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Dynamics of fractionalized mean-field theories: consequences for Kitaev materials

Tessa Cookmeyer1, 2, ∗ and Joel E. Moore1, 2

1Department of Physics, University of California, Berkeley, CA 94720, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA

There have been substantial recent efforts, both experimentally and theoretically, to find a ma-
terial realization of the Kitaev spin-liquid–the ground state of the exactly solvable Kitaev model
on the honeycomb lattice. Candidate materials are now plentiful, but the presence of non-Kitaev
terms makes comparison between theory and experiment challenging. We rederive time-dependent
Majorana mean-field theory and extend it to include quantum phase information, allowing the direct
computation of the experimentally relevant dynamical spin-spin correlator, which reproduces exact
results for the unperturbed model. In contrast to previous work, we find that small perturbations
do not substantially alter the exact result, implying that α-RuCl3 is perhaps farther from the Kitaev
phase than originally thought. Our approach generalizes to any correlator and to any model where
Majorana mean-field theory is a valid starting point.

I. INTRODUCTION

The Kitaev model describes spin-1/2’s on the honey-
comb lattice with a bond-dependent Ising interaction [1].
Remarkably, it is exactly solvable by a transformation to
Majorana fermions due to the appearence of an extensive
number of conserved quantities. The ground state has
the fascinating property that in a weak magnetic field
the low-energy excitations are non-Abelian anyons [1];
beyond the intrinsic interest, these anyons could form
the basis for a topological quantum memory device [2].

While the Kitaev model was first introduced without
a clear path towards material realization, Jackeli and
Khaliluin discovered one such route in 4d/5d transition
metals [3]. An alternative pathway involving the 3d tran-
sition metal Co has recently been discovered [4–6], and
there are now several candidate materials for realizing
Kitaev physics [7, 8] such as Na2IrO3 [9–15], Li2IrO3

[13, 16–18], H3LiIr2O6 [8, 19], Na2Co2TeO6 [20], and α-
RuCl3 [21–25]. The “smoking-gun” evidence of a quan-
tized Thermal Hall effect has been found in α-RuCl3 [26–
28], though sample-dependence has complicated efforts
to reproduce the result [29–31].

Due to the convenience of an exact solution, the Ki-
taev model without additional terms is often used to
compare against experiments, for instance in inelastic
neutron scattering [22, 23] and thermal Hall effect [32]
experiments. In the candidate materials, however, the
microscopic spin Hamiltonian contains non-Kitaev terms
[8, 18, 33] such as Heisenberg and “Γ” terms. It is
therefore important to have a general method to com-
pute static and dynamic quantities near the pure-Kitaev
model point and to know how such terms modify the
exact results.

Standard methods such as (infinite) density-matrix
renormalization group [34–36], (non-)linear spin-wave
theory [23, 24, 36–45], variational Monte-Carlo [46],
quantum Monte-Carlo [47, 48], Monte-Carlo cluster per-
turbation theory [49], Landau-Lifshitz dynamics [50], and
exact diagonalization [41, 51–53] have been used to ap-
proach this problem. Although the existence of the exact

solution allows some techniques to be more powerful [46–
48], there are numerous challenges in applying them to a
two-dimensional (2D) quantum mechanical system. In-
stead, one of the most intuitive starting point for taking
advantage of and extending the exact result is mean-field
theory (MFT) as the conserved quantities in the original
model can be thought of as mean fields. Many papers
have used MFT in analyzing the Kitaev model with var-
ious perturbations [54–67], but the authors of Ref. 68
argue that an augmented MFT is necessary to correctly
compute both static and dynamic quantities at the pure-
Kitaev point, which then must be the correct starting
point for an extension. It is not clear, however, how to
extend their approach to perturbations that mix the itin-
erant and localized Majoranas, such as a magnetic field,
since they are treated distinctly.

Fundamental to the argument of Ref. 68, though, is a
particular understanding of time-evolution in mean-field
theory; namely, time-evolution occurs under the mean-
field decoupled Hamiltonian. Although this perspective
is commonplace (for example, Refs. 69–72), an alterna-
tive approach would be time-dependent mean-field the-
ory (TDMFT), as we describe below. TDMFT as ap-
plied to electrons has been around, under the name time-
dependent Hartree-Fock approximation (TDHFA), since
Dirac [73–75], and, more recently, has been used to study
lattice Hamiltonians relevant to solids [76–78]. Working
by analogy, the authors of Refs. 79–81 extended TDMFT
to Majorana fermions and applied it to the Kitaev model
in a magnetic field to study quantum quenches [79] as
well as spin transport [80, 81]. Those studies were cen-
tered around the computation of expectation values, and
therefore the phase of the wave-function was not neces-
sary and not determined. Remarkably, TDMFT, as we
will show, is enough to capture all static and dynamic
ground-state quantities exactly for the Kiteav model, im-
plying that TDMFT might be integral to understanding
time-evolution within mean-field theory in a variety of
systems.

In this paper, we rigorously rederive TDMFT for Ma-
jorana’s and provide an explicit expression for the wave-
function at time t. We then demonstrate how this for-
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malism allows us to compute dynamical quantities in the
perturbed Kitaev model that agree with exact results at
the Kitaev point, and, as our main result, we find the
features of the exact result are more robust than implied
by previous work [68, 82]. Our example quantity is the
dynamical spin-spin correlator, S(qqq, ω), but we empha-
size that this approach is fully general and should work
for any ground-state correlator. Additionally, this ap-
proach is not limited to the Kitaev model but instead
can be applied whenever Majorana mean-field theory (or
a quadratic Majorana Hamiltonian) is a good starting
point, and this approach should be generalizable and ap-
plicable to bosonic mean-field theories where the boson
number is not conserved.

In Sec. II, we derive TDMFT for Majoranas. In
Sec. III, we we apply TDMFT to compute the dynamic
spin-spin correlator (or dynamic structure factor) in the
Kitaev model in the absence and presence of a magnetic
field. In Sec. IV, we present the results of numerical cal-
culations. We discuss the implications for the results in
Sec. V, and conclude in Sec. VI.

II. GENERAL THEORY FOR
TIME-DEPENDENT MAJORANA MEAN-FIELD

THEORY

Our goal in this section is to explain how to perform
time-evolution within Majorana mean-field theory. This
method should be easily generalizable to arbitrary non-
interacting particles, however.

We will first describe TDHFA, which, in more modern
language, is equivalent to a time-dependent mean-field
theory decoupling. The analysis is natural and straight-

forward. For N particles with creation operators f†i , one
computes the self-consistent decoupling of the Hamilto-
nian and diagonalizes the system into H(Θ) = H0 =
~f†M0(Θ)~f =

∑
n εnγ

†
nγn via ~f = U~γ where Θ denotes

some mean-field parameters like the density 〈f†i fi〉, and
εn ≤ εn+1. The ground state wave-function is given by

|Ψ(t = 0)〉 = γ†1γ
†
2 · · · γ

†
N |0〉 (1)

with |0〉 being the vacuum.
One can then imagine evolving this state un-

der some time-dependent Hamiltonian, H(Θ(t)) =∑
n,m f

†
mMm,n(Θ)fn which depends on the time-

dependent values of Θ(t), and time-evolution over a short
time is given by e−iH(Θ(t))∆t. Evolution then follows by
commuting the infinitesimal time evolution past each of

the γ†i

|Ψ(t+ ∆t)〉 = e−iH(t)∆tγ†1(−t) · · · γ†N (−t)|0〉

= γ†1(−t−∆t) · · · γ†N (−t−∆t)|0〉
(2)

where γ†i (−t−∆t) = e−iH(t)∆tγ†i (−t)eiH(t)∆t = f†jUji(t+

∆t).

We can compute that U(t + ∆t) = e−iM(Θ)∆tU(t)
and therefore the columns of U(t) satisfy a Schrodinger
equation evolving under the single-particle Hamiltonian
Mn,m(Θ). It is then straightforward to compute any ex-
pectation needed for Θ(t) by converting to the basis of

γ†i (−t). In practice, γ†i (−t) is used to compute Θ(t),

which is used to evolve γ†i (−t) to γ†i (−t − ∆t), though
methods with higher order error in ∆t exist [74, 77].

In order to study the Kitaev model, this method has
recently been extended to Majoranas [79–81]. In that
case, number is not a conserved quantity, but the authors
of Ref. 79 argue by analogy that the same method would
work. Here we rigorously derive why this analogy holds
and provide an explicit expression for the wave function
at time t.

In the Majorana case, we have some Hamiltonian

H(M (t;θij)) =
1

4

∑
ij

ciM
(t;θij)
ij cj (3)

where Mij is a function of time and MFT parameters
θij and c2i = 1 is a typical Majorana operator. Here
θij = i〈cicj〉 and is implicitly a function of time. We
imagine that any constant term (which can depend on t
or θij) has been written separately from the Hamiltonian,
and that we have MT = −M . The factor of 1/4 is chosen
such that

[H(M), H(N)] = H([M,N ]) (4)

as can easily be checked [1]. We, at this point, intro-

duce rescaled Majoranas ci → c̃i
√

2 so that c̃2i = 1
2 and

{c̃i, c̃j} = δij . It is still true that c̃†i = c̃i, and we choose
this rescaling because it makes M diagonalizable by a
unitary matrix into a complex fermion basis.

At time t = 0, we diagonalize H0 = 1
2 ā
†Λ0ā where

c̃i = U0,ij āj for āT = (a1, a2, ..., aN , a
†
1, ..., a

†
N ) and

Λ0 = diag{E1, E2, ..., EN ,−E1, ...,−EN}. The ground
state is now given by the unique state |v〉 such that
ai|v〉 = 0. Arguing by analogy, we should expect that
the time-evolved state will always be the vacuum of op-
erators ā(t) = U(t)†~̃c where instantaneously, we evolve
the columns of the matrix U(t) via a Schrodinger equa-
tion. Noting that infinitesimal time evolution is governed
by the quadratic Hamiltonian H(M (t;θij)), it is clear that

ā(t+∆t) = e−iH(M(t;θij))∆tā(t)eiH(M(t;θij))∆t

= U(t)†ei∆tM
(t;θij)~̃c

(5)

will annhilate |vt+∆t〉 = e−iH(M(t;θij))∆t|vt〉 where |vt〉
is the vacuum for ā(t). It follows that U(t + ∆t) =

e−i∆tM
(t;θij)

U(t) implying, once again, that U(t) satisfies
a Schrodinger equation under the single-particle matrix
M (t;θij) confirming our expectation.

However, this calculation does not fix the phase, and it
will be necessary in our case. Using standard results for
the expression of the relationship between the vacuum
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states for two different fermionic bases, and the result of

Ref. 83 for the evaluation of 〈e−iH(M(t;θij))∆t〉, we find

e−iH(Mt)|v〉 =
√

detXe
1
2 (~a†)TF~a† |v〉. (6)

The matrix e−iH(Mt) =
∏
n e
−iH(M(tn,θij))∆t is the ap-

proximate time evolution operator, and we use the no-

tation e−iMt =
∏
n e
−iM(tn,θij)∆t. The matrices F =

−X−1Y , X, and Y are determined by the change of ba-
sis formula between the operators ā(t) and ā, namely

ā(t) = U†(t)~̃c = U†0e
iMtU0ā =

(
X Y
Y ∗ X∗

)
ā. (7)

As in Ref. 83, we evaluate
√

detX =
√
|detX|e−iφ(t)/2

and the sign ambiguity due to φ(t) = arg[det(X)] is
avoided by requiring that φ(t)/2 is a continuous func-
tion.

Now, evolving |v〉 proceeds as in the number-
conserving case. At any time step, we compute θij by

rewriting cicj in the a(t) basis and using Eq. (6). The θij
specify the approximate infinitesmial time evolution op-

erator U(t+ ∆t, t) = e−iH(M(t,θij))∆t, which is then used
to find the a(t+∆t) basis and contribution to the phase
φ(t + ∆t). This procedure can straightforwardly be ex-
tended to other states beyond |v〉, an example of which
we will see below.

An alternative perspective on the above results comes
from considering more carefully the approximate time-
evolution operator.

U(t, 0) = e−iH(Mt) =
∏
n

e−iH(M(tn,θij))∆t

= exp

[
H

(
log

(∏
n

e−i∆tM
(tn;θij)

))]
= exp

[
H
(
log
(
e−iMt

))]
(8)

where the second step follows by the Baker-Campbell-
Hausdorff theorem since the H(M) distributes over ad-
dition, multiplication, and commutation, and [M,N ] is
still an antisymmetric matrix with no trace [84]. This
calculation justifies our use of the notation e−iMt from
earlier. It is only, therefore, necessary to be able to com-
pute the θij and, instead of evolving the wavefunction,
one can just consider updating the time-evolution oper-
ator.

To close this section, we wrap up with a question
about the validity of TDMFT. We are making the mean-
field approximation because we cannot solve the model
exactly–whether or not this approximation is a good
starting point depends on the model. Assuming that it is
a good starting point, if we wish to compute U(t, 0)|Ψ〉 =
e−iHt|Ψ〉 where H is any Hamiltonian and Ψ is any state
in the Hilbert space, we need to mean-field decouple H in
some way. If |Ψ〉 is somehow related to the ground state,
one might expect that replacingH withHMF, with mean-
field parameters determined from the ground state, is the

way forward. However, since |Ψ〉 is not the ground state,
we can decouple H again at time t with respect to |Ψ(t)〉,
as in the TDMFT introduced above. We show a compar-
ison between these two approaches in Appendix A, and
it is clear that TDMFT captures more of the relevant
physics. Since, as we will show, TDMFT reproduces the
exact results of the Kitaev model in the absence of per-
turbations without any kind of tuning, we expect that it
will remain a good approximation for small perturbations
and finite times. To support this expectation, we com-
pare TDMFT directly to density-matrix renormalization
group methods in Appendix B, and we find that it is able
to qualitatively (and sometimes quantitatively) capture
the effect of perturbations.

III. DYNAMICAL SPIN-CORRELATORS IN
THE KITAEV MODEL

We now turn our focus to the Kitaev-Heisenberg-Γ
model near the Kitaev point in a small magnetic field,
hhh = −gµBµ0HHH

H = −
∑
〈ij〉α

[
KSαi S

α
j + Γ

∑
β 6=β̄ 6=α

Sβi S
β̄
j

+JSSSi ·SSSj
]

+
∑
i

hhh ·SSSi.
(9)

The sum is over all nearest-neighbor bonds and each bond
has an index α = x, y, z according to its type. By substi-
tuting Sαi = 1

2 icib
α
i [1] we get

H =
1

4

∑
〈ij〉α

[
Kicicj(ib

α
i b
α
j ) + J

∑
β

icicj(ib
β
i b
β
j )

+ Γ
∑

β 6=β̄ 6=α

icicj(ib
β̄
i b
β
j )

]
+

1

2

∑
i

∑
α

hαicib
α
i

(10)

If we set hα = J = Γ = 0, this model can be exactly
solved since all the operators u〈ij〉α = ibαi b

α
j commute

with H and with each other [1]. The ground state is
found in the sector with uniform u〈ij〉α , and the resulting
Hamiltonian is quadratic in the ci.

Beyond an exact expression for the ground state, any
dynamic quantity, such as the dyanmic spin-spin [83, 85]
and dynamic energy current-energy current correlators
[86, 87], can be computed exactly. We focus on the former
defined as

Sαβ(qqq, ω) =
1

N

∑
i,j

eiqqq·(xxxi−xxxj)
∫ ∞
−∞

dte−iωt〈Sαi (t)Sβj (0)〉.

(11)
Evaluating the dynamic spin-spin correlator expressions
for the Kitaev model is similar in nature to the x-ray
mobility edge problem, and multiple exact approaches
were derived in Ref. 83.
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A. Zero-field approach

We will start by assuming hhh = 0 for simplification and
to compare with Ref. 68. In this case, we can mean-field

decouple the Hamiltonian to get H ≈ HMF = Hc +Hb +
HC

Hc =
1

4

∑
〈ij〉α

(K + J)〈ibαi bαj 〉+ J
∑
β 6=α

〈ibβi b
β
j 〉+ Γ

∑
β̄ 6=β 6=α

〈ibβ̄i b
β
j 〉

 icicj =
1

8

∑
i,j

M c
ijcicj

Hb =
1

4

∑
〈ij〉γ

〈icicj〉

Γ
∑

β̄ 6=β 6=γ

ibβ̄i b
β
j +

∑
α

(Kδα,γ + J) ibαi b
α
j

 =
1

8

∑
i,j

M bα
ij b

α
i b
α
j

HC = −〈Hc〉 = −1

4

∑
〈ij〉α

(K + J)〈ibαi bαj 〉+ J
∑
β 6=α

〈ibβi b
β
j 〉+ Γ

∑
β̄ 6=β 6=α

〈ibβ̄i b
β
j 〉

 〈icicj〉
(12)

We will use TDMFT so the expectation values have
time dependence. As a convention, we will choose e.g.
H0
c to denote that the expectation values are computed

in the ground state, |v〉. The mean-field expectation val-
ues in the ground state are determmined self-consistently
using the unperturbed Kitaev model as an initial guess.

We will focus on the dynamic spin-spin correlation, but
this approach should work for any correlator. Letting
EMF be the ground state energy from mean-field theory,
we have

Sαβij (t) = 〈Sαi (t)Sβj 〉 = −1

4
eiEMFt〈cibαi U(t, 0)cjb

β
j 〉. (13)

If we use the above formalism to evolve |Ψ〉 = cjb
β
j |v〉 in

time (to compute |Ψ(t)〉 = U(t, 0)|Ψ〉 ≈ U(t, 0)|Ψ〉), we
can approximate the time evolution operator as e−iH(Mt)

which implicitly depends on the history of mean-field pa-
rameters. Additionally,Mt will be block diagonal in the
c and b, so we can separate the ground state into a ten-
sor product of the ground states of the c’s and b’s, i.e.
|v〉 = |vc〉 ⊗ |vb〉, and

U(t, 0)|Ψ〉 = e−iψ(t)e−Hc(M
c
t)e−Hb(M

b
t)

e−iHx(Mx
t ) =

∏
n

e−i∆tHx(tn); ψ(t) =

∫ t

0

dsHC(s)

(14)
where Hx(tn) are determined from Eq. (12) with time-
dependent expectation values. Therefore

Sαβij (t) =
1

4
δαβe

iEMFt−iψ(t)

×〈vc|cie−iHc(M
c
t)cj |vc〉〈vb|bαi e−iH

α
b (Mb

t)bβj |vb〉
(15)

In order to evaluate the above expressions, we can use
the result of Ref. 83, which we rederive from Eq. (6) in
Appendix C. Additionally, because we need to compute
expectation values with respect to |Ψ(t)〉, we will need
to compute correlations like i〈cicj(t)ck(t)ci〉 which follow
from a straightforward application of Wick’s theorem.

B. Recovering the exact solution

At the exactly solvable point J = Γ = hhh = 0,
it is clear that the three flavors of b’s decouple and
Hb =

∑
αH

α
b can be diagonalized by the transforma-

tion ibαi b
α
j = 1− 2χ†〈ij〉αχ〈ij〉α ; put another way, Hα

b are

all diagonal in the bond-fermion basis [85]. Because we
have diagonalized the Hamiltonian and we choose the

gauge where χ†〈ij〉αχ〈ij〉α = 0, it is easy to compute

that 〈ibβkb
β
l 〉(t) = 1 if k and l are connected via a β

bond except that 〈ibαk bαl 〉(t) = −1 when we are comput-
ing Sεαkl (every other expectation is 0 except the trivial
〈ibαi bαi 〉 = i).

Because Hα
b (tn) is diagonal in the bond-fermion basis,

it is clear the bond-fermions cannot move. Breaking the
ground state into a product of the ground states of each
of the bα’s we therefore compute

〈vb|bεie−iHb(M
b
t )bαj |vb〉 = δαε〈vbαbαi e−iH

α
b (Mbα

t )bαj |vbα〉

× 〈vbβ |e−iH
β
b (Mbβ

t )|vbβ 〉〈vbγ |e−iH
γ
b (Mbγ

t )|vbγ 〉
= −iδαεeiψ(t)〈vbα |ibαi bαj |vbα〉.

(16)
The phase exactly cancels that accumulated from the HC

term because |Ψ(t)〉 is still an eigenstate of the bond-
fermion operators so ibαi b

α
j = 〈ibαi bαj 〉. In the ground

state, 〈bαi bαj 〉 = 0 unless i, j are connected by an α bond.
Putting everything together, and noting that EMF is

exactly the ground state energy for the Kitaev model, we
find that we recover the exact result [83, 85]:

Hc(tn) = HF = −1

2
Kicicj +

1

4

∑
〈kl〉α

Kickcl

Sααij = − i
4
eiE0t〈cie−iHF tcj〉

Sααii =
1

4
eiE0t〈cie−iHF tci〉.

(17)



5

In our approach, the flip of the value of ibαi b
α
j in the

Hamiltonian for the time-evolution operator, as seen in
the exact case [85], occurs because we recompute the
mean-field parameters for the state on which the Hamil-
tonian is acting. In Ref. 68, the flip occurs due to the
anticommutation relations between bαi and a newly intro-
duce Z2 link variable. Despite agreeing for the exact case,
we will see that these two different approaches predict
quite different physics in the presence of perturbations.
In addition to S(q, ω), this approach will also reproduce
the correct value of the flux gap via computing 〈bαi Hbαi 〉

[68].

C. Finite magnetic field

One of the advantages of our approach to comput-
ing S(qqq, ω) is the ability to treat generic perturbations.
In Ref. 68, it was crucial that the mean-field decoupled
Hamiltonian does not mix the ci and the bαi ’s. However,
a magnetic field is a very natural perturbation, and our
approach immediately generalizes.

Firstly, the mean-field decoupled Hamiltonian will now
be

H = H ′MF = Hc +Hb +Hbc︸ ︷︷ ︸
H′
bc

+HC +H ′C︸ ︷︷ ︸
H′′
C

=
1

8

∑
a,b

ψaMabψb +H ′′C (18)

Hbc =
1

4

∑
〈ij〉α

∑
β

(J +Kδα,β)
(
icib

β
j 〈icjb

β
i 〉+ icjb

β
i 〈icib

β
j 〉 − icib

β
i 〈icjb

β
j 〉 − icjb

β
j 〈icib

β
i 〉
)

+
∑

β 6=β̄ 6=α

Γ
(
icib

β
j 〈icjb

β̄
i 〉+ icjb

β̄
i 〈icib

β
j 〉 − icib

β̄
i 〈icjb

β
j 〉 − icjb

β
j 〈icib

β̄
i 〉
)+

1

2

∑
i

∑
α

hαicib
α
i

(19)

H ′C =
1

4

∑
〈ij〉α

∑
β

(J +Kδα,β)
(
〈icibβi 〉〈icjb

β
j 〉 − 〈icib

β
j 〉〈icjb

β
i 〉
)

+
∑

β 6=β̄ 6=α

Γ
(
〈icibβi 〉〈icjb

β̄
j 〉 − 〈icib

β
j 〉〈icjb

β̄
i 〉
) (20)

where Hc, Hb, and HC are defined above. Since all the
Majorana’s are being intermixed, we introduced ψT =
(c1, ..., c2N , b

x
1 , ..., b

x
2N , b

y
1, ..., b

y
2N , b

z
1, ..., b

z
2N ). For ease of

notation, we will let (b0i , b
1
i , b

2
i , b

3
i ) = (ci, b

x
i , b

y
i , b

z
i ) so that

ψiα = bαi where iα = i+ 2Nα.

Secondly, we are going to evolve the state |Ψ〉 = cjb
β
j |v〉

in time, and we will need to compute the correlators like
i〈bαi ciψj(t)ψk(t)cib

α
i 〉. To numerically evaluate this, we

just repeatedly apply Wick’s theorem in the same way as
before.

Lastly, we need to evaluate the expression

Sαβij (t) = −1

4
eiEMFt−iφ(t)〈cibαi e−iH

′
bc(Mt)cjb

β
j 〉

e−iH
′
bc(Mt) =

∏
n

e−i∆tH
′
bc(tn); φ(t) =

∫ t

0

dsH ′′C(s).

(21)

In Appendix C, we prove the formula

Sαβij (t) = −1

4

√
detXeiEMFt−iφ(t)

×
[
(UU† − UFUT )iiα(Ũ Ũ† − ŨF ŨT )jjβ

− (UŨ† − UFŨT )ij(UŨ
† − UFŨT )iαjβ

+(UŨ† − UFŨT )ijβ (UŨ† − UFŨT )iαj

]
(22)

where Û = eiMtU and X and F = −X−1Y are de-
fined from Eq. (7). Additionally, in this expression, the
multiplication of matrices, AB, only involves the first N
columns of A and the first N rows of B, even if A and B
are 2N × 2N matrices.

There is one additional subtlety, however. In a mag-
netic field, 〈Sαi 〉 can develop an expectation. Then,

Sαβ(q, ω) = S̃αβ(q, ω) + δ(ω)δ(q)〈Sαi 〉〈S
β
j 〉. We therefore

only really want to calculate

S̃αβij (t) = Sαβij (t)− 〈Sαi (t)〉〈Sβj 〉. (23)

If we focus on the first term of Eq. (22), we see that it
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Figure 1. (Color online) We plot |Gb,zz
01 |, where sites 0 and

1 are connected by a z bond, for a variety of parameters.
For small parameters, the asymptotic value as t → ∞ is not
substantially different than the starting value. Only when
both J and Γ are large do we see the value drop, which we
can interpret as fluxes become mobile [68]. The dashed line
indicates the exact (J = Γ = 0) result, and the system sizes
are the same as in Fig. 2.

can alternatively be written

T1 = −1

4
〈U†(0, t)ψiψiαU(t, 0)〉

〈U(t, 0)ψjψjβ 〉
〈U(t, 0)〉

. (24)

Remember, though, that U(t, 0) = e−iH
′
bc(Mt)−iφ(t) ≈

U(t, 0) is just an approximation for the true time-
evolution operator. Using the fact that the ground state
should be an eigenstate of U(t, 0), we undo the approx-

imation and find T1 = 〈Sαi (t)〉〈Sβj 〉. Therefore, S̃αβij (t)

simply involves the last two terms of Eq. (22).
If we do not cancel the term exactly, then when com-

puting S̃αβ = (q = 0, ω) the small approximation on ev-
ery site gets amplified by the number of sites. A percent-
level error then translates to a large discrepancy.

IV. RESULTS

One limiting factor in the numerics is finite size de-
termined by how long it takes for the Majorana’s to
travel across the entire system. In the ground state for
hhh = 0, the c fermions experience an effective coupling of
K̃ = (K+J)〈ibzi bzj 〉+2J〈ibxi bxj 〉+2Γ〈ibxi b

y
j 〉 giving a speed

of 3K̃/4 [80]. A system with N ×N unit cells will then

experience finite size effects at roughly t = 4N/(3K̃).
The only other knob we turn, for a given set of parame-
ters is ∆t, and we ensure that decreasing ∆t or increas-
ing N has minimal effect on the resulting S(q, ω) plots.
We additionally avoid N that are multiples of 3 to avoid
the gapless points in the Majorana spectrum at the K
points [1] as they introduce additional complications to
the numerics. For additional discussion of convergence,
see Appendix D. The finite size effects makes it most dif-

ficult to probe small ω, which are also least accessible for
inelastic neutron scattering experiments.

We are primarily interested in computing the results
for parameters that we expect to be in the Kitaev phase.
For varying J and Γ, we use the phase diagrams produced
via exact-diagonalization on 24 sites in Ref. 88, however
we additionally inlcude points at larger |J | when Γ = 0
and vice-versa to highlight the effects that each pertur-
bation has individually. We focus on the ferromagnetic
Kitaev model (K = 1) as it has larger parameter space
when J,Γ 6= 0, but the qualitative results hold true for
K = −1.

One of the main differences between our results
and those of Ref. 68 is the flux remains fixed much
longer. There are two ways that we can probe this: ei-
ther by the time evolution of the mean-field paramter
i〈bαj bαi (t)bαj (t)bαj 〉 or by the b component of Eq. (15),

Gb,αβij (t) = 〈bαi e−iH
α
b (Mb

t)bβj 〉. We will use the former as
a more direct comparison with Ref. 68.

We plot Gzzb (t) in Fig. 1 and see that even for fairly
large perturbations, the flux remains fixed. Only when
both J and Γ are substantial does the flux begin to move,
consistent with the finding of Ref. 82 [89].

We now plot S(q = 0, ω) in Fig. 2 for a variety of pa-
rameters. In total, we see that the perturbations have
only a small effect on the exact result. The Heisenberg
term, J , primarily moves the features to higher or lower
ω, depending on the sign, but the overall qualitative fea-
tures are the same. For Γ, there is more power near the
kink in the exact result and less power at the peak. When
combined, we get some of both features, but, overall, the
results are less dramatically different than those found in
Ref. 68.

For the magnetic field, we consider the antiferromag-
netic model K = −1 as the ferromagnetic model changes
phase with h = 0.042[55] when the magnetic field is
aligned with one of the three spin-axes. We addition-
ally find it useful to use a higher order time-evolution
scheme [77] as the time-step necessary for convergence
needs to be smaller. In the presence of a magnetic field,
we can no longer separate the c and b Majorana’s, and
therefore cannot compute Gb.

Due to the smaller time-step, it is difficult to get to
as large of system sizes and a well-converged S(qqq, ω), so
we multiply S(qqq, t) by a Gaussian of width σ = 60. In
Fig. 2(d), we plot some results for a magnetic field in the
z or x direction. We still find only small effects, such as
a smoothing out of high-energy features and oscillatory
features at low-ω. In Appendix B, we consider a field
in the [111] direction on a cylinder geometry and find
similar modifications, like found in Ref. 34.

V. DISCUSSION

The most immediate use of our results would be to
compare directly with experiments on α-RuCl3 or other
Kitaev materials where inelastic neutron scattering (INS)
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Figure 2. (Color online) We plot S(q, ω) for a variety of parameters for an N ×N unit cell system. The exact result (black line)
is the result from a N = 100 system and the other parameters have N as specified in each of the panels. In (a), we consider the
effect of J 6= 0 and Γ = 0 and see that the primary effect is shifting the features from the exact case to higher or lower energy.
In (b), we plot the same but for J = 0 and Γ 6= 0. Beyond some minor adjustments to the peak, the main effect seems to be to
smooth out the kink in the exact result. For (c), we see the combination of both J 6= 0 and Γ 6= 0 and, for small parameters, the
two effects seem roughly additive. For larger parameters, as the flux becomes mobile, there are more substantial changes. In
(d), J = Γ = 0 but we consider the effect of a magnetic field in the z direction and x direction. Due to a smaller time-step, we
are not able to consider as large of systems, and so we multiply S(qqq, t) by a Gaussian of width σ = 60, equivalent to convolving
S(qqq, ω) with a Gaussian of width 1/σ. The main effect of the magnetic field that we see is a smoothing of the high-energy
features, and some oscillatory features at low-ω. We pick ∆t small enough to ensure convergence (see Appendix D).

has been performed. We can compute the INS signal with

I(qqq, ω) ∼ f(q)2
∑
α,β

(
δαβ −

qαqβ
q2

)
Sαβ(qqq, ω) (25)

where we follow Ref. 53 in averaging over qz (assuming
that Sαβ(qqq, ω) is independent of qz) as is done in experi-

ment and in approximating the form factor, f(q) = e−q
2c

with c = (0.25 × 4π)−2 Å
2

to fit the result of Ref. 90.
Since we are envisioning the Jackeli-Khaliulin mechanism
[3] for producing a Kitaev material, the x−, y−, and z−
axes for the spins have out-of-plane components, and we
account for that when computing I(qqq, ω). We plot the
result for a few parameters in Fig. 3.

The large peak in the exact case is not greatly modi-
fied by the perturbations, but the smaller higher energy
features are. Our results appear quite far from available
INS data on α-RuCl3 [21, 22] unless the inclusion of an
in-plane magnetic field leads to substantial changes. Fur-
thermore, our approach is only valid in the Kitaev phase,

and we therefore hesitate to compute S(q, ω) with some
of the best candidate spin-Hamiltonians of α-RuCl3 since
numerical studies of these models do not support the con-
clusion that the field-induced spin-liquid is a Kitaev spin
liquid [41, 91]. In identifying and studying other Kitaev
materials, the main result of our approach is that the
INS signal should be well-captured by the exact Kitaev
model.

One major technicality that we have not addressed is
the role of gauge. Due to the enlargement of the Hilbert
space via the introduction of four Majorana’s per spin,
we must project the unphysical degrees of freedom away
with the operator P . The true ground state of the system
would then be P |v〉, and we explore the effect of this in
Appendix E. In total, our approach is consistent with
other mean-field treatments in the literature, but more
consideration is likely warranted in the future.

One shortcoming of our approximation is that it does
not agree with exact bounds. Using the Lehmann rep-
resentation, it is clear that Szz(q, ω) ≥ 0 [46], and we
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(J,Γ, hz, N) S(q = 0, ω) % err. S(M,ω) % err.

(−0.1, 0.0, 0.0, 82) (1.7, 0.5) (7.5,−16)

(0.1, 0.0, 0.0, 82) (0.42, 0.29) (6.2,−15)

(−0.2, 0.0, 0.0, 82) (3.2, 3.0) (7.5,−14)

(0.2, 0.0, 0.0, 82) (0.65, 1.1) (5.3,−14)

(0.0,−0.1, 0.0, 77) (0.14, 0.46) (0.12, 0.39)

(0.0,−0.2, 0.0, 77) (0.03, 2.0) (0.02, 1.7)

(0.0,−0.3, 0.0, 77) (0.047, 5.1) (0.035, 4.5)

(0.1,−0.1, 0.0, 77) (0.35, 0.66) (0.10, 0.55)

(−0.1,−0.1, 0.0, 77) (1.4, 1.2) (0.048, 0.92)

(−0.2,−0.15, 0.0, 77) (2.6, 4.8) (0.27, 3.6)

(−0.3,−0.2, 0.0, 77) (4.1, 11.4) (2.0, 8.0)

Table I. We list the disagreement with exact bounds for the
parameters in the left hand column for S(q, ω) for q = 0 and
for q at the M point. The error is reported as (Pneg, Pdiff)
where Pneg is the percent of the support that is negative and
Pdiff is the percent difference between the left- and right-hand
side of Eq. (26). Although some of the errors are in the 10’s
of percent, most are 5% or less.

expect sum rules to be obeyed such as

Szz(qqq, t = 0) =
1

2π

∫
dωSzz(qqq, ω). (26)

In the former case, we can quantify the disparity by com-
puting Pneg =

∫
dωSzz(q, ω)/(

∫
dω|Szz(q, ω)|), and in

the latter case, we compute Pdiff, the percent difference
between the two sides of Eq. (26).

In total we get the results plotted in Table. V. Focusing
solely on q = 0, except for the largest parameter point,
we see the error is . 5%. At the M point, there are larger
errors for when J is the only perturbation, but, otherwise,
the same is true. Of course, these discrepancies must go
to zero for small perturbations since it must be zero in
the exact case.

Additionally, although TDMFT clearly is an impor-
tant starting point for the Kitaev case, the computation
of the mean-field parameters at each time step and the
exponentiation of Mt greatly increases the cost of com-
puting dynamical quantities. For other systems, this may
make TDMFT impracticable. When, then is it neces-
sary to apply TDMFT instead of evolving in time under
the ground-state mean-field decoupled Hamiltonian? We
leave a detailed analysis for future work, but the im-
portance for the Kiteav model seems to be connected
to the localization of the fluxes. In fact, if one were

to apply TDMFT not to Sαβij (t) but instead directly to

Sαβ(qqq, t) = 〈Sα−qqq(t)S
β
qqq 〉 where Sαqqq (t) =

∑
i S

α
i (t)e−ixxxi·qqq,

the exact result would not be recovered. Indeed, in the
latter case the single flux being flipped would be dis-
tributed across the lattice and the mean-field value of
i〈Sαqqq bi(t)bj(t)Sα−qqq〉/〈Sαqqq Sα−qqq〉 would be uniform and unaf-
fected in the thermodynamic limit. Although this intro-
duces ambiguity into how TDMFT should be applied,
it is clear that, for the Kitaev model, the former is the

correct starting point. If the latter can be argued to
be the better starting point, then TDMFT will produce
the same results as time evolution under the mean-field
ground state in the thermodynamic limit.

VI. CONCLUSIONS

In this paper, we have rigorously developed time-
dependent Majorana mean-field theory, as introduced by
[79–81] and applied the technique directly to compute
dynamic correlators. This approach immediately repro-
duces the exact results of the Kitaev model, and we there-
fore expect it to qualitatively capture the effects of per-
turbations. Although we have only considered the Ki-
taev model here, our approach applies generally to any
mean-field decoupled (or quadratic) Majorana system,
and it should be generalizable to any mean-field decou-
pled fermionic or bosonic system.

In comparing and contrasting our approach with
Ref. 68, we both recover the exact result in the absence
of perturbations, but our approach immediately extends
to the case with perturbations without any additional
approximations. Furthermore, the Z2 link variable that
Ref. 68 introduces provides feedback between the bαi and
the ci Hamiltonian, but our approach naturally includes
both that and the feedback between the ci and bαi Hamil-
tonian. Additionally, since we treat ci and bαi on the
same footing, we can accommodate any perturbation,
and we are able to recover an explicit expression for their
V αA0(t) = (K + J)(i〈bαj bαi (t)bαj (t)bαj 〉 − i〈bαi bαj 〉)/4, which
they approximated via a Heaviside step function. With
the inclusion of fewer approximations, our results indi-
cate that the features of the exact model are not signif-
icantly modified in the presence of small perturbations,
in contrast to previous results [82].

We also emphasize that our approach will agree with
exact results of the Kitaev model for any dynamic corre-
lator. In the exact case, the correlators will be evaluated
by commuting any

∏
bαi to the left or right to act on the

ground state |v〉, which is equivalent to recomputing the
mean-field parameters for the state

∏
bαi |v〉. One natural

future direction then would be to apply our approach to
the current-current correlator necessary to compute κxx
and κxy [86, 87].
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Figure 3. (Color online) We plot the INS intensity (in arbitrary units) at the (a) Γ and (b) M point. The legend specifies the
size of the system, N used for each parameter set, and when N is not divisible by two, we use the point slightly off of the M
point which satisfies the boundary conditions. For smaller perturbations, the features of the exact result are not substantially
modified.

Appendix A: Time-evolution in Majorana mean-field
theory: a comparison

When applying mean-field theory to time evolution of
states |Ψ〉, one starting point is to use

U(t, 0)|Ψ〉 = e−iHt|Ψ〉 = e−iHMF,GSt|Ψ〉 (A1)

where H is some arbitrary Hamiltonian and HMF,GS is
the mean-field decoupled Hamiltonian where the mean-
field parameters are determined in the ground state. For
states near the ground state, this approximation might
be reasonable.

We can compare this kind of evolution to TDMFT by
doing the following. First, we follow Ref. 79 by com-
puting S(q = 0, ω) via a quantum quench from a small
magnetic field. In this case, we write the Jordan-Wigner
transformed Kitaev Hamiltonian in an out-of-plane mag-
netic field as

H(h) = −iK
4

∑
j∈A

∑
α=x,y

ajbj+α

− K

4
iajbj+ẑiāj b̄j+ẑ − i

h

2
(aj āj − bj+z b̄j+z)

(A2)

In this rewriting, the conserved quantity at h = 0 is
iāj b̄j+ẑ = ±1 = Φ̄j , and the ground state has Φ̄j = Φ̄ =
1.

Now, we find the ground state of H(h) for small h, and
compute the time evolution of the ground state under
the Hamiltonian H(h = 0). By computing 〈Mz(t)〉 =
〈Sz(t))i〉, we can compute [79]

S(q = 0, ω) =
1

N

∑
i,j

∫
dteiωt〈Si(t)Sj〉 = lim

h→0
2
M̃z(ω)

h

(A3)

where M̃z(ω)/h = ωRe
[∫∞

0
dtei(ω+iη)tMz(t)

]
with η �

1.

We can evolve in time in two ways–the first is
TDMFT [79] and the second is to instead evolve
with HMF,GS , which in this case is H = H0 =
−i(K/4)

∑
j∈A

∑
α ajbj+α. In the former case, we self-

consistently compute the expectations A = 〈iaj āj〉, B =
〈ibj b̄j〉, 〈iajbj+ẑ〉, 〈iāj b̄j+ẑ〉, 〈ibj āj〉, and 〈iaj b̄j〉.

To do the numerics, we Fourier transform and perform
time-dependent mean-field theory in k-space. Since each
(k,−k) pair is independent, we just need to keep track of
the 4×4 matrix that provides the time-evolution operator
for that pair. To compute the k-integrals for expectation
values, we keep track of N2

k points in the Brillouin zone
that are distributed as per Gaussian quadrature, and we
take Nk as large as the numerics will allow.

We evolve for a time t|K| = 2.5× 104 using the Euler
step method [77], η/|K| = 7.5 × 10−4, and our initial
magnetic field is h/K = 0.0015. Additionally, we average
S(q = 0, ω) over windows of ∆ω = 0.01K because of
rapid oscillations. We are able to essentially reproduce
the TDMFT curve from Ref. 79 and we derive an analytic
result below that matches evolution under HMF,GS.

We see in Fig. 4 that TDMFT is able to capture all the
qualitative features of the exact result whereas evolution
under HMF,GS, labeled as MFT, produces a completely
different result. This plot heavily implies that the start-
ing point of understanding time-evolution in mean-field
theory should be TDMMFT.

1. Analytic MFT result

In addition to numerics, we can exactly compute Mz(t)
in the case that we are evolving under HMF,GS = H0.
First, we observe that the state we are evolving is the
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Figure 4. (Color online) We compare computing Szz(q =
0, ω) with a quantum quench using TDMFT and evolving
under HMF,GS, which we refer to as MFT. When compared to
the exact answer (black curve), it is clear that TDMFT does
substantially better. Using the augmented mean-field theory
of Ref. 68 produces the same curve as MFT. We include the
analytic result Eq. (A8), which demonstrates the numerics
work. Here, we use Nk = 200 and the rest of the parameters
are given in the text, and the exact result is evaluated using
the Pfaffian method of Ref. 83 for 100x100 unit cells.

ground state of H(h). In the limit h → 0, we write the

self-consistent value of h̃ = h+KA/2. We can write the

Hamiltonian as H(h) = H0 − h̃NMz (where N is the
number of sites), and treat the second term as a pertur-
bation. The ground state can be written as

|Ψ〉 = |0〉 − h̃N
∑
n 6=0

|n〉 〈0|M
z|n〉

E0 − En
. (A4)

Our next task is to determine which states |n〉 have non-
zero values of 〈0|Mz|n〉. By going to Fourier space, the
resulting Hamiltonian is given by

H =
1

2

∑
k

(
a−k b−k

)(
0 Sk
S∗k 0

)(
ak
bk

)

+
(
ā−k b̄−k

)(
0 Tk
T ∗k 0

)(
āk
b̄k

)
,

(A5)

where ai =
√

2
N

∑
k e

ikriak and a†k = a−k. Here, Sk =

−iJ(e−ik·nx + e−ik·ny + 1)eiδk/2 and Tk = −iJΦeiδk/2

where nx/y = (±1/2,
√

3/2), δk = ky/
√

3, and Φ =
i〈aibi+z〉 ≈ −0.5249. We now diagonalize these Hamilto-

nians to get H =
∑
k |Sk|(f

†
kfk−1/2)+ |Tk|(f̄†k f̄k−1/2).

Rewriting Mz in the fk basis, and acting on the state

vacuum in that basis, we get

Mz|0〉 =
1

N

∑
i

iaiāi − ibi+z b̄i+z|0〉

=
1

2N

∑
k

−
(
|Sk||Tk|
S∗kTk

+ 1

)
f†−kf̄

†
k |0〉.

(A6)

Therefore, the N/2 states we need to consider are |k〉 =

f†−kf̄
†
k |0〉 (one for each k ∈ 1BZ), and the energy is Ek =

|Sk|+ |Tk|+ E0

Now, it is a straightforward computation that

〈Mz(t)〉
h

= N
h̃

h

∑
k∈1BZ

〈0|Mz(t)|k〉〈k|Mz(0)|0〉+ H.c

Ek − E0

= N
h̃

h

∑
k∈1BZ

|〈k|Mz(0)|0〉|2

Ek − E0
(ei(E0−En)t + H.c)

(A7)
which after integration (and taking only ω > 0)

S(q = 0, ω) = 2N
h̃

h

∑
k∈1BZ

〈k|Mz(0)|0〉2δ(ω − En − E0)

=
h̃

h

1

N

∑
k∈1BZ

(
1 + Re

[
|Sk||Tk|
S∗kTk

])
δ(ω − |Sk| − |Φ|/2).

(A8)
The final term we evaluate by rewriting δ(x) = η/(x2+

η2) where η plays the same role as in Eq. (A3). This
expression resembles the density of states, but has some
additional energy dependence. As seen in Fig. 4, the
exact result and numerics are in good agreement.

Appendix B: Comparison with DMRG

In this appendix we will compare our results using
TDMFT with the density-matrix renormalization group
(DMRG)[92]. DMRG results are “exact” if the bond-
dimension χ, the size of the matrices, goes to infinity.
See e.g. [93] for a review of the technique.

The authors of Refs. 35 and 34 have applied infinite
DMRG to compute S(qqq, ω) in the presence of Heisenberg
terms or a magnetic field in the [111] direction. In the
latter case, we can directly compare TDMFT to their
results in Fig. 6(g) of Ref. 34.

In Fig. 5, we compare the results for qqq = Γ′ and qqq = K,
as defined in their work, and omit qqq = M since it is sim-
ilar to qqq = K. For TDMFT, we considered a system size
of (Ny, Nx) = (3, 152) with step size ∆t = 0.32, large
enough to have negligible finite-size effects, and we mul-
tiply S(qqq, t) by a Gaussian of width σ = 55.8 as in Ref. 34.
Our results for hc = 0 are really for hc = 0.003, but we
have checked that this does not effect our forthcoming
analysis. We scale our results by an hc-independent con-
stant to match the results of Ref. 34 at large ω and hc = 0
to account for their normalization of S(qqq, ω).
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Figure 5. We plot the results of TDMFT vs. iDMRG from Ref. 34 for the Ny = 3 cylinder. In (a)-(d) [(e)-(h)], we plot S(qqq, ω)
at the Γ′ (K) point as definied in [34] for various magnetic field strengths in the [111] direction. In (b) and (c) we see that
TDMFT does captures the dominant effects of the magnetic field, but the comparison for (f) and (g) is worse. For (a) and
(e), the two curves should agree, and the difference is likely due to error in the iDMRG calculation incurred from having a
finite bond-dimension, which may explain some of the discrepancy in plots (f) and (g). Overall, TDMFT seems to be providing
qualitatively accurate results.

Even in the exact case, where the two should methods
should agree, there are discrepancies at small ω. These
differences are likely due to the finite bond-dimension
in the DMRG simulations since larger and larger bond-
dimesions are needed to capture longer and longer time
behavior [93], as can be seen in the insets of Fig. 3 in
Ref. 35.

In light of this, comparing the hc 6= 0 results is not
straightforward since the largest discrepancies appear at
low ω where the hc = 0 results disagree. Nevertheless,
there is reasonable qualitative agreement between the
results–at large ω, the features are smoothed out with in-
creasing hc, and similar oscillating features are added at
small ω. Additionally, the perturbation hc only slightly
modifies the overall features of S(qqq, ω), consistent with
our results.

To include an additional test, we compare our ap-
proach and that of Ref. 68 to short-time DMRG evo-
lution. We consider a 2 × Ny × Nx system with peri-
odic boundary conditions in the Ny direction and open
boundary conditions in the Nx direction. We time-evolve
the system for short times and check convergence in ∆t
and the bond-dimension χ. We use the TeNPy [94] pack-
age, and time-evolution is performed by constructing an
MPO representation of the time-evolution operator [95].
We are able to get exact agreement in the unperturbed
model. The z bond is chosen to be either of the two bonds
more closely aligned with the short axis of the cylinder.

We consider the small perturbation J = −0.04, and
plot the result for two cylinder sizes in Fig. 6 and Fig. 7.
We plot both Szz(q = 0, t) =

∑
i S

zz
i0 (t) and Szz00 (t) +

Szz01 (t) where the site 0 is picked to be far from the open
boundary conditions and is connected to site 1 by a z
bond.

For the Ny = 3 cylinder in Fig. 6, we are able to get
to large enough bond dimension to have t . 11 con-
verged. Remarkably, we see that both MFT approaches

Figure 6. (Color online) In (a) we plot |Szz
00 (t) + Szz

01 (t)| vs. t
(where site 0 is far from the boundaries of the cylinder and
connected to site 1 by a z bond) using DMRG at bond di-
mension χ, using the augmented MFT of Ref. 68, and us-
ing TDMFT. For reference, we include the exact result from
the unperturbed Kitaev point. We see that the magnitude
of the sum of the two most important correlators for the
unperturbed model are accurately shifted (though we note
that the phases disagree). The DMRG and MFT results only
begin to diverge when the DMRG result is no longer con-
verged in bond dimension at around t ∼ 11. (b) We plot
Szz(q = 0, t) =

∑
i S

zz
0i (t) vs. t computed through the var-

ious methods as in (a). There is a large quantitative shift,
but the qualitative features agree between the three methods.
The shift decreases with increasing cylinder size as seen in
Fig. 7. Here Nx = 20.

accurately captures the shift in |Szz00 (t) + Szz01 (t)|, the
two correlators that contribute the most in the unper-
turbed model. However, the phase is not accurately
captured (not shown), and when we sum over all sites
for Szz(q = 0, t), the MFT and DMRG approaches dis-
agree quantitatively but have similar features. The latter
point is expected since the overall features must closely
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Figure 7. (Color online) We make the same plot as in Fig. 6
for the Ny = 4 cylinder. Both results are not well converged
in bond dimension, but we notice that Szz(q = 0, t) is more
quantitatively similar than theNy = 3 cylinder implying some
of the discrepancy is due to the small circumferences. Here
Nx = 16.

match the unperturbed result. For the Ny = 4 cylinder
in Fig. 7, the convergence in bond-dimension is worse,
but the quantitative discrepancy between Szz(q = 0, t)
decreases implying that it is in part due to small cylin-
der circumferences.

Taken together, TDMFT compares favorably with
iDMRG and DMRG. We were unable to get to large
enough bond dimension to directly determine whether
TDMFT or augmented MFT is more accurate, but
TDMFT extends to the finite field case and the results
of Appendix A show that TDMFT is more broadly ap-
plicable.

Appendix C: Evaluating correlators

In order to evaluate Eq. (15), we need to evaluate ex-
pressions of the form

Iij = 〈aie−iH(M)a†j〉 (C1)

with regards to the vacuum |v〉 of the operators ā =
1√
2
U†0~ci. Our first step is finding the basis b̄ = S†~̃c =

S†U0ā such that M = SDS†. In that case,

Iij = 〈ai(U†0SeiDS†U0)j+N,kāke
−iH(M)〉

= Tj+N,k
√

detX〈aiāke
1
2a

†
αFαβa

†
β 〉

(C2)

here we have used Eq. (6) and T = U†0e
iMU0 is the

change of basis matrix between ā and ā(t). There is also
an implicit sum over repeated Greek letters (e.g. α and
β) from 1 to N and repeated Roman letters (e.g. k) from
1 to 2N . Now, we expand the exponential since only the
first two terms will produce non-zero overlaps. We find

Iij = Tj+N,k
√

detX

[
δi,k−N +

1

2
Fαβ(δkαδiβ − δkβδiα)

]
=
√

detX
[
X†i,j + (X−1Y )i,αY

∗
j,α

]
=
√

detXX−1
ij

(C3)
where X and Y are related to the four submatrices of T
as in Eq. (6). The last step follows because T is unitary
so T T † = 1 =⇒ 1 = XX†+Y Y † = X(X†+X−1Y Y †).
We have thus arrived at Eq. 27 of Ref. 83 without needing
to manipulate Pfaffians.

As noted in the main text, we want to extract the
continuous function φ(t) = arg[det(X)], which becomes
a very rapidly changing function as system sizes become
larger. Fortunately, a large portion of the change in φ(t)
may be canceled from the prefactors eiEMF t and e−iψ(t)

in Eq. (15).

In the presence of a magnetic field, we need to essen-
tially evaluate

Jijkl = 〈cicje−iH(M)ckcl〉

=
√

detX〈cicjck(−t)cl(−t)e
1
2a

†
αFαβa

†
β 〉

(C4)

with an implicit sum over p and q as before and ck(t) =
eiH(M)cke

−iH(M). We introduce the two matrices ~c =√
2Uā and ~c(−t) =

√
2Û ā and Û = eiMU .

By making the following two observations

〈cicj(−t)〉 = 2UiαÛj,β+N 〈aαa†β〉 = 2UiαÛ
†
αj

〈cia†j〉 =
√

2Uiα〈aαa†j〉 =
√

2Uij
(C5)

where greek letters are implicitly summed only from 1 to
N . we can easly compute that Jijkl =

√
detX(J1 + J2 +

J3) where

J1 = 〈cicjck(−t)cl(−t)〉 = 4((UU†)ij(Û Û
†)kl − (UÛ†)ik(UÛ†)jl + (UÛ†)il(UÛ

†)jk (C6)

J2 =
1

2
Fαβ〈cicjck(−t)cl(−t)a†αa

†
β〉 = 4(−(UU†)ij(ÛF Û

T )kl + (UÛ†)ik(UFÛT )jl − (UÛ†)il(UFÛ
T )jk

− (UFUT )ij(Û Û
†)kl + (UFÛT )ik(UÛ†)jl − (UFÛT )il(UÛ

†)jk)

(C7)
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J3 =
1

8
FαβFγδ〈cicjck(−t)cl(−t)a†αa

†
βa
†
γa
†
δ〉

= 4((UFUT )ij(ÛF Û
T )kl − (UFÛT )ik(UFÛT )jl + (UFÛT )il(UFÛ

T )jk

(C8)

=⇒ Jijkl = 4
√

detX
[
(UU† − UFUT )ij(Û Û

† − ÛF ÛT )kl

− (UÛ† − UFÛT )ik(UÛ† − UFÛT )jl + (UÛ† − UFÛT )il(UÛ
† − UFÛT )jk

] (C9)

Figure 8. We plot Szz(q = 0, t) for one parameter point but
varying the time step ∆t and the number of sites, which is 2×
N×N . As argued in the main text, we see finite size effects at
a time that roughly scales with N , which is easily identifiable
as when the curve breaks off of a roughly exponential curve.

where all matrix multiplication AB in these expressions
is only over the first N columns of A the and first N rows
of B even if A or B has dimension 2N × 2N .

Although this expression looks quite different from Iij ,
if we were trying to evaluate the analogous expression, we
would find

Jij = 〈cie−iH(M)cj〉 =
√

detX〈cicj(−t)e
1
2a

†
αFαβa

†
β 〉

= 2
√

detX(UiαÛ
†
αj − (UFÛT )ij) = 2UiαIαβU

†
βj

(C10)
which can be used to rewrite Jijkl accordingly. The last
step follows making use of the unitarity of T

If we are interested in computing similar quantities
with more Majoranas, we can use Eq. (C8) of [84] to
prove that a modified Wick’s theorem applies. This re-
sult explains why our Eq. (C9) looks like it follows a Wick
theorem with a different definition of a contraction.

Appendix D: Convergence and other details from
the numerics

Since we are performing these calculations for finite
systems in real space, the two main parameters that we
should check convergence of are N , indicating the linear
size of the system, and ∆t, the time step after which we

recompute the mean-field parameters and Sαβij (t). We
plot a prototypical example in Fig. 8. As discussed in
the main text, finite size effects appear at tc ∼ N , and
this can roughly be seen as the curves break apart from
the overall exponential decay.

We compute

Sαβ(qqq, ω) =

∫ tc

−tc
dteiωtSαβ(qqq, t) (D1)

where Sαβij (−t) = (Sβαji (t))∗ = (Sβαij (t))∗ where we take
advantage of the translation and rotation symmetry. We
estimate tc for each system size based on when the finite-
size effects become clear. We only find slight differences
for the largest N ’s if we replace the abrupt cutoffs with
a smooth one.

We check convergence of Sαβ(q, ω) and find that N ≈
80 seems sufficient for all the parameter choices we make,
except at the smallest ω. We are limited from going to
larger N , in general, because the time it takes to perform
the largest system sizes and smallest time steps takes
days to weeks, but, when Γ 6= 0, memory also becomes
a factor even though we are taking advantage of the re-
flection symmetry to reduce matrix size.

Appendix E: A note about Gauge

With the transformation Sαi = icib
α
i , the Hilbert space

has been expanded, so, properly, we should project the
wave-function we obtain back into the physical Hilbert
space [1]. The projection opertaor has the form

P =
∏
i

1 +Di

2
(E1)

where Di = cib
x
i b
y
i b
z
i . The projection operator commutes

with all the spin operators Sαi and therefore also the
Hamiltonian. Additionally, P 2 = P , as should be ex-
pected.
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In applying mean-field theory, many works handle the
projection by imposing the constraint on average [59–65],
arguing that the effect is higher-order [66], using a differ-
ent transformation without a gauge issue [55, 79], or ig-
noring the effect altogether [54, 56, 67]. In our formalism,
in zero-field, we automatically satisfy the constraints, on
average, as expressed in [64].

To fully take account of the gauge, we should alterna-
tively compute

Sαβij =
1

4
eiEMF t

〈v|Pcibαi U(t, 0)cjb
β
j 〉

〈P 〉
. (E2)

If we imagine expanding out P , we need to consider
the contribution from many different terms with various
numbers of Di. Focusing only on the exact case, every
term with at least one Di must vanish as is evident from
rewriting the bαi ’s in terms of bond fermions [85]. The
only exception is the term with all Di does not vanish by
this argument. However D =

∏
iDi ∼

∏
i ci since all the

bαi pair up into the conserved quantities u〈ij〉α = ibαi b
α
j .

The operator
∏
i ci commutes with the Hamiltonian and

the u〈ij〉α . Ignoring the complications from having a gap-
less point, we can see then that

∏
iDi acting on the

ground state just gives a constant. Beyond the exact
point, the Hamiltonian still commutes with D, which im-
plies that we can group any term, α, in the expansion
of P , with the term αD to just get an overall prefactor
1+〈D〉 provided we limit which terms we consider accord-
ingly. We expect terms with fewer than all the Di to be
suppressed by correlations that are small. Limiting our
analysis the the zero-field case, we need an even number
of Di to have the correct number of ci. The analysis of
which terms are most important is complicated because,
there are

(
2NxNy
m

)
terms with products of m Di. A rea-

sonable guess, though, would be that the leading order

correction to our expression in the main paper would be
from the terms with the fewest numbers of Di. Namely

Sαβij =
1

4
eiEMF t

〈v|(1 +
∑
k,l>kDkDl)cib

α
i U(t, 0)cjb

β
j 〉

1 +
∑
k,l>k〈DkDl〉

.

(E3)
However, we find that

∑
k,l>k〈DkDl〉 scales linearly with

the number of sites implying that such a term might pro-
vide a large correction in the thermodynamic limit even
for small perturbations.

If we are interested in the case where J = Γ = hy =
hx = 0 and hz 6= 0, we can use the Jordan-Wigner for-
malism [55]. In this case we just need to compute Szzij (t),
which is exact, and Sxxij (t), which will contain Jordan-
Wigner strings. By picking site j to be the site where
Sxj = aj/2 (i.e. the unique site without a string opera-
tor), and using periodic boundary conditions, the expres-
sion for Sxxjj (t) is equivalent to our approach above. The
“flipping” of the sign of the ajbj+x term occurs because it
is scaled by PF,0, the string operator containing the prod-
uct of all the (−2Szj ) in the first “row” of the honeycomb
lattice (all the sites connected just by x and y bonds),
which changes sign upon the operator of aj = 2Sxj . Ad-
ditionally, this operator PF,0 commutes with the Hamil-
tonian and has a value of 1 in the ground state, which
implies that Sxxj+x,j(t) also receives no correction. How-
ever, terms like Sxxj+y,j(t) and Sxxj+z,j(t) do receive correc-
tions, which could be systematically included, but should
be suppressed by a factor of hz/|K|.

To summarize, our approach handles the projection
operator similarly to other works in the literature, and we
provide a potential path to include the neglected effects.
It would be beneficial, in future work, to quantify the
errors that these approximations produce.

∗ tcookmeyer@berkeley.edu
[1] A. Kitaev, Anyons in an exactly solved model and be-

yond, Annals of Physics 321, 2 (2006).
[2] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and

S. Das Sarma, Non-abelian anyons and topological quan-
tum computation, Rev. Mod. Phys. 80, 1083 (2008).

[3] G. Jackeli and G. Khaliullin, Mott insulators in the
strong spin-orbit coupling limit: From heisenberg to a
quantum compass and kitaev models, Phys. Rev. Lett.
102, 017205 (2009).

[4] H. Liu and G. Khaliullin, Pseudospin exchange interac-
tions in d7 cobalt compounds: Possible realization of the
kitaev model, Phys. Rev. B 97, 014407 (2018).

[5] H. Liu, J. c. v. Chaloupka, and G. Khaliullin, Kitaev spin
liquid in 3d transition metal compounds, Phys. Rev. Lett.
125, 047201 (2020).

[6] R. Sano, Y. Kato, and Y. Motome, Kitaev-heisenberg
hamiltonian for high-spin d7 mott insulators, Phys. Rev.
B 97, 014408 (2018).

[7] S. M. Winter, A. A. Tsirlin, M. Daghofer, J. van den

Brink, Y. Singh, P. Gegenwart, and R. Valenti, Models
and materials for generalized kitaev magnetism, Journal
of Physics: Condensed Matter 29, 493002 (2017).

[8] H. Takagi, T. Takayama, G. Jackeli, G. Khaliullin, and
S. E. Nagler, Concept and realization of kitaev quantum
spin liquids, Nature Reviews Physics 1, 264 (2019).

[9] F. Ye, S. Chi, H. Cao, B. C. Chakoumakos, J. A.
Fernandez-Baca, R. Custelcean, T. F. Qi, O. B. Kor-
neta, and G. Cao, Direct evidence of a zigzag spin-chain
structure in the honeycomb lattice: A neutron and x-ray
diffraction investigation of single-crystal na2iro3, Phys.
Rev. B 85, 180403 (2012).

[10] R. Comin, G. Levy, B. Ludbrook, Z.-H. Zhu, C. N. Veen-
stra, J. A. Rosen, Y. Singh, P. Gegenwart, D. Stricker,
J. N. Hancock, D. van der Marel, I. S. Elfimov, and
A. Damascelli, na2iro3 as a novel relativistic mott insu-
lator with a 340-mev gap, Phys. Rev. Lett. 109, 266406
(2012).

[11] S. Hwan Chun, J.-W. Kim, J. Kim, H. Zheng, C. C.
Stoumpos, C. Malliakas, J. Mitchell, K. Mehlawat,

mailto:tcookmeyer@berkeley.edu
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/PhysRevLett.102.017205
https://doi.org/10.1103/PhysRevLett.102.017205
https://doi.org/10.1103/PhysRevB.97.014407
https://doi.org/10.1103/PhysRevLett.125.047201
https://doi.org/10.1103/PhysRevLett.125.047201
https://doi.org/10.1103/PhysRevB.97.014408
https://doi.org/10.1103/PhysRevB.97.014408
https://doi.org/10.1103/PhysRevB.85.180403
https://doi.org/10.1103/PhysRevB.85.180403
https://doi.org/10.1103/PhysRevLett.109.266406
https://doi.org/10.1103/PhysRevLett.109.266406


15

Y. Singh, Y. Choi, et al., Direct evidence for dominant
bond-directional interactions in a honeycomb lattice iri-
date na2iro3, Nature Physics 11, 462 (2015).

[12] Y. Singh and P. Gegenwart, Antiferromagnetic mott in-
sulating state in single crystals of the honeycomb lattice
material na2iro3, Phys. Rev. B 82, 064412 (2010).

[13] Y. Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale,
W. Ku, S. Trebst, and P. Gegenwart, Relevance of the
heisenberg-kitaev model for the honeycomb lattice iri-
dates A2iro3, Phys. Rev. Lett. 108, 127203 (2012).

[14] S. K. Choi, R. Coldea, A. N. Kolmogorov, T. Lancaster,
I. I. Mazin, S. J. Blundell, P. G. Radaelli, Y. Singh,
P. Gegenwart, K. R. Choi, S.-W. Cheong, P. J. Baker,
C. Stock, and J. Taylor, Spin waves and revised crystal
structure of honeycomb iridate na2iro3, Phys. Rev. Lett.
108, 127204 (2012).

[15] X. Liu, T. Berlijn, W.-G. Yin, W. Ku, A. Tsvelik, Y.-J.
Kim, H. Gretarsson, Y. Singh, P. Gegenwart, and J. P.
Hill, Long-range magnetic ordering in na2iro3, Phys. Rev.
B 83, 220403 (2011).

[16] S. C. Williams, R. D. Johnson, F. Freund, S. Choi,
A. Jesche, I. Kimchi, S. Manni, A. Bombardi, P. Manuel,
P. Gegenwart, and R. Coldea, Incommensurate counter-
rotating magnetic order stabilized by kitaev interactions
in the layered honeycomb α−li2iro3, Phys. Rev. B 93,
195158 (2016).

[17] A. Biffin, R. D. Johnson, I. Kimchi, R. Morris, A. Bom-
bardi, J. G. Analytis, A. Vishwanath, and R. Coldea,
Noncoplanar and counterrotating incommensurate mag-
netic order stabilized by kitaev interactions in γ−li2iro3,
Phys. Rev. Lett. 113, 197201 (2014).

[18] S. M. Winter, Y. Li, H. O. Jeschke, and R. Valent́ı, Chal-
lenges in design of kitaev materials: Magnetic interac-
tions from competing energy scales, Phys. Rev. B 93,
214431 (2016).

[19] K. Kitagawa, T. Takayama, Y. Matsumoto, A. Kato,
R. Takano, Y. Kishimoto, S. Bette, R. Dinnebier,
G. Jackeli, and H. Takagi, A spin–orbital-entangled quan-
tum liquid on a honeycomb lattice, Nature 554, 341
(2018).

[20] G. Lin, J. Jeong, C. Kim, Y. Wang, Q. Huang, T. Ma-
suda, S. Asai, S. Itoh, G. Günther, M. Russina, et al.,
Field-induced quantum spin disordered state in spin-1/2
honeycomb magnet na2co2teo6, Nature communications
12, 1 (2021).

[21] A. Banerjee, P. Lampen-Kelley, J. Knolle, C. Balz, A. A.
Aczel, B. Winn, Y. Liu, D. Pajerowski, J. Yan, C. A.
Bridges, et al., Excitations in the field-induced quantum
spin liquid state of α-rucl 3, npj Quantum Materials 3,
1 (2018).

[22] A. Banerjee, J. Yan, J. Knolle, C. A. Bridges, M. B.
Stone, M. D. Lumsden, D. G. Mandrus, D. A. Tennant,
R. Moessner, and S. E. Nagler, Neutron scattering in
the proximate quantum spin liquid α-rucl3, Science 356,
1055 (2017).

[23] A. Banerjee, C. Bridges, J.-Q. Yan, A. Aczel, L. Li,
M. Stone, G. Granroth, M. Lumsden, Y. Yiu, J. Knolle,
et al., Proximate kitaev quantum spin liquid behaviour in
a honeycomb magnet, Nature materials 15, 733 (2016).

[24] K. Ran, J. Wang, W. Wang, Z.-Y. Dong, X. Ren, S. Bao,
S. Li, Z. Ma, Y. Gan, Y. Zhang, J. T. Park, G. Deng,
S. Danilkin, S.-L. Yu, J.-X. Li, and J. Wen, Spin-wave ex-
citations evidencing the kitaev interaction in single crys-
talline α−rucl3, Phys. Rev. Lett. 118, 107203 (2017).

[25] J. Nasu, J. Knolle, D. L. Kovrizhin, Y. Motome, and
R. Moessner, Fermionic response from fractionalization
in an insulating two-dimensional magnet, Nature Physics
12, 912 (2016).

[26] Y. Kasahara, T. Ohnishi, Y. Mizukami, O. Tanaka,
S. Ma, K. Sugii, N. Kurita, H. Tanaka, J. Nasu, Y. Mo-
tome, et al., Majorana quantization and half-integer ther-
mal quantum hall effect in a kitaev spin liquid, Nature
559, 227 (2018).

[27] T. Yokoi, S. Ma, Y. Kasahara, S. Kasahara, T. Shibauchi,
N. Kurita, H. Tanaka, J. Nasu, Y. Motome, C. Hickey,
et al., Half-integer quantized anomalous thermal hall ef-
fect in the kitaev material candidate α-rucl3, Science
373, 568 (2021).

[28] J. Bruin, R. Claus, Y. Matsumoto, N. Kurita, H. Tanaka,
and H. Takagi, Robustness of the thermal hall effect close
to half-quantization in α-rucl3, Nature Physics , 1 (2022).

[29] M. Yamashita, J. Gouchi, Y. Uwatoko, N. Kurita, and
H. Tanaka, Sample dependence of half-integer quantized
thermal hall effect in the kitaev spin-liquid candidate α-
rucl 3, Physical Review B 102, 220404 (2020).

[30] P. Czajka, T. Gao, M. Hirschberger, P. Lampen-Kelley,
A. Banerjee, N. Quirk, D. G. Mandrus, S. E. Na-
gler, and N. Ong, The planar thermal hall conductiv-
ity in the kitaev magnet {\alpha}-rucl3, arXiv preprint
arXiv:2201.07873 (2022).
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