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interregional correlations 
in Parkinson Disease and 
Parkinson-related Dementia 
with resting Functional Mr 
imaging1

Tyler M. Seibert, PhD
Elizabeth A. Murphy, BA
Erik J. Kaestner, BA
James B. Brewer, MD, PhD

Purpose: To apply a recently developed native-space (or native-sur-
face) method to compare resting functional magnetic res-
onance (MR) imaging correlations (functional connectivity) 
measured in patients with Parkinson-related dementia (PRD) 
to those measured in cognitively unimpaired, age-matched 
control subjects with or without Parkinson disease (PD).

Materials and 
Methods:

The study was approved by the institutional review board and 
complied with HIPAA regulations. Participants included cogni-
tively unimpaired elderly individuals (n = 19), cognitively unim-
paired patients with PD (n = 19), and patients with PRD (n = 
18). Resting functional MR data were assessed by calculating 
correlation coefficients between blood oxygen level–dependent 
time series of a seed region and of other regions of interest 
selected a priori. Two seeds were used: a medial parietal region 
that contributes to the default network affected in Alzheimer 
disease and the caudate, which is affected by loss of dopami-
nergic inputs in PD. Correlation analyses were performed in 
the native space of individual subjects to avoid confounds from 
transformation to an average brain. Two-sample t tests were 
applied to data from each native-surface region of interest, 
and vertex-wise comparisons were made by using two-sample 
t tests at each vertex on the group surface; statistical results 
were corrected for multiple comparisons. Cortical thickness 
and striatal volumes were also compared across groups for the 
regions of interest.

Results: Corticostriatal functional correlations were decreased in 
PRD patients relative to elderly control subjects in bilat-
eral prefrontal regions; largest difference was observed 
in the right caudal middle frontal region (r = 0.48 in PRD 
patients and 0.81 in elderly control subjects, uncorrected 
P = .001). Conversely, there was no significant difference 
across groups in the strength of default-network corre-
lations. There was also no significant difference across 
groups in cortical thickness or striatal volume.

Conclusion: PRD was associated with selective disruption of corticos-
triatal resting functional MR imaging correlations, which 
suggests that resting functional MR imaging analyzed in 
subject-native space may be a useful biomarker in this 
disease. Additionally, at least in the present cohort, this 
technique was more sensitive to PRD changes than was 
quantitative structural MR imaging.

q RSNA, 2012
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participants (20 with PD, 18 with PRD, 
22 age-matched control subjects) un-
derwent resting-state imaging for this 
prospective study between January 2010 
and May 2011. Consent was provided by 
all participants, and the study was ap-
proved by an institutional review board 
and complied with Health Insurance 
Portability and Accountability Act regu-
lations. General inclusion criteria were 
men and women between the ages of 55 
and 100 years with a diagnosis of being 
cognitively normal or having PD or PRD. 
Movement disorder specialists evaluated 
the participants with PD and PRD and 
made diagnoses based on established 
criteria (1,3); participants meeting cri-
teria for dementia with Lewy bodies or 
PD dementia were included in the PRD 
group. General exclusion criteria were 
MR imaging contraindications, history 
of symptomatic stroke or other major 
neurologic or psychiatric disorder, and 
inability to adequately communicate 
with the operator of the imager. Data 
from four subjects were excluded from 
analysis due to poor quality: T1-weighted  
volume (n = 2), excessive motion during 
imaging (n = 1), and anterior drop-out  
(n = 1). Thus, data from 56 partici-
pants (19 with PD, 18 with PRD, 19 

research and practice. Interregional cor-
relations of the resting blood oxygen 
level–dependent functional magnetic reso-
nance (MR) imaging signal constitute 
one area of active interest in the search 
for biomarkers. Functional imaging bio-
markers are particularly attractive in that 
they may be able to depict disease prior 
to widespread atrophy and could reflect 
therapeutic effects on a shorter time 
scale than structural techniques. Resting 
functional MR imaging has a strong  
clinical appeal because it affords the 
ability to study multiple networks of the 
entire brain at once and, relative to task-
based functional MR imaging, it is less 
susceptible to the confounding effects 
of cognitive ability to perform a given  
behavioral task (5–9). Variations in resting  
functional correlations (often termed func-
tional connectivity) have already been  
reported in several neurologic disorders, 
including Alzheimer disease (10,11), mild 
cognitive impairment (12–14), and PD 
(15,16). Changes in Alzheimer disease 
were shown within regions termed the 
default network, while changes in PD 
have been described in correlations be-
tween the cortex and the striatum. Some 
early reports have even suggested that 
resting functional correlations may be 
sensitive to neurologic changes prior to 
the onset of clinical symptoms in neu-
rodegenerative disease (17,18). It is un-
known whether resting functional MR 
imaging might be a useful biomarker in 
PRD.

In the present study we apply a 
recently developed native-space (or  
native-surface) method (19) to compare 
resting functional MR imaging correla-
tions (functional connectivity) measured 
in patients with PRD to those measured 
in cognitively unimpaired, age-matched 
control subjects with or without PD. We 
hypothesized that PRD would be associ-
ated with altered interregional blood ox-
ygen level–dependent correlations both 
within the default network and between 
corticostriatal regions.

Materials and Methods

Participant Characteristics
Participant characteristics are pro-
vided in Table 1. A total of 60 recruited 

Parkinson-related dementia (PRD) 
is the second most common cause 
of neurodegenerative dementia in 

the United States, estimated to make up 
15%–35% of all patients with dementia 
(1). Patients with PRD may experience 
the motor symptoms of parkinsonism, 
as well as cognitive impairment that is 
frequently confused with Alzheimer 
disease (1–3). Subtypes of PRD in-
clude Parkinson disease (PD) dementia 
and dementia with Lewy bodies, but 
there is substantial overlap in the neu-
ropathologic and cognitive profile of 
these disorders. Both disorders share 
a pathologic hallmark in the presence 
of Lewy bodies, which are filamentous 
inclusions consisting of the presynaptic 
protein a-synuclein. Clinically, these 
disorders are primarily distinguished 
by the order of symptom onset. How-
ever, early detection and differential 
diagnosis of these disorders can prove 
challenging, especially when Lewy body 
disease spreads to cortical brain regions 
and the clinical profile may resemble  
Alzheimer disease. Additionally, synu-
clein and amyloid pathologic conditions 
often coexist in patients with dementia 
with Lewy bodies, which further con-
founds detection and diagnosis of these 
disorders (1–4).

A noninvasive imaging biomarker is 
needed to advance basic scientific investi-
gation of Parkinson-related disorders in 
vivo, as well as to aid in diagnosis and 
evaluation of treatment effects in clinical 

Advances in Knowledge

 n Relative to healthy aging, Parkin-
son-related dementia (PRD) 
patients exhibited decreased 
resting functional MR imaging 
correlation between a priori se-
lected corticostriatal regions.

 n Interregional default-network 
correlations were similar 
between PRD patients, patients 
with Parkinson disease, and 
healthy elderly individuals.

 n Disruption of corticostriatal func-
tional correlations was detected 
in PRD patients in relative 
absence of regional structural 
changes.
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The functional time series from the 
seed is then correlated with the aver-
age time series from the other regions 
in the Desikan-Killiany atlas by calcu-
lating a Pearson correlation coefficient 
between the seed time series and each 
region’s average time series. Finally, 
Fisher z transform is applied to the 
correlation coefficients. Region time 
series is obtained by loading the sub-
ject’s functional data and parcellated 
native surface by using software (MAT-
LAB 2009b; Mathworks, Natick, Mass); 
a time series at each vertex is classified 
by the region code at the corresponding 
location in the parcellated surface.

Vertex-wise correlation analysis (sur-
face equivalent of voxel-wise analysis) was 
also performed. Individual maps were 
produced by calculating the Fisher z-
transformed correlation coefficient for 
the average seed region time series and 
the time series of each vertex on the 
surface. Individual native surfaces were 
registered to the FreeSurfer fsaverage 
map (19). Group maps were created 
by loading individual fsaverage maps 
with MATLAB and computing the mean 
across subjects. Visualization thresh-
olds were set on the basis of the group 
map for control subjects; the minimum 
threshold was 0.5 standard deviation 
above the mean, and the maximum 
threshold was 1.5 standard deviations 
above the mean. To account for possible  
variation in functional anatomy, individ-
ual maps were subjected to surface-
based smoothing (approximately equiv-
alent to a 6-mm Gaussian kernel in two 
dimensions) prior to performance of  
vertex-wise group statistics. All group 
summary maps were similarly smoothed 
for display. Tissue mislabeling can fre-
quently arise during transformation 
to a volume atlas such as Talairach or 
MNI152 (Montreal Neurological In-
stitute, Montreal, Quebec, Canada), 
introducing large effects on functional 
correlations; surface-based registration 
reduces these errors (19,26,30).

Analyses were performed with 
two seed regions. The isthmus cingu-
late has been shown to be a reliable 
seed for study of the default network 
(19). Additionally, the caudate was 
also chosen as a seed to investigate 

(25,26). The surface was then anatom-
ically parcellated by using the Desi-
kan-Killiany atlas (27,28). Subcortical 
structures were similarly identified by 
means of volume segmentation (29). 
Results from each of these automated 
steps were inspected for accuracy, and 
manual corrections were applied as 
necessary (E.A.M., with 2 years of ex-
perience in editing data from more than 
100 examinations and trained by experts 
in the field) according to the procedures  
described previously, ensuring accurate 
native surfaces (19). Regions used in 
the functional analysis were tested for 
group differences in cortical thickness 
(or subcortical volume, after adjust-
ing for intracranial volume) by using 
analysis of variance (ANOVA).

Interregional Correlation Analysis with 
Functional MR Imaging
Procedures for functional MR imaging 
correlation analysis on native surfaces 
have been described in detail elsewhere 
(19). Briefly, these procedures take 
advantage of automated FreeSurfer 
parcellation tools (Athinoula A. Mar-
tinos Center for Biomedical Imaging, 
Charlestown, Mass) and avoid trans-
formation of functional data to an atlas 
volume. A single parcellated region from 
each individual surface or native volume 
is used as the seed for each hemisphere 
(a seed is a region of particular interest 
believed to contribute to a particular 
function, dysfunction, or network). 

age-matched control subjects) were 
analyzed.

MR Imaging Acquisition
Structural and functional imaging proce-
dures were described previously (19). 
Two T2*-weighted sequences of approx-
imately 7 minutes each were performed 
for each participant with a 1.5-T system 
(GE Healthcare, Waukesha, Wis) (rep-
etition time msec/echo time msec, 
2624/45; flip angle, 90°; matrix, 64 3 
64; voxel size, 3.75 3 3.75 3 5 mm; 32 
adjacent sagittal sections; 155 samples 
per series). Immediately prior to each 
functional series, a spin-echo volume 
was acquired with opposite phase-
encoding polarity for field inhomoge-
neity (22). Participants were asked to 
rest motionless with eyes open during 
the functional sequences (23,24). In 
addition to the functional volumes, a 
high-resolution, three-dimensional, T1-
weighted volume was acquired for each 
subject (8.5/3.8; inversion time, 500 
msec; flip angle, 10°; matrix, 256 3 
256 3 256; voxel size, 0.9375 3 0.9375 
3 1.2000 mm). Respiratory effort 
and heart rate were monitored and  
recorded with a pressure transducer 
and a pulse oximeter, respectively 
(BioPac Systems, Goleta, Calif).

Structural MR Imaging Processing
A model of each subject’s cortical 
surface was reconstructed from the  
T1-weighted MR imaging volume 

Table 1

Participant Characteristics

Participant Group Age (y) Education (y) MMSE*

Elderly control (n = 19) 76 6 9 (58–90) 17 6 2 (13–20) 29.0 6 1.1 (27–30)
 Male (n = 8) 76 6 11 (61–90) 18 6 3 (13–20) 28.5 6 0.9 (27–30)
 Female (n = 11) 76 6 8 (58–83) 17 6 2 (13–20) 29.5 6 1.0 (27–30)
PD (n = 19) 70 6 8 (57–84) 17 6 3 (12–20) 29.0 6 1.3 (26–30)
 Male (n = 12) 69 6 7 (59–80) 17 6 3 (12–20) 29.2 6 1.1 (27–30)
 Female (n = 7) 72 6 8 (57–84) 17 6 3 (12–20) 28.6 6 1.6 (26–30)
PRD (n = 18) 72 6 7 (61–97) 16 6 2 (12–20) 23.3 6 4.6 (13–30)
 Male (n = 16) 74 6 9 (61–97) 16 6 2 (12–20) 23.6 6 4.4 (13–30)
 Female (n = 2) 68 6 4 (65–70) 18 16

Note.—Data are means 6 standard deviation, with range in parentheses. Years of education were unobtainable for one PRD 
female participant. Dementia rating score (20) was obtained instead of Mini-Mental State Examination score for two male PD 
and one female PRD participants; these were at ceiling for the two PD participants, and 130 (impaired) for the PRD participant.

* MMSE = Mini-Mental State Examination (21).
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Results

Seed regions (caudate and isthmus cin-
gulate) and all regions selected a priori, 
listed in Table 2, were also tested for a 
structural effect of disease state. Cor-
tical thickness for surface regions and 
subcortical volumes (adjusted for intra-
cranial volume) for basal ganglia struc-
tures were compared with ANOVA. Af-
ter controlling the false-discovery rate 
at 0.05, or 0.10, only the right para-
hippocampal region was significantly 
different across groups (F = 7.905; df = 
2, 52; P = .001, uncorrected).

Despite the relatively advanced age 
of the elderly control participants (mean 
age, .76 years), resting correlation re-
sults for this group were generally con-
sistent with previous reports in college-
aged and middle-aged adults (19,35). 
Isthmus cingulate maps (Fig 1, A) show 
characteristic features of the default net-
work, including prominent involvement 
of medial and inferior lateral parietal 
areas, as well as medial and lateral pre-
frontal cortex. Caudate maps differ from 
isthmus cingulate maps—in particular, 
the caudate is strongly correlated with 
areas such as the supplementary motor 
area, presupplementary motor area, 

Parkinson-related disease. Two-sample 
t tests were applied to data from each 
native-surface region of interest, and 
results were assessed for significance 
after controlling the false-discovery 
rate at less than 0.05 to correct for 
multiple comparisons (36). Vertex-
wise comparisons were also made by 
using two-sample t tests at each vertex 
on the group surface. Group vertex-
wise t test maps were smoothed (ap-
proximately equivalent to a 12-mm 
Gaussian kernel in two dimensions) 
for display. All t test results made no 
assumption of equal variance between 
groups. Additionally, cortical thickness 
and basal ganglia were compared for 
each region across subject groups by 
using ANOVA after adjusting for age, 
sex, and intracranial volume (PASW 
Statistics, GradPack 18; SPSS, Chi-
cago, Ill); significance was assessed 
after controlling the false-discovery 
rate at 0.05, as was performed for the 
functional data. A final ANOVA was 
performed (PASW Statistics, same 
threshold for significance) to evaluate 
whether findings from the functional 
correlation analyses could be explained 
by demographic features, including 
age, sex, and years of education.

corticostriatal correlations. Dopami-
nergic projections to the striatum are 
affected by PD, and the caudate has 
been particularly implicated in cogni-
tive functions (31,32). Greater cau-
date atrophy has been reported in PD 
dementia patients than in PD patients 
without dementia (33). Further, in pa-
tients with PD, a structural change in 
the caudate has been shown to corre-
late with various measures of executive 
function, including the Stroop Test, 
the Trail Making Test, and the Digit 
Ordering Test (34). Each of these re-
gions has been evaluated as a seed in 
another data set using healthy adults 
(19,35). To avoid unnecessary multi-
ple comparisons, the five regions most 
strongly correlated with each seed in 
that prior data set were selected a 
priori for regional analyses (Table 2). 
Vertex-wise analyses were performed 
for the entire cortical surface.

Statistical Analysis
All statistical analyses were performed 
by using MATLAB, unless otherwise 
specified. Subjects with PRD were 
compared with elderly control subjects 
with or without PD to test for potential 
population differences attributable to 

Table 2

Native-Surface Correlation Analysis for Default-Network (Isthmus Cingulate Seed) and Corticostriatal Correlations (Caudate Seed)

Left Hemisphere Right Hemisphere

Control PD PRD Control PD PRD
Region r Value r Value P Value r Value P Value r Value r Value P Value r Value P Value
Isthmus cingulate 
 Superior frontal 0.90 (0.07) 0.83 (0.07) .54 0.70 (0.07) .06 0.91 (0.06) 0.77 (0.07) .17 0.71 (0.06) .03
 Inferior parietal 0.94 (0.07) 0.90 (0.07) .71 0.87 (0.06) .43 0.90 (0.06) 0.88 (0.06) .88 0.82 (0.06) .39
 Medial orbitofrontal 0.63 (0.06) 0.62 (0.06) .86 0.42 (0.06) .03 0.55 (0.06) 0.53 (0.07) .87 0.42 (0.06) .15
 Hippocampus 0.65 (0.07) 0.68 (0.09) .78 0.58 (0.05) .44 0.63 (0.05) 0.58 (0.06) .55 0.48 (0.05) .03
 Parahippocampal 0.50 (0.07) 0.62 (0.09) .27 0.56 (0.06) .49 0.62 (0.05) 0.51 (0.06) .16 0.50 (0.05) .11
Caudate
 Putamen 0.83 (0.06) 0.78 (0.07) .55 0.63 (0.07) .03* 0.98 (0.08) 0.83 (0.06) .14 0.68 (0.07) .007†  

 Superior frontal 0.98 (0.05) 0.83 (0.08) .13 0.69 (0.08) .006† 0.86 (0.07) 0.70 (0.08) .16 0.65 (0.06) .03†

 Caudal middle frontal 0.70 (0.06) 0.58 (0.07) .23 0.47 (0.07) .02† 0.81 (0.06) 0.61 (0.07) .04 0.48 (0.07) .001†

 Rostral anterior cingulate 0.46 (0.06) 0.52 (0.07) .54 0.52 (0.07) .51 0.28 (0.06) 0.35 (0.06) .46 0.34 (0.07) .56
 Rostral middle frontal 0.81 (0.06) 0.72 (0.08) .38 0.66 (0.08) .14 0.87 (0.05) 0.69 (0.07) .06 0.57 (0.07) .001†

Note.—Unless otherwise indicated, data are population mean z-transformed correlation coefficients and data in parentheses are standard error. There was no significant difference between PD and 
PRD patients (P values not shown) or between PD patients and control subjects. Regions were selected a priori based on strength of correlation with the respective seed in independent data sets.

* Trend toward significance (false-discovery rate = 0.052; no other values survive false-discovery rate controlled at < 0.10).
† Significant after correction for multiple comparisons.
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the maps for the three groups are still 
qualitatively similar. No area of the cor-
tex was significantly different between 
the groups after correcting for multi-
ple comparisons in vertex-wise tests. 
For illustration, however, Figure 3, A,  
shows population differences at a very 
liberal threshold without correction 
for multiple comparisons (P , .01, un-
corrected). Although there were some 
suggestions of small group differences 
in both region-based and vertex-wise  
results, in the end there was not a sin-
gle a priori default-network region or 
cortical vertex with a significant dif-
ference between disease and control 
groups when the isthmus cingulate was 
used as a seed.

Corticostriatal resting correlations 
were also examined for differences 

2 reports correlation coefficients for 
default-network regions with the isth-
mus cingulate seed. Although there 
are some regions where a pattern 
of decreased correlation strength is 
suggested in PRD (especially bilat-
eral superior frontal, left medial or-
bitofrontal, and right hippocampus), 
no default region significantly differs  
between PRD and elderly control sub-
jects or between PD and control subjects,  
after correcting for multiple com-
parisons. Indeed, no region showed 
a significant difference even when 
the false-discovery rate correction 
was relaxed only 0.10 (ie, to look 
for trends). Group maps in Figure 1,  
B–D, also show possibly diminished pre-
frontal (medial and lateral) involvement 
with PD and PRD relative to control, but 

and middle frontal gyrus (Fig 2, B),  
in agreement with known structural 
connectivity (31,37,38). Table 2 lists 
the z-transformed correlation coeffi-
cients for the elderly control group;  
regions in the table were selected 
a priori for their strong correlation 
with the respective seeds in indepen-
dent data sets. Many of these regions  
remain strongly correlated with their re-
spective seeds in the present cohort of 
resting elderly control subjects, further 
demonstrating the overall qualitative 
consistency of these data with published 
resting functional MR imaging data.

To examine for potential effects 
of PD and PRD on the default net-
work, the strength of resting correla-
tions between default-network regions 
was compared across groups. Table 

Figure 1

Figure 1: A, Desikan-Killiany cortical parcellation atlas. B–D, Group correlation maps with isthmus cingulate seed. Fisher z-trans-
formed correlation coefficients for the correlation of each vertex on the surface with the average time series of the isthmus cingulate 
seed. The minimum and maximum thresholds for the functional overlay are 0.5 and 1.5 standard deviations, respectively, above the 
mean coefficient from the group map for control subjects.
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across Parkinson-related disease 
state. Contrary to the isthmus cingu-
late results, several regions were sig-
nificantly different in the PRD group 
relative to the control group Table 2. 
These included bilateral superior fron-
tal, bilateral caudal middle frontal, and 
right putamen (left putamen showed 
a trend toward significance, identified 
when the false-discovery rate was re-
laxed to 0.052 instead of 0.05). No a 
priori region was significantly different 
in the PD group relative to either the 
control or PRD group. This pattern is 
illustrated in Figure 2, where there is 
a qualitative decrease in both the mag-
nitude and extent of corticostriatal 
correlations in the PRD maps relative 
to the control maps, with PD showing 
an intermediate level of correlations. 

Figure 3, B, further illustrates this 
qualitative pattern with use of the same 
threshold as for the default network 
(Fig 3, A). While these vertex-by-vertex 
differences were not statistically signif-
icant in isolated vertices after correc-
tion for multiple comparisons (for the 
entire brain), Figure 3, B, shows that 
the vertex-level contrasts nevertheless 
highlight the areas where significant 
region-level differences were found in 
the corticostriatal network.

An additional ANOVA was per-
formed to determine whether the func-
tional correlation differences described 
above could be attributed to differences 
in demographic features. Sex, age, and 
years of education were included as 
covariates. None of these covariates 
had a significant relationship with the 

strength of functional correlation in any 
of the regions in Table 2.

Discussion

In the current study, patients with PRD, 
relative to healthy, age-matched control 
subjects, exhibited disruption of inter-
regional resting functional MR imaging 
correlations in corticostriatal networks 
selected a priori and defined by using 
subject-specific anatomy. In contrast, 
similarly defined interregional correla-
tions in the default network were not 
different for patients with dementia 
relative to healthy control subjects across 
most regions. These results suggest that 
resting networks, identifiable in vivo, 
may be differentially sensitive to the 
effects of PRD. Moreover, disruption 

Figure 2

Figure 2:  A, Desikan-Killiany cortical parcellation atlas. B–D, Group correlation maps with caudate seed. Fisher z-transformed 
correlation coefficients for the correlation of each vertex on the surface with the average time series of the caudate seed. The minimum 
and maximum thresholds for the functional overlay are 0.5 and 1.5 standard deviations, respectively, above the mean coefficient from 
the group map for control subjects.
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have included PD (15,16,44) or PRD 
(39), have used methods that depend 
on transformation of functional data 
to a standard volume (eg, Talairach or 
MNI152). Even small inaccuracies in 
the warping of individual brains to the 
standard volume could result in areas of 
cerebrospinal fluid or white matter be-
ing mistakenly labeled as gray matter. 
It has recently been shown that such 
errors can be common, are easily over-
looked, and can have large, widespread 
effects on resting functional MR imag-
ing correlations (19). In the present 
study we analyzed resting correlations 
within the native space of individual 
subjects to avoid such artifacts.

The primary limitation of this study 
was the inherent diagnostic ambiguity of 
dementia. Without biopsy, we must rely 
on imperfect clinical diagnoses to classify 
the participants (1–3); however, consen-
sus PRD diagnostic criteria used in the 
present study yield high specificity. A 
limitation of the present study might be 
its focus on PRD without inclusion of Al-
zheimer dementia, which might provide 
more direct evidence of the technique’s 
potential use for differential diagnosis. 
However, though Alzheimer disease pa-
tients were not included in this study, 
there have been numerous previous 
reports of decreased default-network 

with Lewy body–subtype of PRD and 
were able to exclude from their control 
group (but not the dementia with Lewy 
bodies) individuals with a high amyloid 
burden. Similar numbers of PRD partic-
ipants were included in the two studies 
(18 in the present study compared with 
15 with dementia with Lewy bodies 
in the previous study), but the Galvin  
et al study included a larger control 
group (38 compared with 19 patients). 
Here we modeled and removed the 
effects of respiratory fluctuations us-
ing the RETROICOR method (40); no 
method of controlling for physiologic 
noise was mentioned by Galvin et al. Fi-
nally, negative interregional correlations 
(anticorrelations), present in the results 
of the Galvin et al study but not in ours, 
are usually seen only after regression 
of the mean global signal, a step we 
did not perform due to concerns about 
mathematic validity (41) and the as-
sociated controversy of interpretation 
(40–43).

One important challenge for resting 
functional MR imaging studies in neuro-
degenerative conditions such as PRD is 
the potential confound of registration 
errors in subjects with atrophy. Nearly 
all available reports of resting interre-
gional functional MR imaging correla-
tions in disease, including all those that 

of corticostriatal correlations was de-
tected in the absence of statistically 
significant structural changes in these 
regions, possibly implying that the func-
tional technique has greater sensitivity 
to PRD pathologic conditions.

One recent publication (39) reported  
differences between patients with 
dementia with Lewy bodies and con-
trol subjects in the default network. 
The suggestion of decreased corre-
lation between a medial parietal seed 
and prefrontal and medial temporal re-
gions in our own data is consistent with 
their results, and the differences in 
both studies were found only when no 
correction was made for multiple com-
parisons. Because the Galvin et al (39) 
study represents the only similar study 
to our own regarding resting interre-
gional blood oxygen level–dependent 
correlations in PRD, some consideration 
of methodological differences between 
these two studies is important. One 
primary difference is that Galvin et al 
compared regions defined functionally 
by using group contrasts in the same 
data, whereas we used anatomic regions 
that were defined a priori from inde-
pendent data sets acquired in young, 
healthy adults. Participant selection 
also differed between the two studies; 
Galvin et al included only the dementia 

Figure 3

Figure 3: Group t test maps. Functional overlays show t values for each vertex for the relevant comparison. A, Comparison of PRD 
patients with elderly control subjects when isthmus cingulate is used as the seed (default network). B, Comparison of PRD patients with 
elderly control subjects when the caudate is used as the seed (corticostriatal network). Thresholds set at P , .01 (minimum) and P , 
.001 (maximum), without correction for multiple comparisons. “Cool” colors indicate decreased correlation strength in PRD relative to 
healthy aging, and “warm” colors indicate increased correlation strength in PRD (none found).
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