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ABSTRACT OF THE DISSERTATION

Models, Algorithms, and Downstream Applications

of Nanopore Sequencing

by

Dhaivat Janmejay Joshi

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2024

Professor Suhas N. Diggavi, Chair

The advent of nanopore sequencing technology represents a significant leap forward in the

ability to read long fragments of DNA, up to 4M bases, surpassing the capabilities of tra-

ditional short-read sequencing methods that can read a few hundred bases. Despite its

potential, nanopore sequencing is challenged by high error rates (5% − 15%). In this dis-

sertation, we presents a comprehensive examination of various computational approaches to

address these challenges and enhance the utility of nanopore sequencing technology in ge-

nomic analysis by using an underlying physics-based model of nanopore sequencers to guide

our methods.

First, we describe a mathematical model that describes the “nanopore channel” which

takes a DNA sequence as input and outputs observed current variations in a nanopore se-

quencer. This model accounts for impairments such as inter-symbol interference, insertions-

deletions, channel fading, and random responses. Moreover, the model also provides insights

for the error profiles in the nanopore sequencer that can be utilized to develop algorithms for

downstream applications. We further study the bounds on the information extraction ca-
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pacity of nanopore sequencers that provides benchmarks for existing base-calling algorithms

and guidelines for designing improved nanopores.

Our first main algorithmic work introduces QAlign, a preprocessing tool that improves the

accuracy and efficiency of long-read aligners by converting nucleotide reads into discretized

current levels. This transformation captures the error characteristics of nanopore sequencers

studied in the previous work, enhancing alignment rates of nanopore reads to reference from

around 80% to 90%, improving overlap quality for read-to-read alignments, and read-to-

transcriptome alignment rates significantly across multiple datasets.

Our second main algorithmic work focuses on the detection of structural variants (SVs)

using nanopore sequenced reads. We present HQAlign, an aligner designed to leverage the

physics of nanopore sequencing and SV-specific modifications to enhance alignment accuracy.

HQAlign demonstrates a 4%− 6% improvement in detecting complementary SVs compared

to the minimap2 aligner, along with substantial improvements in breakpoint accuracy and

overall alignment rates for read to reference alignments as compared to QAlign and min-

imap2.

The final algorithmic work addresses the challenge of identifying heterozygous variants

using the highly erroneous nanopore reads data for developing algorithms for diploid genome

assembly. We propose an algorithm that identifies heterozygous variants with a recall of 90%

and precision of 70%, facilitating the reconstruction of diploid genomes without additional

reference information or preliminary draft assemblies.

Collectively, these studies advance the understanding and application of nanopore se-

quencing technology, offering novel computational methods to mitigate high error rates and

improve genomic analyses, including alignment, structural variant detection, and diploid

genome assembly.
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CHAPTER 1

Introduction

Deoxyribonucleic acid (DNA) is the molecule that encodes the instructions for life. This

complex molecule, found in nearly all living organisms, stores genetic information in the

form of a sequence of four chemical building blocks: adenine (A), guanine (G), cytosine (C),

and thymine (T). Understanding the order of these bases, or DNA sequencing, is fundamental

to deciphering the secrets of biology and medicine. Since its inception, DNA sequencing has

evolved significantly, revolutionizing fields such as genetics, medicine, evolutionary biology,

computer science, and bioinformatics. This chapter introduces the problems we study in

this dissertation and also gives a historical perspective of the topic. We also outline and

summarize the contributions of this dissertation and its organization.

1.1 Historical Development

The quest to read the genetic code began in the early 20th century. Pioneering work by Fred-

erick Sanger in the 1970s led to the development of the Sanger sequencing method, the first

widely used technique. Sanger sequencing relied on enzymatic chain termination reactions

to generate fragments of DNA with defined lengths. These fragments were then separated

by size using gel electrophoresis, allowing researchers to determine the base sequence. This

revolutionary method paved the way for the Human Genome Project, a massive undertak-

ing that successfully sequenced majority of the human genome in 2003. Various sequencing

techniques developed later employ different methodologies to achieve this, including Illumina

sequencing, nanopore sequencing, and single-molecule real-time (SMRT) sequencing. Despite
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differences in approach, all sequencing methods involve the generation of DNA fragments,

sequencing of these fragments, and subsequent assembly of the sequence data to reconstruct

the original DNA molecule.

1.2 Significance of DNA Sequencing

DNA sequencing has transformed biological research in numerous ways:

1. Genomic Analysis: By deciphering the complete DNA sequence of an organism (its

genome), scientists can gain insights into its genetic makeup, evolutionary history, and

potential functions of genes.

2. Medical Applications: DNA sequencing plays a crucial role in medical diagnostics,

personalized medicine, and genetic counseling. It enables the identification of disease-

causing mutations, genetic predispositions, and personalized treatment strategies.

3. Biotechnology: DNA sequencing facilitates the engineering of novel proteins, genetic

modification of organisms, and development of biopharmaceuticals.

4. Evolutionary Biology: Comparative genomics, enabled by DNA sequencing, al-

lows researchers to study evolutionary relationships between species, trace evolutionary

events, and understand genomic adaptations.

5. Forensic Analysis: DNA sequencing is utilized in forensic science for identifying

individuals, determining familial relationships, and solving criminal cases.

1.3 Evolution of DNA Sequencing Technology

Over the past few decades, DNA sequencing technology has undergone remarkable evolu-

tion, characterized by improvements in speed, accuracy, scalability, and cost-effectiveness.
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The advent of high-throughput DNA sequencing methods has greatly accelerated research

and discovery in genomics. Much of this improvement was made possible with the second-

generation sequencing technology that not only plummeted the cost of sequencing by nearly

six orders of magnitude, but also sequenced the entire genome at once by utilizing massive

parallelization. This is accomplished by fragmenting the genome into small pieces, and then

sequencing it. Therefore, these devices can only read short fragments of DNA that are typ-

ically a few hundred bases long. Utilizing the algorithms that exploits the overlaps between

these short reads, they can be stitched together to assemble them into long DNA sequence.

However, this assembly is challenging because of several reasons:

(a)

(b)

Figure 1.1: (a) Short reads sequenced a long approximate repeat on genome (highlighted in
red) are very similar and therefore it is difficult to resolve the long repeats in the genome
using such short reads. (b) Long reads can span the entire approximate repeat region on
genome and therefore can resolve such regions well in the downstream task such as assembly
or variant detection in such repeats.

1. Repetitive regions: Genome contains repetitive sequences that can be difficult to

assemble accurately from short reads as shown in Fig. 1.1(a). The short reads are about

few hundred basepair long and are insufficient to resolve long repetitive regions that

are more than few thousand basepair long such as segmental duplications which are
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low-copy repeats of length ranging from 1kb to 400kb with sequence identity more than

90% [4]. This make the problem of finding the exact region of origin on the genome for

the short reads very difficult and therefore, assembly with these reads becomes quite

challenging and leads to incomplete characterization of the variants within these long

repeats. For example, assembly of two long segmental duplication repeats using short

reads can interchange the variants within these repeats as the short reads does not

span the entire repeat regions.

2. Variant detection: Identifying long structural variations in DNA sequence which

are crucial for disease studies becomes more challenging with shorter reads. Structural

variants (SVs) are block of genomic variations of length at least 50 basepairs that are

rearranged in the genome. While short reads can capture SVs that span for a few

hundred bases, they miss to detect the long SVs that are a few thousand basepairs

long. Moreover, repeat regions on the genome are hotspots for SVs and finding the

exact origin and the exact length of the SV within these repetitive regions is a difficult

problem using short reads data. For example, finding the exact length and location

of a deletion SV in a tandem repeat region of a few thousand bases long is a difficult

problem using short reads that cannot span the entire region.

Emerging long read sequencing technologies, particularly, nanopore sequencing [5, 6]

offers a potential solution to the limitations of the short read sequencing mentioned above

by providing long reads (with average read length more than 15-kb and the longest read

sequenced so far 2-Mb) that can span these repetitive regions. However, these long reads are

riddled with a high error rate, thus, making alignment of low accuracy [7] and the downstream

task difficult. For example, while nanopore sequencing has enabled fully automated assembly

of some bacterial genomes, the assembly of human genome still produces many contigs that

have to be scaffolded manually [8]. Another important downstream task is structural variant

calling, where long reads can play an important role. However, present structural variant

calling algorithms have low precision and recall due to noise in the reads [9] which fails
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to provide sufficient consensus from different reads in a highly repetitive regions of the

genome to identify an SV by the variant caller. The assembly of long segmental duplications

presents another important problem where long reads can bridge repeated regions but again

becomes complicated due to read errors [10]. These challenges in nanopore sequencing reads

because of the high error rates motivate for the development of algorithms that can utilize

the error profiles of the nanopore sequencers for its downstream applications. The high-level

contributions are highlighted in the following section.

1.4 Contributions

In nanopore sequencing, a nanopore is embedded into a membrane that permits the flow

of ionic current through it when a voltage is applied across the membrane. When a DNA

molecule migrates though the nanopore, different bases offer different resistance to this ionic

current and therefore, result in variation of the current signals which are recorded. These cur-

rent signal variations are decoded back to basepair sequence using base-calling algorithms to

estimate the original sequence passing through the nanopore. Ideally, if only one nucleotide

affect the current signal at a time and the rate at which the DNA migrates through the pore

is constant, the DNA sequence migrating through the nanopore can be decoded accurately

with high probability. However, several non-idealities of the nanopore sequencing technol-

ogy introduces errors in the estimated DNA sequence by the base-calling algorithm. These

non-idealities are discussed in more details in chapter 2 of this dissertation and they pro-

vide insights to incorporating the current-level modeling of the nanopore sequencer into its

downstream applications such as alignment of read to reference genome for Structural Vari-

ant calling, read-to-read alignment for determining read overlaps for the assembly problem,

or read-to-transcriptome alignments.

These errors by the base-calling algorithm in estimating the DNA sequence given the

input raw current signals from nanopore sequencer occurs when there are more than one
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likely DNA sequence for the same observed current signal and the base-caller makes a hard

decision to output a single DNA sequence from the list of ambiguity. However, if we view the

hard decoded DNA sequences in nucleotide space from the lens of the current-level space, we

maintain a list of all ambiguous DNA sequence that are likely for the given current signal,

and therefore, rectifying the errors introduced by the base-caller in inferring the correct

DNA sequence in the current-level space. This approach requires a current-level model

of the nanopore sequencer to translate the decoded DNA sequences from the nucleotide

space to the current-level space. Oxford Nanopore Technologies (ONT) has provided the

current-level models from their base-calling algorithm for their nanopore flowcell except

their current R10.4 flowcell. Moreover, Mao et. al. in [2] provides a nanopore model that

incorporate the non-idealities in the sequencing technology and can be used in the absence

of a nanopore model from the sequencing technology. Utilizing these insights about the

error profiles in nanopore sequencing, we have contributed in developing algorithms for the

following problems:

1. QAlign: We developed an algorithm that translates the DNA sequences to sequences

in current-levels using the appropriate current-level model of the nanopore sequencer.

These current-level sequences are then quantized to two or three levels to enable the

use of state-of-the-art long read alignment algorithms developed for DNA sequences

(or up to quantization level four). We further make a comparison in the improvement

of alignment quality by our algorithm to the state-of-the-art methods in terms of

contiguity measured by the length of the alignment as well as accuracy measured by the

edit distance. We show that QAlign improves the alignment rate of the real nanopore

reads to the reference from 80% with minimap2 (v2.18) on nucleotide sequences to 90%

with quantized current-level sequences. Further, QAlign improves the average read-

to-read overlap quality by up to 10.8%, and improves read-to-transcriptome alignment

rates from 51.6% to 75.4%.

2. HQAlign: We developed an alignment algorithm specifically for SV detection using
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the idea of current-level modeling of nanopore sequencers from QAlign. HQAlign

improves the alignment method of QAlign and incorporates SV-specific changes to the

alignment algorithm for efficient alignments. We show that HQAlign captures 4%−6%

complementary SVs across different datasets which are missed using the alignments

from minimap2 (v2.24). Moreover, HQAlign improves the alignment rate with from

85.64% minimap2 (v2.24) to 89.35%.

Finally, we develop algorithm for detecting heterozygous variants using the nanopore

reads data only which is a primitive step towards developing an algorithm for haplotype-

resolved assembly of diploid human genome. A diploid genome has two copies of each

chromosome – one inherited from each parent. Within the diploid genome, each gene exits

in two copies or alleles – one from each parent. If the two alleles at a specific genetic locus

are different then these alleles are referred to as heterozygous variants. The high error rates

in the nanopore reads pose a significant challenge in accurately detecting these heterozygous

variants which are “signature” of each haplotype or copy of the chromosome. The existing

approaches towards haplotype-resolved assembly utilizes additional high accurate sequencing

data of the same sample genome such as short Illumina reads or HiFi reads that has < 1%

error rates to phase the assembly into two haplotypes based on the signature on the accurate

reads. On comparison with the known heterozygous variants for the sample genome data in

the study, our algorithm shows a precision of 0.70, recall of 0.90, and F1 score 0.78, for a

minimum confidence of 50% on the heterozygous region determined by our algorithm. There

is a trade-off in precision vs recall as we increase the confidence and a detailed analysis on

this is provided in chapter 5 of this dissertation.

1.5 Outline of the dissertation

This dissertation is divided into six chapters including this introduction chapter. In Chap-

ter 2, we study the mathematical model of the nanopore sequencer that incorporates the
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non-idealities of the sequencing technology and the error profile introduced due to these

non-idealities in the output hard decoded nucleotide reads. Chapter 3 develops a novel

alignment algorithm of nanopore DNA reads to the reference, the read-to-read alignments,

cDNA reads-to-transcriptome alignments that utilizes the error profile studied in chapter

2, and demonstrate the study of detailed analyses and improvements in the alignment al-

gorithm performance using the current-level model of the nanopore sequencer. Chapter 4

further improves the alignment algorithm specifically for accurate structural variant calling

using the current-level model of the nanopore sequencer.

In chapter 5 of this dissertation, we develop models and algorithms that identifies het-

erozygous variants from the whole genome nanopore data without using a reference genome or

a draft assembly. This method is the primitive step for developing algorithms for haplotype-

resolved genome assembly of human diploid genome using the long and noisy nanopore reads

data only. Finally, chapter 6 summarizes the dissertation and provides future directions to

be explored based on the insights from this dissertation.

Parts of this dissertation are presented in [2, 1, 11].
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CHAPTER 2

Mathematical model for Nanopore Sequencer

In nanopore sequencing technology, a DNA is transmigrated through a nanopore. There

is an ionic current established across the nanopore and as the DNA migrates through the

nanopore, the variations in the ionic current signals are recorded. The underlying DNA

sequence migrating through the nanopore is then inferred by a base-calling algorithm which

decodes the observed ionic current signal variations to DNA sequence. The performance

of the base-calling algorithms is measured in terms of the number of plausible input DNA

sequences given the observed current signals from the nanopore. In an ideal case, the design

of the base-calling algorithm is to have a unique map between input DNA sequence and the

observed current signals, therefore, resulting in the plausible number of DNA sequences to

be exactly one given the observations, which corresponds to the true sequence. However,

because of the noise and several non-idealities of the nanopore sequencers, there can be

more than one number of plausible sequences for a given observation of current signals. This

introduces a structured error profile, in contrast to the random independent and identically

distributed (i.i.d.) error patterns, in the hard decoded nanopore DNA sequences which

cannot be eliminated by consensus calling or increasing the coverage depth of sequencing.

In this chapter, we summarize the mathematical model of the nanopore sequencer from

[2], which lays the foundations for the algorithms developed for alignment in chapter 3 and

chapter 4 of this dissertation.
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Figure 2.1: A simplified schematic of nanopore sequencer. The enzyme unwinds the double
helix DNA as one of the strands migrates through the nanopore. The ionic current signal
variations are recorded corresponding to the DNA sequence in the nanopore.

2.1 Nanopore model

2.1.1 Nanopore sequencer

A simplified schematic of the nanopore sequencer is shown in Fig. 2.1. A nanopore is inserted

into a membrane that permits the flow of ionic current when a voltage is applied across the

membrane. A strand of DNA is passed through the nanopore which causes modulations

in the ionic current corresponding to different DNA protein in the nanopore. An enzyme

unwinds the DNA and also moderates the rate at which DNA passes through the nanopore

so that the current variations are recorded accurately.

In an ideal case for nanopore sequencing, the rate at which DNA migrates through the

nanopore would be constant so that only one base of DNA affect the current at a time. This

would enable unambiguous decoding of the DNA sequence with high probability. However,

there are several non-idealities of the nanopore sequencer due to the physics of the nanopore

and the enzyme as mentioned below:
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Figure 2.2: Q-mer map for Nanopore R9.4 1D flowcell (Q = 6). The Q-mers are sorted in
the ascending order of the median current levels.

1. Inter-symbol interference: Ideally, we want a design of the nanopore where only a single

nucleotide affects the current observation at a given time, however, the constriction

of the nanopore is thicker than a single nucleotide. This results in the neighboring

nucleotides also influencing the observed current signal at a given time. Let a Q-

mer represents Q consecutive bases affecting the current signals at a given time, and

statistically, Q = 5 or Q = 6 is modeled to decipher the current signals by the base-

calling algorithm. There are 4 different type of nucleotides in DNA which results in

46 = 4096 different Q-mers.
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2. Random dwelling time: The amount of time spent by each Q-mer of the DNA sequence

in the nanopore depends on the rate at which the enzyme unwinds the DNA and is

therefore, not constant. Therefore, the rate at which the DNA sequence migrates

through the nanopore is a stochastic process.

3. Segment insertion and deletion: The enzyme that controls DNA migration through

the nanopore has some backtracking and significant skipping. Therefore, some Q-mers

registers multiple repeats while some pass through the nanopore without recording any

variations in the current signals. These effects induce insertion and deletion errors in

the output of nanopore reads.

4. Q-mer map fading: A current level ci is measured for each Q-mer qi dwelling in the

nanopore at time i, such that ci = f(qi). However, this function f is not deterministic,

and it can produce different current levels corresponding to the same Q-mer at different

times which is similar to the fading effect in communication channels, i.e., ci ∼ D(qi).

Fig. 2.4 shows the median current value for each Q-mer and its standard deviation as

error-bars for Q = 6.

5. Noisy samples: Each observed current level is also subject to a random noise [6].

2.1.2 Mathematical model for nanopore

A nanopore sequencer can be modeled as a communication channel, with input being the

DNA sequence to be measured and the output of the channel is the noisy current signals from

the nanopore. The decoder then predicts the input sequence given the observed current sig-

nals. The mathematical model for nanopore sequencer is shown in Fig. 2.3 from [2]. Consider

the DNA sequence represented as X1, X2, . . . , Xn of length n and Xi ∈ {A,C,G, T} repre-

sents a nucleotide in DNA. It migrates through the nanopore channel whose mathematical

modeling can be considered in the following steps:
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Figure 2.3: Mathematical model for nanopore sequencer for a toy DNA sequence from [2].

1. Inter-symbol interference channel: The nanopore observes input DNA sequence

X1, X2, . . . , Xn as a sequence of symbols influenced by q neighboring nucleotides rep-

resented as Y1, Y2, . . . , Yn−q+1, where Yi = Xi, . . . , Xi+q−1, and length of Yi is q.

2. Segment insertion and deletion: Some symbols in the sequence Y1, Y2, . . . , Yn−q+1

are missed or repeated because of the skipping and backtracking effects resulting in a

sequence Z1, Z2, . . . , Zm of length m, and each Zi is a q-mer of length q. As shown in

Fig. 2.3, the q-mer highlighted in red is backtracked and this results in insertion errors.

3. Fading: The sequence Z1, Z2, . . . , Zm is measured by nanopore sequencer through

variations in the current signals by translating the sequence Z1, Z2, . . . , Zm from the

lens of Q-mer map (shown in Fig. 2.4) and fading effects to a sequence of median

current levels G1, G2, . . . , Gm, where Gi = f(Zi). The function f represents the mean
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value of the distribution for a given q-mer, i.e., if gi ∼ D(Zi), gi represents a current

level sampled from the distribution for q-mer Zi, therefore, Gi = Egi∼D(Zi)[gi]. As

shown in Fig. 2.3, the q-mers highlighted in red and blue have similar current levels

which results in ambiguity for the decoder to infer the correct input DNA sequence.

4. Dwelling: Each current level Gi dwells for a random amount of time in the nanopore

and results in a current signal sequence c(1), c(2), . . . , c(T ) of length T based on the

sampling rate of the nanopore sequencer. This current signal c(1), c(2), . . . , c(T ) is the

raw output of the nanopore sequencer model.

Figure 2.4: Mean and standard deviation of 256 Q-mer maps obtained from nanopore in [2].
There is significant overlaps in range of Q-mer maps.

However, decoding the DNA sequence from the raw current samples with random dwelling

time is a harder problem for base-calling since it requires channels with infinite memory.
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Therefore, the current-levels are first estimated Ĝ1, Ĝ2, . . . , Ĝm from the raw current signals

c(1), c(2), . . . , c(T ) using change-point detection algorithms to find the transitions in the raw

current signal and the mean value of the current samples is estimated within the transition

to estimate the current-levels at the decoder. These estimated current-levels Ĝ1, Ĝ2, . . . , Ĝm

are given to the decoder to infer the input DNA sequence as X̂1, X̂2, . . . , X̂n′ , where n′ may

or may not be equal to n. In an ideal case where the decoding does not have any ambiguity,

we have the decoded DNA sequence X̂1, X̂2, . . . , X̂n′ to be equal to the input DNA sequence

X1, X2, . . . , Xn.

This mathematical model assumes level-finding algorithm to be perfect such that Ĝi = Gi

making the channel in the box in Fig. 2.3 to be identity. Further, there are two more

simplifications made to facilitate the analysis of the models, (i) the frequency of deletions

due to skipping is higher than insertions due to backtracking, thus, the model ignores the

backtracking effects and models skipping as an i.i.d. deletion process. (ii) Fading effects

are modeled as independent random process with each Q-mer having its own uniform fading

distribution (as shown in Fig. 2.4) with center being the mean value and the width being a

constant multiple of standard deviation.

(a) (b)

Figure 2.5: (a) Partition in intersection of Q-mer map ranges from [2]. (b) DMC arising
from the partition in (a) with transition probability pij = l(vj)/l(ri) from [2].

The overlap between the current level range of different Q-mers, say range L1, L2, L3 for

Q-mers z1, z2, z3, induce a partition on the set of possible current level values {v1, v2, v3, v4, v5}
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shown in Fig. 2.5 which causes the list size of plausible input DNA sequences given the

observed current signal to be more than one. Since the fading process is assumed to be

memoryless, the partition on the set of current levels for aQ-mer can be modeled as a Discrete

Memoryless channel (DMC) with channel transition probability determined by p(v|z) = l(v)
l(z)

,

where l(·) denotes length of an interval and ri denotes range of current level for Q-mer zi.

This gives a simplified nanopore channel model shown in Fig. 2.6.

Figure 2.6: Simplified nanopore channel model from [2].

2.2 Insights to nanopore sequencing from information theoretical

bounds derived in [2]

The information-theoretic analysis of nanopore sequencing based on the model design in [2]

aims at understanding the fundamental limits of nanopore sequencing and providing insights

into the design of better sequencing algorithms and nanopore devices. The theoretical results

and its interpretation are summarized below (refer to [2] for proofs of the theorems below

and detailed definition of the notations):

1. The achievable rates for a cascade of deletion channel and DMC channel without the

ISI in Figure 2.6 gives a lower bound on nanopore channel capacity in the following

theorem:

Theorem 1. For the cascade of a deletion channel with a DMC, the following is an

achievable rate for each irreducible Markov transition matrix P on the input alphabet
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Y:

C(P ) = − inf
γ>0

[(1− θ)γ + θE(γ)]

log 2
− θH(Z|V) (2.1)

where θ = 1− pd, pd is the deletion probability of the deletion channel, X is the finite

alphabet of DNA symbol, Y = X k is the alphabet for k-mers, and V is the alphabet

of DMC channel output in Figure 2.6 corresponding to discretized levels.

Interpretation: The achievable rate that reflects the sequencing capabilities of nanopore

sequencer is obtained for i.i.d. uniform distribution on nucleotides to generate the k-

mer transition matrix P . If we optimize the transition matrix P , then we obtain the

achievable rate that can be used to measure the capability of the nanopore sequencer

as a reader for a DNA storage system.

2. The achievable rates for the nanopore channels for different deletion probability pd

and for different ISI length k are computed. The larger k results in more correlation

between the input symbols which increases the protection against the deletions. On

the other hand, larger k increases the noise in DMC since there are more intersections

in the range of Q-mer map in Figure 2.4, and therefore decreasing the achievable rates.

This demonstrates the trade-off effect with increasing k in the design of nanopore.

Therefore, a nanopore with small deletion probability pd, achieves higher rates with

the design with smaller k, whereas a nanopore with higher deletion probability requires

larger k to achieve higher rates for which the intersection between k-mer intervals in

the Q-mer map is required to be reduced to improve DMC quality.

3. The upper bound for nanopore channel capacity is derived using the upper bounds in

the form of finite block mutual information below as the starting point:

Theorem 2. For each n, C̄n defined below is the capacity upper bound of the nanopore

17



channel:

C̄n =
1

n

[
max
s0

max
PXn

I
(
Xn;V (n)|s0

)
+ log(|S|)

]
(2.2)

where the input DNA symbol at each time n is represented as Xn, and the DNA

sequence until time n as Xn with corresponding output of the nanopore channel in

Figure 2.6 as V (n), s0 is the initial state of the ISI channel which is known through the

prefix adapters and has the alphabet S = X k−1. Therefore, log(|S|) = (k−1) log(|X |).

Therefore, as n increases, the nanopore channel capacity is upper bounded by C =

limn→∞Cn:

Cn =
1

n
max
PXn

I
(
Xn;V (n)

)
(2.3)

with Cn ≤ C̄n. For large n, the second term log(|S|) is negligible, but the output

alphabet size grows exponentially which is a major bottleneck for the computation on

the case of nanopore channels.

2.3 Implications of the nanopore model to algorithm development

The work in [2] proposed the mathematical model for the nanopore communication channel

described in this chapter, and derives the information-theoretic bounds for the reliable in-

formation rate analysis that can be achieved for the proposed model. This chapter proposed

a mathematical model for the nanopore channel which provides insights to the physics and

error profile inherent in the nanopore channel and motivates the development of algorithms

for its downstream applications as shown in chapter 3 and chapter 4 of this dissertaiton, es-

pecially, the Q-mer map function f . The base-calling algorithm can make errors in decoding

the DNA sequence when the current signals corresponding two or more different sequences

are similar. Therefore, a structured error pattern is introduced in the output hard decoded
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reads by the base-caller which are difficult to resolve in the downstream applications using

the consensus from the read coverage depth.

These errors can be taken into account for downstream tasks when we translate back to

the current-level space from the hard decoded nucleotide space. The idea behind this change

of space to current-level is to maintain a list of all plausible DNA sequences that could be

inferred from this current-level sequence and develop the algorithms that can perform the

alignments using these current-level sequences by first quantizing them to finite quantized

levels, therefore, mitigating the errors introduced by the base-callers in hard decoding of the

DNA sequences. This idea is explained in detail in the subsequent chapters with detailed

analysis of the performance of the algorithms that take these error profile of the nanopore

sequencer into account for the purpose of read alignments and its application in structural

variant calling.
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CHAPTER 3

QAlign: Aligning nanopore reads accurately with

current-level modeling

3.1 Introduction

In genomic data analysis, aligning DNA / RNA-seq reads to a genome / transcriptome is

a key primitive, that precedes many downstream tasks, including genome / transcriptome

assembly [12, 13] and variant calling [14, 15, 16]. Getting accurate read alignment is difficult

especially in repetitive regions of the genome, due to the short length of the reads obtained

via high throughput sequencing. Emerging sequencing technologies, particularly, nanopore

sequencing [5, 6] offers a potential solution to this problem by providing long reads (with

average read length 10-kb and the longest read sequenced so far up to 4Mb) that can span

these repetitive regions. However, these long reads are riddled with a high error rate, thus,

making alignment of low accuracy [7] and the downstream task difficult. For example, while

nanopore sequencing has enabled fully automated assembly of some bacterial genomes, the

assembly of human genome still produces many contigs that have to be scaffolded manually

[8]. Another important downstream task is structural variant calling, where long reads

can play an important role. However, present structural variant calling algorithms have low

precision and recall due to noise in the reads [9]. The assembly of long segmental duplications

presents another important problem where long reads can bridge repeated regions but again

becomes complicated due to read errors [10].

In this chapter, we study a novel method for aligning nanopore reads that takes into
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Figure 3.1: (a) An example to illustrate the error-profile in nanopore base-called reads, and the
ability of QAlign to perform accurate alignment despite of the errors (the edit distance used here
is to demonstrate accuracy of the alignment, however, the nucleotide edit distance, which is used
as a metric for read-to-genome and read-to-transcriptome alignment, is computed in the nucleotide
domain for the quantized alignments as well). (b) Q-mer map for Nanopore R9.4 1D flow cell (for
Q = 6). It represents the physics of nanopore. The median current value along with the standard
deviation (as error bars) are plotted for every 6-mers in the Q-mer map for R9.4 1D nanopore flow
cell. Note that the difference between the median current levels of any two consecutive Q-mers is
very small. (c) An example showing the two different nucleotide sequences have similar current
levels (therefore similar quantized sequences).

account the particular structure of errors that is inherent in the nanopore sequencing process.

In many of the long read aligners, the read errors are modeled using insertions, deletions and
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substitutions which happen at differing rates. However, in nanopore sequencing, many errors

induced have structure, which is missed by viewing the errors as independent insertions,

deletions and substitutions. In the nanopore sequencer, the current level depends on a Q-

mer (a set of Q consecutive nucleotide bases which influence the current measurement in

the nanopore). This is due to the physics of the nanopore sequencing, where a set of DNA

base-pairs together influence the current output of the nanopore reader [17, 18, 2] (e.g.,

occupying the nanopore width). Therefore, the output current depends on a set of DNA

base-pairs (Q-mer) influencing it. The current reading, which is used by a de-novo base caller

for decoding, therefore could cause structured errors, especially between Q-mers that have

similar outputs. This confusability between different Q-mers, is captured by the so-called

Q-mer map. In Figure 4.1 (b), the median current levels for various Q-mers are plotted

and it is clear that there is significant overlap in the current levels observed when different

Q-mers are passed through the nanopore. These overlaps are one source of structured errors

in the sequencer and can be fundamental since they can be indistinguishable by any de-novo

sequencer.

The novel alignment strategy that we study in this chapter takes into account the struc-

ture of the Q-mer map in order to perform better alignment. In Figure 4.1 (a), we give an

example where a DNA sequence (GCATGACAGG) gets wrongly sequenced as a completely

different sequence (CGGCAACCGA) due to this error mode of the nanopore sequencer.

Ideally, we would like to maintain the list of “equivalent” Q-mers that could have plausi-

bly caused the observed current readings. However, this is infeasible as this would entail

changing the de-novo sequencing process itself to output either multiple possible reads, or

give soft information about different possibilities. This is difficult, as sophisticated de-novo

sequencing have been developed using artificial neural networks, which have been optimized

for read error-rate performance [19]. Moreover, for a modular approach, we would not want

to change the de-novo sequencer for different downstream applications. Therefore, we take a

different approach to resolve this problem, by using the de-novo sequenced read as the input
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to our strategy. We then deterministically convert this de-novo sequenced nucleotide read

into a current value using the Q-mer median current level of the corresponding Q-mer (i.e.

the Q-mer map as in Figure 4.1b). We further quantize these resulting current values from

continuous values into properly chosen discrete levels. This is illustrated in Figure 4.1c. In

this work we use 2 to 3 levels of discrete values for the quantization, which is determined

based on the Q-mer map. Now, given this new discrete representation of the de-novo reads,

we develop the new alignment algorithm, whose workflow is illustrated in Figure 4.1a.

A natural question is why this should help, since we are processing the de-novo reads

which are erroneous, and we are not using any additional soft information, such as raw

current values from the nanopore reads themselves. The basic insight is that the translation

of the nucleotide reads to current levels enables grouping together reads that are confusable

given the structure of the Q-mer map of the nanopore sequencer. For example, when we

have two reads illustrated in Figure 4.1c, if the de-novo sequencer has chosen one of the two

equally-likely sequences as the nucleotide read, it is clear that the alternate read, which has

significant edit distance (in the nucleotide domain) is actually quite close when viewed from

the lens of the Q-mer map, as captured by our quantized conversion process. Therefore,

this process naturally groups together reads that could have been confused, and uses this

as the input to our alignment algorithm, QAlign. Therefore, this reduces the effect of the

errors by recognizing one structure in the error process. Note that QAlign builds an overlay

layer on top of any alignment algorithm in order to align based on current levels implied by

the reads instead of directly aligning the reads. Though we illustrate our ideas using the

Minimap2 aligner [20], this principle can be implemented with any other long-read aligner

such as GMAP [21].

We show that QAlign gives rise to significant performance improvements across a variety

of alignment tasks including read-to-genome, read-to-read and read-to-transcriptome align-

ment as well as different datasets spanning from R7 nanopore sequenced data (Figure 3.9)

to R9.4 data.
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QAlign shows significant improvement in read-to-genome alignment rates for datasets

where Minimap2 alignment rate is low (improving up to around 90% for four real datasets).

Furthermore, the alignments are also of higher quality: QAlign shows up to around 18%

lower normalized edit distance than Minimap2 as well as longer alignments.

For read-to-read alignments, QAlign is able to align around 3.6% more overlaps between

read pairs with a high overlap quality (refer to Methods for a description of the overlap

quality) where Minimap2 is either unable to align the read overlaps or aligns with a low

overlap quality. We show that a hybrid alignment strategy which combines QAlign and

Minimap2 can improve the metric even further to around 4.6% (Figure 3.18).

For read-to-transcriptome alignments, our method achieves 90% alignment rate as op-

posed to 82.6% with mouse 2D reads and 75.4% as opposed to 51.6% with Human 1D

reads. Furthermore, the alignments are also of higher quality: QAlign shows 13.27% lower

normalized edit distance than Minimap2 as well as longer alignments for Human 1D data.

In this study, we focus on the improvement of long read (in particular the Nanopore

long read) alignment. To the best of our knowledge, there is no existing aligner, specifically

designed to handle the error modes introduced in nanopore sequencing. There is, however,

some work on incorporating the nanopore current levels in downstream tasks including post-

processing of assembly by Nanopolish [22]. Nanopolish has demonstrated that utilizing the

current levels can reduce assembly errors. The major difference of our work with Nanopol-

ish is the level at which the current-level information is taken into account. Since we take

into account current-level information while performing alignment, we are able to get sub-

stantially more overlaps which can lead to potentially better assembly of contigs whereas

Nanopolish is only able to correct fine errors.
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3.2 QAlign Algorithm

The QAlign strategy consists of two steps including the conversion of the nucleotide sequences

to quantized (e.g. 2 levels or 3 levels) sequences in the first step. The next step is the

alignment of the quantized sequences for various alignment tasks such as read-to-genome,

read-to-read, and read-to-transcriptome.

3.2.0.1 Nanopore Sequencer

The Oxford Nanopore Technology is based on DNA transmigrated through a nanopore, which

results in the changes in the ionic currents through the pore [6]. The current changes are

caused by the different nucleotides that are partially blocking the pore as the (single-strand)

DNA sequence to be measured is migrated through the nanopore. An enzyme slows down

the motion of the DNA through the pore, so that the variations in the current signals can be

measured accurately [6]. Base calling algorithms [23] are developed to infer the nucleotide

sequence (A,C,G,T) from the measured current changes.

Ideally, it is desired that the DNA is migrated through the nanopore at a constant rate

and the current signal recorded at a given time is only affected by a single nucleotide in

the nanopore. Consequently, the DNA sequence can be decoded unambiguously with high

probability.

However, in reality, there are several non-idealities due to the physics of the nanopore

and the enzyme. (i) Inter-symbol interference: Since the nanopore is bigger than the size of

a single nucleotide, the observed current at a given time is influenced by multiple (neighbor)

bases or Q-mer (where Q could be 4,5, or 6). (ii) Random dwelling time: The amount of

time spent by each Q-mer of the DNA sequence in the nanopore may vary. So the rate at

which the DNA sequence migrates through the nanopore is a stochastic process. (iii) Segment

insertion and deletion: There are segments that are repeated as well as segments that migrate

through the nanopore without registering a current reading. This results in redundant and

25



missing segments. (iv) Q-mer map fading: The measured current level is a function of the

corresponding Q-mer in the nanopore. However, this function is not deterministic, i.e., for

the same Q-mer dwelling in the nanopore at a different time may produces a current level

with some variations. This is also reflected in the Q-mer map (Figure 4.1c), where we have

plotted the median value of the current levels along with the variances as the error-bar. (v)

Noisy samples: Each observed current level is also subject to a random noise [6].

3.2.1 Quantization

The nucleotide sequences are inferred from the nanopore current signals by base-callers,

therefore, using a Q-mer map to translate the base-called sequences to the current levels

implicitly maintains all of the “equivalent” base-called sequences that could be inferred from

the observed current levels. These current levels can be quantized to an alphabet of finite

size (Figure 4.1a,c).

Mathematically, the quantization process is as follows. Let Σ = {A,C,G, T} be the

alphabet of nucleotide sequences. For a symbol x ∈ Σ, let x̄ be the Watson-Crick complement

of x. A string s = x1x2 . . . xn over Σ is called a DNA sequence, where |s| = n is the string

length and the reverse complement of s is s = x1x2 . . . xn = xnxn−1 . . . x1. Let p(s) be

a list of all Q-mers (e.g. Q=6) in the string s, sorted by their occurances. For example,

p(s) = k1k2 . . . kn−Q+1 and each Q-mer ki = xixi+1 . . . xi+Q−1 for i = 1, 2, . . . , n−Q+1. Now,

we define f : ΣQ → R as the Q-mer map 1, which is a deterministic function that translates

each Q-mer (ki) to the (median) current level (Figure 4.1b). Now, let C(s) = c1c2 . . . cn−Q+1

be the sequence of the current levels, so that ci = f(ki) for i = 1, 2, . . . , n−Q+1. The current

sequence C can be further quantized into w(s) = q1q2 . . . qn−Q+1 by applying a thresholding

function qi = g(ci). The thresholding can be binary (qi ∈ {0, 1}) or ternary (qi ∈ {0, 1, 2})

1Q-mer map is determined by the chemistry of the nanopore flow cell, and is therefore dataset dependent,
i.e., the Q-mer map for sequencing using R9 flow cell is different from Q-mer map for sequencing using
R9.4.1 flow cell. The Q-mer maps used in this work are generated by [22].
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(Figure 4.1c). We define w(s) as the reverse complementary of a quantized sequence w(s),

so w(s) = w(s).

3.2.2 Alignment

We can now use the aligners (e.g. Minimap2) to align the quantized sequences. It is im-

portant to note that these aligners inherently performs the alignment of the query sequence

(e.g. s1) to the reference sequence (e.g. s2) and also aligns the reverse complement (s1) to

the reference (s2). For the corresponding quantized sequences, aligners need to align the

query sequence (e.g. w1) and its reverse complementary (e.g. w1) explicitly to the reference

(e.g. w2), in order to take care of the Q-mer map for both w1 and w1 properly.

The performance of such an aligner can be evaluated by comparing the alignments of the

nucleotide sequences s1 onto s2 to the alignments of their quantized sequences w1 onto w2

union with w̄1 onto w2, respectively, using appropriate performance evaluation metrics.

3.2.2.1 Read-to-Genome Alignment

We apply QAlign to the task of read-to-genome alignment. Given a nucleotide read r and

the reference nucleotide genome G, we first obtain rQ (the quantized template strand of the

read, rQ = w(r)) and rQ (quantized reverse complement strand of the read, rQ = w(r))

from r, and obtain GQ (quantized reference genome) from G. We next align rQ and rQ

respectively to GQ using Minimap2. Lastly, we aggregate the results from both the template

and reverse complement outputs to determine the best alignment for each read.

Note that the quantized alignment procedure differs from the direct nucleotide alignment

process in two ways. First, the nucleotide alignment does not require Minimap2 to addition-

ally align r to G explicitly. Second, the quantized alignment employs a different seed length

(e.g. minimizer length k in Minimap2) to ensure that the computation time for quantized

alignment is similar as nucleotide alignment (see Table 3.4 for the details of computation
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time versus seed lengths).

We define several terms that are crucial for later performance analyis, mainly including

well-aligned, normalized edit distance, and normalized alignment length.

Consider in Figure 4.2a, Read 1 aligns at location i1 through j1 on the genome (we can get

these locations from Minimap2 output). We say that the read is well-aligned, if at-least 90%

of the read is aligned onto the genome (i.e., j1−i1≥0.9(length(Read 1))), and has either the

(approximate) normalized edit distance from Minimap2 (i.e. number of unmatched bases,

normalized with read length, based on Minimap2 output) is less than a threshold value or

the mapping quality from Minimap2 is high (greater than 20). The filtering for the well-

aligned reads using this distance and mapping quality is incorporated to eliminate some

spurious alignments from Minimap2. Note that the (approximate) normalized edit distance

from Minimap2 is specific to nucleotide or quantized alignment. For example, for nucleotide

sequences the value returned by Minimap2 is in nucleotide domain; the value returned by

Minimap2 is in Q2 domain for the Q2 sequences. Therefore, different filtering threshold

values are used - 0.48 for nucleotide sequence, 0.25 for Q2 sequence and 0.35 for Q3 sequence

(Figure 3.23 and 3.24).

In order to compare the quality of the alignments at fine-grained level, we further de-

fine Normalized edit distance2. The normalized edit distance for nucleotide alignment is

edit distance{r;G[i1:j1]}
length(r)

and for quantized alignment is
edit distance{r;G[iq1:j

q
1 ]}

length(r)
, where i1, j1 and iq1, j

q
1

are locations obtained from nucleotide and quantized alignment respectively. Similarly, we

define Normalized edit distance of aligned read for nucleotide alignment as
edit distance{r[i′1:j′1],G[i1:j1]}

max(j1−i1,j′1−i′1)

(Figure 4.2a) and for the quantized alignment as
edit distance{r[i′1:j′1],G[iq1:j

q
1 ]}

max(jq1−i
q
1,j
′
1−i′1)

. As evident from the

definitions, these metrics for both nucleotide and quantized alignment are calculated all in

nucleotide domain (unlike the approximate normalized edit distance from Minimap2, which

is domain specific). Specifically, for quantized alignment, we leverage the information about

2This is different from approximate normalized edit distance from Minimap2 to filter for well-aligned
reads.
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the alignment location on genome (i.e. iq1 and jq1) to calculate the normalized edit distance

between the nucleotide read and the corresponding aligned section on the nucleotide genome.

Another metric at fine-grained level is normalized alignment length, which is the ratio of

the length of the section on genome where a read aligns to the length of the read. It is j1−i1
len(r)

for nucleotide alignment, and
jq1−i

q
1

len(rQ)
for quantized alignment. A contiguous alignment tends

to have this metric as 1.

We have been discussing the nanopore 1D reads for read-to-genome alignment so far.

There are also 2D reads (e.g. r), which are the consensus calling using the 1D reads from

both the template strand (e.g. rt) and the complement strand (e.g. rc). For the read-

to-genome alignment algorithm of the 2D reads using QAlign, the experiment pipeline has

been modified so that the error profile introduced in the sequencing of the 1D reads can be

mitigated. Specifically, the quantized reads from both the template strand (e.g. rQt ) and the

complement strand (e.g. rQc ) are aligned to the quantized genome (e.g. GQ) individually

using Minimap2. The union of the two alignments3 is considered as the output of the QAlign

algorithm. In case there is no overlap in the alignments of the reads from the individual

strands, both the genome sections are given as the output of the QAlign algorithm, as the

2D consensus read might align to either of these sections. Since QAlign yields the genome

section as the union of the two alignments, it could be much larger (nearly twice) than the

read length. Therefore, the genome section needs to be further refined by the local alignment

of the 2D consensus read onto the section. The performance evaluation of QAlign is mainly

based on the normalized edit distance between the 2D consensus read and the refined genome

section (the results using this method for the 2D read alignment onto genome are discussed

in Figure 3.6 and 3.7).

3For example, alignment regions are [0, 2] and [1, 3], and union is [0, 3].
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Repeats
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(c)

Figure 3.2: (a) An example of read-to-genome alignment. (b) An example of read-to-read
alignment. (c) An example for head-to-tail alignments between reads.

3.2.2.2 Read-to-Read Alignment

We apply QAlign to read-to-read alignment as the second alignment task, which provides

overlaps between reads that are typically necessary for genome assembly.

The alignments between the nucleotide reads r1 and r2 (or between the quantized reads
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rQ1 and rQ2 ) are obtained using Minimap2 as well. Similar to read-to-genome alignment,

the quantized alignment not only aligns rQ1 to rQ2 , but also needs to align r1
Q to rQ2 . In

addition, the quantized alignment employs a seed length (e.g. the minimizer length ‘k’

in Minimap2) different from nucleotide alignment so that the computation time in both

nucleotide and quantized regimes is maintained to be similar (see Table 3.5 for detailed

analysis of computation time versus k).

For the algorithm evaluation purpose, we need to have the ground truth, which is un-

known. One way to judge the quality is to compute the normalized edit distances of align-

ment overlaps. However, this is not only computationally expensive but also suffers from false

alignments between reads from repeated regions. Instead, we leverage the read-to-genome

alignments to build the ground truth for read-to-read alignment. Specifically, all of the reads

are firstly aligned to the genome via both the nucleotide alignment and the quantized align-

ment. The reason behind performing the read-to-genome alignment in both the nucleotide

and the quantized domain is to ensure that more read alignments are captured, as there can

be some alignments that are captured/contiguous only in quantized alignments and vice-

versa. For the experiments, we focus on a section of the genome G (say, G1=G[1:1000000])

to find all the reads aligning onto G1. Assume there are n1 and n2 number of reads aligned

to G1 in nucleotide domain and in quantized domain, respectively, with normalized edit

distance (in nucleotide domain for both methods) less than 0.48, which indicates the found

alignment of the reads are better than the alignment of two random DNA sequences (see

Figure 3.23). Now, we randomly choose n reads from a union of n1 and n2 reads such that

n ≈ N×dcov
L

, where dcov is the required coverage depth, N is the length of the genome section

G1 (i.e. 1000000), and L is the average length of the n1 ∪ n2 reads.

To estimate the ground truth, consider the alignment of Read 1 (r1) and Read 2 (r2) onto

the genome as shown in Figure 4.2b, where the alignment locations of the reads on the genome

are (i′1, j
′
1) and (i′2, j

′
2), respectively. We say that the reads are overlapping in the ground truth

if there is an overlap (denoted as l) of at least 100 bases, where l = min(j′2− i′1, j′1− i′2). For
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reads that have overlaps in both nucleotide and quantized alignment, denoted as (lnucleotide)

and (lQ) respectively, the larger one is chosen as l = max(lnucleotide, lQ)).

Provided the ground truth, we can compute the Precision and Recall to make a compar-

ison between the two methods. Precision is defined as the fraction of overlaps in the ground

truth among the overlaps determined by the algorithm. Recall (also known as sensitivity) is

the fraction of overlaps in the ground truth that are determined by the algorithm.

The read-to-read alignment will label two reads to have an overlap (different from the

overlap used to find ground truth) if the length of the ‘Mapped Region’ is at least 90% of

the ‘Mapped Region’ plus the ‘Overhang Region’ (Figure 4.2b, i.e., g1 ≥ 0.9(g1 + t1 + t2) and

g2 ≥ 0.9(g2 + t1 + t2), or equivalently t1 + t2 ≤ 0.1(min(g1, g2)). For evaluation, we define

another metric called the overlap quality (denoted as X) as (g1−d1)+(g2−d2)
2l+d1+d2

where 4 the overlap

quality measures how well the reads are aligned with respect to each other, compared to the

alignment in ground truth. Ideally, it is desired to have the value of overlap quality close

to 1. We also define the average overlap quality, which is the expected value of the overlap

quality (i.e. E[X] =
∫
P{X > x}dx), or the area under the complementary CDF of X.

It is possible that two reads will be falsely aligned especially when they are from repetitive

regions. To remedy this, we only consider head-to-tail alignment between reads. For example

in Figure 4.2c, three reads Read 1, Read2 and Read 3 have been sequenced where Read 1 and

Read 2 are from repetitive regions. Consequently after read-to-read alignment, there will be

an overlap between Read 1 and Read 2 that can be filtered out since it is not a head-to-tail

alignment. However, there will also be another false positive overlap between Read 3 and

Read 2, which will not be removed as it satisfies the head-to-tail alignment condition. In order

to further reduce the number of false positives of read-to-read alignments, the (approximate)

normalized edit distance provided by Minimap2 is used for extra filtering (see Figure 3.23

and 3.24).

4Empirically d1 and d2 tend to be simply zero
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In addition to reduce false positives, the read-to-read alignment results can be further

improved by implementing an Ensemble model, which is able to capture the best alignment

(e.g. longer length of ‘Mapped Region’) from both methods of the nucleotide alignment and

the quantized alignment, as well as to incorporate the alignments that are complementary

in either method (see Figure 3.18).

3.2.2.3 Read-to-Transcriptome Alignment

Applying QAlign strategy to the third task of the RNA read-to-transcriptome alignment

is analogous to the DNA read-to-genome alignment. This is not the spliced alignment of

the reads to the genome; instead all of the RNA reads are aligned to the transcriptome.

Since the ground truth is unknown for the alignments, we use normalized edit distance, and

normalized alignment length as the evaluation metric.

3.3 Results

In this section, we demonstrate and discuss the results for (i) DNA Read-to-Genome align-

ment, (ii) DNA Read-to-Read alignment, and (iii) RNA Read-to-Transcriptome alignment

using QAlign and Minimap2.

3.3.1 Datasets

Datasets for DNA-seq alignments: We use five datasets for DNA read-to-genome and read-

to-read alignment: (1) MinION sequencing of K. Pneumoniae DNA using R9.4 1D flow

cell [24], (2) MinION sequencing of E. Coli DNA using R9 2D flow cell [25], (3) MinION

sequencing of E. Coli DNA using R9.4 1D flow cell [26], (4) MinION sequencing of Human

genome using R9.4.1 flow cell [27], and (5) Simulated read data from GRCh38 chromosome

1 using Deep Simulator [28] for benchmarking the performance of QAlign.
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Datasets for RNA-seq alignments: The experiments are based on the RNA reads obtained by

MinION sequencing of human cDNA using R9.4 1D flow cell [29], and MinION sequencing

of mouse cDNA using R9.4 2D flow cell [30] (SRA access No. SRR5286961).

Compared to DNA-seq datasets, RNA-seq datasets carried out using nanopore sequencing

are relatively rare. We select these datasets because they have relatively complete reference

transcriptome (e.g. for human there are 200,401 annotated transcripts [31] and for mouse

46,415 annotated transcripts from UCSC Genome Browser [32]), and the corresponding Q-

mer map models [33] are available for quantization.

3.3.2 DNA Read-to-Genome Alignment

The alignment of DNA reads to the genome is a task with wide-ranging applications in

sequencing experiments. It is a required step in variant calling pipelines [34], in particular

structural variant calling can benefit significantly from long reads offered by the nanopore

sequencing platform [9]. It is also useful in calling variants in long segmental duplications

[10], where long duplications necessitate long reads to resolve the repeat ambiguity. Another

application for DNA read-to-genome alignment appears in reference matching - for example,

in meta-genomics, in estimating which reference species is present in the sample.

The results are illustrated in the Figure 3.3 and Table 3.1. At a coarse level, the perfor-

mance is measured by the fraction of the reads that have been well-aligned by the algorithm.

A read is said to be well-aligned if at-least 90% of the read is aligned to genome and has ei-

ther the (approximate) normalized edit distance from Minimap2 (i.e. number of unmatched

bases, normalized with the read length) below a threshold value or the mapping quality from

Minimap2 is high (see Methods). QAlign is shown to significantly improve the fraction of

well-aligned reads - in particular, in the K.Pneumoniae R9.4 1D dataset, this metric improves

to 88.7% from 79.4%. In the E. Coli R9.4 1D dataset, it improves to 84.2% from 79.2%; in

the E. Coli R9 2D dataset, the numerics improves to 91.8% from 82.6%, and for the human

R9.4.1 dataset, it improves to 87.95% from 85.70%. For the benchmark with the simulated
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Figure 3.3: Nanopore long DNA reads alignment onto Genome. (a) Comparison
of normalized edit distance for K. Pneumoniae R9.4 1D reads data. Smaller values for
normalized edit distance is desirable as it represents better alignment. The slope of the
regression line is < 1, therefore, representing better alignments with Q2 than nucleotide
alignments for same reads on average. (b) Comparison of normalized align-length on genome
for K. Pneumoniae R9.4 1D reads data. Normalized alignment length of 1 is desirable as it
represents that entire read is aligned. Majority of the reads are above y = x line representing
longer alignment length in Q2 than nucleotide alignment.

data, the numerics improves to 84.35% from 69.04% (refer to Table 3.1).

The results in Figure 3.3a-b compares the quality of the alignments using Minimap2 and

QAlign at a fine-grained level for the K. Pneumoniae dataset (plots for other datasets are

available in Figure 3.15-3.13).

Specifically, Figure 3.3a compares the normalized edit distance for QAlign and Minimap2.

The normalized edit distance is the edit distance between the entire read and the aligned

section on the genome normalized with the length of the read, in nucleotide domain for

both nucleotide alignment and quantized alignment (Q2). In case of Q2, the information of

the location of the alignment on the genome is leveraged from the alignment between the
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quantized read and the quantized genome first, and the edit distance is computed between

the corresponding nucleotide read and the aligned section on the nucleotide genome (see

Methods for details). Intuitively, the normalized edit distance gives a measure of how close

the two sequences are. Therefore, the smaller the normalized edit distance, better is the

alignment. In addition, the normalized edit distance for the reads that have normalized

edit distance of aligned reads more than 0.48 is set to 1 (We noticed that the normalized

edit distance between a pair of random DNA sequences is above 0.48, refer to Figure 3.23).

Therefore, the figure represents only those alignments that are better than alignment of

random DNA sequences.

To better visualize the results, we group alignments with different colors and marks for

different conditions. The red circles in Figure 3.3a-b represent the reads that are well-aligned

in both nucleotide and Q2 alignments and at nearly the same location on the genome. The

blue cross represent well-aligned reads in both Q2 and nucleotide alignments but at different

location on the genome or on a different chromosome. The black asterisks are the reads

that are well-aligned in Q2 only, i.e., in nucleotide alignments, the alignment of these reads

are either missing or does not satisfy the definition of the well-aligned reads. The green

diamonds are the reads that are well-aligned in nucleotide alignments only. The pink square

points are the reads that are not well-aligned in both Q2 and nucleotide alignments. For

each read, there could be multiple alignments on the genome because of the repeats in the

genome, but we consider the alignment that has the minimum edit distance amongst all of

them for the evaluation in these plots.

Figure 3.3a shows that the normalized edit distance is overall smaller for Q2 alignments

than nucleotide alignments. The better alignment in Q2 is also evident from the slope of

the regression line in Figure 3.3a. It shows that on average Q2 alignments has 18.19%

improvement in terms of the normalized edit distance than the nucleotide alignments.

The results for another fine-grained metric are shown in Figure 3.3b, which compares

the normalized alignment length on genome in Q2 to the normalized alignment length on
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genome in nucleotide alignments. The normalized alignment length is the ratio of the length

of the section on genome where a read aligns to the length of the read. There are 10.1%

reads that are well-aligned in Q2 only (the black asterisks), and the normalized alignment

length is close to 1 in Q2 but it is much less than 1 in nucleotide alignments, therefore

representing several non-contiguous alignments in nucleotide domain that are captured in

Q2. The normalized edit distance for such reads in Q2 is much less than the normalized

edit distance for the same reads in nucleotide alignments. Similar results are observed across

different datasets as evident from the slope of the regression line for normalized edit distance

comparison between Q2 and nucleotide alignments shown in Table 3.1.

Table 3.1: Comparison for the percentage of well-aligned reads onto genome, and slope of the
regression line (for normalized edit distance comparison plot of Q2 vs nucleotide alignments)
with randomly sampled reads for each datasets. The slope of the regression line shows the
average gain in the normalized edit distance.

Dataset (No. of sampled
reads)

Method of
alignment

Percentage
well-
aligned
reads

Slope of
Regression
line

K. Pneumoniae R9.4 1D (1k)
nucleotide 79.4

0.8181
Q2 88.70

E. Coli R9.4 1D (1k)
nucleotide 79.2

0.9584
Q2 84.20

E. Coli R9 2D (1k)
nucleotide 82.6

0.9627
Q2 91.8

Human R9.4 1D (50k)
nucleotide 85.70

0.9696
Q2 87.95

Simulated Human with Deep
Simulator [28] (10k)

nucleotide 69.04
0.8527

Q2 84.35

Methodology and performance metrics: The ability of QAlign to align DNA reads to a ref-

erence genome is discussed here. In each experiment, we take the reads and align them to

the genome both using QAlign and Minimap2. There are two different types of performance

metrics: (1) Coarse performance is measured by the fraction of reads that have been well-

aligned by the algorithm. A read is said to be well-aligned if at least 90% of the read is
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aligned to the genome and the (approximate) normalized edit distance from Minimap2 is

below a threshold value (threshold values are 0.48 for nucleotide alignments, 0.25 for Q2,

and 0.35 for Q3 - these values are chosen based on the empirical results shown in Figure 3.23

and 3.24) or the mapping quality is high (greater than 20). (2) Fine-grained performance

is measured in our experiments by two metrics: the normalized alignment length and the

normalized edit distance between the read and the genome region that the read aligns to. We

note that we do not use the particular alignment returned by the different aligners since this

is not directly comparable. The normalized-edit distance is defined as the ratio of the edit

distance between the genomic region aligned by the read and the entire read to the length

of the read - thus, normalized edit distance of 0 corresponds to perfect alignment, and an

upper bound is 1 if the read does not return an alignment. The normalized edit distance is

computed in the nucleotide domain for both the nucleotide and quantized alignments. The

information about the start and the end location on the genome is leveraged to compute

the edit distance in the nucleotide domain for the quantized alignments. We note that the

normalized edit distance between a random sequence of genome and a given read of the same

length is 0.48 (Refer to Figure 3.23 for the details on the normalized edit distance between

random DNA sequences).

Read-to-genome alignment for the 2D reads: An alternate pipeline for the alignment of

the 2D consensus reads is using the corresponding 1D reads from both the template and the

complement strand and estimate the alignment location of the 2D consensus read onto the

genome using the QAlign algorithm. This can be done by exploiting the nanopore physics

with the 1D reads from each strands. The experiment pipeline is explained in detailed in

the QAlign algorithm section of this chapter. The results in Figure 3.5 illustrates that the

alignment length on the genome, which is the output of the QAlign algorithm is atleast twice

the length aligned by the local alignment algorithm for the same read at no additional cost

of the normalized edit distance (as shown in Figure 3.6 and 3.7).
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Figure 3.4: Normalized Edit distance comaprison for nucleotide vs Q3 for K. Pneumoniae
R9.4 1D reads. The slope of regression line is 0.9183, indicating 8.17% reads have a smaller
distance in Q3 than in nucleotide. 1.7% reads are well aligned to genome in Q3 only, whereas
there are 0.5% reads that are well aligned in nucleotide domain only.

3.3.3 Read-to-Read alignment

Alignment of genomic reads to other reads is a basic primitive useful in many settings. For

example, this is a first step in many overlap-layout-consensus (OLC) assemblers [12]. A key

challenge in read-to-read assembly is the increased error rate that the aligner has to deal

with. For example, if two reads R1, R2 are sampled from the same region of the genome,
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Figure 3.5: Hybrid approach for the 2D reads using the alignments from the 1D reads of
each strand of the DNA. Length of the genome section is the output of QAlign using the
alternate approach for 2D reads and it is the union of the region where the 1D reads from
both the template and the complement strand aligns to on the genome. Length of local
alignment is the region on this genome section where the 2D consensus reads aligns to (using
a local alignment algorithm). Therefore, the output of QAlign algorithm is atleast twice the
length of the local alignment.

each may be within 15% edit-distance of the reference genome (assuming a 15% error-rate),

however, the edit distance between R1 and R2 can be up to 30% leading to an effective

doubling of the error-rate. Long-reads hold the promise of fully-automated assembly but is
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Figure 3.6: The alignment of long nanopore DNA-Seq R9 2D reads onto E. Coli reference
genome using the same pipeline for 2D reads, i.e., the 2D reads are translated to the quantized
current sequences without any knowledge of the 1D reads. (a) The plot shows the normalized
edit distance comparison for nucleotide vs Q2 in the 2D reads experiment setting. The slope
of the regression line is 0.9330, indicating 6.7% well aligned reads have a better normalized
edit distance in Q2 than in nucleotide. (b) The plot shows the normalized edit distance
comparison for nucleotide vs Q3 in the 2D reads experiment setting. The slope of the
regression line is 0.9208, indicating 7.92% well aligned reads have a better normalized edit
distance in Q3 than in nucleotide.

currently feasible only when for bacterial genomes [35]. For complex mammalian genomes,

long repeats fragment assembly [36] and more accurate alignment can help alleviate this

problem.

The results for read-to-read alignment are illustrated in the Figure 3.14a-b, and Table 3.2.

Table 3.2 summarizes the precision, recall, and average overlap quality for different methods

used (namely, nucleotide, Q2, and Q3) to find the alignments between the overlapping reads

across different datasets. It is evident from the table that Q2 provides higher recall and

average overlap quality than nucleotide alignments at the cost of a bit lower precision. Q3,

on the other hand, shows better recall and average overlap quality than nucleotide alignments
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Figure 3.7: The alignment of long nanopore DNA-Seq R9 2D read onto E. Coli reference
genome using the alternate approach that uses the information of the alignments of the cor-
responding 1D reads. The plot shows the normalized edit distance comparison for nucleotide
vs Q2. The slope of the regression line is 0.9627, indicating 3.73% well aligned reads have a
better normalized edit distance in Q2 than in nucleotide.

at similar precision.

For a fine-grained evaluation, Figure 3.14a shows overlap quality comparison for the

quantized (Q2) alignments versus nucleotide alignments using the K. Pneumoniae dataset.

The blue circles in the figure represent the overlaps that are aligned 5 in both QAlign and

5An overlap between a pair of reads is said to be aligned by the algorithm if the Mapped region by the
algorithm is at least 90% of the Mapped region plus the Overhang region (refer to the Methods section for
more details).
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Figure 3.8: The alignment of long nanopore DNA-Seq R9.4 1D read onto E. Coli reference
genome (a) Normalized edit distance comparison for nucleotide vs Q2 (b) Normalized edit
distance comparison for nucleotide vs Q3.

Minimap2. The black asterisks (along the line x=0) represent the overlaps that are aligned

only in Q2 and not aligned in nucleotide, whereas the green diamonds (along the line y=0)

represent the overlaps that are aligned only in nucleotide and not aligned in Q2. In Figure

3.14a, the read overlaps that are aligned only in Q2 is 7.3%, whereas the read overlaps that

are aligned only in nucleotide is 2.3%. Therefore, QAlign demonstrates a net gain of 5.0%

in terms of the number of reads aligned by the algorithm. For the read overlaps that are

aligned in both Q2 and nucleotide, 4.62% of the read overlaps have overlap quality more

than 0.9 in QAlign but not in Minimap2 whereas the opposite holds true in only 1.0% of the

read overlaps. Thus QAlign gives a net performance improvement of 3.62% over Minimap2.

In addition to that, the slope of the regression line in the figure is 1.0089, therefore also

illustrating better overlap quality with QAlign than Minimap2.

Figure 3.14b shows the fraction of reads which have overlap quality greater than x for

the two aligners - the performance gain is seen to hold across a wide range of threshold
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Figure 3.9: Normalized edit distance comaprison for nucleotide vs Q2 for E. Coli R7 1D
reads. Majority of the reads are well-aligned by QAlign (35.7% of the 955 total reads are
well-aligned in Q2, whereas only 18.43% reads are well-aligned in nucleotide). Moreover, the
slope of the regression line is 0.8277 indicating an average gain of 17.23% in terms of the
normalized edit distance.

values x. The area under the curve (which equals the average overlap quality) is computed

for nucleotide, Q2, and Q3 alignments across all the datasets and is demonstrated in Table

3.2. The gain in the average overlap quality is observed using QAlign across all the datasets

as evident from Figure 3.14b. Specifically, there is a gain of 9.2% in K. Pneumoniae dataset,

when we compute it as the ratio of the average overlap quality of Q2 to average overlap

quality of nucleotide alignments. Similarly, there is a gain of 2.5%, 10.8%, and 31.2% in

the average overlap quality for the E. Coli R9.4 1D, E. Coli R9 2D dataset, and simulated

human dataset, respectively.

Methodology and Performance Metrics: The ability of QAlign to align DNA reads to other

DNA reads is discussed here. In each experiment, the DNA reads are aligned to other DNA
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Figure 3.10: (a) Normalized edit distance comparison for read-to-genome alignments with
Q2 and nucleotide Human R9.4 1D MinION data. The slope of the regression line is 0.9696,
therefore, representing more accurate alignments in Q2. (b) Normalized edit distance for
read-to-genome alignment with Q3 and nucleotide Human R9.4 1D MinION data. The slope
of the regression line is 0.9810, therefore, representing more accurate alignments in Q3 as
well.

reads using both QAlign and Minimap2. The read datasets from the same organisms are

used for the experiments that we have used for read-to-genome alignment. We say that

the algorithm is able to align the pair of reads (i.e., the pair of reads has an overlap), if the

‘Mapped Region’ of overlap by the algorithm is atleast 90% of the estimated overlap between

the same pair of reads in the ground truth (Please refer to the algorithm section for more

details). Since we do not have a ground truth specifying what pairs of reads are aligning

with each other with a head-to-tail alignment, therefore, in our evaluation we have used

the read-to-genome alignments to leverage this information to estimate the ground truth

for the read-to-read alignment. The overlap length between a pair of overlapping reads can

be determined from the location of the alignments of the reads on the genome. We define
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Figure 3.11: Normalized edit distance comparison for alignments using the hybrid model
and the nucleotide alignments using the Human R9.4 1D MinION data. The hybrid model
enhances the overall alignment accuracy by using nucleotide alignments when the Q2 align-
ments are missing and vice-versa. It is evident from the slope of the regression line as well
as it decreases to 0.9384 from 0.9696.

the overlap quality as the ratio of the size of the intersection between the overlap region

estimate (from the alignment algorithm) and the true overlap (from the ground truth), to

the size of the union between the overlap region estimate and the true overlap. Thus, the

overlap quality is equal to 1 if and only if the overlap region estimate is the same as overlap

in the ground truth. The expected overlap quality is the area under the complementary

cumulative distribution curve of overlap quality. This expected value is also referred to as

average overlap quality. Moreover, an ensemble model chooses the best overlap between a

given pair of reads using the information of the longest overlap in nucleotide and in Q2.

Ensemble model for read-to-read alignment: In case of the read-to-read alignment, there
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(a) (b)

Figure 3.12: Benchmark for read-to-genome alignment using the simulated human reads from
chromosome 1 of GRCh38 using Deep Simulator. (a) Normalized edit distance comparison
for Q2 and nucleotide alignments using 10000 reads with an average read length of 12000.
The Deep Simulator parameters used are corresponding to low accuracy reads, i.e., a = 0.05
and s = 3.5 using the context-dependent pore model. The color coding represents whether
an alignment matches to the location in the ground truth - green represents both Q2 and
nucleotide alignments matching in ground truth; red represents only nucleotide alignments
matching in ground truth; blue represents onlyQ2 alignments matching in ground truth; pink
represents neither of them matching the ground truth. The different markers represent if the
reads are well-aligned in nucleotide or Q2 alignments as shown in the plot. (b) Alignment
score comparison plot for Q2 and nucleotide alignments. For a known ground truth, we
define alignment score as the ratio of the intersection of the alignment in the ground truth
and the algorithm to the union of the alignment in the ground truth and the algorithm.
It is computed similarly as overlap quality for read-to-read alignment. The negative score
represents that the alignment by the algorithm has zero overlap with the alignment in the
ground truth (mis-alignment).

are several read overlaps that have better overlap quality in QAlign than in nucleotide

alignment and several other read overlaps that have better overlap quality in nucleotide

alignment than in QAlign. Therefore, in order to increase the sensitivity, an ensemble model

is used, and the overlap quality comparison for the ensemble model against the nucleotide

read overlaps is shown in Figure 3.18.
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(a) (b)

Figure 3.13: Benchmark for read-to-genome alignment using the simulated human reads from
chromosome 1 of GRCh38 using Deep Simulator. (a) Normalized edit distance comparison
for Q2 and nucleotide alignments using 10000 reads with an average read length of 12000.
The Deep Simulator parameters used are corresponding to low accuracy reads, i.e., a = 0.05
and s = 3.5 using the context-dependent pore model. The color coding represents whether
an alignment matches to the location in the ground truth - green represents both Q3 and
nucleotide alignments matching in ground truth; red represents only nucleotide alignments
matching in ground truth; blue represents onlyQ3 alignments matching in ground truth; pink
represents neither of them matching the ground truth. The different markers represent if the
reads are well-aligned in nucleotide or Q3 alignments as shown in the plot. (b) Alignment
score comparison plot for Q3 and nucleotide alignments. For a known ground truth, we
define alignment score as the ratio of the intersection of the alignment in the ground truth
and the algorithm to the union of the alignment in the ground truth and the algorithm.
It is computed similarly as overlap quality for read-to-read alignment. The negative score
represents that the alignment by the algorithm has zero overlap with the alignment in the
ground truth (mis-alignment).

3.3.4 Read-to-transcriptome alignment

RNA-seq is a popular sequencing technology with emerging applications including single-

cell RNA-seq [37]. While short high-throughput reads may suffice to assess rough gene

expression estimates, isoform level analysis is better facilitated by long nanopore reads that
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Figure 3.14: Nanopore long DNA read-to-read alignment. (a) Comparison of overlap
quality for K. Pneumoniae R9.4 1D reads dataset (Q2 vs nucleotide). Overlap quality of
1 is desirable as it represents the alignment of the algorithm matched the alignment in the
ground truth exactly. Therefore, slope of the regression line > 1 represents better overlap
quality of Q2 alignments than nucleotide alignments on average. (b) Complementary CDF
of overlap quality for K. Pneumoniae R9.4 1D reads dataset. Q2 curve is strictly above the
curve for nucleotide, therefore, demonstrating better overlap quality for Q2. Area under the
curve gives an average overlap quality which is higher for Q2.

can straddle several exons simultaneously [6]. Here we perform the alignment of cDNA reads

(complementary DNA reads extracted from reverse transcription of RNA) onto a reference

transcriptome.

The results for read-to-transcriptome alignment are illustrated in Figure 3.20a-b, and

Table 3.3. At a coarse level, QAlign improves the fraction of the well-aligned reads signifi-

cantly. For the Human R9.4 1D dataset, the metric improves to 75.40% from 51.60%, and

for the Mouse R9.4 2D dataset, it improves to 90.00% from 82.60%, as shown in Table 3.3.

At a fine-grained level, Figure 3.20a compares the normalized edit distance for Human

R9.4 1D dataset. Note that the normalized edit distance is set to 1 for the reads that have
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Table 3.2: Comparison for precision, recall and and average overlap quality for read-to-read
alignment for four different datasets. Average overlap quality is computed as the area under
the complementary CDF curve of overlap quality.

Dataset Method
of align-
ment

Precision
(%)

Recall
(%)

Avg.
Overlap
quality

K. Pneumoniae R9.4 1D
nucleotide 97.47 67.99 0.4908
Q2 96.93 72.92 0.5360
Q3 97.49 69.52 0.5053

E. Coli R9.4 1D
nucleotide 99.20 62.27 0.4688
Q2 99.06 62.60 0.4803
Q3 99.23 63.87 0.4811

E. Coli R9 2D
nucleotide 98.94 59.42 0.5339
Q2 96.97 65.47 0.5914
Q3 98.99 62.46 0.5615

Simulated Human with
Deep Simulator [28]

nucleotide 75.72 41.91 0.3888
Q2 75.34 53.10 0.5100
Q3 76.08 54.19 0.5174

normalized edit distance of aligned reads greater than 0.48. Therefore, the figure represents

the alignments that are not “equivalent” to the alignment of random nucleotide sequences.

This figure clearly demonstrates the gain of quantized alignment. Specifically, Q2 is able

to align 27.00% more reads with 8.75% better quality than nucleotide alignments (from the

slope of the regression line; a similar trend of slope of regression line using Mouse R9.4 2D

dataset is shown in Table 3.3). In Figure 3.20b, the lengths of aligned chunks are compared

between nucleotide and Q2 domain. Most of the reads gets larger aligned chunks using Q2

quantization. Moreover, we observe a similar trend in the alignment using the Mouse R9.4

2D dataset as shown by the slope of the regression line in Table 3.3.

Methodology and Performance Metrics: The methodology and the performance metrics are

similar to the DNA read-to-genome alignment experiments: we compare the fraction of well-

aligned reads as well as the normalized alignment length and the normalized edit distance

for each alignment algorithm.
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Figure 3.15: The read-to-read alignment of long nanorepore DNA-Seq reads (Overlap quality
comaprison for nucleotide vs Q3 for K. Pneumoniae R9.4 1D dataset).

3.4 Conclusion

QAlign is a pre-processor that can be used with any long read aligner for a nanopore se-

quencer. It can be used for aligning reads onto genome or as a long-read overlapper or for

aligning RNA-seq reads onto transcriptome. QAlign provides alignments that outperforms

other aligners that uses nucleotide sequences in terms of the accuracy of the alignment at

the cost of a similar computation time.

The reason for this performance improvement is because it takes into account the un-
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Figure 3.16: The read-to-read alignment of long nanorepore DNA-Seq reads of E. Coli se-
quenced from MinION R9 2D flow cell. (a) Overlap quality comaprison for nucleotide vs Q2
alignments (b) Overlap quality comparison for nucleotide vs Q3 alignments.

(a) (b)

Figure 3.17: The read-to-read alignment of long nanorepore DNA-Seq reads of E. Coli se-
quenced from MinION R9.4 1D flow cell. (a) Overlap quality comparison for nucleotide vs
Q2 alignments (b) Overlap quality comparison for nucleotide vs Q3 alignments.
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Figure 3.18: Ensemble model for read-to-read alignment for K. Pneumoniae R9.4 1D reads.
We increase the sensitivity by capturing the alignments that are detected by either QAlign
and nucleotide reads. In case of the common overlaps that are detected by both the algo-
rithms, the one that has a longer overlap is chosen for the evaluation in this plot.

derlying physics of the nanopore sequencer through its Q-mer mapping, which could be the

pre-dominant cause of the error behavior in nanopore sequencing. We demonstrated how the

structure of the Q-mer map can be used even with only nucleotide read outputs, and with-

out access to the current-level output of the sequencer. In particular, QAlign converts the

nucleotide reads to quantized current levels (of finite alphabet size) which are then aligned

using any state-of-the-art aligner. This improvement in the alignment of the long nanopore

reads can be useful in several downstream applications such as structural variant calling,
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(a) (b)

Figure 3.19: (a) Overlap quality comparison for Q2 and nucleotide read-to-read alignment
using simulated Human reads from Deep Simulator. (b) Overlap quality comparison for Q3
and nucleotide read-to-read alignment using simulated Human reads from Deep Simulator.

Table 3.3: Comparison for the percentage of well-aligned reads onto transcriptome, and slope
of the regression line (for normalized edit distance comparison plot for Q2 vs nucleotide) for
two different dataset for randomly sampled reads for each dataset.

Dataset (No. of sampled
reads)

Method of
alignment

Percentage
well-
aligned
reads

Slope of
the Re-
gression
line

Human R9.4 1D (2k)
nucleotide 51.60

0.9125
Q2 75.40

Mouse R9.4 2D (2k)
nucleotide 82.60

0.8455
Q2 90.00

assembly - where the QAlign can benefit in the discovery of SVs and read overlaps that are

difficult to capture because of the high error rate of nanopore reads.

The current limitation of QAlign is that it works well when we have long contiguity in

the alignments. Therefore it does not perform as well in doing the spliced alignments of the
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Figure 3.20: Nanopore long RNA read to transcriptome alignment. (a) Comparison
of normalized edit distance for Human R9.4 1D dataset. A small normalized edit distance is
desirable as it represents better alignment. The slope of the regression line is < 1, therefore,
representing better alignments with Q2 than nucleotide alignments for same reads. (b)
Comparison of normalized alignment length of the aligned sections on the transcriptome
for Human R9.4 1D dataset. Normalized alignment length of 1 is desirable as it represents
that entire read is aligned. Majority of the reads are above y = x line, representing longer
alignment length in Q2 than nucleotide alignment.

RNA-seq reads onto genome while maintaining a similar computation time cost (as shown

using empirical results in Figure 3.25). Part of ongoing extensions is to build a deep hybrid

aligner which brings together the advantages of the nucleotide alignments and QAlign.
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Figure 3.21: Normalized edit distance comparison for nucleotide vs Q2 alignments for Mouse
R9.4 2D reads.

3.5 Appendix

3.5.1 Tool commands for Read-to-Genome Alignment

The Minimap2 command for the read to reference alignment with nucleotide sequence is:

minimap2 -c -k 9 reference.fasta reads.fasta
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(a) (b)

Figure 3.22: (a) Normalized edit distance comparison for Q2 and nucleotide read-to-
transcriptome alignment using 1 Million Human cDNA reads data. (b) Normalized edit
distance comparison for Q3 and nucleotide read-to-transcriptome alignment using 1 Million
Human cDNA reads data.

The Minimap2 command for the alignment with the quantized sequences is:

minimap2 -c -k 23 --for-only reference q2.fasta reads q2.fasta

minimap2 -c -k 23 --for-only reference q2.fasta rc reads q2.fasta

The two separate commands for the alignment with the quantized sequences are for the

alignment of the quantized template strand of the reads to the quantized genome and the

alignment of the quantized reverse complement strand of the reads to the quantized reference

genome, respectively. We can then aggregate the results from both the outputs to determine

the best alignment for each read.
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3.5.2 Tool commands for Read-to-Read alignment

The Minimap2 command used for the alignment with nucleotide sequences is:

minimap2 -cx ava-ont -k 10 reads.fasta reads.fasta

The Minimap2 command used for the alignments with the quantized sequences is:

minimap2 -cx ava-ont -k 20 --for-only reads q2.fasta reads q2.fasta

minimap2 -cx ava-ont -k 20 --for-only reads q2.fasta rc reads q2.fasta

The two separate commands used for the alignment with the quantized sequence also

aims to explicitly account for the template and reverse complement strands of the reads, and

the best alignment between a pair of reads is determined by the maximum overlap length.
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3.5.3 Normalized Edit Distance between Random DNA Sequences
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Figure 3.23: Empirical distribution for the normalized edit distance between pair of random
DNA sequences. A random sequence has its symbols drawn i.i.d. from an alphabet e.g.
Σ = {A,C,G, T}. We are interested in determining the minimum value of the normalized
edit distance between two random sequences of same length, which can be used as a threshold
to distinguish the alignment between a pair of random DNA sequences to pair of sequences
that actually aligns to each other. We observe that the minimum value is 0.48, which we
have used to comment if an alignment between a pair of DNA sequences is better (if the
normalized edit distance is less than 0.48) than the alignment between a pair of random
DNA sequences.
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Figure 3.24: (a) Empirical distribution for the normalized edit distance between pair of
random binary sequences. A random binary sequence has its symbols drawn i.i.d. from
an alphabet e.g. Σ = {0, 1}. We are interested in determining the minimum value of
the normalized edit distance between two random binary sequences of same length, which
can be used as a threshold to differentiate the alignment between a pair of random binary
sequences. We observe that the minimum value is 0.25, which we have used to comment
if an alignment between a pair of binary (or Q2) sequences is better (if the normalized
edit distance computed by Minimap2 is less than 0.25) than the alignment between a pair
of random binary sequences. (b) Empirical distribution for the normalized edit distance
between pair of random ternary sequences. A random ternary sequence has its symbols
drawn iid from an alphabet e.g. Σ = {0, 1, 2}. We observe that the minimum value is 0.35,
which we have used to comment if an alignment between a pair of ternary (or Q3) sequences
is better (if the normalized edit distance computed by Minimap2 is less than 0.35) than the
alignment between a pair of random ternary sequences.
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Table 3.4: This table shows the computation time trade-off with different choice of the
minimizer length k for the read-to-genome alignment

Dataset Method
of align-
ment

Minimizer
length (k)

Computation Time
(in seconds)

Percentage of well-
aligned reads

K. Pneu-
moniae
R9.4 1D

Nucleotide 9
10
11

164.75
22.91
7.97

76.20
78.00
79.00

Q2 22
23
24

93.92
43.01
22.99

88.50
88.70
88.50

Q3 14
15
16

67.54
24.37
12.35

79.20
80.70
81.00

E. Coli
R9.4 1D

Nucleotide 9
10
11

23.02
5.11
3.11

79.20
79.00
78.70

Q2 22
23
24

29.55
13.2
6.79

84.50
84.20
83.60

Q3 14
15
16

17.57
6.02
4.42

79.10
79.20
78.90

E. Coli R9
2D

Nucleotide 9
10
11

25.17
6.25
3.64

80.70
80.10
79.30

Q2 22
23
24

34.39
16.65
10.76

84.40
84.10
82.70

Q3 14
15
16

23.86
8.81
6.01

81.50
80.90
80.10
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Table 3.5: This table shows the computation time trade-off with different choice of the
minimizer length k for the read-to-read alignment

Dataset Method
of align-
ment

Minimizer
length (k)

Computation Time
(in seconds)

Percentage of well-
aligned reads

K. Pneu-
moniae
R9.4 1D

Nucleotide 10
11
12

4118.63
2388.37
2263.17

68.07
67.00
66.00

Q2 21
22
23

4864.79
4477.58
4425.29

71.98
70.92
69.73

Q3 14
15
16

3715.9
2854.07
2768.73

69.60
68.73
67.77

E. Coli
R9.4 1D

Nucleotide 11
12
13

882.78
824.00
808.74

62.27
60.49
58.72

Q2 21
22
23

1169.15
1134.86
1115.41

62.60
60.82
58.87

Q3 14
15
16

985.57
914.89
903.19

63.87
62.53
60.92

E. Coli R9
2D

Nucleotide 10
11
12

727.56
560.08
510.38

59.99
58.78
57.78

Q2 20
21
22

1129.05
1074.90
1048.20

65.47
64.82
64.14

Q3 14
15
16

705.86
640.17
621.43

62.46
62.00
61.44
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Table 3.6: This table shows the computation time trade-off with different choice of the
minimizer length k for the read-to-genome alignment of 50000 Human R9.4 1D reads.

Method
of align-
ment

Minimizer
length (k)

Computation Time
(in seconds)

Percentage of well-
aligned reads

Nucleotide 11
12
13
14
15

326,270
38,446
12,030
4100
2202

85.69
85.11
84.36
83.69
82.89

Q2 21
22
23
24
25

268,864
149,614
68,403
50,913
44,028

87.94
87.45
86.87
86.19
85.49

Q3 15
16
17
18
19

203,926
63,994
29,428
16,182
10,615

85.37
85.10
84.54
84.07
83.45
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Figure 3.25: Why short alignments are difficult with QAlign? In this experiment, a
random DNA sequence s1 of length 100 and 1000 are passed through an i.i.d. substitution
channel with an error rate or 15% and the output sequence from the channel is s2. The
corresponding quantized sequences are sQ1 and sQ2 , respectively. A “True k-mer match” is
a sub-sequence of length k that matches exactly at the same position on s1 and s2 (or sQ1
and sQ2 ). A “False k-mer match is when there is an exact match of length k but at different
location on s1 and s2 (or sQ1 and sQ2 ). The indicator function returns 1 in case there is
at least one “True k-mer match”. The expected value of the indicator function gives an
estimate of the probability of finding at least one “True k-mer match”. It is evident from
figure (a) that the Expected value for Q2 for a choice of minimizer length k = 23 is smaller
than the expected value for Nucleotide for k = 11 when small sequence of length 100 is
considered. Whereas the expected value for Q2 is nearly 1 for same choice of k = 23 when
sequence of length 1000 is considered. On the other hand, choosing a smaller k for Q2 (for
example, k = 11 for Q2 which gives the expected value for True k-mer match to be nearly
1) leads to more “False k-mer matches”, and hence, it requires more computation time as
compared to Nucleotide alignments. Therefore, the alignments of small chunks of reads is
difficult in QAlign, which is likely the case in spliced-alignments of RNA reads to genome or
read-to-read alignment when the overlaps is as small as a few hundreds of bases.
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Figure 3.26: The plot shows the expected value of the indicator of at least one k-mer match
when all the k-mers from a random DNA Genome (of length 100000 and 1000000) are
matched against all the k-mers from a random DNA read (of length 1000). The expected
value also represent the probability of at least one false k-mer match since both the genome
and the read sequence are randomly generated. It shows that as the length of the genome
increases the probability of a random k-mer match also increases for the same value of k.
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current value

List of current levels

Q2 seq

Hard thresholding:
(current level) 58 – 91 à 0 (quantize level)

(current level) 91 – 120 à 1 (quantize level)

Figure 3.27: An example for the Quantization method for QAlign.
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Figure 3.28: A comparison for the insertion, deletion, and substitution errors for nucleotide
and Q2 alignments for K. Pneumoniae R9.4 1D reads dataset. The normalized errors are
defined as number of errors normalized by the length of the alignment. For example, normal-
ized insertion errors is computed as the ratio of total number of insertions in the alignment
of a read to the length of the alignment. The comparison is provided for the 1000 reads used
for the read-to-genome alignment. We observe that the normalized insertion and normalized
deletion errors in Q2 are nearly same as that of nucleotide alignments. However, the nor-
malized substitution errors in Q2 alignments is much low than that of nucleotide alignments
across the 1000 reads.
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Figure 3.29: A comparison for the insertion, deletion, and substitution errors for nucleotide
and Q3 alignments for K. Pneumoniae R9.4 1D reads dataset. The normalized errors are
defined as number of errors normalized by the length of the alignment. For example, normal-
ized insertion errors is computed as the ratio of total number of insertions in the alignment
of a read to the length of the alignment. The comparison is provided for the 1000 reads
used for the read-to-genome alignment. We observe that the normalized insertion and nor-
malized deletion errors in Q3 are nearly same as that of nucleotide alignments. However,
the normalized substitution errors in Q3 alignments is slightly lower than that of nucleotide
alignments across the 1000 reads.
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CHAPTER 4

HQAlign: Aligning nanopore reads accurately for SV

detection using current-level modeling

4.1 Introduction

Structural variations (SVs) are genomic alterations of size at least 50 bp long, including

insertions, deletions, inversions, duplications, translocations, or a combination of these types

([38]). The study of these genetic variations has an important role in understanding human

diseases, including cancer ([39]), and begins with the alignment of reads sequenced from the

sample genome back to the reference genome. Accurate alignment of short reads from high

throughput sequencing poses a challenge, especially, in the repetitive regions of the genome

which are also the hotspots of nearly 70% of the observed structural variations ([40]).

Long-read sequencing technologies have addressed this problem by producing reads that

are longer than the repeat regions, therefore, enabling the detection of variants in the repeat

regions at the cost of higher error rates than short-read sequencing technologies. These high

error rates in the long reads lead to non-contiguous alignment which poses a challenge in

variant detection problems, especially, in the repeat regions.

Nanopore sequencing ([5, 6]) is a long read sequencing technology that provides reads

(with average read length more than 10-kb and the longest read sequenced more than 4-

Mb long) that can span these repetitive regions but it has a high error rate of (average)

10%. These high error rates result in low accuracy alignments ([7]) using state-of-the-art

methods including minimap2 (v2.24) ([41]) which is a fast method designed for the compu-
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Nucleotide reference seq (length = 356): 
AGAAAAGGATAAGGAAGAAAGGGAAGAGGAGAGAGAAGAAGAGGAGAAGGAGGAGGGGAA
GAAGGAGAAGGAGGAGGGGAAGAAAGAGGAGGAGGAAGGGAAGGAGGAGGAGGAAGATGA
GAAGGAGGGGAAGGAGGAGGAGGAGAAGGAGGAGGAGGAAGAGGAGGAGGAGGGGAGAAG
GGAGGAGGAGGAGAGAAGGGAGGAGGAGGAGAGAAGGGAGGAGGAGGAGAGAAGGGAGGA
GGAGGAGAGAAGGGAGGAGGAGGAGAGAAGGGTGGAGGAGGAGAAGGAAGAGGAGGAGGA
GGAGAAGGAAGAAAAGGAGGAGAAGGAAGAAGGGGATGGGAAGAGGAAGAAGGGGA

Nucleotide read seq (length = 356): 
AGGAGGAGGAGAGAAGGGAGGAGGAGAAGGGAGGAGGAGGAGAAGAGGGAGGAGGGGAGA
AGGGAGGAGGAGGAGAGAAGGGAGGGAGGAGAGAAGGGAGGAGGAGGAGAGAAGGGAGGA
GGAGGAGAGAAGGGAGGGAGAGGAGGAAGAGAAGGGAGGAGGGGAGGAGAGAGAAGGGGA
GGAGGAGGAGAGAGGGAGGGAGGGAGGGGGGAGAGGAAAGGGAGGAGGAGAGAAGGGAG
GAGGAGAGAAGGGAGGAGGAGGAGAGAAGGGTGGAGGAGGGGAGGAAGGAAGGAGGAGGA
GGAGAAGGAAGAAAGGAGGAGAAGGAAGAGGGGGATGGGAAGAGGAAGAAGGGGATG

HQ3 ref seq: 
00000002110000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000210000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000021000000000000
0000000000000000000000000000000000000000000000000021000000000000000

HQ3 read seq: 
00000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000002100000000000000
0000000000000000000000000000000000000000000000002100000000000000000

Edit distance
= 66

Edit distance
= 7

(d)

Figure 4.1: (a) Q-mer map for Nanopore R9.4 1D flow cell (for Q = 6). It represents the
physics of nanopore. The median current value along with the standard deviation (as error
bars) are plotted for all 6-mers in the Q-mer map for R9.4 1D nanopore flow cell (the Q-
mers are sorted in increasing median current levels). Note that the difference between the
median current levels of any two consecutive Q-mers is very small, therefore, resulting in large
overlaps. (b) An example to illustrate the error biases in nanopore base-called reads which
can be resolved through the Q-mer map ability of HQAlign to perform accurate alignment
despite the errors (the edit distance used here is domain-specific and is used to demonstrate
the accuracy of the alignment). (c) An example of quantization method for translating the
nucleotide sequences to the current level sequences using Q-mer map, and then quantizing
the (real-valued) current level sequences to finite quantized sequences (e.g. three levels for
HQ3). (d) An example from PromethION R9.4.1 ONT data in the neighborhood of an SV
in repeat region shows the two different nucleotide sequences have similar current levels and
therefore, the edit distance as observed through the lens of quantized sequence is significantly
lower in HQ3.

tationally challenging task of long sequence alignment. This problem is further amplified in

the repetitive regions such as variable-number tandem repeats (VNTR) region that accounts
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for a significant fraction of SVs ([42, 43]). However, these errors in nanopore sequencing

have a bias induced by nanopore physics which is missed by many long-read aligners since

they consider the errors as independent insertions, deletions, and substitutions. In nanopore

sequencing, a DNA strand migrates through the nanopore, and an ionic current that is estab-

lished in the nanopore changes according to the nucleotide sequence in or near the nanopore.

However, because of the physics and non-idealities of the nanopore sequencing, each current

level recorded depends on a Q-mer 1 (a set of Q consecutive nucleotide bases which influence

the measurement in the nanopore) ([17, 2]). These current readings are translated back to

nucleotide sequences by base-calling algorithms. Therefore, the error biases could be intro-

duced in base-calling, especially, between different Q-mers that have similar current levels.

This similarity in the current levels for different Q-mers is captured by the Q-mer map as

shown in Figure 4.1a. A Q-mer map represents the median current level and the standard

deviation (as error bars) for different Q-mers (Q = 6) for the nanopore flow cell. It is evident

from this figure that there is a significant overlap between the current levels observed for

different Q-mers migrating the nanopore. We propose a new alignment method, HQAlign

(Hybrid-QAlign, which is based on QAlign ([1])) and is designed specifically for detecting

SVs while incorporating the error biases inherent in the nanopore sequencing process.

HQAlign takes the dependence of Q-mer map into account to perform accurate alignment

with modifications specifically for the discovery of SVs. Figure 4.1b gives an example where

a DNA sequence (GCATGACAGG) is sequenced incorrectly as (CGGCAACCGA) due to

the error bias in the nanopore sequencer. As shown in the figure, the sequences are different

in the nucleotide space but they are identical in the Q-mer map space. It is important

to note that no additional soft information is used to establish this identity such as raw

nanopore current values for the nanopore reads. Instead, the nucleotide sequences that have

indistinguishable current levels from the lens of the Q-mer map are mapped to a common

quantized sequence. A nucleotide sequence is converted to a quantized sequence by first

1https://nanoporetech.com/support/how-it-works.
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converting the nucleotide sequence to a sequence of current levels using the Q-mer map

and then converting the sequence of (real-valued) current levels to a (finite level) quantized

sequence by hard thresholding the current levels as shown in Figure 4.1c. Therefore, the

additional information about the raw current signals is not used in the quantization process

but only the Q-mer map is utilized. Further, the quantization of current levels to finite

discrete levels (e.g. three levels) enables the use of existing software pipelines for long-

read aligners such as minimap2 as the core seed and extend algorithm for the alignment of

quantized sequences.

HQAlign is a hybrid mechanism with two steps of alignment. In the initial alignment

step, the reads are aligned onto the genome in the nucleotide space using minimap2 to deter-

mine the region of interest where a read can possibly align to. In the hybrid step, the read

is re-aligned to the region of interest on the genome (determined from the initial alignment)

in the quantized space. The narrow focus on the region of interest on target for the hybrid

step leads to an accurate alignment of the read-to-genome without dropping the frequently

occurring seed matches from the chain in minimap2 algorithm while taking the error biases

of nanopore sequencing into account through quantized sequences. The new modifications

in minimap2 ([41]) address this issue with a heuristic that adds additional low occurrence

minimizers to the chain if the adjacent anchors in the chain are far apart, whereas the

implementation of HQAlign has a different and complementary approach by focusing on a

narrow region on target to enable alignments with an improvement in chaining score over new

minimap2. Moreover, HQAlign pipeline enables the detection of inversion variants unlike

QAlign pipeline. In QAlign, the quantized forward read and the quantized reverse comple-

ment read are aligned separately to the quantized genome, therefore, an inversion within

a read alignment is not detected in QAlign (refer to section 4.2 for details). The separate

alignment of the forward and the reverse complement reads in QAlign also results in a high

false discovery rate for SV detection (as explained in section 4.2.5). It is because QAlign was

not optimized for downstream structural variant callers such as Sniffles2 ([45]). However, in
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HQAlign, we have modified the minimap2 pipeline to enable simultaneous alignment of the

quantized reverse complement read along with the quantized forward read sequence to the

quantized genome. This helps not only in resolving the high false discovery rate in QAlign

but also in detecting inversions within a read alignment. Further, HQAlign is optimized

for the downstream structural variant callers, and is more than 2.5x faster than QAlign (as

shown in Table 4.4) as the seed search domain for the alignment of quantized sequences is

reduced to a region of interest determined in the initial step of the algorithm.

An example of the performance of HQAlign against minimap2 (v2.24) in detecting an

insertion SV in a repeat region is demonstrated in Figure 4.1d. It shows alignment of

a real ONT read in a repeat region (note that a pattern of a few consecutive nucleotide

bases is repeated in the example) that is flanking around an insertion structural variant.

Minimap2 alignment of nucleotide reference and read (both of length 356 from the region

highlighted with a box) have an edit distance of 66 whereas the HQ3 alignment (HQ3 is

an alignment from HQAlign pipeline where the nucleotide sequences are translated to three

level quantized sequences, as shown in the example in Figure 4.1c) of quantized reference and

read sequences from the same region have a significantly smaller edit distance of 7. This is

because the current level sequence (by converting the nucleotide sequences using the Q-mer

map in Figure 4.1a) for the reference and the read sequences is very similar. Therefore, the

sequences that are far apart in nucleotide space are inherently very similar in HQ3 space in

terms of the edit distance in the transformed space.

We show that HQAlign gives significant performance improvements in the quality of read

alignment across real and simulated data. The well-aligned reads (a read is defined as well-

aligned if at least 90% of the read is aligned on the genome with a mapping quality more than

20) improve to 86.65% with HQ3 from 83.48% with minimap2 (v2.24) for the alignment of

ONT reads from HG002 sample to GRCh37 human genome. The metric improves to 89.35%

from 85.64% for HG002 reads alignment to T2T CHM13 assembly ([44]), and improves to

81.57% from 81.01% for the simulated reads data. These results are presented in the results
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section 3.1.2 Table 4.5.

In terms of SV detection, HQAlign has F1 score at par with minimap2 (v2.24) with

Sniffles2 ([45]) as the variant calling algorithm across both real and simulated datasets (Table

4.7). However, both HQAlign and minimap2 capture many complementary calls ( 4 −

6%) which are missed by the other method (as shown in Figure 4.10, 4.12, 4.13, 4.14, and

4.15). For instance, the complementary HQAlign calls are SVs that are uniquely called by

HQAlign or labeled missed in minimap2 due to breaking in the SV and vice-versa for the

complementary calls in minimap2. Further, the analysis of common true positive SV calls in

HQAlign and minimap2 against the truth set shows that HQAlign has on average a significant

improvement (10−50%, from the slope of the regression line in Figure 4.11, and Figures 4.16,

4.17, 4.18, and weighted average improvement across all datasets by 39%) in the breakpoint

accuracy than minimap2 for the calls with a difference in breakpoint greater than 50 bp

(breakpoint accuracy is determined from the difference in the start and end breakpoints of

an SV with respect to the match SV in truth set, therefore, lower the difference higher is the

breakpoint accuracy, refer to section 2.3 for a precise definition). Moreover, for the common

true positive calls, HQAlign has (on average) better SV length similarity than minimap2

(when SV length similarity is less than 0.95, SV length similarity is a measure of how similar

is the length of SV from an alignment method relative to the match SV in truth set; refer

to section 2.3 for a precise definition) as shown in Figure 4.11, 4.16, 4.17, and 4.18.

4.2 HQAlign Algorithm

The HQAlign strategy consists of two steps: (1) the initial alignment of the standard base-

called query sequence x to a target sequence t using Minimap2. This initial step identifies

the regions of interest on the target where x aligns. (2) the hybrid step is re-aligning the

query x only to the regions of interest on the genome determined in the first step in the

quantized current-level space of the nanopore flow cell (refer to section 4.2.1 for more details
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Figure 4.2: (a) An example to demonstrate the ability of HQAlign pipeline to align inverted
sequences where QAlign fails (b) An example of HQAlign pipeline. (c) An example of read-
to-genome alignment. (d) Comparison of SV in truth set to SV determined by the method:
minimap2/HQ3.

on the quantization method and the choice of quantization level). However, HQAlign dif-

fers from QAlign method because of three key reasons: (1) In the original implementation

of minimap2 ([20]), it only uses the low occurrence minimizers during read mapping which

leads to misalignments, especially, in the highly repititive regions. The new modifications

in minimap2 ([41]) address this problem with a heuristic that adds additional lowest occur-

rence minimizers to the chain if the two adjacent anchors in the original chain are far apart.

The implementation of HQAlign also addresses this issue in a different (and complementary

manner) by focusing on a narrow region on the reference to enable alignments with a better

chaining score, and the statistics to quantify the improvement in HQAlign over the modifi-

cations in minimap2 ([41]) are in section 4.2.5. (2) QAlign has a high false discovery rate for

SV detection because it is not optimized for the downstream structural variant callers (such

as Sniffles), and was solely designed for the purpose of accurate alignments of the nanopore

reads using the current-level modeling (refer to section 4.2.5 for statistics and more details).
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(3) Further, we have modified the minimap2 (v2.24) pipeline for the simultaneous alignment

of the quantized forward and the quantized reverse complement read sequences to the quan-

tized region of interest on the genome in the hybrid step. This enables resolving the high

false discovery rate for SVs in QAlign and the detection of the inversion variants within the

alignment using the quantized sequences. This is explained in detail in section 2.2. Further,

HQAlign is more than 2.5x faster than QAlign standalone as it narrows down the seed search

domain for lower alphabet size (e.g. three levels) in QAlign. This strategy is explained in

Figure 4.2b, and mathematically in the following sections.

4.2.1 Quantization method from QAlign [1]

The nucleotide sequences are inferred from the nanopore current signals by basecallers,

therefore, using a Q-mer map to translate the basecalled sequences to the current levels

implicitly maintains all of the “equivalent” basecalled sequences that could be inferred from

the observed current levels. These current levels can be quantized to an alphabet of finite

size.

Mathematically, the quantization process is as follows. Let Σ = {A,C,G, T} be the

alphabet of nucleotide sequences. For a symbol s ∈ Σ, let s̄ be the Watson-Crick complement

of s. A string x = s1s2 . . . sn over Σ is called a nucleotide sequence, where |x| = n is the

string length and the reverse complement of x is x = s1s2 . . . sn = snsn−1 . . . s1. Let p(x) be

a list of all Q-mers (e.g. Q=6) in the string x, sorted by their occurrences. For example,

p(x) = k1k2 . . . kn−Q+1 and each Q-mer ki = sisi+1 . . . si+Q−1 for i = 1, 2, . . . , n−Q+1. Now,

we define f : ΣQ → R as the Q-mer map 2, which is a deterministic function that translates

each Q-mer (ki) to the (median) current level (Figure 4.1a). Now, let C(x) = c1c2 . . . cn−Q+1

be the sequence of the current levels, such that ci = f(ki) for i = 1, 2, . . . , n − Q + 1. The

2Q-mer map is determined by the chemistry of the nanopore flow cell, and is therefore dataset de-
pendent, i.e., the Q-mer map for sequencing using R9 flow cell is different from Q-mer map for se-
quencing using R9.4.1 flow cell. The Q-mer maps used in this work are generated by Nanopolish
(https://github.com/jts/nanopolish).
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current sequence C(x) can be further quantized into w(x) = q1q2 . . . qn−Q+1 by applying hard

thresholding function qi = g(ci). For ternary quantization, in HQ3, qi ∈ {0, 1, 2} (as shown

in an example in Figure 4.1c). We define w(x) as the quantized reverse complement sequence

of x, w(x) = w(x).

4.2.2 Choice of Quantization level

HQ2 and HQ4 does not perform as well as HQ3 in detecting the SVs because of the following

reason.

(a) (b)

Figure 4.3: Comparison of HQ2 and HQ3 alignments around an SV region. (a) Captures
the alignment around an insertion SV in a repeat region (the location of the SV on the
reference is shown as dotted black line). HQ2 (in red) tends to extend the alignment around
the SV due to higher probability of false positive matches in low sequence complexity. (b)
Captures the alignment around a deletion SV (the location of SV on the reference is shown
in dotted black lines). HQ2 has a higher variance in SV breakpoints.

In case of HQ2, although the overall alignment is correct (in terms of the start and

the end location of the read mapping to genome) but because of the coarse quantization

(to only two levels), it becomes hard to determine an accurate alignment of Q2 sequences

in a repeat region containing an SV. This results in a high variance of the SV breakpoints
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amongst the reads that overlaps around the SV in repeat regions. A few examples comparing

the alignment of HQ2 and HQ3 in are shown in Figure 4.3. It is evident from Figure 4.3a

that it is difficult to accurately align Q2 sequences around an SV in the repeat region, and

the breakpoint of SV captured has a higher variance than HQ3 in Figure 4.3. Therefore,

it becomes difficult to make a confident call on the SV as observed by the variant caller

such as Sniffles, and leads to a lower recall and precision rate with HQ2. Further, HQ2 is

computationally more expensive (as shown in Table 4.1 below) since there could be many false

positive seed matches in the chaining algorithm of minimap2 and it takes more computation

to identify the correct chain due to low sequence complexity.

Table 4.1: The evaluation of SV detection for HQ3, HQ2, and HQ4 in terms of Recall,
Precision and F1 score. The computation time is benchmarked for each method with 45
CPU cores. HQ3 has better performance compared to other quantization levels.

alignment
method
(minimizer
length)

Computation
time (in sec)

Ground truth
SV set

Recall Precision F1 score

HQ3 (k=18) 50, 069
GIAB Tier 1 0.94 0.94 0.94
HG002 assembly 0.75 0.79 0.77

HQ2 (k=21) 145, 325
GIAB Tier 1 0.90 0.92 0.91
HG002 assembly 0.70 0.77 0.73

HQ4 (k=15) 51, 064
GIAB Tier 1 0.93 0.93 0.93
HG002 assembly 0.73 0.78 0.76

In case of HQ4, it might be intuitive to expect that higher levels of quantization leads to

better performance. However, this is not true for HQAlign since once the current levels are

quantized at finer levels, we call the quantized levels to be matched (in the alignment) only

if they match at a finer level. As we observe from the Q-mer map of R9.4 nanopore flow cell

(shown in Figure 4.1a), the difference between the median current values of the consecutive

6-mers is small. Therefore, a finer quantization leads to a higher rate of implied substitution

errors due to quantization. In this chapter, we show that the coarse three level quantization

(HQ3) is sufficient to obtain good accuracy for SV calling as well as fast alignment.
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4.2.3 Initial alignment

The nucleotide query x is aligned to a nucleotide target sequence t using minimap2. This

is similar to aligning a read to a genome with one chromosome. Here we consider only one

chromosome in target t for simplicity but the method generalizes to multiple chromosomes

in t such as t = (t1, t2, . . . , tm). This step identifies the regions of interest on the target t,

say, t[si : ei], where i ∈ {1, 2, 3, . . . } represent one or more alignments on t and si and ei are

the corresponding start and end location of each alignment i on target t, respectively.

Generalization of HQAlign method: The nucleotide query x is aligned to a set of

nucleotide target sequences t = (t1, t2, . . . , tm) using Minimap2. This is similar to aligning a

read to a genome which has several chromosome sequences. This step identifies the region

of interest on the target t, say, tj[si : ei], where tj, j ∈ {1, 2, . . . ,m} represent alignment to

one or more target chromosomes that x aligns to, i ∈ {1, 2, 3, . . . } represent represent one

or more alignments to chromosome j, si and ei are the corresponding start and end location

of each alignment i on the target tj, respectively.

4.2.4 Hybrid alignment

In this step, the query x is re-aligned to an extended region of interest on the target t[sqi : eqi ]

in the quantized current-level space, where sqi = si− bi and eqi = ei + bi, bi = (1− fi + 0.25)n

is an appended extension of the region of interest on target, fi = (ei − si)/n is the fraction

of read aligned in the initial step, and n is the length of the query x. The nucleotide

query x and the nucleotide extended target t[sqi : eqi ] are converted to the quantized query

xq and quantized extended target tq[sqi : eqi ], respectively, using the quantization method

demonstrated in QAlign (refer to section 4.2.1 for more details on quantization process).

Generalization of HQAlign method: In this step, the query x is re-aligned to an

extended region of interest on the target tj[s
q
i : eqi ] using the quantized sequences, where sqi =

si−bi and eqi = ei+bi, bi = (1−fi+0.25)n is an appended extension of the region of interest
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on target, fi = (ei − si)/n is the fraction of read aligned in initial step, and n is the length

of the query x. The nucleotide query x and the nucleotide extended target tj[s
q
i : eqi ] are

converted to the quantized query xq, quantized reverse complement query xq and quantized

extended target tqj [s
q
i : eqi ], respectively, using the quantization method demonstrated in

QAlign. These quantized sequences are then aligned using modified minimap2 pipeline that

performs alignment using both the quantized forward and the quantized reverse complement

query, simultaneously.

It is important to note that we do not use any additional soft information such as raw

current signals from nanopore sequencing in the quantization process, instead, we translate

the base-called nucleotide reads to current levels using the Q-mer map (in Figure 4.1a) and

then hard threshold the current levels to finite (e.g. three) levels to get the quantized (HQ3)

reads (in Figure 4.1c). The choice on three levels of quantization is because of the following

reasons: (1) using a coarser quantization to only two levels makes it difficult to accurately

align low complexity sequence in a repetitive region containing an SV, therefore, it becomes

hard for the variant caller to make a confident call for such SVs due to high variance of the

SV breakpoints. (2) using higher level of quantization requires a match in the current levels

at a finer level for the alignment of sequences. As we observe from the Q-mer map of R9.4

nanopore flow cell (shown in Figure 4.1a), the difference between the median current values

of the consecutive 6-mers is very small. Therefore, a finer quantization leads to a higher rate

of implied substitution errors due to quantization. In this study, we show that the coarse

three level quantization (HQ3) is sufficient to obtain good accuracy for SV calling as well as

fast alignment.

These quantized sequences are then aligned using a modified pipeline of minimap2 (v2.24).

We have modified minimap2 pipeline for this hybrid step to take the quantized reverse com-

plement query x̄q as an input which helps in identifying the inversion SVs within the contigu-

ous alignment of quantized sequences which was not possible with the earlier QAlign method

as shown in Figure 4.2a. QAlign uses the default minimap2 pipeline for the alignment of
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quantized sequences. While minimap2 can inherently compute and align the reverse comple-

ment of a read in the nucleotide domain, the quantized reverse complement sequence cannot

be computed given only the forward quantized sequence, therefore, QAlign separately aligns

both quantized forward and quantized reverse complement sequence. This method, however,

fails to identify an inverted alignment as shown in Figure 4.2a, and also results in a high false

discovery rate for SV calling since it is not optimized for the downstream structural variant

callers such as Sniffles2. Therefore, in HQAlign, we have modified the minimap2 pipeline

to enable alignment using both quantized forward and quantized reverse complement se-

quences, simultaneously. Note that the quantized alignment employs a different minimizer

length k = 18 in minimap2 for ternary (HQ3) quantization.

4.2.5 How HQAlign distinguishes from QAlign?

There are two ideas that distinguishes HQAlign from QAlign summarized below:

1. In the original implementation of minimap2 [20], it only uses the low occurrence min-

imizers during read mapping. The new modifications in minimap2 [41] address this

problem with a heuristic that adds additional lowest occurrence minimizers to the chain

if the two adjacent anchors in the original chain are far apart. The implementation of

HQAlign addresses this issue in a different (and complementary manner) by focusing on

a narrow region on the reference to enable alignments with a better chaining score, and

we have provided statistics to quantify the improvement in HQAlign over the modifica-

tions in minimap2 [41]. Further, HQAlign does the necessary fix to QAlign algorithm

to enable accurate structural variant calling with the quantized reverse complement

sequences.

2. It is not feasible to use QAlign for the detection of structural variants because of the

high false discovery rate of SVs with QAlign as shown in Table 4.3. The reason for the

high false discovery rate of SVs in QAlign is because it was not optimized for the down-
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stream structural variant callers (such as Sniffles). Therefore, we designed HQAlign

that enables SV detection using the current-level modeling of nanopore sequencers.

We elaborate on the arguments made above in detail here:

1. Improving identification of minimizers in the chain: In HQAlign, we first de-

termine the region of interest on the reference through the alignment of a read in the

nucleotide space and then re-align the quantized read to the quantized region of inter-

est on the reference. The idea is to determine an accurate alignment of the read on

the reference in the quantized space without dropping frequently occurring minimizers

from the mapping chain in minimap2. However, in QAlign (coupled with the original

minimap2 algorithm), since the minimizers are indexed from the entire reference the

heuristic of dropping frequently occurring minimizers could result in shorter alignments

or false alignments.

This can be analyzed statistically by comparing the dynamic programming (DP)

score of the primary and the secondary alignments in minimap2 algorithm. There

are 152, 237 reads out of 10.36 million reads dataset for which the primary label to

alignments in minimap2 (v2.24, the modified minimap2 [41]) does not match with the

primary label to alignments in minimap2 (v2.18, the old minimap2 implementation

[20]), however, the alignments from old and new version have an overlap of at least

90% on the reference (here the reads are aligned in the nucleotide space using the stan-

dard minimap2 pipeline). This change in label could be because of improved chaining

heuristic for low occurrence minimizers, and it is analyzed by comparing the ratio of

the DP score of the primary alignment to DP score of the secondary alignment for

different alignment methods (such as minimap2, QAlign and HQAlign). For instance,

consider the example shown in Table 4.2 for a single read case - the read aligns to

chromosome 14 and a contig in the human reference genome GRCh37 with the DP
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score and the mapping quality3 of the alignment as shown in the table. Considering

the primary alignment to chromosome 14 and the secondary alignment to contig from

minimap2 (v2.24) in this example as a ground truth label, we compute the ratio of the

primary DP score to secondary DP score for all the alignment methods listed in the

table with respect to the ground truth label determined by minimap2 (v2.24). The re-

sults shows that HQ3 (with minimap2 v2.24) has a better DP score ratio and mapping

quality than other alignment methods.

Table 4.2: In this example, a single read aligns to chromosome 14 and a contig of the
human reference GRCh37, and the DP score of both the alignments from different methods
are shown in the first two rows in this table (minimap2, Q3, and HQ3 alignments using
minimap2 (v2.18), and minimap2, Q3, and HQ3 alignments using minimap2 (v2.24)). The
mapping quality of the alignments is in the third row. Since the absolute values of the DP
score are not comparable due to the change in the chaining algorithm of minimap2 from
v2.18 to v2.24, we compute the ratio of the primary DP score to secondary DP score (the
ground truth of primary and secondary alignment label is defined based on the alignment
of minimap2 (v2.24)). HQ3 (with minimap2 v2.24) has a better alignment in terms of the
mapping quality and the DP score ratio.

alignment to
v2.18 v2.24

mm2 Q3 HQ3 mm2 Q3 HQ3
chromosome 14 51880 50480 54618 28137 27566 29123
contig 51910 50370 54468 27079 26314 27411
mapping quality 0 17 20 35 39 47
DP score ratio 0.999 1.002 1.003 1.039 1.048 1.062

Next, we analyze the metric of DP score ratio comparison across different alignment

methods for the 152, 237 reads is shown in Figure 4.4. The ground truth of the primary

and the secondary alignment label of a read is defined by the alignments of minimap2

(v2.24), and the ratio of the DP score for alignments from other methods are computed

based on these ground truth labels (similar to example in Table 4.2). The average

alignment performance of a method is measured by the complementary cumulative

3The mapping quality is a measure of the ratio of the primary to secondary chaining score and it is
strictly positive for a primary alignment and zero for any secondary alignments for a given query alignment
to reference.
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Figure 4.4: This figure compares the complementary cumulative density function for the
ratio of the primary to secondary DP score for different alignment methods for 152, 237
reads that have a change in the primary/secondary labels between minimap2 alignments
from v2.24 and v2.18. The plots are divided into three subplots to make them easier to read.

distribution function P[X ≥ x], where X is the random variable that represents the

ratio of the DP score, and the probability measure gives the fraction of reads that

satisfies the inequality X ≥ x. Therefore, higher the probability for any x represents

better alignment.

It is evident from Figure 4.4(a) that HQ3 (with minimap2 v2.24) has a better score
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ratio, although the ground truth is biased for minimap2 (v2.24). Further, it is impor-

tant to note that HQ3 (with minimap2 v2.18) (represents the performance of aligning

only onto the region of interest with the original algorithm of minimap2) has better

alignment for x > 1.1 than minimap2 (v2.24) and Q3 (v2.18).

Further, we have analyzed the average performance improvement in mapping quality

of alignments (that represents the improvement in chaining scores) using the entire

read dataset. It is measured in terms of the complementary cumulative distribution

function of the mapping quality of alignments P[X ≥ x], where X is a random variable

that represents the mapping quality, and the probability measure gives the fraction

of reads that satisfies the inequality X ≥ x, for the entire read dataset (with 10.36

million reads) that are aligned across different methods as shown in Figure 4.5. It is

evident from the figure that the optimization of aligning onto the region of interest has

a better performance in HQ3 (with both minimap2 v2.18 and minimap2 v2.24).

2. False discovery rate of SVs using QAlign: It is not feasible to use QAlign for

the detection of structural variants because of the high false discovery rate of SVs

with QAlign as shown in Table 4.3. The reason for the high false positive rate in

QAlign is because it is not optimized for the downstream structural variant callers

(such as Sniffles), and was solely designed for the purpose of accurate alignments of

the nanopore reads using the current-level modeling. In QAlign, since the strand of

the read sequenced is not known, QAlign performs the alignment of a read to the

reference separately for both the forward and the reverse strand of the reads and then

aggregates the alignments from each strand in the final output. This results in false

labeling of primary alignments from both the strands and therefore, Sniffles make false

positive SV calls from these primary alignments from both strands. For example, if a

read is sequenced from reverse complement strand of an approximate repeat region on

a chromosome, it might also have a forward strand alignment to a similar approximate

repeat sequence on another chromosome. However, only one of the two alignments
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Figure 4.5: Complementary cumulative distribution function of the mapping quality of align-
ments for entire read dataset (with 10.36 million ONT reads).

is more likely based on the chaining and DP scores, and should be labeled primary

accordingly. In QAlign, since each strand of the read is aligned separately to the entire

genome, it results in labeling both the alignments to different chromosomes as primary

and therefore, contributing to the false SV calls. This is fixed in HQAlign by performing

the initial alignment of the reads in the nucleotide space which not only determines

the region of interest but also provides the information about the strand of the aligned

read, and later in the hybrid step, the quantized read of only the corresponding strand

is re-aligned to the quantized region of interest. Therefore, resolving the high false

discovery rate for SVs in QAlign.
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Table 4.3: SV calls for QAlign (Q3 (with minimizer length k = 18)) and it comparison with
ground truth sets: (i) GIAB Tier 1 SV calls and (ii) SV calls from HG002 haplotype resolved
assembly comparison to GRCh37 reference.

alignment
method

Ground truth
SV set

True
pos-
itive
calls

False
pos-
itive
calls

HQ3 (v2.24) GIAB Tier 1 8949 584
HQ3 (v2.24) HG002 assembly 16470 4510
Q3 (v2.18) GIAB Tier 1 8743 6853
Q3 (v2.18) HG002 assembly 16034 24020
Q3 (v2.24) GIAB Tier 1 8899 6562
Q3 (v2.24) HG002 assembly 16384 23170

4.2.6 Performance metrics

We define several metrics that are used for the performance evaluation of HQAlign against

minimap2 (some of these metrics are used from the earlier QAlign method ([1])).

(i) well-aligned: Consider in Figure 4.2c, Read 1 aligns at location i1 through j1 on the

genome determined using nucleotide alignment. We say that the read is well-aligned if

at least 90% of the read is aligned onto the genome (i.e., j1−i1≥0.9(length(Read 1))),

and has high mapping quality (greater than 20). This metric quantifies the reads that

are mapped almost entirely to the reference.

(ii) normalized edit distance: In order to compare the quality of the alignments at

a fine-grained level, we further define normalized edit distance. The normalized edit

distance for nucleotide alignment is defined as

edit distance{r;G[i1 : j1]}
length(r)

(4.1)
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and for quantized alignment is

edit distance{r;G[iq1 : jq1 ]}
length(r)

(4.2)

where i1, j1 are the start and end location of alignment on the genome in nucleotide

space and iq1, j
q
1 are the start and end location of alignment on the genome in the

quantized space, r is the entire read and G is the genome. It is important to note

that for computing the normalized edit distance for alignments in the quantized space,

we only leverage the information of the location of the alignment on genome from

quantized space, i.e., iq1 and jq1 , but the edit distance between read and the aligned

section on the genome is computed on the nucleotide sequences. This metric gives a

measure of the distance similarity between two sequences, especially, used for the real

data where the truth of sequence sampling location is not known.

(iii) normalized alignment length: Another metric at the fine-grained level is normal-

ized alignment length, which is the ratio of the length of the section on the genome

where a read aligns to the length of the read. It is

j1 − i1
len(r)

(4.3)

for nucleotide alignment, and
jq1 − i

q
1

len(rQ)
(4.4)

for quantized alignment. A contiguous alignment tends to have this metric as 1. This

metric gives a measure of the contiguity of the alignment.

4.2.7 SV calling

The alignments from HQAlign and minimap2 in sorted bam format are used to detect struc-

tural variants using Sniffles2. These calls are benchmarked against a truth set using Truvari
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([46]). We have used the F1 score, precision, and recall as the metric to analyze the per-

formance of HQAlign and compare them with minimap2. Precision (P ) is defined as the

fraction of SVs detected by the algorithm in the truth set among the total SVs detected by

the algorithm. Recall (R) is the fraction of SVs detected by the algorithm in the truth set

among the total SVs in the truth set. F1 score is the harmonic mean of precision and recall

(= 2P ·R
P+R

). Further, we have observed that there are many complementary SV calls made by

both minimap2 and HQ3 that are missed by the other method. Therefore, we have defined

a union model which takes a union of the SV calls from both minimap2 and HQ3. The

precision, recall, and F1 score of the union model are also computed and reported in Table

4.7.

Further, the quality of the SVs for the common calls in minimap2 and HQAlign is eval-

uated by comparing the following metrics w.r.t. the SVs in truth set

(i) breakpoint accuracy: Breakpoint accuracy is measured by taking an average of the

difference in the start and end breakpoint of the SV w.r.t. the SV in truth set. For

instance, as shown in Figure 4.2d, i1 and j1 are the start and the end point on the

genome of SV in the truth set, and i
′
1 and j

′
1 are the start and the end point of the same

SV determined by any alignment method (minimap2/HQ3), then breakpoint score is

calculated as
|i′1 − i1|+ |j

′
1 − j1|

2
(4.5)

where |·| is absolute value function. Therefore, the lower the score higher the breakpoint

accuracy of the SV determined by the alignment method.

(ii) SV length similarity: SV length similarity is measured as the ratio of minimum

SV length in the truth set and from the algorithm to the maximum of two values.

Mathematically, it is
min(j1 − i1, j

′
1 − i

′
1)

max(j1 − i1, j
′
1 − i

′
1)

(4.6)

for the example shown in Figure 4.2d.
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4.3 Results

In this section, we demonstrate the results for (1) comparison of alignments from HQ3 and

minimap2 on real as well as simulated data, and (2) comparison of SV calls from HQ3 and

minimap2 alignments using Sniffles2 as the variant caller on real and simulated data.

4.3.1 DNA read-to-genome alignment

4.3.1.1 Datasets

We have used the publicly available R9.4.1 ONT PromethION reads dataset from HG002

sample ([47]). These reads are aligned to the recent telomere-to-telomere assembly CHM13

and the human reference genome GRCh37. GRCh37 is used as the reference build to map

the real data so that the curated variants can be used for accuracy analysis ([48]). Further,

we have also benchmarked the performance of HQAlign and minimap2 on simulated data

for both alignments and SV calling.

4.3.2 Computation time

We have benchmarked the computation time for minimap2, QAlign, and HQAlign (total

time including both the initial step and the hybrid step) with 45 CPU cores in Table 4.4

using the entire reads dataset (with 10.36M reads instead of 500k randomly sampled reads

as in the earlier submission).

Table 4.4: Computation time (wall clock time) for different alignment method on the entire
dataset with 10.36M reads.

alignment method (mini-
mizer length)

Computation time (in
sec)

Minimap2 (k=15) 24, 479
HQ3 (k=18) 50, 069
Q3 (k=18) 141, 253
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4.3.2.1 Alignment results
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Figure 4.6: HG002 nanopore long DNA reads alignment onto T2T CHM13
genome. (a) Comparison of normalized edit distance for HG002 R9.4.1 PromethION reads
data. Smaller values for normalized edit distance are desirable as it represents better align-
ment. The slope of the regression line is 0.79 < 1, therefore, representing better alignments
with HQ3 than minimap2 alignments for the same reads on average. (b) Comparison of
normalized alignment length for HG002 R9.4.1 PromethION reads data. Normalized align-
ment length of 1 is desirable as it represents that the entire read is aligned. The majority of
the reads are above y = x line representing longer alignment length in HQ3 than minimap2
alignment.

The alignment of DNA reads to the genome is a primitive step in structural variant calling

pipelines ([34]). HQ3 alignments show an improvement over minimap2 alignments in terms

of contiguity measured by normalized alignment length and alignment quality measured by

normalized edit distance.

The results are illustrated in Figure 4.6, 4.8, 4.9, and Table 4.5. At a coarse level, the

performance is measured by the fraction of the reads that are well-aligned by the algorithm.

A read is well-aligned if at least 90% of the read is aligned to the genome and has a high

mapping quality (see HQAlign algorithm section). HQAlign improves the fraction of well-

aligned reads than minimap2 - in particular, in the HG002 R9.4.1 reads alignment to T2T
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Table 4.5: Comparison for the percentage of well-aligned reads onto genome, and slope
of the regression line from normalized edit distance comparison plot of HQ3 vs minimap2
alignments with randomly sampled reads for each dataset (the reads are randomly sampled
to reduce the amount of edit distance computations). The slope of the regression line shows
the average gain in the normalized edit distance over the subsampled reads in each dataset.

Dataset (No. of sampled
reads)

Method of
alignment

well-aligned
reads (%)

Slope of
regression
line

HG002 R9.4.1 reads to
CHM13 (50k)

minimap2 85.64
0.7940

HQ3 89.35
HG002 R9.4.1 reads to
GRCh37 (50k)

minimap2 83.48
0.8301

HQ3 86.65
Simulated reads from chr 8 & X

of CHM13 assembly (50k)

minimap2 81.01
0.9860

HQ3 81.57

CHM13 reference, this metric improves to 89.35% from 85.64%, and for the alignments

to GRCh37 reference, this metric improves to 86.65% from 83.48%. Furthermore, there are

310, 036 reads (from the entire dataset with 10.36M reads) with at-least 1kb additional bases

aligned using HQAlign compared to minimap2 alignments for T2T CHM13 reference, and

there are 299, 896 reads with at least 1kb additional bases aligned using HQAlign compared

to minimap2 for GRCh37 reference.

The results in Figure 4.6 and Figure 4.8 compare the quality of the alignments using

minimap2 and HQAlign at a fine-grained level for HG002 ONT reads alignment to T2T

CHM13 genome and GRCh37 genome, respectively. Figure 4.6a and Figure 4.8a compare

the normalized edit distance for HQAlign and minimap2. The normalized edit distance is

the edit distance between the entire read and the aligned section on the genome normalized

by the length of the read, in nucleotide domain for both minimap2 alignment and quantized

alignment (HQ3). In the case of HQ3, the information of the location of the alignment on

the genome is leveraged from the quantized read and the quantized genome alignment, and

the edit distance is computed between the corresponding nucleotide read and the aligned

region on the nucleotide genome (see Methods for details). Intuitively, the normalized edit
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distance gives a measure of how close the two sequences are. Therefore, the smaller the

normalized edit distance, the better the alignment.

Figure 4.6a shows that for alignments of the reads to T2T CHM13 reference, the nor-

malized edit distance is on average smaller for HQ3 alignments than minimap2 alignments.

The better alignment in HQ3 is also evident from the slope of the regression line in Figure

4.6a. It shows that on average HQ3 alignments have 21% improvement in terms of the

normalized edit distance than the minimap2 alignments. Well-aligned reads in both HQ3

and minimap2 are represented by blue circles in Figure 4.6, well-aligned reads in HQ3 only

are represented in black asterisks, well-aligned in minimap2 only are represented in green

diamonds and reads that are not well-aligned in both are represented in grey squares. Fur-

ther, it is important to note that for normalized edit distance less than 0.1, the alignments

are marginally better in the DNA space, but for normalized edit distance higher than 0.1,

the alignments are significantly better in HQ3 space, especially, the 4% reads that are well

aligned in HQ3 and not well aligned in minimap2. This is because of the higher contiguity

of alignments in HQ3 space and signifies the improvement by HQ3 when the error rates are

higher. For alignments to GRCh37 reference, HQ3 has an average improvement of 17%, as

shown in Figure 4.8a.

The results for another fine-grained metric are shown in Figure 4.6b and Figure 4.8b,

which compares the normalized alignment length in HQ3 to the normalized alignment length

in minimap2 alignments. The normalized alignment length is the ratio of the length of the

section on the genome where a read aligns to the length of the read. In Figure 4.6b, there

are 4% reads that are well-aligned in HQ3 only, and the normalized alignment length is

close to 1 in HQ3 but it is much less than 1 in minimap2, therefore representing several

non-contiguous alignments in nucleotide domain that are captured as contiguous alignment

in HQ3. In Figure 4.8b, there are 3.7% that are well-aligned in HQ3 only.

We have also benchmarked the performance of HQAlign with the simulated reads data

and compared its alignment performance with minimap2 in Figure 4.9. The ONT reads are
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simulated from chromosome 8 and X of CHM13 T2T assembly using nanosim ([49]) with

coverage of 40x, median and mean read length 4.5 kb, and 14 kb, respectively. The results

show that the alignment performance of both HQAlign and minimap2 are at par with each

other.

4.3.3 Alignment performance

We have compared the alignment quality in HQAlign to the best alignment in QAlign in

Figure 4.7 (the best alignment in QAlign is the alignment with minimum normalized edit

distance from the aggregated alignments from both strands). It is evident from the figure that

HQ3 performs better than Q3 and minimap2 in terms of both the normalized edit distance

and the normalized alignment length metric. The expected value of normalized edit distance

(computed as E[X] =
∫
P[X > x]dx for reads that are aligned by any method) is 0.1613

for HQ3 (v2.24), 0.1673 for Q3 (v2.24), 0.1678 for Q3 (v2.18), and 0.1742 for minimap2

(v2.24). Recall that the normalized edit distance for all alignment methods are computed

in nucleotide space by leveraging the information about the location of the alignment in the

quantized space.

normalized edit distance =
edit distance(Genome[start : end]; read)

length of the read
(4.7)

The expected value of normalized alignment length (computed as E[X] =
∫
P[X > x]dx

for reads that are aligned by any method) is 0.9576 for HQ3 (v2.24), 0.9481 for Q3 (v2.24),

0.9459 for Q3 (v2.18), and 0.9320 for minimap2 (v2.24).

normalized alignment length =
end− start

length of the read
(4.8)

where start and end are the start and the end location of alignment on the reference.
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Figure 4.7: Alignment quality comparison between HQAlign (HQ3 (k = 18)), QAlign (Q3
(k = 18)), and minimap2 (k = 15), where k is the minimizer length. (a) Comparison of
normalized edit distance for 100k randomly sampled reads from the entire dataset. (b)
Comparison of normalized alignment length for the same 100k randomly sampled read in
(a). For QAlign, the best alignment in terms of normalized edit distance from both the
strands is chosen for analysis.

4.3.4 SV calling

4.3.4.1 Dataset

Long-read sequencing plays an important role in detecting structural variations. We evalu-

ated SV detection using minimap2 and HQAlign with Sniffles2 as the variant calling algo-

rithm on both real and simulated data. We simulated 2000 INDELS and 200 Inversion SVs

on chromosome 8 and X of T2T CHM13 reference genome using SURVIVOR ([50]) with

SV length uniformly distributed between 50 and 10000, and the ONT reads are simulated

using nanosim with an average length of 14k, median length of 4.5k and maximum length

2.5Mbp at coverage of 40x. We have used Truvari to benchmark the calls against the truth

set. For real data alignment with GRCh37 as the reference genome, the SV calls are com-

pared against the ground truth sets from (1) Genome In A Bottle (GIAB) Tier 1 calls ([48])

and (2) another truth set is constructed by comparing the haplotype-resolved assembly of
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Figure 4.8: HG002 nanopore long DNA reads alignment onto GRCh37 genome.
(a) Comparison of normalized edit distance for HG002 R9.4.1 PromethION reads data.
Smaller values for normalized edit distance is desirable as it represents better alignment.
The slope of the regression line is 0.82 < 1, therefore, representing better alignments with
HQ3 than minimap2 alignments for same reads on average. (b) Comparison of normalized
alignment length for HG002 R9.4.1 PromethION reads data. Normalized alignment length
of 1 is desirable as it represents that entire read is aligned. The majority of the reads are
above y = x line representing longer alignment length in HQ3 than minimap2 alignment.

HG002 against GRCh37 reference genome using dipcall ([51]). For T2T CHM13 reference

genome, since the ground truth for SVs is not available, we have constructed the truth set

by comparing the haplotype-resolved assembly of HG002 against CHM13 reference using

dipcall. However, it is hard to establish ground truth for the SV calls that are made in the

centromere regions, even though the assembly is likely to be correct. Therefore, we have

provided both the analysis including the SV calls in centromere regions (in Figures 4.10 and

4.11) and the analysis for SV calls excluding the centromere regions (in Figures 4.15 and

4.18).
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Figure 4.9: Simulated nanopore reads alignment onto T2T CHM13 genome. (a)
Comparison of normalized edit distance for simulated nanopore reads data. Smaller values
for normalized edit distance is desirable as it represents better alignment. The slope of
the regression line is 0.99 < 1, therefore, representing marginally better alignments with
HQ3 than minimap2 alignments for same reads on average. (b) Comparison of normalized
alignment length for simulated nanopore reads data. Normalized alignment length of 1 is
desirable as it represents a contiguous alignment of the entire read.

Minimap2 HQ3
True positives

890
(5.8%)

1039
(6.7%)14,506

15,396
(57%)

15,545
(58%)

Out of 890 calls in minimap2:
461: calls are captured by HQ3 at low SV length similarity
429: unique region calls
Out of 1039 calls in HQ3:
358: calls are captured by minimap2 at low SV length similarity
681: unique region calls

(a)

Minimap2 HQ3
False positives

1595 20443275

4870 5319

(b)

Figure 4.10: Comparison of SV calls from HQ3 and minimap2 with HG002-to-
CHM13 dipcall as truth set. (a) Comparison of true positive calls. (b) Comparison of
false positive calls.
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4.3.4.2 SV calling results

The standalone performance of both HQ3 and minimap2 is at par with each other across

different references and truth set used in this study for real data as well as for the simulated

data in terms of the F1 score. However, both HQ3 and minimap2 detect complementary

SV calls most likely in the repeat regions where accurate alignment is difficult and therefore,

leads to many broken calls.

The analysis with comparison of SV calls from HQ3 and minimap2 with GIAB Tier 1

truth set gives a precision, recall, and F1 score of 0.94, 0.94, and 0.94, respectively for both

minimap2 and HQ3. A union model of minimap2 and HQ3 can improve the recall rate at

the same F1 score, and the union model has a precision, recall, and F1 score of 0.93, 0.95,

and 0.94, respectively. Moreover, out of 103 SV calls that are made by HQ3 only (Figure

4.12), 41 calls are made by minimap2 alignments at a lower SV length similarity, and 62

calls are unique region calls. Out of 105 SV calls made by minimap2 only, 51 are captured

by HQ3 at a lower SV length similarity and 54 are unique region calls. HQ3 improves the

breakpoint accuracy by 14.11% for calls that have difference in breakpoints higher than 50

and it improves the length similarity by 19.97% that have SV length similarity lower than

0.95 (Figure 4.16).

We have compared the SV calls made by HG002 reads against T2T CHM13 reference

genome using both minimap2 and HQ3 and benchmarked them against the truth set gen-

erated by comparing HG002 haplotype-resolved assembly to T2T CHM13 assembly. The

standalone performance have precision, recall and F1 score of 0.77, 0.57 and 0.66, respec-

tively for minimap2 and 0.75, 0.58 and 0.65, respectively for HQ3. However, because of the

high number of complementary true positive calls in minimap2 and HQ3, the union model

has a significantly improved recall at the same F1 score with precision, recall, and F1 score

of 0.71, 0.61, and 0.66, respectively. Out of 1039 (6.7%) calls that are made in HQ3 only,

358 are captured by minimap2 at a lower SV length similarity threshold and 681 are unique
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Figure 4.11: SV quality comparison for common true positive calls in HQ3 and
minimap2 against HG002-to-CHM13 dipcall truth set. (a) Comparison of SV break-
point accuracy in HQ3 and minimap2 for common true positive calls. The difference in SV
breakpoint is compared to the truth set generated from comparing HG002 haplotype-resolved
assembly to T2T CHM13 build. A smaller difference represents better breakpoint accuracy.
Therefore, the slope of the regression line 0.58 < 1 represents better accuracy of HQ3 than
minimap2 on average. (b) Comparison of SV length similarity in HQ3 and minimap2 for
common true positive calls. The slope of the regression line 0.76 < 1 represents better SV
length in minimap2 than HQ3 on average, but the intercept is high (0.23). However, this
is due to a large density of SVs with length similarity ≥ 0.95 in both minimap2 and HQ3.
For length similarity less than 0.95, HQ3 has better performance than minimap2.

calls, whereas out of 890 (5.8%) calls that are made by minimap2 only, 461 are captured

by HQ3 at a lower SV length similarity threshold and 429 are unique (as shown in Figure

4.10a). Further, for the common true positive calls in both minimap2 and HQ3, we observe

a similar pattern as the other datasets in the improvement of breakpoint accuracy with HQ3

by 18.66% for calls that have a difference in breakpoint greater than 50, and improvement

in SV length similarity by 19.76% for calls with similarity less than 0.95 (Figure 4.11a-b).

SV calls from HG002 reads alignment to GRCh37 are benchmarked against the truth

set generated by comparing HG002 haplotype-resolved assembly to GRCh37. Minimap2 has

precision 0.78, recall 0.76, and F1 score 0.77 while HQ3 has precision 0.79, recall 0.75, and

F1 score 0.77. Out of 16462 true positive calls in HQ3, 703 (4.27%) are made only in HQ3
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with SV length similarity to the truth set greater than 0.7 (default parameter in Truvari).

However, 376/703 calls that are captured by minimap2 with SV length similarity less than

0.7 and 327/703 calls that are uniquely made by HQ3. Likewise, out of 16620 true positive

calls in minimap2, 861 (5.18%) are made only in minimap2 with SV length similarity greater

than 0.7. However, 524/861 are captured by HQ3 with SV length similarity less than 0.7,

and 337/861 are uniquely made by minimap2. A fine-grain analysis of the common true

positive calls by minimap2 and HQ3 in Figure 4.17a, shows that a major density of SV

calls (81.85%) have a difference in breakpoint below 50 in both minimap2 and HQ3, and

minimap2 has marginally better performance in terms of a lower difference in breakpoint

of SVs that have a value below 50. Whereas, for a large difference in the SV breakpoint

(greater than 50), HQ3 is better in terms of the breakpoint accuracy of the SV calls (on

average across all SV calls). Therefore, HQ3 improves the SV breakpoint for the rest 18.15%

calls that have high differences in breakpoints. Further, Figure 4.17b demonstrates that HQ3

has better SV length similarity when the length similarity is below 0.95 which corresponds

to 21.82% calls.

Table 4.6: The evaluation of SV detection in terms of Recall, Precision and F1 score for
different number of extended base pairs on the target region of interest. The number of
bases extended on the target region in HQAlign is defined as (1− f + b)∗ read length, where
f is the fraction of read aligned in the initial alignment and b is the buffer fraction.

buffer
fraction

Ground truth
SV set

Recall Precision F1 score

0.25
GIAB Tier 1 0.94 0.94 0.94
HG002 assembly 0.75 0.79 0.77

0.1
GIAB Tier 1 0.94 0.94 0.94
HG002 assembly 0.74 0.78 0.76

0.3
GIAB Tier 1 0.94 0.94 0.94
HG002 assembly 0.75 0.79 0.77

0.4
GIAB Tier 1 0.94 0.94 0.94
HG002 assembly 0.74 0.78 0.76
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Table 4.7: Comparison for precision, recall and and F1 score for SV calls made by HQ3,
minimap2, and the Union model.

Dataset Truth set Method of

alignment

Precision Recall F1 score

HG002 reads
to GRCh37

GIAB Tier 1 calls
minimap2 0.94 0.94 0.94
HQ3 0.94 0.94 0.94
Union 0.93 0.95 0.94

HG002 reads
to CHM13

HG002 assembly to
CHM13 (including
centromere calls)

minimap2 0.77 0.57 0.66
HQ3 0.75 0.58 0.65
Union 0.71 0.61 0.66

HG002 reads
to CHM13

HG002 assembly to
CHM13 (excluding
centromere calls)

minimap2 0.82 0.75 0.78
HQ3 0.82 0.74 0.78
Union 0.78 0.79 0.78

HG002 reads
to GRCh37

comparing HG002
assembly to GRCh37

minimap2 0.78 0.76 0.77
HQ3 0.79 0.74 0.77
Union 0.74 0.79 0.77

Simulated
reads to
CHM13

Simulated SVs on chr 8
and X

minimap2 0.99 0.97 0.98
HQ3 0.99 0.97 0.98
Union 0.99 0.98 0.98

Minimap2 HQ3
True positives

105
(1.2%)

103
(1.2%)8,845

8,950
(94%)

8,948
(94%)

Out of 105 calls in minimap2:
51: calls are captured by HQ3 at low SV length similarity
54: unique region calls
Out of 1039 calls in HQ3:
41: calls are captured by minimap2 at low SV length similarity
62: unique region calls

(a)

Minimap2 HQ3
False positives

234 216366

600 582

(b)

Figure 4.12: Comparison of SV calls from HQ3 and minimap2 with Genome in a
Bottle (GIAB) Tier 1 truth set for GRCh37 build. (a) Comparison of true positive
calls. (b) Comparison of false positive calls.
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Table 4.8: Comparison for precision, recall and and F1 score for SV calls made by HQ3,
minimap2 (with parameter tuning), and the Union model. The computation time is the wall
clock time using 45 CPU cores for each method.

Ground

Truth

(Total

SV calls

in the

truth

set)

Method of alignment Computation

time (in

sec)

Precision Recall F1 score

GIAB
Tier 1
calls
(9, 641)

minimap2 (default: k=15) 24, 479 0.94 0.94 0.94
HQ3 50, 069 0.94 0.94 0.94
minimap2 (k=14) 67, 315 0.94 0.94 0.94
HACGT 50, 443 0.94 0.87 0.91
Union (mm2 (k=15) &
HQ3)

0.93 0.95 0.94

Union (mm2 (k=15) &
mm2(k=14))

0.93 0.94 0.94

Union (mm2 (k=15) &
HACGT)

0.93 0.94 0.94

comparing
HG002
assembly
to
GRCh37
(23, 781)

minimap2 (default: k=15) 24, 479 0.78 0.76 0.77
HQ3 50, 069 0.79 0.75 0.77
minimap2 (k=14) 67, 315 0.78 0.75 0.77
HACGT 50, 443 0.81 0.69 0.74
Union (mm2 (k=15) &
HQ3)

0.75 0.79 0.77

Union (mm2 (k=15) &
mm2(k=14))

0.77 0.76 0.77

Union (mm2 (k=15) &
HACGT)

0.78 0.76 0.77

4.4 Conclusion

In this chapter, we studied HQAlign as an alignment algorithm designed for the detection of

structural variants for nanopore sequencing reads. HQAlign provides alignment that outper-

forms the recent minimap2 aligner in terms of the accuracy and quality of the alignments.

The SV calling from HQAlign is also at par with minimap2 in terms of F1 score and it

outperforms minimap2 SV calls in terms of the quality of SVs measured in breakpoint accu-

101



Minimap2 HQ3
True positives

861
(5.2%)

703
(4.3%)15,759

16,620
(76%)

16,462
(74%)

Out of 861 calls in minimap2:
524: calls are captured by HQ3 at low SV length similarity
337: unique region calls
Out of 1039 calls in HQ3:
376: calls are captured by minimap2 at low SV length similarity
327: unique region calls

(a)

Minimap2 HQ3
False positives

1679 14723077

4756 4549

(b)

Figure 4.13: Comparison of SV calls from HQ3 and minimap2 with HG002-to-
GRCh37 dipcall as truth set. (a) Comparison of true positive calls. (b) Comparison of
false positive calls.

Minimap2 HQ3
True positives

17 62125

2142
(97%)

2131
(97%)

(a)

Minimap2 HQ3
False positives

2 106

8 16

(b)

Figure 4.14: Comparison of SV calls from HQ3 and minimap2 with simulated data.
(a) Comparison of true positive calls. (b) Comparison of false positive calls.

racy and SV length similarity. Moreover, there are many complementary SVs captured by

HQAlign that are missed by minimap2 alignments.

The reason for this improvement in the performance of alignment and SV calling with

HQAlign is that it takes into account the underlying physics of nanopore sequencer through

the Q-mer map, which could be one of the major causes of the high error rates in nanopore
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Minimap2 HQ3
True positives

763
(5.8%)

641
(4.9%)12,495

13,258
(75%)

13,136
(74%)

Out of 763 calls in minimap2:
83: calls are captured by HQ3 at low SV length similarity
680: unique region calls
Out of 641 calls in HQ3:
77: calls are captured by minimap2 at low SV length similarity
564: unique region calls

(a)

Minimap2 HQ3
False positives

995 9741991

2986 2965

(b)

Figure 4.15: Comparison of SV calls from HQ3 and minimap2 with HG002-to-
CHM13 dipcall as truth set and excluding the calls from the centromere regions.
(a) Comparison of true positive calls. (b) Comparison of false positive calls.

sequencing, and also it focuses on a narrow region of the genome (where the read aligns in

nucleotide domain) for alignment with quantized sequences. Further, this pipeline is adapted

specifically for the detection of SVs. We demonstrated how HQAlign utilizes the bias of Q-

mer map without accessing the raw current signal of nanopore sequencer by translating the

basecalled nucleotide sequences to quantized current level (of finite alphabet size) sequences.

This improvement helps in detecting several SVs that are missed by minimap2 due to high

error rates in the nanopore reads. Further, the recall rate for SV detection can be improved

by combining the complementary calls from both HQ3 and minimap2 in the union model

at the same F1 score.
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Figure 4.16: SV quality comparison for common true positive calls in HQ3 and
minimap2 against GIAB Tier 1 truth set. (a) Comparison of SV breakpoint accuracy
in HQ3 and minimap2 for common true positive calls. The difference of SV breakpoint is
compared to the GIAB Tier 1 truth set. A smaller difference represents better breakpoint
accuracy. Therefore, slope of the regression line < 1 represents better accuracy of HQ3 than
minimap2 on average. (b) Comparison of SV length similarity in HQ3 and minimap2 for
common true positive calls. The slope of the regression line < 1 represents better SV length
in minimap2 than HQ3 on average. However, this is due to a large density of SVs with
length similarity ≥ 0.95 in both minimap2 and HQ3. For length similarity less than 0.95,
HQ3 has better performance than minimap2.

104



0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000
Comparison of average breakpoint difference for GRCh37 truth set

2000

4000

6000

8000

10000

12000

Regression line:

slope: 0.54

intercept: 17.86

(a)

0.7 0.75 0.8 0.85 0.9 0.95 1
0.7

0.75

0.8

0.85

0.9

0.95

1
Comparison of SV length similarity for GRCh37 truth set

500

1000

1500

2000

2500

3000

3500

4000

Regression line:

slope: 0.77

intercept: 0.22

(b)

Figure 4.17: SV quality comparison for common true positive calls in HQ3 and
minimap2 against HG002-to-GRCh37 dipcall truth set. (a) Comparison of SV break-
point accuracy in HQ3 and minimap2 for common true positive calls. The difference of
SV breakpoint is compared to the truth set generated from comparing HG002 haplotype-
resolved assembly to GRCh37 build. A smaller difference represents better breakpoint ac-
curacy. Therefore, slope of the regression line < 1 represents better accuracy of HQ3 than
minimap2 on average. (b) Comparison of SV length similarity in HQ3 and minimap2 for
common true positive calls. The slope of the regression line < 1 represents better SV length
in minimap2 than HQ3 on average. However, this is due to a large density of SVs with
length similarity ≥ 0.95 in both minimap2 and HQ3. For length similarity less than 0.95,
HQ3 has better performance than minimap2.
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Figure 4.18: SV quality comparison for common true positive calls in HQ3 and
minimap2 against HG002-to-CHM13 dipcall truth set (excluding the centromere
region). (a) Comparison of SV breakpoint accuracy in HQ3 and minimap2 for common
true positive calls. The difference of SV breakpoint is compared to the truth set generated
from comparing HG002 haplotype-resolved assembly to T2T CHM13 build and the SV calls
in the centromere region are excluded in this truth set. A smaller difference represents better
breakpoint accuracy. Therefore, slope of the regression line < 1 represents better accuracy
of HQ3 than minimap2 on average. (b) Comparison of SV length similarity in HQ3 and
minimap2 for common true positive calls. The slope of the regression line < 1 represents
better SV length in minimap2 than HQ3 on average. However, this is due to a large density
of SVs with length similarity ≥ 0.95 in both minimap2 and HQ3. For length similarity less
than 0.95, HQ3 has better performance than minimap2.
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Figure 4.19: Comparison of SV calls made by minimap2 and HQ3 to other method.
(a) For the complementary calls (in blue) and common calls (in red) made by minimap2, this
figure compares SV length similarity and distance to nearest SV inHQ3 of the same type. 397
complementary calls made by minimap2 are in unique region, whereas 412 complementary
calls in minimap2 are captured in neighboring region (within 1000 bp) in HQ3 but with a
low SV length similarity. (b) For the complementary calls (in blue) and common calls (in
red) made by HQ3, this figure compares SV length similarity and distance to nearest SV in
minimap2 of the same type. 539 complementary calls made by HQ3 are in unique region,
whereas 329 complementary calls in HQ3 are captured in neighboring region (within 1000
bp) in minimap2 but with a low SV length similarity.
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Figure 4.20: Comparison of SV calls to HG002 truth set. (a) For the complementary
calls (in blue) and common calls (in red) made by minimap2, this figure compares SV length
similarity and distance to nearest SV in HQ3 of the same type. 290 complementary calls
made by minimap2 are in unique region, whereas 445 complementary calls in minimap2 are
captured in neighboring region (within 1000 bp) in HQ3 but with a low SV length similarity.
(b) For the complementary calls (in blue) and common calls (in red) made byHQ3, this figure
compares SV length similarity and distance to nearest SV in minimap2 of the same type.
179 complementary calls made by HQ3 are in unique region, whereas 347 complementary
calls in HQ3 are captured in neighboring region (within 1000 bp) in minimap2 but with a
low SV length similarity.
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4.5 Appendix

4.5.1 Accessing HQAlign on github

HQAlign requires python 3, and the installation guideline can be found on github.
The software is available at: https://github.com/joshidhaivat/HQAlign.git

usage: python hqalign.py [-h] -r REF -i READS -o OUTPUT [-t THREADS] [-k

KMER]

arguments:
-h, --help show this help message and exit
-r REF, --ref REF reference genome filename in fasta format
-i READS, --reads READS directory location of read files in fasta format (with

file extension .fasta)

-o OUTPUT, --output OUTPUT location of directory of output files
-t THREADS, --threads THREADS maximum number of parallel threads (default=4)
-k KMER, --kmer KMER minimizer length for hybrid step (default=18)
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Figure 4.21: Complete pipeline for SV calling using minimap2 and HQAlign.
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CHAPTER 5

Heterozygous variant detection for haplotype-resolved

assembly using long nanopore reads

5.1 Introduction

De novo genome assembly is a crucial step in understanding the genetic makeup of an

organism. By piecing the sequenced reads together, the entire genome sequence can be

reconstructed. However, for diploid organisms, which have two copies of each chromosome

with variations in one or both copies w.r.t. the reference genome, traditional assembly

methods struggle to differentiate between the two haplotypes (versions) of each chromosome.

This can lead to a loss of valuable genetic information as shown in Fig. 5.1 (a).

Nanopore sequencing technology offers the ability to generate long reads, which can be

beneficial for genome assembly. However, these reads also come with a higher error rate

compared to other sequencing methods. The high error rates pose a challenge for haplotype

resolved assembly, where the goal is to reconstruct both haplotypes of a diploid genome.

Current approaches to haplotype resolved assembly with nanopore reads often rely on addi-

tional sequencing data, such as highly accurate short reads from Illumina, highly accurate

long HiFi reads data or data from parental genomes. While this can improve assembly ac-

curacy, it also increases the cost and complexity of the process. The standard approach

of these methods is to label each read to one of the two haplotypes for a diploid genome

using the highly accurate short reads data or long HiFi reads data and then assemble reads

labeled to a single haplotype to produce haplotype-resolved assembly as shown in Fig. 5.1
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(a)

(b)

Figure 5.1: (a) The sequencing reads data from sample diploid genome (with two haplotypes
represented in red and blue) is assembled using long-read assemblers such as Flye and the
resulting draft genome represents a consensus assembly with loss of genetic information. (b)
High level idea for haplotype-resolved genome assembly for diploid genome where each read is
phased and labeled to the haplotype it is sequenced from and then assembled using the long-
read assemblers to maintain each copy of the genome without any loss of genetic information.
The cross and the circles represent heterozygous variants specific to each haplotype.
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(b). In these approaches, phasing each read to its correct haplotype is the bottleneck for the

accuracy of the haploid assembly, and therefore, highly accurate short reads from Illumina

or HiFi reads are used in addition to long nanopore reads to clearly make a distinction in

read errors and variations in the sequence specific to one of the two haplotypes also known

as heterozygous variants. Moreover, utilizing highly accurate HiFi reads data (< 1% error

rate) only for accurate identification of heterozygous variants leads to accurate haplotype

contigs post assembly, but the lower average read length of the HiFi reads (around 10-25 kb)

leads to lower contiguity of the assembled contigs as compared to the assembly from long

nanopore reads (with the longest read about 4Mb). Therefore, it is useful to develop assem-

blers that can take advantage of the long but noisy nanopore reads for higher contiguity of

the assembly and accurately identify the heterozygous variants despite the high error rates

of the nanopore reads.

This thesis chapter focuses on the primitive step of the haplotype-resolved genome assem-

bly which is developing a method for identifying heterozygous variants from the nanopore

sequencing reads data accurately.

5.2 Algorithm for detection of heterozygous variants

The high-level idea of the algorithm to detect the heterozygous variants from the read data

is shown in Fig. 5.2. Given only the long and noisy nanopore reads from the entire diploid

genome, the algorithm determines the regions on the reads that overlap heterozygous alleles

which are “signature” of the haplotypes without using any side information such as the

reference genome or a draft assembly from the reads data. The details of the model and

algorithm developed to detect the heterozygous variants are discussed in this section.

Let λ be the average coverage depth of the reads data, where coverage depth is defined

as number of times a nucleotide is read during the sequencing. Therefore, a heterozygous

allele has a coverage depth of λ/2. This is observed in the Fig. 5.3 which represents the
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Figure 5.2: A high-level idea of the algorithm to detect the heterozygous variants from the
long noisy nanopore reads data.

k-mer frequency or the number of times a k consecutive nucleotide sequence occurs across

the R10.4 nanopore reads data for HG00733 sample diploid genome. The reads data have

an average coverage depth around λ = 40 which is observed as a peak in k-mer frequency at

40. These k-mers represent sequence from autozygous regions between two haplotypes, while

the small bump around λ/2 = 20 in the figure represents k-mers overlapping heterozygous

alleles. This motivates the development of a Hidden Markov Model (HMM) for predict the

regions on the reads likely to be overlapping the heterozygous alleles given the sequence of

k-mer frequency through the read computed using jellyfish1 [3].

A nucleotide read sequence of length n is represented as Si = si,1, si,2, . . . , si,n, where

si,j ∈ {A,C,G, T}. A k-mer from this sequence is a subsequence of k consecutive nucleotide,

e.g., ski,j = si,j, si,j+1, . . . , si,j+k−1 of length k. Therefore, there are n − k + 1 k-mers from

1Jellyfish is a fast and memory efficient algorithm that creates a database of kmer frequency across the
whole genome sequencing data and can also return the frequency of a query kmer.
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Figure 5.3: Distribution of k-mer frequency from R10.4 nanopore reads data for HG00733
diploid genome sample (for k = 17, 21, 25). The k-mer frequency from the entire data is
computed using jellyfish [3]. The peak around low kmer frequency (< 5) represent the kmers
from noisy regions of the read. The major peak around 40 represents the average coverage
of the nanopore reads data.

the read Si of length n. The number of occurrence of each k-mer encountered in the reads

data from the entire genome is computed and stored in the database by jellyfish algorithm.

The sequence of k-mer frequency for read Si is represented as Xi = xi,1, xi,2, . . . , xi,n−k+1,

where xi,j ∈ N is the k-mer frequency of ski,j. The sequence of k-mer frequency Xi for

each read i is considered to be observed based on the hidden underlying state sequence

Zi = zi,1, zi,2, . . . , zi,n−k+1 of the model which captures if the k-mer overlaps a region of

sequencing noise, heterozygous allele, autozygous region or a low-count or high-count repeat

region on the genome, therefore, zi,j ∈ {0, 1, 2, 3, 4} represent the mentioned hidden states,

respectively. The developed HMM shown in Fig 5.4 predicts the hidden state sequence Zi

given only the observed sequence of k-mer frequency Xi for all reads. The model parameters
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are initial hidden state probability π, transition probability A, and emission probability B,

where P[·] is the probability measure of an event, are learned using expectation-maximization

(EM) algorithm.

Figure 5.4: Hidden Markov Model to predict heterozygous regions on the reads with
x1, x2, . . . , xT as observed k-mer frequency and z1, z2, . . . , zT as the hidden states.

5.2.1 Notation of HMM parameters

Let X = [x1, . . . , xT ] where xt ∈ N be the sequence of observed k-mer frequency and Z =

[z1, . . . , zT ] where zt ∈ {0, 1, 2, 3, 4} be the sequence of hidden states. The model parameters

are θ = (π,A,B) where π be the initial hidden state probability with πj = P[z1 = j] is the

probability of initial hidden state being j; A be the transition probability matrix where an

entry Ai,j = P[zt = j|zt−1 = i] representing the probability of transiting to hidden state j

from hidden state i; and B be the emission probability where Bj(xt) = P[xt|zt = j] is the

probability of emitting xt at time t when the hidden state is j which is modeled as gaussian

distribution with mean µj and variance σ2
j , i.e., xt|(zt=j) ∼ N (µj, σ

2
j ).

5.2.2 Forward-backward algorithm

The forward algorithm is defined as αi(t) = P[x1, . . . , xt, zt = i] with αi(1) = πiBi(x1) and

the dynamic programming algorithm is:
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αi(t) = P[x1, . . . , xt, zt = i]

=
∑
j

P[x1, . . . , xt, zt−1 = j, zt = i]

=
∑
j

P[x1, . . . , xt−1, zt−1 = j] · P[xt, zt = i|zt−1 = j]

=
∑
j

αj(t− 1) · P[zt = i|zt−1 = j] · P[xt|zt = i]

=
∑
j

αj(t− 1) · Aj,i ·Bi(xt)

= Bi(xt) ·
∑
j

αj(t− 1) · Aj,i (5.1)

The backward algorithm is defined as βi(t) = P[xt+1, . . . , xT |zt = i] with βi(T ) = 1 and

the dynamic programming algorithm is:

βi(t) = P[xt+1, . . . , xT |zt = i]

=
∑
j

P[xt+1, . . . , xT , zt+1 = j|zt = i]

=
∑
j

P[xt+2, . . . , xT |zt+1 = j] · P[xt+1, zt+1 = j|zt = i]

=
∑
j

βj(t+ 1) · P[zt+1 = j|zt = i] · P[xt+1|zt+1 = j]

=
∑
j

βj(t+ 1) · Ai,j ·Bj(xt+1) (5.2)

Further, we also define the following quantities that are useful for the EM algorithm:
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γj(t) =
αj(t)βj(t)∑
i αi(t)βi(t)

= P[zt = j|x1, x2, . . . , xT ] (5.3)

ξi,j(t) =
αi(t)Ai,jBj(xt+1)βj(t+ 1)∑

l

∑
m αl(t)Al,mBm(xt+1)βm(t+ 1)

= P[zt = i, zt+1 = j|x1, x2, . . . , xT ] (5.4)

5.2.3 EM algorithm to learn HMM parameters

The EM algorithm seeks to learn the maximum likelihood estimate (MLE) of the unknown

model parameters by iteratively applying the following steps:

1. Expectation step: Define Q(θ|θ(s)) as the expected value of the log-likelihood

function of θ defined as L(θ; X,Z) = p(X,Z|θ) with respect to the current conditional

distribution of hidden variable Z given the observations X and the estimate of the

model parameters at the current time step s, θ(s):

Q(θ|θ(s)) = EZ∼p(·|X,θ(s)) [log (p(X,Z|θ))] (5.5)

Now, log(p(X,Z|θ)) = log(πz1)+
∑T

t=1 log(Bzt(xt))+
∑T

t=2 log(Azt−1,zt) and Z represent

a set of all possible hidden state sequence of length T , then

Q(θ|θ(s)) =
∑
Z∈Z

P
[
Z|X;θ(s)

]
·

[
log(πz1) +

T∑
t=1

log(Bzt(xt)) +
T∑
t=2

log(Azt−1,zt)

]
(5.6)

2. Maximization step: This step finds the optimal model parameters that maximizes

the expected value Q(θ|θ(s)) in Eqn. 5.6:
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θ(s+1) = arg max
θ

EZ∼p(·|X,θ(s)) [log (p(X,Z|θ))]

= arg max
θ

∑
Z∈Z

P
[
Z|X;θ(s)

]
·

[
log(πz1) +

T∑
t=1

log(Bzt(xt)) +
T∑
t=2

log(Azt−1,zt)

]
(5.7)

On maximizing the equation in Eqn. 5.7 w.r.t. the model parameters θ = (π,A,B),

we get:

π
(s+1)
j = P[z1 = j|X;θ(s)]

= γ
(s)
j (1) (5.8)

A
(s+1)
i,j =

∑T
t=2 P

[
zt−1 = i, zt = j|X;θ(s)

]
∑T

t=2 P
[
zt−1 = i|X;θ(s)

]
=

∑T
t=2 ξ

(s)
i,j (t− 1)∑T

t=2 γ
(s)
i (t− 1)

(5.9)

µ
(s+1)
i =

∑T
t=1 xtP[zt = i|X;θ(s)]∑T
t=1 P[zt = i|X;θ(s)]

=

∑T
t=1 xt · γ

(s)
i (t)∑T

t=1 γ
(s)
i (t)

(5.10)

(σ2
i )

(s+1) =

∑T
t=1(xt − µ

(s+1)
i )2P[zt = i|X;θ(s)]∑T

t=1 P[zt = i|X;θ(s)]

=

∑T
t=1(xt − µ

(s+1)
i )2γ

(s)
i (t)∑T

t=1 γ
(s)
i (t)

(5.11)

Further, since there is an imbalance in the data for the numbers of k-mers from the

autozygous region and the number of k-mers from heterozygous region, the mean of

the gaussian distribution for emission probability for the heterozygous state is set to
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half of the updated mean if the gaussian distribution of the emission probability for the

autozygous state instead of learning the parameter from the data itself from Eqn. 5.10,

i.e., µ
(s+1)
heterozygous = µ

(s+1)
autozygous/2.

5.2.4 Viterbi algorithm to predict heterozygous regions in the reads

The Viterbi algorithm is a dynamic programming algorithm that predicts the most likely se-

quence of the hidden states by computing the maximum a posteriori probability (MAP) esti-

mate. Mathematically, it computes Vi(t) = maxz1,...,zt−1 P[x1, x2, . . . , xt, z1, z2, . . . , zt−1, zt=i],

and Vi(t+1) = Bi(xt+1) ·maxj{Aj,iVj(t)} which computes the maximum probability to reach

hidden state i after t steps across all possible paths. The decoded hidden state sequence

Ẑ = [ẑ1, . . . , ẑT ] is obtained by decoding the last hidden state first, i.e, ẑT = arg maxi Vi(T )

followed by backtracking the path that maximizes the joint probability in the previous steps.

5.2.5 Performance metrics

The ground truth of the heterozygous variants for the genome sample HG00733 is developed

using multiple sequencing technologies such as highly accurate long HiFi reads and short

Illumina reads to identify the heterozygous alleles and their position on the reference human

genome. Using this ground truth variants, we have computed metrics such as Precision,

Recall, and F1 score as metric to evaluate the performance of our algorithm to detect the

heterozygous variants from the reads data only.

5.3 Results

5.3.1 EM algorithm to learn HMM parameters

The model parameters for HMM are initialized randomly and learned using the EM algo-

rithm in Eqn. 5.8–5.11. The initial probabilities πi and the transition probabilities Ai,j are

120



initialized randomly from a uniform distribution. The mean µi of the emission gaussian

distribution for the autozygous state is initialized to the coverage depth value from the reads

data, the mean for the error state is initialized to 0, the mean for the repeat state and the

variance of all hidden states are initialized to arbitrary high values.

Dataset: HMM parameters are trained iteratively using 5000 randomly sampled nanopore

reads each of length at least 50k basepairs. The model parameters converges in 13 epochs

where the convergence is defined as ||θ(s+1) − θ(s)|| < ε.

5.3.2 Detecting heterozygous variants on reads using Viterbi decoding

Given the observation of k-mer frequency as an input to the HMM with parameters trained

using EM algorithm described in section 5.3.1, we decode the hidden state sequence using

Viterbi algorithm described in section 5.2.4. This model has an underlying assumption

of gaussian distribution for the emission probability and it estimates the mean µi for the

distribution of the hidden state i which represents the average global coverage. However, the

coverage depth is not constant throughout the genome. There are sections of the genome

that has a higher local coverage than average coverage as well as the sections of the genome

that has a lower local coverage than the average coverage.

Fig. 5.5 (a) shows a read region from a section of genome that has higher coverage than

average. The heterozygous variant of interest is highlighted by vertical lines on the plot

of k-mer frequency vs read index around the region of interest. The decoded hidden state

sequence is represented at the bottom of the plot with color coding for each state in the legend

key. The top line of decoded hidden states fails to decode the hidden state as heterozygous

within the region of interest as the local coverage is higher than average. Therefore, leading

to an increase in false negative calls in such regions. Similarly, Fig. 5.5 (b) shows a read

region from a section that has lower coverage than average. It is evident from the decoded

hidden state on the top that a long stretch is falsely identified as a heterozygous variant,

therefore, leading to an increase in false positive calls in such regions.
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(a)

(b)

Figure 5.5: k-mer frequency vs read index plot around the interested heterozygous
variant region on the read. (a) A region on read with coverage depth higher than the
average coverage. This leads to a false negative call after Viterbi decoding without taking
the local coverage into account. (b) A region on read with coverage depth lower than the
average coverage. This leads to a false positive calls after Viterbi decoding without taking
the local coverage into account.
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This can be resolved by computing the local coverage from a window of k-mer frequency

that are emitted from heterozygous or autozygous hidden states and using this local coverage

as the mean of the gaussian distribution for computing the emission probability in the second

pass of Viterbi decoding as described in Eqn. 5.12, where xi is the k-mer frequency, zi = 1

is heterozygous hidden state, and zi = 2 is autozygous hidden state. This two-pass Viterbi

decoding algorithm resolves the higher false negative rates in the high coverage regions as

well as higher false positive rates in the low coverage regions. The hidden state sequence

after resolving with two-pass Viterbi decoding algorithm is represented in Fig. 5.5 in the

bottom of the plot.

λlocal =
1∑i+300

i−300 I{zi = 1 or zi = 2}

i+300∑
i−300

xiI{zi = 1 or zi = 2}

B1(xt) = P [xt|zt = 1] ∼ N
(
λlocal

2
, σ2

1

)
B2(xt) = P [xt|zt = 2] ∼ N

(
λlocal, σ

2
2

)
(5.12)

5.3.3 Evaluating heterozygous variants on the reads data

The decoded heterozygous states from two-pass Viterbi decoding algorithm above are used

to identify the region on read overlapping the heterozygous variant. For a given choice of

k, there are at most k consecutive k-mers that overlap a heterozygous SNP. If all of these

k consecutive k-mers are correctly decoded as heterozygous hidden state from HMM, we

define a confidence of het call from HMM as 1. Similarly, the confidence is computed for all

heterozygous states decoded by HMM as

confidence =
number of het states in a window of length k

k
(5.13)

Fig. 5.6 shows the trade-off between Precision, Recall and F1 score for different choice of
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Figure 5.6: Precision, Recall and F1 score for different choice of minimum confidence level
for heterozygous calls made by HMM

minimum confidence level for heterozygous calls made by HMM. There are many heterozy-

gous variants loci on reads which are dominated by sequencing errors, therefore, making

it impossible for the HMM to identify heterozygous state from those loci since the k-mer

frequency is too low. On removing such regions from the analysis of the recall rate, the

updated metric for recall and F1 score without error overlapping het regions are shown as

in dotted lines. Likewise, if majority of k-mers overlapping a het region have very high

frequency since they are same as k-mers from the repeat regions, then HMM has limitation

in identifying heterozygous calls from such regions. On removing both the error and repeat

majority het calls from false negative rate, the updated recall and F1 score are shown in

solid line in the Fig. 5.6. The operating confidence of 0.5 is chosen for the downstream task
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of haplotype-resolved assembly algorithm which gives a precision of 0.70, recall of 0.90, and

F1 score 0.78.

5.4 Conclusion

In conclusion, the challenge of accurately assembling diploid genomes using nanopore se-

quencing technology lies in the high error rates of the long reads, which complicate the

differentiation of heterozygous variants specific to each haplotype. Current methods miti-

gate this by integrating additional high-accuracy sequencing data, but this increases both

cost and complexity. Therefore, there is a critical need for innovative assembly algorithms

that can leverage the advantages of long nanopore reads while accurately identifying het-

erozygous variants without relying on supplementary data. This chapter aims to address this

gap by focusing on the development of a novel method for heterozygous variant identification

from nanopore sequencing reads only without the reference genome or a draft assembly from

the reads data, thereby facilitating development of an accurate and contiguous haplotype-

resolved genome assembly.
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CHAPTER 6

Conclusion and Open questions

The rapid advancements in nanopore sequencing technology have ushered in new possibilities

for genomic research, allowing the reading of extraordinarily long DNA fragments. However,

the high error rates associated with nanopore sequencing present significant technical chal-

lenges. This thesis addressed these challenges through a series of computational approaches

designed to enhance the accuracy, efficiency, and overall utility of nanopore sequencing in

various genomic applications.

Chapter 2: Mathematical Model for Nanopore Sequencer

In this chapter, we studied a comprehensive mathematical model to characterize the sequenc-

ing process of nanopore devices. This model incorporates key several non-idealities such as

non intersymbol interference, insertions-deletions, channel fading, and random noise, which

are inherent in the nanopore sequencing process. By understanding bounds on the infor-

mation extraction capacity, we studied benchmarks for current base-calling algorithms and

guidelines for designing improved nanopores. Additionally, this model offers a method to

quantify the storage capacity of nanopore sequencers when employed in DNA-based storage

systems. The findings from this study lay the groundwork for developing algorithms that

utilizes the error profiles in the nanopore sequencer for its downstream applications, enhanc-

ing base-calling accuracy, and optimizing nanopore design for more efficient data extraction

and storage.
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Chapter 3: QAlign

The chapter introduced QAlign, a preprocessing tool designed to improve the alignment

of long nanopore reads to reference genomes or other reads. QAlign converts nucleotide

reads into discretized current levels that takes the error modes of nanopore sequencing into

account while performing read alignments. This space transformation significantly boosts

alignment accuracy and efficiency, raising alignment rates from approximately 80% to 90%

and enhancing read overlap quality in multiple real datasets. The application of QAlign

demonstrates a robust approach to mitigating the high error rates of nanopore reads, making

it a valuable addition to the toolkit for genomic analysis.

Chapter 4: HQAlign

The chapter focused on the detection of structural variants (SVs) using nanopore sequenced

reads. We developed HQAlign, an aligner that leverages the error characteristics of nanopore

sequencing and incorporates SV-specific modifications in the alignment algorithm. HQAlign

improves the detection of complementary SVs by 4% − 6% compared to the state-of-the-

art aligner minimap2 and significantly enhances breakpoint accuracy across real nanopore

data. Furthermore, HQAlign achieves superior alignment rates for nanopore reads against

recent alignment algorithms such as minimap2 and QAlign. These improvements highlight

HQAlign’s potential in accurately identifying structural variants, which is crucial for under-

standing complex genomic rearrangements and their implications in human diseases.

Chapter 5: Heterozygous Variant detection for haplotype-resolved assembly

The final chapter addressed the challenge of assembling diploid genomes from long noisy

reads produced by nanopore sequencers. We proposed an algorithm to identify heterozygous

variants with high recall (90%) and precision (70%) without relying on additional reference

information or preliminary draft assemblies. This algorithm is a crucial step towards recon-
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structing diploid genomes accurately, overcoming the limitations posed by high sequencing

errors. By effectively distinguishing between heterozygotes and sequencing errors, this ap-

proach facilitates development of algorithms for diploid genome assembly, enabling more

accurate representation of genetic diversity.

6.1 Open Questions and Future Directions

While the contributions of this thesis significantly advance the capabilities of nanopore se-

quencing, several open questions and areas for future research remain.

Haplotype-resolved genome assembly

The detection of heterozygous variants using the nanopore read data only is the primitive

step of our on going work towards developing algorithm for haploty-resolved assembly for

diploid human genome. Using the identified variants as “signature” for each haplotype, the

goal is to develop an efficient algorithm that can phase the nanopore reads into two separate

bins, one corresponding to each haplotype, and then perform the assemble the reads in each

bin using the existing assembly algorithms to produce haplotype-resolved assembly.

Improving Base-Calling Accuracy

Despite the advancements in base-calling algorithms and mathematical modeling, achieving

higher accuracy in base-calling remains a critical challenge. Future research could explore

more sophisticated models that account for additional noise sources and sequencing errors.

Integrating machine learning techniques, particularly transformer models, could also offer

new avenues for improving base-calling accuracy by learning complex patterns in the se-

quencing data.
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DNA Storage

Using nanopore sequencer as a reader for DNA storage based systems should focus on en-

hancing the efficiency and reliability of both encoding and decoding processes. This includes

developing advanced error correction algorithms to mitigate the high error rates inherent in

nanopore sequencing and exploring novel encoding schemes that maximize storage density

and retrieval accuracy.

Ethical and Regulatory Considerations

As nanopore sequencing technology becomes more widespread, ethical and regulatory consid-

erations will become increasingly important. Research in this area should focus on ensuring

data privacy, addressing ethical concerns related to genetic information, and developing

regulatory frameworks to oversee the use of nanopore sequencing in clinical and research

settings.

6.2 Conclusion

The studies presented in this dissertation demonstrate significant progress in addressing the

challenges posed by high error rates in nanopore sequencing. By developing novel computa-

tional approaches, we have improved the accuracy and efficiency of genomic analysis, paving

the way for broader applications of nanopore sequencing technology. As research in this field

continues to evolve, the potential for nanopore sequencing to revolutionize genomics and re-

lated disciplines remains vast. Future work will undoubtedly build upon these foundations,

further enhancing the capabilities and applications of this transformative technology.
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