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Velazquez and Nancy Lee, the Elson-Schwab’s, Andrej Grkovich, Mike and

Cindy Hale, Howard and Yukako Jan, Jason Miller, the Jagir family, Talib

Davis, Nate Asaro, and many more.

I would also like to thank the American Institute of Physics which kindly

permitted reprint of the article from Lätzer J, Eastwood MP, Wolynes PG,

JOURNAL OF CHEMICAL PHYSICS 125 (21): Art. No. 214905 DEC 7

2006, Copyright 2006, American Institute of Physics as chapter 2. Further I

would like to thank Elsevier for the right to publish the article from Joachim

Lätzer, Garegin A. Papoian, Michael C. Prentiss, Elizabeth A. Komives and

Peter G. Wolynes, “Induced fit, folding, and recognition of the NF-κB-nuclear

localization signals by IκBα and IκBβ.”, Journal of Molecular Biology (2007,

Vol. 367(1),262-274), which appears in this thesis as chapter 4.

xiii



VITA

December 23, 1976 Born, Düsseldorf, Germany

1999 Batchelor of Science, Physics, University of Kent,
Canterbury, U. K.

2001 Master of Science, Physics, University of Kent,
Canterbury, U. K.

2004 Master of Science, Chemistry, University of Cali-
fornia, San Diego

2007 Doctor of Philosophy, Chemistry, University of
California, San Diego

PUBLICATIONS

Joachim Lätzer, Michael P. Eastwood, and Peter G. Wolynes. “Simulation
studies of the fidelity of biomolecular structure ensemble recreation.”, Journal
of Chemical Physics, (2006, Vol. 125(21), 214905).

Joachim Lätzer, Garegin A. Papoian, Michael C. Prentiss, Elizabeth A. Komives
and Peter G. Wolynes. “Induced fit, folding, and recognition of the NF-κB-
nuclear localization signals by IκBα and IκBβ.”, Journal of Molecular Biology
(2007, Vol. 367(1),262-274).

xiv



ABSTRACT OF THE DISSERTATION

Computational Tools based on Energy Landscape Theory to

Predict Structurally Diverse Ensembles of Transcription Factors

by

Joachim Lätzer

Doctor of Philosophy in Chemistry

University of California San Diego, 2007

Professor Peter G. Wolynes, Chair

The NF-κB/IκB system provides a challenge to the structure-function paradigm

since both binding partners are partially disordered in the monomeric form.

The experimental study of this system gives rise to many interesting questions.

Can one describe the kinetics of coupled folding and binding? Can one faith-

fully invert the available low resolution data for partially folded ensembles to

provide a picture of the underlying molecular details? What happens upon

phosphorylation? In this thesis I show how tools to adequately answer these

questions can be obtained using energy landscape theory . These tools are

validated on test systems of transcription factors where experimental data are

available. I demonstrate that replica simulation algorithms based on a strict

Bayesian interpretation of the data can successfully invert low resolution data

into the correct partially folded ensembles. In order to study the kinetics of

the NF-κB/IκB system I also show that simulations with an energy function

that yields a funneled but rugged energy landscape can predict the observed

binding mode of the crystal structure as well as an alternative binding mode.

A method for computing the frustration of partially structured ensembles is

also presented. Finally I present an energy function that can predict phospho-

rylation induced conformational changes for the NtrC transcritption factor.

xv



1 Introduction

The aim of my work has been to develop useful tools based on energy

landscape theory to study transcription factor systems. The NF-κB/IκB sys-

tem is an exciting model system for exploring the coupled folding and binding

processes of partially disordered proteins that may be much more common in

biology then is commonly believed today. A plethora of interesting experi-

mental results exist. For example, in the X-ray crystal structure of NF-κB

bound to DNA the nuclear localization signal of NF-κB lacks electron density.

Yet when NF-κB is bound to its inhibitor IκB, the nuclear localization signal

is found to exhibit helical secondary structure. This result suggests coupled

folding of the NF-κB nuclear localization signal upon binding to the specific

inhibitor. Amide exchange experiments, on the other hand, show that regions

of the inhibitor fold upon binding to NF-κB. The coupled folding and binding

interactions in the NF-κB/IκB system are therefore complex and raise several

questions for theoreticans. How can one characterize such diverse partially

folded ensembles, when only low resolution structural data from the amide

experiments are available?

In the first two chapters of this thesis I describe a novel method to deduce

partially folded structures from low resolution data. This method is based on

a strict Bayesian interpretation of the experimental input data (here taken

to be transition state φ-values for illustration) including the known statistical

and modeling uncertainties in those data. The experimental constraints act as

interactions between the replicas representing the different conformers. Energy

landscape ideas were used to fix the magnitude of these interactions in an

1
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objective way based on the magnitude of the errors and the landscape yielded

by the typical physical energy function used. The algorithm was first tested

for validity on a completely known reference system of the λ-repressor (which

is also involved in transcription) rather than applying it directly to the NF-

κB/IκB system. Without such prior testing we would not be able to assure

that we have a valid tool to invert low resolution data of partially folded

ensembles.

While the inversion algorithm is able to deduce the diverse structural en-

sembles, it cannot directly be used to infer the kinetics of the coupled folding

and binding. It is therefore of utmost importance to have energy functions

for molecular dynamics simulations that can predict in molecular detail the

folded structures of the encounter complex. The use of the Associative Mem-

ory Hamiltonian (AMH) for such studies is validated, which should then allow

us to study the kinetics of the system. Interestingly, simulation studies of the

coupled folding and binding of the nuclear localization signal to the inhibitor

do not only reveal the X-ray crystal structure binding mode, but also sug-

gest an alternative binding site. Does this binding site stem from frustration?

The AMH is an energy function designed on the principle of minimal frustra-

tion yielding a funneled but rugged landscape. Ruggedness is a clear sign of

frustration that arises from non-native contacts. I examine this question in

the context of another system, IM7. The energy landscape theory acknowl-

edges and highlights the fact that many partially folded structures have such

frustrated interactions. A specifically structured long lasting non-native in-

termediate, such as the intermediate observed in the IM7 folding, is rare. To

be able to find out whether the encountered structures are stabilized by min-

imally frustrated interactions, a method in collaboration with Dr. Sutto and

Dr. Hegler was designed to quantify the frustration of all sites. This method

was tested to explain the long-lasting non-native intermediate observed in IM7

folding.

Finally I want to note that phosphorylation is often a dominant control

mechanism for transcription factors. To address this issue and enlarge the set
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of tools for describing transcription factors, one needs a Hamiltonian that can

reliably predict the phosphorylated conformation of a protein using informa-

tion about the unphosphorylated conformation. I propose such a Hamiltonian

and test it on the NtrC transcription factor and cystatin.



2 Simulation Studies of the

Fidelity of Biomolecular

Structure Ensemble Re-creation

2.1 Introduction

The most studied proteins in the cell fold to a reasonably well-defined,

average native conformation. The fact that folding times of proteins are rela-

tively short when compared to the time needed for the protein chain to explore

all its possible conformations, leads to the conclusion that the protein must

be guided towards the native state. The contacts formed in this native con-

formation must on average be more stabilizing than random contacts allowing

the protein molecule to fold to the native conformation by trading entropy for

energy. This principle of minimal frustration[1] captures the essential physics

of the folding of naturally evolved proteins. The energy landscape of protein

folding for proteins that fold reliably therefore resembles a rough funnel[2].

Energy landscape theory describes the folding process down the funnel as a

progressive organization of ensembles of partially folded structures[3]. For 2-

state folders owing to uneven compensation of entropy loss by stability gain,

there is a bottleneck in the flow between the folded and unfolded minima in

the free energy which represents the transition state. In the energy landscape

ensemble view, the transition state is best described as an ensemble of config-

urations rather than a single structure[4].

4



5

Many experimental techniques have been developed to infer structural in-

formation about the structural ensembles for incompletely structured proteins

along the folding funnel. With the exception of single molecule studies, those

experiments that do provide structural information along the folding funnel

typically provide only ensemble averaged quantities. For long lived interme-

diates, these measured averages directly include NMR parameters and FRET

distances, and sometimes structural averages can indirectly be inferred through

H/D exchange profiles which are, however, intrinsically kinetic. Using the as-

sumption of a funneled landscape, similar information can often be obtained

for the fleeting transition state. The protein-engineering method[5] developed

by Fersht and co-workers provides (for smooth landscapes) structural infor-

mation about the transition state ensemble analogous in many respects to

NMR data obtained for long-lived intermediates. This approach assigns a

φexpi -value to each residue. The φexpi -value is defined as the ratio of the change

of the apparent free energy difference between the transition state ensemble

and unfolded state ensemble upon a conservative mutation of the residue i

to the change in free energy between the native and unfolded ensembles free

energy with the same mutation. A φexpi -value of unity for a residue would

indicate that the changes in free energy made by this residue in the transition

state are the same as the changes in the native state, whereas a φexpi -value of

zero would indicate that this residue has no native-like interactions. Assum-

ing that the native contacts in the protein alone account for the stabilizing

interactions[6], a φexpi -value can then be approximated as the fraction of na-

tive contacts made[7] and this averaged structural quantity can be used as

a restraint in molecular dynamics simulations[8, 9, 10, 11, 12]. Technically,

this identification is only valid for a perfectly homogeneous funnel landscape.

Defining a contact distance RC for interacting amino acids, the determined φ-

values can then be used as constraints on the ensemble of protein structures,

requiring each residue to form a fraction of its native contacts to within an

upper distance bound RC . The measured constraints however do not enforce a

precise distance for two residues in contact. This raises the question, whether

(or when) ensembles deduced from the φ-value constraints are structurally
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equivalent to the actual ensemble probed by the experiment. That is, can the

real ensemble be faithfully recreated from experimental data alone? Also do

some algorithms give greater fidelity in reconstruction than do others? In par-

ticular, the experimentally derived restraints may be applied equally to every

structure encountered on a single MD trajectory (the “single replica” case);

alternatively a multiple replica algorithm may be used where the restraints are

applied to the ensemble of structures observed in a number of simultaneous

MD simulations thereby allowing individual replicas to have fluctuations while

restraining the ensemble average. Davis et al. [13] have already shown, that

in the case of the β3s peptide two replicas were required to correctly predict

the transition state structures from the ensemble-average set of φ-values. This

result encourages examining more quantitatively the benefits of using multiple

replica algorithms.

Here we present an extension of the multiple replica approach to the simul-

taneous determination of a transition state ensemble. We test this approach by

attempting the re-creation of a completely known, candidate transition state

ensemble of 500 structures of the λ-repressor protein. First we create several

surrogates for the “experimental transition state ensembles”, which we shall

term reference ensembles, sampled from simulations using native structure

based[14] Hamiltonians for the λ-repressor both with and without nonpairwise-

additive interaction terms. From the reference ensembles we calculate the

average φ-value for each residue. These computed φ-values then serve as sur-

rogate experimental constraints for the replica simulation algorithm. Single

and multiple replica molecular dynamics simulations are then performed with

a Hamiltonian that biases the ensembles to match the experimental φ-value

constraints but otherwise has no a priori biases. Since the structures of the

reference ensembles are known, the success of re-creating the original ensemble

using the multiple replica algorithm can be rigorously evaluated with a sta-

tistical test, the Kolmogorov-Smirnov test[15]. In the KS-test two ensemble

distributions, one given by the reference ensembles, the other given by the en-

sembles obtained in the replica molecular dynamics simulations, are compared
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and it is tested whether these two distributions are substantially the same.

When the two ensembles differ, a method can be used to uncover possible

matching subensembles from the ensembles obtained in the replica molecu-

lar dynamics simulations. These subensembles can be obtained by clustering

the structures and selecting the most dominant cluster as a representative en-

semble. These representative subensembles can then also be compared to the

reference ensembles. To study whether multiple replica re-creation methods

are more faithful than single copy approaches, we first analyze the principal

components of the contact maps of all structures in the reference ensembles

and in the ensembles obtained in the replica simulations. The principal compo-

nent analysis indicates that the sampling is improved, when multiple replicas

are introduced. Finally we probe the robustness of the ensemble recovery to

realistic uncertainty in the input data. Experimental quantities always have

errors associated with them. To mimic these errors, we assigned new φ-values

for each residue by generating a random number drawn from a Gaussian dis-

tribution with its maximum located at the original φ-value of that residue and

with a variance given by the variance of that φ-value in the reference ensem-

ble. The new set of φ-values then served as input for the replica Hamiltonian

ensemble reconstruction. The ensembles obtained from the replica algorithm

with the new set of φ-values as experimental constraints were compared to the

original reference ensemble. This procedure quantitatively probes how large

errors in φ can substantially reduce the chances of faithful ensemble re-creation

using replica simulation algorithms.

2.2 Methods

2.2.1 Reference Ensemble Creation

In order to rigorously test the fidelity of a reconstruction procedure a well

characterized reference ensemble must first be available. An off-lattice sim-

ulation with a native structure based Hamiltonian[16] with variable strength
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non-additive terms as described in detail earlier[14] was chosen to provide

such reference ensembles for the reconstruction procedure. These reference

ensembles are considered “gold standard” ensembles and represent the en-

sembles that experiments strive to determine. The energy function used to

obtain these ensembles is given as the sum of a native structured based but

non-additive Hamiltonian Hna and standard backbone energy terms

H = Hbackbone +Hna (2.1)

This energy function applies to a reduced set of coordinates of the heavy

backbone atoms, Cα, Cβ and O. In this reduced description, the positions of

the nitrogen and C
′

carbons can be calculated assuming ideal protein backbone

geometry. The backbone potential takes on the following form

Hbackbone = λψφVψφ + λχVχ + λexVex + λharmVharm (2.2)

The backbone terms[17] in the Hamiltonian ensure the backbone has physically

allowable conformations. The planarity of the peptide bond is constrained by

the SHAKE algorithm and three simple harmonic potentials, Vharm, which

restrain the Nitrogen-Cβ, Nitrogen-C
′

and C
′

-Cβ distances close to 2.46Å,

2.45Å and 2.51Å respectively. A chirality potential Vχ biases the Cα atoms

towards the L configuration which is preferred in nature. The φ and ψ an-

gles of the protein backbone are biased with the Ramachandran potential Vψφ.

This potential biases the torsional angles of the protein to regions allowable for

a naturally occuring protein. The barriers between minima of the Ramachan-

dran potential are intentionally set low to facilitate more rapid chain dynamics.

Excluded volume effects are included between Cα-Cα, Cα-Cβ, Cβ-Cβ and O-O

pairs through the Vex potential. The individual λ-parameters in the backbone

Hamiltonian scale the interactions to physically reasonable values.

The Hna energy depends on Gaussian interaction terms for native contact

pairs only. Hna is given as a function of pairwise energy terms raised to the

power p.

Hna = −
1

2

∑

i

|Ei|
p (2.3)
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The parameter p in the Hamiltonian is the power of non-additivity and in-

troduces (p+1)-body interactions as well as p,p-1,...,2-body interactions with

range rC = 8.0Å. Usually increasing p results in additional cooperativity and

hence in increased barrier heights for folding. The individual pairwise energy

terms can be written in a normalized form containing a cut-off distance rc.

Ei =
∑

j

εij(rij)

= −
∑

j

∣

∣

∣

ε

a

∣

∣

∣

1

p

θ(rc − rNij )γij exp

(

−
(rij − rNij )

2

2σ2
ij

) (2.4)

The contribution of Hna to the native state energy of a protein with N residues

is by definition 4Nε. This is ensured if the normalization constant a is defined

as

a =
1

8N

∑

i

∣

∣

∣

∣

∣

∑

j

γijθ(rc − rNij )

∣

∣

∣

∣

∣

p

(2.5)

The weighting function γ and the well width σ depend on the sequence separa-

tion of residues i and j and are chosen such that the energy of the ground-state

energy for p=1 at a cut-off distance of rc = 8Å is evenly divided between short

(|i− j| < 5) and long range interactions in sequence space as suggested by the

analysis of Saven and Wolynes for helical proteins[18]. The parameters are

σij = |i− j|0.15Å

γij =







0.125 |i− j| < 5,

0.5 otherwise

(2.6)

The total Hamiltonian described above can be used to infer the thermo-

dynamic properties of a given system. To obtain useful free energy profiles,

a proper reaction coordinate has to be chosen. One appropriate coordinate is

Q, a measure of native-likeness

Q =
2

(N − 1)(N − 2)

∑

i<j−1

exp

(

−
(rij − rNij )

2

2σ2
ij

)

(2.7)
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Q is a normalized quantity that describes structural similarity of a given struc-

ture with coordinate set {rij} to a reference structure, for folding and struc-

ture prediction usally the native structure, with coordinates {rNij }. Free en-

ergy profiles were then obtained with the weighted histogram analysis method

(WHAM) with umbrella sampling. 17 constant temperature molecular dynam-

ics simulations were performed with a biasing potential that is a polynomial

in Q of 4th order centered on different values of Q (Q0=0.9, 0.85, 0.8,· ,0.1)

to obtain good phase-space sampling along this reaction coordinate. The Q-

constraint in the potential is sequentially reduced from Q=0.9, which is almost

native-like, to Q=0.1. This procedure reduces the equilibration time of the

system. During each of these constant temperature molecular dynamics simu-

lations, 200 independent samples, N obs
s , of Q and energy E, the backbone and

Hna energy, were collected at regularly spaced time steps. These time steps

were larger than the correlation time between sampled structures. The sam-

ples therby obtained were independent of earlier configurations sampled. The

first 40 samples of each simulation run were discarded to help ensure that the

system reached equilibrium, before samples were entered into the free energy

calculation. A histogram Ns(E,Q) for all 17 simulations was created. The

density of states n(E,Q) of the system (Eastwood et al., 2001) was calculated

from the histograms

n(E,Q) =
∑

s

ws(E,Q)
Ns(E,Q)

Nobs
s

Zs(βs) exp (βs(Vs(Q) + E)) (2.8)

Here s labels the simulation and w represents a weighting function defined as

wi =
A−2
s

∑

mA
−2
m

A−2
s =

n(E,Q)

Nobs
s

Zs(βs) exp (βs(Vs(Q) + E))

(2.9)

The density of states and the weighting function are functions of the partition

function Zs. The partition function, on the other hand, is also a function of

the density of states

Zs(βs) =
∑

E,Q

n(E,Q) exp (−βs(Vs(Q) + E)) (2.10)
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This set of equations can be used to obtain for n(E,Q) self-consistently to

within a multiplicative constant and hence the free energy was obtained to

within a constant as

F (Q, T ) = −kBT log

(

∑

E,Q

n(E,Q) exp

(

−
E

kBT

)

)

(2.11)

The free energy profile at folding temperature Tf can be inspected and

ensembles for the denatured state, the transition state or any other reference

state of choice, can be found by Q. Structures with the appropriate Q-value

entered into the reference ensemble.

2.2.2 φ-Value Molecular Dynamics Replica Simulation

Technique and Details

Given a set of experimental φ-values {〈φi〉exp} for the residues of the pro-

tein, we can write down a replica Hamiltonian that constrains ensemble aver-

ages to the values provided by experimental measurements for each residue.

The simplest form of the replica Hamiltonian contains standard backbone

terms as described above while adding the experimental biasing potential.

Optionally other energy terms, Hfunnel, that vary the protein energy land-

scape and encode prior theoretical expectations can also be included. In this

paper Hfunnel will be set to 0.

Hrep = Hback +Hfunnel +

N
∑

i=1

λi(φi− < φi >exp)
2 (2.12)

with N being the total number of residues. The ensemble average φ-value φi

is the arithmetic average over the realizations of the individual replicas.

φi =
1

Nrep

Nrep
∑

µ=1

φµi (2.13)

where Nrep is the number of simulated replicas. To perform molecular dynam-

ics simulations, a recipe to calculate φ from the observed contacts must be
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given. Although φ is a dynamical quantity measured from the ratio of ther-

modynamic and kinetic quantities, an often used surrogate for φ is the ratio

of native contacts made divided by the maximum number of native contacts

possible. This surrogate, of course, assumes the landscape is, in fact, reason-

ably funneled[19]. An explicit equation for φµi in terms of a contact function

cij is

φµi =
1

N i
cont

∑

<j>

cij =
1

N i
cont

∑

<j>

1

2

(

1 + tanh (5 (rC − rij))
)

(2.14)

The contact function considers native contacts to be formed only if they reside

within some cut-off distance rC . The cut-off distance for Cβ contacts usually

lies in the region of 6.5 − 8.5Å. In the present study cut-off distances of 6.5Å

and 8.0Å have been used. We only present results for a cut-off distance of 6.5Å.

The definition of the set of contacts for the completely native structure depends

on the value of the cut-off distance between the Cβ’s. Once a value for the cut-

off distance is chosen, the appropriateness of this value for defining contacts

can be checked for consistency with other methods of assigning contacts such

as the CSU algorithm which rely on all-atom structural information. The

functional form of the contact function is a tanh function, whose continous

nature prevents numerical errors in the dynamics.

The simulation scheme used is as follows: Constant temperature molecular

dynamics simulations are performed at three temperatures, TF , 0.25TF and

1.75TF for 1,2,4 and 8 replicas. The folding temperature TF corresponds to the

“physiological” transition temperature for folding of the non-additive Gō-like

energy function described above. The simplicity of the model allows extensive

sampling to be done. It is straightforward to employ simulations of length of

the order of 1ms. This time scale ensures enough sampling to compensate for

topological traps in the energy landscapes. The results are checked to ensure

they converged. The simulations involve different numbers of replicas, but the

total number of sampled conformations is kept constant between simulation

runs with different numbers of replicas. The ensembles can now be fairly

compared.



13

We first test to make sure that the input φ-values are reproduced. Next a

statistical test is used to decide whether ensembles generated from the replica

algorithm differ from the reference emsemble or not. An appropriate statistical

test for comparing ensemble distributions is the the Kolmogorov-Smirnov (KS)

test. The KS-test quantifies whether two distributions differ from each other

in a statistically significant way. To apply the KS-test, the ensembles are

first reduced to distributions that are functions of only a single, independent

variable. This single independent variable is chosen to be a structural overlap

measure,q, defined analogously to Q, but where all q’s of the structures in

the ensemble are measured relative to each other rather than measured to one

single reference structure. The KS-test requires calculation of distributions of

q for all pairs of structures within the simulated ensemble (PB(q)), all pairs

within the reference ensemble (PA(q)) and all pairs with one member chosen

from each of the the two ensembles (PAB(q)). The KS-test is then performed on

the individual distributions, which tests if two distributions are statistically

identical, typically we compare PA(q) with PAB(q). In our case where we

have a large amount of data when comparing two different Hamiltonians, the

result of the test indicates that the two distributions are not exactly the same.

However, the KS-statistics itself provides a very useful measure for quantifying

the magnitude of the difference, and simply visualizing the difference between

the distributions is illuminating.

2.2.3 Principal component analysis

Contact maps for the reference ensemble and the ensembles obtained from

the replica simulations were computed for all indivudual structures. Princi-

pal component analysis (PCA) of the binary contact degrees of freedom for

these ensemble structures was performed [20]. The PCA we employ is not the

more commonly used PCA based on Cartesian coordinates. The more com-

monly used PCA is based on the diagonalization of the Cartesian coordinates.

This is less useful in the current problem due to the fact that the transition

state ensembles generally show large anharmonic conformational differences
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that go beyond simple vibrational-like fluctuations of Cartesian coordinates.

This approach uses a very coarse-grained degree of freedom: the contact map,

which is the simplest site specific measure of a folding progress. To facilitate

the analyses, we further coarse-grained the contacts by grouping neighboring

residues into groups of three residues, i.e., a coarse-grained contact matrix is

calculated for each structure, with each of those independent elements either

being 0 or 1. The contacts are reduced to 27 × (27 − 1)/2 = 378) elements

that are either 0 or 1. The resulting reduced covariance matrix of dimension

378 × 378 is diagonalized and the eigenvalues for the contact map PCA are

calculated. The two most dominant principal components are plotted.

2.2.4 Structural clustering analysis

The Fitch-Margoliash algorithm[21] is a distance based bioinformatic algo-

rithm to fit a phylogenetic tree to a distance matrix. The numerous structures

obtained from the simulation runs were clustered using the FITCH program

of the PHYLIP package[22]. The FITCH program can be used to create phy-

logenetic trees based on any given distance measure. In order to analyze the

structures obtained in the simulated annealing with the bioinformatic soft-

ware, a topology based distance measure d between two structures A and B

was defined through the structural overlap q as d = 1−q. The order parameter

q represents the relative similarity of two stuctures and is defined analogously

to Q. Since q is a normalized measure of the fraction of overlapping contacts,

d is a measure of how dissimilar two structures are in terms of their contacts.

Similar structures with small d are close and dissimilar structures with large d

are structurally far away. Since q, unlike φ, is sensitive to the correct distance

between residues rather than just constraining two residues to be within a

cut-off distance, the clustering should group all structures based on their local

secondary structure as well as their global tertiary structure. This clustering

technique helps in extracting subensembles with more narrowly defined local

structures.
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2.3 Results for the Transition State Ensemble

of the λ-repressor

We first present the complete results of ensemble recovery with replicas

for the transition state ensemble of the λ-repressor. The λ-repressor is a well

studied DNA-binding regulatory protein with a four helix bundle fold. Ex-

perimental data suggest that the λ-repressor is a 2-state folder with a low

barrier between folded and unfolded basins [23] . To test the inversion algo-

rithm, reference ensembles for the λ-repressor (pdb code 1lmb [24] ) were first

generated with the non-additive Gō-like Hamiltonian using Q as a reaction

coordinate. Although there has been controversy about the merits of Q as a

reaction coordinate [25], this controversy is irrelevant for our present purpose

of obtaining reference transition-state ensembles which are only to be used

as test-beds for studying the reproduction of an ensemble from its averaged

properties alone. To assure the reader of the validity of the ensembles obtained

with this Hamiltonian, we note that it has already been tested whether these

Hamiltonians with many-body interactions produce ensembles that resemble

ensembles one would measure in experiments. This has been done by testing

the correlation of experimental φ-values and experimental folding rates to the

φ-values and folding rates obtained with the non-additive Hamiltonian. It has

been shown that great agreement with experiment can be reached, when the

fraction of energy arising from three-body terms in the native state is approx-

imately 20% [124]. A power of nonadditivity in the range p = 2 to 3 for our

Hamiltonian should lead to nonadditive contributions to the energy of a mag-

nitude found in real proteins[14]. WHAM simulations with umbrella sampling

were performed at the putative folding temperature kBT
ε

= 1.0.
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Figure 2.1: Free energy profiles at folding temperature TF as a function of Q
obtained with WHAM and umbrella sampling with the non-additive Hamil-
tonian. The free energy shows 2-state behaviour with increasing barrier for
increasing p, the power of non-additivity. The free energy profile shows a
transition state ensemble at Q≈0.5.
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The free energy profiles were then calculated as described in the meth-

ods section. To obtain a more refined estimate of the folding temperatures

the free energy profiles were extrapolated to nearby temperatures to find the

temperature where the depths of the folded and unfolded basins coincide. Fur-

ther WHAM simulations with umbrella sampling were then performed at this

new temperature. The free energy profiles were calculated with the new data

yielding a more accutate estimate of TF . This procedure was repeated until

convergence, which in practice occured after only two rounds of WHAM sim-

ulations. The free energy profiles of the λ-repressor at TF = 0.97, 1.02 and

0.93 for a classical native structure based Hamiltonian with p=1, and for Gō-

like Hamiltonians with many-body effects for p=2,3 respectively are shown in

Figure 2.1. The free energy curves exhibit a two-state folding character with

a barrier between the folded and unfolded states, that increases with increas-

ing parameter p. For p=1,2 the barrier between unfolded and folded basins

is roughly ∼ 1kBTF indicating the weak cooperative effects present. Intro-

duction of 4-body terms corresponding to p=3 increases the barrier roughly

ten-fold to about ∼ 8kBTF . Various reference ensembles are then read off

the free energy profile. The Q-score of the transition state ensemble was de-

termined at the maximum value of the free energy curve between the folded

and unfolded basin. The transition state ensembles had a Q-score of about

Q = 0.5. Approximately 500 independently sampled structures were chosen

for each transition state ensemble for p=1,2 and 3 to represent the reference

ensemble. The contact maps for the ensembles obtained with p=1 and p=3

are shown in Figure 2.2. Contact maps of native contacts only are shown

above the diagonal whereas both native and non-native contacts are shown

below the diagonal. From the native contact maps it is apparent that the

C-terminal and the long N-terminal helix are most ordered in the transition

state ensemble. The DNA binding site (pdb residues 34-54) is most disordered

in the transition state. The reference ensembles also show several non-native

contacts with low contact probability in the ensemble.

The inversion algorithm derives structures only from the input φ-values,
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which are calculated from native contacts. The φ-value is defined as a fraction

of native contacts, where contacts are defined to fall within a certain cut-off

distance. The inversion of such data might then be not accurate on the more

local level due to the lack of secondary structure information in the inversion

Hamiltonian and lack of knowledge of low-probability non-native contacts.
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(a)

(b)

Figure 2.2: Native contact map only (above diagonal) and complete contact
map (below diagonal) of the transition state reference ensembles of the λ-
repressor for p=1 (a) and p=3 (b) averaged over all structures. A contact
is defined when the distance of the Cβ carbons are within 6.5Å. A dark red
contact corresponds to a contact that is on always formed in the transition
state ensemble. A dark blue contact, on the other hand, is never formed in
the transition state ensemble.
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A set of φ-values denoted {< φi >exp} and the corresponding (in this case,

statistical) error δφi was calculated for each of the reference ensembles. The

native structure of the protein, the {< φi >exp} and (in some cases) the sta-

tistical errors were the only data used to infer the transition state ensembles.

The simplest energy function, that can be used to recover ensembles from

the given information, is a Hamiltonian which reproduces the given ensemble

averaged constraints but that has no knowledge of the energy landscape of

folding of the protein. Such a basic Hamiltonian is given in equation 2.12

with Hfunnel = 0. The only unknown parameter in the Hamiltonian is the

strength of interaction of the experimental restraint, the parameter λ. To ap-

proximately determine the parameter λ, successive φ-value simulations with

gradually increasing values of λ were performed to set a uniform λ-value for

all residues such that the experimental constraints are fullfilled. Comparison

of the experimental φ-values to the simulation φ-values showed a consistent

match with high correlation for different number of replicas (data not shown).

This indicates that the restraints in the simulation are strong enough that

ensembles with the correct φ-values for each residue are indeed produced. We

note that the results for p=2 are very similar to those found for the p=1 case

and discussion of the p=2 results will therefore be omitted. The individual

ensembles obtained from the replica simulations each consisted of 1600 inde-

pendently sampled structures taken from millisecond long molecular dynamics

trajectories. From the structures found in the simulations with replicas and the

reference ensembles probability distributions of the single independent variable

q, the structural overlap reaction coordinate may be extracted. A statistical

test can be performed to check whether the ensembles obtained from the φ-

value molecular dynamics replica simulations for 1-8 replicas can be considered

aprt from incomplete sampling identical to the reference ensemble which was

used to generate the input φ values. Figure 2.3 shows the results of the KS-test

for the various transition state ensembles.
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Figure 2.3: Shown are the overlap distributions at the folding temperature of
the ensembles obtained from replica simulations with the reference ensemble,
for the three different transition state ensembles with p = 1 (a) and p = 3 (b).
The self-overlap distribution of the reference ensemble is also shown. Tthe
probability distribution of the average φ-value of each individual realization in
the recovered ensemble with eight replicas is plotted in (c)
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Two structural ensembles are equal (or there is an absence of evidence

that they differ) if the probability distribution of pairwise overlaps, P (q), is

the same irrespective of whether the pairs are drawn from the same ensemble or

from distinct ensembles. For the p=1 and p=3 transition state ensembles, the

probability distribution of overlaps between the one-replica and reference en-

semble has some overlap with the distribution of overlaps within the reference

ensemble. However, this overlap between distributions is not large, showing

that the reference ensemble and the ensemble obtained from the one-replica

simulation are in fact can not be considered the same, although they both have

the same set of φ-values. It seems that the structural order parameter q since

it varies more strongly with the exact distances between amino acid pairs is a

more demanding similarity measure than φ, which depends only on whether

contacts form within a specified cut-off distance. Two residues that are closer

than the cut-off distance for a contact but near that limit, contribute strongly

to φ, but lead to a low qij-value for that residue pair, if the distance of the

residue pair is very near in the reference transition state ensemble. Thus we

see that using φ-values alone for reconstruction may lead to discrepancies in

short-ranged local structural elements such as the α-helical structures of the

ensembles obtained with the replica simulation algorithm and the gold stan-

dard ensemble. Nevertheless both φ and q are adequate order parameters to

quantify a conformation and its global fold.

Another question we can address is whether a larger λ-parameter that

would reflect the availability of more accurate data would eventually lead to

precise reproduction of the reference ensemble. One might argue that increas-

ing the strength of interaction, the λ-parameter, could force the regenerated

ensemble to approach the reference ensemble. KS-tests have been performed

with increasing value of λ, but they showed no noticeable improvement for the

recovery of the reference ensemble with one replica. Apparently the structural

imprecision of φ also plays a role in determining the fidelity of ensemble recov-

ery. Without knowledge of the energy landscape of folding of the λ-repressor,

the KS-test above indicates that one cannot conclude that the one-replica
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Hamiltonian will reliably deduce the reference ensemble even though it re-

produces the set of experimental φ-values. The reference ensemble is only

partially reproduced using the one-replica simulation technique. Nevertheless,

inversion with one replica can be judged to be partially successful.

In contrast to the one replica ensemble reproduction the curves of the

overlap distributions for multiple replicas are bimodal. To check whether the

bimodality of the replicas is an artifact of a recovered ensemble with unfolded

and folded structures, that on average match the reference φ-values, the prob-

ability distribution of the recovered ensemble obtained with the eight replica

algorithm is plotted. The average φ-value of each snapshot is calculated and

the results are binned in bins of size 0.005. The reference ensemble is also

plotted for comparison. One of the two peaks of the overlap distribution over-

laps well with the reference ensemble probability distribution suggesting that

the ensembles are similar. These results suggest that the reference ensemble

can be extracted from the ensemble obtained with simulations with multiple

replicas. The nature of the bimodal probabilty distribution suggests that the

replicas are not homogeneous but instead break the replica symmetry. It is

clear from Figure 2.3 that the broken replica symmetry does not stem from

a simple division of folded and unfolded structures of the recovered ensemble.

The underlying replica symmetry breaking is more subtle. The distribution of

the average φ-value of each realization (or snapshot) of the recovered ensemble

is similar to the distribution of average φ-values of the reference ensemble.
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2.4 Sampling enhancement through multiple

replicas

Principal component analysis of the contact maps of each structure allows

a convenient visualization of the patterns of variation in contact probabilities

in the subensembles and hence allows the study of the range of conformations

of all residues in those structural ensembles. Figure 2.4 displays the conforma-

tions of the structures of the reference ensemble and the regenerated ensembles

for 1 to 8 replicas projected onto the first two principal components. In the

p=1 case the first principal component is a good indication of the sampling

of the reference ensemble. The reference ensemble shows a negative first prin-

cipal component (PC1) with most conformations in the region of PC1 = −2

to −4. The projections of the conformations obtained with multiple replicas

show much more overlap with the reference ensemble than the projections of

the one replica conformations. The recreated ensemble obtained with multiple

replicas is substantially shifted towards more negative PC1 when compared

to the one replica ensemble. The multiple replica algorithm better samples

reference-ensemble-like structures than does the single replica algorithm al-

though the number of independent samples is kept equal between all replica

simulation runs of single and multiple copies. To test whether the degree of

overlap of each of the multiple replica ensembles with the reference ensemble is

artificially high due to the fact that all ensembles including the single replica

ensemble enter the PCA, analysis of the individual multiple replica ensembles

with the reference ensemble have been performed, which shows very similar

results. The advantage of the multiple replica algorithm seems even more ap-

parent for the p=3 reference ensemble. Here the reference ensemble is bimodal

as reflected in the results of the principal component analysis (Figure 2.4(b)).

The reference ensemble structures projected onto the principal components

show two main clusters. While the ensemble obtained with 1 replica shows

only small overlap with the reference ensemble located in the PC1 region of

less than 2, there is no overlap with the reference ensemble conformations



25

0 0.2 0.4

PC1

-0.2

-0.1

0

0.1

0.2

0.3

P
C

2

reference
1 replica

2 replicas

4 replicas

8 replicas

(a)

0 0.2 0.4

PC1

-0.2

-0.1

0

0.1

0.2

P
C

2

reference
1 replica

2 replicas

4 replicas

8 replicas

(b)

Figure 2.4: The two principal components of conformations found in the ref-
erence ensemble and ensembles obtained with the replica algorithm with 1 to
8 copies for the p=1 case (a) and the p=3 case (b) are shown.

projected along the PC1 greater than 2. The PC1 of the ensembles obtained

with multiple replicas assume a wider range of PC1 values indicating the bet-

ter sampling of both clusters of reference ensemble structures. The success of

multiple replicas is due to the fact multiplicity of replicas allows fluctuations

around the φ-values for individual structures, while still constraining the repli-

cas on average to its input φ-values. We also projected the first two principal
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components onto the contact map of the λ-repressor (data not shown). The

contact maps are convenient to visualize on a residue by residue contact ba-

sis, which residues are more reference ensemble like and which are not. Most

contacts that are formed in the reference ensemble are also formed equally in

the replica ensembles. Structurally, the main differences between the reference

and the replica ensembles can be attributed to the different C-terminal helix

contacts.
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2.5 Reference Ensemble re-creation through

ensemble reduction methods

A powerful adjunct for the re-creation procedure would be to have some

kind of selection filter for the structures obtained in a simulation. If a postpro-

cessing tool were to exist that allowed the selection of only those structures

that truly resemble the reference ensemble, the somehow usefulness of the

inversion procedure would be greatly enhanced.
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Figure 2.5: Overlap distributions of the reduced ensembles from the replica
simulations for 2,4 and 8 replicas with (a) the p=1 and (b) the p=3 ensem-
ble. The ensembles obtained from the clustering technique described in the
method section improved the prediction success of the experimental ensemble
for p=1 tremendously as measured by the KS-test. For the p=3 ensemble
the reduced ensembles reproduce the reference ensemble as measured by the
KS-test partially.
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Figure 2.6: KS overlap test of the reduced ensemble obtained with eight repli-
cas and their corresponding reference ensemble using the CE Z-score as reac-
tion coordinate for the p=1 (a) and p=3 (b) ensemble.

There are many possible ways of partitioning the ensemble based on the

structural diversity. A simple clustering algorithm that clusters structures ob-

tained with the multiple-replica Hamiltonian allows separation of these struc-

tures into subensembles. The Fitch-Margoliash clustering algorithm uses a

distance measure between all structures to generate a phylogenetic tree. The

distance parameter d is given by d = 1 − q, where q is a normalized pairwise
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measure of similarity of all structures relative to each other. For the p=1 tran-

sition state ensemble the phylogenetic tree showed clustering into two main

clusters. One cluster contained structures with greater variation of the radius

of gyration and less helical content. This cluster was not as homogeneous as the

other cluster was. It contained lots of subclusters. The other cluster showed

more compact structures with higher helical content. The structures of this

cluster are denoted the “reduced ensemble”. It was then confirmed, that this

ensemble has on average the same set of φ-values as the reference ensemble.

This is important in validating the choice of the most dominant subensemble

as a valid representation of the reference ensemble. If the difference between

the average φ-values of the reference ensemble and the chosen cluster are large,

the cluster can not be accepted as a valid ensemble. However, there was no

such difficulty for the most dominant cluster. KS-tests with the reduced en-

sembles were performed to test whether these ensembles overlapped with the

p=1 reference ensemble. The overlap of the reduced ensemble for multiple

replicas with the experimental p=1 reference ensemble suggested a successful

recovery of the reference transition state ensemble (Figure 2.5(a)). The struc-

tures of the reduced ensemble (Figure 2.7(b) , 2.7(d)) exhibited the same

global fold with similar disorder in the DNA binding region as the reference

ensemble (Figure 2.7(a) , 2.7(c)). All structural comparisons such as RMSD,

helical content, radius of gyration, secondary and tertiary structure, and Z-

score from the combinatorial extensions algorithm (the CE Z-score) confirmed

that these two ensembles are indeed equivalent on the basis of each of these

measures.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.7: Shown are the reference transition state ensembles viewed from
front (a,e) and back (c,g) and the reduced ensembles obtained with 8 replicas
for p=1,3. The DNA binding region (green) is disordered in the transition
state. For the p=1 case the reduced ensemble (b,d) and the reference ensemble
(a,c) show the same intrinsic features such as secondary and tertiary structure
and their average structure has a relative RMSD of the backbone carbons of
less than 2.5Å. For the p=3 case both of the reduced ensemble overlayed (f,h)
show similar structural features than the reference ensemble (e,g). Pictures
were made with molmol [26].
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The phylogenetic tree was also obtained for structures obtained with the

multiple-replica algorithm for the p=3 case. The tree showed a main cluster

with a few populated sub-clusters. The structures of the sub-cluster whose

average φ-values resemble the most the reference ensemble were taken as the

reduced ensemble. The KS-test was then performed for the reduced ensemble.

The result is shown in Figure 2.5(b). The probability distribution function of

q overlap of the p=3 reference transition state ensemble shows a bimodal dis-

tribution. The probability distribution of the reduced ensembles overlapped

well with one peak of the p=3 reference ensemble probability distribution.

The structures found in the lower-q peak of the reference ensemble were com-

pared to the structures of the reduced ensemble. The resultant structures of

the replica simulations (Figure 2.7(f) , 2.7(h)) exhibit similar tertiary and

secondary structures to that of reference ensemble structures (Figure 2.7(e) ,

2.7(g)). Using other order parameters in the KS-test, such as the CE Z-score

or RMSD, support the results of the KS-test, that the reduced ensemble and

the lower-q reference ensemble are highly similar ensembles. In figure 2.6(a)

and 2.6(b) we show the overlap distributions of the reduced ensemble obtained

with eight replicas and their corresponding reference ensemble. We note that

the CE Z-score is down-scaled by a factor of 5.9, which is the resulting score

for the overlap of each of the transition state structures to themselves. This

will normalize the CE Z-score axis to facilitate better comparison to the order

parameter Q. The p=1 reference ensemble distribution peaks at a Z-score of

about 0.67 ∗ 5.9 = 3.95 and most structures have a Z-score in the range of

3.65-4.19. A Z-score of 3.5 and higher is considered a criterion that the two

structures share the same fold. We therefore see that in the p=1 reference

transition state ensemble structures and folds are very similar to each other.

The KS test using the CE Z-score as a reaction coordinate shows the high

overlap of the the probability distributions of the reduced ensemble and the

reference ensemble. The conclusion from the Z-score overlap test is that the

two ensembles, reference and reduced ensemble, are indeed equivalent ensem-

bles in terms of representing the same distribution of global folds. The p=3

reference ensemble showed a bimodal distribution in the order parameter q
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with larger variations of relative structural similarity. As one would expect,

non-additivity causes the folds in this transition state ensemble to be less ho-

mogeneous than those in the p=1 reference ensemble. Indeed a wider range

of CE Z-scores of ∼ 2.36 − 4.10 is found within the reference ensemble itself.

The overlap between the lower q subensemble of the p=3 reference ensemble

and the reduced ensemble is excellent indicating that the folds in the reference

subensemble are well represented in the reduced ensemble and that ensem-

ble recovery judged by CE Z-score and the KS-test has been very successful

for these reference structures. The CE Z-score is traditionally used for fold

recognition. The probability distribution of the overlap function shows that

the reduced ensemble does have the same distribution of global folds than the

reference ensemble, which is not surprising since the average φ-values are repro-

duced. For the order parameter q, the dominant subensemble obtained by the

clustering method only represents part (although most) of the p=3 reference

transition state ensemble. Without knowledge of the energy landscape of the

protein, the reduction method cannot be used to completely reproduce the ref-

erence ensembles. If further low resolution experiments are known, additional

clusters can be identified that resemble the real gold standard ensemble.



34

2.6 Robustness of the Prediction of the Tran-

siton State Ensemble for the λ-repressor

To test the robustness of the ability of replica simulations to recover ref-

erence ensembles from imperfect laboratory experiments, we introduced per-

turbations in the input data resembling experimental errors. To obtain these

results we therefore stochastically changed the set of φ-values used in the re-

construction to see whether an ensemble could nevertheless be re-created that

was faithful to the gold standard ensemble. To do this first a new set of

φ-values was created by randomly picking a φ-value for each residue from a

Gaussian distribution, having a mean value corresponding to the gold stan-

dard φ-value with a standard deviation given by the experimentally expected

standard deviation of the measurement of that φ-value. The magnitude of

the errors introduced was of the order of 20% for the p=1 reference ensemble

φ-values and about 30% for the p=3 reference ensemble. These new perturbed

lists of φ-values then served as an experimental input for the replica Hamil-

tonian. Replica simulations with these new φ-values were performed and the

resulting transition state ensembles were compared to the reference ensemble

with the KS overlap test. In the case of the p=1 transition state ensemble, the

overlap distribution of the ensemble obtained with one replica using the new

noisy φ-values no longer coincides with the distribution of overlaps within the

gold standard reference ensemble at all (Figure 2.8(a)). The overlap distri-

butions show that the two ensembles are rather different. Simulations using

a single replica appear rather sensitive towards uncertainties in φ and fail to

result in successful ensemble re-creation.

In contrast, the overlap distributions for ensembles obtained with multiple

replicas do show considerable overlap with the distribution of the reference

ensemble even when errors are introduced (Figure 2.8(a)) at least in the p=1

case. The replicas are able to compensate the uncertainties in φ and partially

reproduce the reference ensemble. It is also found that clustering of structures

with the Fitch-Margoliash clustering algorithm yields at least one cluster with
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secondary and tertiary structure comparable to the reference transition state

ensemble. The multiple-replica ensemble algorithm combined with selection

through structural clustering therefore does successfully reproduce the p=1

reference ensemble.
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Figure 2.8: Overlap distributions for the p=1 and p=3 transition state en-
semble for 1,2,4 and 8 replicas. For p=3 the new set of φ-values generated
structures, that did not overlap with the reference ensemble at all. In the p=1
case the overlap was smaller when compared to the overlap in Figure 2.3 .
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However, the structures obtained in replica simulations, that should reflect

the reference ensemble of the p=3 transition state ensemble, are structurally

different from those in the reference ensemble. The KS-test shows that in

no case can the replica simulation algorithm re-create the actual reference

ensemble structures (Figure 2.8(b)). The p=3 transition state ensemble was

obtained with a Hamiltonian that leads to highly cooperative behavior. The

folding under this Hamiltonian should resemble the folding of a protein that

folds by forming a specific, determined folding nucleus. The φ-values in the

transition state ensemble are then expected to be less uniformly distributed

with certain core residues being formed much earlier than the rest of the

contacts. The errors introduced in φ are large and can potentially smear

out the φ-values resulting in a mean-field like set of φ-values, which are more

uniformly distributed like the φ-values of the p=1 transition state ensemble.

This effect of creating a more uniform set of φ-values could be a possible

explanation, why re-creating the transition state ensemble of the λ repressor

obtained with a very non-additive Hamiltonian is more sensitive to errors in

φ than is the re-creation for the p=1 ensemble.
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2.7 Conclusion

Scientists often seek to invert hard won experimental data with the hope

to obtain statistically correct structural ensembles with high fidelity. We see

that the ability of successfully doing this for structural ensembles of partially

folded biomolecules depends on the algorithm employed and on the quality of

the measured data we seek to recreate.

First consider the p=1 reference ensemble. This ensemble has a unimodal

overlap distribution and corresponds to a low transition state barrier with

structures that are close in Q being close in free energy. Our simulation re-

sults with the molecular dynamics replica algorithm show that this algorithm

can partially recreate the correct reference transition state ensembles from the

set of ensemble-averaged φ-values. For the p=1 reference ensemble, structures

obtained in simulations with one replica show overlap in the P(q) distribution

with the reference ensemble. The KS-test shows, however, that the distribu-

tions of the reference ensemble and the ensemble obtained from the replica

algorithm are not the same despite the fact that the ensembles share the same

set of φ-values. The 1-replica algorithm partially reproduces the reference en-

semble, that has a unimodal P(q) distribution with large errors in φ and few

non-native contacts. On the other hand, the ensembles obtained with multiple

replicas show a bimodal distribution in the probability distribution of overlap

with the reference ensemble with only one peak strongly overlapping with the

reference ensemble. The rather small overlap suggests that structural cluster-

ing could yield a small cluster of structures, that would better resemble the

reference ensemble. Clustering of the structures with the Fitch-Margoliash

algorithm shows two main basins of stuctures. A reduced ensemble obtained

from this clustering analysis reproduces the reference ensemble as measured

by the KS-test. These results suggest that when a single replica suffices to

reproduce the reference ensemble, ensemble re-creation with multiple replicas

does so too.

We also examined how stable the inversion is when errors mimicking those
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found in experimental determinations are introduced. This study shows an ad-

ditional advantage of introducing multiple replicas. Whereas the one-replica

algorithm could not re-create the reference ensembles (Figure 2.8(a)) at all

from error ridden input, the multiple-replica algorithm combined with struc-

tural clustering analysis is able to produce a reduced ensemble that has the

same structural characteristics as the reference ensemble. Ensembles with

low free energy barrier, from which a set of φ-values with large experimental

errors is deduced, can only be inverted when multiple replicas coupled with

structural clustering are introduced. For the p=3 transition state ensemble,

the advantage of multiple replicas is also apparent. The φ-values represent

ensemble averaged quantities. The reference ensemble has a bimodal prob-

ability distribution as well as two clusters of conformations when observing

these conformations projected onto the principal components. Each of these

subensembles have also large fluctuations in their φ-values. Hardly any indi-

vidual structure in the reference transition state ensemble has the same set of

φ-values as the ensemble average set of φ-values. In the inversion algorithm,

the single replica algorithm recovers these individual structures. However a

successful re-creation of the reference ensemble requires sampling of structures,

that only on average reproduce the set of φ-values. Introduction of multiple

replicas allows fluctuations of microscopic φ’s referring to these subensembles

while the φ-values averaged over all replicas still is constrained to its exper-

imental value. The KS-test and PCA show that multiple replicas do sample

the dominant subensemble of the p=3 reference ensemble well. Few structures

sampled the minority reference subensemble (the PC1 > 2 region, see Fig-

ure 2.4) although the multiple replica algorithm does improve the ensemble

re-creation over the single replica case. Knowledge of the energy landscape of

folding is only partially encoded in the φ-values, thus adding additional a pri-

ori knowledge of the funneling of the energy landscape should help in inversion

fidelity. Further work along these lines is planned.
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Appendix

The text of this chapter, in full, is a reprint of the material as it appears

in the Journal of Chemical Physics. The dissertation author was the primary

researcher and author. Reprinted with permission from Lätzer J, Eastwood

MP, Wolynes PG, JOURNAL OF CHEMICAL PHYSICS 125 (21): Art. No.

214905 DEC 7 2006, Copyright 2006, American Institute of Physics.



3 A Method for Inferring

Partially Ordered Ensembles

based on Energy Landscape

Theory

3.1 Introduction

The importance of characterizing partially ordered thermodynamic states

of biomolecules is becoming increasingly evident [120]. The goal of structural

biologists and biophysical chemists should be to objectively infer both the

mean structure and the correct magnitude of fluctuations of partially folded

ensembles starting with experimental data alone and knowledge of the errors

in such data. In fact, most existing direct inversion strategies are, however,

biased to eliminate diversity in the ensemble of structures giving the impres-

sion of greater order than is probably correct. This is not a surprise because

these strategies were originally intended for application to completely folded

proteins. These are known by virtue of thermodynamic data to be separated

by an energy gap form most denatured states and to be much less diverse.

Such inversion strategies previously applied mostly to refining high resolution

X-ray and NMR data [91, 90] may not give a faithful view of less structured

ensembles. The best of the existing methods often involve simulating many

copies of the protein (called ”replicas” in statistical mechanical theory) and

40
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applying the constraints provided by the intensities of the measured reflections

to the average of the structure factor of the many copies [102]. Similar ensem-

ble based constraints have also been introduced in Bayesian replica simulation

methods for applying constraints derived from NMR [118, 92, 12] and from

low resolution φ-value experiments [13, 79]. In the multiple copy approach the

experimental constraints provide effective interactions between the different

copies of the protein molecule. These interactions are of course not literally

real. Instead they are virtual interactions representing the strength of infer-

ences that can be made on the basis of the measured experimental observables.

To the epistemological purist , the strength of these replica couplings should

depend partly on the errors intrinsic to each experimental method but also on

the confidence one has in an a priori model to the protein energy function - with

infinite sampling and the correct energy function no experiments would have to

be done at all! Statistical experimental errors are small for X-rays, moderate

for most NMR experiments on highly folded proteins but are potentially large

for low resolution data such as H/D exchange or φ-value analysis. All replica

simulations so far introduced a non-physical constraint term to an energy func-

tion that otherwise is supposed to capture the essential physics and chemistry

of the protein chain. Despite the fact that the strength of the inter-replica

coupling should depend on the prior knowledge of the energy landscape of the

system reflected in the physical energy function, in practice the interaction

strengths are often cranked up to unreasonably high values. Bayesian infer-

ence methods which calculate the interaction strengths rather than adjusting

them freely have been developed. These heuristic methods [112, 97, 98] deter-

mine simultaneously the weight and optimal native ensemble for a given set

of NOE NMR constraints. The implementation of these more faithful meth-

ods is hindered by the computationalist - a problem we hope to overcome by

developing a more analytical approach here.

In the current paper we describe a new method based on energy land-

scape principles to compute the inter-replica coupling without simulation. This

method is based on a strict Bayesian interpretation of the experimental input
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data (here chosen to be transition state φ-values for illustration) and can in-

clude the known statistical and modeling uncertainties in those data. Energy

landscape ideas were used to fix the magnitude of these interactions in an

objective way based on the magnitude of the errors and the landscape yielded

by the physical energy function. We base our algorithms on free-energy func-

tionals [114, 116, 115, 110, 111, 113], using the energy of the native contact

formation and polymer physics estimates of the entropy. Such functionals

have been used to successfully predict the free energy profile in the absence of

experimental data. In this paper we use a similar functional to compute the

interaction strength between replicas analytically, when the completely folded

structure is known. The functional can assume a priori given physical energy

functions either having explicit cooperativity,

After the couplings are found analytically, we then carried out replica

molecular dynamics simulations with the analytically computed interaction

strengths to deduce structural ensembles. To test this approach we applied

the method to a known computed ensemble corresponding to a folding transi-

tion state. In this case the fidelity of the method can be objectively quantified.

3.2 Methods

3.2.1 Description of the Free Energy Functional

A replica free energy functional approach is presented in order to character-

ize with proper fidelity the partially structured ensembles that can be obtained

for a given set of experimental constraints. The free energy functional can be

written as F = Fphys + Fexp. Fphys contains physics and chemistry based en-

tropy/energy terms while the pseudo-energy term Fexp biases the ensemble to

match the experimentally determined data. This biasing term can be written

as a function of the normalized contact probabilities qαij(µ(α)) for residue i and
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j of replica α when a total number of µ(α) contacts are formed.

Fexp =
∑

i

λi

(

1

Nrep

∑

α

1

N i
cont

∑

<j>

qαij(µ(α))− < φi >exp

)2

(3.1)

The functional form of Fexp was chosen to have a quadratic form for con-

venience. The parameter λi is a measure of confidence in the experimental

measurement. It weights the contribution of each constraint according to its

assumed statistical error. The study uses φ-values for illustration purposes

but other constraints that can be written in terms of contacts such as NOE

or H/D exchange data can be treated similarly. We will usually assume no

frustrations. The φ-values < φi >exp are approximated in this functional to

be equal to the average contact probability qαi = 1
N i

cont

∑

j q
α
ij for each residue i

with N i
cont native contacts averaged over all Nrep realizations. More accurate

energy weighted quantities can also be used.

We take the energetic terms as a simple two-body interaction potential for

residues which are known to form contacts in the native structure.

Fcon.pot. =
1

Nrep

∑

α

∑

i,j

εijq
α
ij(µ(α)) (3.2)

The εij terms give the contact interaction strength between residue i and j.

Suitable choices for the εij terms are those from optimized potentials for protein

folding such as the potential described by Goldstein [95], potentials derived

from information theoretic approaches [105, 89] or simply Gō-like [117] terms

if one is comfortable assuming a homogeneous funneled landscape.

The entropic costs of forming contacts must also be addressed in the func-

tional. There are many different ways to select a sensible entropy functional,

such as the entropy functional used in describing network glasses [99]. The

motivation for the specific entropy functional used in this study is that this

functional has already been succesfully applied to the problem of character-

izing partially structured ensembles including those of the λ-repressor [115].

The entropy functional is made up of several terms including a contact en-

tropy functional and a mixing entropy term. The contact entropy functional
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used in this study has been obtrained from an interpolation of the Jacobson-

Stockmayer functional [101], where the long-range entropic contributions are

derived from Flory’s theory of rubber elasticity [94]. The details for this func-

tional are explained in greater detail in the work of Shoemaker, Wang and

Wolynes [116].

Sαij = kB log

(

∆V |i− j|−
3

2 +

(

N

µ(α)

)− 3

2

)

(3.3)

One contribution to the entropy changes comes from forming a specific set of

contacts. The Flory correction reflects the fact that loops are shorter once

µ contacts have already been made. Yet not all contacts are made all of the

time. Therefore another contribution to the total entropy in an ensemble of

partially ordered structures comes from the combinatorial entropy of mixing.

In a partially ordered protein ensemble, the mixing entropy term arises from

the number of possible ways that these contacts can be made.

Fc.e. =
1

Nrep

∑

α

∑

ij

kBT (qαij(µ(α)) ln qαij(µ(α))+

(1 − qαij(µ(α))) ln (1 − qαij(µ(α))))

(3.4)

The native ensemble is obtained, when all native contacts are formed so

each qαij = 1. The entropy loss to go from the completely unfolded state to

the completely folded state can be estimated for a protein of N residues to be

Nlog(ν), where ν is the number of conformations per residue (here we chose

ν = 4). This overall entropy accounting fixes the parameters in the contact
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entropy functional Sαij. The final free energy functional can now be written as

F =
∑

i

λi

(

1

Nrep

∑

α

1

N i
cont

∑

<j>

qαij(µ(α))− < φi >exp

)2

+
1

Nrep

∑

α

∑

ij

εijq
α
ij(µ(α))

− T





1

Nrep

∑

α

∑

ij

Sαijq
α
ij(µ(α)) +

µ
∑

µ′=1

∑

ij

∂Sαij(µ
′

)

∂µ
δqαij(µ

′

) + kBNlog(ν)





+
1

Nrep

∑

α

∑

ij

T
(

qαij(µ(α)) ln qαij(µ(α)) + (1 − qαij(µ(α))) ln (1 − qαij(µ(α)))
)

(3.5)

where δqαij(µ
′

(α)) = qαij(µ
′

(α))− qαij(µ
′

(α)−1). At the folding temperature TF ,

this functional satisfies the condition that in the unfolded state, the entropy is

kBN ln ν, while in the folded state the entropy should vanish. It is the param-

eter ∆V in the contact entropy term which is tuned such that the complete

entropy in the folded state is zero while in the unfolded state the total entropy

is of magnitude Nlog(ν).

3.2.2 Cooperativity Effects

The free energy functional, so far, does not contain nonpairwise-additive

interactions. Native structure based potentials with explicit many-body inter-

actions have been found to capture protein folding kinetics with more accurate

and realistic rates and barriers [93]. The barrier heights typically increase with

increasing amount of nonadditive interactions [109, 14]. We describe three

different contributions to the cooperativity. One contribution is an α-helical-

local-density interaction free energy. The formation of a helical contact is

facilitated, when other contacts near it have already formed. Luthey-Schulten

et al. [103] have explained this based on Onsager’s theory of liquid crystals - it

is the so-called “induced rigidity” of Pincus and DeGennes. This interaction

free energy stabilizes the native state and tends to make molten globules orien-

tational liquid crystals. This enhancement for helical residues stems from the
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fact that arrangement of a third residue to its native conformation, when two

nearby residues are already formed, is entropically more favorable than the

entropic cost of the sum of three pairwise terms accounting for the formation

of these three contacts independently of each other.

Fh−ρ = αh−ρT
1

Nrep

∑

α

hx
∑

i

qαi−4,i(µ(α))
∑

k

qαik(µ(α)) (3.6)

Using a stabilization energy of roughly 1kBT per helical residue (see helix-

coil theory by Luthey-Schulten et al. [103]), one obtains an estimated value of

αh−ρ = 0.3 [115] for the λ-repressor was chosen.

The second cooperative term used in this present functional arises from

the fact that breaks in α-helices introduce surface energy terms. This free

energy term is similar to the helical initiation free energy calculated in helix-

coil theory [103].

Fh = αh
1

Nrep

∑

α

hx
∑

i

(qαi−4,i(µ(α)) −
1

2
)(qαi,i+4(µ(α)) −

1

2
) (3.7)

The magnitude of interaction of this functional has been estimated by assum-

ing that the energetic cost to form a helix relative to forming a coil is given

by F = − ln σ. Measurements of the surface tension σ [106] have been used to

infer a value of approximately σ = 10−1 [103].

Finally we add a free energy functional term motivated by the capillarity

picture of protein folding [119]. In the capillarity picture, regions, in which

side chains are either completly ordered, partially ordered or unfolded, may

be separated by rather complex interfaces which may be improperly wetted.

A reasonable choice for this kind of cooperative interaction is given by

Fc = αc
1

Nrep

∑

α

∑

ij

∑

k

∑

l

((qαij(µ(α)) −
1

2
)(qαlk(µ(α)) −

1

2
)qNATi,k

+ (qαij(µ(α)) −
1

2
)(qαkl(µ(α)) −

1

2
)qNATk,j )

(3.8)

where qNATk,j equals one if residues k and j form a contact and zero otherwise. It

is possible to estimate the magnitude of αc (in the range of 0.05-0.1) [116] by
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matching the total surface loop entropy loss for a random conformation (where

part of the protein is completely folded and the remainder of the protein is

completely unfolded) calculated from polymer physics [109] to the entropy cost

obtained with the functional.

3.2.3 Free Energy Profiles and the Calculation of the

Parameters λi

To obtain the free energy profile along the folding reaction coordinate,

the set of ensemble averages, the qαij’s, must be calculated. The free energy

profile is obtained by minimizing the free energy functional with respect to qαij

while imposing the boundary condition to have a given total progress along

the folding reaction coordinate. This translates mathematically into solving

the equation ∂F
∂qα

ij
= 0 with the Lagrange multiplier (q − q∗)γ = 0, where q∗ is

the given value of the total degree of ordering and q = 1
N

∑

i q
α
i . This leads to

the following equation to obtain the set of qαij’s as the system progresses down

the funnel.

qαij = (1 + exp(
1

T
(εij − γ − TSijα

+ 2Tαh−ρ

hx
∑

i

(qi−4,i +
∑

k

qik)

+ αh

hx
∑

i

(qi,i−4 + qi+4,i+8)

+ αc
∑

k,l

(qklδ
nat
ik + qklδ

nat
kj )

+
2TλiNj

Ni +Nj
(qi− < φi >exp) +

2TλjNi

Ni +Nj
(qj− < φj >exp)))

)−1

(3.9)

Equation 3.9 can be solved self-consistently, when the λi’s are known. For a

given set of λi’s it is straight forward to compute the free energy landscape for

all values of q∗.

Often in simulations the weight parameters λi are estimated from an heuris-

tic procedure that reflects the certainty in the observed data [112, 98]. Here
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the free energy functional can be used to directly and quntitatively infer the

λi’s for a given set of observed data, < φi >exp , and its uncertainties δΦi. To

compute the λi’s, the free energy functional F is minimized with respect to λi,

i.e we seek to solve ∂F
∂λi

= δΦ2
i . Since the only direct dependence of F is given

by the experimental constraint term, we are left to solve (Qi− < Φi >)2 = δΦ2
i

given the constraint that ∂F
∂qα

ij
= 0. The calculated weight parameters can now

be used in simulations [79] to infer structural ensembles with a precision di-

rectly determined by the experimental errors δφexpi .

3.3 Free energy landscape obtained with con-

stant λ’s

We first present the results for a model ensemble inversion assuming there

are no cooperative terms in either the functional nor in the simulation Hamil-

tonians used to generate the original data. We carried out molecular dynamics

simulations with a native structure based Hamiltonian [79] to obtain the free

energy profile of the λ repressor. The λ repressor folded as a two-state folder

with a low energy barrier between unfolded and folded ensemble. The tran-

sition state ensemble is defined by structures whose order parameter q is at

the q of the barrier. The input data were derived from this completely known

reference ensemble. This reference ensemble exhibits a unimodal probability

distribution suggesting one distinct transition state ensemble. We first test the

ability of our method for symmetric replicas to infer the real transition state

ensemble from the given experimental data and its errors, which are taken

of to be of the order of 22%. This is a reasonable magnitude for laboratory

kinetic data on φ’s.

The free energy profiles for constant λ’s (λ = 0..50) in the absence of

cooperativity terms were calculated at TF by solving Equation 3.9 for the set of

qαij, where q∗ is varied from q∗ = 0.01 to q∗ = 0.99. The nonlinear equations for

qαij were solved iteratively. The resulting free energy profiles as a function of the
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total folding progress q for a Hamiltonian with all energy terms set to zero (all

εij = 0.0), Fbb, and also for a Gō-like Hamiltonian (all εij are equal, non-zero

and scaled as described in the method section), FGō, are shown in Fig. 3.1a,b.

At low λ the free energy profiles are dominated by Fphys. Most regions are dark

blue, i.e these regions are preferred regions. For the Gō-like Hamiltonian with

λ = 0.0, a barrier of approximately 4kBT is observed between the unfolded

ensemble and the folded ensemble. This barrier is slightly higher than the

barrier observed in molecular dynamics simulations. With increasing λ only

regions around the average q-value of approximately q = 0.74 (obtained by

averaging all < φi >exp-values) are preferred while especially low q regions

(q ≤ 0.5) and high q regions (q ≥ 0.85) become unfavored.
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Figure 3.1: A) Free energy profiles obtained with the backbone based free en-
ergy functional for increasing, but constant weight parameter. B) Same as A)
but with the native structure based functional. C) Probability distribution of
the reference ensemble is shown in blue. The overlap probability distributions
are shown in red for the backbone Hamiltonian and green for the funneled
Gō-like Hamiltonian. D) Plot of the average distances for each residue pair ij
found in the reference ensemble and the deduced ensemble. Red dots represent
distances found in the backbone based Hamiltonian while green dots represent
distances found in the funneled Hamiltonian.
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We used molecular dynamics replica simulations [79] to obtain structural

ensembles. For the deduced ensembles, the input φ-values were reproduced.

In the ideal situation, the deduced ensembles should also be identical to the

real ensemble. It is common practice to validate the deduced ensembles by

calculating some different order parameters from the deduced ensembles and

compare these order parameters to experimental data [118, 96]. In our case

the reference ensemble is completely known and we can therefore judge di-

rectly whether the deduced ensembles faithfully represent the real ensembles

or if the deduced ensemble simply represents a sub-ensemble of the real en-

semble, that matches the input φ-values by using the Kolmogorov-Smirnoff

(KS) test. The deduced ensembles were in this way able to be compared to

the real “gold standard” ensemble. For the KS-test, the individual probability

distributions of the reference ensemble (PA(qstructure)), the replica ensemble

distributions (PB(qstructure)) and the overlap distributions (PAB(qstructure)) are

each calculated. Here qstructure = 2
(N−1)(N−2)

∑

i<j−1 exp
(

−
(r1ij−r

2

ij)
2

2σ2

ij

)

is a nor-

malized order parameter that describes the structural similarity of a given

structure 1 with coordinate set {r1
ij} to a second structure 2 with coordinate

set {r2
ij}. Unlike q, qstructure is dependent on the exact distances for each con-

tact pair ij. Two structural ensembles are statistically indistinguishable if the

probability distribution of pairwise overlaps PAB(qstructure) is equal to the ref-

erence probability distribution PA(qstructure). The probability distribution of

the “gold standard” transition state ensemble (Fig. 3.1c, dark blue curve) and

the overlap distributions PAB(qstructure) (Fig. 3.1c, red and green curve) with

the highest overlap to the real ensemble are shown in Fig. 3.1c. Neither of the

two ensembles obtained from the molecular dynamics replica simulations com-

pletely overlap with the reference ensemble. However, the ensembles obtained

with Fbb show much larger overlap, i.e these ensembles are closer to the model

gold-standard transition state ensemble than are the ensembles obtained with

the Gō-like Hamiltonian FGō.

To obtain a feel for the distances found in the deduced ensemble and the

gold-standard ensemble, we compare the distances < dij >
real
av and < dij >av
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of each residue contact pair ij observed in the two ensembles and averaged

over all structures in each respective ensemble. Fig. 3.1d shows that most con-

tacts that are formed within the cutoff distance are found along the diagonal,

however a few contacts < dij >av can deviate quite a bit (up to 10Å) from

the contact distances < dij >
real
av seen in the real ensemble. The probabilty

distribution P(∆i) with ∆i = log
<dij>

real
av

<dij>av
exhibits an approximate Gaussian

function centered at ∆i = 0.0 for both deduced ensembles (figures not shown).

3.4 Evidence of Replica Symmetry Breaking

in MD simulations with constant weights

To what extent do the members of an inferred ensemble structurally clus-

ter? In the statistical mechnical language this is the issue of whether there

is replica symmetry breaking. To test whether a system of replicas exhibits

replica symmetry breaking, one needs to define a replica correlation func-

tion [107] q, that measures the overlap of two states from two different repli-

cas. In spin glass physics [104] one then computes the probability distribution

P (q). A trivial P (q), i.e a single-peak, unimodal distribution, indicates no

broken replica symmetry. The existence of replica symmetry breaking be-

comes apparent if there is a non-trivial distribution P (q). To test for replica

symmetry breaking, ensembles were deduced with a replica molecular dynam-

ics algorithm having four replicas with the two introduced Hamiltonians, the

backbone only Hamiltonian and the Gō Hamiltonian, for constant weights λ.
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Figure 3.2: All four replicas were labelled one to four. The overlap distribu-
tions between all possible pairs of replicas for the backbone based Hamiltonian
(a) and the funneled Hamiltonian (b) are shown. Also the similarity between
conformations as a function of time for both Hamiltonians are plotted in (c)
and (d).
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The overlap distributions P (qstructure) were computed and plotted in Fig.

3.2. The replica correlation order parameter qstructure is defined as before, but

conformation 1 comes from one replica and conformation 2 comes from a dif-

ferent replica. The overlap distributions for the FGō Hamiltonian in Fig. 3.3b

are fairly sharp and unimodal. There seems to be no replica symmetry break-

ing. Over the time course of the simulations, each replica stays correlated to

another replica at about the same level of qstructure. A plot of qstructure of all

possible replica pairs for each simulation snapshot is shown in Fig. 3.2d. To

assess if the four-replica FGō molecular dynamics simulation with no replica

symmetry breaking still improved the ability to infer the real transition state

ensemble, the overlap distributions PAB(qstructure) were computed. A plot of

the overlap distribution of the deduced ensemble with the real ensemble (figure

not shown) did show the same overlap as seen in the one-replica case, i.e. there

was no improvement in the ability to deduce the transition state ensemble with

multiple replicas in the case of the FGō Hamiltonian.

The four-replica simulations with the backbone only Hamiltonian, on the

other hand, displayed replica symmetry breaking. The P (qstructure) overlap

distributions in Fig. 3.2a exhibit broad distributions with a peak around

qstructure = 0.27 and a broad shoulder at higher qstructure. During the course

of the simulation, replicas become correlated at certain times. For example,

at the beginning of a simulation, the overlap between the replicas we label

1 and 3 is low , but after 3µs the replicas become overlapping for a time of

2µs before the amount of overlap decreases. The system of replicas is strongly

constrained to, on average, match the experimental φ-values with a coupling of

strength λ. At each timestep, a distinct pair of replicas shows distincly larger

overlap with each other than do the remaining replica pairs, which leads to an

important point: the replicas silmultaneously explore different regions of the

conformational phase space, although restricted through the coupling of the

replicas. Analysis of the overlap distribution of the deduced ensemble with

the real ensemble shows that the four replica algorithm performs better than

the one replica algorithm (see ref. [79]) when only backbone connectivity is
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assumed to be a reliable a priori constraint.

3.5 Ensemble Inversion from Experimental Data

and its Errors

To what extent does weigthing of the parameters λi improve the algo-

rithms? The relative contributions of Fphys and Fexp to the total free energy

are controlled with the weight parameters λi. Several choices of λi exist: one

easy choice of λi is simply to set the physical energy terms equal to the con-

straint energy [100], i.e. Fphys = Fexp, which should yield a good approxima-

tion to obtain the “correct” structures. But this is not epistemological correct

or optimal. The optimal weights can be found using different approaches based

on Bayesian probability theory [97, 98, 112] and can be calculated directly with

the free energy functional.
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Figure 3.3: a) Various overlap probability distributions for the two Hamilto-
nians with analytically calculated weight paramters (pink for backbone based
Hamiltonian, light blue for the funneled Hamiltonian). b) Plot of the average
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the analytically calculated weight parameters. (c) and (d) show the average
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duced ensembles (below diagonal) for the two Hamiltonians, backbone based
Hamiltonian in (c) and funneled Hamiltonian in (d).
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The free energy functional method allows us to compute the heterogeneous

set of λi’s. The error in the data dictates the strength of interaction and

hence the confidence in the measurement. The free energy functional (Equa-

tion 3.5) with no cooperativity terms was minimized and solved to obtain the

set of λi’s for the given experimental errors δφexpi . The calculated λi’s varied

in magnitude with few λi-values close to zero and few values extremely high.

We then performed molecular dynamics replica simulations with the two de-

scribed Hamiltonians, Fbb and FGō, with the calculated weights λi. As a first

assessment of the fidelity of the deduced ensembles, the overlap distribution

PAB(qstructure) and the probability distributions PA(qstructure) and PB(qstructure)

were computed and plotted in Fig. 3.2a. For the Fbb Hamiltonian the proba-

bility distribution of overlap for the ensemble deduced with the hetergeneous

set of λ’s (Fig. 3.3a, pink curve) was shifted slightly more towards the real

transition state ensemble (Fig. 3.3a, dark blue curve) than the ensemble de-

duced with a large but constant value of λ’s (Fig. 3.3a, red curve). This result

suggests that the quality and fidelity of the resulting structures in the ensem-

ble deduced with the heterogeneous set of λi’s was improved. This is a key

result because it emphasizes that it is important to know the relative strength

for each constraint to optimally deduce the ensemble with highest fidelity from

the input data. The plot of the average distances < dij >av versus < dij >
real
av

(Fig. 3.3b) in the deduced ensemble resembles the plot in Fig. 3.1b. The prob-

abilty distribution P(∆i) is a Gaussian centered at ∆i = 0.0 with a width

comparable to the width of the distribution P(∆i) obtained for the ensembles

deduced with the constant weight parameters. An ensemble averaged contact

map for beta-carbons (Cβ-Cβ distances that fall within 8Å) of the native con-

tacts formed in the ensemble is shown in Fig. 3.3c. The contact map above

the diagonal represents the contact map found in the gold-standard transition

state ensemble while the contacts shown below the diagonal are those found

in the deduced ensemble. Most of the contacts in the deduced ensemble are

identical to the contacts in the real ensemble. This indicates near perfect

re-creation of the real topology and φ-values.
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The distributions PB(qstructure) and PAB(qstructure) (Fig. 3.3a, light blue

curve) for the ensemble obtained with the FGō Hamiltonian were also com-

puted. The overlap distribution PAB(qstructure) for the ensemble obtained with

the Gō Hamiltonian and the analytically computed λ’s shows much larger over-

lap with the reference probability distribution PA(qstructure) than the distribu-

tion PAB(qstructure) (Fig. 3.3a, green curve) obtained with a high and constant

λ. The free energy profile derived with the functional for constant weights al-

ready showed, that for increased λ the folded regions become stabilized (since

the average q was very high, at least 3
4

of the contacts should be formed). It

is expected then, that the Gō Hamiltonian should mainly sample very folded

conformations close to the native state. The deduced ensemble indeed exhib-

ited very native-like secondary and tertiary structure, which explains, why the

distributions PB(qstructure) and PAB(qstructure) were shifted towards higher q

values. The plot of the average distances < dij >av (Fig. 3.3b) clearly shows

that most contacts in the deduced ensemble are less than 9Å, while in the

reference enesemble distances of up to 16Å are observed. The φ-values of the

deduced ensemble were also higher than the φ-values of the refrence ensemble,

but within error of 22%, an observation that is also manifested in the contact

map (Fig. 3.2d), which shows more folded contacts especially for long range

contacts (more red) in the deduced ensemble than in the reference ensemble.

3.6 Inversion of a multimodal transition state

ensemble

A more challenging but interesting reference transition state ensemble for

inversion is an ensemble for a protein that has multiple folding pathways. Nat-

urally such an ensemble should exhibit a multimodal probability distribution.

We test the inversion algorithms on data derived from a reference ensemble of

the λ-repressor with a bimodal probability distribution [79] (see also Fig. 3.4

blue curve). This reference ensemble of the λ-repressor was obtained with a

Gō like Hamiltonian with added explicit cooperativity. The bimodality stems
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from two structurally distinct transition state ensembles that arise due to two

distinct routes to the folded state. For this reference ensemble single replica

methods have failed to correctly infer the transition state ensemble. We there-

fore present only the results for four replicas.

Figure 3.4: Overlap distributions with the multimodal reference ensemble
(blue). The green and red curves are the overlap probability distributions
of the ensembles deduced with the backbone based Hamiltonian without (red)
and with (green) explicit cooperativity. The overlap probability distribution
obtained with the funneled Hamiltonian are shown in pink (no explicit coop-
erativity) and blue (explicit cooperativity).
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We calculated the various set of λ’s from the free energy functional for

further simulation studies. The overlap probability distributions for the de-

duced ensembles are shown in Fig. 3.4. All overlap probability distributions

are multimodal The probability distribution of the ensembles obtained with

the backbone Hamiltonian never overlaps much with the reference ensemble

distribution even when a resonable level of cooperativity, which is observed in

real proteins, is included in the functional and the simulations. This result is

not surprising since the errors in the measurements are of the order of 40%

and no guiding energy function is present in the algorithm. The algorithm

with the funneled energy terms performed rather well compared to the algo-

rithm with the Fbb Hamiltonian. This result suggests that when the physical

energy function yields an energy landscape similar to the real landscape of

the protein and the constraint terms are properly gauged, structure deduction

with the Bayesian methods can be highly successfull despite the large errors.

The presence and absence of cooperativity only changed to a small extent the

ability to re-create the two transition state ensembles. In the absence of the

cooperative interactions, the structures are slightly shifted towards the more

folded order parameter while in the presence of cooperative interactions the

structures of the transition state ensemble are less similar to each other and

to the real transition state ensemble.

3.7 Conclusions

Energy landscape theory and free energy functional techniques from spin

glass theory provide us useful tools to deduce structures from experimental

data and its errors and to quantify our confidence. We are able to compute

with a multi-replica free energy functional the inter-replica coupling strength

used for structure determination. The magnitude of the experimental errors is

directly related to the importance of each constraint and therefore the theory

provides a measure of the fidelity of reconstruction and the strength of infer-

ence that can be made from each measurement. We infer from the simulations
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to re-create the unimodal transition state ensemble that all algorithms gener-

ally work well, when the inter-replica coupling strengths are correctly gauged

using the analytically functional approach.

However, for a bimodal transition state ensemble with large uncertainty

in the data and two structurally distinct subensembles, ensemble re-creation

can only be successfull, when the energy landscape is reasonably funneled and

the strength of the constraint relative to the energetics of the physical energy

function is properly gauged.



4 Induced Fit, Folding, and

Recognition of the

NF-κB-Nuclear Localization

Signals by IκBα and IκBβ

4.1 Introduction

The import selectivity of nuclear proteins from the cytosol relies on nuclear

localization signals (NLS). These generally are short sequences of 3-20 amino

acid residues, normally rich in lysine and arginine, which bind to nuclear im-

port receptors [27, 28]. Monopartite NLSs contain only a single cluster of

positively charged residues, and bipartite NLSs contain two stretches of ba-

sic residues connected typically by a 10-12 residue linker. The prototypical

monopartite NLS is the simian virus 40 (SV40) large T antigen (TAg) NLS of

sequence PKKKRKV [29]. This NLS sequence is very specific and mutation

of a single residue, K128, leads to loss of binding to the nuclear import fac-

tor resulting in cytoplasmic retention of TAg [30]. A consensus sequence that

represents the diversity of NLSs is K-(K/R)-X-(K/R), where X is any amino

acid [31]. This consensus sequence must be recognized by the nuclear import

receptor.

For the NLS to be active, it needs to be exposed for binding to the surface

62
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of the nuclear protein-import receptor complex. IκB, the inhibitor of NF-κB,

deactivates the NF-κB nuclear localization signal by physically masking it [32,

33]. The interactions of the different NLSs of the NF-κB family members,

homo- or heterodimers made from five subunits, have evolved to achieve very

specific recognition and binding to members of the IκB-family. For example,

IκBα, the most abundant IκB, binds and inhibits NF-κB p65 homodimers but

not p50 homodimers [34]. Part of the reason for this interaction specificity

lies in the recognition of the NF-κB NLS polypeptide. The NLS polypeptides

of p50 and p65 are defined as the NLS-containing carboxy-terminal fragments

with lowest sequence homology within the rel homology domain of the NF-κB

family [35]. The specificity of IκBα for p65 comes partly from the fact that the

p50 NLS does not bind to IκBα with significant affinity [36]. Comparison of the

crystal structures of p50/p65 complexed to IκBα and to DNA show electron

density for the p65 NLS polypeptide when bound to IκBα but not when bound

to DNA [37, 38]. This result suggests that the p65 NLS polypeptide is flexible

in the unbound state and becomes more ordered upon forming a complex with

IκBα [36].

The advantage of the NLS being inherently flexible is that local structure

can be modified in response to different molecular targets. This allows compet-

itive binding to several different targets, affording the necessary non-linearity

of a control circuit [39]. NLSs bound to importin α usually adopt extended

structures [40]. The p65 NLS polypeptide, residues 289-320 of the rel homol-

ogy domain of p65, binds to IκBα in a split helical conformation [38, 41].

Thus, the disordered structure of the NLS polypeptide when NF-κB is free

or bound to DNA allows it to recognize either importin α or the various IκB

isoforms.

In order to probe how the NF-κB NLS polypeptides achieve flexibility and

specificity at the molecular level, we performed simulations to predict struc-

tures using the optimized associative memory Hamiltonian (AMH) method for

the free and IκB-bound NLS polypeptides [76]. We note that the word pre-

dict can lead to misunderstanding, since the crystal structures of IκBα with
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NF-κB(p50/p65) and of IκBβ with NF-κB(p65/p65) are already known and

deposited with the RCSB Protein Data Bank [41, 42]. Nevertheless, we show

here that our energy function, without explicit knowledge of the native struc-

ture, can capture these dominant binding modes for the full length proteins

correctly, and thus predict them, and that the computational analysis allows

us to elucidate how evolution has led to the necessary binding specificity. We

analyze the effects by simulating shorter constructs that give insight into the

individual roles of the binding partners in the binding process. The results

from these simulations show that the free NLS polypeptide is thermodynami-

cally guided to adopt a helix-turn-helix structure with the NLS itself forming

the turn. Simulations of the IκB-bound NLS polypeptides show that the p50

NLS polypeptide does not interact specifically with IκBα, while the p65 NLS

polypeptide is predicted to have several distinct binding modes, with the NF-

κB(p50/p65)-IκBα crystal-structure-like conformation being one of them.

Simulation of the p65 NLS polypeptide interacting with IκBβ reveals two

conformations, as found in the NF-κB(p65/p65)-IκBβ crystal structure. The

simulations therefore make a new prediction; when the structure of NF-κB

(p65/p65) bound to IκBα is determined, both NLS polypeptides will be bound

on opposite faces of the IκBα.

The simulations with IκBα uncover a beautifully clear example of ”induced

fit“, arguing for greater specificity and provide a rationale for nature’s design

scheme for NF-κB NLS polypeptides [43, 44]. The specific basic residues of

the NF-κB NLS both interrupt the helical propensity of the signal and form

crucial contacts with IκBα/β, bringing the helical portions into position to

”cap” the ankyrin repeat domain.
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4.2 Materials and Methods

4.2.1 Protein constructs and sequences

Simulations of the dynamics of several different constructs were performed

using the associative memory hamiltonian (AMH) [76]. These constructs in-

cluded the 30 residue NLS polypeptide of the p65 subunit (residues 291-320,

chain C, PDB 1NFI) of the p65-p50 complex (1nfi [38], by itself, and when

linked to the first three ankyrin repeats (residues 70-156, chain D, PDB 1NFI)

of the ankyrin repeat domain of IκBα via a glycine linker. A truncated p65

fragment containing the NLS linked via an N-terminal glycine linker to the

C terminus of the truncated IκBα fragment was also simulated, as well as

a construct where the NLS polypeptide was replaced by the nucleoplasmin

NLS. The initial configurations of these constructs were all built using the

Biopolymer module of Insight II.

For the first construct, a simple glycine chain connects the C-terminal

Lys320 of the NLS polypeptide to the N-terminal Ser70. The advantage of using

glycine residues is that they are much less sterically hindered than any other

amino acid residue. The length and flexibility of the glycine chain allowed

the NLS polypeptide to bind geometrically at any possible location on the

IκBα protein surface. In later simulations, residues 192-320 of p65 and IκBα

residues 70-156 were connected via a glycine linker connecting residue 156

of the C terminus of IκBα to residue 192 of the N terminus of p65. The

purpose of this construct was to further investigate trap states in the folding

and binding of the NLS polypeptide that might not be available when IκBα

and p65 were arranged in crystal structure-like geometry. The same constructs

with the p65 NLS polypeptide exchanged for the NLS polypeptide of p50 and

for nucleoplasmin (PDB 1EE5) were also simulated.
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4.2.2 Simulated annealing protocols with the associa-

tive memory Hamiltonian

The associative memory hamiltonian (AMH) is an energy function designed

for making ab initio predictions of 3D protein structure from a given amino acid

sequence. The AMH is an optimized energy function used for protein structure

prediction even in the absence of homology information [76]. The terms of the

full energy function used for the simulation contain besides the AMH sequence

dependent interaction, VAM for short-range and medium-range interactions,

and Vcontact for long-range contact interactions, and excluded volume terms

Vev and basic backbone terms that include a potential Vφψ, which provides

a good fit of the backbone torsion angles found in a Ramachandran map,

and hydrogen bonding patterns to assure correct physics and chemistry of

the polypeptide chain. Here, the excluded volume potential is applied to the

carbon and oxygen atoms that approach within 3.5 for (j− i) < 5, and 4.5 for

(j − i) ≥ 5. The chirality potential Vchi biases the peptide chain into the L-

amino acid configuration. Vharmonic contains three quadratic potentials along

with shake constraints for the heavy backbone atoms to provide backbone

rigidity. The total potential used for the AMH molecular dynamics simulations

is given by:

VT = VAM + Vcontact + λφψVφψ + λexVex + λharmonicVharmonic (4.1)

The λ -terms scale the strength of interaction of the individual poten-

tial terms. The functional form of the terms in the potential has been de-

scribed [76]. The AMH potential uses different interactions for pairs sepa-

rated by different numbers of residues in the sequence. The short-range and

medium-range potential applies to residue pairs less than 12 residue apart in

the sequence. These predict formation of local secondary structure such as

helices and turns. Residues that are more than 12 residues apart in the se-

quence interact via contact interactions that contribute to the collapse of the
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protein and form tertiary structures from the shorter units. The equation for

the associative memory term is:

VAM = −
n
∑

µ

N
∑

i<j

γ(Pi, Pj, P
µ
i′ , P

µ
j′Σ(rij − rµi′j′) (4.2)

where µ runs over n memories. The parameters γ are learned by an opti-

mization procedure [76]. The parameters are functions of P, where P represents

the four-letter code designation assigned to each of the 20 naturally occurring

amino acids [17]. The specific amino acids in each category are hydrophilic

(Ala, Gly, Pro, Ser, and Thr), hydrophobic (Cys, Ile, Leu, Met, Phe, Trp,

Tyr, and Val), acidic (Asn, Asp, Gln, and Glu), and basic (Arg, His, and

Lys). The VAM potential encodes these sequence patterns by measuring the

structural similarity to a list of memory proteins. This similarity is expressed

functionally in the Σ function, which is a centered Gaussian that depends on

the difference of distances in the simulated protein structure from those found

in the memory protein. The contributions of the contact term to the total

potential is given by a three-well potential:

Vcontact = −
ε

a

∑

i<j−12

3
∑

k=1

γ(Pi, Pj, k)ck(N)U [rmin(k), rmax(k), rij] (4.3)

These interactions are weighted by γ, depending on spatial distance and

amino acid interaction type. The parameters in the potential are optimized

using the quantitative form of the principle of minimal frustration, to yield the

most funnel-like landscape for folding as possible, while maintaining transfer-

ability from one sequence to another. The details of the parameters of the

potential have been described [76]. U is a contact function that controls the

sharpness of the k = 3 well potential at the potential boundary endpoints

rmin,max(k). The ck(N) terms are found from fitting the number of contacts

in each of the regions as a function of sequence length of the target protein.

The physical principles of energy landscape theory apply to folding and to
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binding processes. Here, the AMH energy function constructed originally for

folding prediction is applied to a two-protein construct in which the binding

partners are fused with a variable glycine linker. The results document that

the AMH predicts the correct crystal structure of binding, and does allow some

possible alternative, thermodynamically plausible, binding modes. The AMH

short-range and medium-range interactions fold the local helices of the NLS

polypeptide correctly, while the long-range potential contact interactions of

the AMH can dock and bind the p65 NLS polypeptide to the surface of IκBα

correctly.

The simulation protocols were as follows: initially, 130 annealing runs of

the NLS/IκBα constructs were performed. An additional 150 annealing runs

with linker lengths of five and 13 glycine residues, were performed to test for

any dependence of the results on linker length. To investigate the traps, 60

additional annealing runs were carried out for all the other constructs. Each

individual annealing run trajectory sampled 280 independent structures. This

resulted in a total of over 100,000 structures available for analysis. In the

annealing runs of the complexes, the NLS polypeptide was initially unfolded

randomly and placed as far away from IκBα as possible. Initial random ve-

locities were assigned to the protein. Temperature is quoted in units of the

native state energy per residue obtained as an average over the memory terms

containing only associative memory terms, which are short-range and medium-

range in sequence, and the contact potential. Defining the scaled quantity ε,

the native state energy of all the memory energy terms including contact terms,

for a protein of N residues as:

ε =

(

ENative
AM+C

4N

)

(4.4)

then a reduced temperature T ∗ can be defined with kBT = T ∗ [17]. All

other energy terms, such as the backbone terms and excluded volume terms,

are scaled to yield physically reasonable interaction strengths. The temper-

ature T ∗, where T ∗ 1 is of the order of the folding temperature, was then
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reduced linearly from T ∗ = 1.7toT ∗ = 0.0, resulting in trajectories of several

hundred µs. This timescale was sufficient for both binding and folding of the

NLS polypeptide to occur. A constraining potential assured that the three

ankyrin repeats of IκBα/β did not change the topology of the backbone Cα

atoms during the molecular dynamics annealing runs. The motivation for this

constraint is based on the experimental fact that ankyrin repeats 2 and 3 of

free IκBα show less hydrogen/deuterium exchange and thus higher protection

factors when compared to the rest of the protein, suggesting an at least par-

tially folded character of this region of the ankyrin repeat domain [46]. The

side-chains of even the constrained part of the protein were free to move and

interact with the flexible binding partner, which allows important interactions

between the side-chains of the binding partners to occur.

4.2.3 Topological comparison

The overall topology of the protein fold and the secondary and tertiary

structure of a protein can be monitored quantitatively by a variety of means.

The RMSD is a standard way to probe the deviation between two structures

but, since it is based on Gaussian statistics, it is best for very close structures.

The fraction of overlapping structured pairs in two different structures is used

as another measure of similarity, which is energetically relevant because the

interactions are dominantly pairwise terms.

A useful, normalized quantity is Q, which is 1 for two identical structures

and 0 for two structures that have no pair distances in common [25]. It is

defined by:

Q =
2

(N − 1)(N − 2)

∑

i<j−1

exp

(

−
(rij − rNij )

2

2σ2
ij

)

(4.5)

Here, the sum is over residue pairs that are separated by at least two residue in

the sequence, with rij being the Cα distance of residues i and j, N is the total

number of residues in the target structure and σij is the Gaussian variance

and is defined as (given in Å) by σij = |i− j|0.15.
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The CE Z-score obtained from a combinatorial extension (CE) algorithm is

a statistical measure of how similar are the topologies and secondary structure

of two proteins; a Z-score of 3.5-4 indicates possible biologically interesting

similarities, naturally occurring proteins with structural Z-score greater than

4.0 are usually part of a single protein family or superfamily, and share the

same overall topology and secondary structure [57].

4.2.4 Structural clustering analysis

The Fitch-Margoliash algorithm is a distance-based bioinformatics algo-

rithm to fit a phylogenetic tree to a distance matrix [21]. The numerous

structures obtained from the annealing runs were clustered using the Fitch

program of the PHYLIP package. The Fitch program is an algorithm that is

designed to create phylogenetic trees based on a distance measure. In order

to analyze the structures obtained in the simulated annealing with the bioin-

formatics software, a distance measure d between two structures A and B was

introduced as d = 1 − Q. Since Q is a normalized measure of the fraction

of overlapping contacts, d is a measure of how dissimilar two structures are,

which is equivalent to a distance measure, if distance is taken in the sense

that similar structures with small d are close and dissimilar structures with

large d are far away. In the calculation of Q, the contacts mediated by glycine

residues were excluded. The clustering was carried out using different choices

of Q. For example Qtotal takes into account all contacts, while Qinterface in-

cludes only the interfacial contacts between the nuclear localization signal and

IκBα. Eastwood et al. point out that flexible fragments cause little change in

the number of native contacts, but give rise to large fluctuations in RMSD [17].

4.2.5 Free energy calculations

Free energy profiles were obtained using the weighted histogram analy-

sis method WHAM, which is a combination of free energy perturbation and

umbrella sampling, and allows accurate and efficient calculation of the free
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energy profile from a given set of simulations. The method was as follows: 17

constant-temperature molecular dynamics simulations were performed with a

polynomial Q biasing potential of fourth order centered on different values of

Q (Q = 0.1, 0.15, 0.2, ... ,0.9) to obtain good phase-space sampling along this

reaction coordinate. During each simulation, 200 samples, Niobs, of Q and

energy E, the backbone and AMH energy, were collected at regularly spaced

time-points. The first 40 samples were discarded to allow for equilibration. A

histogram Ni(E,Q) for all 17 simulations was created, which gave the density

of states n(E,Q) of the system [17]:

n(E,Q) =
∑

i

wi(E,Q)
Ni(E,Q)

Nobs
i

exp βiE + βiV Zi(βi) (4.6)

with i being the index of simulation. The partition function is given by:

Zi =
∑

E,Q

n(E,Q) exp−βiE − βiV (4.7)

This allowed for self-consistent determination of the density of states n(E,Q)

to within a multiplicative constant and, hence, the free energy was obtained

to within a constant as:

F (Q, T ) = −kBT log

(

∑

E,Q

n(E,Q) exp−
E

kBT

)

(4.8)

The free energy function thus obtained is now a function of the desired order

parameter Q and temperature T. Given a temperature, the free energy profile

allows the identification of thermodynamically distinct states of the protein,

such as the unfolded state ensemble.

4.2.6 B-factor calculations

The B-factor can be related to the mean displacement of a structure ob-

tained in molecular dynamics simulations by the Debye-Waller equation B =
8
3
π2〈R2〉 where 〈R2〉 = 〈(Ri − R0)〉 is the mean fluctuation in distance of the

backbone atoms of structures sampled with the AMH relative to the refined

crystal structure R0.
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4.2.7 Electron density maps

Reflection data of the PDB file 1OY3 was downloaded from the Protein

Data Bank and converted into 2Fo− Fc electron density maps with the pro-

gram CNS [58]. Electron maps were drawn with the PyMOL software package.

4.3 Results

4.3.1 Validation and benchmarking of the AMH method

This study of the IκB-NF-κB system aims to elucidate the folding and

binding of a 30 residue long helical polypeptide, the NLS polypeptide, which

becomes structured in the vicinity of its binding partner IκBα. In general,

predicting folding and binding structures is a challenging problem when no

experimental data are available. Here, we used molecular dynamics simula-

tions with AMH as the energy function for identifying the binding interface,

while folding the NLS [76]. This search problem is much simpler than total

ab initio prediction, since the conformation of the binding partner, IκBα, is

kept native-like but is allowed to fluctuate around the native basin with ther-

mal energy kBT. The current study is then reduced to predicting the folding

of the NLS onto a fixed protein surface. This constrained search problem

is much easier than predicting folding and binding of two large proteins of

unknown structure entirely from scratch. The inter and intra-residue interac-

tions between the NLS and the binding partner IκBα are physically equivalent.

Many meaningful protein dimer studies, such as Go-model studies, assign the

same contact energies to inter and intra-residue contacts [45]. The AMH ap-

proximates a physically and chemically correct energy function and should, in

principle, be appropriate to describe the complete folding and binding process

of this simplified problem [76]. Water effects, which are important in protein

binding, are only implicitly incorporated in the AMH. The NLS/IκBα binding

interface, which has mostly hydrophobic native contacts between the NLS and
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IκBα was found to be adequately described by AMH.

Several different binding and folding scenarios were simulated in the present

work. In the first scenario, we present the folding of the NLS polypeptide onto

the IκBα ankyrin repeat. Hydrogen/deuterium exchange experiments per-

formed in the Komives laboratory show that the first three ankyrin repeats

are protected and hence folded stably [46]. It has been established experimen-

tally that the NLS polypeptide binds to these ankyrin repeats [47]. Here, we

show that the present computation can reproduce the crystal structure of the

NLS bound to IκBα when the two binding partners are connected by a glycine

linker. This is not an unreasonable construct to study, as biology itself has

these two parts connected by a glycine linker in the NF-κB precursor protein.

We have varied the length of the glycine linker to confirm that the results are

independent of linker length.

To understand the reliability of this approach, we studied whether we could

successfully identify binding modes of comparable fragments in other systems.

First, we constructed a shortened endonuclease dimer (PDB code 1m0i), where

the two dimers were connected by a glycine linker. Eighty AMH annealing runs

of the endonuclease with 75% of the protein constrained to be native-like re-

sulted in only 17 structures misfolding, and all of the remaining structures rep-

resenting the correct binding site after clustering using the Fitch-Margoliash

method to generate a phylogenetic tree from the distance map, where distance

is a measure of similarity (Figure 4.1(a)). The binding interface, as well as the

fold of the simulated structures, resembles the crystal structure conformation

found in the PDB. The AMH overfolds the endonuclear helix (green) and aligns

it with a slight tilt when compared to the crystal structure (blue). The inter-

face between the two endonucleases is predicted correctly with high overlap

of native inter-residue contacts. The combinatorial extension (CE) algorithm

calculates pairwise structure alignments. The CE Z-score provides a measure

of statistical significance of the alignment, and structures with a Z-score of

3.5 or higher are generally judged to have a similar fold comparable to that

obtained in a typical homology model [48]. The Z-score between individual
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structures obtained from the molecular dynamics simulations are in the range

of 3.3-3.7, again showing a great deal of similarity in overall topology and

conservation of the helical secondary structural elements. The average root-

mean-square deviations (RMSDs) from the crystal structure of the dimer were

2.3Å for the fragment only and 3.2Å the fragment and the interface contact

residues, respectively.

Figure 4.1: (a) Overlaid structures of endonuclease from simulation and ex-
periment. Here, the restrained part is shown in grey, the crystal structure is
shown in blue and the structures obtained with the AMH are shown in green.
(b) Overlay of myoglobin structures from simulation and experiment. The
coloring is the same as in (a).
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Similarly, structures predicted for the folding of the N-terminal helix of

30 residues of myoglobin (PDB code 104m) when the rest of the molecule is

constrained also showed profound topological agreement (Figure 4.1). In this

case, first the helix was completely unfolded and allowed to dock anywhere on

the protein surface of myoglobin and then 80 annealing runs were performed

and the final structures were clustered. All structures obtained in these simu-

lations docked at the correct binding site. The CE Z-score for these structures

were in the range of 3.8-4.3. The RMSD from the crystal structure was 0.9Å

for the fragment and 1.5Å for the fragment and the interface residues. These

two test cases validate the present AMH approach for predicting binding con-

formations of modestly sized fragments like the NLS to pre-formed protein

structures.

4.3.2 Predicted structure of the p50, p65, and nucleo-

plasmin NLS polypeptides

In order to obtain an overview of the possible structures that the free

NLSs could assume when their binding partners are not present, we predicted

the conformations of the free polypeptides using AMH. This study was moti-

vated by the fact that crystallography shows the NLS polypeptide is disordered

when p65 is bound to DNA with no interpretable electron density of the NLS

polypeptide residues.11 Annealing runs carried out on the p65 NLS polypep-

tide (PDTDDRHRIEEKRKRTYETFKSIMK) alone indicated one family of

structures with two helices that formed close contacts, connected by a loop

(Figure 4.2). The first proline initiates the first helix of about five residues;

Asp291-Arg295. The NLS (Lys301ArgLysArg304) was found in a bend and

turn region. A second helix usually spanned from Glu307 to Met313. The he-

lices formed close contacts with a separation of about 7Å, with a predicted

end-to-end-distance of about 5Å . The Q-score of 0.43, which measures the

similarity of the annealed structures relative to each other, also confirmed

that the structures were similar to each other (Figure 4.2(a)). The annealed
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structures showed somewhat different orientations of the non-helical termini

but, excluding the last two residues each of the N and C termini did result in

Q-scores higher than 0.5. The Z-score between individual structures obtained

from the molecular dynamics simulations are in the range of 3.3-3.7, again

showing a great deal of similarity in overall topology. The secondary struc-

ture of the helical fragments was conserved. The average RMSDs for the first

helix (residues 294-302) and the second helix (residues 305-314) from the NLS

polypeptide in the crystal structure, were 0.87Å and 0.64Å, respectively.

Figure 4.2: (a) Overlaid structures obtained in annealing runs to predict the
structure of the p65 NLS polypeptide by itself. Two helices are connected by
a breaking or kink region that contains the basic NLS residues. The structures
are compact rather than elongated. (b) Structures obtained for the p50 NLS
sequence folded uniquely into one straight α-helix. (c) and (d) The nucleo-
plasmin sequence showed frustrated folding, resulting in many structures with
different folds and secondary structure content.
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Structures for the p50 NLS (PLYYPEIKDKEEVQRKRQKLMPNFSDS-

FGGGSGAG) and the nucleoplasmin NLS (AVKRPAATKKAGQAKKKKL)

that were obtained in annealing runs following the same protocol as for the

p65 NLS are also shown in Figure 4.2. All annealed structures of the p50

NLS were structurally equivalent to each other. Structural order parameters

such as the CE Z-score indicate that all the predicted structures of the p50

NLS share the same fold, a long α-helix. This is interesting, because the

sequence of the p50 NLS, although different from the p65 NLS, also has a

basic central region, but in this case a break in the middle was not observed.

The annealing runs suggested that the energy landscape of folding for the nu-

cleoplasmin NLS sequence is more frustrated. The resulting structures vary

tremendously in topology, some showing all-α secondary structures as well as

α− β secondary structures. The simulations showing that the nucleoplasmin

NLS adopts an extended structure agree with experiments, where the nucle-

oplasmin NLS binds to the import factor importin in an extended structure

with hydrogen bonding interactions [40].

4.3.3 Folding of the IκBα-NLS construct

Multiple (130) annealing runs were performed using the AMH algorithm to

obtain structures of the IκBα-NLS construct linked by nine glycine residues.

The linker assures proximity of the NLS to IκBα in the simulation. The use of

a glycine linker is biologically justified for the NF-κB/IκB system, because the

precursor p105 in fact contains NF-κB and IκB linked by a glycine-rich linker

region.24 Structures with various degrees of similarity to the crystal struc-

ture were obtained from these simulations. The Fitch-Margoliash method was

used to cluster these structures according to their similarity as measured in

distance, d, and a phylogenetic tree was created from the distance map. This

phylogenetic tree showed four main clusters of structures with low relative d,

and hence significant similarity. The high relative Q-scores within each clus-

ter also indicate similar global folds that represent distinct structural families

or specific binding modes. The center of each branch was chosen as the rep-
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resentative structure for that individual cluster (Figure 4.3). Cluster 4, the

dominant cluster with a third of the structures, is composed of those confor-

mations that most resembled the X-ray crystal structure based on the Q-score

that included contacts of the NLS polypeptide along with contributions from

the interface of the NLS polypeptide with IκBα. Clusters 1, 2 and 3 all had

lower Q-scores of about 0.25 relative to the crystal structure.

Figure 4.3: A phylogenetic tree was created for the structures obtained in the
annealing runs of the IκBαp65 NLS construct using the Fitch-Margoliash al-
gorithm. The tree showed clustering in (a)-(d) four main groups, which were
analyzed as possible binding modes. The inhibitor IκBαis colored yellow and
the p65 NLS polypeptide is colored red. For comparison, the crystal structure
conformation is shown in blue. (a) and (b) Clusters 1 and 2 correspond to
overly compact structures that folded and then docked onto the protein sur-
face of IκBα. (c) The cluster 3 (C) structures form a basin of “symmetric”
structures, in which the NLS polypeptide docked at an alternative, biologi-
cally possible, protein surface of the inhibitor. (d) The cluster 4 structures are
structurally close to those found in the X-ray crystal structure [38].
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Table 4.1: Summary of RMSD for simulated constructs

Proteins Structure NLS Interface NLS+Interface

p65NLS+IκBα Basin 1 4.9 5.9 6.4
p65NLS+IκBα Basin 2 5.9 6.6 7.2
p65NLS+IκBα Basin 3 3.4 6.7 6.2
p65NLS+IκBα Basin 4 1.7 2.1 2.1

p65NLS+IκBα+p65 remainder Basin 1 2.2 2.4 2.8
p65NLS+IκBα+p65 remainder Basin 2 3.5 18.3 22.4

p65NLS+IκBβ Basin 1 1.7 1.2 2.1
p65NLS+IκBβ Basin 2 4.6 5.2 5.4



80

Cluster 4 had a Q-score of 0.42 of the basin center with respect to the crys-

tal structure (Figure 4.3(d)). The cluster had an overall RMSD of 0.33(±0.05)Å

showing very high overlap between structures. The first helix (residues 294-

302) and the second helix (residues 305-314), of the clustered structures had

even lower RMSDs, 0.19(±0.14)Å and 0.13(±0.03)Å, respectively. Further,

the CE Z-scores of the individual members of the cluster relative to the clus-

ter center were about 5, indicating essentially identical folds and justifying the

use of the cluster center as representing the structure of the cluster. Compar-

ison of the structure from the center of basin 4 relative to the X-ray crystal

structure gave an overall RMSD of the NLS residues along with the interface

residues (see Materials and Methods) of 3.1Å (see also Table 1). The secondary

structure elements were native-like, with an RMSD of 0.57Å for the first helix

and 0.34Å for the second helix. Similar native-like features of the structures

were obvious. These included the observation that the second helix caps the

top of IκBα and the first helix binds appropriately to the hydrophobic fingers

of IκBα. The RMSDs from the crystal structure for the structures in basin 4

are smaller than the fluctuations inferred from the measured B-factors (PDB

file 1NFI) for residues 293-302. Thus, the structures predicted in this basin

are consistent with observation. In the simulations, the second helix packed

somewhat more closely to the hydrophobic top of IκBα than would appear

to be the case in the crystal structure (Figure 4.3(d)). Clusters 1-3 had the

same Q-score to the native structure, but were distinct clusters having less

similarity to each other. When only atoms from the NLS were used to cal-

culate the RMSD from the crystal structure, the results for clusters 1-3 were

4.9Å, 5.9Å and 3.4Å, respectively. The RMSDs of the two helical fragments

of basin 3 structures from the corresponding crystal structure fragments were

1.1Å and 2.2Å, respectively. Thus, the basin 3 NLS had a fold similar to

that of the crystal structure; however, when the interface residues were in-

cluded in the calculation, the RMSD was 7.5Å, indicating clearly that basin

3 structures (Figure 4.3(c)) bind differently from the mode observed in the

crystal structure. The NLS still binds to the IκBα β-hairpin fingers, and also

still caps the hydrophobic top; however, the NLS polypeptide binds on the
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other side of the β-hairpins of the ankyrin repeat domain than was seen in

the crystal structure. Clusters 1 and 2 constituted about 55% of the observed

structures. Neither of these clusters was as homogeneous as cluster 4 in terms

of CE Z-score; however, the secondary structure of the helical fragments was

preserved. The structures belonging to these clusters exhibited no capping

of IκBα by the NLS polypeptide (Figure 4.3(a) and (b)). In the annealing

simulations, structures arriving at these binding modes appeared to fold first

to an overly compact structure resembling the folding found for the unbound

NLS polypeptide, and this configuration later docked onto the protein surface

of IκBα.

4.3.4 Important contacts between the NLS polypeptide

and IκBα

Contact maps of the four clusters were constructed to identify the most

important residues involved in the NLS recognition of IκBα (Table 2). As

expected, the cluster 4 structures formed the largest number of native contacts

between IκBα and the NLS polypeptide, while clusters 1 and 2 had only a few

residues with high native contact probability, and the structures in cluster 3

showed no native contact formed at all. Clusters 1 and 2 contained mainly

non-native contacts formed between helix 2 (residues 305-314), and IκBα. In

these binding modes, many contacts were observed between helix 2 and IκBα,

whereas helix 1 and the NLS made no contacts with IκBα at all, except for

the native contact between Ile298 of p65 and Ile120 of IκBα.
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Table 4.2: Important contacts for basins 1-4

NLS IκBα NLS IκBα

Basin 1 Ile298 Ile120 Phe309 Ile83
Phe309 Ile117
Phe309 Leu120
Met313 His79
Met313 Leu80
Met313 Ile83

Basin 2 Ile298 Ile120 Phe309 Ile83
Met313 Leu80
Met313 Ile83

Basin 3 Tyr306 Phe87
Phe309 Phe77

Basin 4 Asp294 Ile120 Glu299 His84
Arg295 Ile120 Lys301 Ile112
Arg295 Thr121 Arg302 Leu80
Ile298 Ile83 Tyr306 Leu80
Ile298 Leu117 Phe309 Phe77
Ile298 Ile120 Phe309 Phe103
Arg302 Ile83 Ile312 Phe103
Phe309 Leu80 Met313 Leu78

Met313 Val93
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Highly probable non-native contacts involved interactions of the very hy-

drophobic residues Phe309 and Met313 with the also very hydrophobic residues

Leu80 and Ile83 found in the first ankyrin repeat, and with Leu117 and Ile120

in the second ankyrin repeat. Cluster 3 contact maps showed that Phe77

in the first ankyrin repeat very often interacts strongly with residues Tyr306

and Phe309, even though these interactions are not native contacts. Cluster 4

structures showed a high probability of forming native contacts only in helix 1.

The strong native contacts of helix 1 residues Ile298 and Arg302 were comple-

mented by non-native contacts of the specific NLS residues, Lys301 to Gln112

and Arg302 to Leu80. Additionally, Glu299 formed a non-native contact with

His84 with high probability. An important residue in helix 2 is Phe309, which

forms a native contact to Leu80 as well as non-native contacts to Phe77 and

Ile94, while Met313 was found to form non-native contacts to Leu78 and Val93.

On average, the NLS formed about 43% of its native interfacial contacts with

IκBα. The interfacial RMSD from the crystal structure for the residue-residue

pairs of the cluster 4 structures that have backbone heavy-atoms within 5Å of

each other, are in the range of 3-4Å. This would be considered an acceptable

result using the CAPRI criterion for identifying binding surfaces [50].

4.3.5 Folding of the IκBα-NLS-p65 construct

In the constructs studied so far, the NLS polypeptide could associate freely

with IκBα. Several possible binding modes for the free NLS polypeptide were

found. One of these is the native binding mode found in the crystal structure.

On inspection, the alternative binding modes appeared sterically incompatible

with the presence of the remainder of the p65 molecule. To confirm this

explicitly, we simulated constructs that contain the remaining p65 residues

and limit the geometrical space accessible to IκBα. The simulation runs with

the IκBα-NLS-p65 construct, in which the relative geometry of p65 and IκBα

was constrained to be like that in the crystal structure, exhibited two clusters

of structures. The dominant cluster (65% of structures) resembles the binding

mode found in the crystal structure (Figure 4.4) and it appeared that the
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p65 helped the N-terminal helix of the NLS find its proper location. Besides

yielding the X-ray crystal structure-like conformation, the simulations yielded

the second cluster (35% of structures) of conformations in which the fragment

of the p65 NLS binds to the main body of the p65 molecule (Figure 4.4).

Thus, when the p65 dimerization domain is present, structures with an overly

compact NLS polypeptide are no longer observed, although these were found in

the simulations of the smaller construct. The structures of the self-interacting

cluster had an RMSD from the crystal structure of 3.5Å for the NLS only,

showing that the NLS adopted a similar extended structure. However, when

the interface residues were included, the RMSD from the crystal structure was

22.4Å stemming from the fact that the NLS is bound to p65, not to IκBα. No

basin 1, 2, or 3 structures was observed, presumably because the remainder

of the p65 molecule geometrically limited the binding modes to either those

resembling the crystal structure, or a self-interacting mode.

4.3.6 IκBα interactions with the nucleoplasmin NLS

To investigate whether the binding of the NLS polypeptide to IκBα is

specific or whether other NLSs could function similarly, simulations of the

p65-IκBα construct were performed in which the p65 NLS polypeptide was

replaced by the NLS polypeptide of nucleoplasmin, a molecular chaperone

whose major function is involved in the assembly of nucleosomes.
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Figure 4.4: Results from simulation of IκBα-NLS-p65 show geometrical restric-
tion of the possible binding modes. The dimerization domain of the NF-κB
p65 (grey) and the IκBα(yellow), were kept fixed in the simulations. The
structure of the NLS polypeptide from the crystal structure of the complex of
IκBα with NF-κB is colored blue. The main cluster of structures obtained in
molecular dynamics simulations with the AMH as energy function reproduced
the native structure well (red). The light-grey region in the NLS polypeptide
indicates the basic NLS residues, which form a break between the two helices.
Some structures were formed in which the NLS polypeptide binds to the p65
dimerization domain. The center of this cluster is colored green.
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The structure of the nucleoplasmin NLS polypeptide bound to importin

α has been solved [40]. It is of comparable size to the p65 NLS polypeptide

but the level of sequence identity is only 6.2%. The AMH simulations of the

nucleoplasmin NLS tethered to IκBα and p65 yielded structures in which the

NLS polypeptide did not interact with either IκBα or with p65 (data not

shown). Thus, AMH simulations suggest that the basic stretch of residues,

which has traditionally been the minimal description of the NLS, is insufficient

for binding in the IκB/NF-αB system.

4.3.7 Specific effects of the basic NLS residues on IκBα

recognition

The basic NLS residues (301-304) were seen to break the helical secondary

structure of the p65 NLS in all simulations. Since these residues are required

for importin α binding, we sought to define their role in binding to IκBα.

Simulated annealing runs were performed on five different IκBα-p65-NLS con-

structs in which there were alanine substitutions in the NLS. Single mutants;

K301A, R302A, K303A and R304A and the quadruple mutant with all four ala-

nine mutations in the NLS were studied. The structures obtained in simulated

annealing runs of the K301A and R302A single mutants retained almost wild

type amounts (55%) of helical secondary structure. The K303A and R304A

mutants showed increased helical contents of up to 77% and formation of one

continuous helix with a high binding propensity towards the dimerization do-

main of p65. The K301A mutant formed mainly long helices in the simulated

annealing runs, but the R302A mutant showed a kinked region similar to the

crystal structure. None of the mutants produced a structure with native-like

topology, although some structures did bind to IκBα.
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Figure 4.5: Alanine mutations in the p65 NLS polypeptide were used to probe
the role of individual residues in folding and binding of the p65 NLS polypep-
tide to IκBα. The contact map of the structures obtained in the simulation
runs (shown below diagonal) of the Lys302Ala mutant are shown and can be
compared to the contact map of the crystal structure (shown above diago-
nal). Contact probabilities are colored red, indicating a contact that is always
formed in the ensemble, while dark blue means that the contact is almost
never formed. The complete contact map of the NLS, (a) the p50 remainder
and the inhibitor as well as (b) the NLS only are shown.
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The contact map analysis shows that mutation of R302 to Ala disrupts

important native contacts of the first helix to IκBα, perhaps indicating that

contacts between the first helix and IκBα are essential for correct complex

formation. (Figure 4.5). To test the idea that the break in the middle of

the helix is important, the R304A mutant was made as a peptide spanning

residues 289-321 of NF-κB (p65) as well as in the full-length p65. Binding

of the peptide was tested by isothermal titration calorimetry and binding of

the full-length protein by Biacore. In both experiments, the R304A mutation

decreased the binding affinity by twofold and, interestingly, the DCp was much

lower for the R304A mutant than for wild type perhaps indicating a change

in structure formation during binding (S. Bergqvist, unpublished data).

4.3.8 Binding of the p65 NLS polypeptide to IκBβ

Biochemically, IκBα and IκBβ share the same function and are able to

replace each other in vivo [51]. The crystal structure of IκBβ bound to NF-

κB(p65/p65) shows a similar binding site provided by IκBβ as compared to

the binding site provided by IκBα in the complex with NF-κB(p50/p65). A

second binding site is observed also in the crystal structure of IκBβ bound to

NF-κB(p65/p65) with weaker electron density [52].
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Figure 4.6: The phylogenetic tree was obtained using the Fitch-Margoliash
distance-based algorithm for structures obtained in AMH simulations of the
p65 NLS polypeptide bound to IκBβ. The tree shows clustering into one main
group and one less prevalent alternative binding mode. (a) The dominant
cluster of structures was obtained for the interaction between the p65 NLS
polypeptide (red) and IκBβ(yellow). For comparison, the structure of the p65
NLS polypeptide structure from the NF-κB(p65/p65) IκBβcomplex is shown
(blue) [52]. (b) Electron density map (blue) of the NLS polypeptide for 2F0−Fc
density using model-derived phases for 1oy3 (PDB). IκBβ is shown in cartoon
style in yellow, while the p65 NLS polypeptides obtained in AMH simulations
are shown as red sticks. (c) The alternative symmetric binding site of the NLS
polypeptide was sampled and compared reasonably well to (d) the existing
electron density derived from the crystal structure.
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AMH simulations of the 30 residue p65 NLS polypeptide interacting with

IκBβ yielded only one main basin of structures, in contrast to the results for

IκBα. In this case, it was not necessary to include the rest of the dimerization

domain of p65. The structures contained nearly all of the contacts found in

the crystal structure (Figure 4.6) [52]. In 90% of the cases, the p65 NLS

polypeptide assumes the crystal structure-like conformation corresponding to

the strong electron density. The RMSD of the cluster center from the crystal

structure considering the NLS residues alone was 1.7Å . When the interface

residues were also included, the RMSD was 2.1Å. A few (8%) of the cases

sampled alternative structures comparable to the cluster 3 structures seen in

the simulations of the p65 NLS with IκBα and similar to the minor electron

density in the crystal structure. The RMSD from the crystal structure model

of this weaker binding site to the cluster center for this alternative binding

mode was 4.6Å for the NLS only, and 5.4Å for the NLS and interface residues

(Figure 4.6(d)). For comparison, the RMSD from the alternative binding site

of the basin 3 structure was 4.6Å and 6.1Å, respectively, for NLS only and

NLS with interface residues. The structure of this alternative binding site was

very similar to the cluster 3 binding mode, yielding a 1.2Å RMSD from each

other, and 2.8Å when comparing the deviation of the NLS and the interface

residues.

Since NF-κB dimers can be homo- or heterodimers composed of both p65

and p50, we performed AMH simulations of the folding and binding of the p50

NLS polypeptide to IκBα. Simulations of the p50 NLS tethered to just IkBa

gave two main clusters of structures; 32% of the structures were similar to

basin 4 in the p65 NLS simulations, and the remainder were similar to basin 2

structures. When the p50 dimerization domain was included to geometrically

limit the search space of the p50 NLS, some 75% of these failed to adopt stable

strong interactions between the p50 NLS polypeptide and IκBα whereas the

presumed ”native“ structure was found in the remaining 25% of the struc-

tures. Simulations of the p50 NLS polypeptide interacting with IκBβ gave no

preferred structures, with less than 25% of the structures falling into any one
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basin. The results suggest that the p50 NLS polypeptide can bind to IκBα

with a structure similar to that observed for the p65 NLS bound to IκBα but

the energy landscape is not as funneled as for the p65 NLS.

4.4 Discussion

4.4.1 The p65 NLS polypeptide has a high propensity

to form helical structure

Folding simulations performed with the AMH on the p65 NLS polypeptide

by itself showed that the p65 NLS polypeptide has a significant propensity to

fold into a helix. The p50 NLS polypeptide also had helical propensity but did

not contain the kink required for correct binding to IκBα/β. The structural

role of the KRKR NLS sequence in p65 must break up this helical structure into

two helices by forming a kink region. The p50 NLS contains only three basic

residues flanked by Gln, and this slightly different sequence does not appear to

be sufficient to break the helical structure. Binding of the polypeptide to the

inhibitor requires the polypeptide to take on a fold of two helices connected by

a break region. The two helices of the NLS polypeptide each bind to IκB, where

the first helix forms stable contacts with the ankyrin repeats, while the second

helix caps the hydrophobic top of the inhibitor. Our simulations show one role

of the NLS sequence is to provide a break in the helical secondary structure for

its interaction with IκB and help to explain the weaker binding affinity of the

p50 NLS polypeptide [36]. The nucleoplasmin NLS polypeptide did not form

one unique structure in the AMH simulations, and showed mostly extended

structure consistent with the extended structure it adopts when bound to

importins [40]. These results beg the question of whether the NF-κB NLS

polypeptides bind to importins in an extended structure and therefore must

be unraveled for binding, or whether they bind in a helical conformation.
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4.4.2 Use of AMH to predict binding conformations

An important aspect of the present computer simulation study of binding

and folding is that reasonable predictions of the correct binding/docking site

rely on the calibration of the energy function as reliable by examining other

structurally well defined binding situations. Blind trials performed in CASP

have already allowed us to have an unbiased evaluation of the of the ab ini-

tio AMH energy function. These comparisons have confirmed the predictive

power of the AMH to obtain the folded state of largely helical proteins up to

not, vert, similar180 residues with high fidelity (M.C.P. and P.G.W., unpub-

lished results). By constraining the problem using glycine linkers and keeping

the binding partner fixed, we show here that this same energy function has

predictive power for simple protein-protein interactions that involve folding as

well as binding of surface helices.

Although the AMH energy function is not generally useful for inferring

binding propensities, it is interesting to note that the folding of NF-κB NLS

polypeptides upon binding to IκBβ could be compared directly to electron

density maps for the IκBβ complex with NF-κB(p65/p65) (PDB 1oy3) in

which two binding sites of the p65 NLS polypeptide are observed, one with

strong electron density (Figure 4.6(a) and (b)) and a second with weak elec-

tron density (Figure 4.6(c) and (d)). The simulations are consistent with the

electron density results, with some 90% of the structures binding to the site

with the stronger electron density. while the rest of the predicted structures

closely resemble the binding site with weaker electron density.

4.4.3 Prediction of a second p65 NLS polypeptide bind-

ing site on IκBα

Ernst et al. showed that one molecule of IκBα binds to one NF-κB dimer

containing two NLS polypeptides [53]. Our simulations of the p65 NLS binding

to IκBα find a major cluster that corresponds to the conformation found in the
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IκBα-NF-κB(p50/p65) crystal structure and a second symmetric binding site

similar to that seen in the binding to IκBβ that was observed crystallographi-

cally. The folding of NF-κB NLS polypeptides upon binding to IκBβ could be

compared directly to the crystal structure of the IκBβ-NF-κB(p65/p65) ho-

modimer [52]. The p65 NLS polypeptide binds strongly to IκBβ in the crystal

structure-like conformation (Figure 4.6). Comparison of electron density maps

for the IκBβ-NF-κB(p65/p65) (1oy3.pdb) with the structures obtained in our

simulations demonstrate the power of the AMH to predict the location of both

the strong (Figure 4.6(a) and (b)) and weak (Figure 4.6(c) and (d)) binding

sites. The simulations show that the landscape of binding of the p65 polypep-

tide to IκBβ is strongly funneled, with some 90% of the structures binding to

the site with the stronger electron density.

Thus, a new prediction made from this work is that when the X-ray crystal

structure of IκBα with NF-κB(p65/p65) is completed, there will be two NLS

binding sites observed on IκBα as were observed on IκBβ. This prediction

awaits confirmation when the crystal structure is determined, but is consistent

with the speculation that IκBα might mask both NLS polypeptides, resulting

in more complete cytoplasmic localization of the p65/p65 homodimer [54].

In contrast to the p65 NLS polypeptide, the p50 NLS polypeptide inter-

action energy landscape was less funneled. These results are consistent with

the observation that the p50 NLS polypeptide does not contribute to the

binding energy of the NF-κB(p50/p65)/IκBα complex [36], and that the p50

NLS remains unbound and is responsible for the NLS-dependent import into

the nucleus, resulting in continuous shuttling of the NF-κB(p50/p65)/IκBα

complex [42, 54, 55]. In some simulations, the p50 NLS polypeptide inter-

acted with the ”native-like“ binding site on IκBα, and this result is consistent

with the report that the p50 NLS is required for NF-κB(p50/p50) binding

to IκBα [56]. This prediction may help resolve a controversy in the NF-κB

field because previous biochemical data have given the impression that IκBα

and IκBβ are distinct largely because of how many NLS sequences they could

sequester. In contrast, experiments in transgenic mice indicated that the two
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proteins were functionally equivalent [51]. Our results predict that they are

functionally equivalent, even in the number of NLS sequences that they se-

quester, and that the biochemistry was misleading due to an incomplete set

of dimers tested.

4.4.4 The p65 NLS polypeptide finds its correct binding

site on IκBα/β in the absence of the rest of the

p65 molecule

We have not examined explicitly how IκB and DNA compete for binding

to NF-κB. The simulations suggest that the NF-κB subunit NLS polypeptide,

independent of the rest of the NF-κB molecule, is capable of spontaneously

undergoing a disordered to ordered transition upon binding to the inhibitor.

The simulations further predict that it is the p65 subunit NLS polypeptide

that conveys the binding specificity observed between the IκBα and NF-κB

subunits. It is possible that even when the NF-κB is bound to DNA, the

unstructured p65 NLS polypeptide may interact with IκBα, ultimately facili-

tating the disassembly of the enhanceosome complex. The IκB/NF-κB system

represents a beautiful example of how induced fit is used by Nature to achieve

control of binding specificity through structural diversity.
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5 Consequences of frustration

for the folding mechanism of the

IM7 protein

5.1 Introduction

For proteins to fold to a unique state, they have evolved to form highly fa-

vorable, stabilizing native interactions. This statement suggests that proteins

may have a funneled energy landscape [3]. However, real proteins should dis-

play some landscape ruggedness owing to the possible existence of favorable,

non-native interactions during the folding process. If the landscape were too

rugged, numerous long-lived intermediate states that energetically compete

with the native state would appear. The rarity of such intermediates having

significant non-native structure suggests that proteins largely conform to the

principle of minimal frustration [1].

When a populated kinetic folding intermediate is observed, it is generally

the case that the meta-stable thermodynamic state is not caused by ener-

getic frustration but by a nonuniform compensation of the entropy and energy

changes upon forming contacts. The existence of such productive folding in-

termediates can be said to be topology driven and can often be predicted from

the native structure alone using a perfectly funneled landscape.

In contrast to this simple description, IM7, an 86 residues protein, is known

96
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to fold through an on-pathway intermediate state that possesses a non native

packing of three of the four helices around a specific hydrophobic core [121].

In this paper we explore the relationship between non-native interactions, the

presence of the stable intermediate and the residual frustration found in the

native structure. Our analysis suggests that this seeming exception to the

pattern expected for a minimally frustrated protein is in fact consistent with

the ideas of energy landscape theory.

We first demonstrate that the intermediate of IM7 is not a direct con-

sequence of the topology of IM7 by simulating the folding with a sequence

independent energy function which yields a perfectly funneld landscape (a

so-called Gō Hamiltonian). Not only was no intermediate observed with this

Hamiltonian, but none was found when contact energetic heterogeneity or non-

additivity through many-body interactions were included. These more sophis-

ticated Hamiltonians do not predict the existence of a stable intermediate.

These ”negative” results suggest that the experimentally observed intermedi-

ate is indeed a consequence of frustration rather than a consequence of the

topology of IM7.

Can we establish how frustration changes the formation of the IM7 inter-

mediate? To study this, we performed simulations with a transferable Hamil-

tonian of the type used to predict protein structure de novo. This relatively

realistic Hamiltonian not only predicts the existence of an intermediate ensem-

ble which is stabilized by non-native interactions, but also gives a predicted

structure of the intermediate that compares well to experiments by Capaldi et

al. [121], who have infered the existence of a three helix core of helix I, II and

IV which while having numerous native-like interactions is also stabilized by

some non-native interactions.

Equipped with an energy function that predicts the experimentally ob-

served intermediate we can examine more closely the role frustration plays in

the folding mechanism. Based on the same energy function we use the algo-

rithm of Ferreiro et al. to compute local frustration for all sites in the native

structure and the intermediates and predict mutants, that should reduce the
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level of frustration so as to make the landscape less rugged and more fun-

neled. We contrast two different re-design schemes, one based on the native

state structure that alleviates the frustration in that structure and another

re-design that attempts to specifically destabilize the intermediate states. The

predicted mutants were simulated with the AMW Hamiltonian. The results

show that the intermediate is indeed a sympton of residual native-state frus-

tration.

5.2 Simulation Methods

Two different Hamiltonians are used to elucidate the folding properties

of Im7. We first used an off-lative Gō-like model of the type introduced by

Onuchic and coworkers [122] to investigate purely the role of topology on

folding. We then performed molecular dynamics simulation with the AMW

Hamiltonian [89]. This Hamiltonian allows us to obtain details on the role

of non-native contacts as well as water mediated interactions at a molecular

level. The AMW Hamiltonian and the simulation protocols are described.

5.2.1 Native Topolgy-based Simulations

In the first part of our study, we used a Cαnative topology-based model

where a single bead centered on the Cα position represents a residue, as de-

scribed previously [123], with minor changes to introduce native energetic

heterogeneity. In this model, the bond and angle potentials string together

the beads to their neighbors along the protein chain. The dihedral potential

encodes the secondary structure. The proteins native topology defines the net-

work of favorable long-range tertiary interactions while all other non-bonded

interactions are repulsive. The energy function for a Cα native topology-based

model with configuration Γ is as follows:

H(Γ,Γ0) = Hbb + Hnb (5.1)
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Hbb =
bonds
∑

Kr(r − r0)
2 +

angles
∑

Kθ(θ − θ0)
2 +

dihedrals
∑

Kn
φ [1 − cos(n(φ− φ0))]

(5.2a)

Hnb =

native
∑

i<j−3

ε1(i, j)

[

5

(

σnati,j

ri,j

)12

− 6

(

σnati,j

ri,j

)10
]

+

nn
∑

i<j−3

ε2(i, j)

(

σnon

ri,j

)12

(5.2b)

where backbone, nonbonded and non-native are abreviated as bb, nb and nn

respectively. The Kr, Kθ, and Kφ are the force constants of the bonds, angles

and dihedral angles, respectively. The r, θ, and φ are the bond lengths, the

angles, and the dihedral angles, with a subscript zero representing the cor-

responding values taken from the native configuration, Γ0. The non-bonded

contact interactions, Hnonbonded, contain Lennard-Jones 10-12 terms for the

non-local native interactions and a short-range steric repulsive term for the

non-native pairs, corresponding to a perfectly funneled energy landscape. We

chose as parameters of the energy function Kr = 100ε, Kθ = 20ε, K1
φ = 1.0ε

, and K3
φ = 0.5ε. The energetic weights are defined as ε1 = ε2 = ε in the

homogeneously weighted native topology-based model. Energetic heterogene-

ity is introduced by having ε1 equal the value of the corresponding weight

according to the set of energetic weights of the Miyazawa-Jernigan poten-

tial [128], divided by the average value such that the resulting sets average

is equal to ε. σnati,j is the distance between the Cα atoms of the residues (i,j)

in the native configuration and σnon = 3.0Å for all non-native residue pairs.

The network of native contact pairs was determined using the CSU (Con-

tacts of Structural Units) software [129]. Multiple trajectories with numerous

unfolding/folding transitions were collected and analyzed using the weighted

histogram analysis method (WHAM) to calculate the free energy surface pro-

jected onto the fraction of native contacts (Q). This reaction coordinate was
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previously demonstrated to accurately map to Pfold at the resolution of Φ-

values for a funneled energy landscape [25]. We incorporated nonadditivity,

which implicitly accounts for sidechain and solvent interactions ordinarily ab-

sent from the pairwise additive model, into calculations of free energy profiles

by following the protocol of Plotkin and co-workers [124].

5.2.2 Molecular Dynamics Simulations with the AMW

Hamiltonian

The AMW Hamiltonian is a coarse-grained, transferable potential designed

to predict the global native fold of proteins. The Hamiltonian is general and

contains a 20 × 20 contact potentials for direct and water mediated contacts

that reflect modulation by the local environment. The basic mathematical

form of the AMW is given by

HAMW = Hbb + HAM + HRG
+ Hcontact + Hwater + Hburial (5.3)

and applies to a reduced set of coordinates of the heavy backbone atoms,

Cα, Cβ and oxygen. In this reduced description, the positions of the nitro-

gen and C
′

carbons are calculated assuming ideal protein backbone geometry.

The Hamiltonian assures correct backbone chemistry and collapse of the pro-

tein. The functional forms of the individual terms of the Hamiltonian are

explained in greater detail by Papoian et al. [89]. We note that for residues

less than 12 apart in sequence, the Associative Memory (AM) term applies

while for residues separated by more than 12 in sequence, the contact po-

tentials, Hcontact, Hwater and Hburial, apply. The AM term [17, 126] captures

local structural folding propensities. When used in structure prediction first

one aligns the target sequence to memory proteins with the Local Hamilto-

nian [125], a sequence-structure alignment tool. The sequence is then threaded

onto the memory proteins. This determines the interactions for residues close

in sequence therefore introducing a local secondary structure bias. In this

study we use as the memory proteins for the IM proteins the respective crystal

structures. This assures that the local structure including secondary structure
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in the molecular dynamics simulations will be biased towards the local struc-

ture of the native states. The contact potential terms then predict the tertiary

structure of the protein by flexibly assembling supersecondary structure ele-

ments.

To obtain the free energy landscape, constant temperature molecular dy-

namics runs were performed. Temperature is quoted in units of the native

state energy of the AM and contact terms. The native state energy for a

protein of N residues is scaled in units of ε =
Enative

AM,contact

4N
, which leads to de-

fine a reduced temperature as kBT = εT̄ , where T̄ is the temperature of the

simulation. All other energy terms such as the backbone terms are scaled

to yield physically reasonable interaction strengths. In a typical simulation

run both a randomly unfolded structure as well as the x-ray structure were

used as starting structures. Initial random velocities were assigned to the

protein. For each temperature 2 × 20 trajectories were obtained. The length

of each of the trajectories was 7.5×106 steps of approximate time length of

12ns per step [127] resulting in 90µs long trajectories. In each of the runs

3000 independent structural samples were obtained for analysis. For each

sample the energies were recorded and the relevant order parameters were cal-

culated. The free energy was then calculated at different temperatures using

F (QW , Rmsd) = −T̄ · ln(P (QW , Rmsd)) where T is the simulating temper-

ature and P (QW , Rmsd) is the probability of finding a structure with given

Rmsd and QW . These order parameters provide two different measures of the

similarity to the crystal structure and both involves a sum over all (but nearest

neighbour) pairs of Cβ or Cα atoms:

Rmsd =

√

1

N

∑

i<j−1

(rij − rN
ij)

2, (5.4)

where rN
ij is the Cβ-Cβ distance between residues i and j in the native state,

QW =
1

N

∑

i<j−1

exp

[

−
(rij − rN

ij)
2

σ2
ij

]

, (5.5)

where rN
ij is the Cα-Cα distance between residues i and j in the native state,
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σij = |i − j|0.15 and the normalization N = (N − 1)(N − 2)/2 is the number

of non nearest neighbour pairs given the lenght N of the chain.

Thus a Rmsd of 0Å means the examined conformation is identical to the

crystal structure whereas QW ranges between 0 (completely unfolded) to 1

(native conformation) [17].

We define a non native contact as a Cβ-Cβ pair whose distance in the

crystal structure is greater than 9.5Å and whose backbone distance is greater

than 4 residues, but whose Cβ-Cβ distance in the obtained ensemble is less

than 9.5Å.

In order to calculate the folding time constant, we collected the distribution

of times needed to make the transition from the unfolded state (Rmsd < 8.0Å)

to the native state (Rmsd > 3.5Å). The exponential fit of this distribution

leads to the folding time constant τf .

The PDB code for Im7 is 1AYI.

5.3 Localized Frustration Measurements and

Design Methods

Our site-specific measure of local frustration serves to rationalize the role

of specific interactions in the im7 folding mechanism. It is also used to guide

our mutational designs. The definition and procedures are described.

5.3.1 Local Frustration Index

The local frustration index is a site-specific measure of the energetic fitness

for a given set of residues λi and λj at residue positions i and j > i + 1. We

used a simple definition of site-specific frustration based only on the sequence-

specific components of the AMW energy function (Hcontact, Hwater, Hburial)

(5.3). These terms depend on the identities (λ), densities (ρ) and interaction
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distances (rij) of the residues involved. The local frustration is defined as:

Fij = (HN
ij− < HU

i′,j′ >)/

√

√

√

√1/N
n
∑

k=1

(HU
i′,j′− < HU

i′,j′ >), (5.6)

where Hij = Hi,j
contact +Hi,j

water +Hi
burial +Hj

burial is the native site energy with

native parameters (λi, λj, ρi, ρj, rij). We obtain the average and standard

deviation of a set of reference energies, HU
i′j′ = Hi′,j′

contact + Hi′,j′

water + Hi′

burial +

Hj′

burial, by randomly selecting the parameters (λ′
i, λ

′
j, ρ

′
i, ρ

′
j, rij

′) according to

the native composition of the corresponding parameters.

With this definition, for a given protein sequence composition and struc-

ture, the average and standard deviation of reference site energies are the

same for all interacting residue pairs i, j. For the native im7, the average and

standard deviation over the reference sites converge.

When HN
ij =< HU

i′,j′ >, the native site energy is not discriminated from a

typical energy at a random site, and Fij = 0; For the present study, frustrated

sites are those where Fij < 0. Highly frustrated sites have values of Fij < −1.

Arguments from theory suggest an interaction is minimally frustrated when

Fij > 1.25. We use these cutoffs in this study. An accompanying article in

the present volume presents an extensive study of the concept and alternative

definitions of local frustration.

To characterize the landscape generated by AMW simulations, we ran-

domly selected 200 structures from the native basin and 500 structure from

the intermediate basin. For each structure, we calculated Fij for all pairs of

residues whose Cβ atoms (Cα for Glycine) are within 9.5Å.

5.3.2 Design Procedures

In the first step of both design based on minimally-frustrating the na-

tive state and specific negative design by de-stabilizing the intermediate state,

residue pairs were selected based on the local frustration index. For design,

all residues involved in highly-frustrated interactions (Fig. 5.2a, red lines) in
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helix region III were selected for possible mutation (12 residues, 1 outside

the helix III region). All pairwise combinations of these positions define our

set of double-mutant positions (28 residue pairs). All possible combinations

of residue types (400) were evaluated for each pair, resulting in a total of

11200 distinct double-mutants. For our specific negative design procedure, we

identified 19 minimally-frustrated interactions, involving 22 distinct residue

positions, from the AMW wild-type intermediate ensemble. Unlike the design

procedure based on minimizing frustration, we did not consider all combina-

tions of these 22 positions but instead focused our efforts on the 19 pairs with

minimally-frustrated interactions. For these 19 pairs, we obtain a total of 7600

distinct double-mutants.

The second step involved selecting the best double mutants. In the design

procedure, we evaluated the local frustration (Fij) for all interacting pairs

in the crystal structure. To check that this mutant does not destabilize the

protein’s total energy, we compute the total energy change of the contact

(Hcontact, Hwater) and burial (Hburial) terms upon mutation. To minimally-

frustrate the crystal structure, we filtered out those double mutants with the

fewest highly-frustrated sites (Fij < −1) and the most favorable total energy

change. A similar procedure was employed for negative design. The average

local frustration and total energy change (over the intermediate ensemble) was

calculated. Best candidates were those which not only minimized the number

of non-native minimally-frustrated (Fij > 1.25) sites over the intermediate

ensemble, but that also did not frustrate the native state interactions.

5.4 Results and discussion

5.4.1 Perfect Funnel Model

We first examine whether the existence of an intermediate in the fold-

ing landscape of IM7 could be a direct consequence of a perfectly funneled

landscape. For that purpose, we simulated IM7 with a perfectly funneled
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Hamiltonian, which takes into account only those interactions, that are found

in the folded protein. In the simplest funneled landscape, all native contacts

are weighted equally. Intermediates and barriers in the free energy profile in

this case must arise from a non-uniform tradeoff between entropic terms of the

chain and the stabilization energy of the formed, native contacts. Simulations

with this Hamiltonian show that IM7 would clearly fold as a two-state folder

for this ideal model. The folded state and the unfolded state are separated

by a barrier of about 5kBTF at the folding temperature. The experimentally

detected intermediate does not appear using such a perfectly funneled Hamil-

tonian. There is no stable thermodynamic state between the folded and un-

folded state, that is stabilized by energetically homogeneous, native contacts.

No local energetic traps or signs of “topological frustration” were found, if the

existence of topological frustration is proved by the observation of a bimodal

distribution of the transition state φ-values, a clear sign of multiple, distinct

folding pathways. While inclusion of nonadditivity through many-body con-

tact terms increased the barrier height, such additional explicit cooperativity

did not produce an intermediate state.

To study whether there may be an effect of energetic heterogeneity, the

magnitude of all the native interactions were scaled with the Miyazawa-Jernigan

energies [128] rather than being kept uniform. Such an inhomogeneous but still

perfectly funneled model might account for the observation of a stable inter-

mediate. Molecular dynamics simulation with this Hamiltonian both with

and without explicit non-additivity were performed but did not reveal any in-

termediates. The two-state behavior is preserved without any relevant traps

being present. Moreover the transition state φ-values still exhibited unimodal

probability distributions.

The intermediate observed in Im7 folding apparently cannot be captured

by a perfectly funneled landscape. The absence of any populated intermediate

state even with heterogenic and many-body terms in these funneled Hamilto-

nians implies that the real folding landscape of Im7 must be more rugged.
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5.4.2 AMW - Im7 folding mechanism

To predict the folding of IM7 with an energy function that yields a more

rugged but still globally funneled energy landscape, we carried out simulations

with the Associative Memory Hamiltonian with water mediated interactions

(AMW). This non-additive Hamiltonian not only has heterogeneous direct

contact energies and water-mediated energy terms to capture solvent-mediated

interactions, but makes no use of native tertiary structure information and

thus also allows for non-native interactions. To quantify the amount of local

ruggedness of the energy landscape yielded by the AMW, we compute the

frustration of interacting residue pairs with a method developed recently by

Ferreiro et al.. The energy of a site, involving interacting residues at positions

i and j, depends only on their amino-acid identities (λi, λj), densities (ρi, ρj),

and pairwise distance rij. In order to measure how frustrated a site is (Fij),

we compute for each site, the native energy and reference site energies (see

appendix II for details). The ratio of the local contribution to the energy gap

versus the standard deviation of the loal decoy energies (the frustration index)

then gives an estimate of how favorable the native interaction is relative to

randomized interactions.

We first calculate the frustration index for all interacting residue pairs in

the crystal structure of IM7 (pdb id 1ayi) to characterize the local energy

landscape around the native basin. Like most proteins a cluster of minimally-

frustrated contacts ( 17% of the total in this case; Fig 5.2a, green lines) spans

the protein core. Many frustrated sites (36% of total) are also present. In

particular, multiple distinct highly-frustrated contact clusters (11% of total;

Fig 5.2a, red lines) are revealed in three distinct regions: the loop region

between helix I and II, the helix III region and the C-terminal residues in

helix IV.



107

Figure 5.1: A) Free energy (in units of ε) of the Im7 at T=1.0 as a function of
QW and Rmsd. The wells correspond to the unfolded (U), intermediate (I) and
native (N) states. B) The average fraction of non native contacts as a function
of the Rmsd. In the red curve we consider only the interactions between the
first half of the protein (residues 1 to 46) with the fourth helix (residues 68 to
86). The blue curve shows the same ratio but only for the contacts internal
to the helix III region (residues 47 to 67) and the black curve represents the
contacts between the first half and the helix III region. Also displayed with
vertical dotted lines are the boundaries used to define the intermediate state.
C) The transitions observed between the three states U, I and N at T=1.0
suggest the intermediate to be on-pathway in the folding reaction. Three
representative snapshots are also shown with the helix III region highlighted
in yellow.
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In this case the presence of frustration in the native state seems to stem

from the fact that in Nature IM7 not only evolved to have a significantly fun-

neled folding landscape, but also evolved to have a funneled binding landscape.

We therefore computed the frustration for IM7 when it is bound to a binding

partner and observed that most of the contacts that are found to be frustrated

in the native state by itself become minimally frustrated in the bound form

due to the modified burial properties of these residues.

We extracted the free energy profile from constant temperature molecular

dynamics simulations with one memory term for the short-range in sequence

interaction, the crystal structure of IM7. This memory term introduces a bias

to form proper native secondary structure without biasing the long-range ter-

tiary interactions. The free energy profile as a function of QW and Rmsd of

Im7 exhibits, at equilibrium, three thermodynamically stable states: a native

(N), an intermediate (I) and an unfolded ensemble (U). We computed the ra-

dius of gyration Rg for the set of conformations in the respective ensembles.

The three ensembles all show a similar degree of compactness relative to the

X-ray crystal structure of IM7. The unfolded state is unusually compact with

an average radius of gyration of < RU
g > /RX

g = 1.2. This can partly be under-

stood by the bias of native, secondary structure in the Hamiltonian. Indeed,

most of the secondary structure elements are already formed in the unfolded

ensemble. Before reaching the native state, which has a crystal structure like

compactness (< RN
g > /RX

g = 1.0), an intermediate ensemble is populated. At

a simulation temperature of T̄ = 1.0 the intermediate is the most populated

ensemble and is also on-pathway in the folding route, which is evident from

the relative percentage of the transitions observed between the three states

(Fig. 5.1C). The observed intermediate ensemble with < RI
g > /RX

g = 1.1 has

an almost native-like compactness. In the laboratory the intermediate is also

nearly as compact as the native structure as suggested by Friel et al. who

measured a Tanford value of βT = 0.8 for the intermediate of IM7 relative to

the native state.

The structures of the intermediate ensemble generally fold to form a three
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helix core. In this structure helix I (residues 12-24), helix II (residues 32-45)

and their interface are all natively formed. Helix IV (residues 66-79), how-

ever, interacts in a non-native way with helix I. The presence of this highly

structured core composed of helix I, II and IV in the intermediate was inferred

experimentally by Capaldi et al. from φ-value analysis [121]. In our simula-

tions, residues 77−80 of helix IV and residues 12−24 of helix I form numerous

non-native contacts with high probability. These non-native contacts turn out

to actually be minimally frustrated (see Fig. 5.3a, blue lines) - they stabilize

the intermediate state through favorable contacts not found in the function-

ing native structure. Mutations of some of these residues (A77G, A78G and

A13G, F15A, V16A, L18A, L19A, I22V) are also known from experiment to

destabilize the intermediate state. From our simulations we understand that

these contacts must be lost upon transition to the native state (see Fig. 5.1B,

red curve) prompting helix IV to trade favorable non-native contacts for other

native contacts that also are favorable.

Besides favorable interactions, the intermediate also exhibits many frus-

trated contacts (Fig. 5.3a, red and orange lines). While the three-helix bundle

of helix I, II and IV is stabilized by favorable native and non-native interac-

tions, the loop region (residues 47-67) surrounding helix III (residues 51-56),

which we refer to as the helix III region, does not show any particular local

structural preference. That is to say, native and non-native contacts internal

to the region occur in almost equal proportion. Moreover, no particularly fa-

vorable interactions and many highly frustrated interactions are found in this

region. The frustrated contacts and the rugged landscape of the helix III re-

gion must therefore play an important role in the formation of the IM7 folding

intermediate. Upon crossing the free energy barrier separating the intermedi-

ate basin from the native one, the helix III region reduces its non-nativeness.

In fact, the ratio of non-native contacts over the total number of contacts de-

creases by almost 40% (see Fig. 5.1B, blue curve). The helix III region also

interacts non-natively with helix IV. Unlike the interactions within the helix

III region, many of these are favorable.
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5.4.3 Reducing Native State Frustration

Kinetic folding experiments on laboratory-designed IM7 mutants have shown

that the native and intermediate populations can be shifted significantly with

single and double-mutants. Based on our site-specific localization of frus-

tration, we devised two strategies to perturb the folding landscape. In the

first design scheme the goal is to find the double mutants, which defrustrate

the native structure. Among the regions with significantly frustrated residues

(Fig. 5.2B), we chose to focus our design strategy on the helix III region. In

this frustrated region there is a large preponderance of competing non-native

interactions and an absence of several native contacts in the intermediate en-

semble making helix III region an optimal target for re-design. The other

regions, although frustrated locally in the native structure, are substantially

native-like in the intermediate (Fig. 5.2B) making them less likely successful

design targets to shift the population of observed structures towards more

native and less intermediate structures. We selected eight highly frustrated

positions for designing a defrustrated native state and constructed a library of

double mutants. For each pair of positions, the local frustration was computed

for each of the 400 possible mutants (representing all combinations of amino

acids). Roughly 30% (3362 of 11200) of the mutants had fewer frustrated sites

than the native.
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a)

c)

b)

Figure 5.2: A) Local frustration is depicted on the native Im7 structure (from
pdb 1ayi). A large cluster of minimally-frustrated contacts (green) defines the
core of the protein yet some highly-frustrated contacts (Fij < −1) surround
the core (indicated in red). B) Highly frustrated contacts (lower-right) are
primarily local compared to all contacts present in the native state (upper-
left). C) Free energy (in units of ε) of the Im7 Designed Mutant at I=1.0 as
a function of QW and Rmsd. The wells correspond well to the unfolded (U)
and native (N) states of the wild-type protein.
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Table 5.1: In total, 11300 mutants were evaluated for minimum frustration
design (a) and 7600 for specific negative design (b). 26 favorable double-
mutants are presented. * Selected for AMW simulation studies.

Mutated Positions Position I Position II Hseq

52 55 K D 172.354
N N 172.371
K E 172.523

26 55 K K 172.712
K R 173.099

50 55 R K 172.971
R R 173.493

55 56 K R 173.894
* R N 174.001

R P 174.027
R C 174.074
K K 174.11
R H 174.17
R R 174.416
S K 174.425
N K 174.485
R K 174.632

49 55 I K 174.761
F R 174.843
C K 175.119
I R 175.283
V K 175.456
L K 175.4
C R 175.641
L R 175.922
V R 175.978

To test whether the less frustrated mutant sequences yield a less rugged

energy landscape than the wild type, we selected the top designs for further

AMW simulation studies. The free energy profile obtained from constant

temperature simulations with the least frustrated mutant sequence is shown

in Fig. 5.2c. The free energy profile of the selected mutant sequence exhib-

ited two-state folding behavior with no stable intermediate basin. This is a

clear success for the design strategy of defrustrating the native state by mu-
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tating amino acid positions which have frustrated interactions in the native

state and a manifold of competing non-native interactions in the intermediate

state. While the wild type sequence folded through an intermediate stabilized

by non-native interactions, the designed sequence cooperatively folded from

the unfolded structure to the low-energy native state without populating any

intermediate traps. We computed the average folding time τ for the wild type

sequence and the mutant sequences. As a consequence of being less rugged

and more funneled, the less frustrated, designed sequence displayed a ten-fold

speed-up in folding.The minor change of two residues in the sequence yielded

an energy landscape that is similarly funneled to the energy landscapes ordi-

narily obtained with the “flavored” Gō-models having heterogeneous but only

native contact energies.

5.4.4 Attempted Specific Negative Design of Interme-

diate

The goal of our second design study was to destabilize the intermediate

ensemble and thereby eliminate the dominant thermodynamic trap. As we

shall see, the specific negative design of the intermediate state is, however, a

more difficult way to remove ruggedness from the energy landscape than is

the reduction of frustration in the native target structure. As expected from

energy landscape theory it is likely that even if one succeeds in destabilizing

the specific ensemble of structures which constitutes the Im7 intermediate, if

the native state is still frustrated one can not exclude the emergence of other

thermodynamic, glassy traps. We evaluated the efficacy of a speific negative

design approach by first identifying non-native contacts present in the wild-

type intermediate ensemble which are minimally frustrated by our site-specific

measure (blue lines in Fig. 5.3A; blue contacts in Fig. 5.3B). From this analysis,

a precise candiate set of contacts emerged, namely the contacts that arise from

the non-native association of helix IV with both helix I and helix III region.

To disrupt these interactions, we need to find residues that frustrate the non-
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native sites without significantly frustrating native contacts. We mutated to

all 400 possible pairs and measured the energy change over a representative set

of the intermediate ensemble (500 structures). A selection of the top mutants

for negative design are presented (Table I).
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a)

c)

b)

Figure 5.3: Specific Intermediate State Re-design A) Local frustration is de-
picted on a selected Im7 intermediate structure. Minimally-frustrated contacts
present in the crystal structure (green) are distinguished from those which are
non-native (blue). A distinct non-native cluster can be observed involving
interactions between helix IV and the helix I-II region. Native (red) and non-
native (yellow) frustrated contacts surround the core. B) Minimally-frustrated
non-native contacts (lower-right) are distinguished from those present in the
native state (upper-left). C) Free energy (in units of ε) of the Im7 re-designed
mutant at I=1.0 as a function of QW and Rmsd. The inset shows the free en-
ergy as a function of QW to the crystal structure and QW to a representative
structure from the wild-type intermediate basin.
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Table 5.2: The folding time for each mutant relative to the wild type Im7 is
given (see methods for further details) at T̄=1.00.

Mutant Mutations τ ′f/τ
wt
f

I S58C 2.5
II D31H,D35E,E46V,S58Y,D63Y,E71R 0.7
III K20Y,N79Y 2.4
IV M1Y,Q17Y 1.3
V Y55R,Y56N 0.4
VI D49S,Y55R 0.1

Our results are consistent with φ-value data by Capaldi et al. [121]. In

that study, mutations of residues in the ranges 3-19 and 72-78 were found to

destabilize the intermediate state. Many of our top mutants involve residues

in these ranges. One of the top mutants involves disrupting the interaction

between the Lysine at position 20 and the Asparagine at position 79. We

ran AMW simulations on this mutant. The free energy of this the double

mutant (K20Y, N79Y) shown in Fig. 5.3 does display an intermediate state.

This intermediate state turns out to be more widely dispersed in QW and

Rmsd space than the intermediate state of the wild type still giving rise to

a profound thermodynamic trap. The negative design scheme was successful

in partially destabilizing the wild type intermediate, but the mutant sequence

nevertheless gave rise to an alternative folding route to the native state via

a different stable intermediate. Due to this alternate route, the folding time

was lengthened. To quantify the destabilization of the intermediate we also

plotted the free energy as a function ofQW andQI
W , whereQI

W is the structural

similarity relative to a representative wild type intermediate structure (see the

inset of Fig. 5.3C). There are several low free energy basins in the free energy

plot. The biggest basin corresponds to an intermediate state that is not found

in the wild type intermediate (low QI
W -value). Therefore the folding route

through this alternate intermediate structure turns out to be preferred in this

modified sequence.
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5.5 Conclusions

From its inception the energy landscape theory acknowledged and high-

lighted the fact that many amino acid sequences would have frustrated in-

teractions. Nevertheless in keeping with the principle of minimal frustration,

finding a specifically structured long lasting non-native intermediate as ob-

served in the IM7 folding has been rare. We have seen the intermediate of

IM7 is not captured by perfect funnel models, even when cooperativity and

contact heterogeneity are added. Yet from the landscape theoretic viewpoint

this result is not surprising due to the significant clusters of highly-frustrated

sites observed in the native state (Fig. 5.2). Frustrated interactions give rise to

a rugged energy landscape wherein favorable non-native interactions compete.

In the case of Im7, these significant traps from frustration give rise to an in-

termediate, which is observed both in experiment and our AMW simulations.

The structural features of the intermediate from our simulations compare well

with all experimental findings.

The observation of clusters of frustrated interactions in the native state

points the way to a mutational strategy to reduce the ruggedness of the fold-

ing landscape. Our design strategy was a success and led to double-mutants

that eliminated any significant intermediate population during AMW simu-

lations. As expected specific negative design is not so easy or effective as

minimizing frustration in the native target structure. While our mutant se-

lected for simulations did perturb the intermediate ensemble, that ensemble

was not eliminated. We note that the frustration in IM7 is relieved upon bind-

ing to its natural partner. In vivo folding and binding may occur together and

should be well described by a largely unfrustrated landscape. IM7, by itself,

only marginally satisfies the minimal frustration principle so the emergence

of an intermediate with significant non-native structure (accompanying many

native interacitons) beautifully resonates with the energy landscape theory.



6 Conformational Switching

upon Phosphorylation: A

predictive Framework based on

Energy Landscape Principles

6.1 Introduction

Protein phosphorylation is one of the most important intracellular control

mechanisms[59]. In both eukaryotic and prokaryotic cells, phosphorylation

is a key step in cell cycle control, gene regulation, learning and memory[60].

Nowadays it is believed that about a third of the proteins in mammalian cells

are phosphorylated at one time or another[61]. Communication in the cell by

means of phosphorylation is rapid, reversible and does not require the slow

production of new proteins or degradation of existing proteins. Ultimately the

activities of proteins that are modified by phosphorylation must be traced to

changes in the protein’s conformation[62, 63, 64] that are induced by modify-

ing the energy landscape. While native ensembles possess numerous confor-

mational substates, the landscapes of most proteins are highly funnel-like. In

many cases, phosphorylation modulates the stability of two near degenerate

but structurally distinct conformational ensembles on the landscape allowing

the same protein molecule to carry out different activities in the cell at differ-

ent times. By modulating this near-degenerate landscape, phosphorylation can

118
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act as a molecular switch, turning a specific conformation dependent activity

on or off by tipping the balance of the population between the two ensembles.

Upon phosphorylation, a phosphate group becomes covalently attached to

the side chain of a serine, threonine, tyrosine or histidine residue. Much like

the more labile changes due to pH, the change of electric charge in a specific

residue through phosphorylation can have several different structural conse-

quences: it can induce local and/or global conformational change between

discrete completely folded configurations, or induce order to disorder or dis-

order to order transitions [65]. Sometimes the effects of phosphorylation on

the structure of the protein appear to be small but further recognition events

essential to function, such as binding, can be profoundly affected.

To illustrate how energy landscape ideas can be used to think about phos-

phorylation and to devise predictive algorithms, we present a theoretical study

of how phosphorylation modifies the global [66, 67, 68] rather than local

[69, 70, 71] structure of two different proteins, the cysteine proteinase in-

hibitor cystatin and the receiver domain of the bacterial enhancer-binding

protein NtrC (nitrogen regulatory protein C). These two different systems are

small enough for detailed theoretical analysis but also have been structurally

explored in the laboratory providing thereby the basis for a comparative study

to elucidate the generality and specificity of phosphorylation effects.

Cystatins are inhibitors of cysteine proteinases, which destroy proteins

by hydrolysis and hence are important in protein degradation (PDB code

1A67,1A90)[72]. Chicken cystatin has been structurally characterized in both

an unphosphorylated and phosphorylated form. The phosphorylated residue,

Ser80, is located in a flexible region of the protein, which is readily accessible

both to protein kinases and to phosphatases. Serine phosphorylation sites in

many proteins are often found to be flexible or disordered in structural studies.

Phosphorylation in intrinsically disordered regions of the protein commonly

results in the ordering of the structure in the vicinity of the phosphorylation

site[73]. Unphosphorylated cystatin is a five-stranded β-pleated sheet which

is twisted and wrapped partially around a five-turn helix. When cystatin
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becomes phosphorylated, moderate structural changes occur. The overlay of

the mean NMR structures of phosphorylated and unphosphorylated cystatin

show an RMS deviation between the structures of 2.7Å. Cystatin thus serves

as a paradigm for a system having minimal structural change induced through

phosphorylation in a flexible loop region.

A more dramatic change upon phosphorylation in terms of structure oc-

curs in another well characterized system, the receiver domain of NtrC. The

receiver domain of NtrC is a conformational switch found in a bacterial “two-

component” regulatory system (PDB code 1DC7,1DC8)[74]. Upon phospho-

rylation two β-strands as well as two α-helices are displaced away from the

phosphorylation site and additionally one helix is rotated axially. The overlay

of the average NMR structures of the unphosphorylated and phosphorylated

conformation of NtrC shows larger RMS deviation between the structures of

about 3.3Å. The amplitude of the change is thus slightly larger than for cys-

tatin. NtrC has been regarded as a model for a conformational switch[75],

in which a “large” conformational change is induced upon phosphorylation.

Clearly larger proteins can exhibit still larger changes in an RMS sense, owing

to a greater lever arm for hinge motion in them.

The aim of the current study is to elucidate how phosphorylation causes

these observed changes in protein conformations. First we examine the free

energy profiles that would be obtained by assuming an ideal landscape hav-

ing as little frustration as possible. This landscape for the phosphoprotein is

constructed by utilizing the information about the structures of both phos-

phorylated and unphosphorylated native forms. Such a model yields the free

energy difference of the forms that would be expected if only the native con-

tacts were to contribute to the energetics. Since the conformations and hence

the contact maps of the unphosphorylated and the phosphorylated proteins

in our study are already known from experiments, we can construct such a

structure based Hamiltonian having native-only interactions for molecular dy-

namics simulations to obtain conformations and energies of the proteins along

the reaction coordinate. This is a “vanilla” Hamiltonian because it is topology
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based, not singling out any interactions as especially significant. This model

treats the two different sets of input native contacts, those for the unphospho-

rylated conformation and those for the phosphorylated one, as independent.

We can more directly extract changes in the free energy profile using the free

energy perturbation method. Next, a principal component analysis of the

contact maps of the simulated ensembles allows us to find the dominant com-

ponents of the phosphorylation induced change and to visualize the effect that

phosphorylation has on a residue-residue contact map. The contact maps of

the test proteins in the unphosphorylated and phosphorylated forms show that

many of the contacts formed by the phospho-residues for the test proteins are

preserved, suggesting the effect of phosphorylation primarily lies in the long-

range forces. This observation allows us to address a rather practical issue:

Instead of needing structural information on both forms, can one predict the

likely conformational changes that should occur when only one structural form

is known? For example, given structural information only about the unphos-

phorylated protein and the sequence information of which particular residues

are susceptible to phosphorylation, can one predict the dominant conforma-

tion of the phosphorylated protein? For such predictions, obviously perfect

funnel, native topology based models will not suffice. Since long range inter-

actions are expected to be dominant however, we can construct a new guided

structure prediction Hamiltonian by using local structural information known

from the unphosphorylated protein for residue interactions separated by a few

residues (12 in this case), but use a transferable structure prediction Hamilto-

nian (AMH)[76, 2] having a heterogeneous through space potential for residues

that are more than 12 residues apart in sequence. The transferable long range

potential while transferable has been shown to yield a reasonably funneled

potential which has been optimized based on a large set of generic protein

structures to successfully predict the folded state of proteins of size up to 180

residues. Its predictive power has been well documented[77]. Additionally it is

possible to construct a new potential in this format to evaluate the interactions

of the phosphorylated residues based on the same form.
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To obtain the Hamiltonian for phosphorylated proteins from that which

has been optimized for normal, unphosphorylated amino acids, we earlier pos-

tulated that we can treat the interactions involving the phosphorylated residue

as those of a “supercharged” glutamic acid residue[70]. The energetic inter-

actions of the phosphorylated residue with other residues are replaced with

enhanced interactions of the type ordinarily used for a glutamic acid residue

with the corresponding residues[70]. Since the energy landscape of the un-

phosphorylated protein is known and the contact maps of the test proteins

indicate there is a considerable overlap of contacts between the unphosphory-

lated and phosphorylated conformations, we preserve the native focussed as-

sociative memory terms biased towards the assumed known unphosphorylated

structure for residues that are less than 12 residues apart in sequence space

but use the transferable potential with a “supercharged glutamate” for the

more distant interactions. The Hamiltonian we have constructed in this way

equips us with an energy function that should reliably mimic the local struc-

ture of the unphosphorylated protein, but that nevertheless plausibly treats

the effects of the long-range forces on the conformation of the protein. We

show this hamiltonian correctly predicts many features of the conformational

changes observed in the phosphorylated protein. To document that this can

be done, we set up simulations with different strengths of the charge interac-

tions for the phosphorylated protein, and then we project the conformations

obtained in these simulations onto the first two principal components obtained

earlier using the “vanilla” native structure based Hamiltonian. We also show

more directly that structures rather close to the NMR structures can also be

sampled.

6.2 Methods

In order to explore the issues raised above, we studied four Hamiltonians

based on the native configurations of the test proteins, Hu, Hp, H∗
u, and

H∗
p. We show how to construct the native-based Hamiltonians Hu, Hp in
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the first subsection. These two Hamiltonians are based on the information of

the experimentally determined native structures of the unphosphorylated or

phosphorylated form of the proteins. Note that throughout the current study,

we use the subscripts p and u to indicate the phosphorylated or the unphos-

phorylated form respectively. We then describe how to obtain the free energy

profiles from the conformations sampled with Hu and Hp and describe a prin-

cipal component analysis based on the contact maps of these conformations.

Finally we describe the construction of structure prediction Hamiltonians

H∗
u and H∗

p, both of which are based on transferable interactions using the

long range interaction parameters optimized for generic structure prediction

but that use information about the native conformation of the unphospho-

rylated form to encode the short and intermediate range interactions. Note

that neither H∗
u or H∗

p contains any experimental information of long-range

interactions found in the unphosphorylated form; neither H∗
u or H∗

p directly

make use of any (short, intermediate, or long range) experimental information

on the phosphorylated form at all.

We also detail how we define various physical quantities for monitoring

structural ensembles, such as order parameters and configurational free energy,

which we adopt to analyze the results of all simulations based on these four

Hamiltonians.

6.2.1 Native Structure Based Simulations

Simulations of the folding dynamics of cystatin and NtrC were performed

with an off-lattice native structure based potential. The Hamiltonian used in

this study contains a basic backbone Hamiltonian and a contact potential

Hu/p = Hbb + Hc,u/p (6.1)

and depends on the locations of the Cα, Cβ and oxygen atoms. The index

u/p is a simplified notation for the two cases, namely u or p. The remaining

backbone atom positions can be calculated assuming ideal backbone geometry.
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The backbone potential Hbb constrains the backbone to have chemically and

physically acceptable conformations[17]. The backbone potential is given by

Hbb = λψφHψφ + λχHχ + λexHex + λharmonicHharmonic (6.2)

The Ramachandran potential Hψφ provides a good fit of the backbone torsional

angles based on the statistics of protein structural database. The chirality

potential Hχ biases the protein chain into the L-amino acid configuration. The

algorithm SHAKE constraints for the heavy backbone atoms along with three

quadratic potentials provide for backbone rigidity and planarity. To complete

the picture of stereo chemically allowed protein backbones, an excluded volume

potential is applied to the oxygen and carbon atoms of residue i and j. This

potential applies when the heavy atoms approach within 3.5Å for residues

close in sequence space such that (j − i) < 5, and 4.5Å for (j − i) ≥ 5. The

λ-terms scale the interactions of the individual backbone potentials.

The contact term Hc = Hc,S + Hc,M + Hc,L is an associative memory

term[78]. Through its guidance, the free energy will reach a minimum at the

basin of the given native PDB structure. Since there are several structures

of cystatin deposited in the PDB, all these structures were used as memory

terms for the simulation. The functional form of the contact term is given by

Hc,u/p = −ε
∑

i≤j−3

γ[x(|i− j|)] exp

[

−
(rij − r

Nat,u/p
ij )2

2σ2
ij

]

(6.3)

The sum runs over all carbon atom pairs (Cα − Cα, Cα − Cβ, Cβ − Cα,

Cβ−Cβ) having a sequence separation of at least three residues. The functional

form of the interactions of the carbon atoms in this potential are Gaussian

centered at the native distance rNatij and with a width of σij = |i − j|0.15Å.

The Hc potential depends on the sequence separation |i− j| of the residues i

and j. We divide the energy into three different proximity classes x(|i − j|):

short range (S) for |i − j| < 5, medium range (M) for 5 ≤ |i − j| ≤ 12 and

long range (L) for |i− j| > 12. The γ[x(|i− j|)]-terms are weighted such that

the energies in each proximity class x(|i − j|) are equal to each other. Also
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the energies of any contact in each proximity class are equal for all contacts

formed. The total energy of the Hamiltonian is scaled to be 4N , where N is

the number of residues of the protein. The unit of energy can then be denoted

as ε and is defined in terms of its native state energy coming from the contact

term Hc only

ε =
〈Hc〉

4N
(6.4)

The simulation protocol is as follows: For each protein twenty constant

temperature runs were performed with the structure based Hamiltonian. The

constant temperature runs sampled 800 independent structures each spaced at

intervals at about 1µs corresponding to a trajectory of about 1 ms in physical

time. A total of 16000×2×2 = 64000 structures were obtained for various tem-

peratures for the unphosphorylated protein as well as for the phosphorylated

protein. The key thermodynamic quantity desired from the simulations is the

free energy as a function of reaction coordinate Q and temperature. The nor-

malized collective coordinate Q measures the similarity of two conformations

A and B to each other.

Q =
2

(N − 1)(N − 2)

∑

i<j−1

exp

[

−
(rAij − rBij)

2

2σ2
ij

]

(6.5)

6.2.2 Free Energy Perturbation Method

We directly examine how phosphorylation changes the free energy profiles.

We start by analyzing the sampling snapshots obtained in simulation with

each of the two Hamiltonians. After projecting the ensembles to the desired

collective coordinates r = {r1, r2, . . .}, the probability distribution ρ(r) =

N(r)/Ntot is computed for a total of Ntot snapshots. We can then derive

straight forwardly the free energy profile F (r) = −kBT ln(ρ(r)/ρ0), where

ρ0 is a uniform distribution, for the unphosphorylated and phosphorylated

conformations. We are interested in the difference of the two free energies, so

we subtract these to obtain the difference ∆F (r) = Fp(r) − Fu(r).

In the current case we use two different folding order parameters Qu and
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Qp as the collective coordinates, i.e., r = (Qu, Qp). We assign to each snapshot

two numbers, the order parameters Qu and Qp, which measure how similar an

individual snapshot obtained in the MD simulations is to the native structure

of the unphosphorylated or the phosphorylated conformations respectively.

Simulations with the native structure based Hamiltonians bias the sampled

conformations strongly towards the native structure. Performing a simula-

tion with one of the two Hamiltonians, say Hu, results in greater sampling of

structures with high Qu but sparse sampling of structures with high Qp.

Instead of using a brute force approach of performing a large amount of

simulations to assure acceptable sampling of the 2D reaction coordinate space

we use the free energy perturbation method[15] to obtain the free energy dif-

ference directly. Thus to calculate the free energy difference ∆F from the

sampling of the unphosphorylated Hamiltonian Hu, we not only project the

sampled conformations to the collective Q coordinates, but also record for each

conformation, what the energy Eu = 〈Hu〉 of the unphosphorylated system is

and also what the energy Ep = 〈Hp〉 of a phosphorylated system with the

same conformation would be. We then perform the statistics on the raw mo-

ments of the energy difference
〈

∆Ek
〉

(r) =
〈

(Ep − Eu)
k
〉

(r). The free energy

difference of the two systems is then simply given by the cumulant expansion

equation, i.e.,

∆F (Qu, Qp) = −
∑

j=1

[(−β)j/j!]Cj(Qu, Qp) (6.6)

Here Cj is the jth order of the expansion. We have C1 = 〈∆E〉, C2 =

〈∆E2〉 − 〈∆E〉2, etc.

6.2.3 Contact Map Principal Component Analysis

We also use a principal component analysis (PCA) based on contact maps

to visualize the conformational changes induced by phosphorylation. The

more commonly used principal component analysis based on the diagonal-
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ization of the Cartesian coordinates is less useful for our purposes because the

change in the energy is only weakly related to the changes in the linear Carte-

sian distances. This mismatch is due to the fact that in phosphorylation the

large conformational changes are generally of a magnitude beyond the simple

vibrational-like fluctuations of the Cartesian coordinates. To capture properly

the conformational changes, it is necessary to employ a set of detailed, site

specific, and structure based reaction coordinates that do correlate with the

energy. The global order parameters Qu or Qp do not suffice for the detailed

description. We select a set of coarse-grained yet local-information-revealing

degrees of freedom encoded in the contact map. This is the simplest site spe-

cific measure properly capturing the structure of a conformation while relating

directly to the energy. A contact between residue i and j is considered to be

formed (given the value of 1 as opposed to 0 when no contact is formed) when

the distance of the respective Cβ atoms is less than 6.5Å. For each snapshot

obtained in the molecular dynamics we compute the contact map. The con-

tact principal component analysis[79] reflects the correlations between different

contact forming events. The covariance matrix to be diagonalized is not based

on the linear cartesian coordinates but rather on a contact map cprrelation

function

Ci,j,k,l = 〈(mij − 〈mij〉)(mkl − 〈mkl〉)〉 (6.7)

This “hypermatrix” encodes how an instance in which residue i and j form

a contact correlates to an instance where residues k and l form a contact.

To further facilitate the analysis, we coarse-grained the contacts by grouping

neighboring residues into groups of four residues, i.e a coarse-grained contract

matrix is calculated for each snapshot, with each of the independent elements

being either 0 or 1. The coarse grained contacts are reduced in number to

27 × (27 − 1)/2 = 378 and 31 × (31 − 1)/2 = 365 for cystatin and NtrC

respectively. The resulting reduced covariance matrices of dimension 378×378

and 465 × 465 are diagonalized and the eigenvalues are calculated. The two

most dominant principal components (PC) are plotted.
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6.2.4 Linear response theory (LRT)

As an alternative to the detailed sampling of the predictive Hamiltonian

in the next subsection, we can use the linear response theory to see how phos-

phorylation should induce conformational changes. Linear response theory

suggests that the magnitude of the conformational changes is a convolution of

the strength of the sequence specific perturbation times the susceptibility of

the corresponding degrees of freedom to make such changes [80, 81]. Statistical

thermodynamics shows the coefficient of the response of a system under small

external change is also linearly related to the fluctuations of the system sam-

pled at equilibrium. The most commonly known manifestation of this relation

explains how the heat capacity, a measurement of how energy change with the

temperature change of a system is related to energy fluctuations.

In our case, the linear response theory describes the changes of the contact

map using a relation of the form

〈δqi,j〉 =
∑

k,l

Ci,j,k,l 〈δVk,l〉 (6.8)

where δVk,l is the matrix of contact energy change upon phosphorylation. The

details of δV will be spelled out in detail in the next subsection. Nevertheless it

is easy to see that δV is a very local property in the contact representation. For

example, say residue 7 is the only residue that undergoes phosphorylation, we

will then only have nonzero contributions of δV for the elements δVk,l if k = 7

or l = 7, otherwise δVk,l = 0. By bridge in with the hypermatrix Ci,j,k,l, we

can see how the changes of contact energy between the pair i-j are correlated

with the changes of contact probability between the pair k-l at equilibrium.

Linear response analysis yields the change in probability of forming a certain

pair i-j when all the input contact energies change. Since δV is very local,

i.e., is an extremely sparse matrix, it follows that the structural responses are

primarily a combination of the largest eigen vectors of the diagonalization of

the hypermatrix C (the top PCs). The dominance of these modes reflects the

fact that those eigenvectors have largest amplitude of fluctuation. The linear

response theory is an efficient method to give a quick estimate of the changes
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caused by a perturbation. It is more accurate for systems that undergo small

changes than for systems that undergo complicated, more involved changes.

6.2.5 Modeling tertiary structure effects of phosphory-

lation

Can one predict the conformation of the phosphorylated protein given

knowledge of the folding landscape of the unphosphorylated protein only and

the changes in the modifiable residues? As a first step to answer the prediction

question, we developed a set of Hamiltonians H∗ based on the information of

the unphosphorylated form alone. We use the superscript ∗ to denote the

energy functions that are transferable to distinguish the two sets. We first

compare the difference of the ensembles generated by Hp and Hu and the dif-

ference of the ensembles generated by H∗
p and H∗

u. We thus constructed a

specific Hamiltonian constructed in the following form

H∗
u/p = H∗

c,L,u/p + Hc,S+M,u + Hbb (6.9)

The only difference between H∗
u/p and Hu lies in the long range energy

terms. All three Hamiltonians share the same backbone and the same short

and intermediate contact terms with each other. Here Hc,S+M,u is given by

Equation 6.3 and summed only over residues that are separated by twelve or

less residues in sequence space. This term biases the local secondary structure

of the protein by having only the native interactions of one of the forms and

hence yields largely native secondary structure. The tertiary structure of the

protein follows thus from the contact energy term. This contact energy term

arises from an optimized energy function used previously for protein structure

prediction. The details may be found in [2] and references therein. A 4-

letter code is utilized and the specific amino acids in each category denoted as

hydrophilic (Ala, Gly, Pro, Ser, Thr), hydrophobic (Cys, Ile, Leu, Met, Phe,

Trp, Tyr, Val), acidic (Asn, Asp, Gln, Glu) and basic (Arg, His, Lys). The

energy contributions of the contact potential to the total potential are given
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by a three-well potential.

H∗
c,L,u/p = −ε∗

∑

i<j−12

3
∑

k=1

γ∗(Pi, Pj, k)ck(N)U [rmin(k), rmax(k), rij] (6.10)

Here k is a function of the spatial distance rij of residues i and j and ck is

found from fitting the number of contacts of the protein in each of the regions

of k as a function of sequence length of the target protein. The interactions

are weighted by the interacting amino acids of class Pi and Pj and their spatial

distance. The parameters γ∗ have been optimized based on the principle of

minimal frustration. It is critical to note that γ∗ is a function of residue chem-

istry, thus γ∗u and γ∗p have different values. More specifically, γ∗
u was derived

from a structural database of ordinary, unphosphorylated proteins following

the training procedure for the parameters based on the quantitative form of

the minimal frustration principle[17]. The training maximizes the energy gap

over the variance. This quantity is a measure of how funneled the landscape

is towards a properly folded structure as compared to a random ensemble of

molten globule structures. The procedure for deriving the parameters has been

described in greater detail by Hardin et al. The contact function U controls

the shape and sharpness of the multi-well potential [17]. It is important to

stress that this term is heterogeneous but generic and transferable. As for γ∗
p ,

we have modeled the influence of the phosphorylation of an amino acid by sub-

stituting for the phosphorylated residue a supercharged glutamic acid residue.

This strategy was put forward in previous studies of phosphorylation of NFAT

where the structure was entirely unknown[70]. An analogous experimental ap-

proach based on the analogy between phosphoserine and glutamate has also

been demonstrated to work in several cases, notably in studies on the dematin

headpiece[82] and tumor supressor protein p53 [83]. These studies show that

the Ser-to-Glu mutant closely mimics the conformation of the phosphorylated

protein. The details of the implementation of the hyper-charged residue and

its interactions with other residues as well as robustness and caveats have

already been described by Shen et al.[70].

As H∗
u, H∗

p and Hu share the same values for all other energy terms, it
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would seem to be extremely demanding to try to predict the exact changes

based on this generic long range term alone. Still we will present quite a

successful demonstration of the importance of the generic long range potential

in predicting the phosphorylated conformation. The trends of conformational

changes generated by H∗
p observed in the simulations are consistent with the

trends generated by H∗
u and thus by experiments. Constant temperature

MD simulations with the Hamiltonian H∗
c,L were performed to predict the

structure of the phosphorylated protein. In these simulations the starting

structure was fixed to be the average NMR structure of the unphosphorylated

protein. Following this a total of 16000 × 2 = 32000 independent structures

were sampled.

6.3 Results for the Native Structure Based

Hamiltonians

6.3.1 Free energy landscape of phosphorylated proteins

To sensibly study global effects of phosphorylation using coarse-grained

models, the contact maps of the unphosphorylated and phosphorylated form

of the test proteins must be different, that is sufficiently large to be reflected

in the contact maps of the test proteins. The contact maps of the unphospho-

rylated and phosphorylated conformations of cystatin and NtrC are shown in

Fig. 6.1. The important conformational changes induced by phosphorylation

of cystatin do indeed present themselves in the contact map. Phosphoryla-

tion however introduces rather minor perturbations to the cystatin system.

The contact map of NtrC shows more substantial changes upon phosphoryla-

tion. The contacts of the phospho-residue in both the unphosphorylated and

phosphorylated conformations are identical, but phosphorylation apparently

introduced long-range effects that lead to the global conformational change of

NtrC.
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Figure 6.1: Contact maps of (a) cystatin and (b) NtrC and the corresponding
structures shown in (c) and (d). The average contact map for the unphospho-
rylated conformations are shown in the upper-triangle, while the contacts of
the phosphorylated protein forms are projected on the lower-triangle.
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Molecular dynamics simulations with the native structure based Hamilto-

nians were performed to obtain adequate sampling of the conformations of

cystatin and NtrC in their unphosphorylated and phosphorylated conforma-

tions. First, snapshots of MD simulations were sampled with the unphos-

phorylated native structure based Hamiltonian, Hu. For each snapshot, the

energy Eu as well as the order parameter Qu, which measures similarity to the

average structure of the unphosphorylated conformation, were calculated. The

probability distribution ρ was computed. This allows calculation of the free

energy, F (r) = −kBT ln(ρ(r)/ρ0). For the same snapshots obtained with Hu,

the energy Ep, which can be obtained from the Hamiltonian of the phospho-

rylated conformation, Hp, and the order parameter Qp were computed. The

2D free energy profiles of unphosphorylated cystatin and NtrC are plotted in

Fig. 6.2, 6.3. The set of (Eu, Qu) and (Ep, Qp) found for snapshots at various

Qu and Qp was used to obtain the free energy difference ∆F (r) = Fp(r)−Fu(r)

via the cumulant expansion equation.
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Figure 6.2: Free energy landscapes of cystatin folding for the unphosphory-
lated form (a) and the phosphorylated form (b). The white contour lines are
drawn to facilitate observation of the native and unfolded basins in the free
energy landscape. Arrows indicate the gradient of the free energy landscape
pointing in the direction of phosphorylation and scaled in size to representable
values. Snapshots of the conformations of unphosphorylated cystatin (green)
and the phosphorylated cystatin (purple) projected along the first two domi-
nant principal components in (c). The largest two principal components shown
in the contact map form (d,e)
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The gradient of ∆F (r) is also plotted in Fig. 6.2, 6.3 and is indicated by

the arrows on the free energy landscape at each position along the folding

order parameter. The length of the arrows indicate the relative magnitude

and direction of the change of ∆F (r). Also the same procedure is applied to

conformations sampled in molecular dynamics runs with the Hp Hamiltonian

as energy function. The results are plotted in Fig. 6.2,6.3.

Figure 6.3: Free energy landscapes of NtrC folding for the unphosphorylated
form (a) and the phosphorylated form (b). Arrows and contour lines are drawn
for better visualization. Snapshots of the unphosphorylated NtrC (green) and
the phosphorylated NtrC (purple) projected along the first two dominant prin-
cipal components in (c). The largest two principal components are shown in
the contact map form (d,e).
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The free energy profile for cystatin at a simulation temperature close to

the folding temperature of T = 1.0 shows a simple two-state folding process

with an unfolded and a folded basin (Fig. 6.2) separated by a barrier of about

4kBT . The coordinates in Qu, Qp of the two free energy minima for the un-

phosphorylated protein are given by (0.29, 0.25) for the unfolded basin and

(0.64, 0.52) for the folded basin. The free energy minimum for the folded state

of the phosphorylated cystatin is located at (0.49, 0.62). The gradient of the

free energy difference ∆F (r) is also shown as a vector that gives a good in-

dication at each value of the reaction coordinate, how phosphorylation effects

the profile. In the phase space region of Qu ≤ 0.5 the arrows point directly

into the direction of the phosphorylated protein. This is due to the fact that

before reaching the transition state, the two forms of the unphosphorylated

and phosphorylated protein can easily interchange. Even after crossing the

transition state, the direction of the gradient of both forms is almost the same

as before with the difference that most arrows do point slightly in the direction

of lower Qu, the unfolding direction. Figure 6.2 shows the free energy plot for

sampling of phosphorylated conformations with Hp. The resultant 2D free

energy landscape was similar to the landscape obtained with Hu and using

the cumulant expansion method to determine ∆F (r). Principal component

analysis was performed and the conformations were projected onto the first

two dominant principal components as shown in Fig. 6.2. For every projected

snapshot it is known, how folded the structure is and also if the snapshot

stems from a simulation of the unphosphorylated or phosphorylated protein.

The principal components therefore correspond to folding and phosphorylation

and we can name them the folding principal component PCfold and the phos-

phorylation principal component PCphos. PCfold measures the general folding

order with more negative PCfold indicating a more folded set of structures.

PCphos measures how much a conformation is similar to the phosphorylated

conformation, that is, the negative direction corresponds to the direction of

conformational changes that occur upon phosphorylation. Projection of the

changes of PCphos onto a contact map allows inspection of phosphorylation

induced contact changes. The PCphos contact map shows the dominating con-
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tact changes upon phosphorylation in blue, while contacts dominating in the

unphosphorylated form show up in red. Direct comparison of the structural

changes of the simulated ensembles (Fig. 6.2d) to the changes observed in the

contact map obtained from the pdb native structures of the unphosphorylated

and phosphorylated form (Fig. 6.1a) show excellent agreement, i.e. contacts

that are exclusively formed in the unphosphorylated form show up as red while

contacts that are solely formed upon phosphorylation show up in blue.

Three free energy minima are found in the free energy plot of unphos-

phorylated NtrC at temperature T = 1.0 (Fig. 6.3). This suggests that the

unphosphorylated NtrC is not a two-state folder but has a well-ordered in-

termediate at coordinates in Qu, Qp given by (0.7, 0.5). The native basin is

located at (0.87, 0.6) and the unfolded basin is at (0.17, 0.16). The gradient of

the free energy difference ∆F (r) is again plotted using arrows, that indicate

the direction and magnitude of the change in ∆F (r) upon phosphorylation.

The arrows show a largest gradient in the intermediate state, which would

suggest that transitions from the unphosphorylated conformation to the phos-

phorylated conformations of NtrC are prefered in the intermediate states of

folding. The free energy profile obtained from Hp for the phosphorylated NtrC

is also shown (Fig. 6.3). The folding is also 3-state with three main free energy

minima. Principal component analysis was performed on the snapshots ob-

tained in the molecular dynamics simulations with Hamiltonians Hu and Hp

(Fig. 6.3). It is apparent from the figure, that the 3-state folding behavior is

well captured by the principal component analysis. The first two components

are by themselves very useful in capturing the folding and the effects of phos-

phorylation respectively. We identify the principal component PCfold, which

provides a good indication of the degree of the folding order, where a more

negative PCfold indicates a more folded set of conformations. PCphos serves to

distinguish the unphosphorylated ensemble from the phosphorylated ensem-

ble. Projection of the first two principal components of snapshots is shown

in Fig. 6.3. The agreement with experiment is great, again. Fig. 6.3 proves

useful in identifying the trends of contact changes upon phosphorylation. We
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note that for a 3-state folder, the third principal component might also be

important. Plots of combinations of any two of the first three components

show 3-state behavior, however first two principal components do distinguish

the global folding and phosphorylation best.

6.3.2 Changes in free energy profiles between unphos-

phorylated and phosphorylated protein conforma-

tions

In vivo, proteins that become phosphorylated can have two sensibly dif-

ferent average conformations as revealed by X-ray crystallography or NMR

despite the two forms having obviously almost identical sequences (except for

the phospho-residues, the two sequences are identical). Normally sequences

with high sequence similarity adopt the same fold[84]. Thus it may seem ob-

vious to assume that in fact the unphosphorylated protein itself can assume

both conformations, the unphosphorylated conformation and the phosphory-

lated conformation. However, for phosphorylation to crisply act as a molecular

switch, the two conformations should be separated by a high barrier such that

the unphosphorylated protein will not likely spontaneously adopt the incor-

recy structure and hence function of the phosphorylated protein. It is natural

then to ask how difficult is it for the unphosphorylated protein to change from

the unphosphorylated basin to the phosphorylated basin. Nature achieves this

basin change by an enzymatic reaction that adds a phosphate group to the

residue susceptible for phosphorylation. If the energy landscape were perfectly

funneled with only a single set of native contacts (as for Hu and Hp)[3], the

free energy difference between the basins would be large if the two forms are

very different.

In this study the sampling was performed with two different Hamiltonians.

To understand the free energy profile for motion between the native (unphos-

phorylated and phosphorylated) basins, we use a simple approach to determine

the barrier location and barrier height. We estimate an effective barrier height
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by finding the minimum of the intersection of the two basins found in the free

energy profiles.

Figure 6.4: The illustration of free energy barrier estimation.
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A further simplification is made assuming an isotropic, harmonic basin

shape. The free energy profile around a basin with minimum position (Q1, Q2)

is assumed to be of the form of F (Qu, Qp) = a
2
[(Qu−Q1)

2+(Qp−Q2)
2]+F0. We

study the profile along the reaction coordinates that link two basins (Qu
1 , Q

u
2)

and (Qp
1, Q

p
2) with a simple straight line. Without loss of generality, we assume

the narrower of the two basins is at the origin, and the other basin is at

distance b = [(Qu
1 −Qp

1)
2 +(Qu

2 −Qp
2)

2]1/2. Their minima are at 0 and c = ∆F

respectively. Along this one dimensional coordinate we have F1(r) = a1
2
r2 and

F2(r) = a2
2
(r − b)2 + c under the condition a1 ≥ a2. As shown in Fig. 6.4 the

intercept occurs at

r# =
−a2b+ [a1a2b

2 + 2c(a1 − a2)]
1/2

a1 − a2

The barrier height is then given by F# = a1
2
r#2

. If a1 = a2 = a, then we

can compute r# = b/2 + c/(ab). For the case of cystatin, we found that

at T = 1, Qu = (0.64, 0.52) and Qp = (0.49, 0.62), we have b = 0.57, a

rough fit gives a = 500 and c = 0.01. As a result we found that the barrier

height of the free energy is F# = 20 for cystatin. Similarly we find at T =

0.8 × T room, Qu = (0.87, 0.6) and Qp = (0.52, 0.72), c = 0.5, b = 1.17, and

a = 600, we found F# = 90 for NtrC. The unit of barrier height is given

by kB × T ∼ 0.6 kcal/mol. Note that both numbers seem rather high. As

explained by Miyashita et al. [85] the local quadratic approximations are first

of all quite rough and should only lead to an approximate barrier with the

right order of magnitude. In reality, the barrier is much lower, because the

transition state is not necessarily located on the straight line connecting the

unphosphorylated basin with the phosphorylated basin. The height of the

barrier should be interpreted as follows: In the context of a perfectly funneled

landscape to a single minimum, the barrier located on the direct route between

the unphosphorylated basin and phosphorylated basin of cystatin would be so

large as to prevent an equilibrium of both conformations at the same time. We

see this allows the phosphorylation event to act as a strict switch. For NtrC this

barrier is several times larger and the only way for the unphosphorylated NtrC

to reach the phosphorylated basin should be by means of more sophisticated
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pathways including local unfolding. In our view it is clear that protein cracking

motions [85, 86] are involved in the change.

Prediction of structural changes in cystatin with

the Linear Response Method

Small structural changes in protein conformations upon pertubation can

be predicted by a linear response method, which relates the changes in residue-

residue interactions of the unphosphorylated Hamiltonian to the phosphory-

lated Hamiltonian. Experiments for cystatin indicate only minor, and hence

small, global conformational change upon phosphorylation[72]. The main

global changes of phosphorylation seen in the contact map in Fig. 6.1 include

different contacts of the helical region (residues 10-28 for helix 1) with the β-

like structures (residues 34-38 for strand 1, 40-46 for strand 2, 50-60 for strand

3, 80-93 for strand 4 and 100-105 for strand 5). There are also local rearrange-

ments of contacts in the β strand 4 and the preceding loop region (residues

68-80) including the phospho-residue. These trends of structural changes were

correctly captured by the PCA for the native-structure based simulations (see

PCfold in Fig. 6.2).
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Figure 6.5: The linear response prediction of the changes of contact formation
upon phosphorylation for cystatin.
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We applied the linear response method to estimate the structural changes

on the contact map of cystatin upon phosphorylating the protein. The result

of the prediction of the change of contact formation, 〈δqi,j〉, is shown in Fig. 6.5

as a contact map, which allows direct inspection of the residue-residue contact

changes. The linear response method results are in excellent agreement with

experiment. The global structural changes, i.e. the loss of contact formation

between the helix and the β-like regions, were well captured. Further, the lin-

ear response method predicted the same local changes in the loop region around

the phosphorylated residue as observed in experiments. Additionally, loss of

loop contacts in residue region 65-75 were predicted. This region changes con-

formation and exhibits a 1.1Å RMS deviation of the phosphorylated native

NMR structure from the unphosphorylated native NMR structure. It is clear

that this linear response method developed to capture structural changes upon

phosphorylation provides results consistent with experimental results.

Prediction of the phosphorylated conformation

with an AMH-like contact potential

It would be desirable to have a transferable Hamiltonian, that can pre-

dict the structure of any protein before and after phosphorylation from se-

quence information alone. Much progress towards de novo structure prediction

has already been made by our group with techniques like those employed in

reference[77] and by other groups with other styles of energy function[87, 88] .

However, the proteins that change under phosphorylation, as we see, probably

deviate from a strictly funneled landscape. This makes the problem of com-

plete de novo prediction more challenging than the usual. A much easier but

still challenging computational problem would be to determine the structure

of the phosphorylated test protein given only the structure of one form, say,

the unphosphorylated conformation, or vice versa. Here we show how this can

be done. To model how phosphorylation alters the tertiary structure of the

protein conformation, we designed a predictive Hamiltonian H∗
p, using short
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range structural elements found in one form along with generic tertiary inter-

actions. This Hamiltonian described in the method section is based on the

de novo AMW prediction scheme. We call it the “phosphopredictive AMH”.

The Hamiltonian H∗
p uses, as the sole input, the conformation of the un-

phosphorylated protein for only the short and intermediate range interactions.

This assures a strong bias in the short and medium class for local secondary

structure to form such elements as seen in the unphosphorylated protein. To

model the effect of phosphorylation we have introduced a tunable 3-well long

range (in sequence space) residue-residue contact potential. This potential

is modified to include interactions of the phospho-residue. The strategy to

model a phospho-residue as a supercharged glutamic acid residue in the long

range potential can now be tested. We call the resulting energy function the

“phosphopredictive” Hamiltonian.

The first set of molecular dynamics simulations with the phosphopredictive

Hamiltonian were performed with the original sequence of the unphosphory-

lated proteins, cystatin and NtrC. Since the input used is the contact map

of the unphosphorylated protein, the predictive Hamiltonian mainly samples

structures similar to those found in the folded basin of the unphosphorylated

proteins when the long range term is added as a perturbation term. Addi-

tionally, the energetic contributions of short, medium and long range poten-

tials were scaled to be equal in these simulations in keeping with estimates of

the contributions of these parts of the interaction for funneled proteins. To

check, whether the sampled structures were similar to the structures found

in the folded basins that would be obtained with the pure native structure

based Hamiltonians, these snapshots were projected onto the first two princi-

pal components obtained with the native structure based Hamiltonians. The

projection of the snapshots obtained with this Hamiltonian for NtrC are shown

in red in Fig. 6.6. Clearly the introduction of the long-range potential did not

alter the ability to sample native unphosphorylated conformations. These

projections serve as a baseline for the changes from results obtained with a

pure native-structure based Hamiltonian to those from a Hamiltonian with a
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heterogeneous contact potential.

Phosphorylation effects can be mimicked first by mutating the phospho-

residue simply to a glutamic acid. Thus a set of molecular dynamics simula-

tions with the predictive Hamiltonian based on a pure were performed with

precisely this modification in which the phospho-residue was mutated to a glu-

tamic acid. The snapshots for these simulations were projected onto the first

two principal components and the results for NtrC were plotted in black in

Fig. 6.6. Clearly, the snapshots only slightly deviate from the snapshots of the

folded state of the unphosphorylated protein. To test if using a non-additive

potential with water-mediated interactions will improve the quality of the pre-

diction of the phosphorylated state, the same simulations were performed with

the AMW potential [89]. Contact maps of each snapshots obtained with the

AMW were computed and projected onto the pricncipal components. The

AMW ensemble projection had almost identical values of PCphos and PCfold,

and hence contact formation, as did the ensemble obtained with the simple

contact based phosphopredictive Hamiltonian for the same glutamic acid mu-

tant. The RMSD’s of heavy atoms of both the predicted ensembles from the

NMR structure of the phosphorylated NtrC were similar. The AMW had on

average 0.1Å lower RMSDs from the NMR structure. Simulations with the

AMW did show only minor improvement over the AMC in this case.
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Figure 6.6: PCA of the contact maps for the conformations of NtrC obtained
at T=0.75 (the lower temperature facilitates sampling of the folded structures)
with the native structure based Hamiltonian and also the phosphopredictive
AMH. Also shown are the contact maps for phosphorylation principal compo-
nent for the ensembles obtained with the phosphopredictive Hamiltonian with
short:medium:long range energy ratio of 1:1:1 and 1:1:2.
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An important feature of our predictive Hamiltonian is the ability to “su-

percharge” the phospho-residue, that had been mutated into a glutamic acid.

It is possibly to assign different weights to the strength of interaction of the

supercharged residue with other residues. Simulations have been performed

for two different scalings of the strength of interaction, namely 1.4 and 2.0.

The difference in results obtained with Hamiltonians of these two charge scales

is subtle. We will explicitly show only the results for a charge of 1.4. The con-

tact maps of the structures sampled with the supercharged phosphopredictive

AMH were computed and projected onto the folding and phosphorylation prin-

cipal components (see Fig. 6.6, blue dots). The PCfold values of the sampled

conformations had similar PCfold values to both the values of the unphospho-

rylated and phosphorylated ensembles. The more informative principal com-

ponent, the phosphorylation principal component PCphos, was shifted towards

more negative values indicating enhanced formation of those contacts as seen

in the phosphorylated ensemble rather than the unphosphorylated ensemble.

To elucidate the predictive capability of the phosphopredictive Hamiltonian,

the contact maps corresponding to PCphos was plotted (Fig. 6.6). Defining

four main helices in the native NMR structure of the phosphorylated form of

NtrC (residues 15-27 correspond to helix 1, residues 36-42 to helix 2, residues

67-73 to helix 3 and residues 108-123 to helix 4), the contact map displays

long-range contact changes for the phospho-residue (residue 54) with the turn

region before helix 1, and also between the regions of helix 3 and helix 4, that

are similar to the changes in contact formation seen for the vanilla Hamil-

tonian. The contact changes between the phospho-residue and the helix 2

region were not seen. Apart from those, the predictive Hamiltonian captured

the long-range effects of the modified phospho-residue in good agreement with

the experimental determinations. To measure the quality of the structures

sampled with the phosphopredictive AMH, the RMSD of the heavy atoms

from their native NMR structure were computed. The average RMS deviation

from the NMR structure of the phosphorylated NtrC was about 2.7Å with a

standard deviation of 0.1Å. Since the principal component analysis indicated

a closer resemblance to the unphosphorylated ensemble rather than the phos-
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phorylated ensemble, the RMSD of heavy atoms from the NMR structure of

the unphosphorylated NtrC were also computed. The average RMSD was

about 2.3Å with a standard deviation of 0.1Å. This result is not surprising

due to the fact that the short and medium range structure is strongly biased

towards the native structure of the unphosphorylated form. A more valid ass-

esment of the quality of the predicted structure can be made by comparing the

RMSD of the predicted ensemble from the respective ensembles, that would

be obtained, when the NMR structures and sequences served as the sole input

for the phosphopredictive Hamiltonian (see Fig. 6.6, red dots for the unphos-

phorylated ensemble and cyan dots for the phosphorylated ensemble). We call

these ensembles the baseline ensembles. Both baseline ensembles have similar

projections on the principal component space compared with their respective

ensembles obtained with the vanilla Hamiltonians. The predicted ensemble

(blue) has an average of about 2.5Å RMSD from both baseline ensembles, the

phosphorylated and unphosphorylated one.

The simulations, so far, were performed with short, medium and long range

contributions to the energy that are kept equal. This fact is motivated by the

findings of Saven and Wolynes [18], who have estimated that in protein folding

the contribution to the native energy arising from specific local interactions

is comparable to those arising from specific tertiary interactions. It is there-

fore interesting to see whether different weights of the energetic contribution

of the long range interactions might improve the predictions. Several sets of

simulations were performed with different total strength of interactions rang-

ing from half the original strength up to twice as large. Most simulations did

not show any better structures than what could be predicted using simula-

tions of the glutamic acid mutant only. Only the results for simulations with

twice the strength of the long range interactions are therfore shown in Fig. 6.6.

These results display the most improvement for the prediction results. The

contact maps were computed and projected onto the folding and phosphory-

lation principal components (see Fig. 6.6, yellow dots). On a residue-residue

contact level, this Hamiltonian best described the contact changes observed



149

upon phosphorylation of NtrC. The scaled long range interactions did perturb

the local structure of the protein. This perturbed local structure leads to an

increase of the RMS deviations from the phosphorylated NMR structure. The

RMS deviations from the native NMR structure of the phosphorylated form

were slightly higher than the deviations observed with the original phosphopre-

dictive Hamiltonian with an average RMSD of 3.0Å from the NMR structure

and a standard deviation of 0.1 Å. An overlay of several predicted structures

is shown in Fig. 6.7 for visualization.
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Figure 6.7: Overlay of a typical structure of NtrC (blue) obtained with the
phosphopredictive Hamiltonian with the native NMR structure of the phos-
phorylated form of NtrC (purple) as well as the a representative structure
(red), that is obtained with the same Hamiltonian for the sequence of the
unphosphorylated NtrC.
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Conclusions

We showed simulations with the native structure based Hamiltonians Hu

and Hp. While unphosphorylated and phosphorylated conformations both

pre-exist on the landscape, the change of the landscape by post translational

modification is needed to allow the different structure ensembles to compete.

To relate the landscapes of the forms of a protein one can calculate the free

energy differences using the cumulant expansion method (see Figures 6.2, 6.3).

The perturbation approach shows how phosphorylation changes the free en-

ergy profile by tilting the landscape such that the phosphorylated basin was

favored. The calculations show evolution has designed the unphosphorylated

protein not to adopt the phosphorylated conformation (until the protein gets

modified through phosphorylation) despite the fact that the RMSD between

these conformations is not very large. For a simply funneled completely min-

imally frustrated protein landscape such as for our Hamiltonians Hu and Hp,

the unphosphorylated protein would rarely adopt the structure of the phos-

phorylated protein without post-translational modification. Partial unfolding

mechanism are likely required for these dramatic conformational switching

events in NtrC.

Principal component analysis allows us to visualize the conformations of

the ensembles of unphosphorylated and phosphorylated test proteins by pro-

jecting all changes onto the first two dominant components. As shown in

Fig. 6.2, 6.3, PCphos especially indicates the major residue contacts that

changed upon phosphorylation. This contact map compares quite well to

the contact map obtained from the linear response theory prediction of the

changes (Fig. 6.2, 6.5).

Finally we used a structure prediction Hamiltonian, H∗
p, to predict the fi-

nal phosphorylated conformation itself for these two systems. This algorithm

successfully captures both the trends of conformational change of the unphos-

phorylated protein upon phosphorylation that are observed in experiments for

the long range contacts of the phospho-residue and gives indeed the dominant
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structures. The phospho-predictive AMH equips us with a powerful tool to

predict the structure of phosphorylated proteins given information on the un-

phosphorylated conformation, or vice versa, and certainly pinpoints the major

residue contact shifts. The Hamiltonian is general and captures the contact

changes seen in small conformational changes as well as large conformational

changes.
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