfed to generate 200 recom-
binant inbred lines per genotype [1, 8]. Using a common 
parent provides several agronomic benefits [9, 10] with 
the advantages of both linkage and association mapping 
for important phenotypic traits [11]. The NAM popula-
tion studies provided a comprehensive set of polymor-
phisms for the founder inbred lines by genotyping and 
projecting these polymorphisms onto progeny based on 
low-density markers [11]. This allows genome-wide asso-
ciation studies (GWAS) to identify the variants associ-
ated with the phenotypic trait at a very fine scale. GWAS 
has been successfully applied to identify numerous agro-
nomic and metabolic traits in maize, including drought 
tolerance [12, 13], salt tolerance [14], plant height [15–
17], kernel weight [18], starch content [19], and many 
other traits of major importance.

Complex phenotypes are not only regulated by a single 
gene acting as a marker, but by a set of gene interactions 
that are often organized into various types of biological 
networks [20]. Maize genetics appears to favor an infini-
tesimal model where traits are regulated by a myriad of 
variants with small effects [21]. Often in other model 
plants, such as rice or Arabidopsis, only a few genes with 
large effects (rare allele model) exert control over the phe-
notypic traits that, in maize, are controlled by a cumula-
tive effect of numerous variants. For example, flowering 
time in maize is influenced by over 30 small-effect vari-
ants [20], while in rice [22] and Arabidopsis [23] the trait 
is explained by a small number of large-effect variants. As 
a result, identification and annotation of causal variations 
remain challenging, despite the great progress in GWAS 
studies. Evidence suggests that causal variations result in 
the change in gene expression [24] and that the change 
in gene expression, in fact, significantly contributes to 
the phenotypic diversity [25]. Indeed, gene expression 

analyses carry a pivotal role in studying the function of 
genetic variation and are increasingly gaining a major 
role in unraveling the regulatory mechanisms of complex 
traits.

Network analysis based on gene expression similari-
ties across different tissues and conditions aid the dis-
covery of genes with regulatory importance [26]. Gene 
co-expression networks expose the co-regulated genes 
that share a similar expression pattern above a threshold 
across multiple conditions. Since genes under the same 
regulatory process tend to be related functionally [27], 
co-expression networks have been constructed to infer 
functional annotation of a gene and regulatory inter-
actions between genes in Arabidopsis, rice, maize, and 
many other plant species [28–33]. On the other hand, co-
expression network analysis has some caveats, for exam-
ple, high false positive interactions mainly due to the 
absence of evidence for any physical or regulatory links, 
and limited set of interactions due to the expression and 
association cutoffs. Although not all functional interac-
tions are captured, this network approach still provides 
highly informative evidence of gene interaction and can 
also provide valuable sources for the interpretation and 
validation of GWAS associated loci. In fact, a combina-
tion of gene expression network and GWAS analysis pro-
vides further confidence and reduce the false positive rate 
[34]. Recently, GWAS-integrated network analyses were 
used to enhance the biological interpretation and charac-
terization of candidate causal genes to phenotypic varia-
tions in maize and other plants [33, 35–37].

A pan-genome approach was performed by Schaefer 
et al. to construct a ‘genotype’ network of maize seedlings 
across diverse maize genomes [33]. They showed that co-
expression studies in general provide a powerful basis for 
candidate causal gene identification for GWAS loci, but 
the results are highly dependent on the gene expression 
data context. Another co-expression study evaluated the 
types of co-expression networks and showed that expres-
sion variation across pan-genomes in a single tissue/
condition provide stronger evidence than the expression 
variation across different tissues in a single genome [36]. 
However, these studies did not look into the fact that co-
expressing gene pairs across different conditions in a sin-
gle genome might be conserved across different genomes.

In this study, we incorporated the phenotypic trait data 
into the co-expression networks such that the network 
represents only phenotypically important gene asso-
ciations. To do so, we systematically compared 20 tran-
scriptomic datasets for each of 26 maize NAM genomes 
individually to unravel the transcriptional regulatory 
mechanisms of the genes overlapping with a trait-asso-
ciated loci. In contrast to the ‘genotype’ networks, we 
created co-expression networks for individual genomes 
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based on the expression data across different tissues and 
applied a pan-genome approach to the 26 co-expres-
sion networks of diverse maize genomes. We applied 
pan- and core- network approaches to identify the atlas 
of transcriptional regulation and the basic regulatory 
mechanisms of traits, respectively. We provided GO 
enrichment analysis for the pan-, core-, and private- net-
works and compared the contributions of variants over-
lapping with genes and promoters to the GWAS-driven 
pan-network. Finally, as case studies, we demonstrated 
how the integration of GWAS data into a co-expression 
network allows us to better understand the mechanisms 
regulating the Tassel Branch Number and Starch traits.

Results
The construction of a large collection of GWAS‑driven 
co‑expression networks from maize NAM genotypes
We integrated GWAS data with the co-expression net-
works such that the network represents only pheno-
typically important gene relationships. GWAS-derived 
candidate genes associated with 41 diverse phenotypic 
traits [11] were selected to construct trait-specific co-
expression networks. Based on the RNA-Seq expression 
values (TPM) across multiple samples for each genome, 
gene pairs with a significant co-expression relationship 
were determined based on Pearson Correlation (r > 0.9 
and p-val < 0.001) and GWAS-driven co-expression 
networks were constructed for 26 maize NAM lines 
separately, including only the genes overlapping with a 
trait-associated SNP position within their genic or pro-
moter regions. Each node denotes a gene in these net-
works and each edge connecting two nodes indicates a 
co-expression regulation. The number of genes (nodes) 
involved in these co-expression networks are similar 
for each genotype; however, the number of interactions 
(edges) varies considerably. On average, 5787 (+/− 4%) 
genes are involved in co-expression networks per geno-
type (Additional  file  1: Table  S1). The number of co-
expressed pairs varies between 131,788 and 416,237 with 
an average of 230,620 co-expressed gene pairs per geno-
type, suggesting that trait-associated gene networks are 
drastically different from each other even though they 
contain similar number of genes.

The construction of maize pan‑network
A maize pan-genome co-expression network was con-
structed for the genes associated with a complex trait as 
defined in the Wallace GWAS data [11]. From the union 
of 26 co-expression networks, a ‘pan-network’ was con-
structed for the maize pan-genome. A global view of the 
network is shown in Fig. 1. The pan-network is an atlas 
of highly connected genes whereas the core-network is 
composed of specialized modules showing the core/main 

gene interactions. As shown in Additional  file  2: Data 
S1, the GWAS-driven maize pan-network consists of 
2,041,983 co-expression pairs among which 52% belong 
to private genotypes and only 0.04% are present in all 
26 NAM genotypes (Fig.  2). A similar observation was 
reported for Arabidopsis where no co-expression pairs 
were detected in all the genotypes [26].

Defining pan‑network sub‑categories
We classified the co-expression pairs in a pan-network 
into four sub-categories: private, dispensable, near-core, 
and core (Fig. 2A). The private network is defined by the 
co-expression pairs that are unique to one genome while 
50 to 95% of the co-expression pairs observed in two to 
10 genomes were grouped into the dispensable network 
(Additional file 2: Data S1). Instead of a strict definition 
of “core” where the genes are shared by every genotype 
[1], we adopted an extended core definition such that 
the highest represented co-expression pairs (the top 1%) 
were classified into the core-network and the ones pre-
sent in the top 1 to 5% of the genomes were classified into 
the near-core network (Fig. 2A). Even with the extended 
definition, 99% of the co-expressed gene-pairs and 84% 
of the pan-network genes were not retained in the core 
network.

Private network contains the same number of genes 
but lacks some of the interactions
Co-expressed gene-pairs and gene interactions vary 
greatly among the NAM genomes. Our results show that 
half of the interactions in the pan-network were unique 
to a specific genome. We observed a great variance in 
the private gene-pairs across the genomes. For example, 
more than 25% of the co-expressed pairs in CML228, 
CML247, CML277, and CML52 genotypes were private 
while private interactions were less than 10% in CML322 
and Tx303 genotypes (Fig. 2B and Additional file 2: Data 
S1). We did not observe any difference in the experi-
mental settings and geographic origin to differentiate 
the variations in the proportion of the unique gene-pairs 
observed in these genomes. Strikingly, although the pri-
vate network was missing half of the gene-pair interac-
tions in the pan-network, it included almost all the genes 
(Table 1). This might be attributable to the fact that the 
traits are regulated by the accumulative effect of the 
genes rather than a few regulatory genes themselves. 
These genes might be involved in different transcriptional 
regulatory mechanisms rather than interacting with the 
same set of genes.

Enriched biological functions in pan‑network categories
The classification of pan- and core- networks can help 
identify all possible gene associations involved in the 
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transcriptional process and infer the common gene 
associations required for a general regulatory function, 
respectively. Pan-network represents the extensive set of 
genes and co-expressed gene-pairs that might be involved 
in transcriptional regulatory processes. The core-net-
work, on the other hand, represents the group of con-
sistent genes and gene-pairs among multiple genotypes, 
thus, could employ the primary regulatory machinery to 
manipulate normal cellular function.

We investigated the biological significance of the pan-
network categories through gene ontology (GO) enrich-
ment analysis. We examined the diversity of the pan-, 
core-, near-core-, dispensable-, and private- networks, 
regarding the predominant biological processes involved 
in the trait-associated co-expression networks. The whole 
pan-network was enriched with 121 GO terms for the 
3957 genes with GO annotations (FDR < 0.05). The pan-
network categories showed various enrichment levels 
with 77, 104, 70, 121 GO terms in the core-, near-core-, 

dispensable-, and private- networks, respectively. A total 
of 219 enriched GO terms were identified from the dif-
ferent pan-network categories. In total, 59 GO terms 
overlapped the core- and near-core- networks while 69 
of the 70 GO terms in dispensable network were in com-
mon with the private network. Core/near-core networks 
share less than 25% of the GO terms with the private/dis-
pensable networks. As expected from the core/near-core 
networks, the enriched GO terms were mostly relevant 
to the key biological processes including biosynthetic 
processes, ATPase activity, chromatin modification, and 
histone acetylation (Additional file 3: Data S2).

Genic regions regulate half of the trait associated gene 
co‑expression networks
We examined the contribution of the variants within the 
genic regions alone to the co-expression networks. A sep-
arate pan-network was constructed for the co-expressed 
gene pairs overlapping with a trait-associated SNP within 

Fig. 1 An overview of the GWAS-driven co-expression networks. A The collection of co-expressed gene-pairs in the pan-network and B the highest 
represented traits within the pan-network are shown at top. C The core-network and D the highest represented traits within the core network are 
shown at the bottom. Unique trait terms within the top 10 lists were bolded. Please see the text for the definitions of the networks
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the genic regions. 12,090 SNPs were identified within the 
genic regions of 8894 genes. Pearson correlation analysis 
revealed that 5287 of these genes involved in the genic 
pan-network resulting in 663,494 gene-associations as 
opposed to 10,163 genes and 2,041,983 gene-associations 
in the genic/promoter pan-network (Additional  file  4: 
Table  S2). Our results showed that over half (52%) of 
the genes were originated from the genic pan-network 
whereas only 32% of the gene-associations were cov-
ered in the genic pan-network. The proportion of vari-
ance was similar among the pan-network sub-categories 

with 52 to 54% of the genes and 31 to 34% of the gene-
associations were derived from the genic pan-network 
(Additional file 4: Table S2). Similar to the gene/promoter 
pan-network categories, 1 and 51% of the gene associa-
tions were involved in the genic core- and private- net-
works, respectively.

In terms of representation of the traits among the 
pan-network, gene/promoter and genic pan-networks 
shared a similar trait content. The highest represented 
traits within pan-networks were similar between gene/
promoter and genic alone, only the traits Days to Silk 

Fig. 2 Pan-network composition revealing the distribution of co-expressed gene-pairs among the NAM genomes and the gene-trait associations. 
A The growth curve of the pan- and core- networks based on the number of co-expressed gene-pairs. The continuous cyan curve represents the 
total number of co-expressed gene-pairs for a given number of genomes, the blue curve indicates the number of core gene-pairs, and the vertical 
bars indicate the standard deviations. Dashed lines, separating the plot into four sections, indicate the sub-categories of pan-network, as core-, 
dispensable-, near-core-, and core- networks, respectively. B Venn diagram illustrating the number of co-expressed gene-pairs common and unique 
to the genomes specified. The size of the core-network is shown in the center as the number of co-expressed gene-pairs and the number of genes 
inside the brackets. The leaves represent the number of unique gene-pairs found in each genome. C Gene-trait association across pan-, core-, near 
core-, dispensable-, and private- networks. The proportion of the genes associated with the traits across the pan- and core- networks is shown per 
trait (please see the text for the definition of these categories)
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and Plant Height showed a greater abundance over Tas-
sel Branch Number and Ear Height in the genic pan-net-
work. Overall, 44% of the traits were stemmed from genic 
pan-networks whereas 36% of the Protein and Chloro-
phyll B traits and 49% of the Height per Day (until flow-
ering) trait were represented in the genic pan-network 
(Additional file 5: Data S3).

We performed GO term enrichment for the genic 
pan-networks and compared the enriched GO terms 
with the gene/promoter pan-network. A total of 79 GO 
terms were enriched in the genic pan-networks where 
63 of the enriched GO terms were common between 
the gene/promoter and genic pan-networks and 16 GO 
terms were only enriched in the genic pan-networks 
(Additional file 6: Data S4). Genic network specific terms 
include major biological processes and molecular func-
tions including regulation of cell division, regulation of 
cytokinesis, and regulation of cytokinetic process.

Integration of GWAS loci to co‑expression networks could 
specify candidate genes
Genome-wide association studies (GWAS) ben-
efit from the high diversity in maize and provide 
the opportunity to study the genetic structure of the 
complex phenotypic traits at a very fine scale. Here, 
we integrated GWAS data for 41 agronomic traits, 
including both developmental and metabolic traits, 
into the co-expression networks to identify the regu-
latory interactions altering plant phenotype and 
investigated the contribution of pan-, core- and pri-
vate- networks to the biological regulation of the traits 
(Additional  file  9). The highest represented traits in 
the pan- and core- networks are shown in Fig. 1. Over-
all, 8 of the top 10 represented traits were common 
within the pan- and core- networks, including Tassel 

Branch Number and Days to Anthesis. Subsequently, 
the proportion of the genes associated with a trait in 
pan-network categories was extracted for each trait 
(Fig. 2C). The four traits, Tassel Branch Number, Days 
to Anthesis, Ear Height, and Plant Height were among 
the highest represented traits by the gene co-expres-
sion pairs in both pan- and core- networks. The abun-
dance of each trait in pan- and core- networks were 
relatively similar, except a few. Starch and Chlorophyll 
B traits showed a larger abundance in the core-network 
as well as the Average Internode Length (below ear), 
Southern Leaf Blight, and Anthesis-silking Interval 
traits. As a case study, we selected two traits: specifi-
cally, one developmental trait and one metabolic trait. 
However, the list of co-expression pairs for individual 
traits is provided in Additional file 7: Data S5 together 
with information regarding the individual genomes 
representing the co-expression pair, total number of 
genomes the co-expression pair are observed, and the 
pan-genome sub-category of the co-expression pair. 
The first trait, the Tassel Branch Number, is the most 
represented trait in both the pan- and core- networks. 
The second trait, Starch, is one of the metabolic traits. 
Although the number of SNPs associated with Starch, 
and thus the number of genes and gene-pairs, are 
smaller, the gene pairs associated with the Starch trait 
were more abundant in the core-network.

Tassel branch number
We investigated the transcriptional regulation of the 
Tassel Branch Number (TBN) trait using the pan- and 
core- networks. The TBN is an important agronomic trait 
contributing to yield and it has been increasingly investi-
gated in maize breeding programs. Most complex traits 
such as the TBN are controlled by numerous minor-
effect variant in maize [10, 20, 38]. Since the majority of 
the variants have small effects on the phenotype, they 
cannot be easily incorporated into maize breeding pro-
grams. Thus, identification of TBN controlling variants 
and their regulatory mechanisms would provide use-
ful information to facilitate high-yield maize breeding. 
Here, we aim to identify the transcriptional regulatory 
mechanisms controlling TBN and, by leveraging a pan- 
and core- network approach, we aim to gain valuable 
insights into the global and core components regulating 
the TBN (Fig. 3). The pan-network contained 697 genes 
and 10,718 co-expression pairs, assembling into one large 
regulatory network (Fig.  3A). In contrast, core-network 
was substantially smaller with 60 genes and 74 gene-pairs 
and was composed of 8 sub-networks (Fig. 3B).

The core-network is considered a reliable network 
because the interactions are supported by a large number 
of genomes, making it a primary network that represents 

Table 1 The number of genes and co-expressed gene pairs 
across trait-associated pan-network categories. Co-expression 
pairs in a pan-network into four sub-categories: private, 
dispensable, near-core, and core. The private network is defined 
by the co-expression pairs that are unique to one genome 
while 50 to 95% of the co-expression pairs observed in two to 
10 genomes were grouped into the dispensable network. The 
highest represented co-expression pairs (the top 1%) were 
classified into the core-network and the ones present in the 
top 1 to 5% of the genomes were classified into the near-core 
network (please see text for more detailed explanation)

Pan‑
network

Pan‑network sub‑categories

whole core near‑core dispensable private

genes 10,163 1505 3328 8154 10,162

gene‑pairs 2,041,983 16,614 89,362 868,077 1,067,930
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the basic regulatory mechanisms associated with the 
trait. Accordingly, we constructed a trait-specific core-
network for the TBN-associated genes, reflecting the co-
expression of TBN-associated genes to genes near other 
loci associated with the same trait. These genes were 
defined by the degrees of associations and the genes with 
the highest degrees of associations were denoted as hub 
genes. Thus, the degree of association reflects the impact 
of a gene on the overall network. The highest degree of 
association was observed for a Cyclin-dependent kinase 
(pan_gene_30482) with eight neighbor genes. This hub 
gene was co-expressed with an ARID-transcription fac-
tor gene (pan_gene_20723) with five neighboring genes. 
Co-expression edges between kinases and transcription 
factors are of particular biological interest as they may 
indicate gene regulation triggered by signaling pathways. 
Another hub gene with six associations was an oxygen 
evolving complex (pan_gene_20555). The core-network, 
overall, contained eight transcription factors and four 
kinases. Seven of the 60 genes in the core-network were 
not annotated either with InterPro or GO terms. GO 
terms assigned to the core-network included variety of 
biological processes and molecular functions, such as 
DNA-directed 5′-3′ RNA polymerase activity, response 
to oxidative stress, protein binding, and GTPase activity. 

However, no GO terms were significantly enriched in the 
core-network.

In contrast with core-network, pan-network illustrated 
the atlas of transcriptional regulation of TBN associated 
genes (Fig. 3B). According to pan-network of TBN asso-
ciated genes, Cyclin-dependent kinase (pan_gene_30482) 
was also highly regulated by genes in TBN pathway with 
a large set of correlated genes (132 neighbor genes). Simi-
larly, ARID-transcription factor gene (pan_gene_20723) 
presented one of the highest degrees of association (131 
neighbor genes) for the TBN regulatory mechanism in 
the pan-network. Contrary to the core-network, pan-
network showed enrichment for six GO terms: binding, 
protein binding, two-component sensor activity, phos-
photransferase activity, protein histidine kinase activity, 
and riboflavin synthase complex. Overall, the pan-net-
work provided a picture of global gene regulatory mecha-
nism for the TBN that could not be well inferred by the 
core-network.

Starch metabolism
Maize provides a rich source of calories since ~ 70% of 
the weight is carbohydrates, mostly in the form of starch 
[39]. Starch is among the complex traits controlled 
by many genes, thus offering multiple gene targets to 

Fig. 3 The co-expression networks associated with the Tassel Branch Number (TBN) as (A) the pan-network and (B) the core-network. Each node 
represents a gene associated with TBN and each edge represents a co-expressed gene pair. The pan-network contained 697 genes and 10,718 
co-expression pairs, assembling into one large regulatory network. In contrast, core-network was substantially smaller with 60 genes and 74 
gene-pairs and was composed of 8 sub-networks
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facilitate crop yields and end-use quality [40, 41]. There-
fore, understanding the mechanism of starch metabolism 
and regulation is critically important for meeting future 
needs. The Wallace GWAS dataset contains trait data for 
12 metabolites including starch from the leaves of maize. 
Although Starch was not among the top represented 
traits in either pan- or core- networks, the percentage of 
genes associated with the Starch over the 41 traits repre-
sented in the core-network is larger than in the pan-net-
work (Fig. 2C).

We constructed pan- and core- networks for the Starch 
trait. The Starch pan-network contains 245 genes and 
1433 gene-pairs while the core-network is composed of 
18 genes and 17 gene-pairs (Table 2 and Additional file 7: 
Data S5). Of the 18 genes in the core-network, 12 were 
assigned with at least one GO term, which includes ATP 
hydrolysis activity, GTPase activity, oxidoreductase activ-
ity, and 1;3-beta-D-glucan synthase activity. Among the 
245 genes in pan-network, 34 were unannotated in the 
InterPro database and 88 were unannotated in the GO 
database. Annotated genes were assigned with a wide 
range of GO terms, including four genes assigned with 
carbohydrate metabolic process (GO:0005975) and four 
genes with glycosyltransferase activity (GO:0016757). 
AMP-activated protein kinase, Alpha-amylase/branch-
ing enzyme, and Sucrose synthase were among the func-
tional annotation of the genes involved in the Starch 
pan-network. A detailed list of GO and InterPro annota-
tions for Starch pan- and core- networks is available in 
Additional file 8: Data S6.

One gene can contribute to more than one phenotypic 
trait and is referred to as a pleiotropic gene. Pleiotropic 
effects have been reported in maize for various traits. 
Here, we investigated the pleiotropic effects of the genes 
associated with Starch. We observed that 161 of the 
genes in Starch pan-network are pleiotropic genes associ-
ated with two to eight nonredundant phenotypic traits. 
We also observed the associations with other agronomic 
traits (Table 3), such as Plant Height and Ear Height, sug-
gesting that the starch pathway is linked to other traits 
important for yield. In fact, the yield is largely deter-
mined by the starch content in maize [40, 41]. Possibly, 
improving the starch content could lead to higher-yield 
products by targeting the genes regulating more than one 
trait.

Discussion
The advent of whole genome sequencing technologies 
and genome-wide profiling experiments stimulated the 
progress in identifying loci associated with complex 
traits, enabling linking genotypic variations with pheno-
typic changes. However, revealing phenotype-genotype 
associations solely are insufficient since such associations 

do not uncover the molecular mechanisms underlying 
it. Especially for species like maize, where multiple rare 
variants often regulate complex traits, discovering the 
co-regulation of trait-associated loci is of critical impor-
tance to understand the molecular pathways regulating 
the trait. Additionally, there is the issue of the heritabil-
ity of such associations. Therefore, advanced methods 
are required to investigate phenotype-genotype asso-
ciations in terms of the molecular pathways involved. 
Gene co-expression networks are often opted to reveal 
important associations between genes and represent the 
co-regulated genes that play a central role in regulatory 
processes. As such, we incorporated the GWAS data into 
the co-expression networks to unravel the transcriptional 
regulatory mechanisms behind these phenotypic traits at 
the pan-genome level.

Genes exhibiting coordinated expression across sam-
ples are likely to be biologically co-regulated. Thus, 
co-expression networks have the potential to infer the 
regulatory network of genes and, together with GWAS 
data, co-expression studies could reveal the effects of 
regulatory networks to important phenotypic traits that 
are of high agronomic and biological importance. We 
constructed co-expression networks for the genes over-
lapping with a trait associated loci based on expression 
similarities across samples for each maize NAM genome. 
Similar to a pan-genome approach, we investigated the 
co-expressed gene-pairs at the pan- and core- network 
levels. The pan-network represented the entire set of co-
expressed gene-pairs for the 26 maize NAM genotypes. 
The pan-network was composed of the core-network, 
which corresponds to the highest represented 1% of the 
co-expressed pairs, the near-core-network, which cov-
ers the highest 1 to 5% of the co-expressed gene pairs, 
the private-network, which includes the gene-pairs co-
expressed in only one genotype, and the dispensable-
network, where the co-expressed gene-pairs are absent 
in several genotypes. This study showed strikingly that 
although most of the genes are in fact core genes, only 
~ 1% of the co-expressed gene-pairs were in the core-
network. This finding suggests that in a pan-genome 
approach, classification of pan- and core- are different for 
genes and gene pair interactions and although genes may 
be conserved across NAM genomes, their transcriptional 
regulation may not. A similar observation was reported 
for Arabidopsis pan-network where no co-expression 
pairs were detected in all the genotypes [26].

Similar co-expression studies using the same inbred 
genomes were performed in maize before [33, 36]; how-
ever, our definition of pan-network differs from the ear-
lier maize co-expression studies. The Co-expression 
Browser (COB) and Camoco approaches integrated dif-
ferent GWAS data to the maize co-expression networks 
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using the same inbred genomes; however, these co-
expression networks were ‘genotype’ networks based on 
a one tissue/condition expression profiles across diverse 

maize genomes [33, 36]. Instead, we created single-acces-
sion co-expression networks for each genome and cre-
ated the pan-network from the union of 26 individual 

Table 2 Trait-specific co-expression network statistics for pan-network categories including pan-network, core-, near core- 
dispensable-, private- networks. Subcategory definitions can be found in the text and in the caption of Table 1. The pan category 
contains all pairs. “N” stands for nodes of a network, in this case genes, and “e” stands for edges of a network, in this case gene-pairs

*n: nodes and e: edges

Core Near‑core Dispensable Private Pan

Traits n e n e n e n e n e

100 Kernel weight 22 16 70 134 255 1343 361 1619 363 3112

Anthesis silking interval 18 22 72 149 234 1035 337 1258 339 2464

Average internode length (above ear) 22 25 95 236 306 2078 451 2754 451 5093

Average internode length (below ear) 48 64 122 331 397 2938 557 3634 561 6967

Average internode length (whole plant) 36 50 108 226 389 2464 542 3255 543 5995

Boxcox-transformed leaf angle 46 51 115 240 410 2555 566 3616 568 6462

Chlorophyll A 5 3 15 12 96 215 147 316 151 546

Chlorophyll B 22 21 36 58 111 355 169 453 171 887

Cob diameter 33 41 86 193 270 1667 340 1960 343 3861

Days to anthesis 55 97 145 332 469 4510 642 5218 644 10,157

Days to silk 34 29 107 203 350 2812 491 3256 491 6300

Ear height 54 71 144 374 501 4231 660 5142 661 9818

Ear row number 39 36 115 202 344 2189 482 2662 482 5089

Fructose 0 0 11 8 61 99 85 114 95 221

Fumarate 0 0 2 1 16 13 18 15 24 29

Glucose 0 0 22 14 102 256 139 338 146 608

Glutamate 0 0 15 13 74 174 100 187 108 374

Height above ear 35 28 94 170 312 1757 414 2087 418 4042

Height per day (until flowering) 33 29 118 222 351 2412 485 2861 486 5524

Leaf length 43 44 119 273 363 2049 493 2767 494 5133

Leaf width 45 79 112 246 380 2626 518 3161 522 6112

Malate 2 1 15 11 61 137 106 163 111 312

Nitrate 16 17 37 51 118 512 175 514 179 1094

Nodes above ear 19 15 86 143 297 1528 451 2297 452 3983

Nodes per plant 47 58 117 316 448 3722 604 4457 605 8553

Nodes to ear 41 45 114 241 386 3201 517 3753 519 7240

Northern Leaf Blight 23 19 81 134 260 1503 368 2046 369 3702

PCA of metabolites: PC1 4 2 13 10 58 133 92 174 96 319

PCA of metabolites: PC2 8 6 33 31 138 453 204 617 207 1107

Photoperiod growing-degree days to anthesis 21 26 54 113 174 714 248 763 253 1582

Photoperiod growing-degree days to silk 23 13 57 92 158 850 217 791 224 1780

Plant height 45 46 144 346 451 4157 615 5007 616 9556

Protein 0 0 10 5 32 47 65 71 70 123

Ratio of ear height to total height 47 61 124 342 403 3081 564 3642 564 7126

Southern leaf blight 40 42 118 279 343 2388 461 3002 461 5711

Stalk strength 33 33 76 151 222 1239 305 1338 309 2761

Starch 18 17 44 44 170 599 241 773 245 1433

Sucrose 2 1 11 7 53 78 76 129 83 215

Tassel branch number 60 74 145 436 501 4353 696 5855 697 10,718

Tassel length 44 42 130 283 424 3082 578 4075 578 7482

Total amino acids 10 6 53 79 190 763 289 1088 292 1936
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co-expression networks for each genome. The benefit of 
our approach is we could differentiate private interac-
tions specific to a genome and the core interactions con-
served in most genomes.

To date, GWAS has been successfully applied to iden-
tify variants associated with numerous traits in maize 
including ionomic, developmental, adaptive/stress 
response, and metabolic traits [36, 42]. The co-expression 
analysis has been applied to unravel the biological mech-
anisms driving the associated traits and the candidate 
causal genes leading to the phenotype for many plants 
including Arabidopsis and maize. Integration of GWAS 
data into a co-expression network provided evidence 
for identifying important genes associated with the oil-
related traits [42]. A larger scale analysis was performed 
later to determine the high-priority candidate causal 
genes under ionomic GWAS loci [36].

The focus of this study was to unravel the transcrip-
tional regulatory mechanisms for the 41 agronomic and 
developmental phenotypic traits. We provided a large set 
of co-expressed gene-pairs as well as co-expression net-
works for trait-associated loci so that the data could be of 
use for further studies. We provided functional annota-
tion of genes involved in these networks, GO categories, 
and the enriched GO terms.

We provided examples of the use of co-expression net-
works for the transcriptional regulation of complex traits, 
such as Tassel Branch Number and Starch. Both Tassel 
Branch Number and leaf starch content are among the 
complex agronomic and metabolic traits, respectively, 
and are controlled by many genes. Since majority of the 
variants have small effects on the phenotype, they cannot 
be easily incorporated into the maize breeding programs. 

Thus, understanding the underlying mechanism of these 
traits and regulation is critically important to facilitate 
high-quality and high-yield maize breeding for meet-
ing future needs. Overall, the pan-network approach 
provides an enhanced global picture of the gene regula-
tory network for a studied system that could not be well 
inferred by core-network of genes alone.

Conclusions
In this study, we provided a large collection of co-
expressing genes in the GWAS-driven pan-network for 
maize NAM genomes. By incorporating the phenotypic 
trait data into the co-expression networks, we aimed to 
reveal phenotypically important gene associations. We 
demonstrated how the integration of GWAS data into 
a co-expression network allows us to better understand 
the mechanisms regulating the complex traits in maize. 
We provided pan-networks specific to 41 agronomically 
important traits so that the data could be of use for fur-
ther studies.

Methods
The pan‑genome and annotations
The latest B73 RefGen_v5 reference genome and the 25 
NAM founder genomes (collectively referred to as the 26 
NAM lines) and annotations were retrieved from Huf-
ford et al. (2021) through MaizeGDB [3]. We included the 
pan-gene annotations rather than canonical annotations 
to cover the pan-genes that exist in a genome but were 
not annotated. A total of 103,538 pan-genes was included 
for 26 NAM genomes. The mappings of InterPro entries 
to Gene Ontology (GO) terms were retrieved from the 
InterPro protein families and domain database [43]. GO 
terms for the pan-genes were extracted from the InterPro 
annotations provided within the GFF3 annotation files of 
NAM genomes.

The GWAS data
We collected the list of single nucleotide polymorphisms 
(SNPs) that were associated with 41 phenotypic traits 
reported previously from a GWAS study by Wallace et al. 
(2014). In general, the data for 41 traits was linked with 
the high-confidence SNP markers across NAM by fitting 
a joint-linkage model. A matrix of 35,770 GWAS SNP 
positions in each genome and associated traits is availa-
ble in the CyVerse database [44] and provided as Data S7. 
To extract the pan-genes associated with a phenotypic 
trait, GWAS-hits were intersected with the gene anno-
tations for individual genomes using bedtools intersect 
function. We included the pan-genes overlapping with a 
trait associated loci within their annotated genic regions 

Table 3 The number of pleiotropic genes associated with Starch 
that are also associated with other phenotypic traits. 161 of the 
genes in Starch pan-network are pleiotropic genes associated 
with two to eight nonredundant phenotypic traits. Only top 10 
traits were shown in the Table

a whole plant

Top 10 traits linked with the Starch trait Gene count

PCA of metabolites: PC2 23

Nodes per plant 19

Nodes to ear 19

Plant height 16

Boxcox-transformed leaf angle 15

Ear row number 13

Nodes above ear 11

Tassel length 11

Average internode length  (wpa) 10

Ear height 10
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and promoters (< 5 kb upstream) (Table S1). A pan-gene 
can overlap with multiple GWAS-hits. Nonredundant 
trait annotations were assigned to pan-genes for each 
GWAS-hit.

RNA‑Seq data
All the expression datasets in this study were retrieved 
from the Maize NAM Consortium [1]. The Maize NAM 
Consortium sequenced 20 samples for each NAM 
genome and expression data is represented as transcripts 
per million mapped reads (TPM). The TPM values 
from RNA-Seq data for the NAM genomes are available 
through the CyVerse Data Commons database. The TPM 
data is available for ten tissues, including: (1) primary 
root, (2) shoot at 6 days after planting, (3) base of the 10th 
leaf, (4) middle of the 10th leaf, (5) tip of the 10th leaf, (6) 
meiotic tassel, (7) immature ear at the V18 growth stage, 
(8) anthers at the Reproductive 1(R1) growth stage, (9) 
endosperm, and (10) embryo at 16 days after pollination. 
With a few exceptions, two biological replicates for each 
tissue resulted in 20 RNA-Seq samples for individual 
NAM genomes and thus resulted in 103,538 genes × 20 
RNA-Seq samples gene-expression matrix for each of the 
26 genomes. For each genome, genes with median TPM 
lower than 5 were excluded for noise attenuation to cre-
ate the high-confidence list for downstream. After filter-
ing, 33,021 of the 103,538 pan-genes that have at least 5 
median TPM in a genome were included in our study.

Construction of co‑expression networks
The collection of gene expression data from the tissue 
samples for each NAM genome were used for the con-
struction of co-expression networks. An unsigned co-
expression network was inferred by a pairwise Pearson 
correlation using scipy.stats module in the Python SciPy 
library. A strict significance threshold (R cut-off of 0.9 
and significance threshold of P = 0.01) was applied to 
select the significant co-expressed gene-pairs. Individual 
co-expression networks were constructed for 26 NAM 
genomes. The union of co-expression pairs in 26 NAM 
genomes was defined as the ‘pan-network’ and the co-
expression pairs specific to an individual genome was 
defined as ‘private network’. All interaction networks 
were visualized using Cytoscape (v3.8.0) [45].

Enrichment analysis
To explore the biological significance of the co-expres-
sion networks, we performed functional enrichment 
analysis for GO annotations using the BiNGO plugin [46] 
for Cytoscape (v3.8.0). The default statistical parameters 

were applied for the hypergeometrical statistical test 
along with a Benjamini and Hochberg false discovery 
rate (FDR) correction at a significance level of 0.05. The 
enrichment analyses in the pan-network (high-confi-
dence data) were performed using high-coverage data as 
background unless specified otherwise.
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