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ABSTRACT OF THE DISSERTATION

Efficient Mechanisms for Network State Management And Data Capture in MultiNetworks

By

Ranga Raj

Master of Science in Computer Science

University of California, Irvine, 2015

Nalini Venkatasubramanian, Chair

Multinetwork INformation Architecture(MINA) is a reflective (self-observing and adapting)

middleware approach to manage such dynamic and heterogeneous multi-networks in perva-

sive environments. MINA depends upon a strong foundation for maintaining the network

state at all times. It needs to have a robust platform that performs its functions from small

or large topologies alike.

This thesis describes the extensions made to the database access layer of the MINA. Modi-

fications were made to the database schema as well as the database capture layer to capture

these periodic or intermittent changes of the network state. We tested the modifications so

that MINA scales to handle a large topology. We have also enhanced the runtime component

and show that an in-memory representation of the multi-network provides very predictable

responses to network path queries. MINA can now use the runtime enhancements made and

provide accurate predictions of the network bottlenecks and accurately predict other what-if

scenarios.

In order to perform a more realistic test on the code changes, we used publicly available

datasets. Node mobility information was captured at single-second intervals observed from

an access point. We successfully tested the capability to handle large volumes of changes

to the network. We then generated data for larger topologies as well as large batches of
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changes to network state to see how the modifications handle such stresses. We measured

the time taken to persist such large volumes of changes.This gives us an idea of the frequency

of changes that MINA can accommodate.

We then show one possible extension of MINA. We propose a suitable deployment for emer-

gency response in a shanty town. We assume that we instrument the entire area of the

shanty town with low-cost sensors capable of capturing local parameters like air quality,

smoke, temperature etc. Additional network components like mobile nodes and fixed ac-

cess points or routers perform the task of capturing any relevant sensor data and routing

it to a central location (like an Incident Response Center) for further action. We discuss

an extension where the mobile nodes are assigned a path on a road network thus directing

the mobility. We present efficient techniques to assign a path to these nodes so that the

time taken to capture the data from sensor nodes is minimized. We formulate the task as a

Dynamic Vehicle Routing Problem with Time Windows constraints which is NP-hard. We

present heuristic based algorithms to generate an efficient path for such mobile nodes. We

show how such potential extensions can be incorporated into the MINA design framework

to solve real-world problems.
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Chapter 1

INTRODUCTION

Multi-networks have become increasingly popular in real-world solutions to networking prob-

lems. Some authors refer to this as spontaneous networking or multi-hop networks. The term

multi-networks usually refers to an implementation where nodes opportunistically make peer-

to-peer contacts and share data and resources in an impromptu way[6]. Such a solution takes

minimal infrastructure setup for data to be transferred from a source to sink. However, the

opportunistic nature of the connections makes the task of managing the network a chal-

lenge. The dynamic nature of traffic between nodes and the dynamic nature of connectivity,

at times multiple connections as long as the technology allows it, makes the task of managing

the Quality of Service(QoS) over the network very challenging.

MINA and its Underlying Philosophy

MINA (Multi-network INformation Architecture) is a reflective (self-observing and adapt-

ing) middleware approach to manage dynamic and heterogeneous multi-networks in pervasive

environments[18]. It was developed by a team of researchers working under Prof. Venkata-

subramanian at UCI. It uses a MySQL database backend to persist state information that
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is queried periodically to realize the different functions it supports. A key aspect of MINA

is that it implements an Observe-Analyze-Adapt (OAA) loop. It has the ability to cap-

ture the topology and the current network state. It uses this data to analyze performance

bottlenecks and if required, provide instructions for alternate routing of packets or adding

additional resources to ensure end-user QoS.

MINA uses an overlay network to discover the network topology and actively collects infor-

mation on all the links associated with each node as a part of the Observe process. It persists

the information in a MySQL database. The current design of MINA uses this database to

read and provide the capability to Analyze the network for potential bottlenecks. It uses the

Adapt paradigm to suggest appropriate network routes that satisfies end-user QoS require-

ments. MINA integrates with Software Defined Network (SDN) equipment to realize the

Adapt part of its functionality to adjust the routing and thereby ensure desired throughput.

Database Access Layer Modifications

In this thesis we describe the extensions made to the Database Access layer of the MINA.

We designed a new database schema to capture the network topology information that

needs to be persisted. By keeping the stored information concise, we provide MINA enough

data to generate an in-memory representation of the topology. We implemented the new

Database Access layer using Java. We used the Java Universal Network/Graph Framework

(JUNGv2) [2] library built by a team from UCI to represent the network topology in-memory.

An in-memory representation of the network topology as a graph allows us to provide a

faster response to any network path related queries. Our Data Access layer encapsulated

all the SQL calls to the database. This allows us to optimize the database queries easily as

appropriate.
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Stress Testing of MINA DB Access Layer Changes

To validate the performance of the changes, we used datasets from CRAWDAD [9] to get

some real-life node mobility data. This allowed us to test the changes to a real network

topology. We then hand-generated a very large topology to test with and measured the

throughput in terms of volume of network link changes that can be supported as well as

measuring the performance on large networks. We show that an in-memory representation

of the multi-network provides very predictable responses to network path queries. MINA can

now use the runtime enhancements made and provide accurate predictions of the network

bottlenecks and accurately predict other what-if scenarios.

Extending MINA - Adding a Mobility Model

We then show a unique application of MINA in the real-world where it plays a significant

role - a shanty town’s emergency response system. One can build an effective system using

different classes of nodes with differing capabilities and on-board resources. The entire region

could be instrumented with a large farm of low-cost sensor nodes available to capture data

on demand on various parameters. We can incorporate Mobile Data Collectors(MDCs) and

fixed networking equipment as necessary, all working with a remote MINA server at a Control

Center(CC) and having the ability to analyze any received data. Emergency situations called

events can be registered anywhere in the shanty town and the nearby sensors would capture

the vital details like air quality, smoke, temperature etc. However, the sensors need to

wait for an available MDC to pick up and send as quickly as possible to the CC. The QoS

requirement of such a topology necessitates providing adequate coverage to capture data

from the sensors locally and have sufficient number of MDCs available to transport the data

to the server for further analysis within the shortest possible time. In such an emergency

response system, the sooner this first-response detail is sent the faster an appropriate relief
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can be dispatched by the CC.

Completing the shanty town emergency response scenario, providing a reliable response to

emergency requests requires two critical parts: (1)Knowledge of the Event Occurrence i.e.

location and time and (2)An available MDC needs to travel to the location to capture sensor

data within the fastest time and relay the sensor data to the CC. In this thesis we do not

address how the CC gets to know that a specific event location needs to be serviced. We

assume that the CC receives the coordinates of the event location through some external

means. We use the term event expiration to indicate a time window within which the sensor

data needs to be captured. Here, we have addressed the part of supplying the best route

among the available MDCs (i.e. assigned mobility to the MDC) in the region to capture the

sensor data.

We present efficient techniques to assign a mobility model to the nodes so as to minimize

the time taken to capture the data from the sensor nodes. We formulate the mobility model

as a Dynamic Vehicle Routing Problem with Time Windows constraints which is NP-hard.

We then present heuristics to generate an efficient path for these mobile nodes.

MINA plays an important role in ensuring resilience to network changes. It can advise

the network administration staff with recommendations on additional equipment like APs,

mobile nodes or routers to ensure that the mobile nodes have an optimal route to the CC

even when large parts of the network get disconnected. In the normal course of functioning

MINA maintains an accurate picture of the entire deployment based on the information

received by the Observe loop.

We conclude this thesis with a discussion on how the MINA’s data framework can be ex-

tended to accommodate this shanty town scenario or other real-world problems. The CC

runs the MINA Tier 1 node and instead of passively recording the node mobility as the

mobile nodes move, MINA can assign the mobility path to the mobile nodes and obtain
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real-time feedback from them as they move.

Contributions in this Thesis

The following contributions are outlined in this thesis:

• We designed and implemented a more robust data management backend for MINA

that is capable of handling the dynamic nature of the underlyng infrastructure that

large network infrastructures demand.

• We studied the performance of our code changes using a publicly available dataset

collection from a WiFi Access Point recording mobile users entering or leaving a region.

We present are results here.

• To test the changes further for large volumes of network changes, we created sample

test data generating adding or remove network changes at random on a fairly large

network topology. We tested the performance of the layer using this data. We present

them here.

• We then apply the MINA framework to a more dynamic use case of mobile data

collectors operating in a shanty town for emergency response. We provide efficient

algorithms for the mobility of the nodes to allow efficient data capture on an overlapping

road-network using heterogeneous MDCs. We show how the design of MINA can be

extended to this application.

Structure of this Thesis

This thesis is structured as below:
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• Chapter 2 discusses the details of the changes to the MINA backend such that it

scales to large network updates as well as accommodate a large network topology. We

present the software architecture of the DB Access layer here. We also present the

schema design and justifications for all these changes.

• Chapter 3 discusses the experiments on the modified MINA Data Access layer. We

first present the results of the CRAWDAD dataset used. We then discuss the details

of the random-generated dataset and show results indicating that the implementation

can handle a large network topology.

• Chapter 4 discusses an application of MINA in the real-world scenario. We discuss the

details of a shanty town scenario and present a design where MINA can be extended to

take in real-time input for targeting the mobility of the mobile nodes and the existing

framework of MINA provides the network management capabilities. We present the

mathematical formulation of the shanty town’s dynamic event data collection task and

finally describe the efficient algorithms for the mobility of the nodes.

• Chapter 5 presents our conclusions.

6



Chapter 2

MINA DB LAYER

ENHANCEMENTS

The primary objectives of MINA are:

1. Efficiently organize heterogeneous devices in multinetworks.

2. Obtain a global and fresh view of the network state as needed.

3. Analyze the network state based on the global view, and get a deeper understanding

of the network properties, e.g. resilience, congestion.

4. Adapt or Control the network so that application needs can be met under the network

resource constraints.

In order to satisfy these objectives, data is collected and stored by the MINA backend in a

MySQL server. In this chapter, we discuss the details of the changes to the MINA backend

such that it scales to large network updates as well as accommodate a large network topology.

We present the software architecture of the DB Access layer here. We also present a revised

7



schema design and justifications for all these changes.

To put this into context, in the next few paragraphs we describe briefly the MINA framework

at a high level and the current Data layer design. We follow this up with the enhancements

and details of the implementation.

2.1 MINA System Overview

The main goal of the MINA architecture[10] was to create and maintain an overlay network

above the existing heterogeneous links, in order to collect the underlying network state

information about the devices themselves and the links they are communicating through.

In system terms this involves reacting dynamically to instances of nodes joining and leaving

the network. A logically centralized server is responsible for collecting and storing this

information into a MySQL database. The system is designed using the OAA paradigm

(Observe, Analyze, Adapt). It receives network state information from the devices, analyzes

them, and possibly issues configuration commands, e.g., to recover from previously detected

faults. Using this information, it can coordinate different networks more efficiently or perform

management operations on specific network devices.

The first step in MINA is to accomplish the creation of the overlay network. This is an

organization of network nodes or devices in a hierarchical manner and is distinct from the

underlying network topology. The hierarchy of the overlay is maintained very shallow, just

3-4 levels deep to ensure minimal overhead as well as better scalability and robustness to

links/nodes failures due to the node mobility. The hierarchy of the nodes is based on the

stability of the network and computing resources the nodes have. Please see Fig. 2.1.

MINA handles scalability in its current design by applying a tree-based hierarchical overlay

model for the nodes in the network. The highest level, i.e. Tier 1 is the most stable and
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• Exploits the diverse capabilities of the network nodes 

• More effectively support node mobility 

Figure 2.1: MINA Overlay Hierarchy

is the central server, resource-rich and aggregates information from lower and less stable

layers. Tier 2 comprises of nodes which are stationary and have sufficient CPU and network

resources. These nodes aid in the routing of information from the lower layers as well as

provide redundant connectivity to the rest of the network to handle large failures. Typically,

these nodes are Access Points(APs) or Routers. A third category of nodes, the mobile nodes

called Tier 3 are less capable than Tier 2 in terms of network connection stability. Such

nodes may move in and out of range of the APs. They typically have WiFi connectivity

to communicate with other nodes which can cause them to move from one AP to another.

Sensor nodes or motes are expected to have very limited connectivity and storage capability.

MINA classifies them again as Tier 3 nodes which are in-turn connected to the Tier 3 mobile

nodes. They have the necessary networking component to talk to the sensors as well as the

Tier 2 backend network.
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2.1.1 MINA Server Architecture

The server architecture and the interactions between the various components of MINA is

described in Fig. 2.2 and Fig. 2.3. More details are available in [10].

Figure 2.2: MINA Server Software Stack

The Overlay Manager in the software stack running on the server side coordinates the overlay

network construction and continuously collects the network state information in order to

actively monitor the managed environment. Collected state is also persisted into a database,

the NIB and thus facilitates many analysis tasks e.g., detect possible faults and unexpected

behaviors, apply formal reasoning methods for fault detection, etc.

The flow of logic on the server is as below:

• Read a startup configuration file and establish connections with Tier 2 nodes (or dy-

namic discovery, e.g., broadcast-based discovery). In reality, this is the relatively stable

portion of the network and can be easily read from some input to speed up the topology

10



Figure 2.3: MINA Server Component Interactions

discovery.

• Start the overlay construction algorithm.

• Invoke the state information (link/node/application state) collection process by dis-

seminating queries to the clients (Observe).

• Persist collected state information into the database

• Analyze the state (Analyze) and, depending on the results, provide configuration

changes to the nodes (Adapt).

• Discover faults (explicit/implicit) in the network (Analyze) and, depending on the

discovery and reasoning results, perform fault recovery operations (Adapt).

11



2.1.2 Current MINA Data Model

We particularly focus on the interactions between the Network state Information Base (NIB),

the Overlay Manager and State Manager. The main goal of this component is to maintain a

global picture of the Multinetwork topology. The NIB is an Object-oriented representation

of the network state. Please see Fig. 2.4. Briefly, the following paragraph describes the NIB.

Figure 2.4: MINA Network Information Base UML Diagram

Node is the entry-point class of the NIB. It models a managed device and it is used as

starting point for navigating through the entire graph. Every Node is distinguished by a

UID (Unique IDentifier). this UID is generated based on the first Network Interface Card

(NIC) attached to the Node. The MAC address is a 6-byte address that is unique for each

NIC and is set by the manufacturer guaranteeing that each Node has it own unique identifier.

The enumeration Tier describes which Tier (in the overlay network) the Node belongs to.
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This can be typically 1, 2 or 3. Each Node has a 1-to-N association with Neighbor and NIC.

NetworkInterfaceCard models one network interface card available locally for this Node.

It is characterized by an address (IP address), a macAddress, and other attributes. The

enumeration nicStatus refers to the actual status of the network interface (it can be either

ON or OFF). Each NetworkInterfaceCard is associated with a Network. Network represents a

network available in the managed Multinetwork environment. Neighbor is a one-hop distance

device reachable from this Node. Each neighbor has a 1-to-N association with Link. Link

models a physical link with a Neighbor in order to collect network information. Each Link

is characterized by an identifier and some metrics that model the channel from the network

perspective (e.g., bandwidth, delay, and lossRate).

2.1.3 Database Access Layer

The NIB is implemented on a MySQL database. In order to access the data within the

MySQL database and access it or manipulate as a java object, the current design uses a

Database Access Layer called Persistence Manager. This cooperates with the State Manager

component of the server to persist the state information in the NIB. Java Persistence API

(JPA) [7] technology has been used here to map these java objects at runtime into equivalent

artifacts in the MySQL database.

The Java Persistence API, sometimes referred to as JPA, is a Java programming language

framework managing relational data in applications using Java Platform, Standard Edition

and Java Platform, Enterprise Edition. A persistence entity is a lightweight Java Class

whose state is typically persisted to a table in a relational database. Instances of such an

entity correspond to individual rows in the table. Entities typically have relationships with

other entities, and these relationships are expressed through object/relational metadata. Ob-

ject/relational metadata is specified directly in the entity class file by using Java Annotations
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(e.g., @Entity), or in a separate XML descriptor file distributed with the application. JPA,

however, is only the definition of a common Java standard interface aimed to handle the Ob-

ject Relational Mapping (ORM). The current implementation of MINA uses Hibernate[16],

which supplies an open-source implementation of the Java Persistence API.

2.2 Redesigned Persistent Data Model for MINA

2.2.1 Known Issues with Current MINA Implementation

The current version of MINA has been tested for a relatively small deployment of less than

50 Tier 3 nodes, 2 Tier 2 nodes and one Tier 1 node. While it validated the concept very

well, tests revealed that the Observe and Analyze phase of MINA were severely impacted by

the database design.

A downside of the JPA implementation using Hibernate used in MINA for the persistence

layer is that it encapsulated the database layer totally. As a result, there is no opportunity

at the database level to intercept the query and send a more optimal SQL (suited for a

Relational Database) for execution to the database. In addition, practical usage of Hiber-

nate requires careful instantiations of dependent objects (lazy instantiations). If not coded

properly, queries can fetch a lot more data than required rendering the system inefficient.

Current version of MINA uses an in-memory representation of the information consisting

of chained linked lists of Neighbors and Child nodes for reference. Any node movement in

the physical topology caused changes to the membership of these linked lists. Since these

objects were linked to the Object-relational mappings, a number of calls were wasted to the

database.

As a result, the team noticed a very slow performance when it came to the Observe and
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Analyze phase of MINA even for very small topologies.

In this thesis, we revisit the existing class model of MINA for the persistence layer and

make it more efficient for implementation on a relational database. We eliminated some java

classes and replaced others with queries that we executed at runtime.

2.2.2 Revised MINA Data Model

Fig. 2.5 presents the modified Persistent Data Model. The current design of the NIB

persisted the Neighbor information separately and associated a Link entity to each such

entry. In this design, we have effectively combined these two entities to just a new Link

entity.

The Link entity represents an association between two Node entities. Physically, this rep-

resents a connection between two Nodes and is qualified further as an association between

the MAC addresses of the two NIC cards that form this link. The Link entity is further

described with details such as: bandwidth, delay, jitter and lossrate.

The distinct advantage with this design is that the changing of a link association between

any two Nodes can be easily represented by changing just one entity. Maintaining a list of

Neighbors to a give nodeUID can be a simple query on the Link entity to fetch all the nodes

associated with the nodeUID of the NICs. The other benefit is that no further maintenance

of the Link entity is required if the physical links are added or removed.

The revised schema matches the data model shown in Fig. 2.5.

These changes along with the Software architecture changes described in the next section

helped improve the performance and ensured the database access layer performs satisfacto-

rily.
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Figure 2.5: Revised MINA Persistent Data Model

2.2.3 In-memory Representation for MINA using JUNG

In the beginning of this subsection, we discussed the known issues with the current version

of MINA. One of them was that for each operation in the Analyze phase or even in the

Observe phase when topology change had to be modified, the program made repeated calls

to the MySQL database.

In this section, we introduce a major change. We propose the use of an in-memory struc-

ture that represents the topology of the real network. The effort taken to maintain such a

structure is paid back by the availability of graph functions on this structure. However, care
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must be taken to make sure that the persistent data is consistent with the in-memory graph.

On this effort, we considered a number of options including using graph databases. We

settled on JUNG [2] which was a graph package developed by researchers at UCI. We felt it

provided the desired functionality in a small footprint that we needed for MINA. We describe

JUNG very briefly here.

JUNG the Java Universal Network/Graph Framework

JUNG is a Java library and allows easy representation and visualization of data that can

be represented as a graph or network. JUNG-based applications can leverage the built-in

capabilities of the graph operations. The JUNG architecture allows the representations of

entities and their relations, such as directed and un-directed graphs, graphs with parallel

edges and others. This was just what MINA needed. It provides a mechanism for anno-

tating graphs, entities, and relations with metadata for visualization purposes. The current

distribution of JUNG (v2.0.1) includes implementations of a number of algorithms from

graph theory, data mining, and social network analysis, such as routines for clustering, de-

composition, optimization, random graph generation, statistical analysis, and calculation of

network distances, flows, and importance measures (centrality, PageRank etc.).

JUNG’s visualization framework can be used for interactive exploration of the network if

required. It is distributed as an open-source library.

2.2.4 Retrofit MINA with revised changes

Having identified the pieces that needed to be rewritten, added or changed, our next effort

was to find the most optimal way to change the code of MINA. At this point, we have

chosen to make a simple retrofit for MINA to improve its performance using the design
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changes above. To put this change into perspective, we show these changes in Fig. 2.6.

DAO Impl. 
Layer 

NIB 

Figure 2.6: Retrofit MINA Server Architecture
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Figure 2.7: Revised MINA DAO Layer Detail
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The purpose of the DAO Implementation layer is to encapsulate all the database accesses to

the NIB. By using the JUNG library, we instantiate the In-memory graph object to keep the

network representation during the program execution. Any object instance that is fetched

from or written to the persistent store is in a Model Layer. Thus the current MINA code

that processes the topology changes from the Overlay Manager or captures the network state

from the State Manager manipulates the objects instantiated from the Model layer or the

in-memory graph object. We show this detail in Fig. 2.7.

2.2.5 Related Work on Persistence Layer Implementations

A typical business application, such as an Account Management system needs some mech-

anism to appropriately register credit and debit transactions on the different accounts it

manages over time. Each of these transactions happen in the context of a session. When

the session has ended and the computation has been completed, the application needs some

way to persist its current state. Most systems utilize an underlying database management

system to persist state.

Persistence Layer is the software layer that makes it easier for a program to persist its

state in the underlying database. The database can be relational or non-relational and each

have their own specific ways to start a session. In order to perform the operations with the

stored data, one needs a way to handle the metadata of the persistent information, queries

and expressions to fetch the information stored and some form of support for Transactions

which ensures atomicity of database operations as appropriate.

Monolithic application code design traditionally interspersed persistent storage access logic

along with regular business logic. With the emergence of modular programming and object-

oriented programming, the benefits of encapsulation and re-usability gained significance. A

paradigm called design patterns came into prominence in the software design.
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Design patterns are conceptual styles of code that can be typically applied to many object-

oriented programming languages and allow standardization of the the program code. As a

direct benefit of this approach, programs were more easily maintainable and once less error-

prone. One such pattern in the discussion of a persistence layer is the Data Access Object

paradigm. Programming best practice documentation of most groups usually spell out the

details of such a layer.

Persistence Layer can be implemented using many different technologies today. Each tech-

nology offers the programmer varying amount of flexibility and encapsulation of underlying

database accesses. Hibernate [16] is one such layer that was quite popular among Java pro-

grammers. It was designed to let Java programmers deal with the Java objects and leave

the contract of persisting the information to the underlying framework. Hibernate used

compiler directives and descriptor files to generate the necessary bindings in the code to

implement the persistence logic. The Java Persistence API (JPA) provided a framework for

such persistence layers to be built and included in the design of business applications.

Toplink is another persistence layer implementation and delivers a standards based enterprise

Java solution for all relational and XML persistence needs based on high performance and

scalability. It is currently available as Oracle Toplink.

Each of these technologies comes with its own merits and demerits and learning curves.

The choice of persistence layer is more often made by the larger development team so as to

leverage synergy during the development process.

We chose to pick neither but implemented just a generic Data Access Layer pattern using

basic JDBC and SQL logic but ensured that we use the Data Access Object java implemen-

tation pattern.
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2.2.6 Database Access Layer Implementation

In order to implement the Data Access Layer, we made use of a simple java pattern called:

the Data Access Object pattern. The DAO pattern is used to separate low level data access

logic or operations, in our case the JDBC and SQL logic from high level business services.

This requires 3 pieces:

• Model Object or Value Object which is a simple Plain Old Java Object (POJO) con-

taining getter and setter methods to store data retrieved using DAOImpl class defined

below.

• Data Access Object(DAO) Interface where we define the standard operations to be

performed on a model object(s).

• Data Access Object Impl(DAOImpl) concrete class which implements the DAO inter-

face, a class which is responsible to get data from a data source which can be database

or any other storage mechanism.

Based on these principles, for each object in the persistence layer, we implemented the

DAO layer. This is described in 2.8. By instantiating the corresponding DAOImpl classes,

we obtain access to the model objects and all the relevant methods. This allows us to

encapsulate all the SQL logic within the DAOImpl classes and optimization or modifications

of any DB related queries can be confined to a very small part of the code.

While this is not a perfect pattern, it is quite adequate for the demands of this project and

hence considered.
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Figure 2.8: MINA DAO Implementation

2.2.7 Revised program flow for MINA

As a consequence of the code modifications made, the program flow for the revised MINA is

described in Fig. 2.9. At the start of the MINA program, we expect that any persistent data

about the previously known stable network state is first loaded from the NIB into a runtime

in-memory graph object. Thereafter, MINA goes into a listen-mode where the network state

is fed into the Update Network State function. This piece forwards the updates to the in-

memory state of the network as well as to the database. On the same lines, the Update

Topology Changes function listens to the topology changes and forwards the changes to
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both, the graph and the database.
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Figure 2.9: Revised MINA Application Flow

The ultimate objective is that we have a new Query Network Information capability that

provides services related to queries on the network state which in-turn realizes this function-

ality from the in-memory graph.

Typical functions provided by this layer include:

• Fetch all current neighbors of a given node

• Obtain the path causing the least delay between two nodes

• Obtain the overall delay along the fastest path between two nodes

These functions are expected to improve the response of the system in the Observe and

Analyze phases.
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Chapter 3

STRESS TESTS ON MINA DB

ACCESS LAYER

3.1 Experimental Setup

The revised MINA Database Access Layer is written and compiled using JDK 1.7. It uses

JUNG v. 2.0.1 and the database is a single-instance MySQL 5.6 server. We chose to test the

access layer separately as a part of this thesis. The codebase was executed on a Windows

7(64bit) OS running on an Intel Quad-core Pentium i7-2600 CPU@3.4Ghz processor and

8GB main memory.

Testing the MINA software with a real network input at realtime is difficult. Therefore, we

built a test program that is capable of putting a varying amount of load on the Database

Access Layer of MINA and as a result stress the database platform.

Our ideal setup would have been a stream input for these network state or topology changes.

Controlling the number of changes sent via stream and measuring the time taken to process
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these changes would have been a good runtime test. However, we did not have any such

stream of data that we could control the input rate.

We have therefore chosen to use a filestream as an input for all our tests and measured the

time taken to process inputs of varying sizes. We measured the time taken for the system to

initialize a previously stored persistent state of the network to get some ballpark estimate of

how long MINA will take to initialize its network state.

We measured the time taken for an All-pairs shortest path on the graph during the tests

periodically. At the end of each set of network updates processed through the system, we

measured the time taken for a random query for a shortest path between any two nodes. Our

intention was to give us an indication of degradation in performance with larger volumes if

any.

We had the ability to initialize the database and repeat any specific run as many times as

we needed.

3.2 Overall Test Strategy

As mentioned earlier, we could not test the revised code changes using a real stream input.

In its placed, we assembled test files with data enough to run the same load atleast 25 times.

A file input would test the robustness of the Database Access Layer just as well if not more

while offering the ability to adjust the input load.

In order to test with some reasonable network load, we searched through the internet for

public repositories for data that we could legitimately use for node mobility. We found a

source in CRAWDAD [9]. In the coming subsections, we describe this test and the results.

After making sure that the database layer accepts the sustained load that the CRAWDAD
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dataset provided, we proceeded to stress test the system even further. We generated test

data for networks of varying sizes and applied topology changes to such a network. Our

intention was to stress the system with a very large load of topology changes and measure

the time taken to absorb a fixed number of changes. Our motivation was to see how the

database layer behaved with increasing load.

At the end of each set of topology changes, we run a query as mentioned before to validate

that the performance of typical queries from Observe phase or Analysis phase did not degrade

in any specific way. In order let the system reach a steady state before taking the results,

we ran each test for atleast 25 times. The following sections describe these tests in greater

detail.

3.3 Testing using dataset from CRAWDAD

We chose the topology traces collected during MANIAC Challenge 2009 and posted on [9].

According the website, the data comprises routing and topology traces collected during the

Mobile Ad hoc Networks Interoperability And Cooperation (MANIAC) Challenge, held on

March 8, 2009 in conjunction with IEEE PerCom 2009. The datasets used show the topology

changes at each time instant. Two datasets were made available with 3 runs in each.

Each of the three runs of the competition lasted around 20 minutes. A total of 21 network

nodes participated in the tests with IP addresses of the form 10.10.0.x, where x (the fourth

octet) is in the set 21, 22, 23, 24, 25, 50-65. By comparing the image capture each second,

we could extract the topology changes between one second and another and generated our

input test data from this dataset accordingly. This formatted input was then passed to our

our program that consumes these topology updates.
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3.3.1 Test Methodology using CRAWDAD dataset

The topology datasets from [9] was effectively an image in the form of a 2-dimensional matrix

of all possible links at the instant it was captured. The very first set provided a list of nodes

as well as the initial state of the network. We therefore converted that data in the very first

snapshot received to a series of Node additions and link additions.

The test data also provided multiple snapshots. In fact, over 1200 in each case at supposedly

intervals of 1 second. Therefore, it is imperative that we process all these changes before

the next snapshot arrives. Each snapshot contains a number of add links. However, the

test data did show superfluous add links where a link to be added was already existing and

therefore nothing needed to be done. On the same lines, the test data showed a number of

remove links pointing to links that never existed.

We chose to measure the time taken for the first snapshot to be processed separately. This

indicates the very first state where it takes in a baseline of the nodes and links. The work

accomplished in this phase is:

• Create the Node and NIC card instance

• Add a link whenever there is a 1-hop link as provided by the snapshot between two

nodes.

• Synchronize the data in the MySQL database and the in-memory cloud

In the next part of the run, we processed each snapshot received as a topology change from

the snapshot received in the previous update. This allowed us to identify any link that

existed before as a 1-hop link is now a non-existent link or a multi-hop link. This translated

to a remove link message to be processed by the topology update. Similarly, a multi-hop or

non-existent link changing to a 1-hop link was processed as an add link message.
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We measured the time taken to process each update snapshot and averaged it over all the

snapshots processed to give us an average processing time. The expectation was that these

snapshots need to be consumed in the shortest possible time.

Finally, at the end of each snapshot, we measured the time it takes the system to complete

a query between any two random nodes in the network. The program generates a pair of

nodes from the set of nodes loaded into the in-memory graph. Then compute the All-pairs

shortest path for the graph. Then compute the shortest path if one exists between the two

nodes. Our expectation was that this query must return a response as quickly as possible.

3.3.2 Test Results from CRAWDAD dataset

The results of testing with the CRAWDAD dataset [9] is presented in the Table 3.1.

Table 3.1: Performance of MINA using CRAWDAD’s vt/maniac topology traces

Dataset 2007-top1 2007-top2 2007-top3 2009-top1 2009-top2 2009-top3

Initial State
Capture

Nodes Added 21 21 21 16 16 16
Links Added 101 84 62 72 78 70
Time to Capture(ms) 751.36 532.95 275.25 381.04 253.04 316.71

Topology Up-
date Capture

Number of Topology
Updates

1320 1260 1260 1219 1215 1243

Total Links Added 3475 3032 3382 3119 4143 3545
Total Links Removed 3390 2897 3231 3021 4035 3454
Average Time for
Topology Update(ms)

13.86 12.01 12.67 11.63 14.87 12.66

Max Time for Ran-
dom Query(ms)

4.96 4.57 6.84 4.69 4.64 4.576
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3.3.3 Interpretation of the results from CRAWDAD datasets

The performance of the Data Access Layer with the CRAWDAD dataset was quite encourag-

ing. We are aware that the size of the topology was not large enough for us to feel comfortable

about the robustness of the platform. However, the number of topology updates that needed

to be processed in a given snapshot seemed realistic enough for us to test with this dataset

and document the findings. In addition, it gave us the opportunity to test whether our logic

accurately identified the links to remove them as appropriate for the test to simulate such

conditions.

Some significant take aways that we took was that the Data Access Layer was indeed capable

of handling topology updates atleast for such a small topology. The other significant finding

was that initial setup was likely to be slow when the program instantiates the in-memory

graph from the persistent store. We then thought that this is an item that we should

investigate with larger networks.

3.4 Testing using Random-generated Test Data

Based on preliminary results of testing the current MINA system, one of the key observations

was a slowness in the Observe phase and Analysis phase. The reason was narrowed down

to the data access layer design that made repeated calls to the database for any changes to

existing topology. We realize that this repeated call would not normally have made a very

big difference but the issue was that the Hibernate layer introduced a number of wasteful

calls to the database. As a result, no SQL optimization was possible in the existing design.

With the revised database schema and a Data Access Layer that is built using the DAO

Pattern, we now have an opportunity to validate the performance of the code with large

volumes of input. The key aspects we need to cover are:
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1. Time taken for a network topology in terms of nodes and links take to initialize from

a persistent store

2. Given a certain volume of topology changes in terms of number of links added or

dropped take to be processed, verify if increasing the size of the network has any

impact.

3. Given a certain size of a network to start with, observe how increasing the volume of

topology changes affects the time taken to process them. This is very significant as

this will tell us how many such changes can the MINA system handle for a given size

of the network.

3.4.1 Test Methodology using Random-generated Data

In order to generate this test data, we pre-populated our database with a given number of

Nodes and Links. This allowed us to test for the time taken to instantiate a given network.

Over repeated runs, we tested with different sizes of the network and measured the time taken

to read these configurations from the database and instantiate a graph with equivalent nodes

and edges. In the process of creating links between any two nodes on this test network, we

did not choose to implement any specific topology here. Our reasoning was that this is a

stress test and therefore as long as we tested with a large enough data size, these random

links should not matter. Therefore we picked any two random distinct nodes and created a

link between them subject to a limit of the number of links we needed approximately to set

up the starting configuration. For example, we populated a starting point with 250 nodes +

1000 links, then with 500 nodes + 2000 links, ... 2000 nodes + 10,000 links.

In the next set of tests, we created batches of topology changes that we can expect to get

periodically from the underlying network. We tested a small fixed amount of 100 links added

between two nodes in the network at random + 50 links between any two nodes picked at
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random to be removed if a link existed. This data mimics the information that a Tier 2

node in MINA would get indicating a group of its child nodes that may have moved from

one location to another and as a result, present link adds and deletes accordingly. Due to

the choice of picking any two nodes in random, sometimes, we may generate data such that

a topology message is received indicating a link being added but in reality that message was

already received through some other source and therefore a number of such messages are

superfluous. On the same lines, we have had instances where the test data ’removed’ a link

between two nodes but there never was one in the first place. Again, such messages were

ignored.

We generated two sets of test data. First, by fixing the load of topology updates, measured

the change in performance if any with different network sizes. Second, by fixing the starting

configuration of the network, tested with varying amount of topology updates. The following

subsections summarize our results and findings.

3.4.2 Test Results from Random-generated Data

The following paragraphs present the results observed using the random-generated test data.

As mentioned before, we were more particular about testing with volume rather than the

semantics of the network itself. As a result, we tested with loads that may not have any

relation to any network we may see in reality. However, at the same time, we tested the

Database Access Layer in normal realistic ranges of topology size and thus ascertained that

the code does perform well under all types of stress conditions.
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Studying the Time to Initialize MINA from persistent storage Info

The first observation we made was to measure the time taken to read data from the MySQL

database and create an in-memory startup is proportional to the number of nodes in the

persistent store. The significance of this measurement is that we expect MINA to have atleast

all the Tier 2 nodes persistent in the repository. Tier 1 and Tier 2 nodes are relatively

stable and do not enter or leave the network unless there is an outage. Therefore, if for

example, the MINA system was ever shutdown the previous night, the next day, one could

simply instantiate the process to read from this persistent store. However, this would mean a

slightly longer startup time theoretically and we attempted to quantify this or put a ballpark

on this phase. The variation of startup time with different node sizes is presented in Fig.

3.1. We see that even a large graph like 2000 nodes and 8000 links, the initialization process

should take under a second.

Studying the affect of Node Network Size for Topology Updates

Our next task was to observe the effect of changing node network size and observing the

time it takes for a fixed amount of topology update load. We tested this with 3 different

sets of loads. 100 Link Adds, 1000 Link Adds and 2000 Link Adds. The plot shown in Fig.

3.2 shows the performance of the logic to absorb these topology updates. For a given load,

there is little if not any variation of the processing time across all the network sizes. There is

definitely an increase in processing time with increase in load which is acceptable and that

is studied in the next subsection.
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Studying the Time Taken for Topology Updates with varying Load

We plot this metric in the Fig. 3.3. In order to test this aspect, we started each run with a

fairly large initial state of the network. This is one of the aspects that we wanted MINA to

support, i.e. ability to manage a large network represented in the in-memory graph object as

well as in the persistent store. We picked 2000 nodes with 8000 links between nodes as the

starting point which we considered as fairly large for a MINA deployment. Our observation

was that the time to process the update was linearly increasing with increase in load.
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Studying the Time Taken for a Random Shortest Path Query with varying Load

Determining the shortest path between any two nodes in a given graph network is perhaps

the most common query that MINA’s Analyze function puts on the underlying Data Access

Layer. In order to efficiently return a response, the system should be able to return the

query results ion short order of time. Our observation was that for a reasonably large node

network starting point, the query process time does seem to rise sharply after crossing say

3000 to 4000 link changes in a batch. See Fig. 3.4.
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3.4.3 Interpretation of the results from Random-generated Data

Node Network Size vs. Initialization Time

On closer inspection of the Time to Initialize Network Of Different Sizes in Fig. 3.1, there

are two significant activities here.

• Loop through all the nodes and links from the repository

• For each value returned in the previous step, create a node and attach it to the graph

or create a link and attach it to the graph

The complexity of this process is O(N+E) where N is the number of nodes in the persistent

store and E is the number of edges/links in the persistent store.

Node Network Size vs. Topology Updates

Observing the plots for the Topology Update Time vs. Node Network Size, as mentioned

before we were not very sure how the logic would behave. This was certainly a surprise that

there was no significant change in the time for the topology updates with changing network

size. Our interpretation of this phenomenon is that the JUNG framework is optimized to

provide a constant-time lookup and constant-time insert/delete/update of the links in spite

of the node network. This is clearly evident in Fig. 3.2 towards the larger network sizes.

One very interesting anomaly was consistently observed and did throw a doubt on our data

collected. We noticed that when the node network size was just 250, the maximum time

taken for the topology update was consistently much higher than the rest of the node network

sizes. We ran these tests repeatedly at this node network size and this strange behavior is

attributed to MySQL being slow in the first 30 seconds of its run. There are a number of
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references in the internet on the relative sluggishness of MySQL database for the first 30

seconds. A discussion regarding this is out of scope of this thesis. However, there is one

aspect that must be considered. MySQL uses buffered query results. Initial queries are likely

to be slow on the database. Under smaller nodes, the setup time for the network was too

short and therefore the early measurements for the topology update must have got skewed

by this.

Topology Update Time vs. Number Of Updates

For a reasonably large node network starting point, the topology updates take longer and

rises linearly. This is confirmed from Fig. 3.3. We did not expect this to be any different.

Our only purpose was to make sure that the increase was linear and not anything else. This

can be explained again by the token that the JUNG library does provide constant-time access

to a insert/update/delete operations on the graph network and so does the database in this

case.

Query Process Time vs. Number Of Updates

We refer to the Fig. 3.4. The Shortest Path query in JUNG is supposedly implemented

using Dijkstra’s algorithm which has a complexity of O(E + log(N) where N is the number

of nodes in the graph object and E is the number of edges/links. However, if there is sufficient

memory on the server running the software, the time to return a shortest path query may

not be significant. On a reasonably large graph starting with 2000 nodes and 8000 links, we

still seemed to finish the shortest path query is less than 500 seconds. This shows that the

strategy of using an in-memory graph can support pretty large networks and help MINA

with this extension.
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Chapter 4

EXTENDING MINA FOR NODE

MOBILITY

In this chapter, we show a unique application of MINA in the real-world where it will play a

major role in network management. We consider the scenario of a shanty town’s emergency

response system.

4.1 The Scenario of a Shanty Town

Shanty towns are a result of rapid urbanization in less economically developed countries [4].

They are characterized by informal construction with no building codes [15] and are often

illegal and self-built using basic materials. They tend to be totally unplanned and rapidly

growing. As a result, such settlements have high population density and lack basic infras-

tructure services like sanitation, electricity, water and public transport. The population

density in such places can touch a million per sq. mile. The size of the vehicles that can

navigate the streets in the town can be limited by the width of the roads. Limitations may
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include narrow alleyways, overhead overhanging obstructions or illegally connected overhead

electric wires. The life and challenges in a typical shanty town can be found in [3].

Shanty towns lack a reliable system for an emergency incident response and relief dispatch.

The lack of uniform road access across the region makes the job of attending to emergencies or

providing disaster relief a major challenge. Such a response in shanty towns largely depends

upon (1) the nature of the emergency, (2) the road access to the location that needs the relief,

and (3) the type of relief resources available on hand. Early gathering of information on the

ground conditions plays an important role in the effectiveness of the response that would

follow. A quick-response system using the right tools and coordination with volunteers,

municipalities, locals and emergency relief groups will create a better opportunity to provide

relief to the inhabitants. Therefore, we propose an approach of deploying volunteers as

mobile agents, directed by a central Control Center (CC), to travel along a specified path

on the road network, capture the emergency information quickly and transmit the data to

the central location to provide situational awareness for appropriate response.

4.1.1 Related Work - Data Gathering for Shanty Towns

Due to a lack of any planned infrastructure, social scientists opine that NGOs and local

service organizations are usually the first point of contact for the residents of a shanty town

seeking relief from unplanned urban emergencies like fire, smoke, gas, medical etc. They

register the request in their system and coordinate with local agencies who provide relief to

the requestor.

In our survey of past work, [14, 24] start with an extensive use of sensors to capture such

data at the scene. However, the lack of good data infrastructure leads to the data staying

uncollected and rendered useless within a short period of time. The data remains on the

sensors until some opportunistic mobile nodes come within range. The data exchange takes
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place from the sensors to the mobile nodes. [12] describes a number of these commonly used

data exchange strategies in this problem space.

Providing a reliable response to emergency requests in a shanty town requires the emergency

event data to be captured within a finite amount of time. We use the term event expiration

to indicate such a time window. Many commentators on shanty town such as in [21] have

concluded that residents in shanty towns have realized the potential of being active, organized

citizens in their neighborhoods and for this reason we consider a volunteer-driven approach

to operate the Mobile Data Collectors.

4.2 Topology for Shanty Town with MINA

An effective system can be built using different classes of nodes with differing capabilities and

on-board resources. The entire region could be instrumented with a large farm of low-cost

sensor nodes that can capture data on demand on various parameters. We can incorporate

MDCs and fixed networking equipment as necessary, all working with a remote MINA server

at a Control Center(CC) and having the ability to analyze any received data.

Emergency situations called events can be registered anywhere in the shanty town and

the nearby sensors would capture the vital details like air quality, smoke, temperature etc.

However, the sensors need to wait for an available MDC to pick up and send as quickly as

possible to the CC. The QoS requirement of such a topology necessitates providing adequate

coverage to capture data from the sensors locally and have sufficient number of MDCs

available to transport the data to the server for further analysis within the shortest possible

time. In such an emergency response system, the sooner this first-response detail is sent the

faster an appropriate relief can be dispatched by the CC. [23] started the initial thinking on

minimizing this delay by considering a suitable mobility model for the MDCs. We extend

41



this idea by formally tackling the task of assigning a mobility model to the MDCs.

A shanty town emergency response could consist of training a team of local volunteers

who know the terrain well enough to act as Mobile Data Collectors (MDCs), gathering

information from event locations on-demand. A practical observation in a shanty town is

that relief depends upon the access to the event location. With development so unplanned

in a shanty town, some locations are accessible by a four-wheeler such as a car or a taxi

while others can only be navigated by a two-wheeler like a bicycle or scooter. Some others

can only be reached on foot. Therefore, we need heterogeneous MDCs with capabilities

that can navigate the different types of access paths. The volunteer MDC operators can be

distributed anywhere in the shanty town. Over the course of time, additional volunteers can

be signed up in specific hotspots in the shanty town to improve their availability.

Operating and coordinating the MDCs and the greater emergency response effort presents

several challenges. First, the MDC and the CC need to have a common understanding of the

road network. Modeling such a road network and representing the roads with the right char-

acteristics can only be as accurate as the best available data source (e.g. OpenStreetMap).

Temporary blockages due to construction, fire spread, or other reasons may not be discov-

ered until an MDC attempts to cross them and so solutions must have the ability to quickly

adapt to such dynamic events.

In a shanty town emergency system, it is critical to ensure that data captured at an event

source be communicated to the sink (the CC) with least amount of delay. However, we cannot

assume having a guaranteed network connectivity in such places to make this happen. On this

topic, past work [14] suggests incorporating static nodes in the proximity of the mobile nodes

to relay the data to the sink. We understand that cellular network coverage is ubiquitous

even in shanty towns today. However, the construction material used in shanty towns can

cause a lot of dead zones within the shanty towns for cellular network coverage also thereby

making it unreliable for transporting critical data.
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We therefore suggest using a set of fixed nodes operating as WiFi Access Points or Routers

so that an MDC would be in the range of more than one AP at any point in time. When the

MDCs encounter dead zones, we have to depend upon the MDC to use some form of store-

and-forward or DTN technique and minimize the time to send to the CC. Our suggested

network architecture is presented in Fig. 4.1.
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Figure 4.1: Shanty Town Network Topology with MINA
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The complexity of such a network requires some form of network management. We propose

using MINA. MINA (described in detail in Chapter 2) classifies the nodes in the network

into 3 different tiers. Sensor nodes are classified as Tier 3 - Edge nodes. The mobile nodes

i.e. MDCs are classified as Tier 3 - Mobile nodes. The Access Points are classified as

Tier 2 nodes and finally CC is the Tier 1 node or MINA server. We recommend having

redundant connections between nodes in each layer so as to minimize the chances of ever

losing connectivity between the CC and the MDCs.

4.3 Need for Node Mobility

The topology shown in Fig. 4.1 is tailor-made for MINA and there should be no concern

on its applicability. However, MINA as it stands today has no part to play in the mobility

of the mobile nodes in the topology. When nodes move opportunistically, they do cause new

links to sensor nodes and drop others along the way and MINA knows about this movement

only after the fact.

The primary objective of our enhancement to MINA is to intelligently route the MDCs in

the shanty town given that we have some knowledge of where the mobile node should be

headed. As the nodes move, MINA captures the state changes appropriately using its OAA

loop. As the mobile nodes move, MINA allows a location update of these nodes and now we

have a real-time picture of the network.

In order to determine the mobility model, we present here our modeling of the road network.

The following paragraphs and subsections discusses the modeling, the problem statement

and the mobility algorithms in detail.
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4.3.1 Shanty Town Road Network as a Graph

In order to plan a path for each MDC, we need an accurate representation of the shanty town

and the different artifacts used to formally describe the access paths. We model the entire

space as a graph with junctions and road-ends modeled as vertices on the graph and the

accesses linking these junctions to one another as edges. For example, openstreetmap.org [1]

provides a fairly detailed XML representation of any mapped region in the world in an

OpenStreetMap (OSM) [1] format. There may be other sources of this information. The

edge weights should be proportional to the length of the access link. We therefore have a

graph G(V,E) as a generic representation of the road network.

The shanty town can have roads of different types. For the sake of a generic model, we

consider three different road networks using the set of edges: (i) H-Type with edges where a

four-wheeler can reach, (ii) T-Type with edges where a two-wheeler (e.g. scooter or moped)

can access, and (iii) P-Type with edges where pedestrians can walk. A pedestrian-mounted

MDC can traverse an edge of any type while the two-wheeler MDC can traverse just the

T-Type and H-Type edges. Thus, we have three different graphs each having the same set

of vertices for convenience but different sets of edges, such as: GH(V,EH), GT (V,ET ) and

GP (V,EP ). We can see then that:

EH ∈ ET ∈ EP

Fig. 4.2 shows the picture of the graph network.
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Figure 4.2: Graph Network for Dharavi
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4.3.2 Emergency Request as an Event

A typical emergency request would be a message phoned in to the Control Center (CC)

or some other external communication channel that the CC provides. We model a request

for emergency assistance received by the CC as an event. An event could apply to any

location in the shanty town. For simplicity, in order to pinpoint the location for emergency

response, we translate the event to the nearest vertex location. Thus an event is represented

as e(ve, tse, expe) and is described in terms of the following attributes:

• ve The nearest junction on the road network, which is considered as the event location
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• tse The timestamp when the event has occurred

• expe The expiration time of the event

The Expiration Time of the event determines a window within which the event data needs

to be captured. Any event data captured after this duration is of limited value and hence

considered useless for us. Expiration Time for individual events could be different depending

upon the nature of the event. However, our model can flexibly accommodate this as needed.

We assume that the events are discrete and non-deterministic. In our analysis, we assume,

say M events during an observation window. Therefore we model the distribution of the

Event Arrival Time for the events as a uniformly random thereby generating the requisite

number of events.

4.3.3 Modeling the Mobility of Heterogeneous MDCs

In our model, the Control Center (CC) provides the sequence of event locations and the

fastest traversal path based on global knowledge of the road network, its condition, and of

other events occurring in the shanty town.

An MDC Walk : We define the sequence of event locations visited by (or planned for) an

MDC as an MDC Walk or more succinctly as a walk. This term is used very liberally in the

following discussion. Therefore, we write:

Wx = {v1, v2, . . . , vn},where vi ε V, ∀i ∈ [1, n]

Representation of an MDC : We model an MDC x using the following attributes and

represent it by Mx(gx, vx0,Wx) where:

48



• gx is the graph network that the MDC x can traverse which can be an instance of the

three graphs GH(V,EH), GT (V,ET ) and GP (V,EP ).

• vx0 is either the next vertex the MDC x is headed to visit in the current path or its last

known location (e.g. a normal rest location of the MDC). This is significant because

any changes to the trajectory will be specified only from this location (vx0 ε V ).

• Wx is a walk assigned to the MDC x starting from the reference location vx0.

When the CC receives a new event, it computes an efficient walk to handle this new event

as well as the previously scheduled set of events. The CC then updates the corresponding

MDC with a new walk Wx.

Generic Cost Model Design : We consider two aspects here. (1) Travel related costs and

(2) Data Capture Constraints. Travel-related costs are typically in terms of distance traveled

or time elapsed during the travel or for completing a service. Data Capture Constraints are

associated with missing the capture of an event as it represents an opportunity missed to

serve a customer.

Travel Related Costs:

Travel Time: We write the Travel Time of an MDC x between two locations va and vb as:

TTx(va, vb, t) =
dx(va, vb)

sx(va, vb, t)
+ (hx(va, vb) ∗ α) + β (4.1)

Here dx(va, vb) is the shortest distance between va and vb on the graph that the MDC x is

associated with, sx(va, vb, t) is the average speed along the edges from va to vb that the MDC

x travels starting at va at time t, t is the time at which the MDC departs va, hx(va, vb) is

the number of hops along the shortest distance on the graph of MDC x between the vertices

va and vb, α is a delay at each junction along the path that accounts for time negotiating an

intersection, and β is the service time at an event location for gathering data. This generic
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representation allows us to model that the travel time can change depending upon the traffic

conditions at t. In our analysis, we do not consider the traffic conditions.

Expected Time of Arrival : The Expected Time of Arrival of the MDC x from va to vb is

computed in terms of the ETA at the starting vertex vaat time t as:

ETAx(vb) = ETAx(va) + TTx(va, vb, t) (4.2)

va ∈ Wx and vb ∈ Wx at time t.

Total Distance: A useful measure of the cost incurred by operating an MDC is the Total

Distance traveled during an entire response effort. If we have K MDCs operating in the

neighborhood, we have

TD =
K∑
j=1

m(j)−1∑
i=1

d(vi, vi+1) (4.3)

Here m(j) is the number of events successfully visited by an MDC j and vi ∈ Wj.

Data Capture Constraints:

Miss Penalty : We define the Miss Penalty of the event at location va as the penalty assessed

when an MDC arrives at an event location after the event has expired OR when no MDC

arrives at all within the observation window.

MP (va) =

 0 if ETAx(va) ≤ EXPx(va)

1 if ETAx(va) > EXPx(va)
(4.4)

va ∈ Wx at the end of the observation window, EXPx(va) is the expiration time of the event

at location va on the walk of MDC x. When the MP at the corresponding event location is

evaluated as 1, we consider that the event has been missed.
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Total Missed : A measure of the total number of the missed events gives an indication of how

efficient the path plan is in terms of data capture. In all our discussions, we assume that an

event location is visited by only a single MDC. Therefore, we compute the number of missed

events as

TM =
M∑
j=1

MP (j) (4.5)

Thus over a period of time, we account for a set of M events covered by all K MDCs as:

M = TM +
K∑
j=1

m(j) (4.6)

Here m(j) is the number of events successfully visited by an MDC j for all the vertices in

the walk Wj.

Percentage of Event Data Captured : This measure is an indicator of how effective a scheme

is. We compute it as:

(1− TM)

M
∗ 100 (4.7)

Average Time of Event Data Capture: Another useful indicator to show how responsive a

scheme is to measure the time elapsed between the event request and when an event data is

captured averaged over a period of time across the set of M events and using K MDCs as:

K∑
j=1

∑
vi∈Wj

(ARRj(vi)− ei)

M − TM
(4.8)

ARRj(vi) is the arrival time of the MDC x at event location vi such that vi ∈ V . ei is the

time the event request was received for location vi.
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4.3.4 Problem Statement

The above formal definitions leads us to the following overall objective:

Assuming that K MDCs are available in a shanty town emergency response effort and M

independent events occur random non-deterministically distributed in time and space in the

shanty town, our ideal objective is to generate a path plan for these K MDCs to handle all

these M random events without exceeding their event expiration times. Informally we try

to primarily maximize the Percentage of Events Captured before expiration and secondarily

minimize the Average Capture Time of an Event.

Stated more formally,

GIVEN:

An MDC x defined as Mx(gx, vx0,Wx).

Wx = {v1, v2, . . . , vn} ,where vi ∈ V

EXPx = {e1, e2, . . . , en}

EXPx is the set of expiration times EXP (vi) of each of the event locations in Wx. There

are K MDCs and M events to capture. TT (va, vb) is the travel time of an MDC on the

shortest path between va and vb and is measured in seconds. ARRx(vxn) is the arrival time

of the MDC x at vxn. Find an ideal set of k walks W Ideal such that

W Ideal = {W1,W2, . . . , . . . ,WK} and (4.9)
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minimize (4.8)

subject to ARRx(vxj) + TTx(vj, vj+1) ≤ ej+1,

∀j ∈ [0, n− 1] and ∀x ∈ [1, K]

(4.10)

Here, vx0 is the current location of the MDC x and vx0 = v0. Clearly, Equation 4.10 cannot

always be satisfied as some events may necessarily be missed due to a lack of available MDCs.

Therefore, we approximate this solution as best as possible with the heuristic algorithms

described in Section 4.4.

Problem Reduction : This problem falls into the broad category of Vehicle Routing Prob-

lem with Time Window (VRPTW). Traditional Vehicle Routing Problems involve a deter-

ministic set of customer locations and a set of vehicles with finite capacity to serve them.

However, the MDC should accommodate new emergency requests as and when they come

in. We thus have a Dynamic VRPTW problem. This is known to be a subclass of Combi-

natorial Optimization Problems, which are NP-hard, and requires searching among O(m!)

combinations. Like many such problems, heuristic-based solutions can be quite effective.

Multiple-TSP with Time Windows (mTSPTW) [5] and Vehicle Routing Problems [17, 19]

have been studied extensively in the operations research community. In [13], Laporte de-

scribes the exact algorithms to solve relatively small problems. When the demand changes

over time, i.e., handling non-deterministic events as we are, the classic solutions become

even more expensive. Spliet, in [20], describes that one of the solutions is to come up with

a master schedule and apply minimal changes to accommodate new demand. This might

cause the resulting schedule to be sub-optimal but it may yield acceptable results, i.e., cus-

tomers are served within their time window constraints but the overall distance covered by

the service may not be optimal. Moreover, TSP or mTSP, by definition, are constrained to
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avoid visiting the same location more than once on a tour and they typically do not handle

dynamic events. Similar work can be found in [8] and [22].

4.4 Path Re-Scheduling Algorithms

In the previous section we reduced our problem to a Dynamic Vehicle Rescheduling problem

for MDCs in the shanty town. We therefore solve this problem using heuristics that we

describe here. In reality, we may only generate a W eff (a subset of all the vertices to be

visited by the walks assigned to each of the k MDCs) and this could be only a subset of an

W Ideal (an ideal solution which is again a set of vertices for the k MDCs that will be hard

to find), i.e.,

{vi ∈ Wk, ∀ Wk ∈ W eff} ⊆ {vj ∈ W Ideal
x , ∀ W Ideal

x ∈ W Ideal} (4.11)

The remaining event locations are discarded as the algorithm does not provide a route to

the locations before the event data expires.

In this section we propose two different heuristic algorithms, the Minimum Deviated Walk

and the Ortho Walk to handle such dynamic events and provide a schedule or walk for each

MDC. In order to compare the performance of this, we first describe a naive approach to

solve the problem, which we call the Nearest Walk.

4.4.1 Summary of assumptions for all heuristics

MDC Current Position : We assume that the Control Center keeps track of the position

of each MDC and therefore knows the next routable vertex (road junction) on an MDC’s

path. This is the earliest vertex at which a route for the MDC can be changed, which we
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call the CurrentPosition.

MDC Current Time : The time of arrival of the MDC at the CurrentPosition is called

the CurrentTime. For stationary MDCs this is simply the current time.

All-Pairs Shortest Path Lookup: We assume the road network is modeled as a graph G

with v vertices and e edges. There is a one-time cost to obtain the TimeToTravel between

all vertex pairs by the shortest path available. The Floyd-Warshall (or similar) algorithm

can yield this in O(v3). If we keep this information in persistent storage we can perform a

constant time lookup.

4.4.2 Nearest Walk - A Naive Approach

The core principle here is to append the new event to the walk of one of the MDCs that

will be closest to the event location at the end of its respective schedule. In other words, we

measure the shortest distance between the new event and the last event location scheduled

for an MDC. Then determine the MDC which is closest w.r.t. travel time via the road access.

The new event location is appended to the walk of the corresponding MDC. We therefore

call this algorithm the Nearest Walk.

Analysis of the Nearest Walk Algorithm

We now analyze the complexity of this algorithm for a single event that needs to be accom-

modated among the schedules of k MDCs. The algorithm identifies the final destination in

the current walk (last stop) for each of the k MDCs using O(k) constant-time operations.

Using the All-pairs Shortest Path Lookup we compute the ExpectedTimeOfArrival of the

MDCs to service the new event from that last stop in the existing walk. For all k MDCs, this

is O(k) constant-time lookups. We pick the MDC that could reach the new event location
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earliest, using at most k comparisons. Thus for each new event, we execute a complexity of

just O(k) to augment the walk of one of the MDCs. The value of k is typically a very small

number in comparison to the number of vertices or edges in the graph. The algorithm is

polynomial in k for each iteration of an event and therefore expected to run fast.

4.4.3 Minimum Deviated Walk - A Local Search Approach

This is a local search algorithm where we attempt to find the best place to insert a new

event location. The motivation of this algorithm is to leave the relative order of the events

in the existing schedule intact. When we deal with multiple MDCs, we pick the MDC that

pushes the very last event on its walk the least amount in time, giving it the name Minimum

Deviated Walk.

In order to achieve this goal, we consider first the walk of each MDC that we may have from

a previous iteration of the algorithm. Knowing the location of the new event allows us to

compute the shortest TimeToTravel between any one of these vertices on an MDC’s walk

and this event location.

We then try to insert the new event location after this vertex. This deviation from the

previous path effectively extends it by adding the segments from (1) the closest vertex along

the path to the new event location and (2) the new location to the next event location that

was in the original plan for that MDC. This results in the MDC reaching the subsequent

event locations later than originally scheduled. Therefore, we must then check each of these

pre-scheduled events on the MDC to determine if they will be missed (reached after event

expiration). If the deviation causes any of the events to be missed, we do not include the new

event. Instead, we defer consideration of the event until after the first event location that

would be missed if including the new event. Such a deferred event will now have another

opportunity to get scheduled at a later time.
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Analysis of the Minimum Deviated Walk

This algorithm is executed at every event occurrence as it needs to insert the new event

location in one of the MDC schedules. We assume that we have k MDCs and m unexpired

events. For each MDC, the algorithm computes the minimum additional time required to

take a detour from the MDC’s current walk at each possible insertion point. If there are

m unexpired events across all the MDCs, the algorithm tests O(m) insertion points in the

MDCs’ walks. If the new event is reachable at the insert location within the specified time,

DW checks for the possibility of missing any of the later events that were in the original

schedule, which also requires O(m) comparisons at most. Lastly, the DW must at least

check each of the k MDCs, including the idle ones, for possible assignment of the new

event. Therefore, this algorithm requires O(m+k) computations to find out the appropriate

position for the new event. Note that there exists the possibility of deferring an event, which

requires additional executions of DW at a later time. If we assume the expected number

of additional executions is α, we have that DW’s complexity for handling one new event is

actually O((m+ k)(1 + α)).

4.4.4 Ortho Walk - A Greedy Approach

We now describe a solution that uses a greedy approach for determining an efficient walk.

The Ortho Walk considers all pending events to be visited by the MDCs along with the new

event. This is not biased in any way towards the pre-scheduled events and evaluates the best

path based on the CurrentPosition of the MDCs and the set of event locations pending (i.e.

to be visited by some MDC).

We keep an array of event locations to keep track of the remaining event locations still under

consideration, called UnexploredEvents. We use the CurrentPostion and CurrentTime values

for each MDC as defined earlier. We record the time of arrival at these current positions

57



for each of the k MDCs and call them CurrentT imex. We start our search among the k

start locations and find the earliest event location among the UnexploredEvents that can be

reached by any of the MDCs. As we narrow down each transition, we mark that vertex as

visited and therefore remove it from the UnmarkedEvents.

The algorithm ends with the iteration where (1) there are no elements in the UnmarkedEvents

or (2) there was no movement possible between and MDC at its corresponding current

position to an unmarked event location without expiring the event. Such events will typically

get missed unless a new event gets added causing a re-shuffling of schedules thereby making

room for this event into one of the schedules. The algorithm results in an effective path for

each of the k MDCs.

It can be easily observed that this algorithm will keep the MDC close to the current location

and inherently prefers the next event location within its current vicinity. Therefore, if there

are fewer events in a remote part of the shanty town and there are no MDCs in the vicinity,

such events may never get scheduled unless there is free capacity among the MDCs to be

dispatched to the distant location.

Visualizing this Algorithm

We show a sample run generating the walks for 3 MDCs with 5 events to be visited. The

CurrentLocation and CurrentTime of each MDC is indicated.

We build a TravelTime matrix with rows and columns representing the locations of Un-

markedEvents and the k MDCs. The cells represent the MDC’s travel time to these locations

along the shortest path. We mark the distance from each vertex to itself as ∞ as well as

the MDC start locations as we do not consider them possible destinations. For the sake of

simplifying the discussion, we assume that all MDCs are of the same type. Consider this

matrix as a grid where each MDC is placed on the cell corresponding to its CurrentLocation.
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V1 V7 V4 V2 V3 V5 V6 V8 

V1 ∞ ∞ ∞ 1 6 26 31 12 

V7 ∞ ∞ ∞ 35 30 10 5 20 

V4 ∞ ∞ ∞ 15 10 10 15 15 

V2 1 35 15 ∞ 5 25 30 13 

V3 6 30 10 5 ∞ 20 25 10 

V5 26 10 10 25 20 ∞ 5 30 

V6 31 5 15 30 25 5 ∞ 25 

V8 12 20 15 13 10 30 25 ∞ 

 M3 
(65) 

 M2 
(75) 

 M1 
(80) 

 M3 
(75) 

 M2 
(80) 

 M1 
(81) 

 M3 
(85) 

 M2 
(85) 

Figure 4.3: Ortho Walk Run ( For a sample input of 5 events at V2, V3, V5, V6, V8 and 3
MDCs at V1, V7 and V4)

For MDC x, find the earliest ETAx corresponding to the unmarked locations in the current

row. Repeat this for each of the k MDCs and choose the earliest ETAx among all of them

that does not expire an event. Mark this location as visited and update MDCx’s CurrentLo-

cation and CurrentTime. In the next iteration, MDCx’s reference location has changed and

it considers events along its current column instead, alternating between rows and columns

for each event visited. Fig. 4.3 shows the schedule returned by the algorithm. The path

traced by each MDC on the matrix changes in right angles, which was our inspiration for

naming the algorithm Ortho Walk. This process continues until the algorithm terminates.
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Analysis of Ortho Walk Algorithm

The OW heuristic function executes every time the system registers a new event. Let us

assume there are m pending events yet to be serviced by k MDCs. In the first iteration, the

algorithm determines the shortest TimeToTravel between the starting points of each of the

k MDCs and the m event locations, which takes mk constant time lookups. Choosing the

lowest TimeToTravel would add an additional k comparisons. Therefore, the running time

for one iteration, which obtains a schedule for one of the m event locations, is O(mk). That

leaves us m− 1 event locations to schedule in the next iteration. Therefore, for all m event

locations, we evaluate the complexity as O(mk2). Note that as both m and k are much

smaller in comparison to v or e we have reduced the complexity to a manageable degree.

4.5 Extending MINA System Architecture

In the previous subsections here in this chapter, we discussed in detail, our work on providing

the ability to direct the mobile nodes in a shanty town to maximize the data capture for

emergency response. We will now place this in the context of MINA architecture in system

terms. To do this we first discuss the system architecture we envisioned for the shanty town

emergency response. We then show the link between the two and see how the two enhance

the value of one another’s capabilities.

4.5.1 System Architecture for an Emergency Response System in

a Shanty Town

Our conceptual view of an emergency response system for shanty towns follows a distributed

system middleware deployment paradigm. Fig. 4.4 presents an overview of the system
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Figure 4.4: System Architecture Overview of Shanty Town Emergency Response

architecture of such a deployment. We see two middleware components: Control Center

Component (CC Unit) and an MDC Component (MDC Unit). The CC Unit does the bulk

of the computation and this allows the MDC Unit to be lightweight and consume a mini-

mal amount of CPU or energy resources. The MDC Unit is replicated on each MDC and

communicates with the CC Unit via a communication link, e.g. satellite network, WiFi

or any other capability that ensures a connectivity to the CC. We can alternatively use a

store-and-forward or Delay Tolerant Network (DTN) based technique to opportunistically

send the collected data to the CC using any other available connectivity. We analyzed this

aspect in a related work [11].

These components are described in greater detail below.
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Control Center Component

The Control Center Component (CC Unit) has 5 main modules. The Setup Module, the

Mobility Planning Engine Module, the Analytics Module, the MDC Path Update Module

and the Realtime Update Module. Fig. 4.4 depicts the interactions between these modules.

We assume that an input data of some kind is available that depicts the roads and junctions,

their characteristics such as distance between junctions and the access type to indicate

whether they are navigable by a car, scooter or a pedestrian. We showed this in Fig. 4.2.

The Setup Module performs a one-time task of formatting the input data into a graph.

When the road conditions change, some access paths may become unusable and therefore

some portions of the graph need to be updated. This may trigger additional computations

of shortest distance between vertices if that is being saved locally. The Setup Module is

also responsible for storing the map data into some form of persistent storage. This module

processes the data to produce as many graphs as there are road types with some access paths

being present in more than one graph. Depending upon the type of MDC, we assign the

appropriate graph network for further computations.

An important part of the CC Unit is the Analytics Module which analyzes and presents the

data collected. The Mobility Planning Engine (MPE) records the events received from an

external source which triggers the rescheduling of the MDCs to accommodate the new event.

MPE is the heart of the CC Unit. The MPE module determines among the heterogeneous

MDCs, the one that can reach the event location soonest. It forwards an outbound message

to the MDCs with an updated route through the MDC Path Update Module. The Realtime

Update Module receives the event data collected by the MDCs and save it in the persistent

store. In addition, it handles any road change conditions sent from an external source

triggering an update of the graph data from the Setup Module.
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The MDC Component

The MDC Component (MDC Unit) consists of two main modules. The Recorder Module

captures the event data from the sensors and sends it to the CC Unit via a communication

link. The Actuators Module handles two diverse tasks. One is to update the path plan

provided by the CC Unit and the other is to control the sensors if need be. The MDC Unit

uses the communication link to communicate with the CC. The capability of a periodic

update allows the CC to make a determination if the MDC is running behind schedule and

therefore reroute other MDCs to event locations that may in the danger of not being serviced

before event expiry.

4.6 Putting MINA and Mobility Planning Together

The topology for a shanty town shown in Fig. 4.1 introduces a layer of Access Points and

Routers inside the shanty town area. As a result, the MDCs have more opportunities to

stay connected and communicate with the Control Center. Messages can be routed to/from

the Control Center more promptly. The introduction of MINA to manage such a topology

provides very unique capabilities on this infrastructure.

We present two such use case scenarios here where MINA makes this a robust solution for

efficient response to emergency/disaster scenarios.
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Figure 4.5: Use Case 1 - Handling Shanty Town Emergency/Disaster Response

1. Emergency Event Request Received. 

MINA Server with Control Center Application 

2. Emergency Event Request Registered. 
3. Find the best MDC for Sensor Data Capture 
4. Send message to specific MDC 

5. Route MDC Movement Message to MDC 
via shortest path(Mobility Update). 

6. MDC Located. Proceeds close to Sensors. 
7. Collects local data from on-board sensors (if 
reqd.) 
8. Collects Stored data from sensors. 

9. Send Stored Sensor Data. 

10. MDC transmits 
data to CC via 
shortest path. 

11. Route MDC Packets to MINA Server/Control Center 

12. MINA Server/Control Center Determines 
appropriate Emergency Response 
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Figure 4.6: Use Case 2 - Location Update of MDC

1. MDC Moves in the shanty town area. 
2. MDC Sends periodic location updates to 

MINA Server/CC. 

MINA Server with Control Center Application 

3. MDC Location Update forwarded to 
MINA Server/CC. 

5. MDC joins new AP. 

6. MDC Topology 
Change sent to 
MINA Server by AP 

7. MDC Topology Change 
processed by MINA 
Server 

4. Realtime location update of MDC 
recorded by MINA Server/CC for future 
path planning. 
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4.6.1 Use Case 1 - Handling Shanty Town Emergency/Disaster

Response

Fig. 4.5 describes the scenario of emergency data gathering using MINA and the mobility

planning components.

When an emergency event has occurred in some corner of the shanty town, we assume

that the Control Center gets some notification of this event. Shanty towns typically have a

cellular phone coverage that reaches practically all the area. However, the data rates may

not be high/reliable enough to support any data service based applications and hence not

considered to be a part of our solution.

The CC captures the event location and time of the event. The CC Unit running on the

MINA server determines the MDC that has the best chance of capturing the data. This is

based on the fact that the system keeps track of the current or last known location of each

MDC and also keeps track of the next location where an MDC is headed.

The CC Unit creates an appropriate message destined for the specific MDC with a navigable

path for the MDC to take next and capture the event data. In fact, the CC Unit may have

to adjust the trajectory of more than one MDC so as to capture the data from all pending

events. MINA determines the best network path to route the instructions to the MDCs

whose path has been modified based on the current positions of the MDCs.

MINA in the meantime has been constantly Observing the network state. It is able to

determine the most optimal network route to the MDCs. It uses its internal query capability

to forward the message appropriately. When the message is received, the MDC updates its

trajectory to be followed and keeps moving unless it is interrupted to accommodate another

event.

When the MDC reaches the event location, it establishes a connection to sensor node. The
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overlay framework of MINA captures this connection and informs the MINA server and the

CC Unit of its successful capture of data at the event location. Optionally, the MDC, using

its on-board unit called MDC Unit (Fig. 4.4) can capture additional data that may give

more context to the event data collected by the sensor. All the event data collected by the

sensor is routed to the CC Unit by the MINA framework. In order to do this efficiently,

MINA once again provides the optimal route for the packets to be sent to the CC.

MINA continuously monitors the state of the network. It Analyzes the network for any

faults or congested routes and updates the routing tables via the Adapt functionality of all

the Tier 2 nodes appropriately so that the connectivity to the MINA server can be ensured.

When the event data finally reaches the CC Unit, it is analyzed and an appropriate response

is dispatched to the event location.

The Fig. 4.5 illustrates the sequence of activities performed by MINA and the Mobility

Update piece in the CC Unit in detail for a specific MDC.

4.6.2 Use Case 2 - Location Update of MDC

We now describe a routine scenario where MINA helps provide periodic location updates to

the CC Unit. Fig. 4.6 describes the details.

In steady state, the MDCs are either en-route to an event location to capture data or may

be stationary. Maintaining an accurate picture of the MDC positions across the shanty

town is a crucial part of the Mobility Planning module. This can be achieved only with an

infrastructure like MINA that can guarantee a periodic update.

GPS locators on the MDC Unit allow MDCs to accurately determine their current location in

the shanty town. This information may be very small packets of data that can be periodically
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transmitted to the central CC Unit. In order to transmit the information efficiently and

promptly to the MINA server, the MDC forwards the location information to the AP or

Router. MINA maintains the routing tables of the Tier 2 to ensure that any packet destined

to the Tier 1 server comes in via its most optimal route.

Thus, apart from maintaining the topological information, MINA can be very easily extended

to capture these Location Update messages. The MINA framework is easily extendable to

additional messages. We propose to use this framework to capture the additional data from

MDCs at periodic intervals. MINA routes these messages appropriately to the CC Unit.

The Real-time Update component of the CC Unit consumes these messages and updates its

repository accordingly.

Another feature of MINA that continues to play a significant part is that as the mobile nodes

move from one AP to another in the network, its movements are detected as node joining

or leaving an pair of Access Points or Routers in the Tier 2 of the MINA network. Such

messages are also routed to the MINA server and MINA appropriately adjusts the routing

tables to reflect this change.

4.6.3 Benefits of Mobility Planning to MINA

In the previous sections, we have shown how the mobility planning plays an important part

in the combined solution. One can argue that by adding this capability to MINA, we have

changed MINA from being a reactive system to being a proactive system. Without the

Mobility component, MINA was just observing the network state and keeping track of the

mobile node movement within the network topology. However, the mobility option gives

the opportunity to place a mobile node at a specific location on the map. By itself MINA

never had a functionality that directs the mobile nodes to go anywhere.Adding the Mobility

component allows the mobile nodes to be directed to perform tasks.
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Chapter 5

CONCLUSION

In this thesis, we have described in detail the changes made to MINA’s Database Access

Layer. We have also described an extension to MINA that introduces a Mobility Planning

capability into MINA. In order to show the true value of the solution, we have presented

the revised changes to MINA in combination with Mobility Planning and applied it to a

real-world scenario. We conducted a series of stress-tests on the MINA DB Access layer

and have been able to give some ballpark estimate on the volume of topology changes our

enhancements will support.

MINA’s central, novel feature is the use of a reflective Observe-Analyze-Adapt approach

to manage the underlying multi-network environment. The effective implementation of the

OAA cycle is critical to the management of dynamic multi-networks. It uses a separate

shallow Overlay Hierarchy of nodes to keep track of the real network topology. Efficient

on-the-fly analysis of data gathered by the MINA server is crucial for decisions concerning

optimization of the underlying network performance thereby delivering the desired end-user

QoS requirements. We have shown that an in-memory graph representation of the underlying

network topology provides a robust architecture that handles large network topologies. By
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modeling the network as a graph we have the ability now to apply efficient graph traversal

techniques to aid the Analysis phase.

MINA has the capability to discover the underlying topology of the network using the Ob-

serve process from the first node. In reality some portions of the network does not change

frequently, like the Tier 1 and Tier 2 of the network. A significant benefit of this robust DB

layer is that we now have a faster initialization process to instantiate the runtime image of

the network.

We have successfully put this new DB layer to stresses that can be expected of a typical

multi-network. Our tests have shown that for a fixed load of topology changes, this layer

provides a constant response irrespective of the size of the node network. A predictable

response allows us to size a system right and set an expectation of the volume of changes a

system can handle in a given instant. Based on the time taken to absorb changes, we can

the set the frequency of updates such that there is no backlog.

The implementation of MINA was designed to treat all artifacts of the network topology as

Java artifacts with little emphasis on where the data persists. An Object-Relational Mapping

(ORM) layer was used to bridge the Java object with the database implementation. With

this work, we have realized that when the design a system incorporates the persistence of

the data in a specific technology, then it is always better to investigate ways that allow us

to use the benefits of the underlying technology.

We had some past work on the design of a Shanty Town Emergency Response system. We had

proposed Mobile Data Collectors (MDCs) navigating the complex road network of a shanty

town to capture emergency related information and relay it to a Control Center(CC) for

appropriate redress. Given some parameters on the location of the MDCs and the coordinates

of the new and pending emergency events that need to be serviced, we provided some efficient

algorithms that show a very high rate of data capture. However, we did not work on the
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task of relaying the packets of data gathered from the emergency location to the CC. In a

shanty town assuming a guaranteed connection from the MDC to the server at the CC is

unrealistic. We therefore propose here a multi-network deployment of fixed nodes like Access

Points and Routers that these MDCs could connect to. By deploying redundant hardware,

we could minimize the dead zones (areas with no WiFi coverage) in the shanty town and

provide a path to the server at the CC.

We have shown this topology can be extended with a simple multi-network topology. We

can consider instrumenting the shanty town liberally with 100s or more low-cost short-range

sensors operating on point-to-point or other short range networks. They capture the most

accurate information of the emergency event as and when it occurs. However, the sensor

nodes do not have the ability to send this information to the CC. We therefore dispatch a

MDC via a message through MINA. MINA allows us to track the position of these MDCs

near real-time.

We thus show that MINA and Mobility Updates go hand in hand and improve the perceived

value of the combined solution. By adding the mobility component to the MINA server, we

now attach a mission to the MDCs rather than be opportunistic in the data capture. We

believe that this is a very valid usecase for MINA.

In the discussion on the topology for a shanty town emergency response, we indicated that

the entire shanty town can be instrumented with low-cost, low-power sensors. However, we

can minimize the complexity of the system by eliminating the entire Tier 3 - Edge sensors

altogether. In our proposed design of the MDC Unit (Fig. 4.4), we have suggested an

on-board sensor(s) installed that are capable of capturing many different parameters. Our

solution using MINA combined with the node mobility therefore makes it a more complete

solution. When we add a DTN capability to the MDCs, our solution will then make this

implementation a more robust network applicable for real-world shanty town scenarios.
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Scope for Improvement - Potential Next Steps

In the short time-span that we had to complete this dissertation, we realize we may have left

a lot of room for improvement. We take this opportunity to enumerate them and perhaps

tackle it in future work.

• The current implementation of MINA is based on a centralized server. Perhaps we

should consider decentralizing the server and find ways to manage the network appro-

priately.

• The Database Access layer has been implemented with plain JDBC and SQL to prove

the need for optimization at the DB design/access level. It does perform well. However,

there are other persistence layer implementations in Java that address the shortcomings

of Hibernate that we have not considered.

• We could explore the use of Graph databases like neo4j or other technologies that

target the persistence of networks more natively. We may be able to derive much more

scalability for managing multi-networks this way.

• We would have liked to test the modifications we made to MINA with a public dataset

or generate one ourselves that mimics the Shanty Town Emergency Response topology.

We will need to simulate the Delay Tolerant Network(DTN) techniques for MDCs to

use before they can transmit to the CC. We would like to see the impact of these delays

in the effectiveness of the emergency response.

• We would like to test the performance of the mobility planning algorithms with the

location updates coming through MINA. It is important to measure the overheads

generated by MINA in a true network simulator.
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Appendix A

Detailed Test Results
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A.1 Test Results from Random-Generated Test Data
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DETAILED RESULTS OF TESTS ON RANDOM-GENERATED DATA 3/16/2015

1
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24

25

26
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28

29

30

31

32

33

A B C D E F G H

Test Group Test Description

InitialState Number 

of Nodes

InitialState - 

Number of 

Links

Setup Time of a 

Start Network

StartState 

(Nodes#) for 

Topology 

Updates

StartState 

(Links#) for 

Topology 

Updates

Time to Load 

Graph 

Network 

From MySQL

1                  1000L/250N/100A/50R 250                              -                    10,374.00         250                 987                  270.29           

1                  2000L/500N/100A/50R 500                              -                    32,646.93         500                 1,991              282.16           

1                  3000L/750N/100A/50R 750                              -                    38,642.34         750                 2,985              307.55           

1                  4000L/1000N/100A/50R 1,000                          -                    47,481.10         1,000             3,979              320.47           

1                  6000L/1500N/100A/50R 1,500                          -                    58,985.45         1,500             5,986              354.10           

1                  8000L/2000N/100A/50R 2,000                          -                    75,226.10         2,000             7,987              439.86           

2                  8000L/2000N/100A/50R 2,000                          -                    74,244.11         2,000             7,980              421.06           

2                  8000L/2000N/200A/100R 2,000                          -                    74,932.05         2,000             7,987              420.25           

2                  8000L/2000N/400A/200R 2,000                          -                    75,596.91         2,000             7,973              421.16           

2                  8000L/2000N/800A/400R 2,000                          -                    73,390.36         2,000             7,975              420.65           

2                  8000L/2000N/1000A/500R 2,000                          -                    71,490.02         2,000             7,982              421.85           

2                  8000L/2000N/2000A/1000R 2,000                          -                    78,586.48         2,000             7,985              471.29           

2                  8000L/2000N/3000A/1500R 2,000                          -                    68,962.77         2,000             7,981              424.30           

2                  8000L/2000N/4000A/2000R 2,000                          -                    66,573.34         2,000             7,987              420.40           

2                  8000L/2000N/5000A/2500R 2,000                          -                    71,133.29         2,000             7,985              421.59           

3                  1000L/250N/1000A/500R 250                              11,618.59         250                 980                  271.47           

3                  2000L/500N/1000A/500R 500                              31,942.82         500                 1,983              281.52           

3                  3000L/750N/1000A/500R 750                              39,861.32         750                 2,979              306.19           

3                  4000L/1000N/1000A/500R 1,000                          42,152.27         1,000             3,988              328.04           

3                  6000L/1500N/1000A/500R 1,500                          62,063.31         1,500             5,988              360.11           

3                  8000L/2000N/1000A/500R 2,000                          67,018.16         2,000             7,982              423.75           

4                  1000L/250N/2000A/1000R 250                              10,261.86         250                 985                  270.64           

4                  2000L/500N/2000A/1000R 500                              31,549.62         500                 1,979              290.37           

4                  3000L/750N/2000A/1000R 750                              38,002.88         750                 2,981              308.18           

4                  4000L/1000N/2000A/1000R 1,000                          45,802.04         1,000             3,983              323.01           

4                  6000L/1500N/2000A/1000R 1,500                          61,029.07         1,500             5,981              354.79           

4                  8000L/2000N/2000A/1000R 2,000                          68,467.76         2,000             7,978              420.23           
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Messages 
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Min Time for 

Topology 
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Topology 

Update

Avg Time for 

Topology 

Update

Min All 

Pairs 

Shortest 

Path Setup 

Time

250                         3,204                   100               202               50                1,169            564.44                2,825.08          1,424.39           0.07          

500                         4,386                   100               66                 50                1,211            541.24                1,249.86          797.04              0.07          

750                         5,427                   100               43                 50                1,235            511.67                1,072.37          735.50              0.07          

1,000                      6,440                   100               25                 50                1,236            534.20                1,194.69          801.69              0.06          

1,500                      8,468                   100               13                 50                1,245            496.05                1,186.62          790.26              0.07          

2,000                      10,468                 100               11                 50                1,242            555.49                1,308.74          779.77              0.06          

2,000                      10,459                 100               11                 50                1,240            540.11                1,012.97          781.61              0.06          

2,000                      12,940                 200               29                 100              2,482            1,019.33             2,207.47          1,495.57           0.07          

2,000                      17,878                 400               64                 200              4,969            2,019.92             3,762.31          2,963.53           0.07          

2,000                      27,740                 800               159               400              9,924            5,191.31             6,788.93          5,960.00           0.07          

2,000                      32,618                 1,000            252               500              12,388          6,828.32             8,476.87          7,695.69           0.07          

2,000                      56,745                 2,000            829               1,000          24,589          12,605.56           16,772.67        14,660.36         0.07          

2,000                      80,477                 3,000            1,687           1,500          36,683          19,561.77           23,679.16        21,250.46         0.07          

2,000                      103,639               4,000            2,900           2,000          48,552          25,375.68           33,001.72        29,571.07         0.07          

2,000                      126,436               5,000            4,298           2,500          60,249          31,750.47           43,165.91        37,958.73         0.07          

250                         14,696                 1,000            7,448           500              8,664            6,642.08             24,472.17        8,724.87           0.07          

500                         23,047                 1,000            2,620           500              11,184          6,335.09             10,016.34        7,947.81           0.07          

750                         26,016                 1,000            1,322           500              11,859          5,950.14             8,268.09          7,084.30           0.07          

1,000                      27,728                 1,000            817               500              12,057          6,142.09             8,375.89          7,400.91           0.07          

1,500                      30,352                 1,000            438               500              12,302          6,033.95             7,306.88          6,684.61           0.07          

2,000                      32,578                 1,000            271               500              12,367          5,691.30             8,066.70          6,874.14           0.07          

250                         18,647                 2,000            21,488         1,000          14,150          12,993.59           30,049.83        17,080.09         0.08          

500                         38,443                 2,000            8,886           1,000          20,350          13,545.45           20,573.28        17,688.38         0.07          

750                         46,132                 2,000            4,512           1,000          22,663          12,918.12           18,086.77        15,833.27         0.07          

1,000                      49,801                 2,000            2,716           1,000          23,534          13,237.79           18,144.95        15,844.53         0.07          

1,500                      53,950                 2,000            1,332           1,000          24,301          12,393.62           15,418.51        13,804.66         0.07          

2,000                      56,738                 2,000            788               1,000          24,548          13,211.13           16,222.76        14,676.68         0.07          

Figure A.2: Test Results from Random Generated Test Data - Page 2 of 3

78



DETAILED RESULTS OF TESTS ON RANDOM-GENERATED DATA 3/16/2015

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

S T U V

Max All 

Pairs 

Shortest 

Path Setup 

Time

Min Time 

For 

Random 

Query

Max Time 

For 

Random 

Query Test Run Time

2.15          1.51         8.59            35,965.92        

2.18          2.32         13.02          20,329.34        

2.15          3.42         16.10          18,838.97        

2.21          4.42         22.55          20,547.93        

2.19          6.57         29.04          20,362.51        

2.25          9.83         32.63          20,254.82        

2.27          8.87         32.98          20,277.89        

2.21          9.12         31.77          38,149.42        

2.26          8.82         30.78          74,899.45        

2.14          9.56         49.36          149,943.08      

2.18          10.16       33.04          193,373.77      

2.13          11.63       58.35          367,864.84      

2.24          12.36       118.15       532,945.31      

2.15          13.00       111.73       741,228.15      

2.19          13.06       230.15       951,433.76      

2.23          2.97         16.01          218,618.23      

2.19          4.13         21.75          199,303.35      

2.17          4.92         21.75          177,759.99      

2.29          5.60         24.18          185,749.18      

2.15          9.14         28.07          167,979.76      

2.16          0.32         62.96          172,846.66      

2.12          3.54         23.03          427,591.83      

2.14          4.88         66.37          443,096.43      

2.23          6.34         40.53          396,743.64      

2.18          7.56         43.61          397,102.06      

2.18          8.69         51.08          346,245.79      

2.17          9.96         67.13          368,239.48      
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