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Abstract

Boolector Interface with LGraph

by

Micaela Guerra Kapp

Modern electronics feature semiconductor chips which are incredibly sophisti-

cated consisting of multi-millions of logic gates. A small change has the potential

to produce disastrous consequences effecting project timelines and time to mar-

ket. Developing these complex chips requires correct tools and verifiable designs

during all stages of design and testing.

LiveHD is an open-source EDA tool for synthesis and simulation that pro-

vides quick feedback for small design changes. LGraph is the optimized, netlist,

graph representation of LiveHD. To maintain correctness over optimizations and

to aid in performing logic equivalence checking, the integration of an SMT solver,

Boolector, with LGraph is proposed. This thesis outlines the process of developing

the interface between Boolector and LGraph to produce a logic equivalence check

(LEC) pass for LiveHD. Although full integration was not achieved, the current

status of the pass, limitations and future work are discussed.
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Chapter 1

INTRODUCTION

The expansion of the semiconductor industry has produced a need for more

tools and technologies to continue fostering development. Semiconductor chips are

incredibly complex but the tools for hardware development are lacking in modern

features such as incremental synthesis and compilation. Small code changes result

in hours of turnaround time. Improvements to Electronic Design Automation

(EDA) tools from academia have solely focused on isolated steps of design while

private organizations manage advancements through monetizing.

In industry, the software is usually considered intellectual property and the

source code is kept confidential. Open source software fosters the bridge between

academia, industry, and enthusiasts through community-oriented development.

Contributors are able to equally use, modify, and distribute the software. Open
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source EDA tools are crucial to the development of new hardware as licensing can

be one of the many barriers to innovation.

Live Hardware Development (LiveHD) is an EDA tool that aims to produce

synthesis and simulation results in a few seconds[27]. The tool consists of an

open-source graph library using the incremental analysis model. LiveHD allows

developers to maximize their productivity by providing quick feedback for small

code changes, thus reducing the synthesis and simulation bottlenecks during the

hardware design process. These stages of the design process often consist of slow

and tedious operations with turnaround times from hours to days.

To ensure the Hardware Descriptive Language (HDL) representation remains

the same during different stages of development, a Logical Equivalence Check

(LEC) Pass is needed to improve LiveHD. This thesis describes the development

of a LEC Pass and its current interface capabilities with LiveHD.

Chapter 2 will define the importance of live development, open-source tools,

and their association with the LiveHD Infrastructure. Chapter 3 will explain

the LGraph structure, it’s usage and proposed improvements. Chapter 4 will

explain the importance of SAT and SMT solvers with EDA tools. Chapter 5 will

discuss the integration of Boolector with LiveHD and the results. Chapter 6 will

summarize the thesis and outline future work.
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1.1 Proposed Improvements

The integration of satisfiability (SAT) and satisfiability modulo theory (SMT)

solvers within the LEC Pass will help streamline the flow by implementing equiva-

lence checking within the tool. Figure 1.1 shows the current and proposed changes

to the flow of LiveHD.

Figure 1.1: Proposed Changes

The current flow utilizes the external equivalence checker, Formality by Snyop-

sys, to perform equivalence checking. The process can be improved by eliminating

the transformation from a LGraph to HDL representation before using external

checkers for equivalence checking. Most importantly, the development of a LEC

pass would check if a circuit is functionally the same before and after a transfor-

mation pass. Although the current process works, it is not efficient. The proposed
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flow would streamline the work flow, allow synthesis transformations, verification,

and equivalence checking to be integrated within the LiveHD framework, and

eliminate the need for costly software.

The current status of the LEC Pass and Boolector interface is under develop-

ment. Only partial integration was achieved as sequential circuits have not been

fully integrated and all regression tests have not been passed. The status is dis-

cussed in more detail in Chapter 5. The source code for the current LEC Pass is

found on the LiveHD Github [27] hand has been pushed to the master branch.

1.2 Related Work

Formal verification [24] is the process of checking if the behavior of a system

described using a mathematical formal model satisfies a given property. Equiv-

alence checking [11, 17] is a subset of formal verification. Equivalence checking,

described by Mohnke et al. [17], is the problem of checking whether two circuit

descriptions specify the same behavior and showing that modifications have not

altered functional behavior. Modern logic equivalence checking (LEC) involves

performing this process with multi-millions of gates in a single design [11, 17].
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1.2.1 Logic Equivalence Checking

Goldberg et al. [9] argued that satisfiability is a more robust and flexible engine

of Boolean reasoning for combinational equivalence checking than Binary Decision

Diagrams (BDDs); their research showed a speedup of two orders of magnitude

with the use of SAT. Incremental approaches include substitution, learning, and

transformation based algorithms. Cheng and Huang [11] discuss that although

Automatic Test Pattern Generation (ATPG) speeds up the verification process,

they alone are still not the ideal method for exploring larger designs.

In a design flow, Logic Synthesis takes place the between the HDL and Netlist

stages. A HDL design, such as Verilog or Pyrope, is synthesized to produce a RTL

representation. A netlist is the RTL representation at a logic gate level. Figure

1.2 shows a generalized synthesis flow from HDL to netlist representations.

Figure 1.2: Generalized Synthesis Flow[30]
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This transformation process is performed by an EDA tool requiring a logi-

cal equivalence check to ensure functionality remains the same between the two

stages. Formality Equivalence Checking by Synopsys is a proprietary EDA tool

that performs LEC and additional capabilities to aid developers. The comparison

step of equivalence checking from Formality is shown in Figure 1.3.

Figure 1.3: Compare Step of Equivalence Checking from Formality (Synopsys)[25]

Synopsys states that Formality uses formal, static techniques to determine if two

versions of a design are functionally equivalent[25]. One drawback to proprietary

software, is the uncertainty what specific SAT solver is used in Formality.
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1.2.2 Current Solvers

SMT solvers offer an extension to the constraints that a SAT solver can solve

with data types like bit vectors, arrays, strings, inequalities and more. There are

two classes that categorize SMT solvers, Eager solvers and Lazy solvers. Eager

solvers produce a larger formula that is passed to a SAT solver to determine

satisfiability. Figure 1.4 illustrates an overview of the Eager approach to SMT

solving.

Figure 1.4: Eager approach to SMT [31]

Chapter 4 will provide more detail on the Eager approach. Lazy solvers involve

an iterative approach with the combination of SAT solvers and Theory solvers.

Theory solvers consist of specialized methods involving data types like strings,

Bit Vectors, Arrays, Inequalities, Uninterpreted functions to certain classes of

7



formulas. SAT techniques are applied to these formulas to determine satisfiability.

The Lazy approach is not used in this thesis but a brief overview is provided in

Chapter 4 for completeness.

Some solvers favor a specific approach while other may use a combination of

both. Boolector, Z3 and CVC4 are all SMT solvers that use the Davis-Putnam-

Logemann-Loveland (DPLL) algorithm to determine the satisfiability of Boolean

instances where theories have been applied [2, 3, 18]. To create a SMT instance,

a Boolean instance is generalized by utilizing different theories and replacing the

variables.

Boolector was the chosen SMT solver for this thesis and will be discussed in

more detail in Chapters 4 and 5. Chapter 4 will introduce and provide an overview

of Boolector. Chapter 5 will present the input format BTOR, the C APIs, usage

examples, and the status of LGraph and Boolector integration.
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Chapter 2

LIVEHD

This chapter discusses the importance of live hardware development, the open

source software tools integrated with LiveHD infrastructure, and the key compo-

nents of the LiveHD framework.

2.1 Importance of Live Development

Modern technology has conditioned users to expect easy to use products with

fast results. Technology improvements that fostered these expectations fuel the

development of different methods for processing data. Live processing is important

because it increases productivity and keeps the user engaged. This method of

processing data involves processing updates with the ability to change code while

a program is running. Live processing is different from batch processing where a
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job or request is submitted and then a response or result is generated hours later.

The change between processing methods extensively shortens the wait time from

hours to minutes or less. A decreased wait period is specifically helpful in lengthy

processes such as the development and design of new semiconductor chips.

2.2 Open-Source Third Party Tools

LiveHD [27] utilizes integrated third party tools as part of the main infrastruc-

ture components. Yosys, ABC, OpenTimer, and Mockturtle provide the latest

methods and frameworks for open source synthesis and simulation.

Yosys [30] is an open source framework for register transport level (RTL) syn-

thesis providing algorithms for various application domains with Verilog support.

With the ability to create custom synthesis flows, Yosys also has support for non-

synthesis applications and creating extensions to Yosys with its integrated C++

APIs.

ABC [16] is a software system that combines scalable logic optimization for

sequential synthesis and verification of binary sequential logic circuits in syn-

chronous hardware designs. Data structures have been developed to represent

combinational and sequential networks in various ways such as a netlist and And-

Inverter-Graphs (AIG) technology-mapped networks.

OpenTimer [28] provides simulation for very large scale static timing analysis
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(STA) during IC development. During the design flow, local operations like net

rerouting, have the ability to greatly impact the local and overall timing but

depending on the change, only a small fraction of the timing may need to be

updated. This software verifies the expected timing behaviors using incremental

timing for various optimization flows.

Mockturtle [28] is a C++ 17 library that provides generic logic synthesis al-

gorithms and network data structures. The design is based on 4 principle layers

dependent on each other with the linear order of network interface API, algo-

rithms, network implementations, and performance tweaks[15]. Mockturtle offers

an easily integrated solution for logic network representation and manipulation or

compiled and used as a stand-alone logic synthesis tool[14].

Additional open source tools and libraries such as, LiveSim, SMatch, and

LiveSynth, have been integrated with LiveHD [21, 28, 27] to provide developers

with a robust infrastructure designed for live hardware development. There are

many open-source tools that represent different stages of digital design flow; how-

ever, using multiple tools comes with drawbacks. Open-source tools often use

different data structures and have different standards which make integration dif-

ficult. An example is code duplication from each EDA tool’s netlist parser which

causes additional flow execution time.
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2.3 LiveHD Infrastructure

LiveHD is unique in that it aims to integrate several open-source EDA tools

under a set of application programming interfaces (APIs) and a single data model

[28]. The infrastructure is optimized for synthesis and simulation of ASIC and

FPGA designs. The goal of the infrastructure is to represent different stages of

the digital design flow and return results in a matter of seconds for small design

changes [27]. LiveHD offers a custom shell interface that makes development with

the integrated open-source tools easy.

LiveHD is the overarching framework on top of LNAST and LGraph. Language

Neutral Abstract Syntax Tree (LNAST), is used to interface between LiveHD and

high-level HDLs such as Verilog or Pyrope [29]. The Live Graph, LGraph, in

Figure 2.1, is the intermediate representation (IR) of a design database built for

live hardware development.

Graphviz

LNAST

Yosys

LNAST

Yosys

pass
mockturtle

LGraph

Verilog

FIRRTL

C++

FIRRTL

Verilog

json json
Pyrope

Pyrope

Figure 2.1: LiveHD Infrastructure[27]

To use LiveHD, a developer begins with an RTL description such as Verilog

12



or Pyrope. The description is read in with the help of LNAST or Yosys us-

ing the shell, and a graph structure is generated. An optimization or analysis

of the IR, can then be performed using the shell environment before it is read

out back to an HDL. The optimization is referred to as a PASS which describes

transformation over an existing LGraph. For live synthesis, LiveHD uses Live-

Synth and SMatch[23, 22]. LiveSim is the live simulation framework used for

RTL simulation[10]. This thesis involves work with LGraph.
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Chapter 3

LGRAPH

Chapter 3 will discuss the LGraph component of LiveHD in detail and the

proposed improvements to the infrastructure. The proposed improvements will

outline the main goals of this thesis.

3.1 Overview

LGraph stands for live graph which is a graph representation optimized to

represent netlists during different phases of synthesis and physical implementation

[21]. A single LGraph represents a single netlist module formed of nodes, node

pins, edges and tables of attributes[21, 27]. Complex HDL modules with functions

can consist of multiple LGraphs.
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3.2 Nodes

A key component of LGraph is the node which represents a vertex in a LGraph

graph. The nodes consist of different types that represent logic operations, arith-

metic operations, registers, constants, muxes, wire selections and subgraphs.

Every LGraph, node, and pin have a unique pin identifier. Listing 3.1 shows

the Verilog code of trivial.v from the LiveHD Github [27]. Trivial.v is a simple

XOR circuit with two inputs and one output.

module trivial( input a, input b, output c );

assign c = a ^ b;

endmodule

Listing 3.1: Verilog Code of trivial.v

The visual LGraph representation of trivial.v, seen in Figure 3.1, was generated

using Graphviz. The visual demonstrates the Verilog representation of two inputs

and one output along with the identifying information added by the LGraph

translation. Each netlist gate is assigned with a node ID and each port of the

gate is assigned a port ID (PID)[21, 28, 27].

15



Figure 3.1: LGraph of trivial.v using Graphviz[8]

Each node has input pins and output pins that are labeled as driver or sink

pins. The driver pins are outputs of a node and sink pins are the inputs of the

node. The directed arrows between nodes have a label that consist of the number

of bits with the letter b, followed by the driver and sink pin IDs, in listed order,

inside parenthesis, and the driver pin name if given. The graphio nodes indicated

the inputs and outputs of the graph. For the graph in Figure 3.1, the two directed

arrows from n1 graphio indicated two inputs and the singled directed arrow from

n2 graphio indicates a single output to ”virtual dst module” which is the output

label. The XOR is the gate found while traversing and the JOIN node indicates a

wire. The labels and nodes of each Graphviz representation of LGraph will vary

with each circuit.

16



3.3 Edges

A LGraph edge defines a wire or collection of wires. The edge indicates a

pair of directly connected driver and sink pins. LGraph does not assign unique

identifiers to edges[21, 28].

3.4 Graph Traversals

The graph is bidirectional and supports topological and hierarchical traversals.

The topological traversals are performed in an input-forward and output-backward

manner[28]. Different types of iterators are used for traversing a LGraph. A

forward iterator, seen in Listing 3.2, indicates a particular visitation order in

which all constant labeled nodes are visited first. The forward traversal does not

traverse subgraph nodes[27].

for(const auto &node : g->forward () )

Listing 3.2: Forward traversal code example

The fast iterator, in Listing 3.3, allows visiting all of the nodes at random and

does not traverse sub-graph nodes.

17



for(const auto &node : g->fast () )

Listing 3.3: Fast traversal code example

A backward traversal, seen in Listing 3.4, uses the backwards iterator and will

visit sub-graph nodes recursively.

for(const auto &node : g->backward () )

Listing 3.4: Backward traversal code example

In a hierarchical traversal, a required top-level graph can consist of many sub

graphs. When a sub-graph node is encountered during a hierarchical traversal, a

new LGraph is generated with the exception of sub-graph inputs and outputs[27,

28]. All LGraph inputs and outputs have hard coded values. This traversal type

walks through the sub-graph contents when encountered. Figure 3.2 provides an

example of a hierarchical model.

18



Figure 3.2: Hierarchical traversal example[28]

Sub1 and Sub2 nodes represent sub-graph structures. The extension of the

Sub1 node indicates a walk through the sub-graph. Figure 3.3 illustrates the

graph example of Figure 3.2.
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Figure 3.3: Hierarchical Traversal Graph Structure[28]

The top level node is uniquely identified first then the sub-graphs and last,

the sub-sub-graph. This cross module traversal treats a hierarchical netlist like a

flattened design allowing for better optimization of performance [27, 28].
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Chapter 4

SAT AND SMT SOLVERS

This chapter will cover background information on satisfiability solving tech-

niques, their relation to equivalence checking and methods used for the LiveHD

LEC pass. Functional verification quickly becomes a bottleneck during the design

process with the increased complexity of chip design. Modern equivalence check-

ing software uses a combination of fundamental techniques and evolved algorithms

to speed up the design process and reduce time to market.

4.1 SAT Solvers

Boolean satisfiability (SAT) is the problem of determining whether there ex-

ists a variable assignment to a Boolean formula such that it evaluates to true.

SAT was the first known nondeterministic polynomial-time (NP) complete prob-
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lem originally proven by Stephen Cook in 1971 [7]. Algorithms with the worst

case time complexity are known for being NP-complete and often have instances

involving tens of thousands of variables and millions of constraints referred to as

clauses.

Logic gates are expressed in Conjunctive Normal Form (CNF) with their inputs

and outputs as Boolean variables. CNF is the conjuction of one or more clauses

where each clause is a disjunction of literals. Figure 4.1 shows AND, OR, and

XOR logic gates and their respective CNF forms.

Figure 4.1: Boolean CNF of Logic Gates

As described by Mohnke et al.[17], new and efficient algorithms for SAT have

been developed, allowing larger problem instances to be solved and increasing

the number of applications in electronic design automation. SAT is now used to

solve EDA problems in areas such as test pattern generation, logic optimization,

bounded model checking and formal equivalence checking. In equivalence check-

22



ing, SAT is used to check the functional equivalence between two circuits using a

miter circuit. A miter circuit, shown in Figure 4.2, is considered UNSAT, if and

only if, the two circuits being compared are equivalent.

Figure 4.2: Miter Circuit for Logical Equivalence Checking

Figure 4.2 shows Circuit#1 and Circuit#2 having the same a and b inputs. If

the output of the miter is 0, the circuits are considered equivalent and the miter

circuit will always output 0 when the circuits agree on the given input.

A larger circuit usually indicates a larger CNF representation, but a circuit

can be represented by a liner-size CNF encoding using the Tseitin transformation

[26]. The disadvantage of using SAT to verify functional equivalence is that SAT

is a NP-Complete problem [7], thus a NP-Hard problem, meaning a solution may

not be decidable [13].
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4.2 SMT Solvers

Satisfiability Modulo Theories (SMT) refers to the problem of deciding the

satisfiability of a first-order formula by incorporating different supporting theo-

ries. SMT solvers are found in hardware and software verification as back-end

applications combining multiple theories. Additional theories such as bit vectors,

arrays, lists, inequalities, uninterpreted functions and arithmetic are needed as

SAT is not ideal for scaling with the amount of components in current integrated

circuits. These solvers are important as they allow reasoning over a given domain

and provide decidable satisfiability problems for first-order theories and fragments

of theories.

SMT solver formulas allow for a more affluent modeling language over SAT

solver formulas. For example, a SAT formula represents the data path operations

at the bit level of a microprocessor and an SMT formula would represent the

data path operations at the word level. The SMT solving strategies consist of

converting a SMT formula into a propositional formula that is equisatisfiable. The

SMT formula is considered SAT if and only if the SAT formula is considered SAT.

Both approaches to SMT solving, Eager and Lazy, follow this rule to determine

the satisfiability of a SMT formula.
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4.2.1 Eager Approach to SMT Solving

The Eager approach to SMT solving involves encoding all the necessary prop-

erties of background theories into a SAT problem before the propositional formula

is passed to a SAT solver to determine satisfiability. While converting to between

SMT and SAT formulas, the theories being used in SMT are also taken into ac-

count. Figure 4.3 provides more detail of the Eager approach to SMT.

Figure 4.3: Eager approach to SMT[12]

The encoding process commonly involves two schemes, Ackermann and Small

Domain encoding. Ackermann encoding eliminates the uninterpreted functions

and all applications of uninterpreted functions and replaces them with a symbolic

constant. Small Domain encoding is based on a theorem that implies a enumer-
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ative approach to finding a SAT assignment. The theorem states, given a SMT

formula in a specified theory, the SMT formula is considered SAT if and only if

there exists a SAT solution to a given SMT formula with all domains for function

symbols having cardinality bounded by a finite integer.

4.2.2 Lazy Approach to SMT Solving

As previously mentioned, the lazy approach involves a combination of SAT

solvers and Theory solvers using an iterative approach. The theories are spe-

cialized methods that restrict their language to certain classes of formulas. SAT

techniques are applied to these formulas to determine satisfiability. Figure 4.4

illustrates how SAT and theory solvers are utilized in the Lazy approach to SMT

solving.
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Figure 4.4: Lazy approach to SMT [31]

Lazy solver treat the input formula as being propositional until they are forced

to treat it otherwise. During this process, if the SAT solver determines the propo-

sitional formula is UNSAT, then the SMT formula is declared UNSAT.

4.3 Boolector

Developed by a group of individuals from Johannes Kepler University Linz,

Boolector is publicly hosted on GitHub[6]. It has been entered in numerous SAT

and SMT competitions from early years in development. The Boolector website

hosts news, API documentation, publications, slides, and information on the de-

velopers past and present [19]. There are also a number of contributions from
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third parties listed on the Github and Boolector websites.

Boolector is an SMT solver that can be used as a standalone solver or as a

backend with interfaces for C and Python APIs. This solver is for the theory of

fixed-size bit vectors with arrays and uninterpreted functions and any combina-

tions thereof[19].
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Chapter 5

BOOLECTOR INTEGRATION

This chapter will cover the methodology of integrating Boolector with LiveHD.

The steps of integration are as follows:

1. Learn LGraph structure, attributes, and their respective usage.

2. Learn Boolector APIs and it’s usage.

3. Develop LGraph and Boolector connectivity.

Last, the Boolector and LGraph integration will be tested using two circuits

and the results will be presented.
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5.1 LGraph

Learning LGraph was separated into three steps. The first task involved un-

derstanding node types and edges. Next, was to identify inputs and outputs of

an LGraph. The last step involved understanding node connectivity.

5.1.1 Node Types and Edges

Determining the attributes and node type are essential to translate the circuit

into a form solvable by SAT or SMT solvers. The identification of each node

would need to occur during a traversal.

The get name() attribute identifies the current node name and get nid()

defines each node’s unique position within the LGraph. These node attributes

were used directly after the forward traversal statement to identify the current

node being visited.

for( const auto &node : g -> forward () )

{

fmt:: print("Node :{} ID:{}\n", node.get_name (), node.

get_nid ());

}

Listing 5.1: Code to determine current node
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Listing 5.1 demonstrates the code for printing the debug statements. The

response of node attributes can be returned as Boolean, string, or numbered

responses. Querying if a node is a root node is an example of a Boolean response.

The debug name of a node is a case for a string response. The number of input or

output edges are examples of attributes with a numbered response. Throughout

this task, the additional node attributes listed in Table 5.1 were used. Not all

existing attributes are listed.

Node Attribute Return Description

Node::has inputs() Boolean, if node as inputs

Node::has outputs() Boolean, if node as outputs

Node::get name() Name of node

Node::get num edges() Number of edges

Node::get num inp edges() Number of input edges

Node::get num out edges() Number of output edges

Node::get bits() Number of bits

Node::get place() Location in LGraph

Node::get debug name() Debug name of node

Node::is root() Boolean, if node is root node

Node::get type op() Node operation type

Table 5.1: LGraph Node Attributes
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The name and debug name of a node are strings that can be changed. Thus,

the node type operation, NType op, must also be verified. Not all node type

operations are listed in Table 5.2.

Node Type Operation Description

NType op::And Outputs logical AND of inputs

NType op::Or Outputs logical OR of inputs

NType op::Xor Outputs logical XOR of inputs

NType op::Ror Outputs logical Reduce OR of inputs

NType op::Not Outputs logical negation of inputs

NType op::LT Less Than

NType op::GT Greater Than

NType op::EQ Equal

NType op::SHL Logical Shift Left by given bits

NType op::SRA Logical Shift Right by given bits

NType op::IO Graph Input or Output

NType op::Const Constant

NType op::Sum Output sum of inputs

NType op::Mult Output product of inputs

NType op::Div Output division of inputs

Table 5.2: LGraph Node Type Operations[27]
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Combining the usage of node type operations, NType op, and the Node at-

tributes, the node type operation can be found while traversing a LGraph. When

a specific node type is found, additional operations can be performed based on

the NType op. Placing the code, as showing in Listing 5.2, inside the LGraph

traversal loop, each node operation will also be identified during the same node

visitation.

if(node.get_type_op () == NType_op ::And)

{

// Insert operations to be performed

}

Listing 5.2: Combining Node and Node pin Attributes

An edge was previously defined as a connection between nodes. Since LGraph

allows for forward and reverse traversals, all edges are considered bidirectional.

The most important edge attribute for this thesis was get bits() which returned

the number of driver bits translating to the input bit width of a node.

5.1.2 Identifying LGraph Inputs and Outputs

Traversals were performed according to the method outlined in Section 3.4.

Using the different traversal methods, the inputs and outputs were identified for

each LGraph according to Listing 5.3 and Listing 5.4.
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g->each_graph_input ([&]( const Node_pin &input_pin)

{

fmt:: print("LGraph input: {} {}\n", input_pin.get_name ()

, input_pin.get_pid ());

}

Listing 5.3: Code to generate LGraph inputs

Node pin, is used to determine the inputs and outputs of a node. A node

pin consists of an index that indicates the node the pin is connected to. The

node pin also has a port ID, which identifies the node within the LGraph being

traversed. The code for iterating over the inputs and outputs is the same except

for the specified node pin; input or output. The pin name, get name(), and pin

id ,get pid(), attributes are used in the debug print statement.

g->each_graph_input ([&]( const Node_pin &output_pin)

{

fmt:: print("LGraph output: {} {}\n", output_pin.get_name

(), output_pin.get_pid ());

}

Listing 5.4: Code to generate LGraph outputs

Table 5.3 offers additional attributes and their description for Node pin usage.
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Not all possible attributes are listed. Depending on the attribute, the return can

be a Boolean, string, or numbered responses. A Boolean response is given for

an inquiring attribute such as determining if the node pin has outputs. A string

usually provides a name. Retrieving IDs and getting the count of an attribute are

provided with a numbered response.

Node Pin Attribute Return Description

Node Pin::has inputs() Boolean, if node pin has inputs

Node Pin::has outputs() Boolean, if node pin as outputs

Node Pin::is graph io() Boolean, if node pin is IO type

Node Pin::is graph input() Boolean, if node pin is input

Node Pin::is graph output() Boolean, if node pin is output

Node Pin::is type const() Boolean, if node pin is constant

Node Pin::get node() Associated node

Node Pin::get node nid() Unique ID in LGraph

Node Pin::get type op() Node operation type

Node Pin::get driver node() Connected driver node

Node Pin::get driver pin() Connected driver node pin

Node Pin::get bits() Number of bits in node pin

Table 5.3: LGraph Node pin Attributes
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5.2 Boolector

Fundamentally, Boolector is a SMT solver that supports the Satisfiability Mod-

ulo Theories Library, SMT-LIB v2, and BTOR logics. Designed with the inten-

tion of creating a common standard for comparing SMT systems, SMT-LIB is

continuously evolving and adding to its library of benchmarks[1]. BTOR is the

bit-precise, word-level format for formulas over bit-vectors in combination with

one-dimensional arrays[5].

The rich C API provided allows developers to use Boolector as a library with

the logic depicted in Figure 5.1. The Parser reads SMT-LIB or BTOR inputs and

builds a directed acyclic graph (DAG). The DAG is simplified by basic rewriting

rules. The Rewriter provides rules that are divided into basic rules applied to

during formula construction, global term substitutions and static analysis tech-

niques, and arithmetic normalization. Formula Refinement calls the SAT solver

and returns a SAT solution if found, or directs an UNSAT to the different re-

finement methods to search for a SAT solution. The Array Consistency Checker

determines of the current SAT assignment is consistent with the theory of arrays.

Under-Approximation is used for adding constraints as clauses to the CNF. The

Model Generator provides SAT models when enabled[18].
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Figure 5.1: Boolector Logic Flow Chart [4]

As a SAT solver, Boolector’s back end supports CryptoMiniSat, Lingeling,

PicoSAT, MiniSAT and CaDiCaL [6]. Boolector allows the end user to choose the

SAT solver during code development. As of the 2019 SMT competition, CaDical

is the default SAT engine for Boolector[20]. Depending on the SAT solver chosen,

some functionality may be limited.
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5.2.1 BTOR Format

The BTOR logic format was created by the developers of Boolector to solve

issues with alternative input formats. Existing input formats did not adequately

handle model checking problems and had restrictive, complex, and error prone

interpretations. BTOR offered the solution by creating a simple, direct and stan-

dardized input format.

BTOR supports bit-vector variables, constants, and one-dimensional bit-vector

arrays with an arbitrary length based off principles from bit-level AIGER format

and SMT-LIB logics. Boolean variables are treated as bit-vectors with bit-width

one to eliminate unnecessary conversions. Plus, modeling sequential and syn-

chronous circuits are also BTOR supported[5].

5.2.2 C APIs

Boolector C APIs are built using the BTOR format operators consisting of

macros and functions. First, a Boolector instance must be generated using code

in Listing 5.5.

BTOR *btor = boolector_new ();

Listing 5.5: Code to create Boolector Instance

To clone a Boolector instance, the instance is used as an input parameter. The
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instance can be cloned at anytime if the Lingleing SAT solver is set. Otherwise, a

clone must be called, as in Listing 5.6, before determining if a Boolector instance

is SAT or UNSAT.

BTOR *boolector_clone(Btor *btor);

Listing 5.6: Code to clone a Boolector Instance

Internally, Boolector maintains the directed acyclic graph of expressions that

are simplified and processed shown in Figure 5.2. The instance is then entered as

an input parameter in BoolectorNode APIs representing an expression or opera-

tion in the DAG as a vertex.
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Figure 5.2: Example of Directed Acyclic Graph (DAG)

The Boolector instance and BoolectorNode are taken as parameters when as-

serting or releasing an expression as shown in Listing 5.7. Adding an assertion

will add an expression to the formula permanently and increment the reference

counter until the instance is deleted entirely, the expression is released from mem-

ory, or overwritten. Releasing an expression from memory decrements the refer-

ence counter.
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boolector_assert(Btor *btor , BoolectorNode *n0);

boolector_release(Btor *btor , BoolectorNode *n0);

Listing 5.7: Code to assert or release BoolectorNode

To delete a Boolector instance, Listing 5.8 shows the instance is taken as parameter[6].

Before deleting the instance, the reference counter should be zero otherwise a por-

tion of the instance will remain in memory.

boolector_delete(Btor *btor);

Listing 5.8: Code to delete Boolector Instance

BoolectorNodes consist of bitwise, boolean, arithemetic, relational, shifting

and negation reduction arithmetic classes[5]. All nodes will take the previously

declared Boolector instance as a parameter along with one or two BoolectorNodes

depending on the operator. In Table 5.4 the Boolector instance is referred to as

*btor and the BoolectorNodes are referred to as *n0 and *n1.
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Boolector Node Operator Description

boolector and(*btor,*n0,*n1) Bit-vector AND

boolector or(*btor,*n0,*n1) Bit-vector OR

boolector xor(*btor,*n0,*n1) Bit-vector XOR

boolector ror(*btor,*n0,*n1) Rotate Right

boolector not(*btor,*n0) One’s complement of *n0

boolector slt(*btor,*n0,*n1) Signed less than

boolector sgt(*btor,*n0,*n1) Signed greater than

boolector eq(*btor,*n0,*n1) Bit-vector or array equality

boolector sll(*btor,*n0,*n1) Logical shift left

boolector srl(*btor,*n0,*n1) Logical shift right

boolector const(*btor,*bits) Bit-vector constant of *bits

boolector add(*btor,*n0,*n1) Bit-vector addition

boolector mul(*btor,*n0,*n1) Bit-vector multiplication

boolector sdiv(*btor,*n0,*n1) Signed division

Table 5.4: Boolector Node Types

The description of Boolector nodes listed, are easily correlated to the LGraph

node type operations. For this thesis, the BoolectorNodes and LGraph node types

of Table 5.5 are defined as operation equivalent.
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LGraph NodeType Operation Boolector Node

NType op::And boolector and(*btor, *n0, *n1)

NType op::Or boolector or(*btor, *n0, *n1)

NType op::Xor boolector xor(*btor, *n0, *n1)

NType op::Ror boolector ror(*btor, *n0, *n1)

NType op::Not boolector not(*btor, *n0)

NType op::LT boolector slt(*btor, *n0, *n1)

NType op::GT boolector sgt(*btor, *n0, *n1)

NType op::EQ boolector eq(*btor, *n0, *n1)

NType op::SHL boolector sll(*btor, *n0, *n1)

NType op::SRA boolector srl(*btor, *n0, *n1)

NType op::Const boolector const(*btor, *bits)

NType op::Sum boolector add(*btor, *n0, *n1)

NType op::Mult boolector mul(*btor, *n0, *n1)

NType op::Div boolector sdiv(*btor, *n0, *n1)

Table 5.5: LGraph and Boolector Node Type Equivalents

To determine if a Boolector instance is SAT or UNSAT, the default solver can

be used. Listing 5.9 and Table 5.6 demonstrate how a specific SAT solver can be

set using the Boolector instance and SAT typedefs as input parameters for more

control.
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boolector_set_sat_solver(Btor *btor , const char *solver);

Listing 5.9: Code to set Boolector SAT Solver

Boolector SAT Typedefs SAT Engine

BTOR USE LINGELING Lingeling

BTOR USE CADICAL CaDiCaL

BTOR USE MINISAT MiniSAT

BTOR USE PICOSAT PicoSAT

BTOR USE CMS CryptoMiniSat

Table 5.6: Boolector SAT Engine Typedefs[6]

The simplify function is called to apply additional simplification at the spec-

ified instance to the current input formula. Listing 5.10 shows the Boolector

instance as the only input parameter.

boolector_simplify(Btor *btor);

Listing 5.10: Code to simplify Boolector input

To determine satisfiability of the input formula, the Boolector instance is en-

tered as the parameter to the SAT function. This function may only be called

once if the Incremental usage mode is not enabled.
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boolector_sat(Btor *btor);

Listing 5.11: Code to call Boolector SAT

The SAT call returns the macros for SAT, UNSAT, or UNKNOWN. The macros

are preprocessor constants that indicate the status. The input formula is repre-

sented by the Boolector instance defined by the assertions from the code in Listing

5.7 and 5.12.

boolector_assert(Btor *btor , BoolectorNode *n0);

Listing 5.12: Code to simplify Boolector input

When incremental usage is enabled, assumptions can be made to guide the search

for a solution. Assertions and assumptions are combined using the Boolean AND.

5.2.3 Example Usage

This section will provide usage examples of the Boolector APIs utilized before

integrating them with LGraph APIs. After a Boolector instance is generated, a

data type must be defined before Boolector variables, vars, can be created. Listing

5.13 presents how BoolectorSort defines bsort16 as the datatype equivalent to a

vector of 16 bits assigned to the Boolector instance btor.
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Btor *btor = boolector_new ();

BoolectorSort bsort16 = boolector_bitvec_sort(btor , 16);

Listing 5.13: Define Boolector *btor and data type Example

Listing 5.14 depicts how Boolector expressions are defined by the Boolector

instance, a size defined by BoolectorSort, and a symbol as input parameters. The

symbol must be a unique string or set to NULL if no symbol is assigned.

BoolectorNode *x = boolector_var(btor ,sort ,"xName");

BoolectorNode *tempNode = boolector_and(btor ,in1 ,in2);

Listing 5.14: BoolectorNode Usage Example

BoolectorNodes are made from variables and operation types as shown in List-

ings 5.14 and 5.15. Each node and associated inputs are added to the Boolector

instance during traversal via the code outlined in Listing 5.15.

formula = boolector_xor(btor ,x1 ,x1);

boolector_assert(btor ,formula);

Listing 5.15: Boolector Formula Assertion Example
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Upon finishing traversal, the finalized formula is asserted and a call for to SAT

is performed. Finally, all data and nodes types must be released be release from

memory before a Boolector instance can be cleared from memory. This process is

shown in Listing 5.16.

boolector_release(btor ,x)

boolector_release_sort(btor ,bsort16)

boolector_delete(btor);

Listing 5.16: Release Boolector Usages

5.3 Integration of Boolector and LGraph

For this thesis, the Boolector API and usage examples were used to develop

the final version of ”PASS.LEC”, the logic equivalence checking pass for LGraph.

A summary and examples from the original source code are provided as follows.

5.3.1 Creating Pass.LEC

Listing 5.17 demonstrates how the pass creates a Boolector instance and defines

the input datatype. Two options for model generation and automatic cleanup are

set using boolector set opt(). These options output a solution model for a SAT
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solution if found and clears any unreleased memory associated with the Boolector

instance.

Btor *btor = boolector_new ();

BoolectorSort s = boolector_bitvec_sort(btor ,1);

//Can be removed if model generation unneeded.

boolector_set_opt(btor ,BTOR_OPT_MODEL_GEN ,1);

boolector_set_opt(btor ,BTOR_OPT_AUTO_CLEANUP ,1);

Listing 5.17: Setup Boolector for PASS.LEC

The forward traversal of an LGraph differs with each input circuit. It consists

of identifying the number of input bits, node, and node type operation. During

traversal, PASS.LEC prints out each node and the node ID. Depending on the

node operation type, additional operations take place between identifying the

LGraph node type operation and BoolectorNode. These operations allow the

LGraph nodes to conform to the input parameters of the matching BoolectorNode

operation. The BoolectorNode is assigned to a temporary node to eliminate the

need for declaring all node types. The temporary BoolectorNode is asserted using

the previously mentioned input parameters and the memory for the temporary

node is cleared.

The last assertion before calling SAT, is the formula assertion. The number of
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graph inputs are assumed to be 2, for now. The miter circuit is created using the

Boolector XOR node and defined inputs to test the circuit’s satisfiability. The x1

and x2 inputs for the XOR node are used as place holders in the code example

below in Listing 5.18.

formula = boolector_xor(btor ,x1 ,x2);

boolector_assert(btor ,formula);

int result = 0; // ensure result is cleared

result = boolector_sat(btor);

Listing 5.18: Boolector Formula Assertion Example

Listing 5.19 shows how the result returns and prints out ”SAT” or ”UNSAT” if

the value of result is equivalent to BOOLECTOR SAT or BOOLECTOR UNSAT

defines. If result returns any other integer, ”UNKNOWN” is output. A model

is generated if a SAT result if found. Model generation is enabled in PASS.LEC,

otherwise no model solution will be given. For larger circuits, model generation

can be disabled.
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if(result == BOOLECTOR_SAT)

{

fmt:: print("Result: SAT\n");

char* b = (char*)"btor";

boolector_print_model(btor ,b,stdout);

}

else if(result == BOOLECTOR_UNSAT)

{ fmt:: print("Result: UNSAT\n"); }

else

{ fmt:: print("Result: UNKNOWN\n");}

Listing 5.19: Code for returning solution to SAT call

The end of the pass involves freeing each BoolectorNode from memory using

boolector release(). All nodes must be released before the data type and

instance can be freed. Listing 5.20 shows how the data type is released using

boolector release sort() and comes before deletion of the Boolector instance

using boolector delete().
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boolector_release(btor ,x)

boolector_release_sort(btor ,s)

boolector_delete(btor);

Listing 5.20: Releasing Boolector usages from PASS.LEC

5.3.2 Testing PASS.LEC

To test the LEC pass, the LiveHD shell was used to read in two or more

Verilog files. The inou.yosys.tolg command reads in a Verilog file using Yosys

and translates the file to an LGraph structure. The command must be paired

with the file location. The following inputs to the shell, in Listing 5.21, are used

to read in trivial.v and trivial3.v Verilog files.

livehd > inou.yosys.tolg files:inou /.../ trivial.v

livehd > inou.yosys.tolg files:inou /.../ trivial3.v

Listing 5.21: Commands to generate LGraphs trivial and trivial3

To open each LGraph, the lgraph.match command is used. Listing 5.22

demonstrates how lgraph.match and pass.lec commands are used to check if
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all LGraph outputs are satisfiable.

lgraph.match |> pass.lec

Listing 5.22: Command to test LEC pass

The pass outputs the number of LGraphs read in, the name of each LGraph,

and whether each graph is SAT or UNSAT. If a LGraph is found to be SAT,

a valid model is provided. The number of references to Boolector is printed to

ensure there are no remaining instances of Boolector left in memory.

inou.yosys.tolg module.trivial3

lgraph.match |> pass.lec

Starting PASS.LEC

Number of LGraphs: 2

---INPUTS OF: trivial

NAME: a PID:1 BITS:1

NAME: a PID:2 BITS:1

---TRAVERSING: trivial

Node Type: const , place: 9

Node Type: get_mask , place: 10
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Node Type: get_mask , place: 7

Node Type: xor , place: 6

xor found at 6

sat

2 1 in1

3 0 in2

Boolector Refs:0

---INPUTS OF: trivial3

NAME: a[0] PID:1 BITS:1

NAME: a[1] PID:2 BITS:1

---TRAVERSING: trivial3

Node Type: const , place: 9

Node Type: get_mask , place: 10

Node Type: get_mask , place: 7

Node Type: xor , place: 6

xor found at 6

sat

2 1 in1

3 0 in2

53



Boolector Refs:0

PASS.LEC COMPLETED

Listing 5.23: Output from PASS.LEC

The current implementation only assumes two inputs with the expansion of

more inputs in progress. For the two assumed inputs, larger input bit width can

be handled. The process involves checking input bit width first, then declaring

bit width size as the size of the Boolector vector for the BoolectorSort data type.

The current status of the LEC pass provides primary connectivity between

LGraph and Boolector. The pass can determine node type and operations, lo-

cation, inputs, outputs, sink and driver pin information, bit width, and naming

of LGraph nodes. Required node types have been translated between Boolector

C APIs and the LGraph framework. The translation involves conforming to the

LGraph data types and requirements after Boolector optimizations and opera-

tions have occurred. The LEC pass checks the satisfiability of each LGraph for

combinational circuits and provides a SAT model if found.

Larger designs involving sequential circuits are not handled gracefully with the

current code base. The logic for handling sequential circuits is under development

and thus will exit when encountered during traversal.
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Chapter 6

CONCLUSION AND FUTURE

WORK

This thesis presented the foundational work for developing a Logic Equivalence

Checking pass for use with LiveHD. The LiveHD graph structure, LGraph, and

an SMT solver were utilized to ensure equivalence between optimizations while

working with any combination between netlists or netlists and hardware descrip-

tive languages. Boolector was the chosen SMT solver for integration with the

LiveHD framework. The primary goal of creating a LEC pass was to eliminate

the need of external logic checkers, such as Formality, by integrating a SMT solver

and provide an open-source option for this open-source EDA tool.

The current LEC pass has the limitations of assuming two inputs and only
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handling combinational logic. However, required node operations were successfully

translated between LGraph and Boolector APIs. A SAT model can be provided

for combinational circuits with added sequential circuit capability in progress. As

it is still under development, PASS.LEC does not fully pass the LiveHD regression

testing due to the inability to handle sequential circuits and the limitation of two

assumed inputs.

Future work for PASS.LEC involves the implementation of LEC for all vari-

ations of combinational and sequential circuits. The expansion of more that two

inputs must be handled as well as aiming to pass regression testing. These ca-

pabilities would allow LiveHD, for example, to check two or more larger LGraph

representations against each other to determine satisfiability and minimize the

dependence on external checkers like Formality.
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