
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Parallel Layout Engines: Synthesis and Optimization of Tree Traversals

Permalink
https://escholarship.org/uc/item/9rq86806

Author
Meyerovich, Leo

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9rq86806
https://escholarship.org
http://www.cdlib.org/

Parallel Layout Engines: Synthesis and Optimization of Tree Traversals

by

Leo Alexander Meyerovich

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Rastislav Bod́ık, Chair
Professor George Necula
Professor David Wessel

Fall 2013

Parallel Layout Engines: Synthesis and Optimization of Tree Traversals

Copyright 2013
by

Leo Alexander Meyerovich

1

Abstract

Parallel Layout Engines: Synthesis and Optimization of Tree Traversals

by

Leo Alexander Meyerovich

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Rastislav Bod́ık, Chair

Mobile web browsers and data visualization tools require a performance boost. Paralleliza-
tion poses an opportunity because commodity computers feature fast and energy-e�cient
multicore, subword-SIMD, and GPU hardware. However, layout engines in both browsers
and visualizations have resisted parallelization thus far. This thesis introduces techniques
for parallel computing over trees and applies them to generating layout engines.

Our solution is twofold. First, we show how to specify layout languages in the attribute
grammar model of constraints over trees. Second, we address outstanding challenges in par-
allelizing attribute grammars and computations over trees. Our resulting attribute grammar
compiler generates layout engines for various layout languages and parallel hardware.

We provide several individual contributions:

1. We specify the functional and parallel behavior of common layout language primitives.

2. We present a language for scheduling parallel tree traversals and a static verifier for
ensuring a schedule will solve the attributes of an arbitrary layout in a safe order.

3. We introduce a parallel programming model where programmers may partially specify
the parallel schedule and call an optimizing synthesizer to complete the schedule.

4. We design a scheduling algorithm that is fast and modular over scheduling constructs.

5. We optimize tree traversals for SIMD hardware by automatically staging dynamic
memory allocation and clustering diverging tasks.

6. We optimize parallel tree traversals for MIMD architectures through a load-balancing
heuristic that approximates work stealing.

To evaluate our approach, we present two case studies. First, we generated the first parallel
webpage layout engine that can for the most part render complex sites such as Wikipedia.
Second, we generated interactive data visualizations that support up to 1,000,000 data points
in real-time. Both case studies have been further validated industrially.

i

“The Hitchhiker’s Guide to the Galaxy has this to say on the subject of flying. There is an
art, it says, or rather a knack to flying. The knack lies in learning how to throw yourself at
the ground and miss. Pick a nice day, it suggests, and try it. The first part is easy. All it

requires is simply the ability to throw yourself forward with all your weight, and the
willingness not to mind that it’s going to hurt. That is, it’s going to hurt if you fail to miss
the ground. Most people fail to miss the ground, and if they are really trying properly, the
likelihood is that they will fail to miss it fairly hard. Clearly, it’s the second point, the

missing, which presents the di�culties.”

Life, the Universe, and Everything – Douglas Adams

ii

Contents

Contents ii

List of Figures iv

List of Tables vii

1 Introduction 1
1.1 Dissertation Overview . 2
1.2 Motivating Example . 3
1.3 Mechanizing Layout Languages as Sugared Attribute Grammars 7
1.4 Parallel Layout with Checkable Static Tree Traversal Schedules 8
1.5 Parallel Schedule Synthesis . 11
1.6 Optimizing Parallel Tree Traversals for MIMD and SIMD 13
1.7 Collaborators and Publications . 14

2 Mechanizing Layout Languages with Extended Attribute Grammars 15
2.1 Motivation and Approach . 15
2.2 Background: Layout with Classical Attribute Grammar 17
2.3 Desugaring Loops and Other Modern Constructs 21
2.4 Evaluation: Mechanized Layout Features . 28
2.5 Related Work . 38

3 Parallel Layout with Checkable Static Tree Traversal Schedules 40
3.1 Design Goals . 40
3.2 Language of Static Schedules . 41
3.3 Desugaring Loops . 49
3.4 Verification . 55
3.5 Case Study: Automatically Staging Memory Allocation for SIMD Rendering 59
3.6 Evaluation: Layout as Structured Parallel Visits 63
3.7 Related Work . 66

4 Parallel Schedule Synthesis 70
4.1 Computer-Aided Programming with Schedule Sketching 71

iii

4.2 Generalizing Holes to Syntactic Unification 72
4.3 Fast Algorithm for Schedule Synthesis . 74
4.4 Schedule Enumeration . 76
4.5 Evaluation . 79
4.6 Related Work . 81

5 Optimizing Parallel Tree Traversals for MIMD and SIMD 83
5.1 MIMD: Semi-static Work Stealing . 84
5.2 SIMD Background: Level-Synchronous Breadth-First Tree Traversal 90
5.3 Input-dependent Clustering for SIMD Evaluation 93
5.4 Evaluation . 97
5.5 Related Work . 105

6 Conclusion 108

Bibliography 109

A Layout Grammars 115
A.1 Sunburst . 115
A.2 Table Layout . 117
A.3 Multiple Time Series . 124
A.4 Tree Map . 129
A.5 Box Model . 133

iv

List of Figures

1.1 Layout language of horizontal boxes. Input layout tree, solved output, and
parts of a statically scheduled and sequential layout engine. 4

1.2 Attribute grammar defining a layout language of horizontal boxes. 7

2.1 Layout engine architecture. 17
2.2 For a language of horizontal boxes: (a) visualized solution, (b) input tree to solve,

and (c) attribute grammar specifying the layout language. Specification language
of attribute grammars shown in (c). The language of attribute grammars is shown
in (d). 18

2.3 Dynamic data dependency graphs and evaluation. Shown for the con-
straint tree in Figure 2.2 (a). Circles denote attributes, with black circles denot-
ing attributes whose dependencies are all resolved, such as input() invocations.
Thin lines depict data dependencies and thick lines show production derivations.
Chart (b) shows the dependency graph resulting from evaluating all source nodes
and treating them as resolved. 20

2.4 Dynamic attribute grammar evaluator. It selects attributes in a safe order
by dynamically removing dependency edges as they are resolved. 20

2.5 EBNF syntax for key forms of the functional specification language in
Section 2.3. We omit semicolons and other decorations; see the examples for
more detailed forms. 21

2.6 Interfaces for tree grammars. Subfigures show manually encoding multiple
production right-hand sides, an encoding that uses a Box non-terminal for indi-
rection, and the high-level encoding using interfaces and classes. 23

2.7 Input tree as a graph with labeled nodes and edges. Specified in the
JSON notation. 24

2.8 Input tree as graph with labeled nodes and edges. Specified in the JSON
notation. 25

2.9 Trait construct. Adds shared rendering code to the HBox class. 26
2.10 Input tree as graph with labeled nodes and edges. Specified in the JSON

notation. 26

v

2.11 Visualization screenshots. All except are interactive or animated. Each one
was declaratively specified with our extended form of attribute grammars and
automatically parallelized. Labels describe whether GPU or multicore code gen-
eration was used. 29

2.12 Document layout screenshots. 30
2.13 Document layout screenshots. 34
2.14 Specifying dynamic dependencies. 35

3.1 Sequentially scheduled and compiled layout engine for H-AG. 43
3.2 Nested traversal for line breaking. The two paragraphs are traversed in

parallel as part of a preorder traversal. A sequential recursive traversal places the
words within a paragraph. Circles denote nested regions and arrows show data
dependencies between nodes and/or regions. 45

3.3 Scheduled and compiled layout engine for H-AG. 46
3.4 Parallel traversal. Shown for constraint tree in Figure 2.2. Circles denote

attributes, with black circles denoting attributes with resolved dependencies such
as input()s. Thin lines show data dependencies and thick lines show production
derivations. First diagram shows dependencies followed by first traversal, and
second for the following traversal. 47

3.5 Loop scheduling. The loops may be scheduled for the same traversal if both
attributes a and b are available ahead of time. 50

3.6 Rewrite rules for loop reduction. Cases of J·K that simply recur are elided. . 52
3.7 Correctness axioms for checking a schedule. 56
3.8 Inter- and intra-region checkers for parPre. 57
3.9 Partitioning of a library function that uses dynamic memory allocation

into parallelizable stages. 60
3.10 Use of dynamic memory allocation in a grammar for rendering two

circles. 61
3.11 Staged parallel memory allocation as two tree traversals. The first pass

is a parallel bottom-up traversal that computes the sum of allocation requests,
and the second pass is a parallel top-down traversal that computes bu↵er indices.
Lines with arrows indicate dynamic data dependencies. 62

4.1 Trace of synthesizing schedules for H-AG. Note that scheduling of “||” does
not use the optional greedy heuristic. 75

4.2 Optimized synthesis algorithm. Lines 10,15,18: early unification with sketches.
Lines 8,27: incremental checking. Line 26: iterative refinement. Line 31: toggle
minimal length schedules. Lines 12,28: pruning of traversals with unsatisfiable
dependencies. 78

4.3 Synthesizer speed. 1st is the time to first schedule without using a sketch,
sketch is the time to first schedule using a sketch of the traversal sequence, found
is the number of schedules found, and avg is the average time to find a sketch. . 79

vi

5.1 Two representations of the same tree: Naıve pointer-based and opti-
mized. The optimized version employs packing, breadth-first layout, and pointer
compression via relative indexing. 84

5.2 Simulation of work stealing. Top-down simulated tree traversal of a tiled tree
by three processors in three steps. 86

5.3 Simulation of work stealing on Wikipedia. Colors depict claiming pro-
cessor and dotted boundaries indict subtree steals. Top-left boxes measure the
percentage of steps an individual processor spent stealing rather than computing. 87

5.4 Temporal cache misses for simulated work stealing over multiple traver-
sals. Simulation of four threads on Wikipedia. Blue shade represents a hit and
red a miss. 67% of the nodes were misses. Top-left boxes the percent of steps
di↵erent processors spent stealing. 88

5.5 Dynamic work stealing for three traversals. Tiles are claimed by di↵erent
processors in di↵erent traversals. 89

5.6 Semi-static work stealing. Dynamic schedule for first traversal is reused for
subsequent ones. 89

5.7 SIMD tree traversal as level-synchronous breadth-first iteration with
corresponding structure-split data representation. 91

5.8 Simulated vectorization speedup for di↵erent schedules. Successive dia-
grams increase the number of vector lanes by a power of two. 94

5.9 Clustered parallel preorder traversal. 95
5.10 Loop transformations to exploit clustering for vectorization. 95
5.11 Sequential and parallel benefits of breadth-first layout and staged allo-

cation. Allocation is merged into the 4th stage and bu↵er indexing and tessel-
lation form the rendering pass. JavaScript variants use HTML5 canvas drawing
primitives while WebCL does not include WebGL painting time (< 5ms). Thin
vertical bars indicate standard deviation and horizontal bars show deadlines for
animation and hand-eye interaction. 99

5.12 Multicore versus GPU acceleration of layout. Benchmark on an early
version of the treemap visualization and does not include rendering pass. 101

5.13 Compression ratio for di↵erent CSS clusterings. Bars depict compression
ratio (number of clusters over number of nodes). Recursive clustering is for the
reduce pattern, level-only for the map pattern. ID is an identifier set by the
C3 browser for nodes sharing the same style parse information while value is by
clustering on actual style field values. 101

5.14 Speedups from clustering on webpage layout. Run on a 2.66GHz Intel Core
i7 (GCC 4.5.3 with flags -O3 -combine -msse4.2) and does not preprocessing time. 103

5.15 Performance/Watt increase for clustered webpage layout. 104
5.16 Impact of data relayout time on total CSS speedup. Bars depict layout

pass times. Speedup lines show the impact of including clustering preprocessing
time. 105

vii

List of Tables

3.1 Lines of code before/after invoking the “@” macro. 65

5.1 Speedups and strong scaling across di↵erent schedulers and hardware.
Baseline is a sequential traversal with no data layout optimizations. FTL is our
multicore tree traversal library. Left columns show total speedup (including data
layout optimizations by our code generator) and right columns show just parallel
speedup. Server = Opteron 2356, laptop = Intel Core i7, mobile = Atom 330. . 98

5.2 Parallel CSS layout engine. Run on a 2356 Opteron. 98

viii

Acknowledgments

When we first started, most people thought that parallelizing the browser was an impos-
sible idea. That sounded like an idea that should be proven wrong, and I’ve been lucky
to work with mentors who could keep such research paths clear: Ras Bodik and Shriram
Krishnamurthi, and over several eye-opening summers, Roger Webster, Ben Livshits, Todd
Mytkowicz, Wolfram Schulte, and Herman Venter.

All of the best work was achieved through close collaboration with others: Ari Rabkin,
Raluca Sauciuc, and our ever-wonderful research assistants, Matthew Torok and Eric Atkin-
son. I hope to have been even a small fraction as helpful to the students in the Berkeley
Parallelism Lab and the Open Source Quality group as they were to me. Our industrial
collaborators were key to navigating the mysteries of browser internals and parallel archi-
tectures: the Mozilla team including Rob O’Callahan, Dave Herman, Brendan Eich, Boris
Zbarsky, Intel researchers including Moh Haghighat and Gans Srinivasa, Nokia researchers
such as Kimmo Kuusilinna and Per Ljung, and Samsung researchers including Tasneem
Brutch, and Steven Eliuk. And, of course, thank you to the committee for bearing through
this process with continued enthusiasm: George Necula, Krste Asanovic, and David Wessel.

Finally, to my family and Julie, Jono, and Lee: thank you for having traveled with me
this far, and I’m excited to see what happens next!

1

Chapter 1

Introduction

At the most practical level, this thesis examines how to parallelize a language for laying out
visualizations. By specifying important subsets of layout languages with a restricted form
of constraints over trees, we find we can abstract the problem to automatically parallelizing
systems of constraints. Our solution combines language design, program synthesis, and high-
performance algorithms. We introduce innovatations in each of these areas in order to build
our end-to-end system.

Two important applications of parallel layout guide our work. First, mobile web browsers
need more e�cient layout engines. Power and energy constraints prevent browsers from run-
ning on increasingly small devices but with the performance expected on today’s bigger form
factors. Second, as part of the rise of data science, interactive visualizations need to support
magnitudes bigger datasets. We reduce the challenge behind both case studies to that of par-
allelization. For future small devices, strongly scaling parallelization provides a power- and
energy-e�cient way to exploit increasing processor capabilities (Asanovic et al., 2006; Jones
et al., 2009). For scaling visualizations to bigger datasets, weakly scaling parallelization
enables the visualizable dataset size to increase with the number of parallel processors.

Parallelizing layout faces a variety of technical challenges. First, correctly implementing
even a sequential layout language already challenges developers. Second, performance con-
cerns about runtime overheads, task scheduling, and data representation requires optimizing
parallel tree traversals for di↵erent parallel hardware architectures. Third, our optimiza-
tions, in turn, impact the form of parallelism that our system must support reasoning about.
Finally, in building our system, we needed to optimize the performance of the schedule
synthesis algorithm. Prominently, we needed to extend the synthesizer to support di↵erent
types of parallelism.

Our solution is a synthesizer that statically schedules an attribute grammar as a compo-
sition of parallel tree traversals. In the context of a web browser, the input to the synthesizer
is the CSS layout language’s semantics. The synthesizer generates a sequence of parallel tree
traversals such that, given any syntactically well-formed tree with some attributes on nodes
already defined, running the fixed schedule will solve all the remaining attributes accord-
ing to CSS’s attribute grammar. A compiler then takes the schedule and code generates a

CHAPTER 1. INTRODUCTION 2

layout engine that implements it with algorithms optimized for di↵erent parallel hardware
architectures.

In contrast to our approach, current industrial systems rely upon natural language spec-
ifications and reference implementations. Informal specifications su↵er from ambiguous and
conflicting definitions. Reference implementations often require reverse engineering to under-
stand. Relying upon informal specifications and general reference implementations presents
challenges in extending, reimplementing, and aggressively optimizing a layout language.

Achieving automatic parallelization for our applications required novel techniques. First,
our language of tree traversal schedules had to be flexible enough to describe useful paral-
lelism in layout language constructs yet restricted enough to facilitate optimization. Second,
we needed to create an algorithm to assist in verifying and even inferring the parallel sched-
ule for an attribute grammar. Furthermore, as specifications grew in size, we needed new
linguistic constructs to combine manual and automatic scheduling.

Finally, we had to optimize the data representation and runtime schedule of tree traver-
sals in order to see significant speedups from parallelization. For SIMD architectures, we
created new staged dynamic memory allocation and divergent task clustering techniques.
We optimized for MIMD architectures by designing a semi-static scheduler that combines
the low overheads and temporal data locality of static scheduling with the load balancing
benefits of dynamic scheduling.

1.1 Dissertation Overview

The remainder of this chapter presents an example of how to build a layout language using
existing techniques and then demonstrates how to improve the process with the contributions
of each chapter. First, we outline the sequence of improvements.

Chapter 2: Mechanizing Layout Languages with Extended Attribute Gram-
mars. Chapter 2 overviews the attribute grammar formalism and describes how we use it
to address the question of how to specify the functional behavior of common layout lan-
guage constructs. We found attribute grammars to be inexpressive, e.g., lacking facilities
for loops and code sharing; therefore, Chapter 2 also introduces expressive extensions to
attribute grammars and how we reduce reasoning about the extensions to reasoning about
more canonical attribute grammars.

Chapter 3: Parallel Layout with Checkable Static Tree Traversal Schedules.
Chapter 3 examines the structure of parallelism latent within layout solving. To express the
parallelism, we augmented the attribute grammar formalism with a language for scheduling
parallel tree traversals. Whereas an attribute grammar defines attribute values as a system of
directed constraints, the scheduling language defines the order to execute those constraints.
Using the scheduling language, Chapter 3 identifies and formalizes latent parallelism within
common layout language primitives. Finally, in the spirit of the usual attribute grammar
verification procedure, Chapter 3 introduces a static schedule verifier that verifies that solving
any layout according to a parallel schedule will solve all of the layout attributes without races.

CHAPTER 1. INTRODUCTION 3

Chapter 4: Parallel Schedule Synthesis. Manually designing parallel schedules
for our layout languages proved di�cult. Small changes in an attribute grammar may re-
quire large changes in the schedule. These changes are non-obvious, tedious, and can even
introduce critical performance bugs. Chapter 4 presents a new parallel programming model
to address these problems and a schedule synthesis algorithm to perform the underlying
automation. Programmers partially specify parts of the parallelization scheme that concerns
them and then call an optimizing synthesizer to schedule the remainder. For example, the
programmer may choose to specify that the first tree traversal iterates top-down and in
parallel over the tree and that the last traversal is sequential and in order, and then rely
upon the synthesizer to schedule the remaining traversals and what node attributes to com-
pute within each traversal. The synthesizer will find a correct and optimized completion
of the schedule. If it cannot, the synthesizer either signals the presence of potential logical
bugs in the functional specification, e.g., missing definitions, or details the unorderable data
dependencies in the partial schedule, e.g., cycles.

Chapter 5: Optimizing Parallel Tree Traversals for SIMD and MIMD. The last
chapter examines how to optimize parallel tree traversals for SIMD and MIMD hardware.
Applying preexisting techniques yielded few speedups and even slowdowns. For both types
of hardware, we found the need to optimize the data representation of the tree and the order
of nodes within one traversal. For SIMD architectures, we stage parallel memory allocation
(Chapter 3) and, in this chapter, show how to cluster tasks that would otherwise diverge
based on input. For MIMD architectures, we show how to combine the load balancing benefits
of dynamic scheduling with the low-overheads and temporal locality of static scheduling. Our
MIMD approach is semi-static. It partitions the tree into tiles and schedules the traversal
over tiles with a heuristic that approximates work stealing.

1.2 Motivating Example

We present most of our techniques in terms of implementing H-AG, a simple layout language
for positioning nested horizontal boxes. Figure 1.1 shows key concepts for a layout language.
A layout engine implements a layout language and takes as input an attributed tree. For
example, leaf nodes may be letters, images, or other media. Leaf nodes likely explicitly
define their width and height attributes, but leave their position implicit. An intermediate
box would leave both its size and position implicit. Figure 1.1a shows such a partially
attributed tree. By defining the intermediate nodes to be horizontal boxes, the designer
implicitly constrains their children to be positioned side-by-side, and their width to be the
sum of their children widths. Di↵erent layout languages support di↵erent types of nodes.

The job of the layout engine is to compute all of the undefined attribute values (Fig-
ure 1.1b). The input format is typically more sophisticated, e.g., allows percentages rather
than just absolute values. Likewise, the solution may solve for more than just the above
attributes, e.g., by solving details about borders, margins, and how to render graphics. Be-
cause attribute values may depend upon one another, the challenge is to determine a correct

CHAPTER 1. INTRODUCTION 4

1 <S>
2 <HBox>
3 <HBox>
4 <Leaf w=20 h=5/>
5 <Leaf w=15 h=7/>
6 </HBox>
7 <Leaf w=15 h=5/>
8 </HBox>
9 </S>

(a) Input tree.

1 <S>
2 <HBox w=50 h=7 x=0 y=0>
3 <HBox w=35 h=7 x=0 y=0>
4 <Leaf w=20 h=5 x =0 y=0/>
5 <Leaf w=15 h=7 x=20 y=0/>
6 </HBox>
7 <Leaf w=15 h=5 x=35 y=0/>
8 </HBox>
9 </S>

(b) Output tree.

1 annota t eS i z e s (t r e e . root) ;
2 annota t ePos i t i on s (t r e e . root) ;

(c) Schedule of traversals.

1 def annota t eS i z e s (v) :
2 i f v . type == HBox :
3 annota t eS i z e s (v . c h i l d [0])
4 annota t eS i z e s (v . c h i l d [1])
5 v .w = v . ch i l d [0] .w + v . ch i l d [1] .w
6 v . h = max(v . c h i l d [0] . h , v . c h i l d [1] . h)
7 e l i f v . type == S :
8 annota t eS i z e s (v . c h i l d [0])
9 v .w = v . ch i l d [0] .w

10 v . h = v . c h i l d [0] . h

(d) Traversal 1 (bottom-up).

1 def annota t ePos i t i on s (v) :
2 i f v . type == HBox :
3 v . c h i l d [0] . x = v . x
4 v . c h i l d [1] . x = v . x + v . c h i l d [0] .w
5 v . c h i l d [0] . y = 0
6 v . c h i l d [1] . y = 0
7 annota t ePos i t i on s (v . c h i l d [0])
8 annota t ePos i t i on s (v . c h i l d [1])
9 e l i f v . type == S :

10 v . c h i l d [0] . x = 0
11 v . c h i l d [0] . y = 0
12 annota t ePos i t i on s (v . c h i l d [0])

(e) Traversal 2 (top-down).

Figure 1.1: Layout language of horizontal boxes. Input layout tree, solved output, and
parts of a statically scheduled and sequential layout engine.

order for solving the di↵erent attributes.
Figures 1.1c–e provide intuition for the implementation of a typical layout engine. Given

any tree of horizontal boxes to lay out, the layout engine solves all the attributes in two
traversals (Figure 1.1c). The first traversal computes all of the size attributes (Figure 1.1d);
the second computes all of the positions (Figure 1.1e). The second traversals requires size
information to compute the positions. Therefore, sequentially sequencing the traversals
guarantees that all of the sizes are available before the second traversal runs. The first
traversal recursively iterates over the tree to assign all of the width and height attributes
based on neighboring attributes (Figure 1.1d). Due to data dependencies between attributes,
the traversal only computes the attributes during the bottom-up phase of the recursion.

We call the combination of traversals and the order of attributes to compute within a
traversal the schedule. A dynamic scheduler makes the decisions at runtime. Language
implementors avoid dynamic scheduling due to high overheads from tracking every instance
of every attribute and when individual data dependencies between attributes are satisfied.
Our example uses the more common and e�cient static scheduling approach, where the
relative order of node traversals and attribute computations are fixed at compile time. Note

CHAPTER 1. INTRODUCTION 5

that because the input tree is not known statically, a static schedule must be correct for all
possible input trees. Finally, as schedules such as H-AG’s typically require multiple traversals,
we further define a visit’s schedule as the schedule for one tree traversal: the order of node
access within the traversal and the order that node attributes are computed within a visit
to the node.

Much of our work is in determining how to find e�cient schedules and optimize their
implementation. Optimizing implementations requires determining how to represent a tree
in memory and the order to traverse di↵erent nodes on di↵erent parallel architectures.

Why Parallelization

Layout engine developers, who have already optimized the low-hanging fruit, face diminishing
returns from optimization e↵orts. This thesis explore a new direction by exploiting the shift
to parallel architectures in commodity hardware. We explore two forms of parallelization:
weak scaling and strong scaling. To optimize for the increasing workload sizes (weak scaling),
we must identify significant amounts of concurrency. To optimize for more processors (strong
scaling), we need to better utilize modern hardware. We briefly explain these points in turn.

Commodity parallel hardware is already available; it is generally more e�cient then
sequential alternatives. First, instead of using sequential optimizations with diminishing
returns, parallel hardware duplicates simple designs for more linear scaling. For example,
if the number of available transistors doubles, a sequential optimization might apply the
extra transistors towards an additional 10% realizable performance improvement through
a more clever instruction scheduler. The parallel architecture, however, would achieve a
2X improvement by doubling the number of processors. Second, data parallel architectures
improve power and energy e�ciency for repeated operations. For example, when adding
two lists, the computer can fetch data in contiguous segments; instead of decoding a plus
instruction for each pairwise sum, it need only decode a single vector addition instruction.
We thus focused on exploiting parallelism, and, when possible, data parallelism in particular.

Achieving weak and strong scaling is critical for optimizing the performance of web
browsers and data visualization:

1. Weak scaling. Layout engines should support bigger input trees. Consider data
visualization, where data scientists analyze increasingly large datasets. They need
interactive visualizations to likewise scale, which corresponds to handling bigger input
trees in our system. Weak scaling fixes the workload size per processor and measures
the performance for di↵erent workload sizes. Our challenge for achieving weak scaling
was to identify significant sources of parallelism that relate to the workload size: data
parallelism.

2. Strong scaling. Existing layouts require better performance. For example, we want
to run today’s webpages on smaller devices with lower power budgets. Strong scaling
fixes the workload and measures the performance for di↵erent numbers of processors.

CHAPTER 1. INTRODUCTION 6

Thus, in addition to identifying parallelism in layout, we must also achieve an e�cient
implementation.

In summary, hardware trends increasingly point towards parallel architectures, and layout
engines require both strong and weak scaling.

Why Schedule Synthesis

Schedule synthesis addresses several challenges in parallel programming of layout. Parallel
layout was previously proposed by others, such as Brown (1988), but never fully implemented
and adopted. This is not for lack of interest. Our proposals for parallelizing components
upstream and downstream from the layout solver (Jones et al., 2009; Meyerovich and Bod́ık,
2010) are being pursued by commercial browser vendors. We have created a schedule syn-
thesizer to solve several problems that have arisen:

1. Reasoning about data dependencies. Manually editing both the functional spec-
ification and the parallel schedule requires non-trivial reasoning. A small localized
change to H-AG’s semantics may add a single local data dependency, e.g., an element’s
height depending on a width, but for an approximation of the global dependency
graph, the change may cascade into adding many non-local transitive edges. In turn,
the parallel schedule may require many global refactorings, e.g., separating width and
height computations into separate traversals. Manually reasoning about and applying
schedule changes induced by data dependency modifications is non-trivial.

2. Aggressive low-level optimization. Manually implementing a parallel schedule is
di�cult even if the schedule is fixed. Parallelization is key as a means to improving
performance, so a parallel implementation should be faster than existing sequentially-
optimized traversals. We found three key classes of optimizations to support: task
scheduling, data representation, and existing sequential optimizations. Synthesis is
attractive even for sequential tree traversals because manually writing aggressive opti-
mizations requires many man-years of engineering e↵ort.

3. Reasoning about parallel schedules. We often guided our automatic parallelizer
in what schedule to select. For example, when extending a language with an additional
construct, we generally wanted to verify that the previously accepted schedule could
still be used. Likewise, for constructs with subtle data dependencies, we would have
high-level ideas for how to schedule attributes and then verified our intuition. In both
cases, we provided scheduling constraints to the automatic parallelizer.

Exacerbating the above problems is that browser layout engines span hundreds of thousands
of lines of code, and for cases of requiring new kinds of data visualizations, we needed de-
signers to build them, even though most designers are not trained in low-level programming.

CHAPTER 1. INTRODUCTION 7

S ! HBOX
{ HBOX.x = 0; HBOX.y = 0 }

HBOX ! ✏
{ HBOX.w = inputw(); HBOX.h = inputh() }

HBOX0 ! HBOX1 HBOX2

{ HBOX1.x = HBOX0.x;
HBOX2.x = HBOX0.x + HBOX1.w;
HBOX1.y = HBOX0.y;
HBOX2.y = HBOX0.y;
HBOX0.h = max(HBOX1.h, HBOX2.h);
HBOX0.w = HBOX1.w + HBOX2.w }

Figure 1.2: Attribute grammar defining a layout language of horizontal boxes.

1.3 Mechanizing Layout Languages as Sugared
Attribute Grammars

Chapter 2 presents how we functionally specify layout languages. To aid in this process, it
also introduces carefully restricted expressive extensions to the attribute grammar formalism.

Figure 1.2 shows how to declaratively define H-AG as an attribute grammar. It only
specifies the functional behavior, such as the width of intermediate nodes being the sum of
the widths of their children. In contrast, it does not specify how to schedule the computation
as traversals over the tree.

To support automatic compilation into an executable implementation and various forms
of program analysis, attribute grammars restrict specifications in three key ways (Kastens,
1980):

1. Single assignment. Every node attribute, such as HBOX2.x, is defined exactly once.
The assignment occurs either in one production where the attribute is attached to the
node on the left-hand side of a production HBOX ! Y, or on every production where
HBOX occurs on the right-hand side. Other languages have similar restrictions, e.g., for
functional programming, directed constraints, and dataflow variables.

2. Local reads and writes. A node may only access its own attributes or those of
neighboring nodes. Our tools use this restriction to combine local reasoning into a
global analysis.

3. Pure functions. Constraints may invoke arbitrary functions such as max as long as
they cause no side e↵ects.

CHAPTER 1. INTRODUCTION 8

In all cases, the restrictions are designed to reason about local and global data dependencies
between attributes. With such understanding, attribute grammar tools can answer questions
such as whether all attributes are unambiguously defined, and perform optimizations such
as finding a safe parallel schedule for computing them.

In order to express common layout language constructs, we had to design expressive
extensions to the attribute grammar formalism . For example, in the case of H-AG, our
example shows how to compute over binary trees, but popular layout systems use n-ary
trees. Many linguistic constructs exist for looping, so our design challenge was to restrict
the loop construct enough such that our tree traversal scheduler could analyze uses of it.
At the same time, the construct needed to be flexible enough so that we could perform
computations such as reductions. For another example, to support designing increasingly
large specifications, we needed to introduce constructs for code sharing and information
hiding. We show that many of these constructs can be desugared into attribute grammars
that resemble the above examples and thus not significantly impact our tool’s ability to
analyze specifications.

We evaluated our formalism by using it to specify a variety of layout language constructs
(Figure 2.11 and Figure 2.13). The include charts, like tree maps, sunbursts, and line graphs,
and document layouts, such as grids and nested text with word-wrapping. Finally, we show
how to declarative specify rendering, animation, and 3D layouts. Closest to our work, Saraiva
and Swierstra (2003) have demonstrated that fixed HTML table layouts can be expressed by
attribute grammars. However, it is not clear whether (a) their approach expresses the more
common and expressive automatic HTML table layout algorithm, and (b) if their higher-
order attribute grammar formalism is restricted enough for performing our parallelization
techniques.

1.4 Parallel Layout with Checkable Static Tree
Traversal Schedules

Chapter 3 investigates parallelism latent within common layout language constructs and
introduces our scheduling language. We restrict the scheduling language to parallel tree
traversals in order to ensure that program analysis, transformation, and optimization is
tractable. For example, this chapter shows how to statically verify whether following a
particular schedule on an arbitrary input tree will always solve all of the node attributes.
Chapters 4 and 5 further exploit the scheduling language restrictions in order to optimize
the schedule selection and implementation.

Scheduling Language

Identifying the structure of parallelism within a layout language has been an on-going re-
search challenge. For example, consider the proposal by Brown (1988) to parallelize doc-
ument layout by computing over each page in a di↵erent process. The approach does not

CHAPTER 1. INTRODUCTION 9

work for LATEXnor webpages due to word-wrapping, variably sized text, and complex figures
introducing data dependencies that cross page boundaries. In H-AG, for example, the hor-
izontal o↵set of a node depends on the sum of the widths of all of the preceding elements:
any partitioning of the tree would cut across this transitive data dependency. Finally, even if
some elements are known to be isolated from others, such as a frame in a webpage, our solver
would have to identify enough isolated computations to saturate the available processors.

Instead, we split the computation into multiple tree traversals and exploit parallelism
within and across traversals. For H-AG, the first traversal computes all the widths, which
enables the second traversal to compute all of the horizontal positions in parallel using a
top-down (preorder) traversal (Figure 1.1e). As soon as the position of an element and
its children widths are known, all of its subtrees may be positioned independently of one
another. Figure 3.4b shows the structure of the data dependencies for this second traversal.

We introduced a language for specifying parallel schedules that is orthogonal from the
functional specification. For example, the following schedule shows how to parallelize H-AG:

1 postorder

2 HBOX0 ! HBOX1 HBOX2 { HBOX0 .w HBOX0 . h }
3 HBOX ! ✏ { HBOX.w HBOX. h }
4 ;
5 parPre

6 S ! HBOX { HBOX. x HBOX. y }
7 HBOX0 ! HBOX1 HBOX2 { HBOX1 . x HBOX2 . x HBOX1 . y HBOX2 . y }

The schedule specifies the overall parallel structure as a sequence (“;”) of two types of parallel
traversals (postorder and parallel preorder). Within each traversal, it defines the sequence
of attributes to evaluate when the traversal reaches a particular type of node (a production
such as S ! HBOX).

Separating H-AG’s specification into an attribute grammar for functional behavior and
the above schedule enables refactoring one part and then using our automation tools to check
or even update the other. Consider the di↵erent types of edits in turn:

• Schedule refactoring. An enterprising developer might notice (correctly) that H-AG’s
computation of y positions may be fused into the first traversal and move it. Our ver-
ifier would check that no assignments were lost in the refactoring. Furthermore, if the
developer assumes (erroneously) that the x position computations may be scheduled
for earlier as well, our schedule verifier would throw an error that the computation of
a node’s x attribute fails due to a read-before-write on its parent node’s x attribute.

• Attribute grammar refactoring. Layout languages evolve so their designers must
reason about changes to implicit data dependencies. For example, extending H-AG with
vertical boxes (swapping width computations with height ones and x computations for
y ones) introduces a dependency between height and y attributes. In the original H-AG
language, y attribute computations could be scheduled in the first traversal, but with
the extension, they should be computed in the second traversal after heights are com-
puted in the first (Figure 3.4b). Our verifier would check whether H-AG’s extension

CHAPTER 1. INTRODUCTION 10

can be computed under H-AG’s original parallel schedule. As part of addressing per-
formance overheads explored in later chapters, we also use the verifier to ensure that
extensions to the attribute grammar do not require adding expensive tree traversals.

In both cases, we find that local changes to one specification may globally impact the other.
By separating the schedule from the functional specification and restricting both formalisms,
we automate manual global reasoning and refactoring (Chapters 3 and 4).

Schedule Verification

To verify a schedule against an attribute grammar, we show a simple axiomatic system.
Every scheduling construct corresponds to a logical judgment. For example, the following rule
checks uses of operator “;” for sequencing some traversal p and then traversal q. In particular,
it determines whether attributes C will be computed afterwards as long as attributes A are
ready beforehand:

{A} p {B} {B} q {C}
{A} p ; q {C}

(seq)

It recursively performs the check by invoking two more: it checks p computes attributes B
and, given attributes B, that q computes C. An important result of the axiomatic formula-
tion is the use of modular reasoning. While theoretically simple, this avoids implementation
di�culties we encountered in trying to extend the analyses proposed by others (Kastens,
1980). To update our verifier to analyze an extension of our scheduling language, we gen-
erally only had to add or modify the corresponding judgment. Chapter 4 shows how to
reformulate the verifier as a synthesizer, which similarly benefited our synthesizer.

Verification is O(AlogA) in the number of attributes. The intuition is that an individual
axiom check is linear in the number of attributes written, and every schedule AST node
corresponds to a check. Intermediate schedule AST nodes partition the set of attributes so
that every tree level checks all the attributes, and there are only logA levels.

Evaluation on Tricky Schedules

We conclude Chapter 3 by showing static parallel schedules for common layout language
constructs. Some schedules were simply lengthy, but others required non-obvious designs; in
several cases, this meant increasing the expressive power of our scheduling language.

As an example, supporting word-wrapped text led to introducing a scheduling construct
for describing a restricted form of nested parallelism. Word wrapping places each word to
the right of the previous one, except when doing so would overflow a paragraph’s boundary,
the word goes on the next line instead. The position of each word depends on the position
of the previous one, which makes word wrapping a sequential traversal over words.

In general, a document contains many small paragraphs of text that are isolated from one
another. Our approach is to sequentially lay out an individual paragraph but to compute

CHAPTER 1. INTRODUCTION 11

over di↵erent paragraphs in parallel. The nested traversal scheduling construct generalizes
this approach to embedding one type of traversal within another. It consists of an overall
traversal, such as parallel preorder, and when the outer traversal reaches a statically-defined
contiguous subtree (e.g., a table consisting of row, column, and cell nodes), a region-specific
traversal occurs for that region. When the region traversal terminates, the overall traversal
continues for the remainder of the tree.

Two other examples in Chapter 3 include supporting dynamic memory allocation and
automatic table layout. We vectorize dynamic memory allocations by grouping them into
a prefix sum traversal. Unfortunately, a table forms a DAG rather than a tree, which we
address by viewing a table as two minimum spanning trees: one where the parent of a cell
is its row, and another where the parent is its column.

1.5 Parallel Schedule Synthesis

Designing a parallel schedule requires enough low-level and global reasoning that we explored
automatic scheduling. Chapter 4 shows our solution of generalizing our schedule verifier into
a synthesizer. Synthesis further enables us to introduce the new parallel programming ab-
straction of a schedule hole (a form of syntactic unification) and the optimization of schedule
autotuning. Finally, we present an optimized synthesis algorithm that avoids exponential
explosions.

Schedule holes

Programmers specify relaxed schedules by leaving holes (Solar-Lezama et al., 2006) for ar-
bitrary terms in the schedule. For example, a programmer may choose to only sketch the
parallel traversals for H-AG:

parPost ?hole1 ; parPre ?hole2

The synthesizer is responsible for determining correct values for ?hole1 and ?hole2, which
are the schedule terms defining the order of attributes for every type of node within the
traversals. Leaving a hole for the entire schedule would correspond to fully automatic par-
allelization.

We generalized schedule holes to syntactic unification. For example, supporting member-
ship queries enables specifying that the synthesizer may pick any type of traversal for each
pass as long as it is parallel:

Sched = ?hole1 ?hole2 ; ?hole3 ?hole4,

member(?hole1, {parPre, parPost}),
member(?hole3, {parPre, parPost})

CHAPTER 1. INTRODUCTION 12

We implemented our scheduling language as an embedded DSL in Prolog, and thereby gen-
eralized schedule synthesis to the full power of Prolog (Colmerauer, 1990). In our implemen-
tation, Prolog provides the member predicate and performs the overall unification.

Optimizing Synthesis and Schedules

The core synthesis algorithm enumerates syntactically valid schedules and tests them with
the verifier. Such a design shares the modularity benefits of the axiomatic verifier of Chapter
3, which is critical for simplifying the implementation of our formalism and its extensions.
However, brute force enumeration of schedules su↵ers an exponential explosion in the number
of traversals and attributes. Our optimized algorithm addresses both sources of explosion:

• Prefix expansion of traversals. We observe that if the beginning of a schedule is
correct and that a full schedule exists, there must be some correct su�x that, appended
to the schedule prefix, will complete the schedule. For example, if the synthesizer finds
that width and heights can be computed in an initial postorder traversal for H-AG,
it can then need only find subsequent traversals for computing x and y positions. By
limiting the search of traversal sequences to successive su�xes, we avoid backtracking
and thus the first type of explosion.

• Iterative refinement of attributes. Our algorithm avoids examining all combina-
tions of attributes for use within a traversal. It initially over-approximates the set of
schedulable attributes within a traversal, such as guessing that “{w,h,x,y}” can all be
scheduled in the first traversal. Our verifier will reject the schedule, and as an extension
to the algorithm presented in Chapter 3, provides an error message of a non-empty
subset of the unschedulable attributes, such as “{x}”. The synthesizer removes the
bad guesses from the over-approximation and repeats the process until either all at-
tributes are eliminated or the verifier accepts the remaining ones. Because the number
of refinement iterations is bounded by the number of attributes, our approach avoids
the second source of explosion in automatic scheduling. Our iterative refinement dif-
fers from a CEGAR loop (Solar-Lezama et al., 2006) by guaranteeing a solution in
polynomial time.

Chapter 4 describes additional optimizations, such as incrementalization in the prefix ex-
pansion (Bochmann, 1976), topological sorting (Kastens, 1980) to perform the dependency
analysis within the verification step, and using a greedy heuristic for minimizing the number
of traversals (Kastens, 1980). Our Prolog library implements all of the optimizations: each
one represents pruning the enumeration and therefore a cut for Prolog’s unifier.

We leveraged the synthesizer towards optimizing the schedule design through autotun-
ing. As already shown, H-AGsupports multiple schedules. We modified the synthesizer
to enumerate all of them rather than stopping after finding the first one, and then tested
each schedule on programmer-provided inputs and select the fastest. For example, parallel
schedules are generally longer than sequential ones and rely upon parallel speedups to o↵set

CHAPTER 1. INTRODUCTION 13

the overheads from additional traversals: the hardware architecture impacts the schedule
selection.

Evaluation

We evaluated the ability of our synthesizer to automatically find parallel schedules for com-
mon layout language constructs. It finds parallel schedules for all of them. The most notable
case was CSS, which uses 9 passes. The di�culty in CSS was that while the solver found
parallel traversals for most of the passes, it could not find the nested traversal because the
nesting construct triggers an exponential explosion in the synthesis. By providing a sketch
of the expected nesting, we guided the synthesizer to the desired result. Sketches were gen-
erally of only the traversal sequence and thus took one line of code. The exception was CSS,
which required 3 lines for the traversal sequence and 2 lines to describe the nesting.

Our synthesis algorithm was fast enough for interactive use. In most cases, synthesis was
within 30s. The CSS specification is a notable exception due to the nesting. Fully automatic
parallelization of CSS took 30 minutes, but by providing the 5 line sketch, we reduced the
time down to one minute.

1.6 Optimizing Parallel Tree Traversals for MIMD
and SIMD

Chapter 5 shows how to optimize tree traversals for di↵erent parallel hardware architectures.
Our problem was that our implementations of existing techniques such as Cilk-style (Blumofe
et al., 1995) work stealing and data flattening as in NESL (Blelloch et al., 1994) gave little-
to-no speedup on our benchmarks, and in many cases, performed worse than sequential
execution due to high overheads and poor data locality. Our solution was to optimize the
schedule of nodes within a traversal and the data representation of the tree.

We show di↵erent techniques for optimizing parallel tree traversals on MIMD and SIMD
hardware:

1. MIMD Tree Traversals: Semi-Static Work StealingWe optimized MIMD traver-
sals for low overheads, load balancing, and data locality. We drew inspiration from
two sources: work stealing (Blumofe et al., 1995) and tiling (Irigoin and Triolet, 1988).
Work stealing provides spatial locality, and tiling avoids further scheduling and data
movement overheads. However, work stealing provides poor temporal locality across
a sequence of tree traversals because the chance of assigning a node to the same pro-
cessor across traversals is e↵ectively random. Therefore, as the number of processors
increases, the probability of temporal locality decreases and performance su↵ers. Our
solution was to first load balance the initial traversal by dynamically scheduling tiles
through a simulation of work stealing. All subsequent traversals then simply reuse
the initial schedule. The intuition assumes that (1) the same load balancing applies

CHAPTER 1. INTRODUCTION 14

across traversals because every node visit generally executes few statements, and (2) by
reusing the schedule’s assignment of nodes to processors, temporal locality improves.

2. SIMD Tree Traversals: Input-Dependent Clustering The performance of SIMD
evaluation su↵ers when parallel tasks diverge in instruction selection. For example,
consider extending H-AG with vertical boxes and then vectorizing the computation
of the widths of all nodes in a tree level. Vertical boxes will invoke a max function
while horizontal boxes, a sum. If the distribution of vertical and horizontal is random,
the instructions for adjacent nodes will diverge. We observe that nodes that share the
same type can be computed over in parallel with little divergence. Our SIMD scheduler
therefore clusters such nodes at load-time and, instead of vectorizing the loop over all
of the nodes in a level, vectorizes smaller loops over clusters with the guarantee of no
divergence. Our full implementation involves the selection of several input attributes
to consider when clustering, not just the node type.

Note that while both algorithms optimize the traversal schedule, they do so as a runtime
refinement of the overall parallel traversals identified by our synthesizer.

For H-AG, we achieved a 6.9X speedup on an 8-core device (9.3X when sequential opti-
mizations are included). For a manual implementation of the SIMD algorithm for one pass
of the CSS layout language, we saw a 3.5X speedup on SSE hardware with 4 vector lanes.
The SIMD scheduler’s load-time clustering cost is amortized over multiple traversals. In the
case of the SIMD algorithm, we also measured the improvement in performance-per-Watt:
3.6X. As we expected for vectorization, it is close to the speedup. Finally, our MIMD and
SIMD algorithms are complementary. The potential speedup of our approach on commodity
hardware features heterogeneous parallelism is thus the product of the individual techniques.

An unexpected result arose for GPUs. GPU architectures su↵er from instruction di-
vergence similarly to the subword-SIMD ones we examined. However, in the case of data
visualization on GPUs, we achieved significant speedups without clustering. We found that
while di↵erent levels of the tree hold di↵erent types of nodes, most nodes on the same level
of the tree are the same, such as the points of a time series chart. The SIMT model of GPUs
automatically avoids slowdowns when all threads branch in the same direction. Therefore,
laying out a tree map on a GPU achieves a 60.6X speedup under the default breadth-first
order. The same property does not hold for document layout, which encounters significant
divergence under the default ordering and thus benefited from clustering.

1.7 Collaborators and Publications

Work in this thesis was introduced in prior publications (Jones et al., 2009; Meyerovich and
Bod́ık, 2010; Meyerovich et al., 2013) in joint work with wonderful collaborators: Rastislav
Bod́ık, Krste Asanović, Rose Liu, Chris Jones, Todd Mytkowicz, Wolfram Schulte, Matthew
Torok, and Eric Atkinson.

15

Chapter 2

Mechanizing Layout Languages with
Extended Attribute Grammars

2.1 Motivation and Approach

This chapter examines the challenges inherent in designing and implementing layout lan-
guages and how to use attribute grammars to specify them. We use a running example of
a simple layout language and show how our handling of it also applies to common layout
language constructs and, more generally, computations over trees. By formalizing layout lan-
guages in our extended variant of attribute grammars, we can automate key tasks: checking
the language’s semantics for errors (Chapter 3), parallelizing it (Chapter 4), and performing
aggressive low-level optimizations (Chapter 5). This chapter describes attribute grammars,
how we specify layout language constructs with them, and expressive extensions we needed
to add to the formalism.

Important Properties for Layout Languages

Layout languages extremely common – by one estimate, there are over 634 million websites
live in 2012, with 51 million added that year 1. Beyond the CSS and HTML languages used
for webpage layout (Lie and Bos, 1997), designers also use LATEX (Knuth and Bibby, 1986) for
document layout, D3 (Bostock et al., 2011) for data visualization, and Swing (Eckstein et al.,
1998) for GUI layout in addition to more specialized languages such as Markdown (Gruber,
2004) for simpler text formatting within webpages.

Popular layout languages foster designer productivity by providing many domain-specific
abstractions. The alternative is analogous to asking a programmer to write in a low-level
language such as assembly: designers should not manually specify the position on a can-
vas and the style for each element. Instead, layout languages resemble constraint systems
where designers declare high-level properties. For example, the high-level program hello world

1http://news.netcraft.com/archives/2012/12/04/december-2012-web-server-survey.html

CHAPTER 2. MECHANIZING LAYOUT LANGUAGES WITH EXTENDED
ATTRIBUTE GRAMMARS 16

specifies that the words hello and world should be rendered, and word world should follow
line-wrapping rules for its positioning after hello. Layout languages may provide quite com-
plicated constraints – for example, most document layout languages resort to defining their
line wrapping rule in a flexible low-level language. Likewise, they may provide many fea-
tures, such as in the 250+ pages of rules for the CSS language. Adding to the sophistication,
many languages support designers adding their own constraints, such as through macros in
LATEX, percentage constraints in CSS, and arbitrary functions in Adobe Flex.

The richness of popular layout languages comes at the cost of complicating their design
and implementation:

• Safe semantics. Does every input layout have exactly one unique rendering, i.e.,
is layout deterministic? Are the constraints restricted enough such that an e�cient
implementation is feasible for low-power devices, big datasets, and fast animation?
When a new layout primitive is added, do these properties still hold? We want an
automated way to verify such properties.

• Correct implementation. As a layout language grows in popularity, it grows in
features. Likewise, developers will port it to many platforms and optimize it, and in
cases such as CSS, reimplement it from scratch. Does the implementation conform to
the intended semantics? Conformance bugs for CSS plague developers, and failures
to match LATEX’s semantics have killed multiple attempts to modernize the implemen-
tation. We want an automated way to ensure that the implementation matches the
specification.

• Advanced implementation. Browser layout engines for CSS are currently over
100,000 lines of optimized C++ code. Rich layout languages thus far have resisted
parallelization, and improving the speed, memory footprint, debugging support, and
other implementation details is di�cult for such a quantity of code. We want au-
tomation techniques to lower the implementation burden and perform more aggressive
optimizations.

Our idea is to declaratively specify layout languages as attribute grammars and auto-
matically compile them into an e�cient implementation. At runtime, an instance of layout
will be processed through the generated layout engine (Figure 2.1). Our attribute grammar
compiler is responsible for checking the semantics of the layout constructs and, by construc-
tion, provides a correct implementation. Furthermore, instead of manually optimizing the
code for uses of every individual construct, we write generic compiler optimizations. As a
similar implementation benefit, we automatically target multiple platforms. For example,
we generate a JavaScript layout engine in order to reuse existing browser debuggers, and
layout engines in low-level multicore and GPU languages to gain magnitudes of speedups.

Whether attribute grammars are expressive enough for layout languages is unclear. For
example, Saraiva and Swierstra (2003) explored expressing fixed HTML table layout, but
used a higher-order extension to attribute grammars that challenges optimizations and did

CHAPTER 2. MECHANIZING LAYOUT LANGUAGES WITH EXTENDED
ATTRIBUTE GRAMMARS 17

Synthesizer
language spec
attrib. grammar

schedule
parallel tree traversals

layout
tree of constraints

Layout Engine
runtime scheduler, …

ONLINE
OFFLINE

visualization

Reducer
ordered

attrib. grammar

Code Generator

scene graph
tree of vertex bu!ers Renderer

Figure 2.1: Layout engine architecture.

not report supporting automatic table layout. Expressive extensions are also required but
we show how to restrict them enough to support reductions to typical attribute grammar
machinery (Figure 2.1). The remainder of this chapter introduces the high-level attribute
grammar formalism, how to specify layout languages using it, and an intuition for the re-
duction into a lower-level formalism.

2.2 Background: Layout with Classical Attribute
Grammar

We start by declaratively specifying a simple layout as an attribute grammar and then show
two evaluation strategies for automatically implementing it.

Attribute Grammars

Consider programming the nested horizontal boxes shown in Figure 2.2a. As input, a
webpage designer provides a tree with constraints (Figure 2.2b). Only some node attribute
values are provided: in this case, only the widths and heights of leaf nodes (attributes w and
h). By using an HBox node, the designer further specifies that the boxes will be placed side-
by-side. The layout engine must solve for all remaining x, y, width, and height attributes.

Figure 2.2c declaratively specifies the layout language of horizontal boxes, H-AG, as
an attribute grammar (Kastens, 1980; Meyerovich and Bod́ık, 2010; Saraiva and Swierstra,
2003). First, the specification defines the set of well-formed input trees as the derivations

CHAPTER 2. MECHANIZING LAYOUT LANGUAGES WITH EXTENDED
ATTRIBUTE GRAMMARS 18

S
HBOX
HBOX
HBOX
 w="20" h=5"

HBOX
 w="15" h="5"

HBOX
 w="15" h="5"

(a) Input tree. Only some of the x, y, w, and h attributes are specified.

1 <S>
2 <HBox name=ch i ld>
3 <HBox name=l e f t >
4 <HBox name=l e f t w=20 h=5/>
5 <HBox name=r i gh t w=15 h=5/>
6 </HBox>
7 <HBox name=r i gh t w=15 h=5/>
8 </HBox>
9 </S>

(b) Textual encoding of input tree.

S ! HBOX
{ HBOX.x = 0; HBOX.y = 0 }

HBOX ! ✏
{ HBOX.w = inputw(); HBOX.h = inputh() }

HBOX0 ! HBOX1 HBOX2

{ HBOX1.x = HBOX0.x;
HBOX2.x = HBOX0.x + HBOX1.w;
HBOX1.y = HBOX0.y;
HBOX2.y = HBOX0.y;
HBOX0.h = max(HBOX1.h, HBOX2.h);
HBOX0.w = HBOX1.w + HBOX2.w }

(c) Attribute grammar for a language of horizontal boxes.

AG ! (Prod { Stmnt? })*

Prod ! V ! V *

Stmnt ! Attrib = id(Attrib*) | Attrib = n | Stmnt ; Stmnt

Attrib ! id .id
(d) Language of attribute grammars.

Figure 2.2: For a language of horizontal boxes: (a) visualized solution, (b) input tree to
solve, and (c) attribute grammar specifying the layout language. Specification language of
attribute grammars shown in (c). The language of attribute grammars is shown in (d).

CHAPTER 2. MECHANIZING LAYOUT LANGUAGES WITH EXTENDED
ATTRIBUTE GRAMMARS 19

of a context-free grammar. We use the standard notation. In this case, a document is an
unbalanced binary tree of arbitrary depth where the root node is labeled S and intermedi-
ate nodes are labeled HBOX. Second, the specification defines semantic functions that relate
attributes associated with each node. For example, the width of an intermediate horizontal
node is the sum of its children widths. Likewise, the width of a leaf node is provided by the
user, which is encoded by the nullary function call inputw().

The specification does not define the evaluation order. For example, the specification does
not state whether to compute a node’s width before its height. Likewise, while our optimized
approach computes the attributes over a sequence of tree traversals, the specification does
not define the sequence of tree traversals. Leaving the evaluation order unspecified provides
freedom for our compilers to make parallel scheduling decisions. Irrespective of whatever
evaluation order is ultimately used to solve for the attribute values, the statements define
constraints that must hold over the computed result. Attribute grammars can therefore be
thought of as a single assignment language where attributes are dataflow variables.

The syntax of attribute grammars is defined in Figure 2.2d. In addition to defin-
ing the context free grammar, it includes terms for single-assignment constraints over at-
tributes of nodes in a production. Our example uses the following encoding. Semantic
functions are pure and left uninterpreted: for example, we encode the addition of widths
as “HBOX0.w = f(HBOX1.w, HBOX2.w)”. Our program analysis techniques do not need
to know the contents of the function, just that the output of a call depends purely on the
inputs. For the same reason, we encode constant values as nullary function calls.

To specify grammars more complicated than H-AG, we describe two expressive extensions.
This chapter add extensions to the functional specification language that desugar into this
formalism (Section 2.3). To control the evaluation order, Chapters 3 and 4 introduce a
complementary scheduling language.

Dynamic Data Dependency Graphs and Dynamic Evaluation

A simple and classic evaluation strategy is to dynamically compute over the attributes of
a tree. The evaluator tracks the data dependencies between instances of attributes. The
dynamic evaluation strategy is too slow for the cases presented herein, but it introduces the
key concepts of dynamic data dependencies, the dynamic semantics of attributes grammars,
and the corresponding interpreter.

An instance of a document corresponds to the dependency graph shown in Figure 2.3a.
Each attribute of a tree node is either a source, meaning its value can be computed based
on other known values, or it cannot be evaluated until other attribute values are known.
It is a dynamic dependency graph in that each data dependency in the static code may be
instantiated as multiple data dependencies given the input tree at runtime.

The dynamic data dependency graph leads to a simple semantics and interpreter design.
The graph corresponds to a system of equations where edges link instance variables. For
example, static code HBOX2.x = HBOX0.x+ HBOX1.w instantiates twice for the example shown
in Figure 2.3a: once for each x attribute with an incoming elbow connector. The values

CHAPTER 2. MECHANIZING LAYOUT LANGUAGES WITH EXTENDED
ATTRIBUTE GRAMMARS 20

HBOX

S

HBOX

HBOXHBOX

HBOX

x yhw

x yhw

x yhw

x yhw

x yhw

(a) Initial dependencies.

HBOX

S

HBOX

HBOXHBOX

HBOX

hw

x yhw

x y

x y

x y

(b) After first round of evaluation.

Figure 2.3: Dynamic data dependency graphs and evaluation. Shown for the con-
straint tree in Figure 2.2 (a). Circles denote attributes, with black circles denoting attributes
whose dependencies are all resolved, such as input() invocations. Thin lines depict data de-
pendencies and thick lines show production derivations. Chart (b) shows the dependency
graph resulting from evaluating all source nodes and treating them as resolved.

1 input : G = (V,E)
2 output : Map
3 Map ;
4 E0 E
5 V 0 V
6 for a 2 V 0

where 6 9(n, a) 2 E0 :
7 Map Map [{a! eval(a)}
8 V 0 V 0 � {a}
9 E0 E0 � ({a}⇥ V)

10 repeat until E0 = ;
11 return Map

Figure 2.4: Dynamic attribute grammar evaluator. It selects attributes in a safe order
by dynamically removing dependency edges as they are resolved.

of both xs are constrained by distinct instances of the above constraints. Note that if the
dependency graph is a directed acyclic graph and each attribute appears on the left-hand
side of exactly one equality statement (a dataflow variable), there is exactly one solution for
every attribute.

A simple interpreter design is to iteratively remove nodes with no incoming data depen-
dencies (Figure 2.4). The algorithm iteratively finds an attribute whose dependencies have
all been previously resolved, evaluates the attribute, and repeats. If the input graph is a
directed acyclic graph, this procedure is guaranteed to terminate. The insight is that if a di-
rected acyclic graph has at least one fringe node, the loop removes them, and removing these
nodes yields a smaller directed acyclic graph. As an optimization, a topological traversal is
one such traversal order.

CHAPTER 2. MECHANIZING LAYOUT LANGUAGES WITH EXTENDED
ATTRIBUTE GRAMMARS 21

<Top> ! <Top>* | <Trait> | <Class> | <Interface>

<Interface> ! interface id <AttribDecl>*

<AttribDecl> ! var id : id
| input id : id
| input id : ? id
| input id : id = val

<Trait> ! trait id <Child>* <AttribDecl>*<TopConstraint>*

<Class> ! class id (id*) : id <Child>* <AttribDecl>* <TopConstraint>*

<Child> ! id : (id | [id])

<TopConstraint> ! <Constraint>
| loop id (<Constraint> | <Lhs> := fold <Expr> .. <Expr>)*

<Constraint> ! <Lhs> := <Expr>

<Expr> ! <Rhs> | unop <Expr> | <Expr> binop <Expr>

<Rhs> ! <Lhs> | self <Su�x> . id | id <Su�x> . id

<Lhs> ! id | id . id

<Su�x> ! $i | $- | $$

Figure 2.5: EBNF syntax for key forms of the functional specification language in
Section 2.3. We omit semicolons and other decorations; see the examples for more detailed
forms.

The dynamic evaluation strategy provides an explanation for the natural semantics, but
several challenges remain. First, runtime manipulation of a dynamic dependency graph
introduces high overheads because every dynamic dependency edge must be manipulated
at runtime. Second, it is unsafe. For example, a cycle in the dependency graph causes the
above evaluation strategy to get stuck. Designers can build layout widgets that, depending
on how they are invoked, fail to display!

2.3 Desugaring Loops and Other Modern Constructs

The attribute grammar formalism was invented for describing semantics (Knuth, 1990) and
before many modern linguistic constructs became mainstream. As a result, we had to design
extensions for improved expressiveness and maintainability. Our extensions exploit concepts
from structured, object-oriented, and functional programming. Other language designers

CHAPTER 2. MECHANIZING LAYOUT LANGUAGES WITH EXTENDED
ATTRIBUTE GRAMMARS 22

have built such extensions as well (Koskimies, 1991; Vogt et al., 1989). Our challenge was to
design expressive extensions that are restricted enough to to facilitate e↵ective paralleliza-
tion and not overly complicate implementation. The following subsections documents each
extension and the motivation behind it, and leaves performance optimizations to subsequent
chapters.

Our key insight was the realization that pre- and post-processing supports desugaring
extended attribute grammars into the basic attribute grammar notation. Tools then operate
at the most appropriate stage, such as our scheduler on the basic attribute grammar repre-
sentation. Likewise, our code generators take a generated schedule and relate it back to a
representation from early in the preprocessing stage. Many of our features are implemented
as explicit compiler stages, but over time, we found that declarative tree rewriting systems
such as ANTLR (Parr and Quong, 1995) and OMeta (Warth and Piumarta, 2007) support
automating individual stages. Figure 2.5 shows the syntax of our functional specification
language.

Interfaces for Encoding Tree Grammars

Our first extension targeted how to specify tree structure. Attribute grammars use tree
grammars for defining input trees, so improving the abstraction capabilities of tree grammars
also aids the ability to structure attribute grammars. In particular, we found the need to
support abstracting over similar types of non-terminals. Our solution is to provide a notion
of classes and interfaces. If class HBox and VBox both implement interface BoxI, we can write
one production “X ! BoxI” rather than a production for every variant: “X ! HBox”,
“X ! VBox”, etc. The extension is expressible with attribute grammars and thereby reduces
implementation requirements; it is still important enough, however, that it merits deeper
compiler support.

Consider the code duplication performed when extending H-AG with vertical boxes. The
children of a HBox could be a horizontal box or a vertical box, and the same for the children
of a vertical box. Figure 2.6a shows that H-AG’s specification grows from 3 productions to
11 when defining the valid combinations of nodes and their children. The example highlights
that basic attribute grammars cannot abstract over node types. Adding a new box type
requires modifying all previous box classes, and in the presence multiple children, extension
su↵ers exponential costs.

To abstract over node types, we introduced the notion of classes and interfaces (Fig-
ure 2.6b). Classes are similar to the productions of an attribute grammar: the class name
specifies the production’s left-hand side non-terminal and the children block specifies the
production’s right-hand side. Unlike attribute grammars, an interface name is used for the
right-hand side rather than the class name. HBox and VBox implement interface BoxI, so any
class specified to have a BoxI child can have a HBox or VBox child within the concrete tree.

Classes and interfaces are formally equivalent to tree grammars in the sense of a 1-to-1
correspondence between the trees that are described by both. First, a tree grammar can be
expressed with classes and interfaces by treating all productions with the same left-hand-side

CHAPTER 2. MECHANIZING LAYOUT LANGUAGES WITH EXTENDED
ATTRIBUTE GRAMMARS 23

S ! HBOX | VBOX

HBOX ! ✏

HBOX0 ! HBOX1 HBOX2

HBOX0 ! VBOX1 HBOX2

HBOX0 ! HBOX1 VBOX2

HBOX0 ! VBOX1 VBOX2

VBOX ! ✏

VBOX0 ! HBOX1 HBOX2

VBOX0 ! VBOX1 HBOX2

VBOX0 ! HBOX1 VBOX2

VBOX0 ! VBOX1 VBOX2

(a) Canonical attribute grammar.

1 interface BoxI { }
2 class HBoxLeaf : BoxI { }
3 class HBoxBinary : BoxI {
4 children {
5 l e f t : BoxI ;
6 r i g h t : BoxI ;
7 }
8 }
9 class VBoxLeaf : BoxI { }

10 class VBoxBinary : BoxI {
11 children {
12 l e f t : Box ;
13 r i g h t : Box ;
14 }
15 }

(b) Interface sugar.

S ! BOX

BOX ! HBOX | VBOX

HBOX ! ✏

HBOX0 ! BOX1 BOX2

VBOX ! ✏

VBOX0 ! BOX1 BOX2

(c) Interface encoding.

Figure 2.6: Interfaces for tree grammars. Subfigures show manually encoding multiple
production right-hand sides, an encoding that uses a Box non-terminal for indirection, and
the high-level encoding using interfaces and classes.

CHAPTER 2. MECHANIZING LAYOUT LANGUAGES WITH EXTENDED
ATTRIBUTE GRAMMARS 24

1 {” c l a s s ” : ”HBox” ,
2 ” ch i l d r en ” : {
3 ” l e f t ” : {
4 ” c l a s s ” : ”HBox” ,
5 ” ch i l d r en ” : {
6 ” l e f t ” : {” c l a s s ” : ”HBox” , ”w” : 20 , ”h” : 5} ,
7 ” r i g h t ” : {” c l a s s ” : ”HBox” , ”w” : 15 , ”h” : 5}}} ,
8 ” r i g h t ” : {
9 {” c l a s s ” : ”HBox” , ”w” : 15 , ”h” : 5}}}}

Figure 2.7: Input tree as a graph with labeled nodes and edges. Specified in the
JSON notation.

non-terminal as di↵erent classes belonging to the same interface. In the other direction, each
interface can be expressed as a production that derives the classes, and the classes expand
into productions. Figures 2.6b and 2.6c demonstrate the correspondence for H-AG. The
induced implementation requirements are therefore slight in the sense that the construct is
sugar for a pattern in attribute grammars.

We depart from the correspondence for the encoding of trees in two ways. First, we
represent input as a tree with labeled nodes and edges. Node labels denote the class and
edge labels specify child bindings. Figure 2.8 uses the JSON format common to dynamic
languages for an instance of a tree in H-AG. By naming children, such as left and right,
we eliminate sensitivity to their lexical order within a code block. With order sensitivity,
adding a middle child center would needlessly require refactoring references to the repositioned
element right. Likewise, reordering children in the input data does not require refactoring
the attribute grammar.

Our second departure from the canonical attribute grammar encoding optimizes the data
representation by eliding intermediate interface nodes. The reduction to attribute grammars
suggests adding a new non-terminal node for each interface (Figure 2.6c), but doing so in the
data representation doubles the number of nodes in the concrete tree. Making the interface
pattern a language construct with compiler support eliminates associated costs, such as
cutting file size for runtime parsing of big data visualizations.

Interfaces for Attributes and Information Hiding.

Node interfaces also support lightweight specification annotations for di↵erent types of at-
tributes, and coupled with the overall interface construct, it supports defining relationships
between attributes across di↵erent classes.

Each static attribute is annotated with its assignment type and its embedded value type:

• Assignment types. The assignment type denotes whether the input tree defines
the value, such as in input w, or whether the attribute grammar defines it, as in var x.
Assignments to an input type are illegal, and multiple assignments to a variable type
are also illegal. A simple type checker detects these violations.

CHAPTER 2. MECHANIZING LAYOUT LANGUAGES WITH EXTENDED
ATTRIBUTE GRAMMARS 25

1 interface BoxI {
2 var x : f loat ;
3 }
4 class HBoxLeaf : BoxI {
5 a t t r i b u t e s {
6 var y : int ;
7 input w : ? int ;
8 input h : int = 10 ;
9 }

10 }

Figure 2.8: Input tree as graph with labeled nodes and edges. Specified in the JSON
notation.

If an input tree fails to provide an input attribute, a runtime error will be thrown. To
still provide an interpretation of such trees, we also support annotating input attribute
declarations with “?”, which enables inspection at runtime through through the func-
tions maybeReady :: () ! boolean and maybeValue :: () ! ↵. Alternatively, for the
common scenario of using a fixed default value, a default value can instead be defined
as in input h : int = 10. If the input tree does not provide the value, the default value
will be automatically substituted.

Without our extensions, attribute grammars can still encode input attributes. First,
semantic functions with no parameters can encode attributes with no dependencies.
Alternatively, for finite domains, the set of tree grammar productions can expand to
include attribute nodes. The second encoding more faithfully describes our imple-
mentation approach because, like our system, it feeds into an automatic tree parser
generator. For each tree node, our generated parser scans for the expected set of input
attributes.

• Value types. The system also supports type annotations used for embeddings. Gen-
erated code typically compiles as part of a project in a more static language, such
as C++, which may require a static typing discipline. The annotations can be user-
defined, such as OpenGL’s vertex bu↵er object VBO, which is not defined within our
system.

Our analyzer ignores the value type annotations such as x : float and y : int, and passes
them along through the low-level code generator. The embedded design simplifies
implementation because value type checking is then performed by the host language’s
compiler.

In practice, we use attribute definitions in interfaces for information hiding across classes
and lightweight specification of relationships between similar classes. An attribute declared
inside of a class is local to constraints in the class: only the class’s constraints can read
or write to the attribute. Conversely, declaring a var inside of an interface hints that it is
meant to be reused by outside classes, i.e., part of a tree traversal.

CHAPTER 2. MECHANIZING LAYOUT LANGUAGES WITH EXTENDED
ATTRIBUTE GRAMMARS 26

1 tra it Rectangle {
2 attributes { render : int ; }
3 actions { render := paintRect (x , y ,w, h , ” b lack ”) ; }
4 }
5 class HBox(Rectangle) : BoxI { . . . }

Figure 2.9: Trait construct. Adds shared rendering code to the HBox class.

1 interface BoxI {
2 var w : int ;
3 var h : int ;
4 var r i g h t : int ;
5 var bottom : int ;
6 }
7 class HBox : BoxI {
8 children {
9 c h i l d s : [BoxI]

10 }
11 actions {
12 loop c h i l d s {
13 w := fold 0 . . s e l f $. w + c h i l d s $ i .w;
14 h := fold 0 . . max(s e l f $. h , c h i l d s $ i . h)
15 c h i l d s . r i g h t := fold x . . ch i l d s$. r i g h t + c h i l d s $ i .w;
16 c h i l d s . bottom := fold y . . ch i l d s$. bottom + ch i l d s $ i . h ;
17 }
18 }
19 }

Figure 2.10: Input tree as graph with labeled nodes and edges. Specified in the JSON
notation.

Traits: Reusing Cross-Cutting Code

As with many object systems, we support a trait construct for cross-cutting code that should
be shared across classes. It statically expands like a macro, providing no formal expressive
power. For example, Figure 2.9 defines how to render a rectangle given several attributes
and then adds that functionality to class HBox. If the language was extended with class VBox,
the class definition of VBox could also use trait Rectangle.

Loops

We extend our language with declarative loops for computing attributes of a statistically
unbounded number of child nodes. They are an expressive extension over the uniform recur-
rence equations (Karp et al., 1967). One loop in our extension may correspond a collection
of loops in a traditional functional or imperative programming language.

The loop construct, loop, specifies a block of loop body statements. It acts over a sequence
of nodes declared with the same interface, such as childs : [BoxI] in Figure 2.10. The looping
order is restricted to forward iteration, though our approach generalizes to other loop orders.

CHAPTER 2. MECHANIZING LAYOUT LANGUAGES WITH EXTENDED
ATTRIBUTE GRAMMARS 27

A statement in a loop body will execute for each element of the list. For example, the
following statement assigns the attribute w the sum of the children widths:

w := fold 0 .. self$� .w + childs$i.w

Similar to array index notation, the su�x on right-hand side variable names for loop
statements provide a restricted form of relative indexing. In particular:

• $i: the “current” loop step

• $-: the previous loop step

• $$: the last loop step

Use of su�x “$-” in a fold can be thought of as an accumulator in functional programming.
One loop statement can refer to the accumulator of another, which fold statements in

most languages do not support. For example, two loop counters can be intertwined:

1 loop c h i l d s {
2 c h i l d s . counter1 := f o l d 0 . . ch i l d s$. counter2 + 1 ;
3 }
4 loop c h i l d s {
5 c h i l d s . counter2 := f o l d 0 . . ch i l d s$. counter1 + 1 ;
6 }

The programmer does not manually order the statements. For the above loops, our system
would infer that their imperative implementation is just one loop that fuses them together.
The incorrect alternative of implementing the declarations as a di↵erent imperative loop for
each would lead to unfulfilled data dependencies. Likewise, if a set of loop statements must
be implemented using a sequence of loops, the programmer has the liberty of defining them
in one loop nest and relying upon the compiler to disentangle them.

We reduce scheduling loops to scheduling basic attribute grammars. For a restricted
language of relative indices, we are able to schedule several unrolled loop steps and generalize
to the rest of the schedule. Section 3.3 discusses this in more detail.

The declarative nature of the loop construct provides two key benefits. First, coupled with
the restricted indexing language, underspecification of the statement order provides freedom
for automatic parallelization (Section 3.3). Second, it allows programmers to choose how
to structure the program. For example, separating loop statements as above might improve
legibility if they are for two di↵erent purposes, but as the computation is more intertwined,
the programmer has the freedom to choose the following formulation instead:

1 loop c h i l d s {
2 c h i l d s . counter2 := f o l d 0 . . ch i l d s$. counter1 + 1 ;
3 c h i l d s . counter1 := f o l d 0 . . ch i l d s$. counter2 + 1 ;
4 }

The formulation brings the two statements together and changes their lexical order. Our
language guarantees that such a refactoring does not change the semantic meaning of the
code.

CHAPTER 2. MECHANIZING LAYOUT LANGUAGES WITH EXTENDED
ATTRIBUTE GRAMMARS 28

Embedding Functional Rendering Calls

We designed our system for interaction with other tools and languages. A key ability is to
invoke externally-defined functions, such as max() of Figure 2.10 for the maximum of two
numbers and paintRect() of Figure 2.9 to draw a rectangle on the screen. Our system compiles
attribute grammars to run in various hosts, such as JavaScript or OpenCL, and any function
in scope to the generated code may therefore be called.

Functions can be safely invoked as long as they provide a pure interface. In particular, the
returned output should only depend on the inputs. Likewise, functions should be reentrant
for use in automatic parallelization In the case of embedding in statically checked languages,
the host’s static checker is responsible for checking usage.

2.4 Evaluation: Mechanized Layout Features

We specified many common layout language features with our extended form of attribute
grammars. Most examples were written with few, if any, modifications to the generated
code. This experience shows that our restricted form of attribute grammars are a viable
formalism for specifying layout languages. The following subsections present highlights from
our case studies in document layout and data visualization; the appendix contains the full
specifications.

Rendering and Interaction

We found several rendering patterns to be important for many visualizations. A library
of functional graphics primitives, such as function paintRect() in Figure 2.9, su�ciently aug-
mented our attribute grammar language.

• 2D and 3D. Calls to rendering functions provide coordinates in 2D or 3D space. The
use of di↵erent coordinate spaces does not impact the attribute grammar formalism.

• Color. Our functional graphics primitives take an RGBA value as input, which enables
the attribute grammar to control the hue, luminosity, and opacity.

• Linked view. Multiple renderable objects can be associated with one node, which we
can use for providing di↵erent views of the same data:

1 render := C i r c l e (x , y , r) + C i r c l e (o f f s e tX + abs (x) , o f f s e tY + abs (y) , r) ;

Statistical analysis software may use this feature for layouts such as scatterplot matri-
ces.

• Zooming. We can use the same multiple representation capability for a live zoomed
out view (“picture-in-picture”):

CHAPTER 2. MECHANIZING LAYOUT LANGUAGES WITH EXTENDED
ATTRIBUTE GRAMMARS 29

(a) Sunburst (b) Treemap

(c) Linked Scatter (d) 3D Multiple Time Series

(e) Line Graph

Figure 2.11: Visualization screenshots. All except are interactive or animated. Each one
was declaratively specified with our extended form of attribute grammars and automatically
parallelized. Labels describe whether GPU or multicore code generation was used.

CHAPTER 2. MECHANIZING LAYOUT LANGUAGES WITH EXTENDED
ATTRIBUTE GRAMMARS 30

(a) HTML Tables Grid-based

(b) CSS Flow-based

Figure 2.12: Document layout screenshots.

CHAPTER 2. MECHANIZING LAYOUT LANGUAGES WITH EXTENDED
ATTRIBUTE GRAMMARS 31

1 render :=
2 C i r c l e (x , y , r ad iu s)
3 + C i r c l e (xFrame + x⇤zoom , yFrame + y⇤zoom , rad iu s ⇤zoom) ;

We found it useful for heatmaps with many dimensions.

• Visibility toggles. Our system support conditional expressions, which enables con-
trolling whether to render an object. For example, a boolean input attribute can
control whether to show a circle: render := isOn ? Circle (0,0,10) : 0;

• Alternative representations. Conditional expressions also enable choosing between
multiple representations, not just on/o↵ visibility:

1 render :=
2 i sO f f ? 0
3 : mouseHover ? C i r c l eOut l i n e (0 , 0 , 10)
4 : C i r c l e (0 , 0 , 10 , 5) ;

Non-Euclidean Layouts: Sunburst Diagram

Visualizations often require non-Euclidean layouts, such as the polar layout for a sunburst
diagram. Instead of propagating and computing over Euclidean values such as the x and
y coordinates of H-AG, the visualization can use its own coordinate system. In a sunburst
diagram (Figure 2.11a), a node should be rendered far from the center of the chart if its
level is high. Our implementation defines each node’s radius as a function of its parent’s
radius. Likewise, the center of visualization propagates from parent to child, with the root
node representing the center:

1 c l a s s Radial : Node {
2 . . .
3 loop ch i l d {
4 ch i l d . parentTotR := parentTotR + r ;

6 ch i l d . rootCenterX := rootCenterX ;
7 ch i l d . rootCenterY := rootCenterY ;
8 }
9 . . . Arc (rootCenterX , rootCenterY , show ⇤ (parentTotR + r) , . . .) ;

10 }

The full example is available in Appendix A.1.

Charting: Line Graphs and Scatterplots

We specified several types of charts with attribute grammars. For example, Figure 2.11c
depicts an X/Y scatterplot, and Figure 2.11e depicts a line graph. We represent every data
point as a leaf node in the tree. Tree traversals will compute details such as the X and Y
ranges of a dataset, which facilitates features such as normalization and centering.

Time series charts used several of the above techniques. First, multiple time series data
should often be represented at the same time, such as for a server farm, the output of each

CHAPTER 2. MECHANIZING LAYOUT LANGUAGES WITH EXTENDED
ATTRIBUTE GRAMMARS 32

server as the days pass. Figure 2.11d depicts one such multiple time series chart. Our
approach was to represent each line as an intermediate node:

1 c l a s s Root : Root I {
2 ch i l d r en {
3 l i n e s : [L ine I] ;
4 }
5 }
6 c l a s s Line : L ine I {
7 ch i l d r en {
8 po in t s : [Po int I]
9 }

10 }
11 c l a s s Point : Po int I { }

Second, we found the above (Section 2.4) rendering features such as zooming, panning, and
3D representations to be important for visualizing big time series datasets.

Animation and Interaction: Treemap

We declaratively encoded various animation e↵ects with attribute grammars. For example,
the fisheye e↵ect enlarges the size of an element the closer the mouse draws near to it. Our
core pattern is to encode time-varying values such as the mouse position as input attributes
and rerun the layout solver whenever the inputs change.

Beyond human interaction, we also support reaction to time. For example, for the
treemap shown in Figure 2.11b, users may change the dataset shown. Instead of immediately
showing the new dataset, we introduce a tween attribute that an animation increments over
time from 0 up to 1. The treemap interpolates the layout position based on the time, which
yields a smooth transition for each data point:

1 c l a s s Point : Po int I {
2 a t t r i b u t e s {
3 input startW : i n t ;
4 input endW : i n t ;
5 var w : f l o a t ;
6 var tween : f l o a t ;
7 }
8 a c t i on s {
9 . . .

10 w := startW ⇤ tween + endW ⇤ (1 . 0 f � tween) ;
11 render := paintRect (x , y , w, h , . . .

Visualizations like the treemap require recompilation of most of the attributes for such
animations, which can become a bottleneck and thus benefits from the acceleration provided
by our tool.

Grid-based: Tables

We now examine one of our most di�cult case studies: specifying CSS table layout con-
structs (Lie and Bos, 1997). Tables appear in most rich document layout languages, e.g.,
CSS and LATEX, and are an instance of grid-based layout, which is popular for user interfaces

CHAPTER 2. MECHANIZING LAYOUT LANGUAGES WITH EXTENDED
ATTRIBUTE GRAMMARS 33

and data tables. In conversations with commercial browser developers, we found that the
proposed standards for the layout language features were reverse-engineered from earlier im-
plementations. Furthermore, at the time of writing, two competing standards were proposed
for table layout in CSS, and with unclear notions of completeness nor di↵erences.

We had to address several challenges to specify table layout:

• Dynamic data structure. Layout constraints guide the mapping from a cell node to
its column index. The computed result of attribute constraints therefore determines
the underlying graph structure rather than being provided as part of the input.

• Computing over a DAG rather than a tree. Each cell of a table has two parent
nodes: its row and its column. Attribute grammars are more typically designed for
computations over trees, where each node has at most one parent. Static reasoning
about dependencies must take into account this more general structure.

• Non-linear constraints. Static attribute grammars linearly bound the computation
size in terms of the number of attribute instances. A more iterative process is instead
used to compute dimensions for CSS’s automatic table layout algorithm.

Ultimately, we wrote table-specific code in the specification (see above) and the runtime,
but no table-specific code in our scheduler nor code generator. For an example of logic in the
specification, the specification constructs the grid data structure by manipulating functional
lists rather than just numbers. Likewise, to ensure a column’s computations over its cells
are scheduled after the grid is constructed, we included this dependency in the specification.

Our runtime edits were to use a breadth-first traversal for traversing a table and, to
lookup the children of a column, search table rows for cells with the corresponding column
number attribute. We did not have to add table-specific code into the synthesizer (the o✏ine
scheduling analysis) nor the code generator.

We address each problem in turn.

Dynamic data structure.

Figure 2.13 illustrates why the mapping from table cells to table column is dynamically
computed. The placement of a cell is complicated by preceding cells that span multiple rows
(”rowspan=n”) and columns (”colspan=n”). Ultimately, the cell must be placed in the first
column such that an earlier cell in a top-down, left-to-right ordering does not overlap it.
The figure illustrates two important cases. First, the second cell of the first row is placed in
the third column because its left sibling spans two rows: a cell’s column is a function of the
rowSpan attributes of its siblings to the left. The second case is shown for the bottom right
cell. Even though it is the third cell of its row in the parse tree, it is not placed in the third
column. The reason is that the red dashed rectangular cell in the second row transitively
impacts the placement of the cells after it. The colSpan attributes of cells in rows above a cell
therefore further determine its column.

CHAPTER 2. MECHANIZING LAYOUT LANGUAGES WITH EXTENDED
ATTRIBUTE GRAMMARS 34

(a) Table Rendering

1 <tab le>
2 <row>
3 <c e l l rowSpan=”2”></c e l l>
4 <c e l l ></c e l l>
5 <c e l l ></c e l l>
6 </row>
7 <row>
8 <c e l l colSpan=”2”></c e l l>
9 <c e l l ></c e l l>

10 <c e l l ></c e l l>
11 <c e l l ></c e l l>
12 </row>
13 <row>
14 <c e l l colSpan=”2”></c e l l>
15 <c e l l ></c e l l>
16 <c e l l ></c e l l>
17 </row>
18 <row>
19 <c e l l ></c e l l>
20 <c e l l colSpan=”2”></c e l l>
21 <c e l l ></c e l l>
22 </row>
23 <row>
24 <c e l l ></c e l l>
25 <c e l l ></c e l l>
26 <c e l l ></c e l l>
27 </row>
28 </tab le>

(b) Textual encoding of input tree.

Figure 2.13: Document layout screenshots.

Our specification loops over the rows to perform functional updates to the column as-
signments. For each row, it computes what columns its cells are placed in as a function
of the list of columns that are still occupied by preceding cells. The next row is given the
columns that are occupied after adding cells on the current row, etc. Our specification of
this behavior is interesting in that it is just calls to functional list manipulation methods
written in our host language:

1 c l a s s TableBox
2 . . .
3 loop rows {
4 rows . colAssignment :=
5 f o l d
6 emptyColumnList (colCount)
7 . .
8 columnsAppendRow(
9 rows$. colAssignment ,

10 rows$ i . c e l l s ,
11 rows$ i . rowNum) ;

The columnsAppendRow function computes the column position during placement, so subsequent
reads can look it up through another list manipulation function.

A column computes the x coordinates for each cell, but column cells are not known

CHAPTER 2. MECHANIZING LAYOUT LANGUAGES WITH EXTENDED
ATTRIBUTE GRAMMARS 35

1 Schedule {
2 Col . c h i l d s [i] . re lX < Col . c e l l s r e a d y
3 Col . c h i l d s [i] . absX < Col . c e l l s r e a d y

(a) Surface Syntax (Proposed)

1 Schedule {
2 a s s e r t a (ass ignment (co l , s e l f , ch i lds re lx s tep , s e l f , c e l l s r e a d y)) ,
3 a s s e r t a (ass ignment (co l , s e l f , chi lds absx step , s e l f , c e l l s r e a d y))

(b) Low-level constraint

Figure 2.14: Specifying dynamic dependencies.

before the last columnsAppendRow() call. To ensure a column computes over its cells after the
mapping occurs, we explicitly declare the dynamic data dependency in the specification.
First, the grid is stored in an attribute, so we simply propagate the grid to all the table
nodes as an attribute (cellsready). We then state the implicit data dependency (Figure 2.14).
The scheduler now knows to run column computations over cells only after the cellsready is
computed. Currently, we directly specify the constraints in terms of the desugared grammar
(Figure 2.14b), which might be directly generated from surface syntax (Figure 2.14a).

Computing over a DAG

Computing over a table means computing over a DAG, not a tree: a cell has both a row
and a column as its parents. This impacts both our runtime and our specification strategy.
Demonstrating the flexibility of attribute grammars, we did not have to modify the scheduler
nor the code generator. Instead, we modified the runtime and the specification.

We modified the runtime to generalize an important invariant from tree traversals to
DAG traversals. In a top-down traversal of a tree, a node’s parent is visited before the node
itself. A valid implementation of a top-down traversal for trees is depth first. However,
consider a depth first traversal of a parse tree of the following table:

1 <tab le>
2 <row>
3 <c e l l ></c e l l>
4 </row>
5 <column></column
6 </tab le>

The depth-first traversal would visit the table, the row, the cell, and then the column. The
cell is visited before its parent column!

Our modification was simple: we edited the runtime to visit the nodes of a table with a
breadth first subtraversal. We kept the overall document traversal as depth-first for perfor-
mance reasons. Extending the set of traversal type primitives of the next chapter to include
breadth-first traversals would allow declaratively specifying this choice as part of the sched-
ule specification rather than having to manipulate the schedule implementation. The next
chapter discusses subtraversals in greater detail.

CHAPTER 2. MECHANIZING LAYOUT LANGUAGES WITH EXTENDED
ATTRIBUTE GRAMMARS 36

We also modified the specification to pass our attribute grammar static checker. The
changes enables relaxing the scheduler’s obligation to guarantee that visiting a cell’s parent
row and column would set all the attributes needed by the cell (unambiguous) and without
conflicting with each other. For example, a column defines the relX attribute of its child
cell, and a row, its relY. By default, our checker would rightfully reject such a specification
because, if a cell has only one parent, only one of those attributes would be set.

We extended the specification language for instructing the scheduler that external code
defines certain attributes:

1 c l a s s Col : ColI {
2 phantom {
3 c h i l d s . re lY ;
4 c h i l d s . absY ;
5 . . .
6 c l a s s Row : RowI {
7 phantom {
8 c h i l d s . re lX ;
9 c h i l d s . absX ;

10 . . .

The scheduler now assumes that the external code provides definitions for a column’s childs .relY

and childs .absY and a row’s childs .relX and childs .absX. Unimportant to the synthesizer, the
definitions just happen to come from elsewhere in the same specification, such as class Row
defining the phantom attributes not set by Column.

Non-linear constraints

The table specification defines a dynamically determined number of loops over a table’s
column to determine column widths. Such dynamism is beyond the pure static attribute
grammar formalism, but our foreign function interface su�ced while still allowing overall
specification and scheduling through attribute grammars.

Flow-based: CSS Box Model

Document layout languages generally feature a flow-based layout model where the position
of one element is largely a function of the previous one. For example, line wrapping places
one word after another in a paragraph, and a column will stack one paragraph after another.
However, ambiguity quickly arises once constraints are added to such systems. We found
that, before being able to address our interest in parallelizing the CSS language, that creating
a functional specification of it was already a challenge to itself. This section focuses on the
ability to express the CSS specification, and defers discussion of correctness of functional
and parallel behavior to Chapter 3.

Challenging specification, the CSS standard provides only a few explicit formulas such as
min(max(intrinsMinWidth,maxWidth),intrinsPrefWidth) for the shrink-to-fit calculation. It generally
does not fully define the intrinsic dimensions to plug into the formula. We incorporated what
we found, and for the rest, spent significant time reengineering the semantics by examining

CHAPTER 2. MECHANIZING LAYOUT LANGUAGES WITH EXTENDED
ATTRIBUTE GRAMMARS 37

the standard and experimenting with existing browsers. While it is unclear how to evaluate
faithfulness, we encoded enough features to render a resemblance of the Wikipedia main
page (Figure 2.12b) and a popular blog.

Our attribute grammar describes the layout solving features of the informally written CSS
2.1 standard. It also includes automatic table layout, which was only more completely defined
in later CSS standards. It does not include preprocessing steps, such as the CSS cascade
that annotates the HTML tree with attributes, nor anonymous content generation, which
normalizes the annotated tree to guarantee that spans of sibling nodes are homogeneous. The
former is largely a combination of a simple extension to regular expressions and prioritization
constraints. We found we could include parts of the cascade in our approach, such as handling
units, and thus do. Normalization is a bottom-up tree rewriting pass, and an implementation
optimization avoids performing it before layout and instead makes it an on-demand part of
layout solving. We primarily focus in the core box model: normal flow (blocks and inlines),
out of flow (relative and absolute positioning, floats), and borders, padding, and margins.

Our specification largely follows the style of the above grammars. Part of the intuition
for the feasibility of specifying CSS in this way is that CSS was designed with restrictions
that avoid requiring slow evaluation with techniques such as iterative constraint solving. In
our encoding, each CSS display type is represented by one or more classes in our system.
CSS’s normalization algorithm largely leads to our set of interfaces, such as grouping the
inline and inline block display types under interface inline . We make heavy use of traits and
interfaces, which compromise 23% and 32% of the code, respectively. The automatic table
layout algorithm was an extension of the above techniques. Finally, similar to the issue
with table cells having two parents, a row and a column, out of flow elements also required
encodings to support DAG behavior.

Several di↵erences distinguish our experience with specifying CSS layout from the other
case studies. Many features were di�cult to specify because of many cases or cross-cutting
in their semantics. Discussed in Chapter 3, we rely upon automatic checking to assist devel-
opment, and discussed in Chapter 4, we specify schedule sketches to improve compiler speed
and more quickly experiment with parallelization schemes. To further simplify development,
we wrote several increasingly large specifications and manually integrated them.

One particularly challenging feature to disentangle relates to ambiguity. CSS solves
seemingly inconsistent input constraints instead of returning an error. For example, if H-AG
was extended to support input heights on intermediate nodes, the following conflict would
require a graceful interpretation rather than refusing to render:

1 <hbox he ight=”5”>
2 <hbox he ight=”500”></hbox>
3 </hbox>

By the original attribute grammar, the outer <hbox> should be the size of the biggest child,
which would be 500. However, that conflicts with the input constraint of the outer box only
being 5 tall. Our CSS grammar inspects for the presence of input attributes and prioritizes
them. The analogous resolution for the H-AGexample is the following:

1 loop ch i l d r en {

CHAPTER 2. MECHANIZING LAYOUT LANGUAGES WITH EXTENDED
ATTRIBUTE GRAMMARS 38

2 h :=
3 f o l d (maybeReady (he ight) ? maybeValue (he ight) : 0)
4 . .
5 maybeReady (he ight) ? maybeValue (he ight) : max($. h , c h i l d . h)
6 }

The grammar uses ”5” and ”500” because they were explicitly specified instead of solving
for them.

We found other features to be di�cult because they purposefully stray from the direct
mathematical interpretation. For example, CSS supports input constraints where a node’s
width is defined as a proportion of its parent’s. If we näıvely extended H-AG with such a
feature, evaluation of the following layout would lead to a degenerate solution:

1 <hbox>
2 <hbox width=”50%”>
3 <hbox w=”20”></hbox>
4 </hbox>
5 </hbox>

The root node shrinks to fit the middle node, but the middle node must be 50% of the
parent. Direct interpretation leads to a solution of 0 for both widths, but CSS instead
leaves the result up to the layout engine implementation. The first reason is that the result
looks unappealing: the containers of the leaf node do not appear. The second reason is
that, while iterative solvers may avoid some such situations, but only at the expense of
performance. Implementations instead use non-iterative heuristics, and as seen with tables,
their implementors struggle to understand the behavior.

In summary, our attribute grammar formalism was su�ciently expressive for specifying
a non-trivial subset of the widely used layout language constructs.

2.5 Related Work

This chapter relates to three broad bodies of work: declarative languages in general, attribute
grammars in particular, and constraint-based specification of layout.

Our formalism for declarative specification descend from that of attribute grammar liter-
ature. Attribute grammars were originally proposed as a formalism for describing language
semantics by Knuth and Wegner (Knuth, 1990) and have since been applied to tasks such as
developing Pascal compilers and implementing spreadsheet languages (Saraiva and Swierstra,
2003). Expressive extensions such as object orientation (Koskimies, 1991) and higher-order
values (Vogt et al., 1989) have been previously examined. We want such expressive exten-
sions for specifying our computations, and our challenge is in how to restrict them enough
to support the parallelization techniques shown in the subsequent chapters. This chapter
establishes that our formalism supports many key layout features, and by showing how to
translate our extensions such as the class system into more basic attribute grammars, enable
much of our subsequent static reasoning.

Statically unbounded loops in attribute grammars may be supported by encoding a list
of children as a degenerate subtree – a chain. Klaiber and Gokhale (1992) show a way

CHAPTER 2. MECHANIZING LAYOUT LANGUAGES WITH EXTENDED
ATTRIBUTE GRAMMARS 39

to automatically detect this case in a BNF and transform it into one supporting Kleene
stars (EBNF). We instead allow the specification writer to start with a EBNF and directly
declare and operate over an unbounded number of children. A key di↵erence is the runtime
performance implications: a loop runs sequentially while nested subtrees may be parallelized:
our approach gives programmers control over performance by providing two distinct choices.
Our loop form resembles the uniform recurrence equations described by Karp et al. (1967).
We integrated them into our overall language for computing over trees and add the ability to
escape a synthesized loop mid-iteration in order to support recurring down the tree mid-loop.

Declarative layout has been a goal of computer science as early as Sutherland’s Sketchpad
from the ”Mother of all demos” (Sutherland, 1963). Popular systems such as LATEX (Knuth
and Bibby, 1986) and CSS (Lie and Bos, 1997) provide significant high-level control for
common design tasks. However, the declarative meaning of the constraints is unknown,
which has challenged making multiple conformant implementations and correctly reasoning
about them for purposes such as optimization and tool building. In practice, layout language
designers manually implement and reason about their languages.

We are aware of several especially significant attempts for declarative definitions of layout
that support automated reasoning. First, Heckmann and Wilhelm (1997) specify LATEX’s
formula layout language in ML (Milner et al., 1997). Their description helps decompose
the specification and provides equational reasoning due to the functional style. That said,
the generality of ML provides few immediately provable properties relevant to our work.
The specification of a non-automatic HTML table layout by Saraiva and Swierstra (2003)
is similarly interesting in the use of the more restricted functional formalism of higher-order
attribute grammars, though dynamic scheduling is generally associated with such grammars.
Finally, Badros et al. (2001) built the Cassowary linear constraint solver and provide the
language of linear constraints as the layout language. The restricted formalism enables
significant automated reasoning, though it is not clear how to encode typical layout features
such as line wrapping (Lin, 2006). In contrast, we support reasoning about much of the
core CSS layout language and only escape the system to guarantee the correctness of the
occasional use of directed acyclic graphs.

40

Chapter 3

Parallel Layout with Checkable Static
Tree Traversal Schedules

We now describe parallelism in layout language constructs by introducing a static scheduling
language for parallel tree traversals. For example, we run tessellation on a GPU by grouping
dynamic memory allocation requests into one tree traversal and distribute allocated addresses
in the next. Likewise, we parallelize word-wrapping by using a restricted form of nested
parallelism where a di↵erent schedule is used based on the type of subtree. Neither encoding
is obvious and both benefit from linguistic support.

Reasoning about such schedules is di�cult. This chapter focuses on reasoning about
correctness, showing how we verify that following a schedule will correctly implement the
corresponding attribute grammar. To make the analysis tractable, we restrict the primitives
in the attribute grammar and scheduling languages. For example, we restrict the looping
construct to reduce reasoning about the correctness of loop code to non-looping code. The
idea is to unroll loops several times so that, given a schedule for the unrolled statements,
we can infer the schedule for the loops. The enabling restriction limits which array indices
a loop may access. Likewise, by focusing on di↵erent types of tree traversals, we can create
e�cient implementations of each one (Chapter 5).

3.1 Design Goals

Our overall challenge in this chapter was to balance restricting the scheduling language
enough to facilitate optimization while still providing the flexibility for expressing document
layout and data visualization languages. Finding parallelism in CSS is already a novel con-
cept; being able to optimize it with techniques associated with small formulas for physical
models is especially surprising. Although layout computations have too many data depen-
dencies to be solved with one simple tree traversal, we found that sequences of 3–5 traversals
often su�ce for data visualizations and 9 for CSS. Therefore, our scheduling language con-
sists of traversal patterns, such as parallel top-down (preorder) traversal of the tree, and

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 41

ways of combining them, such as in a sequence. It cannot express all schedules, such as
fixedpoint computations, but it can express common cases.

Our second challenge was in the correctness needs arising due to layout specifications
being magnitudes bigger than stencil (Datta et al., 2008) and skeleton (Matsuzaki et al.,
2006b) formulas. For stencil computations, the verification challenge lies more in correctly
optimizing the implementation of a traversal schedule. Our layout computations encountered
a challenge before that point: the size of the functional specification and the ensuing tangle
of data dependencies require ensuring that the parallel schedule itself is safe to implement.
Running the schedule on any input should compute the expected result. We used a variant
of existing static dependency analyses of attribute grammars to verify that the schedule is
race-free.

The dependencies that complicate reasoning about correctness of parallel code actually
also complicate sequential code. Our use of static analysis for the attribute grammars led
to an important result for layout languages: we demonstrate how to statically verify three
important properties about a language and its schedule:

• Totality The layout language defines a solution for every syntactically well-formed
input tree; the expected layout is unambiguous.

• Determinism Following a schedule always returns the same result for a given input.
We check that the schedule respects the data dependencies in the attribute grammar.

• Linearity (Single Assignment) Every attribute is assigned exactly once. Layout
languages often perform reflow to iteratively solve constraints or incremental compu-
tation, so this property bounds the need for it.

The first property demonstrates the ability to reason about functional correctness and the
last two about behavioral correctness. Put together, we verify that a language is unambigu-
ous, supports parallelization, and with bounded asymptotic complexity.

In addition, this chapter demonstrates how to parallelize common layout language con-
structs such as box models, word wrapping, tables, and even functional graphics (via tessel-
lation).

3.2 Language of Static Schedules

This section focuses on defining our full language of traversal schedules. A schedule is the
input for our code generators. Programmers may use this approach to automate specifying
a schedule.

Statically scheduled evaluation departs from the dynamic evaluation strategy of Sec-
tion 2.2. Static scheduling solves the performance problem of dynamic evaluation by repeat-
edly manipulating the data dependencies of every attribute at runtime, i.e., what would be
a direct sequence of arithmetic statements in a static language becomes an interleaving of
graph manipulations and arithmetic with the dynamic evaluator.

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 42

We use a schedule to statically declare most of the scheduling decisions. It specifies a
sequence of tree traversals and the order of statements to use within each traversal. During a
traversal at runtime, the order of nodes to traverse is based on the traversal pattern, such as
top-down, rather than by inspecting data dependencies. Likewise, the statements required
to execute a node are e�ciently looked up based on the node’s type rather than according
to its data dependencies.

Our scheduling language is a more compositional variant of others. For example, Kastens
(1980) defines a schedule as a mapping from node type to the sequence of functions to execute
on successive visits to it. The choice of traversals is implicit within the definition, which
complicates compiler optimization and language extension. Instead, our approach builds
subtree traversals out of node visits, a traversal out of subtraversals, and the full schedule
out of multiple traversals. Every scheduling unit is exposed to our downstream compilers.
Likewise, when adding a new variant of any of the scheduling constructs such as a new tree
traversal order, it is straightforward to add it to the verifier introduced in this chapter and
the synthesizer introduced in the next.

Sequential Schedules

We start by examining how to specify a safe static schedule for H-AG that respects any
possible dependencies in an input tree (Figure 2.3a).

Figure 3.1 shows a sequential implementation of H-AG decomposed into several pieces.
The layout engine solves an input tree over a sequence of two traversals (Figure 3.1a). The
first traverses the tree in postorder, meaning from the leaves up to the root (“bottom-up”),
and the second performs a preorder traversal, meaning from the root down to the leaves (“top-
down”). Figure 3.1b provides a sample implementation of generic traversal code. During a
during traversal, each node is visited exactly once in order to compute the attributes whose
dependencies have been satisfied. Figure 3.1c shows that the first pass computes widths and
heights, and the second pass computes the “x” and “y” positions.

The example follows a static schedule rather than manipulating a dynamic data depen-
dency graph. The sequence of traversal invocations and the code used for the di↵erent cases
for each traversal’s visitor determine the schedule. Each traversal now only performs dy-
namic scheduling in the sense of maintaining a stack for recurring down the tree, which is
a cost proportional to the number of nodes rather than the size of the dynamic dependency
graph between attributes. (Chapter 5’s compiler and runtime optimizations even eliminate
the implicit use of a call stack.)

We abstracted the schedule out of the implementation by introducing a compositional
scheduling language (Figure 3.3). The schedule for the above computation would be appear
as:

1 postorder

2 HBOX0 ! HBOX1 HBOX2 { HBOX0 .w HBOX0 . h }
3 HBOX ! ✏ { HBOX.w HBOX. h }
4 ;
5 preorder

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 43

1 pos to rder (v i s i t 1 , s t a r t) ;
2 preorder (v i s i t 2 , s t a r t) ;

(a) Sequential sequence of traversals

1 void preorder (void (⇤ v i s i t) (Prod &) , Prod &p) {
2 v i s i t (p) ;
3 for (Prod rhs in p)
4 preorder (v i s i t , rhs) ;
5 }
6 void pos to rder (void (⇤ v i s i t) (Prod &) , Prod &p) {
7 for (Prod rhs in p)
8 pos to rder (v i s i t , rhs) ;
9 v i s i t (p) ;

10 }
11 void r e c u r s i v e (void (⇤ v i s i t) (Prod &, int) , Prod &p) {
12 int s tep = 0 ;
13 v i s i t (p , s tep++);
14 for (Prod rhs in p) {
15 r e c u r s i v e (v i s i t , rhs) ;
16 v i s i t (p , s tep++); // repea t v i s i t to p

17 }
18 }

(b) Three sequential traversal patterns

1 void v i s i t 1 (Prod &p) {
2 switch (p . type) {
3 case S ! HBOX: break ;
4 case HBOX ! ✏ :
5 HBOX.w = input () ; HBOX. h = input () ; break ;
6 case HBOX ! HBOX1 HBOX2 :
7 HBOX0 .w = HBOX1 .w + HBOX2 .w;
8 HBOX0 . h = MAX(HBOX1 . h , HBOX2 . h) ;
9 break ;

10 }
11 }
12 void v i s i t 2 (Prod &p) {
13 switch (p . type) {
14 case S ! HBOX:
15 HBOX. x = input () ; HBOX. y = input () ; break ;
16 case HBOX ! ✏ : break ;
17 case HBOX ! HBOX1 HBOX2 :
18 HBOX1 . x = HBOX0 . x ;
19 HBOX2 . x = HBOX0 . x + HBOX1 .w;
20 HBOX1 . y = HBOX0 . y ;
21 HBOX2 . y = HBOX0 . y ;
22 break ;
23 }
24 }

(c) Scheduled and compiled visits for H-AG.

Figure 3.1: Sequentially scheduled and compiled layout engine for H-AG.

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 44

6 S ! HBOX { HBOX. x HBOX. y }
7 HBOX0 ! HBOX1 HBOX2

8 { HBOX1 . x HBOX2 . x HBOX1 . y HBOX2 . y }

It specifies a sequence (”;”) of two traversals of node visit order postorder and preorder. For
each type of node visited within a traversal, the schedule specifies the sequential sequence of
attributes to evaluate. Note that, due to the desugaring of our class system in Section 2.3,
the dispatches in the above examples are based on grammar productions in the desugared
representation. In terms of the fronted language, the dispatches are based on node class.

We consider each level of abstraction in the schedule in turn. First, the schedule performs
a sequence of two di↵erent types of traversals :

1 pos to rder (v i s i t 1 , s t a r t) ; p reorder (v i s i t 2 , s t a r t)

Later, we discuss parallel composition (“——”).
Next, the schedule specifies traversal types. Just one bottom-up traversal cannot compute

all of the attributes, such as all the “x” and “y” attributes that flow downwards (Figure 2.3a),
so the schedule carefully orders multiple traversals of di↵erent types. Other traversal types
are possible: this section also explores recursive, and nesting is described in Section 3.2.

The third control abstraction within a schedule specifies di↵erent orders of statements
for di↵erent types of nodes. For example, when visiting an HBox node as part of visit2 , the
schedule includes the following fragment:

1 HBOX0 ! HBOX1 HBOX2 {
2 HBOX1 . x ; // Semantic func t i on : �HBOX0.x : HBOX0.x
3 HBOX2 . x // Semantic func t i on : �HBOX0.x,HBOX1.w : HBOX0.x+HBOX1.w
4 . . .

The schedule specifies that HBOX2 .x can (and should) be immediately evaluated after HBOX1 .x

without fear of unsatisfied data dependencies for any of the arguments needed by its semantic
function. In summary, there are three parts to a schedule: the staging of traversals, the node
visit order for every individual traversal, and the statement order for di↵erent types of nodes
within a specific traversal.

Generally, a single attribute grammar may be scheduled in many ways. For example, the
width and height computations share no dependencies, so the first postorder traversal might
be partitioned into two postorder traversals:

1 postorder

2 HBOX0 ! HBOX1 HBOX2 { HBOX0 .w }
3 HBOX ! ✏ { HBOX.w }
4 ;
5 postorder

6 HBOX0 ! HBOX1 HBOX2 { HBOX0 . h }
7 HBOX ! ✏ { HBOX. h }
8 ;
9 preorder

10 S ! HBOX { HBOX. x HBOX. y }
11 HBOX0 ! HBOX1 HBOX2

12 { HBOX1 . x HBOX2 . x HBOX1 . y HBOX2 . y }

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 45

<paragraph>
recursive

parPre

lorom <italic>

<huge>

ipsum dolor

sit

<paragraph>
recursive

<vbox>

amet

parPost

,

<hbox>

<hbox>

Figure 3.2: Nested traversal for line breaking. The two paragraphs are traversed in par-
allel as part of a preorder traversal. A sequential recursive traversal places the words within
a paragraph. Circles denote nested regions and arrows show data dependencies between
nodes and/or regions.

Rescheduling in this way may improve performance on small devices with little memory
because the schedule cuts the working set size in half for each traversal. Verified changes to
the schedule only optimizes execution; it does not change the result of evaluation.

Sequential execution supports a traversal type that can compute more than postorder or
preorder, which we call a recursive traversal (Figure 3.1b). For example, we use a recursive
traversal for line breaking in our document layout case study. Consider inserting line breaks
into the following stylized paragraph of XML strings (Figure 3.2):

lorom <italic><huge>ipsum dolor</huge></italic> sit

Due to <huge>, the paragraph may need a line break between “ipsum” and “dolor.” Identify-
ing the line break position involves visiting the subtree <italic>...</italic>; the resulting
line break position is a data dependency influencing line breaks in the remainder of the text.
The sequence of arrows in the big circle of Figure 3.2 shows a trace of performing a recursive
traversal over the paragraph. The traversal visits a node n, then visits n’s first child, revisits
n, and repeats this process for the remaining children before returning to the parent.

The relationship between recursive traversals and postorder and preorder merits examination.
First, a sequence of a preorder traversal followed by a postorder traversal may be merged
into one recursive traversals. Traversing a tree induces overhead costs, so such fusion may
be beneficial. The reverse relationship is not true, however. As happens with the case of line
breaking, long-running sequential dependencies may prevent splitting a recursive traversal
into a preorder and postorder traversal. These dependencies arise because the the same node

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 46

1 parPost

2 HBOX0 ! HBOX1 HBOX2 { HBOX0 .w HBOX0 . h }
3 HBOX ! ✏ { HBOX.w HBOX. h }
4 ;
5 parPre

6 S ! HBOX { HBOX. x HBOX. y }
7 HBOX0 ! HBOX1 HBOX2

8 { HBOX1 . x HBOX2 . x HBOX1 . y HBOX2 . y }

(a) One explicit parallel schedule for H-AG.

1 void parPre (void (⇤ v i s i t) (Prod &) , Prod &p) {
2 v i s i t (p) ;
3 for (Prod rhs in p)
4 spawn parPre (v i s i t , rhs) ;
5 join ;
6 }
7 void parPost (void (⇤ v i s i t) (Prod &) , Prod &p) {
8 for (Prod rhs in p)
9 spawn parPost (v i s i t , rhs) ;

10 join ;
11 v i s i t (p) ;
12 }

(b) Näıve traversal implementations with Cilk’s Blumofe et al. (1995) spawn and join.

1 parPost (v i s i t 1 , s t a r t) ; parPre (v i s i t 2 , s t a r t) ;

(c) Scheduled and compiled layout engine for H-AG.

<Sched> ! <Sched> ; <Sched> | <Sched> || <Sched> | <Trav>

<Trav> ! <TravAtomic> <Visit>*{(<TravAtomic> 7! <Visit>*)*}?

<TravAtomic> ! preorder | postorder | parPre | parPost | recursive

<Visit> ! <Prod> { <Step>* }

<Step> ! attrib | recur v
(d) Language of schedules (without holes)

Figure 3.3: Scheduled and compiled layout engine for H-AG.

is visited multiple times in a traversal: once before a child subtree is traversed and again
after. The result of computing over one subtree may therefore be used to compute another,
which supports long-running sequential dependencies.

Parallel Schedules: Same Traversal

A schedule exposes structured parallelism both within a traversal and across them.

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 47

HBOX

S

HBOX

HBOXHBOX

HBOX

hw

hw

hw

hw

hw

postorder

(a) First traversal: parallel postorder

HBOX

S

HBOX

HBOXHBOX

HBOX

x y

x y

x y

x y

x y

preorder

(b) Second traversal: parallel preorder.

Figure 3.4: Parallel traversal. Shown for constraint tree in Figure 2.2. Circles denote
attributes, with black circles denoting attributes with resolved dependencies such as input()s.
Thin lines show data dependencies and thick lines show production derivations. First dia-
gram shows dependencies followed by first traversal, and second for the following traversal.

For an example of parallelism within a traversal, the first postorder traversal for H-AG
features latent parallelism. The widths and heights for one subtree can be computed in-
dependently of the widths and heights of another distinct subtree. Figure 3.4a shows an
example where di↵erent (logical) threads may compute on the leaf nodes and implicit barri-
ers force a join at every intermediate node. Likewise, the second traversal (Figure 3.4b) may
be changed to a parallel preorder traversal wherever intermediate node acts as a logical fork.
Figure 3.3b depicts näıve parallel implementations using Cilk’s (Blumofe et al., 1995) spawn

and join primitives. We formulate the schedule by changing the specification from postorder

and preorder to parPost and parPre (Figure 3.3a).
Our nested traversal feature supports exploiting parallelism within a traversal even if

some nodes require sequential evaluation. With nesting, the tree is partitioned into an outer
region and disjoint inner regions according to statically defined rules. The outer and inner
regions are evaluated with di↵erent traversals, and both may exploit parallelism. We can
think of the inner regions as macro-nodes that are evaluated in full (with their particular
traversal type) when the outer traversal encounters them.

To motivate the need for nested traversals, we revisit line breaking. Even though line
breaking of a single paragraph is sequential, distinct paragraphs of text can be handled in
parallel. To avoid locally sequential computations from forcing the entire tree traversal to
be sequential, we allow the outer region to be parallel, while each paragraph forms an inner
region that is handled with the sequential recursive traversal. Figure 3.2 shows using parallel
evaluation to compute across di↵erent recursive paragraphs. Likewise, it shows a hypothetical
VBox subtree that uses parallel postorder evaluation for traversing its subtree as soon as the
outer parallel preorder traversal reaches it.

To partition a tree into regions, the schedule maps each grammar production (and thus

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 48

each node of the tree) to a traversal type. A subtree composed from nodes of the same
traversal types form an inner region. For example, a nested traversal of paragraphs with
sequential traversals of nested text subtrees is described as follows:

1 parPre

2 P ! W { W. re l a t i v eX }
3 { recursive 7!
4 W0 ! W1 W2 {
5 W1 . r e l a t i v eX recur W1

6 W2 . r e l a t i v eX recur W2 } }

Di↵erent traversals may use di↵erent partitionings.

Parallel Schedules: Across Travesals

Our scheduling language also supports exploiting parallelism across traversals. For example,
just as we created a di↵erent but functionally equivalent sequential schedule for H-AG, we
can also design a schedule that is parallel:

1 (parPost

2 HBOX0 ! HBOX1 HBOX2 { HBOX0 .w }
3 HBOX ! ✏ { HBOX.w }
4 ||
5 parPost

6 HBOX0 ! HBOX1 HBOX2 { HBOX0 . h }
7 HBOX ! ✏ { HBOX. h })
8 ; parPre . . . /* same as before */

The “||” construct specifies that one traversal may be run concurrently with another. Neither
traversal traversal depends on attributes written by the other, so the parallelizaton is safe.
Even if we cannot exploit parallelism within a traversal, using “||” enables us to parallelize
across them.

Compilation

Compilation only requires an attribute grammar and its schedule. For example, the traversal
staging postorder ; preorder directly translates to the executable fragment in Figure 3.1a.
Likewise, the mapping from traversal productions to statement sequences, such as HBOX ! ✏
{ HBOX.w HBOX.h }, directly translate to the visit functions of Figure 3.1c. The translation
matches an attribute in the schedule with the left-hand side attribute of an equation in the
attribute grammar and outputs the full assignment statement in its place.

Our code generation pipeline is more complicated but conceptually similar. The schedule
is combined with the attribute grammar to form an intermediate representation, and di↵erent
code generators target di↵erent backends such as JavaScript, OpenCL, and C++. Further-
more, some of the reductions of Section 2.3 require augmenting or rewriting the intermediate
representation, such as reinserting loops that were unrolled during scheduling (Section 3.3).
Our code generator typically runs after the schedule synthesizer and autotuner (Chapter 4).

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 49

3.3 Desugaring Loops

Many of the di�culties in computer science stem from handling loops. In our case, how can
we statically schedule uses of the declarative loop construct of Section 2.3? The construct
extends the language of statements to include non-nested loops, and an attribute computed in
one step of one loop may depend on that of another. To avoid implementation complexity,
we schedule loops through a reduction to a language without loops. Our insight was to
finitely unroll any loop a fixed number of times in such a way that any schedule for the
unrolled steps generalizes to a loop over an arbitrary number of items at runtime. Chapter
4 examines how to synthesize schedules; the current concern is the definition and checking
of such a schedule.

Our problem is distinct from that of classical attribute grammar languages for two rea-
sons. First, modern formalisms focusing on expressivity generally rely upon dynamic schedul-
ing. They require little from the schedule. Second, for the formalisms that support static
scheduling, loops would be over the tree rather than as part of the statement language. For
example, a list of values would be encoded as a chain in the tree:

<BinaryNode> ! <ValueList> <BinaryNode> <BinaryNode> | ✏

<ValueList> ! number <ValueList> | ✏
The position of a number in a ValueList chain corresponds to the tree level; therefore, a

loop over the chain involves a full tree traversal. However, data dependencies for loops over
a node list are generally local to that list. If the list must be computed over sequentially,
being able to treat it as a single visit step simplifies computing over it as part of an overall
parallel traversal. Our nested traversal construct addresses the need in theory, but local
loops are convenient.

In terms of the above encoding, our support of loops corresponds to extending ordered
attribute grammars with a Kleene star. The above program could then keep a list of values
local to a single production:

<BinaryNode> ! number* <BinaryNode> <BinaryNode> | ✏
The language of constraints over loop node attributes are recurrence relations (Karp

et al., 1967). Every attribute in the list sequence may be defined in terms of previous
ones. Our embedding of recurrence relations into a system of tree traversals leads to subtle
interactions, however. For example, in a recursive traversal (Section 3.2), each loop step may
require recurring through a subtree before performing the loop step. We need a di↵erent
recurrence relation scheduler than existing ones.

Our approach is to divide the problem into two steps. First, we transform an attribute
grammar with loops into one without them by unrolling several steps of the loop. Second,
after scheduling the loopless grammar, we recover loops from the schedule through an infer-
ence procedure. Our approach guarantees that, if the synthesizer reports a loopless schedule,
dependency-preserving loops will be recovered from it.

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 50

childs0 childs1 childs2 childsn

self

a

i

b

c

i

b

c

i

b

c

i

b

c

(a) Unrolled Loop Dependencies.

childs0 childs1 childs2 childsn

self

c c c c

childs0 childs1 childs2 childsn

self

a

i

b

i

b

i

b

i

b

(b) Staging as Two Loops.

Figure 3.5: Loop scheduling. The loops may be scheduled for the same traversal if both
attributes a and b are available ahead of time.

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 51

Reduction to OAGs by Unrolling

See below for how to schedule the following loop:

1 i n t e r f a c e NodeI {
2 var c : i n t ;
3 var i : i n t ;
4 input a : i n t ;
5 input b : i n t ;
6 }
7 c l a s s NodeC : NodeI {
8 ch i l d r en { c h i l d s : [NodeI] ; }
9 a c t i on s {

10 loop c h i l d s {
11 c h i l d s . c := f o l d 0 . . c h i l d s $� . c + 1 ;
12 c h i l d s . i :=
13 f o l d
14 a
15 . .
16 c h i l d s $� . i + c h i l d s $i . b + ch i l d s $. c ;
17 }
18 }
19 }

Our reduction unrolls the loop into 4 steps (0, 1, 2, and n):

1 i n t e r f a c e NodeI {
2 var c : i n t ;
3 var i : i n t ;
4 input a : i n t ;
5 input b : i n t ;
6 }
7 c l a s s NodeC : NodeI {
8 ch i l d r en {
9 ch i l d s0 , ch i l d s1 , ch i l d s2 , ch i l d sn : NodeI ;

10 }
11 a c t i on s {
12 ch i l d s 0 . c := 0 + 1 + 0 ;
13 ch i l d s 1 . c := ch i l d s 0 . c + 1 + ch i l d s 0 . c ;
14 ch i l d s 2 . c := ch i l d s 1 . c + 1 + ch i l d s 1 . c ;
15 ch i l d sn . c := ch i l d s 2 . c + 1 + ch i l d s 2 . c ;

17 ch i l d s 0 . i := a + ch i l d s 0 . b + ch i l d sn . c + a ;
18 ch i l d s 1 . i := ch i l d s 0 . i + ch i l d s 1 . b + ch i l d sn . c + ch i l d s 0 . i ;
19 c h i l d s 2 . i := ch i l d s 1 . i + ch i l d s 2 . b + ch i l d sn . c + ch i l d s 1 . i ;
20 ch i l d sn . i := ch i l d s 2 . i + ch i l d sn . b + ch i l d sn . c + ch i l d s 2 . i ;
21 }
22 }

The reduction performs several rewrites that unroll loops and then substitutes variable
names in the unrolled statements (Figure 3.6). The first key property that the unrolling
preserves is that the dependencies are preserved. The unrolling does this in several ways:

• Schema unrolling. It unrolls every declaration “child : [NodeI]” into the following
form: child0 , child1 , child2 , childn : NodeI

• Substitution. The first step of a loop unfolds by replacing references of the form
“child$- . fld” to use the initial value specified in the first part of a “fold” expression.

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 52

J child : [interface] K ! child0, child1, child2, childn : interface

Jchild.f ld := fold einit,f ld .. estepK !
child0.f ld = J estep[8 f : einit,f / child$-.f] K0 + einit,f ld;

child1.f ld = J estep K1 + child0.f ld;

child2.f ld = J estep K2 + child1.f ld;

childn.fld = J estep Kn + child2.f ld;

J child$$.f ld K↵ ! childn.f ld

J child$i.f ldK↵ ! child↵.f ld

J child$-.f ldK1 ! child0.f ld

J child$-.f ldK2 ! child1.f ld

J child$-.f ldKn ! child2.f ld

Figure 3.6: Rewrite rules for loop reduction. Cases of J·K that simply recur are elided.

Likewise, step 1 will substitute the reference with “child0 . fld”, and “ child$i . fld” for
“child1 . fld”. Finally, it replaces every reference to last value “child$$. fld” with “child . fld”.

• Forward Loop Direction. The rewriting enforces a forward loop direction by making
child1 . fld depend on child0 . fld , child2 . fld depend on child1 . fld , etc. The dependencies
simplify later analysis by eliminating concerns in safely reordering steps of a loop. To
support an alternative loop order, such as backwards, these dependencies would be
elided or encode multiple options, and the recovery algorithm would perform more
reasoning.

The result of the rewriting is an attribute grammar without loops. Our full implemen-
tation di↵ers in two significant ways. First, it performs static checks such as that the fold

initialization expression does not refer to step variables “ child$i . fld” nor “child$- . fld”. Likewise,
statements looping over one collection are checked for references to intermediate elements
of another. Second, the rewriting supports loops that may temporarily escape as part of a
recursive traversal. Each loop step over an element may require traversal into the element’s
subtree, so we expand child attributes with a local and transfer version in order to reason
about safe placement of the recursive call.

Recovery by Commuting Abstractions

If the rewritten grammar can be scheduled, so can the original grammar with loops. We
extract loops from the scheduled grammar and guarantee that any dependency in the original
grammar is safely obeyed by the extracted loops. A di�cult part of the guarantee is proving

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 53

that the procedure for recovering loops from the schedule will not get “stuck.” This section
describes the loop recovery process and its correctness.

The algorithm first rearranges loop statements into distinct blocks. The scheduler may
interleave statements from loops over distinct sets of children, but code generation needs
them to be separated. All non-loop assignments must also be taken out and fit between loop
blocks. The procedure iteratively partitions a scheduled sequence of attributes into several
subsequences until it reaches a normal form and cannot proceed further.

For each iteration, the algorithm selects a sequences of attributes starting with “child0 . fld”,
which represents the beginning of a loop. It partitions the attributes following it into those
that must occur before the loop, after the loop, or during it. The loop’s partition is then
ready for code generation, and the algorithm repeats on the other two partitions. Because
the algorithm finalizes a loop with at least one attribute in each step, we guarantee that the
algorithm terminates.

The partitions for one step of the algorithm are determined by applying the following
three transformations. The intuition for each is that, due to the loop unrolling, any valid
schedule for dependent variables will obey certain properties. A schedule matching them
may be due to loop dependencies, and allowing the transformations, a schedule that does
not cannot.

• Extract non-loop assignments from a loop. The beginning of a loop corresponds
to an assignment to “child0 . fld” and the end by an assignment to “childn . fld”. Assign-
ments to non-loop variables that occur within the loop range are moved to be before the
beginning of the loop. They are moved out in case multiple statements are scheduled
for the same loop and some of them depend on the non-loop variables. All non-loop
assignments in a loop range are moved out with their relative ordering preserved.

Moving a non-loop assignment to before the loop is safe. If the assignment depended on
a loop variable, syntactic restrictions guarantee that the variable could only have been
the final one, child$$. fld , and a valid schedule could not have placed the assignment
inside of the loop range. Conversely, if a loop statement depends on the non-loop
assignment, moving the assignment earlier preserves the ordering. Finally, moved
non-loop assignment statements may have mutual dependencies, so maintaining their
relative ordering during the movement preserves any read-after-write dependencies.

The process is guaranteed to terminate at a fixpoint. First, moving statements out of
one loop completes in time linear in the size of the range of the loop. Second, the finite
number of loops means that the process only repeats a finite number of times because
movement only occurs in one direction.

• Separate loops over di↵erent collections. The algorithm iteratively separates
loops over di↵erent collections. First, it detects mutually dependent statements that
must be scheduled as part of the same loop. Then, it examines the loop span for
statements belonging to another type of loop and moves them either to before or after

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 54

the base range of mutually dependent statements. The moved statements maintain
their ordering relative to other statements moved to the same side of the range.

The complexity of the operation stems from mutually dependent loop variables. For
example, the following code must be scheduled into the same loop:

1 loop c h i l d s {
2 c h i l d s . a := f o l d 0 . . c h i l d s $� . b + 1 ;
3 c h i l d s . b := f o l d 0 . . c h i l d s $� . a + 1 + otherCh i ld s$$. c ;
4 }

The partial order for the resulting schedule is “(a0|b0) (a1|b1) (a2|b2) (an|bn)”. If “cn” is
scheduled as “a0 c0 d0 c1 d1 c2 d2 cn b0 dn”, the “c” computations do not depend on “a”
nor “b” ones, but not vice-versa. The “c” loop must be moved ahead. Doing so is safe
relative to “a,b ,.. ” because “c” statements do not depend on them. Furthermore, if
“c” is dependent on other statements in the range, those would also be moved with it,
such as seen with “d”. For the remaining statements, “a,b ,... ” do not depend on them
and the algorithm moves them after.

The algorithm terminates because it recursively operates on successively smaller par-
titions: statements moved earlier, the current loop range, and statements moved after.

• Separate staged loops over the same collection Loops over the same collection
may still need to be separated. Consider the following loop:

1 loop c h i l d s {
2 c h i l d s . a := f o l d 0 . . c h i l d s $� . b + 1 ;
3 c h i l d s . b := f o l d 0 . . c h i l d s $� . a + 1 + ch i l d s $$. c ;
4 c h i l d s . c := f o l d 0 . . c h i l d s $� . c + 1 ;
5 }

A valid resultant schedule would be the same as the above case: a loop computing c

attributes must run before a loop computing all a and b attributes. In fact, the same
reasoning as applied above applies to this case, except now the recurrences are all over
the same variable childs.

Due to dependencies across statements being moved before or after a loop, each partitioning
step performs all of the above separations. The relative order of statements moved out of a
loop is thereby preserved.

Once the partitioning completes, the code generator receives a a list of blocks. Each block
is for all loop statements or all non-loop statements. The code generator handles blocks of
non-loop statements as usual. A block of loop statements will translate into a single loop.
For example, handling the above code yields:

1 f o r (i n t i = 0 ; i < c h i l d s . l ength ; i++) {
2 c h i l d s [i] . c = (i == 0 ? 0 : c h i l d s [i � 1] . c) + 1 ;
3 }
4 f o r (i n t i = 0 ; i < c h i l d s . l ength ; i++) {
5 c h i l d s [i] . a = (i == 0 ? 0 : c h i l d s [i � 1] . b) + 1 ;
6 c h i l d s [i] . b = (i == 0 ? 0 : c h i l d s [i � 1] . a) + 1 ;
7 }

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 55

Note that translation of references of the form “childs$� . fld” require tracking the loop step
in order to select the initial value or the previous node’s value.

The end result is that, given an attribute grammar with loops and schedule for an unrolled
version, we can recover a schedule for an attribute grammar with loops and then perform
code generation.

3.4 Verification

We automatically check an attribute grammar and its schedule for safety. This section
focuses on two aspects of our approach: the properties to verify and the modular design of
the verification procedure. The properties are significant in that they cover both functional
and behavioral correctness, and are typically desired but not proven for layout languages
and pattern programs. Furthermore, we check the properties through axiomatic reasoning
parameterized by a local dependency analysis. This proof structure simplifies extending the
language of statements and of schedules because most additions correspond to an isolated
and composable axiom. In Chapter 4, we change the verifier into a synthesizer and thereby
achieve fully automatic and computer-assisted parallelization.

Our approach automatically checks three properties:

• Totality The attribute grammar defines one and only one solution for every well-
formed input tree.

• Determinism The schedule evaluates the constraints of the attribute grammar with-
out any data races.

• Linearity (Single Assignment) Every attribute is assigned exactly once. Layout
languages often reflow by iteratively and incrementally solving constraints, so linearity
provides an important monotonicity property for optimization.

In this chapter, we illustrate how to check race freedom. The check for linearity is similar,
and totality is a consequence of the determinism and linearity properties.

We use a modular checking strategy for two reasons. First, we encountered implementa-
tion challenges without it. Our initial attempts to adapt the OAG algorith (Kastens, 1980),
which is a search over a global dependency graph, su↵ered from many implementation bugs
and we abandoned it. Instead, our new approach decouples verification from synthesis and
pattern checking from dependency analysis. Second, challenging our OAG implementation
and the basic premise of our approach, we needed to support adding new types of traver-
sals. New schedule combinators, such as nested traversals, and individual patterns, such as
recursive, should be simple to add as new types of parallel patterns are understood. Adding
a parallel pattern should not require refactoring the entire verifier or synthesizer. Our new
approach phrases each pattern as an independent axiom and automatically incorporates it
into the checking procedure.

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 56

{A} p {B} {B} q {C}
{A} p ; q {C}

(seq)

{A} p {B} {A} q {C}
{A} p || q {B [C}

(par)

Regions = {↵ 7! V isit⇤↵} [
[

i

{�i 7! V isiti⇤}

8 (� 7! V isit⇤) 2 Regions :
C� = alwaysCommunicate↵(�, B,Regions)
{A,C�} � V isit ⇤ {A [B�}

{A} ↵ V isit ⇤↵ {(�i 7! V isiti)⇤}? {A [
S
B�}

(nest↵)

P = [Prodi Steps = [Stepj
B =

[

i

reachable�(Prodi, P, A, Steps, C)

{A,C} � (Prodi { Stepj ⇤ }) ⇤ {A [B}
(check�)

Figure 3.7: Correctness axioms for checking a schedule.

Axiomatic Checking for Modularity and Correctness

Correctness axioms for checking an entire schedule are shown in Figure 3.7. The judgments
recursively check a composition of traversals until reaching the traversal-specific checks of
Figure 3.8. Checking is worst-case time linear in the number of attributes and the number
of their local dependencies. As a reminder, Figure 3.3d defines the language of schedules.

We introduce a small amount of notation. Variables p and q denote schedules (<Sched>),
A and B are sets of attributes, and ↵ and � are traversal types (<travAtomic>). Attribute
aW,V!W is decorated with its production (V!W) and the non-terminal within it (W). We
write a⇤,V!W if a can be associated with a non-terminal on either side of the production.

The rules to check composition and individual traversals are as follows:

• Sequential and parallel composition: “ ;” and “ ||”The simplest composition
check is for sequencing: Hoare triple “{A} p ; q {C}” (rule seq). If attributes A are
solved before traversal “p ; q”, then attributes C will be solved after. The conditions
above the judgment bar state this is true if p can always compute attributes B given
attributes A, and q can always then compute C. The judgment is recursive. Analogous
reasoning explains “ ||” (rule par).

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 57

1 alwaysCommunicateparPre(�, B,M) =

2 {aW,W!X | (W!X B�) 2M [�]
^

(V !W B�)2M [� 6=�]

aW,V !W 2 B [A}

(a) Communication check for region boundaries in a parPre traversal

1 set r eachab l e parPre (W!X ,P ,A ,B ,C) :
2 reach :=

3 {a⇤,W!X | a⇤,W!X 2 A} [(C \ {aW,W!X |
^

V !W2P

W.aV !W 2 B}) [(C \ {aX,W!X |¬9X!Y 2 P})

4 whi l e t rue :
5 p rog r e s s := {a⇤,W!X | a⇤,W!X = f(b0, . . . , bn) 2 F

^ a⇤,W!X 2 B ^
^

bi 2 reach}
6 reach := reach [prog r e s s
7 i f p rog r e s s = ; :
8 break
9 return reach

(b) Unoptimized production visit check for parPre traversal

Figure 3.8: Inter- and intra-region checkers for parPre.

• Nested composition: 7! Rule nest↵ checks outer traversal type ↵ over regions where
each one may have its own traversal type �. Consider an outer traversal type of
parPre: as it progresses top-down, every region might be guaranteed to have attributes
of its root node solved before evaluation proceeds within it. For each region (the set of
productions mapped to region traversal type �), the rule calls alwaysCommunicateparPre
to find the set C� of attributes that are externally set before the region is traversed.
Rule nest↵ calls checks for every region under the assumption that C� is already solved.

The first line of rule nest↵ means that, for any outer traversal ↵, attributes scheduled for
the outer region are treated as if they were in their own region (� = ↵). Traversals that
do not use nesting are degenerate: all the productions belong to one region (� = ↵).

• Traversal over a region (e.g., parPre) The schedule for a traversal of type �
over a region is correct if every production visit schedule is correct (rule check�). A
production visit schedule Prodi { Stepj ⇤ } is correct when there is an order for
computing its scheduled attributes Stepj⇤ along which all of the data dependencies of
the corresponding semantic functions are satisfied.

Traversals that do not perform nesting, such as a single occurrence of parPre, are
handled as degenerate nested composition with one region: the entire tree.

• Production visit

A fast and simple checking algorithm would involve marking each attribute of a pro-
duction as dirty or clean inside a structure that persists across checks of di↵erent visits
to the same production. For each successive attribute in a visit’s sequence, if all of

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 58

its dependencies are met (dirty), mark the attribute, and otherwise fail the check.
Non-local dependencies can be handled as below.

To optimize the synthesis algorithm of Chapter 4, we use a slightly indirect algorithm
to check the correctness of visiting a production. The intuition is that it relaxes the
specification of visit’s attributes by treating the ordered sequence as an unordered set
because the underlying check is for reachability in the set’s dependency graph. Instead
of checking all permutations of some attribute sequence (a,b,c,d) against the topological
order of their dependencies, it sorts set {a,b,c,d} and checks once.

Figure 3.8b shows an unoptimized reachability computation for visiting a production
inside a parPre region. It is the standard transitive closure except for two subtleties:

1. Only attributes that are meant to be scheduled are considered reachable (B mem-
bership checks). Incorrectly including unscheduled attributes would erroneously
allow attributes with unresolved dependencies to also be included.

2. Attributes computed by visits to adjacent productions must be distinguished.
Adjacent productions may be in the same region or in another. In a parPre region,
consider when W is always an intermediate node of the region and attribute
aW,W!X 2 B is always set by a parent production V!W in the same region. For
this intra-region case, aW,W!X is guaranteed to be reachable at the beginning of
the visit to W!X. However, if W can be the root node of the region, we must
also check aW,V!W is set by adjacent regions before the root is visited.

Checking an explicit sequence reduces to checking that the transitive closure can be
performed in the specified order rather then the declarative definition shown in Fig-
ure 3.8. The synthesizer of Chapter 4 does not need to check for ordering, so we
omitted this check.

Property Proofs

The axioms check for determinism, which can be adapted to check the two other properties.
First, the axioms check determinism, which means that rerunning the schedule will yield

the same result. We can check determinism by ensuring that a schedule computes the
attributes of an attribute grammar without races. More precisely, it tracks what attributes
are guaranteed to have been computed by any particular point of the schedule, and uses that
to check that every step of the computation only relies on what is guaranteed to have been
computed.

Next, linearity requires that every instance of an attribute is only assigned to once. We
can check linearity by extending the axioms in two ways. First, they must check that for
any given attribute Xa, it is either defined by all productions X ! W or by all productions
W ! X. Second, for every attribute assigned in production X ! W , it must only be
scheduled for one visit.

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 59

Totality guarantees that every well-formed input tree yields one and only one result. It
is a property of the language because any schedule must reach the same result. In contrast,
determinism is a property of a schedule because, for the same language, rerunning one
schedule may always return the same result even as the same might not be guaranteed
for another schedule. The proof of totality lies in the proof of linearity. Given a linear
schedule, the dynamic dependency graph of every input document is directed and acyclic.
The DAG property guarantees that the value of every attribute is a pure function of the
values of the dominating attribute in the dependency graph, and therefore the language has a
(total) functional interpretation. Checking totality adds an additional step beyond checking
linearity: totality requires that every attribute in the grammar appears in the schedule.

Verification is O(A log A)

Verifying a schedule for race-freedom takes time linear in the number of attributes A. Our
description of the checker in Figures 3.7 and 3.8 does not show the optimizations that led to
this bound; we highlight the key ideas here.

First, we observe the axioms to check form a tree. The fringe represents traversals, and
intermediate nodes partition the attributes among them. The number of levels is log A.

Second, the time to check an axiom is linearly bounded by the number of attributes (and
their dependencies) to be scheduled by that axiom. For example, checking the visit to a
production is e↵ectively a topological sort of the local dependency graph restricted to the
attributes evaluated during the visit. Topologically sorting dependency graph G = (E, V) is
O(|E|+ |V |). Because an attribute has at most A local dependencies, verification takes time
O(A). For simplicity, our implementation does not use the topological sort optimization,
and we only encountered performance issues in one case study a↵ected by that.

Combining these observations yields the complexity. The time to check a level is A and
there are log A levels, therefore, the complexity of verification is O(A log A).

Similar reasoning applies to deriving the same complexity for checking the two other
properties. To verify linearity, each attribute is labeled based on the type of production
that solves it and rule check� checks that the labels of attributes in Stepj match production
Prodi. The time to check the axiom is therefore still bounded by the number of scheduled
attributes. Finally, verifying totality involves checking that the computed set of attributes
matches the total set, and comparing two sets is also linear in the number of attributes.

3.5 Case Study: Automatically Staging Memory
Allocation for SIMD Rendering

The static language of traversals is restricted, eliciting concern with whether it is too
restricted to express common cases. Prominent in our case studies, many programs use dy-
namic memory allocation, but it is unclear how to perform it on a GPU without significant
performance penalties. Our solution, based on the idea of scan operators (Chatterjee et al.,

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 60

1 f l o a t ⇤ drawCirc le (f l o a t x , f l o a t y , f l o a t rad iu s) {
2 f l o a t ⇤ bu f f e r = mal loc ((2 ⇤ s i z e o f (f l o a t)) ⇤ round (rad iu s))
3 f o r (i n t i = 0 ; i < round (rad iu s) ; i++) {
4 bu f f e r [2 ⇤ i] = x + cos (i ⇤ PI/ rad iu s) ;
5 bu f f e r [2 ⇤ i + i] = y + s in (i ⇤ PI/ rad iu s) ;
6 }
7 return bu f f e r ;
8 }

(a) Naıve drawing primitive.

1 i n t a l l o cC i r c l e (f l o a t x , f l o a t y , f l o a t rad iu s) {
2 return round (rad iu s) ;
3 }

(b) Allocation phase of drawing.

1 i n t f i l l C i r c l e (f l o a t x , f l o a t y , f l o a t radius , f l o a t ⇤ bu f f e r) {
2 f o r (i n t i = 0 ; i < round (rad iu s) ; i++) {
3 bu f f e r [2 ⇤ i] = x + cos (i ⇤ PI/ rad iu s) ;
4 bu f f e r [2 ⇤ i + i] = y + s in (i ⇤ PI/ rad iu s) ;
5 }
6 return 0 ;
7 }

(c) Tessellation phase of drawing.

Figure 3.9: Partitioning of a library function that uses dynamic memory allocation
into parallelizable stages.

1990) for labeling nodes, performs many allocations together with two traversals. We auto-
mate using this pattern similar to how we handle automate other scheduling of traversals
(Chapter 4), as well as with a macro to syntactically hide part of the encoding.

Demonstrating the technique, we use it to optimize the hand-o↵ between layout and
rendering in our graphics pipeline. All nodes that render as a circle will call some form of
drawCircle in Figure 3.9a. Depending on the size of the circle, which is computed as part
of the layout traversals, a di↵erent amount of memory must be allocated for recording its
vertices: bigger circles need more vertices to describe their perimeter. Once the shapes are
thus tessellated, the rendering engine can then paint them on the screen. As we now outline,
we use the optimization to vectorize the memory allocation and computation of positions
that, together, dominate tessellation.

Staged Parallel Memory Allocation

We stage the use of dynamic memory into four logical phases:

1. Parallel request (bottom-up tree traversal to gather memory sizes)

2. Physical memory allocation

3. Parallel response (top-down tree traversal to scatter bu↵er o↵sets)

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 61

1 CBOX ! BOX1 BOX2

2 {
3 . . .
4 CBOX. render =
5 drawCirc le (CBOX. x , CBOX. y , CBOX. rad iu s)
6 + drawCirc le (CBOX. x + 10 , CBOX. y + 10 , CBOX. rad iu s ⇤ 0 . 5) ;
7 }

(a) Call into ine�cient library.

1 CBOX ! BOX1 BOX2

2 {
3 . . .
4 CBOX. s i z e S e l f =
5 a l l o cC i r c l e (CBOX. x , CBOX. y , CBOX. rad iu s)
6 + a l l o cC i r c l e (CBOX. x + 10 , CBOX. y + 10 , CBOX. rad iu s ⇤ 0 . 5) ;
7 CBOX. s i z e = CBOX. s i z e S e l f +BOX1 . s i z e + BOX2 . s i z e ;
8 BOX1 . b u f f e r = CBOX. bu f f e r + CBOX. s i z e S e l f ;
9 BOX2 . b u f f e r = BOX1 . b u f f e r + BOX1 . s i z e ;

10 CBOX. render =
11 f i l l C i r c l e (CBOX. x , CBOX. y , CBOX. radius , CBOX. bu f f e r)
12 + f i l l C i r c l e (CBOX. x + 10 , CBOX. y + 10 , CBOX. rad iu s ⇤ 0 . 5 ,
13 CBOX. bu f f e r + a l l o cC i r c l e (CBOX. x , CBOX. y , CBOX. rad iu s)) ;
14 }

(b) Macro-expanded calls into staged library.

1 CBOX ! BOX1 BOX2

2 {
3 . . .
4 render =
5 @Circ le (CBOX. x , CBOX. y , CBOX. rad iu s)
6 + @Circ le (CBOX. x + 10 , CBOX. y + 10 , CBOX. rad iu s ⇤ 0 . 5) ;
7 }

(c) Sugared calls into staged library.

Figure 3.10: Use of dynamic memory allocation in a grammar for rendering two
circles.

4. Computations that consume dynamic memory (arbitrary parallel tree traversals)

The staging allows us to parallelize the request and response stages as tree traversals. The
actual allocation of physical memory in stage 2 is fast because it is a single call in the global
context. Figure 3.11 shows the dynamic data dependencies and two parallel tree traversals
for an instance of staged parallel memory allocation.

We manually split library functions that perform dynamic memory allocation into two
new functions: the allocation request (Figure 3.9b) and the memory use (Figure 3.9c). The
transformation was not onerous to perform on our library primitives and, in the future, might
be automated. Invocations of the original call in the attribute grammar must be rewritten
to use the new forms. For example, drawing two circles (Figure 3.10a) is split into calls
for allocation requests, bu↵er pointer manipulation, and bu↵er usage (Figure 3.10b). The
transformation increases memory consumption constants due to bookkeeping of allocation
sizes.

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 62

bu!er=1 bu!er=2 bu!er=5

bu!er=0 bu!er=5

bu!er=0 sizeSelf=0

size=7

sizeSelf=1

size=1

sizeSelf=3

size=3

sizeSelf=2

size=2

sizeSelf=1

size=5

sizeSelf=0

size=2

Allocation Requests Bu!er indexing

a1=1

a1=1 a1=2 a1=2 a2=1

Figure 3.11: Staged parallel memory allocation as two tree traversals. The first
pass is a parallel bottom-up traversal that computes the sum of allocation requests, and the
second pass is a parallel top-down traversal that computes bu↵er indices. Lines with arrows
indicate dynamic data dependencies.

The result of our staging is three logical parallel traversals – allocate, distribute, and use
– and implementations generally merge the latter two. The first pass is bottom-up, similar
to a prefix sum: each node computes its allocation requirements, adds that to the allocation
requirements of its children,and then the process repeats for the next level of the tree. The
sizeSelf and size attributes are used for the first pass. Once the cumulative memory need is
computed, a bulk memory allocation occurs, and then a parallel top-down traversal assigns
each node a memory span from bu↵er to bu↵er + selfSize . Finally, the memory is ready for
use by actual computations in parallel passes. Memory use can occur immediately upon
computation of the bu↵er index, so the last two logical stages are safely merged into one
pass for rendering.

Automation with Automatic Scheduling and Macros

Manually manipulating the allocation requests, bu↵er pointers, and staging is error prone.
We eliminated the problems through two automation techniques: automatic scheduling to
enforce correct parallelization, and macro expansion to encapsulate bu↵er manipulation.

To enforce proper parallelization, we relied upon our synthesizer (Chapter 4) to schedule
the calls. If the synthesizer cannot schedule allocation calls and bu↵er propagation, it reports
an error. Our insight is that, implicit to our staged representation, we could faithfully ab-

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 63

stract the memory manipulations as foreign function calls. Our synthesizer simply performs
its usual scheduling procedure.

To encapsulate bu↵er manipulation, we introduced the macro “@”. Code that uses
the macro is similar to code that assumes dynamic memory allocation primitives: the slight
syntactic di↵erence can be seen by comparing Figure 3.10a and Figure 3.10c: calls to drawCircle

are now to @drawCircle. Our macros, implemented in OMetaJS (Warth and Piumarta, 2007),
automatically expand into the form seen in Figure 3.10b.

Our use case only required one allocation stage, but multiple allocation stages may be
needed. For example, a final logging stage might be added that should run after all other com-
putations, including rendering. However, the “@” calls described above expand to contribute
to one attribute (size): no allocation is made until all of the sizes are known, which prevents
making an allocation after using dynamic memory. To support multiple allocation stages,
the “@” macro could be expanded to include logical group names: @[render]Circle (...) would
contribute to sizeRender, @[log]error (...) to sizeLog, and @[render,log]Strange (...) to both sizeRender

and sizeLog. Parallel traversals would be created for each logical name, and the synthesizer
would be responsible for determining if the traversals can be merged in the final schedule
and implementation.

3.6 Evaluation: Layout as Structured Parallel Visits

We show that our static language of parallel schedules is expressive enough to support
common layout tasks. Not all computations can be expressed as a statically bounded number
of tree traversals, such as fixed point computations, so this result is not obvious. In particular,
we show how to parallelize document layout (box models and nested text), table layout (user
interfaces and data tables), and rendering (tessellation). Our document layout and table
examples describe supporting a subset of CSS. Our rendering example highlights optimizing
dynamic memory allocation on a GPU. The attribute grammars in the appendix include
sketches (Chapter 4) of the schedules described here.

Box Model

Document languages provide nested box models where intermediate nodes are boxes and leaf
nodes are text and images. For example, a box may represent a page, column, or paragraph.
The H-AG example provides the basic insight, except a language such as CSS extends it with
features. Of most relevance to parallelization, we describe supporting the following common
features with non-trivial data dependencies:

• Intrinsic preferences. Document content leads to intrinsic preferences, such as hav-
ing a box big enough to contain its content. These must be combined with external
constraints, such as overriding preferences set by the designer on the element or its
container.

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 64

• Relative positioning. Based on the size preferences of a node and its content, the
content must be positioned relative to each other and the node.

• Absolute positioning. Based on the relative positioning between a node and its parent,
transitive reasoning must be applied to position the node relative to the tree’s root
node.

Our static box model schedule loosely corresponds to the above list by devoting 1-2 parallel
passes for each item.

We stage the computations with the following sequence of parallel traversals (Appendix A.5):

1. Bottom-up: intrinsic widths and concrete overriding constraints. For exam-
ple, the intrinsic width of a horizontal box is the sum of intrinsic widths of its children.
If the user specifies a concrete width value such as 2 pixels, that value is used instead.

2. Top-down: percent widths. Constraints such as a width being a percent of its
parent are computed next. Notably, the CSS standard defines percent widths that
cannot be computed at this point as being undefined. The definition by the CSS
standard makes whatever interpretation we use safe.

3. Bottom-up: heights and relative positioning. Once the size of a node’s children
is known, their placement relative to the node can be computed. For example, a
horizontal box would place them side by side, and a vertical box would stack them.
Likewise, the relative positioning of a node’s children, their heights, and any overriding
user constraints are su�cient for computing the node’s height.

4. Top-down: absolute positioning. When the absolute position of a node becomes
available, the absolute positions of its children may be computed. The process proceeds
recursively.

Nested Text

Our core approach to supporting nested text is described in Section 3.2, and the code is part
of Appendix A.5. As a reminder, the problem is to perform word-wrapping on subtrees such
as paragraphs with stylized text. The idea is to identify subtrees that require sequential
evaluation but can be computed in parallel with other subtrees. Given the basic insight of
performing such a nesting, we use our tool to design and verify the schedule.

A non-obvious aspect of using nested traversals for text layout is that we use the nesting
for just one pass. The computations relating to text layout span several tree traversals. The
intrinsic and computed width passes execute using the parallel traversals described above.
We only use the nesting for height and relative position computations. Thus, our strategy of
using nested traversals achieves coarse-grained parallelism for the traversal with the di�cult
word-wrapping dependency, and features the usual fine-grained parallelism for all others.

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 65

Grids

We scheduled the automatic layout algorithm used in CSS and HTML as parallel tree
traversals. Section 2.4 describes the functional specification, and the code is available in
Appendix A.2. The primary dependencies challenging parallelization relate to supporting
topological traversals over a DAG rather than a tree because cells have two parents: the
row and the column. In a top-down traversal, both the row and column should be visited
before the cell. Our solution for parallelization is a level-synchronous breadth-first evaluation
order. Finally, our example propagates information between rows and columns using several
intermediate parallel traversals. A nested traversal or the ability to reason about attributes
of grandchildren rather than just children helps eliminate those traversals.

SIMD Rendering through Staged Memory Allocation

We evaluated three dimensions of our staged memory allocation approach: flexibility, pro-
ductivity, and performance. First, it needs to be able to express the rendering tasks that we
encounter in GPU data visualization. Second, it should provide some form of productivity
benefit for these tasks. Finally, the performance on those tasks must be fast enough to
support real-time animations and interactions of big datasets.

Productivity

Productivity is di�cult to measure. Before using the automation extensions for rendering,
we repeatedly encountered bugs in manipulating the allocation calls and memory bu↵ers.
The bugs related both to incorrect scheduling and to incorrect pointer arithmetic. Our new
design eliminates the possibility of both bugs.

One weak productivity measure is of how many lines of code the macro abstraction
eliminates from our visualizations. We measured the impact on using it for three of our
visualizations. The first visualization is our HBox language extended with rendering calls,
while the other two are interactive reimplementations of popular visualizations: a treemap
and multiple 3D line graphs.

Table 3.1: Lines of code before/after invoking the “@” macro.

Visualization Before (loc) After (loc) Decrease

HBox 97 54 44%
Treemap 296 241 19%

GE 337 269 20%

Table 3.1 compares the lines of code in visualizations before and after we added the
macros. Using the macros eliminated 19–44% of the code. Note that we are not measuring
the macro-expanded code, but comparing to code that a human wrote.

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 66

As shown in Figure 3.10, switching to manually staged allocation introduces boilerplate
code. With the macro, porting unstaged functional graphics calls to use the new staged
library e↵ectively only requires renaming called methods. The “@” macro eliminates 19–
44% of the code that would have otherwise been introduced and completely eliminates two
classes of bugs (scheduling and pointer arithmetic); the productivity benefit is non-trivial.

Discussion

One concern we had is the completeness of the specification formalism with respect to parallel
traversals. By restricting specifications to verifiable attribute grammars, we disallow safe
programs that could be manually expressed with tree traversals. For example, our CSS
schedule contains traversals that a pen-and-paper proof can safely fuse by performing the
equivalent of loop skewing for allowing a node to read and write to its grandchildren in the
same traversal. An important future direction would therefore be to improve the reasoning
over attribute grammars while maintaining the set of parallel traversal types.

3.7 Related Work

This section relates to several significant bodies of work: static parallel scheduling of attribute
grammars, static parallel scheduling of traversals over data structures, optimization of layout
languages, and parallel rendering.

Attribute Grammars

Some of the earliest results for attribute grammars were in how to safely and e↵ectively
statically schedule them. Our checking algorithm is similar to the inference algorithm of
Bochmann (1976). However, we decouple checking a schedule from searching for it and
use axiomatic reasoning to make the approach modular over di↵erent types of schedule
constructs. We defer questions of automatic parallelization to the next chapter.

Alblas (1991) surveyed various methods and provides a taxonomy of sequential traversal
types. Many of the results apply to our static scheduling approach and our case study of
layout languages:

• Single and multi-pass: some computations can be performed using one traversal.
Klein and Koskimies (1990) and Noll and Romanith (1996) identify the opportunity
of fusing parsing with evaluation for the e�cient class of single-pass languages. For
example, LL(1) languages support single-pass top-down parsing. If the evaluator only
requires one “left-to-right” traversal, the entire computation is single-pass. Likewise,
LR(1) languages support bottom-up parsing, which in turn can be fused with “right-
to-left” traversals. We faced related questions when examining how to stage layout pre-
processing of CSS selector matching and cascading before layout solving (Meyerovich
and Bod́ık, 2010).

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 67

• Bounded traversals: Some languages may be solved with a static number of traver-
sals. The proof often involves showing that particular attribute types will be solved
in particular traversal steps. The community refines this notions with definitions of
purity, simplicity, and ordering where ordered grammars subsume the other classes.
The traversals in our static scheduling language are simple.

• Rigidity: Our discussion of structured traversals relates to that of Alblas on rigid
versus flexible. We show how to make a composable language of rigid traversals that
facilitate e↵ective parallelization.

• Multi-visit: Many of the scheduling challenges in attribute grammars stem from al-
lowing nodes to be visited multiple times in the same traversal. For example, using
ordered attribute grammars (Kastens, 1980), we can define a traversal where the top
subtree is visited many times but descendants are never visited. Optimal static schedul-
ing becomes NP, however, so systems instead perform dynamic scheduling (Jourdan
and Parigot, 1991).

Additional topics in static scheduling such as incrementalization and non-local references
complement the above techniques.

Our focus on a compositional language of traversals helps unify parallelization techniques.
For example, Vogt et al. (1989) proposed executing traversals concurrently such that they
operate on independent sets of attributes, while others typically focus on parallelism within
a traversal (Jourdan, 1991). We support both, such as would be exercised in schedule
“parPre||parPost”. Likewise, our nested region construct relate to partitioning constructs
for load management (Boehm and Zwaenepoel, 1987) and remote reasoning (Reps et al.,
1986). We discuss load management in the next chapter as it involves runtime techniques
that exploit the structure exposed here. Our axiomatic approach shows how to combine such
patterns in a way that provides modular reasoning.

Parallel Traversals over Data Structures

Many researchers examine abstractions for encapsulating parallel strategies for computing
over a data structure.

An important type of abstraction is for describing a traversal over a data structure.
For example, a skeleton (Matsuzaki et al., 2006a,b) is a traversal over a data structure
parameterized by a first-class function. Skeletons do not use knowledge of the computation
beyond high-level properties such as associativity. Similar to skeletons, stencils (Datta et al.,
2008) typically exploit additional knowledge about the computation such as what nearby
nodes will be accessed. Both skeletons and stencils have been applied towards optimizing
traversals over a variety of data structures.

Our computations require multiple traversals, not just one. Frameworks such as MapRe-
duce (Dean and Ghemawat, 2008) support creating a pipeline of structured traversals over
data structures. MapReduce in particular computes over lists. It automates optimizations

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 68

over multiple traversals such as fusing map and reduce calls in order to avoid excessive data
movement.

Our focus in this chapter is on designing the language of traversal patterns for trees,
rather than the grids of stencils and lists of MapReduce. Likewise, the above systems require
programmers to manually schedule their computations as a composition of traversals, while
the next chapter shows how to automatically do it.

Prountzos et al. (2012) examine the language of schedules for a breadth-first graph traver-
sal. While we support choosing between multiple fixed implementations of the same traversal,
such as implementing a parallel preorder traversal with a sequential variant or an inorder
traversal, they provide controls for creating new variants, e.g., for task queue prioritization.
Our approaches are complementary in the sense that our language might be extended to
support decorating a traversal instance with their scheduling options.

Automatic Layout Optimization

Brown (1988) and others have previously proposed parallelizing document layout, though
we appear to be the first to implement it. A key stumbling block was correctly identifying
latent parallelism in layout language specifications. For example, challenging the intuition of
Brown (1988) that di↵erent pages might be solved in parallel is the data dependencies that
we identified that span attributes of di↵erent pages. To break them, we introduced multiple
traversals and nested traversals. Mai et al. (2012) instead use an unsound heuristic to perform
an unsafe data partitioning and accept that layouts may appear incorrectly. Their approach
may be made safe by asking layout authors to manually identify independent regions; this
does, however, introduce the additional burden of requiring developers to manually solve
constraints near boundary regions. More fundamentally, the approach limits the granularity
of exposed parallelism.

Industrial layout systems typically use hand-written code. We hypothesize that this is
due to challenges stemming from the requirement for a combination optimizations while still
supporting many features and maintainability. For example, discussions with commercial
browser developers show the need for both parallel evaluation for bulk workloads and incre-
mentalization for reevaluation (reflow). Automating one optimization is insu�cient if the
technique cannot express all the language features or compose with other optimizations. We
demonstrated that many features can be expressed and ways of integrating foreign functions
when they cannot be supported natively, and attribute grammar literature demonstrates the
feasibility of many other optimizations such as incrementalization (Demers et al., 1981).

Some experimental systems now support parallel layout (Burckhardt et al., 2011) by
adapting the techniques we introduced (Meyerovich and Bod́ık, 2010).

Parallel Tesselation

Parallel tessellation, also known as mesh refinement, is a long-standing problem. Close to our
work is that of Shiue et al. (2005), who perform subdivision on a GPU. Follow-up research by

CHAPTER 3. PARALLEL LAYOUT WITH CHECKABLE STATIC TREE
TRAVERSAL SCHEDULES 69

Patney and Owens (2008) describe related algorithms in terms of prefix sum and reduction
primitives. We generalize the underlying observation to batching dynamic memory allocation
and provide automation support.

70

Chapter 4

Parallel Schedule Synthesis

Programmers struggle to map application logic into parallel algorithms. Going beyond the
automatic schedule verification of the Chapter 3, we now examine how to automatically
generate a schedule. Consider two of the decisions that a programmer faces in manually
designing a schedule:

• Scheduling a single traversal. Many computations contain sequential dependencies
between nodes. One correct traversal over the full tree might then be sequential.
However, if the sequential dependencies can be isolated to a subtree, an overall parallel
traversal would be possible if it invokes a sequential traversal for just the isolated
subtree. Whether such isolation is always possible is not obvious.

• Scheduling multiple traversals. Programs such as browsers perform many traver-
sals. Traversals might run one after another, concurrently, or be fused into one. These
choices optimize for di↵erent aspects of the computation. Running two traversals in
parallel improves scaling, but fusing them into one parallel traversal avoids overheads:
the choice may depend on both the hardware and tree size. Which traversal sequence
to use is not obvious.

These decisions explode the space of schedules. Today, programmers manually navigate the
space by selecting a parallel schedule, judging its correctness, and comparing its e�ciency
to alternative schedules. Each task consumes time: programmers globally reason about
dependencies, develop prototypes for profiling, and whenever the functional specification
changes, restart the process.

This chapter explores the design of an attribute grammar synthesizer and its implications
on the design of the attribute grammar language. We examine several questions:

• What programming constructs are enabled by schedule synthesis?

• What is an algorithm to quickly find a correct schedule?

• If multiple schedules are possible, how do we find a fast one?

CHAPTER 4. PARALLEL SCHEDULE SYNTHESIS 71

The following sections explore each question in turn.

4.1 Computer-Aided Programming with Schedule
Sketching

Automatic parallel schedule synthesis enables new abstractions for parallel programming.
The utility of these constructs is not immediately obvious. Because automation tools will
automatically find a parallel schedule, a natural conclusion would be to assume that the
programming interface should hide all parallelization concerns and rely upon automatic
parallelization internally. We found this to be largely true when writing small amounts
of declarative data visualization code. However, when parallelizing the larger and more
complicated CSS layout language, we encountered cases where the visualization designer
needed to guide (or be guided by) the automation procedure. Likewise, we encountered
the need for one programmer to communicate parallel structure to another. Automatic
parallelization is insu�cient in that it hides all parallelization details and controls, yet manual
scheduling is too low-level and brittle.

Our solution is to provide a sketching construct for specifying constraints on the schedule
that the automatic parallelization algorithm must respect. The programmer chooses which
terms in a schedule to specify and relies upon the synthesizer to fill in the rest. We routinely
sketched schedules in order to override schedule selection, test and debug parallelization
ideas, and enforceably communicate parallelization decisions when sharing code with others.
Discussed in Section 4.3, providing a sketch also speeds up compilation because it changes
the synthesis problem into a verification one.

We revisit the specification of H-AG to demonstrate the sketching construct and its use
for the above scenarios. First, in response to a low amount of memory size on prospective
hardware, a programmer may specify a longer schedule with a smaller set of attributes to
compute in each one. Compare the three following schedule sketches:

?hole1 (4.1)

parPost ?hole2 ; parPre ?hole3 (4.2)

(parPost ?hole4 ; parPost ?hole5) ; ?hole6 (4.3)

The first specification leaves a hole for the entire schedule. The synthesizer fills in ev-
ery hole with a valid schedule term so that the resulting schedule is correct. The entire
first schedule is left as a hole, which is equivalent to requesting fully automatic paralleliza-
tion. The second specification hardcodes the traversals but leaves holes for the attributes to
schedule for each one. The final schedule sketch splits the parPost traversal in two in order to
decrease the memory consumption in the first traversal. Like the second sketch, it does not
specify the attributes, and like the first sketch, it does not specify the sequence of traversals
to place at the end of the schedule.

CHAPTER 4. PARALLEL SCHEDULE SYNTHESIS 72

The ability to run a sketch through the synthesizer enables several forms of parallel
program debugging. First, the synthesizer rejects programs that it cannot parallelize, so
programmers can test their intuitions with sketches. For example, they could test the validity
of the above idea of splitting apart the first parPost traversal. We could more explicitly test
the underlying insight that the w and h attributes are separable:

(parPost {w} ; parPost {h}) ; ?hole6

The synthesizer fills in ?hole6 to yield a complete schedule. It outputs an error if it
cannot: the longest schedule prefix of traversals it could schedule. For the above exam-
ple, the error distinguishes two possible mistakes. First, if it fails with a prefix containing
parPost { w } ; parPost { h }, the first traversal can be split but the rest of the schedule has an
unsatisfiable dependency. Otherwise, the output prefix is empty and the traversals could
not be split. We found the ability to test scheduling ideas to be particularly useful, e.g., in
determining partitions for nested text.

We provide another mechanism for debugging. The programmer may ask the synthesizer
to enumerate all valid solutions for a schedule sketch. The previous examples restricted
themselves to only asking for one completion. However, for H-AG, the space of valid schedules
is small enough that programmer could manually page through all possibles schedules.

As our attribute grammars grew, we wrote sketches to help share code between program-
mers. Consider a program with a sketch such as the above. For a grammar associated with it,
a programmer now knows the desired parallelization scheme. Furthermore, the synthesizer
checks that edits to the functional specification do not violate the schedule. For example,
the synthesizer would detect the addition of a feature that requires the addition of an extra
traversal, or if it serializes a parallel one. We typically ignored changes that do not change
the traversal sequence and applied more careful reasoning whenever a sketch was violated.
In this way, the ability to communicate and enforce schedule specifications helped separate
concerns between defining layout feature logic and optimizing layout scheduling.

4.2 Generalizing Holes to Syntactic Unification

We provided a more expressive variant of holes for cases that require additional control.
For example, we may want to specify that both the width and height are computed in the
first traversal over a tree. The programmer should not have to specify the relative order of
attributes for every type of node that computes them. Instead, we generalized the sketching
construct to syntactic unification over scheduling terms.

Programmers may specify constraints over schedule terms. For example, the following
specification declares that the first traversal of a sequence computes the width and height

CHAPTER 4. PARALLEL SCHEDULE SYNTHESIS 73

attributes, but it does not define their relative order:

member(w, ?hole2),member(w, ?hole3),

member(h, ?hole2),member(h, ?hole3),

Sched = [[?hole1, [[HBox, ?hole2], [VBox, ?hole3]]],

seq,

[parPost, ?hole4]]

Term ?hole1 will unify with a traversal type and ?hole2 and ?hole3 will unify with a sequence
of attributes that includes w and h. Finally, ?hole4 will unify with another sequence of terms
where each specifies a node type and the sequence of attributes to schedule for it. Note the
change in syntax.

Our scheduling language is an embedded domain specific language in Prolog (Colmerauer,
1990). The language of constraints is arbitrary Prolog. Thus, in the above example, Sched is
a named Prolog variable that must be unified with the schedule constraints and the attribute
grammar’s functional dependencies. Likewise, unnamed variables ?hole1, ?hole2, and ?hole3
must unify with a correct schedule. Our system provides a library of traversal types such as
parPost and combinators such as seq. The attribute grammar introduces attribute terms such
as w and h. The programmer then uses built-in Prolog predicates to constrain the schedule,
e.g., by using member for list membership. Likewise, they may use Prolog’s “,” operator for
conjunction and “;” for disjunction.

We made several notable uses of the extended sketching constructs:

• Attribute sets. As in the above example, we specify an unordered set of attributes
for a traversal rather than an ordered sequence. The synthesizer determines the order
and any additional attributes. Furthermore, as di↵erent classes implementing the same
interface share attributes of the same name, we wrote helper functions for specifying
the interface attribute once rather than all of its instances in classes.

• Requiring parallelization. We may specify that a traversal type unifies with a
parallel form:

(?hole1 = parPost; ?hole1 = parPre),

Sched = [[?hole1, ?hole2], seq, [parPost, ?hole3]]

The sketch specifies a sequence of two traversals where the first traversal type (?hole1)
unifies with either a parPost or parPre traversal. The schedule does not specify what
attributes are computed within the first traversal (?hole2). Furthermore, instead of
manually specifying the choice for every pass, we wrote a function that does so auto-
matically.

• Nesting. We use predicates to test the validity of partitioning into nested traversals.
The challenge is to minimize the number of traversals put into a sequential partition.

CHAPTER 4. PARALLEL SCHEDULE SYNTHESIS 74

For example, if we thought a node belonged in a parallel partition, we would include
that in the sketch;

member([HBox, ?hole1], T opDownV isits),

Sched =[[nested, [parPre, T opDownV isits], ?hole2] | ?hole3]

The schedule specifies that the first traversal is nested within an overall parallel pre-
order structure. The preorder portion must handle HBox nodes and may include other
as well. The other partitions are defined by ?hole2, which has no additional constraints.
The specification leaves remaining traversals unconstrained by ?hole3.

• Schedule heuristics. For a simple optimization heuristic, we biased parallel schedul-
ing to use an alternating sequence of parPre ancd parPost traversals. The intuition is that
long-running dependencies can often be satisfied under these two traversals so that the
shortest schedule would be such an alternation. Less obviously, some dependencies
require repetition of the same traversal pattern, so the full heuristic is to bias to use
of the alternate of whatever worked for the previous traversal (and otherwise prioritize
any other parallel traversal).

In all of the above cases, reasoning is in terms of the syntactic form. For example,
the alternating traversal heuristic biases towards one traversal based on equality with the
syntactic value of the the previous one. Richer forms of unification that extend beyond
syntax may be applicable. As is, syntactic unification for guiding schedules already supports
several key tasks.

4.3 Fast Algorithm for Schedule Synthesis

Our synthesizer takes an attribute grammar and a sketch as input, and outputs a set of
schedules. We designed it to support multiple traversal types, multiple solutions, and rich
attribute grammar and schedule sketching languages. Our initial implementation used the
dependency analysis of Kastens (1980), but it was di�cult to implement and extend. Our
new algorithm optimizes for modularity and speed by using the following design:

Simple enumerate-and-check The algorithm enumerates schedules and checks which
are correct. Checkers examine the use of individual traversal types and traversal composi-
tors, and we wrote them to function independently of one another. Enumeration is simply
syntactic. Combined, adding a new traversal type involves writing a checker and binding it
to the proper place.

Optimization Näıve enumerate-and-check is too slow. Without significantly changing
the interface for adding checkers, we optimize synthesizing one schedule to be O(n3) in the
number of attributes. Some features are still slow, such as nested traversals, so we introduced
the optimizations of incrementalization, greediness, and greedy sketch unification.

CHAPTER 4. PARALLEL SCHEDULE SYNTHESIS 75

1 parPre{x , y ,w, h} incorrect: unsat {x,w,h}
2 parPre{y} correct: continue

. . . /* expand subtree to schedule x, w, h */ . . .
3 parPost{x , y ,w, h} incorrect: unsat {x,y}
4 parPost{w, h} correct: continue
5 ; parPre{x , y} correct: complete

6 ; parPost{x , y} incorrect: unsat {x,y}
7 ; (parPre{x} | |) correct: continue
8 ; (| | parPre{y}) correct: complete

9 ; (| | parPost{y}) incorrect: unsat {y}
10 ; (parPre{y} | |) correct: continue
11 ; (| | parPre{x}) correct: complete

12 ; (| | parPost{x}) incorrect: unsat {x}
13 ; (parPost{y} | |) incorrect: unsat {y}
14 | | parPre{x , y} incorrect: unsat {x}
15 | | (parPre{y} ;) correct: continue
16 | | (; parPre{x}) incorrect: unsat {x}
17 | | (; parPost{x}) incorrect: unsat {x}

. . .
18 parPost{w} correct: continue
19 | | parPre{x , y , h} incorrect: unsat {x,h}

. . .

Figure 4.1: Trace of synthesizing schedules for H-AG. Note that scheduling of “||” does
not use the optional greedy heuristic.

The Algorithm

We first discuss optimizations for finding one correct schedule before considering finding
many. Figure 4.1 demonstrates an algorithm trace for enumerating schedules of H-AG.
Figure 4.2 shows the full algorithm.

Synthesizing one schedule is O(A3) in the number of attributes. The algorithm finds an
increasingly long and correct prefix of the schedule (prefix expansion). At each step, it tries
di↵erent su�xes until one succeeds, where a su�x such as “parPre{x,y}” is a traversal type
and attributes to compute in it. When a correct su�x is found, it is appended to the prefix
and the loop continues on to the next su�x. Finding one su�x involves trying di↵erent
traversal types, and for each one, di↵erent attributes. Only the su�x needs to be checked
(incremental checking), and checking a su�x is fast (topological sort). Finally, finding a set
of attributes computable by a particular traversal type only requires O(A) attempts (iterative
refinement).

We consider each optimization in turn:

1. Prefix expansion. The synthesizer searches for an increasingly large correct schedule
prefix. Every line of the trace represents a prefix. If a prefix is incorrect, no su�x will
yield a correct schedule. Therefore, the only prefixes that get expanded are those that
succeed (lines 2, 4, 7, 10, 15, 18).

To synthesize only one schedule, only one increasingly large prefix is expanded. Line
2 has a correct prefix, so only “parPre{y}” would be explored. Either no schedule is

CHAPTER 4. PARALLEL SCHEDULE SYNTHESIS 76

possible at all, or if there are any, one is guaranteed to exist in the expansion. In this
case, “parPre{y} ; parPost{w,h} ; parPre{x}” would be found.

2. Incremental checking. Line 4 checks prefix “parPost{w,h}” for attributes “w” and
“h.” Therefore, lines 5-17 can check the su�x added at each line without rechecking
“parPost{w,h}”.

3. Topological sort. We optimize checking a su�x by topologically sorting the depen-
dency graph of its attributes (rule check� in the next subsection). Topologically sorting
a graph is O(V + E). It is O(A) in this case because V = A, and as the arity of
semantic functions is generally small, E is O(A).

4. Iterative refinement. The algorithm iteratively refines an over-approximation of
what attributes can be computed in a su�x by removing under-approximations of
what cannot. For example, the check in line 1 for parPre{x,y,w,h} fails with error {x,w,h},
which details the attributes with unsatisfiable dependencies. Computing fewer at-
tributes cannot satisfy more dependencies; therefore, no subset of {x,w,h} has satisfiable
dependencies either. Therefore, the next check is on a set without them: {y}.

Subtraction of attributes repeats at most A times before finding a solution or termi-
nating on the empty set. Checking one refinement invokes the O(A) topological sort.
Put together, finding the attributes computable by a su�x is O(A2).

Because every traversal computes at least one attribute, there are at most A traversals.
A constant number of traversal types are examined for each su�x, and synthesizing each
one is O(A2). Synthesizing one schedule is therefore O(A3). The greedy sketch unification
optimization presented in the next section may further optimize the synthesis of a single
schedule.

4.4 Schedule Enumeration

We provide and optimize the ability to examine many schedules. Our approach aids several
scenarios: picking a fast schedule when many are possible, scheduling language extensions
that otherwise resist fast synthesis, and improving synthesis time when partial schedule
knowledge is known.

We consider each scenario in turn:

Autotuning There may be an exponential number of safe schedules, and the choice of
a fast one is non-obvious. For example, shorter schedules incur less traversal overhead, but
also generally expose less parallelism. Likewise, a short sequence of parallel traversals may
perform worse than a long sequence when performed on hardware with limited memory. By
enumerating all schedules, we can build an autotuner : an autotuner runs performance tests

CHAPTER 4. PARALLEL SCHEDULE SYNTHESIS 77

to pick the best configuration for a particular environment. As there may be an exponential
number of schedules, we must somehow optimize the enumeration of those to test.

Scheduling extensions. We provide optional scheduling language extensions, and fast
synthesis in their presence requires optimization. For example, nested traversals require
partitioning the set of nodes into distinct regions, but many partitions are possible. Unfor-
tunately, how one partition fails does not inform the guess for the next, and thus does not
enjoy the monotonicity property we used for iterative refinement. Brute force synthesis of
partitions is slow.

Faster synthesis. If the programmer provides knowledge of the schedule, such as when
recompiling the grammar occurs, synthesis should execute faster. In the limit, providing
full schedule knowledge should reduce the cubic time of synthesis to the O(A log A) for
verification.

We introduce several optimizations that, together, address the above scenarios. They
optimize for when multiple schedules may be valid schedules, and except for backtracking
may also improve the process of finding one schedule.

• Backtracking. To emit multiple schedules, we extend prefix expansion to also perform
backtracking. After a schedule is fully completed or a su�x is rejected, the synthesizer
backtracks to the most recent correct prefix. For example, line 8 of Figure 4.1 reaches
a complete and correct schedule. Backtracking returns to the earlier correct prefix of
line 7 and tries the alternative su�x of line 9.

• Greedy sketch unification. We use sketches to prune the search. For example,
sketch “parPost ?hole1 || ?hole2” enables skipping lines 1-3 because they do not start
with a parPost traversal. Lines 5-13 could also be skipped because the compositor is
not “||”.
A sketch that provides a full schedule reduces synthesis to verification. Sketching also
enable features that otherwise require exponential search to still synthesize in O(A3).
For example, scheduling nested regions is exponential in the number of productions,
but if just the production partitioning is sketched, synthesis for the remaining schedule
terms is still only O(A3).

• Greedy attribute heuristic. For any schedule “p ; q”, solving fewer attributes in
p will not enable solving q with fewer traversals. Thus, to minimize the number of
traversals, all such subsets are pruned. For example, as line 4 found parPost{w,h}, line
19 skips “parPost{w} ; ” and proceeds to “parPost{w} || ”.

Greediness reduces enumerating all schedules to only being exponential in the number
of traversals. This is significant because our schedule for CSS has only 9 traversals, for
example.

CHAPTER 4. PARALLEL SCHEDULE SYNTHESIS 78

1 def synthFast (sketch) :
2 yield synth (; , Att r ibutes , sketch)

4 def synth (prev , r e s t , sketch) :
5 choose ⌦ 2 { “;” , “||” }
6 i f ⌦ = “;” :
7 choose ↵ 2 { “parPre” , “parPost” , . . . }
8 A := i t e r a t i v eR e f i n e (↵ , prev , r e s t)
9 i f A = r e s t :

10 unify (sketch , ↵ A)
11 yield ↵ A
12 e l s e i f A = ; :
13 backtrack

14 e l s e :
15 unify (sketch , ↵ A ; rhs1)
16 yield ↵ A ; synth (prev [A , r e s t � A , rhs1)
17 e l s e :
18 unify (sketch , lhs2 | | rhs2)
19 choose A ⇢ r e s t
20 p := synth (prev , A , lhs2)
21 q := synth (prev , r e s t A , rhs2)
22 yield p | | q

24 def i t e r a t i v eR e f i n e (↵ , prev , r e s t) :
25 overapproxA = r e s t
26 do :
27 X = check↵ (prev , overapproxA)
28 overapproxA = overapproxA � X
29 while X 6= ;
30 yield overapproxA
31 i f nonGreedy :
32 choose overapproxA 0 ⇢ overapproxA
33 yield i t e r a t i v eR e f i n e (↵ , prev , overapproxA 0)

Figure 4.2: Optimized synthesis algorithm. Lines 10,15,18: early unification with
sketches. Lines 8,27: incremental checking. Line 26: iterative refinement. Line 31: toggle
minimal length schedules. Lines 12,28: pruning of traversals with unsatisfiable dependencies.

Unlike our other optimizations, this one is a heuristic and eliminates correct results.
While greedy heuristic is guaranteed to return at least one schedule should any exist,
it may prune schedules useful for autotuning and other tasks.

In summary, synthesizing one schedule in our base language is O(A3), but emitting all of
them is exponential. Likewise, scheduling language extensions such as nested traversals still
support fast synthesis of surrounding terms when guided by sketches. Our optimizations
optimize the process, such as by reducing synthesis complexity to that of verification when
increasingly detailed sketches are provided.

CHAPTER 4. PARALLEL SCHEDULE SYNTHESIS 79

name loc 1st sketch found avg
hbox++ 305 5.6s 9.6s 54 2.7s
spiral 144 0.7s 0.9s 12 0.4s
votes 327 15.4s 22.0s 36 8.0s
css 1132 1919.6s 65.1s 100 445.4s

Figure 4.3: Synthesizer speed. 1st is the time to first schedule without using a sketch,
sketch is the time to first schedule using a sketch of the traversal sequence, found is the
number of schedules found, and avg is the average time to find a sketch.

4.5 Evaluation

We evaluated the automation capabilities of our schedule synthesizer for our case studies
of data visualization and document layout. First, we examined whether the synthesizer
could find parallelism and how much guidance it needed. Second, we evaluated whether our
synthesis algorithm can achieve interactive or same-day compile times. Finally, we examined
the quality of schedules: we measured the benefit of autotuning and the cost of our greedy
heuristic.

Automatic Parallelization

We first evaluate whether the synthesizer automatically detected parallelism and the amount
of schedule guidance we provided.

For all of the data visualizations (tree map, single and multiple time series, hbox, and
sunburst), we successfully relied upon the synthesizer to automatically find parallelism. We
performed an iterative design process where we would alternate between adding code to an
attribute grammar and checking that the compiler could automatically parallelize it. Once
the compiler accepted one functional specification, we would extend the specification with
the next feature. When satisfied with the visualization, we would specify the sketch of
parallel traversals but only for communicating requirements to future programmers.

The CSS specification required guidance. On its own, the synthesizer would find a se-
quence of parallel preorder and postorder traversals. The exception is one traversal that
requires nested partitions for parallelization. To improve synthesis times, we specified the
structure of that traversal. Furthermore, due to the many cross-cutting data dependencies
in CSS, we specified schedule sketches throughout the design process. The sketches en-
sured that extensions to the functional specification did not violate our understanding of the
parallel behavior.

Figure 4.3 shows the number of lines of declarative code for each specification. The
generated code was over a magnitude more depending on the compiler backend. The number
of parallel traversals ranged from 3 to 9.

CHAPTER 4. PARALLEL SCHEDULE SYNTHESIS 80

Synthesis Speed

Performing synthesis in less than a minute enables interactive use by programmers, and even
faster times would support runtime compilation. We measured the time to synthesize several
attribute grammars. Figure 4.3 shows the lines of code for each one and various timings on
a 2.66GHz Intel Core i7 with 4GB of RAM.

Generally, synthesizing a schedule, whether an arbitrary one (1st) or from a sketch
specifying the traversal sequence (sketch), takes less than 30 seconds. The exception was
CSS, which was still fast but not as fast; it is discussed later.

Emitting all schedules is even faster per emitted schedule (avg) than just finding the
first. While the total time to emit all schedules can be slow, we note that enumeration is
for o✏ine autotuning. Finally, the greedy heuristic was necessary for enumerating schedules.
Even after one day of running the non-greedy algorithm for CSS, most of the greedy CSS
schedules were still not emitted.

Overall, we see that synthesis is fast enough for interactive use by the programmer.

Autotuning

We evaluated schedule autotuning speedups for hbox++ on the same machine:

Comparing greedy schedules We enumerated greedy schedules for hbox++ and com-
pared performance on 1 and 2 cores. The relative standard deviation for performance of
di↵erent schedules (�/µ) is 8%. The best schedules for 1 and 2 cores are di↵erent. Swapping
them leads to 20-30% performance degradation, and the di↵erence between the best and
worst schedules for the two scenarios are 32% and 42%, respectively. Autotuning schedules
improves performance.

Comparing greedy to non-greedy Our schedule enumeration is not exhaustive because
of the greedy heuristic, and, therefore, may miss fast schedules. For a fixed schedule of
traversals with a greedy attribute schedule, non-greedy attribute schedules were 0-6% faster.
On average, however, non-greedy schedules were 5% slower. Greedy scheduling was a safe
heuristic for hbox++ .

In our case studies, much of the benefit of autotuning derives from trying two greedy
schedules: one that starts with a parallel preorder traversal and then alternates with parallel
postorder ones, and vice-versa. We did see exceptions, however, such as CSS benefiting from
a nested traversal. Likewise, some grammars require repetitions of preorder or postorder
traversals due to the lack of a loop skewing optimization for safely fusing them.

CHAPTER 4. PARALLEL SCHEDULE SYNTHESIS 81

4.6 Related Work

The ideas presented in this chapter descend from research in synthesis, logic programming,
attribute grammars, and autotuning.

Schedule Sketching

Our approach of identifying the parallelism in a program is more flexible than many paral-
lelism annotations. For example, the spawn primitive for work stealing (Blumofe et al., 1995)
identifies latent parallelism in a structured program. As in our approach, how to exploit that
parallelism is left up to the language implementation. However, unlike our approach, chang-
ing the schedule requires refactoring the logical program. We make the parallel schedule an
orthogonal specification.

Our schedule sketching construct descends from the program sketching approach of Solar-
Lezama et al. (2006). Program sketching constructs take a total functional specification
of a program, such as a naı”e implementation, and a partial specification of the desired
implementation. A program synthesizer then fills in any partially specified holes in the
implementation sketch such that they satisfy the functional specification for all inputs. In
our case, the declarative attribute grammar defines the total functional specification. The
partial implementation is the schedule with holes. The more general approach of Solar-
Lezama et al. (2006) only provides correctness guarantees equivalent to bounded model
checking and struggles with scaling. We use the restricted domain of attribute grammars to
guarantee full correctness and polynomial synthesis times.

Schedule holes generalize to syntactic unification. Our embedded Prolog (Colmerauer,
1990) DSL for specifying additional constraints over schedule holes exploits this connection
by reusing Prolog’s unifier and standard library.

Recently, Prountzos et al. (2012) has also examined schedule synthesis. The focus is on
behavior within a traversal, such as task prioritization. It is complementary to our focus
on a compositional language of traversals. In particular, we might refine the definition of a
traversal as parPre to also instruct the runtime scheduler to prioritize certain types of nodes.

Schedule Synthesis Algorithm

Using iterative refinement to quickly determine whether a traversal can compute attributes
most closely resembles the work of Bochmann (1976). Many later static attribute grammar
systems instead use the approach of Kastens (1980). Kastens targeted the bigger class
of ordered attribute grammars but at the expense of slower synthesis and less structured
traversal patterns. We focused on a smaller class of grammars where each node is visited
only once per traversals. Unlike Bochmann, we provide an axiomatic decomposition of the
algorithm, which enables composing traversals of di↵erent types. We hypothesize that this
is why the static systems we examined do not support a variety of schedule constructs.

The greedy heuristic is a generalization of the one used by Kastens.

CHAPTER 4. PARALLEL SCHEDULE SYNTHESIS 82

Autotuning

Many others have examined autotuning parameter values for problems such as FFTs and
stencils (Whaley et al., 2001; Datta et al., 2008). When used for tasks such as optimizing the
cache block size, the challenge is in limiting the search space size. As explored in Chapter 5,
we use traditional autotuning techniques to optimize the implementations of our patterns.

Our work autotunes over schedules rather than just parameters, which provides more op-
portunities for optimization but also requires additional reasoning. FFTW (Whaley et al.,
2001) and PetaBricks (Ansel et al., 2009) select algorithms based on predefined configuration
options. Programmers must also state what algorithms to try in those systems. The superop-
timization project (Massalin, 1987) instead automates the process by generating functionally
equivalent programs based on rewrite rules for a low-level instruction set. Superoptimiza-
tion requires every intermediate rewrite step to be correct and generally su↵ers from weak
low-level reasoning. Our synthesizer explores correct schedules through a higher-level and
more scalable program analysis. Elixir (Prountzos et al., 2012) is more similar in that it
infers dynamic task scheduling optimizations for a single traversal. We examine multiple
traversals.

83

Chapter 5

Optimizing Parallel Tree Traversals
for MIMD and SIMD

Expressing parallelism is not enough: we need e�cient runtime implementations to exploit
them. In this chapter, we show how to exploit the parallelism identified within a tree traversal
by optimizing for the architectural properties of two hardware platforms: MIMD (multicore)
and SIMD (sub-word SIMD and GPU) hardware. Using existing techniques, we saw little-
to-no speedups. Our solution was to optimize the schedule within a traversal and the data
representation, and in di↵erent ways for di↵erent types of hardware. We innovated upon
known techniques in two ways:

1. Semi-static work stealing for MIMD: MIMD traversals should be optimized for
low overheads, load balancing, and locality. Existing techniques such as work stealing
provide spatial locality and, with tiling, low overheads. However, dynamic load balanc-
ing within a traversal leads to poor temporal locality across traversals. The problem
is that a processor a node is assigned to in one traversal may not be the same one in
a subsequent traversal, and as the number of processors increases, the probability of
assigning to a di↵erent one increases. Our solution dynamically load balances the first
traversal and, due to similarities across traversals, successfully reuses it for all following
ones.

2. Clustering traversals for SIMD: SIMD evaluation struggles when parallel tasks
diverge in instruction selection. Visits to di↵erent types of tree nodes yield di↵erent
instruction streams, so naıve vectorization fails on webpages with high visual variety,
for example. Our insight is that similar nodes can be semi-statically identified. Thus,
once a tree is available, our scheduler clusters nodes into self-similar groups and uses
SIMD instructions for nodes in each one.

Our techniques are e↵ective and general. They overcame bottlenecks preventing seeing
any speedup from parallel evaluation for webpage layout and data visualization. Notably,
they are generic to computations over trees, not just layout. Finally, as commodity hardware

CHAPTER 5. OPTIMIZING PARALLEL TREE TRAVERSALS FOR MIMD AND
SIMD 84

a

b c

d e f

null left/right sibling
left/right sibling pointer

null children
children pointer array

(a) Näıve pointer-based tree representation

a b c d e f2 11 0 3 0 0 1 0 0 0 0

has right sibling (1 bit)leftmost child offset (7 bits)

contiguous
siblings

contiguous inorder (dfs, bfs, ...) layout of block

contiguous
siblings

(b) Compressed tree encoding

Figure 5.1: Two representations of the same tree: Naıve pointer-based and opti-
mized. The optimized version employs packing, breadth-first layout, and pointer compres-
sion via relative indexing.

typically supports MIMD evaluation across cores and SIMD within them, our techniques are
complementary.

5.1 MIMD: Semi-static Work Stealing

We optimize the tree data representation and runtime schedule for MIMD evaluation. We
did not see significant parallel speedups when either one was left out. Through a non-
trivial amount of experimentation, we found an almost satisfactory combination of existing
techniques. It includes popular ideas such as work stealing (Blumofe et al., 1995) for load-
balanced runtime scheduling and tiling (Irigoin and Triolet, 1988) for data locality, and we
report on how to combine them. However, we did not see more than 2X speedups until we
added a novel technique to optimize for low run-time scheduling overheads and temporal
data locality: semi-static work stealing. The remainder of this section explores our basic
data representation and runtime scheduling techniques for MIMD parallelism.

Data Representation: Tuned and Compressed Tiles

Our data representation optimizes for spatial and temporal locality and, as will be used
by the scheduler, low overheads for operating over multiple nodes. Many researchers have
proposed individual techniques for similar needs, and it is unclear which to use for what
hardware. For example, mobile devices typically have smaller caches than laptops, they

CHAPTER 5. OPTIMIZING PARALLEL TREE TRAVERSALS FOR MIMD AND
SIMD 85

should exchange time for space. Our solution was to implement many techniques and build
an autotuner that automatically choose an e↵ective combination.

Our autotuner runs sample data on multiple configurations for a particular platform to
decide which configuration to use. The most prominent options are:

• C++ collections or contiguous arrays

• tiling (Irigoin and Triolet, 1988) of subtrees

• depth-first or breadth-first ordering of nodes in a tile, with matching traversal or-
der (Chilimbi et al., 1999)

• aligned data, or unaligned but more packed data

• pointer compression

Several of the techniques are parameterized, so our tuner performs a brute force search for
parameter values such as the maximum size of a subtree tile. To make the search tractable,
we prune by manually providing heuristics, such as for parameter ranges.

The individual optimizations target several objectives:

• Compression Compressing the tree better utilizes memory bandwidth and decreases
the working set size. We use two basic techniques: structure packing and pointer
compression. Packing combines several fields in the same word of memory, such as
storing 32 boolean attributes in one 32 bit integer field. Similar to Lattner and Adve
(2005), compression encodes node references as relative o↵sets (16–20 bits) rather than
32 bit of 64 bit pointers. Likewise, as there are typically few siblings, instead of a
counter of number of children (or siblings), we use an isLastSibling bit. Figure 5.1 depicts
a tree using pointers and one of our representations: in the example, the compressed
form uses 96% fewer bits on a 64-bit architecture.

• Temporal and Spatial Locality The above compression optimizations improve lo-
cality by decreasing the distance between data. To further improve locality, we support
rearranging the data in several ways .

Tiling (Irigoin and Triolet, 1988) partitions the tree into subtrees and collocates nodes
of the same subtree in memory. It improves spatial locality because a node only reads
and writes to its neighbors. Likewise, we support breadth-first and depth-first node
orderings within a subtree (and across subtrees). Such a representation matches the
tree traversal order (Chilimbi et al., 1999) and therefore improves temporal locality.

• Prefetching We supports several options for prefetching to avoid waiting on data
reads. First, the data access patterns with the data layout, so hardware prefetchers
might automatically predict and prefetch data. Second, our compiler can automati-
cally insert explicit prefetch instructions as part of the traversal. Finally, runahead

CHAPTER 5. OPTIMIZING PARALLEL TREE TRAVERSALS FOR MIMD AND
SIMD 86

1

2 3

4

5 6

4

5 6

4

5 6

4

5 6

4

5 6

1

2 3

4

5 6

4

5 6

4

5 6

4

5 6

4

5 6

1

2 3

4

5 6

4

5 6

4

5 6

4

5 6

4

5 6

P0 P0

P0 P1

P0

P0 P1

P0 P2 P1

P1 P2 P2

(idling) (idling)

Steal

Figure 5.2: Simulation of work stealing. Top-down simulated tree traversal of a tiled
tree by three processors in three steps.

processing pre-executes data access instructions. A helper thread traverses a subtree
ahead of a corresponding evaluator thread, requesting node data while the evaluator
is still computing an earlier thread. We only saw benefits of the first in practice, but
leave the others as tunable.

• Parallel scheduling. Reasoning about individual nodes at runtime, such as for load
balancing and synchronization, leads to high overheads. By scheduling tiles rather
than nodes, we cut overheads. Because nodes correspond to tasks in our system, our
approach is a form of coarsening. Furthermore, di↵erent synchronization strategies
are possible for tiles, such as whether to use spin locks, so we autotune over the
implementation options.

We also support several scheduling options. First, we support third-party task sched-
ulers, including Intel TBB (Reinders, 2007), Cilk (Blumofe et al., 1995), and those
of Tesselation OS (Colmenares et al., 2013). Second, we built our own scheduler that
uses a variant of work-stealing threads pinned to processors. It includes options such as
whether to use hyper threads or not, and as we saw low speedups when using multiple
sockets, options for how many threads to use. Our autotuner picks between scheduler
implementations.

Figure 5.1 depicts several of the data representation optimizations: packing, pointer
compression, and a breadth-first layout.

CHAPTER 5. OPTIMIZING PARALLEL TREE TRAVERSALS FOR MIMD AND
SIMD 87

Figure 5.3: Simulation of work stealing on Wikipedia. Colors depict claiming processor
and dotted boundaries indict subtree steals. Top-left boxes measure the percentage of steps
an individual processor spent stealing rather than computing.

Scheduling: Semi-Static Work Stealing

We optimize our tree traversal task scheduler for low overheads, high temporal and spatial
data locality, and load balancing. Webpages are relatively small and use many traversals, so
we found that aggressively optimizing individual traversals to be an important implementa-
tion concern. Our approach is to combine static scheduling with dynamic work stealing. We
did not see significant speedups with the base approaches on their own, but our combination
led to 7X parallel speedups.

Work stealing

Work stealing was introduced as a dynamic scheduling algorithm that provides load balancing
and spatial locality (Blumofe et al., 1995). Figure 5.2 depicts a trace of three processors
performing work stealing. Each processor operates on an internal task queue, and whenever
a processor exhausts its internal queue, it will steal from another processor’s queue. In the
case of a top-down tree traversal, acting upon an internal queue corresponds to a depth-first
traversal of a subtree, and stealing corresponds to transferring ownership of an untraversed
subtree. Figure 5.2 visualizes the spatial locality by using color to show that the same

CHAPTER 5. OPTIMIZING PARALLEL TREE TRAVERSALS FOR MIMD AND
SIMD 88

Figure 5.4: Temporal cache misses for simulated work stealing over multiple
traversals. Simulation of four threads on Wikipedia. Blue shade represents a hit and
red a miss. 67% of the nodes were misses. Top-left boxes the percent of steps di↵erent
processors spent stealing.

processor generally claims adjacent nodes. Likewise, the figure demonstrates that there are
relatively few scheduling overheads (steals are indicated by dotted borders).

Our work must address the problem that work stealing su↵ers from runtime overheads
and poor temporal locality. To estimate the runtime overhead, we simulated work stealing
for six processors on Wikipedia. Assuming uniform compute time per node, 5% of the nodes
would trigger stealing. This cost is in addition to constant overhead to processing the internal
per-processor task queues.

The problem with temporal locality is that a node will be assigned to di↵erent processors
across multiple traversals. Figure 5.4 shows which nodes move across processors in a simula-
tion of four processors performing a sequence of two traversals. Two thirds of the nodes are
red, indicating substantial movement. Both the steal rate and temporal miss rate worsen as
the number of processors increase.

CHAPTER 5. OPTIMIZING PARALLEL TREE TRAVERSALS FOR MIMD AND
SIMD 89

Steal

P0

P0

P0

P1

P1 P2

P0 P1 P2 P0

P0

P0

P0

P2

P2 P1

P0 P2 P1 P1

P0

P0

P0

P1

P1 P2

P0 P1 P2 P0

P1 P2 P1

1

2 2

3 3 3

4 4 4 5

1

2 2

3 3 3

4 4 4 5

1

2 2

3 3 3

4 4 4 5

Figure 5.5: Dynamic work stealing for three traversals. Tiles are claimed by di↵erent
processors in di↵erent traversals.

Steal

P0

P0

P0

P1

P1 P2

P0 P1 P2 P0

P0

P0

P0

P1

P1 P2

P0 P1 P2 P0

P0

P0

P0

P1

P1 P2

P0 P1 P2 P0

P1 P2 P1

1

2 2

3 3 3

4 4 4 5

1

2 2

3 3 3

4 4 4 5

1

2 2

3 3 3

4 4 4 5

Figure 5.6: Semi-static work stealing. Dynamic schedule for first traversal is reused for
subsequent ones.

CHAPTER 5. OPTIMIZING PARALLEL TREE TRAVERSALS FOR MIMD AND
SIMD 90

Semi-Static Scheduling

Our scheduler optimizes the order in which every traversal visits nodes once the tree is
loaded. The idea is to optimize the schedule for the first traversal and then reuse that
schedule across the subsequent ones.

Simulation. For the first traversal, we use an approximation of work stealing to gain
its load balancing and spatial locality benefits . Our variant lowers overheads in two ways.
First, we coarsen the task size by scheduling tiles rather than individual nodes. Scheduling
tiles lowers the number of runtime tasks that must be managed. Second, we use one thread
to simulate the work stealing to determine the schedule rather than doing it dynamically.
The simulation approximate the cost of a tile as the number of nodes within it and likewise
penalizes steals. The simulation performs a linear walk through the metadata of the tiles
without touching any actual nodes. We thus replace the overheads of managing concurrent
task queues over multiple traversals with the overheads of an initial simulation over the
metadata and, when following the schedule, tile locks.

Schedule Reuse. For subsequent traversals, we reuse the simulated schedule in order
to also optimize for temporal locality. For example, two successive preorder traversals would
use the same schedule because they share the same static dependencies across nodes. A
follow-on postorder traversal would follow the schedule in reverse. A schedule localizes
nodes to processors, so reusing one across traversals means a node will be accessed by the
same processor. The spatial locality and load balancing benefits of work stealing apply to
each traversal because, as few instructions execute per-node, the workloads are similar.

Our approach achieves low overheads, high temporal and spatial locality, and load-
balanced evaluation. Temporal locality is enforced by reusing the same schedule across
the traversals, and semi-static scheduling with a fast heuristic provides low overheads. Our
work stealing heuristic provides spatial locality and an approximate form of load balancing.

5.2 SIMD Background: Level-Synchronous
Breadth-First Tree Traversal

We built our new SIMD optimizations upon the idea of implementing preorder and pos-
torder tree traversals as level-synchronous breadth-first tree traversals. Reps first suggested
the related concept of scan grammars (Reps, 1993), but did not implement it. We tried
implementing them using the schedules and data representation of more recent data parallel
languages such as NESL (Blelloch et al., 1994) and Data Parallel Haskell (Chakravarty et al.,
2007), but we saw no speedups for document layout. Our new approach is discussed in the
next section, but first, we present an overview of the level-synchronous breadth-first tree
traversals in all these techniques.

The naıve tree traversal schedule is to sequentially iterate over one level of the tree at
a time and traverse the nodes of a level in parallel. A parallel preorder traversal starts on

CHAPTER 5. OPTIMIZING PARALLEL TREE TRAVERSALS FOR MIMD AND
SIMD 91

1 void parPre (void (⇤ v i s i t) (Prod &) , L i s t<List<Prod>> &l e v e l s) {
2 for (L i s t<Prod> l e v e l in l e v e l s)
3 parallel for (Prod p in l e v e l)
4 v i s i t (p)
5 }
6 void parPost (void (⇤ v i s i t) (Prod &) , L i s t<List<Prod>> &l e v e l s) {
7 for (Array<Prod> l e v e l in l e v e l s . reverse ())
8 parallel for (Prod p in l e v e l)
9 v i s i t (p)

10 }
(a) Level-synchronous Breadth-First Traversal

{w,h,x,y}

(b) Logical Tree

…

w[31] 0x000
0x001
0x003
0x007
0x011
0x021

y[31] 0x093
0x094
0x096
0x100
0x104
0x114

(c) Tree Representation

Figure 5.7: SIMD tree traversal as level-synchronous breadth-first iteration with
corresponding structure-split data representation.

the root node’s level and then proceeds downwards. Likewise, a postorder traversal starts
on the tree fringe and moves upwards (Figure 5.7).

The level synchronous approach features several benefits for SIMD evaluation. Unlike the
MIMD depth-first traversals where di↵erent processors may be accessing di↵erent levels of
the tree, breadth-first traversals guarantee level-by-level access. SIMD hardware can exploit
the breadth-first order to coalesce memory accesses to adjacent nodes. Furthermore, in data
visualizations, we empirically observed that most of the nodes on the same level will dispatch
to the same layout instructions. Computing on one level at a time helps SIMD evaluation
avoid a source of instruction divergence.

To eliminate a key source of divergent memory accesses, the level-synchronous traversal
uses a corresponding data representation. Instead of storing adjacent nodes side-by-side,
the layout stores node attributes in column order by converting the array-of-structures to
a structure-of-arrays. The conversion collocates individual attributes, such as the width
attribute of one node being stored next to the width attribute of the node’s sibling (Fig-
ure 5.7c). The index of a node in a breadth-first traversal of the tree is used to perform
a lookup in any of the attribute arrays. The benefit of this encoding is that during SIMD
layout of several adjacent nodes, reads and writes are coalesced into bulk reads and writes.
For example, if a layout pass adds a node’s padding to its width, several contiguous paddings
and several contiguous widths will be read, and the sum will be stored with a contiguous
write. These optimizations are crucial because the penalty of non-coalesced access is high

CHAPTER 5. OPTIMIZING PARALLEL TREE TRAVERSALS FOR MIMD AND
SIMD 92

and, for layout, relatively few computations occur for each read and write.
The implementation of the data representation addresses additional subtleties:

• Level representation. To eliminate traversal overhead, a summary provides the
index of the first and last node on each level of a tree. Such a summary provides data
range information for launching the parallel kernels that evaluate the nodes of a level
as well as the information for how to proceed to the next level.

• Edge representation. A node may need multiple named lists of children, such as an
HTML table with a header, footer, and an arbitrary number of rows. We encode the
table’s edges as three global arrays of o↵sets: header, footer, and first-row. To support
iterating across rows, we also introduce a fourth array to encode whether a node is
the last sibling. Thus, any named edge introduces a global array for the o↵set of the
pointed-to node, and for iteration, a shared global array reporting whether a node at
a particular index is the end of a list.

• Memory compression. Allocating an array the size of the tree for every type of
node attribute wastes memory. We instead statically compute the maximum number
of attributes required for any type of node, allocate an array for each one, and map
the attributes of di↵erent types of nodes into di↵erent arrays. For example, if we
extend H-AG with circle nodes that have attributes “r” and “angle”, four arrays will be
allocated. The HBox nodes require an array for each of the attributes “w”, “h”, “x”,
and “y” while the circle nodes only require two arrays. If a node’s type is HBox, its
entry in the first array will contain the ’w’ attribute. If the node has type Circle, the
node’s entry in the first entry will contain the “r” attribute.

• Tiling. Local structural mutations to a tree such as adding or removing nodes should
not force global modifications, such as moving all subsequent nodes in memory. As
most SIMD hardware has limited vector lengths (e.g., 32 elements wide), we split our
representation into blocks and limit modifications to them. For example, adding nodes
may require allocation of a new block and reorganization of the old and new block.
Likewise, after successive additions or deletions, the overall structure may need to
be compacted. Such techniques are standard for file systems, garbage collectors, and
databases.

In summary, our basic SIMD tree traversal schedule and data representation descend
from the approach of NESL (Blelloch et al., 1994) and Data Parallel Haskell (Chakravarty
et al., 2007). Previous work shows how to generically convert a tree of structures into a
structure of arrays. Those approaches do not support statically unbounded nesting depth
(i.e., tree depth), but we support arbitrary tree depths because our transformation is not as
generic.

A key property of all of our systems, however, is that the structure of the tree is fixed
prior to the traversals. In contrast, for example, parallel breadth-first traversals of graphs

CHAPTER 5. OPTIMIZING PARALLEL TREE TRAVERSALS FOR MIMD AND
SIMD 93

will dynamically find the edges of a minimum spanning tree (Merrill et al., 2012). Such dy-
namic alternatives incur unnecessary overheads when performing a sequence of traversals and
sacrifice memory coalescing opportunities. Layout is often a repetitive process, whether due
to multiple tree traversals for one invocation or an animation incurring multiple invocations,
so costs in creating an optimized data representation and schedule are worth paying.

5.3 Input-dependent Clustering for SIMD Evaluation

Once the tree is available, we automatically optimize the schedule for traversing a tree level
in a way that avoids instruction divergence. Our insight is that we can cluster tasks (nodes)
based on node attributes that influence control flow. Our runtime then matches the data
layout to the new schedule and optimizes the clustering process to prevent the planning
overhead to outweigh its benefit. Once nodes are in clusters, a traversal proceeds cluster-
by-cluster and can use SIMD instructions within each one. The overall optimization can be
thought of an extension to loop unswitching where the predicate is input-dependent; we add
a prepass to achieve the necessary sorting invariant.

The Problem

The problem we address stems from layout being a computation where the instructions for
each node are heavily input dependent. The intuition can be seen in comparing the visual
regularity of a webpage against that of a data visualization. Di↵erent parts of a webpage
look quite di↵erent from one another, which suggests sensitivity to values in the input tree.
In contrast, the points of a chart generally look quite similar and thus does not use widely
di↵erent instructions for di↵erent nodes. For H-AG, an HBox’s width is the sum of its
children widths, but a VBox’s width is their maximum. For a random interleaving of HBox
and VBox nodes, parallel visits diverge in instruction selection based on the node type.

We ran a simulation to demonstrate the performance cost of the divergence. If di↵erent
types of nodes are uniformly distributed in random across a level, as the number of types
of nodes go up, the probability that all of the nodes in a group share the same instructions
drops exponentially. Figure 5.8 shows the simulated speedup for SIMD evaluation over a
tree level of 1024 nodes on computer architectures with varying SIMD lengths. The x-axis
of each chart represents the number of types and the y-axis is the speedup. As the number
of choices increase, the benefit of the naıve breadth-first schedule (red line) decreases. The
instruction divergence causes the speedup to be far from the ideal, which we estimated as a
function of the SIMD length of the architecture (maximal parallel speedup, contributing the
horizontal portion of the green lines) and the expected number of di↵erent types (mandatory
divergences, contributing the diagonal portion).

CHAPTER 5. OPTIMIZING PARALLEL TREE TRAVERSALS FOR MIMD AND
SIMD 94

1

8

64

512

2 4 8 16

32

64

12
8

25
6

51
2

10
24

Si
m

ul
at

ed
 Sp

ee
du

p

Number of categories (K)

Simulated clustering speedup for 1024
element array using 2 vector lanes

Unclustered Clustered IDEAL

1

8

64

512

2 4 8 16

32

64

12
8

25
6

51
2

10
24

Si
m

ul
at

ed
 Sp

ee
du

p

Number of categories (K)

Simulated clustering speedup for 1024
element array using 4 vector lanes

Unclustered Clustered IDEAL

1

8

64

512

2 4 8 16

32

64

12
8

25
6

51
2

10
24

Si
m

ul
at

ed
 Sp

ee
du

p

Number of categories (K)

Simulated clustering speedup for 1024
element array using 8 vector lanes

Unclustered Clustered IDEAL

1

8

64

512

2 4 8 16

32

64

12
8

25
6

51
2

10
24

Si
m

ul
at

ed
 Sp

ee
du

p

Number of categories (K)

Simulated clustering speedup for 1024
element array using 16 vector lanes

Unclustered Clustered IDEAL

1

8

64

512

2 4 8 16

32

64

12
8

25
6

51
2

10
24

Si
m

ul
at

ed
 Sp

ee
du

p

Number of categories (K)

Simulated clustering speedup for 1024
element array using 32 vector lanes

Unclustered Clustered IDEAL

1

8

64

512

2 4 8 16

32

64

12
8

25
6

51
2

10
24

Si
m

ul
at

ed
 Sp

ee
du

p

Number of categories (K)

Simulated clustering speedup for 1024
element array using 64 vector lanes

Unclustered Clustered IDEAL

1

8

64

512

2 4 8 16

32

64

12
8

25
6

51
2

10
24

Si
m

ul
at

ed
 Sp

ee
du

p

Number of categories (K)

Simulated clustering speedup for 1024
element array using 128 vector lanes

Unclustered Clustered IDEAL

1

8

64

512

2 4 8 16

32

64

12
8

25
6

51
2

10
24

Si
m

ul
at

ed
 Sp

ee
du

p

Number of categories (K)

Simulated clustering speedup for 1024
element array using 256 vector lanes

Unclustered Clustered IDEAL

1

8

64

512

2 4 8 16

32

64

12
8

25
6

51
2

10
24

Si
m

ul
at

ed
 Sp

ee
du

p

Number of categories (K)

Simulated clustering speedup for 1024
element array using 512 vector lanes

Unclustered Clustered IDEAL

Figure 5.8: Simulated vectorization speedup for di↵erent schedules. Successive
diagrams increase the number of vector lanes by a power of two.

CHAPTER 5. OPTIMIZING PARALLEL TREE TRAVERSALS FOR MIMD AND
SIMD 95

1 void parPreClustered (void (⇤ v i s i t) (Prod &) , L i s t<List<Array<Prod>>> &l e v e l s) {
2 for (L i s t<Prod> l e v e l in l e v e l s)
3 for (Array<Prod> c l u s t e r in l e v e l)
4 parallel for (Prod p in c l u s t e r)
5 v i s i t (p)
6 }

Figure 5.9: Clustered parallel preorder traversal.

1 Prod f i r s tP r od = c l u s t e r [0]
2 p a r a l l e l f o r (prod in Clus t e r) {
3 switch (f i r s tP r od . type) {
4 case S ! HBOX: break ;
5 case HBOX ! ✏ :
6 HBOX.w = input () ;
7 HBOX. h = input () ;
8 break ;
9 case HBOX ! HBOX1 HBOX2 :

10 HBOX0 .w = HBOX1 .w + HBOX2 .w;
11 HBOX0 . h = MAX(HBOX1 . h , HBOX2 . h) ;
12 break ;
13 }
14 }

(a) Clustered dispatch.

1 Prod f i r s tP r od = c l u s t e r [0]
2 switch (f i r s tP r od . type) {
3 case S ! HBOX: break ;
4 case HBOX ! ✏ :
5 p a r a l l e l f o r (prod in Clus t e r) {
6 HBOX.w = input () ;
7 HBOX. h = input () ;
8 }
9 break ;

10 case HBOX ! HBOX1 HBOX2 :
11 p a r a l l e l f o r (prod in Clus t e r) {
12 HBOX0 .w = HBOX1 .w + HBOX2 .w;
13 HBOX0 . h = MAX(HBOX1 . h , HBOX2 . h) ;
14 }
15 break ;
16 }
17 }

(b) Unswitched dispatch.

Figure 5.10: Loop transformations to exploit clustering for vectorization.

Code Clustering

Our solution is to cluster nodes of a level based on the values of attributes that influence the
flow of control. SIMD evaluation of the nodes in a cluster will be free of instruction diver-
gence. Furthermore, by changing the data representation to match the clustered schedule,
memory accesses will also be coalesced. We first focus on applying the clustering transfor-
mation to the code.

Figure 5.9 shows the clustered evaluation variant of the MIMD parPre traversal for
H-AG. The traversal schedule is di↵erent because the order is based on the clustering rather
than breadth-first index. Changing the order is safe because the original loop was parallel
with no dependencies between elements. Computing over clusters guarantees that all calls
to a visit dispatch function in the parallel inner loop (e.g., of visit1) will branch to the same
case of the switch statement. GPU (“SIMT”) architectures will automatically exploit this
phenomena.

Subword-SIMD architectures need an additional code transformation. We performed a
loop transformation that can be understood as a form of loop unswitching. Loop unswitching
lifts a conditional out of a loop by duplicating the loop inside of both cases of the conditional.
Clustering establishes the invariant that the dispatch used for the first element of a cluster

CHAPTER 5. OPTIMIZING PARALLEL TREE TRAVERSALS FOR MIMD AND
SIMD 96

is the same for the rest, so the hoisted conditional need only check one item. Figure 5.10
demonstrates how to use the same exemplar for the dispatch.

Clustering is with respect to input attributes that influence control flow, which may
include more than just the node type. For example, in our vectorization of the C3 layout
engine (Burg and Schulte, 2011), we found that the engine author combined the logic of
multiple box types into one visit function because the variants shared a lot of code. He
recorded which code to use with multiple node flags and invoked them through if-then
statements. Both the node type and various other node attributes influenced control flow,
and therefore our clustering condition dependend on whether they were all equal. Using all
of the attributes led to too fine of a clustering condition, so we manually tuned the choice
of attributes.

Data Clustering

Because the data representation should be modified to match the clustering order, we colo-
cate nodes of a cluster. The benefit is coalesced memory accesses, but overhead costs in
performing the clustering should be considered.

Reordering data is expensive as all of the data is moved. In the case of our data vi-
sualization system, we avoided such costs because the data is preprocessed on our server.
For webpage layout, the client performs clustering at runtime. We optimized the clustering
enough such that the cost is outweighed by the subsequent performance improvements.

We optimized reordering with a simple parallel two-pass technique. The first pass tra-
verses each level in parallel to compute the cluster for each node and tabulates the cluster
sizes for each tree level. The second pass again traverses each level in parallel, and as each
node is traversed, copies it into the next free slot of the appropriate cluster. Even finer-
grained parallelization is possible, but this algorithm was su�cient for lowering reordering
costs enough to be amortized.

Nested Clustering

We experimented with applying clustering to address di↵erent types of divergences encoun-
tered when computing over trees:

• Branches. For some cases of webpage layout, attributes of the parent node or children
influence instruction selection, such as whether to include a child node in a width
computation. We included these properties in the clustering condition in order to
eliminate the corresponding instruction divergences.

• Load imbalance in loops. One node may have no children while another may
have many. If the layout computation involves a loop, SIMD evaluation will perform
the two loops in lock-step. Thus, as the nodes have di↵erent amounts of children,
the SIMD lanes devoted to the smaller-length node will not be utilized: this is a load

CHAPTER 5. OPTIMIZING PARALLEL TREE TRAVERSALS FOR MIMD AND
SIMD 97

balancing problem. The number of children can be included in the clustering condition
to eliminate load imbalance.

• Random memory access in loops. A further issue with lock-step loops over child
nodes is memory divergence. An unclustered breadth-first layout would provide strided
memory access, such as for the first child of each node. However, if each level is
clustered, the locations of a node’s children may be random without further aid. We
found a nested solution where subtrees are assigned to clusters. Beyond associating
nodes of a level with a cluster, our algorithm also treats the nodes of a cluster as roots.
It recursively expands subtrees in tandem to determine clusters that span multiple
levels. The data layout follows the nested clustering, so parallel memory accesses to
the children of nodes will be coalesced. Likewise, traversals of the next level of the tree
will also achieve coalesced accesses.

Each of these clusterings introduce an intra-cluster invariant that we exploited for opti-
mizing performance within that cluster. However, the clustering condition is more discrimi-
nating. Cluster sizes may decrease, which would decrease performance if cluster size shrinks
below vector length size. Section 5.4 explores these options in practice.

5.4 Evaluation

We evaluate speedups from each of our techniques. For MIMD architectures, we demon-
strated that semi-static work stealing achieves better load balancing and su↵ers from lower
overheads than techniques such as dynamic work stealing. For SIMD architectures, we ver-
ified the benefit of using level-synchronous breadth-first traversals (Blelloch et al., 1994),
and for the case of webpage layout, show that clustering nodes improves scalability. We
evaluated both the sequential and parallel speedups due to our technique, and in the case of
SIMD evaluation, measured the power e�ciency.

MIMD Data Representation and Scheduling Optimizations

By statically exposing traversal structure (e.g., parPre) to our code generators, we observe
sequential and parallel speedups. We separately evaluate the importance of the data rep-
resentation optimizations from the scheduling ones on randomly generated 500-1000 node
documents. The implementation under test is hbox++ , which extends H-AG with additional
node types such as vertical boxes and extra attributes such as padding. Finally, we examine
the parallel benefit on webpages for our implementation of CSS.

We first evaluate the perform of our task scheduler (FTL in Table 5.1). Our comparison
point is Intel’s TBB (Reinders, 2007) dynamic task scheduler that performs work steal-
ing (Blumofe et al., 1995), which was the most e�cient third-party work stealing library
that we tried. We included our data layout optimizations in all calculations because, with-
out them, we saw no speedup. TBB causes slowdowns until achieving no cost (nor benefit)

CHAPTER 5. OPTIMIZING PARALLEL TREE TRAVERSALS FOR MIMD AND
SIMD 98

Total speedup Parallel speedup
Cores Cores

Configuration 1 2 4 8 2 4 8

TBB, server 1.2x 0.6x 0.6x 1.2x 0.5x 0.5x 1.0x
FTL, server 1.4x 2.4x 5.2x 9.3x 1.8x 3.8x 6.9x
FTL, laptop 1.4x 2.1x 1.6x
FTL, mobile 1.3x 2.2x 1.7x

Table 5.1: Speedups and strong scaling across di↵erent schedulers and hardware.
Baseline is a sequential traversal with no data layout optimizations. FTL is our multicore
tree traversal library. Left columns show total speedup (including data layout optimizations
by our code generator) and right columns show just parallel speedup. Server = Opteron
2356, laptop = Intel Core i7, mobile = Atom 330.

Parallel speedup
Cores

Backend Input 2 4 8

TBB Wikipedia 1.5x 1.6x 1.2x
TBB xkcd Blog 1.5x 1.8x 1.2x
FTL Wikipedia 1.6x 2.8x 3.2x
FTL xkcd Blog 1.5x 2.3x 3.1x

Table 5.2: Parallel CSS layout engine. Run on a 2356 Opteron.

at 8 cores. We hypothesize that it su↵ered from high overheads: switching to scheduling tiles
by using our optimized data representation improved performance. Our semi-static working
stealing scheduler, however, achieved a 6.9X speedup on 8 cores. We did not see significant
further speedups for higher core counts, and hypothesize that it is due to the socket jump.
We experimented with other schedulers, such as a parallel for-loop over tiles near the fringe
of the tree, but the achieved 2X speedup is much lower than the 6.9X of our semi-static work
stealer.

Optimizing the data representation was key to achieving parallel speedups. Doing so
achieved 1.2X-1.4X speedups for sequential processing (Table 5.1). However, on 4 cores, it
improved the cumulative speedup from 2.8X without data representation optimizations to
5.2X when using them. The di↵erence is 1.9X: our data representation optimizations both
complement and improve scheduling optimizations. Without them, parallel performance was
poor.

Table 5.2 shows the parallel speedup on running our 9 pass layout engine for two popular
web pages that render faithfully with it: Wikipedia and the XKCD blog. Note that the
benchmarks do not include sequential speedups. The best performance of TBB was a 1.8X

CHAPTER 5. OPTIMIZING PARALLEL TREE TRAVERSALS FOR MIMD AND
SIMD 99

1492

293 349

91

2224

502

2726

74

18
45

17

154
539 693

8 9 11
6

33
17

51

1

10

100

1,000

10,000

td (1) bu (2) td (3) bu (4) LAYOUT (4
passes)

rendering pass TOTAL

Ti
m

e (
m

s)

Naïve JS (Chrome 26) Arrays (Chrome 26) GPU (Safari + WebCL 11/3/12) 24fps Interaction

Figure 5.11: Sequential and parallel benefits of breadth-first layout and staged
allocation. Allocation is merged into the 4th stage and bu↵er indexing and tessellation
form the rendering pass. JavaScript variants use HTML5 canvas drawing primitives while
WebCL does not include WebGL painting time (< 5ms). Thin vertical bars indicate standard
deviation and horizontal bars show deadlines for animation and hand-eye interaction.

speedup on 4 cores, and TBB’s speedup on 8 cores was 1.2X. In comparison, our scheduler
achieved 2.8X on 2 cores and 3.2X on 8. We blame the lack of further benefits on overheads.
Across our benchmarks, we generally saw speedups when sequential traversals took longer
than a certain amount, but because so many traversals are used for CSS, enough of them
are small enough that we do not expect strong scaling. Our intuition is that either a full
layout engine is complicated enough that the sequential cost of each traversal will be higher
than in our prototype, or even more aggressive data representation optimizations should be
performed. As is, we have demonstrated significant 3X+ speedups on real workloads from
just the parallelization.

Baseline SIMD Speedups (GPU)

We evaluate the sequential and parallel performance benefits of our baseline breadth-first
layout. For an animation to achieve 24fps, the time spent to process a frame should not
exceed 42ms, and for hand-eye interactions, 100ms (10fps). We examine the case of a 5 pass
treemap that supports live filtering over 100,000 data points. The first 3 passes are purely

CHAPTER 5. OPTIMIZING PARALLEL TREE TRAVERSALS FOR MIMD AND
SIMD 100

devoted to layout, the 4th pass includes layout computations and allocation requests, and
the 5th pass propagates bu↵er indices and performs tessellation.

We compare 3 backends for our compiler: canonical JavaScript (a tree of nodes), JavaScript
over our structure-split breadth-first tree layout (and with typed arrays), and WebCL for
the GPU. The first two variants invoke HTML5 canvas drawing primitives, while the last
invokes WebGL (GPU) painting primitives over vertex bu↵ers computed in the rendering
pass. The time for WebGL painting calls are not shown, but they take less than 5ms. Each
variant is repeated 15 times on a 4 core 2012 2.66GHz Intel Core i7 with 8 GB memory and
a 1024 MB NVIDIA GeForce GT 650M graphics card.

We first examine the significant sequential benefits. The first 4 groups of columns in
Figure 5.11 shows the average time spent on di↵erent layout passes and the 6th on the
pass for bu↵er index computation and tessellation. Changing the data representation and
schedule enables a 14X sequential speedup on layout in the Chrome web browser. No speedup
is observed in the rendering pass because the time is dominated by HTML5 canvas calls.
We hypothesize part of the sequential benefit is related to our clustering optimization: all of
the nodes in a level have the same type, so implicit optimizations such as branch prediction
should perform better when moving away from the depth-first traversal. Finally, we note
that while sequential layout time is a magnitude too slow for real-time animation, our parallel
prototype is within 54ms for real-time interaction (ignoring rendering).

Parallel speedups are also significant. WebCL (GPU) evaluation of layout is 5X faster
than sequential. The impact of compiling JavaScript versus C (WebCL) on the benchmark
is unclear: JavaScript is generally a magnitude slower than native code, except the run-
time WebCL compiler is not running at high optimization levels. The benefits for parallel
computation of the bu↵er indices and tessellation is much more clear: the speedup is 31X.

To better understand the benefit of parallelization, we compared running the layout
traversals using multicore versus GPU acceleration (Figure 5.12) for an early prototype of
the layout traversals. Both use breadth-first traversals compiled with OpenCL, except di↵er
on the hardware target. We see that a server-grade multiprocessor (32-core AMD Opteron
2356) can outperform a laptop GPU, but the comparison is unfair in terms of form-factor
and implications for power ratings.

Ultimately, when the sequential and parallel optimizations are combined, we see an end-
to-end speedup of 54X. It is high enough such that it enables real-time animation for our
dataset, not just real-time user interaction.

SIMD Clustering

We evaluated several aspects of our clustering approach. First, we examined applicability
to various layouts. Second, we evaluated the speed and power benefit. Clustering provides
invariants that benefit more than just vectorization, so we distinguish sequential versus par-
allel speedups. Finally, there are di↵erent options in what clusters to form, so we measured
ideal speedups (compression ratios) and observed ones.

CHAPTER 5. OPTIMIZING PARALLEL TREE TRAVERSALS FOR MIMD AND
SIMD 101

0

1

2

3

4

5

1 5 9 13 17 21 25 29

Sp
ee

du
p

Cores

OpenCL/Multicore OpenCL/GPU

Figure 5.12: Multicore versus GPU acceleration of layout. Benchmark on an early
version of the treemap visualization and does not include rendering pass.

78%$

54%$

12%$

74%$

40%$

0%$ 20%$ 40%$ 60%$ 80%$ 100%$ 120%$

cluster$level$byid

cluster$level$byid+$parent$values$

cluster$level$by$values$

cluster$nested$by$values$

cluster$nested$recursivebyvalues$

compression*ra,o*(|clusters|*/*|tree|);*lower*is*be7er*

AVERAGE$OVER$WEBSITES$ youtube$ wordpress$ wikipedia$ twiIer$ msdn$ flickr$ craigslist$ apple$

Figure 5.13: Compression ratio for di↵erent CSS clusterings. Bars depict compression
ratio (number of clusters over number of nodes). Recursive clustering is for the reduce
pattern, level-only for the map pattern. ID is an identifier set by the C3 browser for nodes
sharing the same style parse information while value is by clustering on actual style field
values.

CHAPTER 5. OPTIMIZING PARALLEL TREE TRAVERSALS FOR MIMD AND
SIMD 102

Applicability

We examined idealized speedup for several workloads:

• Synthetic. For a controlled synthetic benchmark, we simulated the e↵ect of increasing
number of clusters on speedup for various SIMD architectures. Our simulation assumes
perfect speedups for SIMD evaluation of nodes run together on a SIMD unit. The ideal
speedup is a function of the minimum of the SIMD unit’s length (for longer clusters,
multiple SIMD invocations are mandatory) and the number of clusters (at least one
SIMD step is necessary for each cluster). Figure 5.8 shows, for architectures of di↵erent
vector length, that the simulated speedup from clustering (solid black line with circles)
is close to the ideal speedup (solid green line).

• Data visualization. For our data visualizations, we found that across the board all of
the nodes of a level shared the same type. For example, our visualization for multiple
line graphs puts the root node on the first level, the axis for each line graph on the
second level, and all of the actual line segments on the third level.

• CSS. We analyzed potential speedup on webpages. Webpages are a challenging case
because an individual webpage features high visual diversity, with popular sites using
an average of 27KB of style data per page 1. We picked 10 popular websites from
the Alexa Top 100 US websites that rendered su�ciently correctly in the C3 web
browser (Burg and Schulte, 2011).

Figure 5.13 compares how well nodes of a webpage can be clustered. It reports the
compression ratio, which divides the number of clusters by the number of nodes. Se-
quential execution would assign each node to its own cluster, so the ratio would be 1.
In contrast, if the tree is actually a list of 100 elements, and the list can be split into
25 clusters, the ratio would be 25%. Assuming infinite-length vector processors and
constant-time evaluation of a node, the compression ratio is the exact inverse of the
speedup. A ratio of 1 leads to a 1X speedup, and a compression ratio of 25% leads to
a 4X speedup.

Clustering each level by attributes that influence control flow achieved a 12% com-
pression ratio (Figure 5.13): an 8.3X idealized speedup. When we strengthened the
clustering condition to enforce stronger invariants in the cluster, such as to consider
properties of the parent node, the ratio quickly worsened. Thus, we see that our basic
approach is promising for websites on modern subword-SIMD instruction sets, such as
a 4-wide SSE (x86) and NEON (ARM), and the more recent 8-wide AVX (x86). Even
longer vector lengths are still beneficial because some clusters were long. However,
eliminating all divergences requires addressing control flows influenced by attributes
of node neighbors, which leads to poor compression ratios. Thus, we emphasize that

1https://developers.google.com/speed/articles/web-metrics

CHAPTER 5. OPTIMIZING PARALLEL TREE TRAVERSALS FOR MIMD AND
SIMD 103

1.0x%
2.3x%

0.9x%
2.1x%

3.5x%

1.7x%
2.6x%

0.0x%
1.0x%
2.0x%
3.0x%
4.0x%
5.0x%
6.0x%
7.0x%

B% M%H% B%S% M%S%H% M%S%H%V% R%S%H% R%S%H%V%

Sp
ee
du

p&

apple%
craigslist%
flickr%
msdn%
twiCer%
wikipedia%
wordpress%
youtube%
AVERAGE%

B =breadth first, S = structure splitting, M = level clustering, R = nested clustering, H =
hoisting, V = SSE 4.2

Figure 5.14: Speedups from clustering on webpage layout. Run on a 2.66GHz Intel
Core i7 (GCC 4.5.3 with flags -O3 -combine -msse4.2) and does not preprocessing time.

8.3X is an upper bound on the idealized speedup: not all branches in a cluster are
addressed.

Empirically, we see that clustering is applicable to CSS, and unnecessary in the case of
our data visualizations.

Speedup

We evaluated the speedup benefits of clustering for webpage layout. We take care to distin-
guish sequential benefits from parallel benefits, and compare di↵erent clustering approaches.
Our implementation was manual: we examined optimizing one pass of the C3 browser’s CSS
layout engine (Burg and Schulte, 2011) that is responsible for computing intrinsic dimen-
sions. The C3 browser was written in C#, so we wrote our optimized traversal in C and
pinned the memory for shared access between C# and C. We used a breadth-first tree rep-
resentation and schedule for our baseline, but note that doing such a layout already provides
a speedup over C3’s unoptimized global layout.

For our experimental setup, we evaluated the same popular webpages above that rendered
legibly with the experimental C3 browser. Benchmarks ran on a 2.66GHz Intel Core i7 (GCC
4.5.3 with flags -O3 -combine -msse4.2). We performed 1,000 trials, and to avoid warm data
cache e↵ects, iterated through di↵erent webpages.

We first examine sequential performance. Converting an array-of-structures to a structure-
of-arrays causes a 10% slowdown (B S in Figure 5.14). However, clustering each level and
hoisting computations shared throughout a cluster led to a 2.1X sequential benefit (M S H).
Nested clustering provided more optimization opportunities, but the compression ratio wors-
ened: it only achieved a 1.7X sequential speedup (R S H). Simple level clustering provides a
significant sequential speedup.

Next, we examine the benefit of vectorization. SSE instructions provide 4-way SIMD
parallelism. Vectorizing the nested clustering improves the speedup from 1.7X to 2.6X, and

CHAPTER 5. OPTIMIZING PARALLEL TREE TRAVERSALS FOR MIMD AND
SIMD 104

1.0x%
2.1x%

3.6x%

0x%

2x%

4x%

6x%

8x%

10x%

BFS% map%clustering% map%clustering%+%SSE4.2%

pe
rf
or
m
an

ce
/W

a,
-in
cr
ea
se
- %apple%

%craigslist%

%flickr%

%msdn%

%twiAer%

%wikipedia%

%wordpress%

%youtube%

AVERAGE%

Figure 5.15: Performance/Watt increase for clustered webpage layout.

the level clustering from 2.1X to 3.5X. Thus, we see significant total speedups. The 1.7X
relative speedup of vectorization, however, is still far from the 4X: level clustering su↵ers from
randomly strided children, and the solution of nested clustering sacrifices the compression
ratio.

Power

Much of our motivation for parallelization is better performance-per-Watt, so we evaluated
power e�ciency. To measure power, we sampled the power performance counters during
layout. Each measurement looped over the same webpage over 1s due to the low resolution
of the counter. Our setup introduces warm cache e↵ects, but we argue it is still reasonable
because a full layout engine would use multiple passes and therefore also have a warm cache
across traversals.

In Figure 5.15, we show a 2.1X improvement in power e�ciency for clustered sequential
evaluation, which matches the 2.1X sequential speedup of Figure 5.14. Likewise, we report
a 3.6X cumulative improvement in power e�ciency when vectorization is included, which
is close to the 3.5X speedup. Thus, both in sequential and parallel contexts, clustering
improves performance per Watt. Furthermore, the similarity between speedup and power
numbers supports the general reasoning in parallel computing of ‘race-to-halt’ as a strategy
for improving power e�ciency.

Overhead

Our final examination of clustering is of the overhead. Time spent clustering before layout
must not outweigh the performance benefit; it is an instance of the planning problem in AI.

For the case of data visualization, we flatten the tree into arrays with a preprocessor
on the server that runs o↵ the critical path. Thus, our data visualizations experience no

CHAPTER 5. OPTIMIZING PARALLEL TREE TRAVERSALS FOR MIMD AND
SIMD 105

3.1x%
6.1x% 6.4x%

2.5x%2.8x%3.1x%3.2x%3.0x%
3.8x%

2.5x%3.5x%
3.6x%

2.0x%2.1x%2.3x%2.3x%2.2x%2.6x%

,6.0x%
,4.0x%
,2.0x%
0.0x%
2.0x%
4.0x%
6.0x%
8.0x%
10.0x%

0ms%

5ms%

10ms%

15ms%

20ms%

25ms%

ap
ple
%

cra
igs
lis
t%

flic
kr
%

m
sd
n%

tw
i=
er
%

wi
kip
ed
ia%

wo
rd
pr
es
s%

yo
ut
ub
e%

AV
ER
AG
E%

sp
ee
du

p&

'm
e&
(m

s)
&

BFS% clustered%SIMD%
data%relayout% 1%pass%(no%relayout)%
relayout%+%5%passes% relayout%+%1%pass%

Figure 5.16: Impact of data relayout time on total CSS speedup. Bars depict layout
pass times. Speedup lines show the impact of including clustering preprocessing time.

clustering cost.
For webpage layout, clustering is performed on the client when the webpage is received.

We measured performing clustering with our two-pass algorithm. Figure 5.16 shows the
overhead relative to one pass using the bars. The highest relative overhead was for the
Flickr homepage, where it reached almost half the time of one pass. However, layout occurs
in multiple passes. For a 5-pass layout engine where we model each pass as similar to the one
we optimized, the overhead is amortized. The small gap between the solid and dashed lines
in Figure 5.16 show there is little di↵erence when we include the preprocessing overhead in
the speedup calculation.

5.5 Related Work

Our MIMD and SIMD algorithms for implementing a known traversal schedule descend from
a variety of techniques:

Static and Dynamic Task Scheduling

Kwok and Ahmad (1999) survey statically scheduling a directed acyclic graph (DAG) of
tasks for MIMD execution. The problem is NP-complete when nodes contain irregularities
such as non-uniform weights. Furthermore, many classic techniques assume shared-nothing
message passing and no temporal locality. Our interest in static scheduling techniques stems
more from the ability to eliminate dynamic scheduling overheads and perform locality opti-
mizations.

CHAPTER 5. OPTIMIZING PARALLEL TREE TRAVERSALS FOR MIMD AND
SIMD 106

Work stealing (Blumofe et al., 1995; Reinders, 2007) achieves load balancing because
underutilized processors dynamically steal tasks from oversubscribed processors. Jourdan
and Parigot (1991) apply this idea to implementing the parallel traversals for attribute
grammars in the FNC-2 system and report multi-factor speedups. Our experiments saw
few-to-no speedups from using the Cilk and TBB work stealers due to poor locality and high
overheads. Instead, we semi-statically perform work stealing as a partitioning heuristic for
lock-based tiled evaluation, and only then saw speedups. Our approach is more similar to
Galois (Kulkarni et al., 2008), which dynamically tiles subgraphs during an iterative graph
computation.

Optimizing Data Representation for Locality

Both our SIMD and MIMD algorithms optimize the data representation in order to improve
temporal and spatial data locality. Fine-grained approaches such as the structure split
coallocation of Chilimbi et al. (1999) and Ding and Kennedy (1999) improve spatial locality.
Our SIMD algorithm achieved some of the e↵ect by converting from structs to arrays. For
MIMD, we optimized temporal locality by tiling (Irigoin and Triolet, 1988), as opposed to
ignoring machine details (Frigo et al., 1999). We also performed thread pinning and tuned
the tree layout. Concurrent work by Jo et al describes a similar technique for DAGs (Jo and
Kulkarni, 2011): point blocking. They studied large graphs while we found incorporating
further optimizations to be useful for small ones.

Nuzman et al. (2006) applied data layout transformations to vectorization. Many such
optimizations are known, e.g., structure conversion. We show additional optimizations are
possible by using clustering, such as load balancing and eliminating instruction divergence.

SIMD Tree Traversals

Indicative of the challenge of manual approaches, an early paper about manually vectorizing
a Barnes-Hut n-body simulation (Barnes, 1990) was titled “Don’t laugh, it runs!”. As seen
with the recent FAST (Kim et al., 2010) algorithm that uses SIMD instructions for the
comparator in traversing a binary search tree, e↵ective vectorization of tree computations
is still a challenge. Not described in this work, we used an idea similar to our clustering to
cluster hot paths down a binary search tree. For predictable workloads, we observed multi
factor speedups over FAST. In contrast, FAST performs work-ine�cient BFS traversals over
every accessed B-node (tree tile).

Blelloch (Blelloch et al., 1994; Chatterjee et al., 1990)’s NESL language demonstrates
one transformation for lifting arbitrary computations over bounded nested vectors (e.g.,
matrices) to use vector instructions. As extensions, ? and Peyton Jones (2008) support
recursive types (e.g., trees) and target multiple cores and GPUs. Catanzaro et al. (2011)
presents an alternate transformation in Copperhead. Reps (1993) ran simulations to measure
the connection between attribute grammar evaluation and such data parallel execution.

CHAPTER 5. OPTIMIZING PARALLEL TREE TRAVERSALS FOR MIMD AND
SIMD 107

Implementing the idea and running case studies led us to additional techniques: clustering
based on instruction sequence and grouping dynamic memory allocations.

Our clustering transformation can be generalized to loop transformation, which is well-
studied (Bacon et al., 1994; Allen and Kennedy, 1987; Smith et al., 2000). It essentially
introduces an additional loop that permutes and partitions the original parallel interval.
Doing so enables guarantees within a subinterval such as lack of instruction divergence or
load imbalance. Similar to recent GPU and SIMD schedulers (Zhang et al., 2011), it contains
a runtime component. Merrill et al. (2012) examined the more hostile scenario of BFS graph
traversal on a GPU where the minimum spanning tree is not known ahead of time and
provides relevant optimizations such as in load balancing.

Autotuning

Our MIMD implementation resembles the ATLAS (Whaley et al., 2001) framework for linear
algebra in that we autotune over parameters such as block size to optimize for a particular
device. In contrast, cache oblivious algorithms for FFTW (Frigo and Johnson, 2005) asymp-
totically optimize for general architectures but may be less e�cient on any individual device.
Autotuning is actively being applied to further domains, such as work in stencils (Datta et al.,
2008): we examine computations over trees.

Data structure selection is examined early on by Low (1978) for abstract data types
in an ALGOL-60 variant. Recent work by Hawkins et al. (2011) examines exposing and
implementing multiple pointer-based representation satisfying the same relational interface.
Based on discussions with the author, supporting data layout optimizations used by our
systems remains a challenge. Not included herein, we made a DSLs for more traditional
layout autotuning (e.g., parameter space to explore for cache block size or which type of lock
to use).

108

Chapter 6

Conclusion

This thesis explored the practical question of how to parallelize a layout language and in-
troduced programming language constructs, compiler optimizations, and parallel algorithms
for doing so. The core idea is to formalize layout languages as attribute grammars and auto-
matically synthesize a schedule of parallel tree traversals to implement one. Schedule design
is non-trivial, so we introduce schedule holes as a new abstraction for parallel programming
and a fast synthesis algorithm to fill them in. Once a static schedule is determined, we
achieved multifactor speedups by introducing new optimizations for runtime schedules and
data representations on MIMD and SIMD architectures. In addition, we identified paral-
lelism in CSS and common layout language features, and measured speedups of up to 54X
on commodity hardware.

109

Bibliography

Alblas, H. (1991). Attribute evaluation methods. In Proceedings on Attribute Grammars,
Applications and Systems, pages 48–113, London, UK, UK. Springer-Verlag.

Allen, R. and Kennedy, K. (1987). Automatic translation of Fortran programs to vector
form. TOPLAS.

Ansel, J., Chan, C., Wong, Y. L., Olszewski, M., Zhao, Q., Edelman, A., and Amarasinghe,
S. (2009). Petabricks: A language and compiler for algorithmic choice. In PLDI’09.

Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P., Keutzer, K., Patterson,
D. A., Plishker, W. L., Shalf, J., Williams, S. W., and Yelick, K. A. (2006). The landscape
of parallel computing research: A view from Berkeley. Technical Report UCB/EECS-
2006-183, EECS Department, University of California, Berkeley.

Bacon, D. F., Graham, S. L., and Sharp, O. J. (1994). Compiler transformations for high-
performance computing. ACM Computing Surveys.

Badros, G. J., Borning, A., and Stuckey, P. J. (2001). The Cassowary linear arithmetic con-
straint solving algorithm. ACM Transactions on Computer-Human Interaction (TOCHI),
8(4):267–306.

Barnes, J. E. (1990). A modified tree code: Don’t laugh; it runs. J. Comput. Phys.,
87(1):161–170.

Blelloch, G. E., Chatterjee, S., Hardwick, J. C., Sipelstein, J., and Zagha, M. (1994). Imple-
mentation of a portable nested data-parallel language. Journal of Parallel and Distributed
Computing, 21:4–14.

Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E., Randall, K. H., and Zhou,
Y. (1995). Cilk: an e�cient multithreaded runtime system. In PPOPP’95, pages 207–216.

Bochmann, G. V. (1976). Semantic evaluation from left to right. Commun. ACM, 19(2):55–
62.

Boehm, H.-j. and Zwaenepoel, W. (1987). Parallel attribute grammar evaluation. In Pro-
ceedings of the 7th International Conference on Distributed Computing Systems, IEEE,
pages 347–354. Kim,IEEE Computer Society.

BIBLIOGRAPHY 110

Bostock, M., Ogievetsky, V., and Heer, J. (2011). D3 data-driven documents. IEEE Trans-
actions on Visualization and Computer Graphics, 17(12):2301–2309.

Brown, H. (1988). Parallel processing and document layout. Electron. Publ. Origin. Dissem.
Des., 1(2):97–104.

Burckhardt, S., Leijen, D., Sadowski, C., Yi, J., and Ball, T. (2011). Two for the price of
one: a model for parallel and incremental computation. In OOPSLA’11, pages 427–444.

Burg, B. S. L. B. and Schulte, H. V. W. (2011). C3: an experimental, extensible, re-
configurable platform for html-based applications. In 2nd USENIX Conference on Web
Application Development, page 61.

Catanzaro, B., Garland, M., and Keutzer, K. (2011). Copperhead: Compiling an embedded
data parallel language. In Proceedings of the 16th ACM Symposium on Principles and
Practice of Parallel Programming, PPoPP ’11, pages 47–56, New York, NY, USA. ACM.

Chakravarty, M. M. T., Leshchinskiy, R., Peyton Jones, S., Keller, G., and Marlow, S.
(2007). Data parallel haskell: A status report. In Proceedings of the 2007 Workshop on
Declarative Aspects of Multicore Programming, DAMP ’07, pages 10–18, New York, NY,
USA. ACM.

Chatterjee, S., Blelloch, G., and Zagha, M. (1990). Scan primitives for vector computers. In
Proceedings of the 1990 ACM/IEEE Conference on Supercomputing.

Chilimbi, T. M., Hill, M. D., and Larus, J. R. (1999). Cache-conscious structure layout. In
PLDI.

Colmenares, J. A., Eads, G., Hofmeyr, S., Bird, S., Moretó, M., Chou, D., Gluzman, B.,
Roman, E., Bartolini, D. B., Mor, N., Asanović, K., and Kubiatowicz, J. D. (2013). Tessel-
lation: Refactoring the os around explicit resource containers with continuous adaptation.
In Proceedings of the 50th Annual Design Automation Conference, DAC ’13, pages 76:1–
76:10, New York, NY, USA. ACM.

Colmerauer, A. (1990). An introduction to Prolog III. CACM, 33.

Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson, D., Shalf,
J., and Yelick, K. (2008). Stencil computation optimization and auto-tuning on state-of-
the-art multicore architectures. In SC’08.

Dean, J. and Ghemawat, S. (2008). Mapreduce: Simplified data processing on large clusters.
Commun. ACM, 51(1):107–113.

Demers, A., Reps, T., and Teitelbaum, T. (1981). Incremental evaluation for attribute
grammars with application to syntax-directed editors. In Proceedings of the 8th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’81,
pages 105–116, New York, NY, USA. ACM.

BIBLIOGRAPHY 111

Ding, C. and Kennedy, K. (1999). Improving cache performance in dynamic applications
through data and computation reorganization at run time. In PLDI.

Eckstein, R., Loy, M., and Wood, D. (1998). Java Swing. O’Reilly & Associates, Inc.

Frigo, M. and Johnson, S. G. (2005). The design and implementation of FFTW3. IEEE,
93(2):216–231. Special issue on “Program Generation, Optimization, and Platform Adap-
tation”.

Frigo, M., Leiserson, C. E., Prokop, H., and Ramachandran, S. (1999). Cache-oblivious
algorithms. In Proceedings of the 40th Annual Symposium on Foundations of Computer
Science, FOCS ’99, pages 285–298, Washington, DC, USA. IEEE Computer Society.

Gruber, J. (2004). Daring fireball: Markdown.

Hawkins, P., Aiken, A., Fisher, K., Rinard, M., and Sagiv, M. (2011). Data representation
synthesis. In PLDI’11.

Heckmann, R. and Wilhelm, R. (1997). A functional description of TEX’s formula layout.
Journal of Functional Programming, 7(5):451–485.

Irigoin, F. and Triolet, R. (1988). Supernode partitioning. In POPL.

Jo, Y. and Kulkarni, M. (2011). Enhancing locality for recursive traversals of recursive
structures. In Proceedings of the 2011 ACM International Conference on Object Oriented
Programming Systems Languages and Applications, pages 463–482. ACM.

Jones, C. G., Liu, R., Meyerovich, L., Asanović, K., and Bod́ık, R. (2009). Parallelizing the
web browser. In Proceedings of the First USENIX Conference on Hot Topics in Parallelism,
HotPar’09, pages 7–7, Berkeley, CA, USA. USENIX Association.

Jourdan, M. (1991). A survey of parallel attribute evaluation methods. In Proceedings on
Attribute Grammars, Applications and Systems, pages 234–255, London, UK. Springer-
Verlag.

Jourdan, M. and Parigot, D. (1991). Internals and externals of the fnc-2 attribute grammar
system. In Alblas, H. and Melichar, B., editors, Attribute Grammars, Applications and
Systems, volume 545 of Lecture Notes in Computer Science, pages 485–504. Springer Berlin
Heidelberg.

Karp, R. M., Miller, R. E., and Winograd, S. (1967). The organization of computations for
uniform recurrence equations. J. ACM, 14(3):563–590.

Kastens, U. (1980). Ordered attributed grammars. Acta Informatica, 13(3):229–256.

Keller, G. and Chakravarty, M. M. T. (1998). Flattening trees. In Euro-Par.

BIBLIOGRAPHY 112

Kim, C., Chhugani, J., Satish, N., Sedlar, E., Nguyen, A. D., Kaldewey, T., Lee, V. W.,
Brandt, S. A., and Dubey, P. (2010). FAST: fast architecture sensitive tree search on
modern CPUs and GPUs. In SIGMOD.

Klaiber, A. and Gokhale, M. (1992). Parallel evaluation of attribute grammars. IEEE Trans.
Parallel Distrib. Syst., 3(2):206–220.

Klein, E. and Koskimies, K. (1990). Parallel one-pass compilation. In Proceedings of the
International Conference on Attribute Grammars and Their Applications, WAGA, pages
76–90, New York, NY, USA. Springer-Verlag New York, Inc.

Knuth, D. (1990). The genesis of attribute grammars. In Deransart, P. and Jourdan,
M., editors, Attribute Grammars and their Applications, volume 461 of Lecture Notes in
Computer Science, pages 1–12. Springer Berlin Heidelberg.

Knuth, D. E. and Bibby, D. (1986). The TeXbook, volume 1993. Addison-Wesley Reading,
MA, USA.

Koskimies, K. (1991). Object-orientation in attribute grammars. In Alblas, H. and Melichar,
B., editors, Attribute Grammars, Applications and Systems, volume 545 of Lecture Notes
in Computer Science, pages 297–329. Springer Berlin Heidelberg.

Kulkarni, M., Carribault, P., Pingali, K., Ramanarayanan, G., Walter, B., Bala, K., and
Chew, L. P. (2008). Scheduling strategies for optimistic parallel execution of irregular
programs. In Proceedings of the Twentieth Annual Symposium on Parallelism in Algo-
rithms and Architectures, SPAA ’08, pages 217–228, New York, NY, USA. ACM.

Kwok, Y.-K. and Ahmad, I. (1999). Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Comput. Surv., 31:406–471.

Lattner, C. and Adve, V. S. (2005). Transparent pointer compression for linked data struc-
tures. In Proceedings of the 2005 Workshop on Memory System Performance, MSP ’05,
pages 24–35, New York, NY, USA. ACM.

Lie, H. W. and Bos, B. (1997). Cascading Style Sheets. Addison Wesley Longman.

Lin, X. (2006). Active layout engine: Algorithms and applications in variable data printing.
Comput. Aided Des., 38(5):444–456.

Low, J. (1978). Automatic data structure selection: an example and overview. CACM,
21(5):376–385.

Mai, H., Tang, S., King, S. T., Cascaval, C., and Montesinos, P. (2012). A case for paral-
lelizing web pages. In HotPar’12.

Massalin, H. (1987). Superoptimizer: a look at the smallest program. SIGPLAN Not.,
22:122–126.

BIBLIOGRAPHY 113

Matsuzaki, K., Hu, Z., and Takeichi, M. (2006a). Parallel skeletons for manipulating general
trees. Parallel Computing.

Matsuzaki, K., Hu, Z., and Takeichi, M. (2006b). Towards automatic parallelization of tree
reductions in dynamic programming. In SPAA.

Merrill, D., Garland, M., and Grimshaw, A. (2012). Scalable GPU graph traversal. In
PPOPP ’12, pages 117–128.

Meyerovich, L. A. and Bod́ık, R. (2010). Fast and parallel webpage layout. In Proceedings of
the 19th International Conference on World Wide Web, WWW ’10, pages 711–720, New
York, NY, USA. ACM.

Meyerovich, L. A., Torok, M. E., Atkinson, E., and Bod́ık, R. (2013). Parallel schedule
synthesis for attribute grammars. In Proceedings of the 18th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’13, pages 187–196, New
York, NY, USA. ACM.

Milner, R., Tofte, M., and Macqueen, D. (1997). The Definition of Standard ML. MIT Press,
Cambridge, MA, USA.

Noll, T. and Romanith, S. (1996). Parallel evaluation of lr-attributed grammars.

Nuzman, D., Rosen, I., and Zaks, A. (2006). Auto-vectorization of interleaved data for
SIMD. In PLDI.

Parr, T. J. and Quong, R. W. (1995). Antlr: A predicated-ll (k) parser generator. Software:
Practice and Experience, 25(7):789–810.

Patney, A. and Owens, J. D. (2008). Real-time reyes-style adaptive surface subdivision. In
ACM SIGGRAPH Asia 2008 Papers, SIGGRAPH Asia ’08, pages 143:1–143:8, New York,
NY, USA. ACM.

Peyton Jones, S. (2008). Harnessing the multicores: Nested data parallelism in Haskell. In
APLAS.

Prountzos, D., Manevich, R., and Pingali, K. (2012). Elixir: a system for synthesizing
concurrent graph programs. In OOPSLA ’12.

Reinders, J. (2007). Intel Threading Building Blocks. O’Reilly & Associates, Inc., Sebastopol,
CA, USA, first edition.

Reps, T. (1993). Scan grammars: parallel attribute evaluation via data-parallelism. In Pro-
ceedings of the Fifth Annual ACM Symposium on Parallel Algorithms and Architectures,
SPAA ’93, pages 367–376, New York, NY, USA. ACM.

BIBLIOGRAPHY 114

Reps, T. W., Marceau, C., and Teitelbaum, T. (1986). Remote attribute updating for
language-based editors. In Proceedings of the 13th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’86, pages 1–13, New York, NY, USA.
ACM.

Saraiva, J. a. and Swierstra, D. (2003). Generating spreadsheet-like tools from strong at-
tribute grammars. In Proceedings of the 2Nd International Conference on Generative
Programming and Component Engineering, GPCE ’03, pages 307–323, New York, NY,
USA. Springer-Verlag New York, Inc.

Shiue, L.-J., Jones, I., and Peters, J. (2005). A real-time GPU subdivision kernel. In ACM
Transactions on Graphics (TOG), volume 24, pages 1010–1015. ACM.

Smith, J. E., Faanes, G., and Sugumar, R. (2000). Vector instruction set support for condi-
tional operations. In ISCA.

Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S., and Saraswat, V. (2006). Combinatorial
sketching for finite programs. In ASPLOS-XII, pages 404–415.

Sutherland, I. E. (1963). Sketchpad: a man-machine graphical communication system.
In Proceedings of the May 21-23, 1963, Spring Joint Computer Conference, AFIPS ’63
(Spring), pages 329–346, New York, NY, USA. ACM.

Vogt, H. H., Swierstra, S. D., and Kuiper, M. F. (1989). Higher order attribute grammars.
SIGPLAN Not., 24(7):131–145.

Warth, A. and Piumarta, I. (2007). Ometa: an object-oriented language for pattern match-
ing. In Proceedings of the 2007 Symposium on Dynamic Languages, pages 11–19. ACM.

Whaley, R. C., Petitet, A., and Dongarra, J. J. (2001). Automated empirical optimization
of software and the ATLAS project. Parallel Computing, 27(1–2):3–35.

Zhang, E. Z., Jiang, Y., Guo, Z., Tian, K., and Shen, X. (2011). On-the-fly elimination of
dynamic irregularities for GPU computing. In ASPLOS.

115

Appendix A

Layout Grammars

A.1 Sunburst

The following attribute grammar demonstrates an animated radial layout. Subtrees expand
and contract.

1 schedu le {
2 ”P = [(, td , , ,) , (, bu , , ,) , (, td , , ,)] ”
3 }
4 i n t e r f a c e Node {
5 input open : f l o a t ;
6 var show : f l o a t ;

8 var r : f l o a t ;
9 var parentTotR : f l o a t ;

10 var alpha : f l o a t ;
11 var sectorAng : f l o a t ;
12 var maxR : f l o a t ;

14 input bgco lo r : c o l o r ;

16 var rootCenterX : f l o a t ;
17 var rootCenterY : f l o a t ;
18 }

20 c l a s s Radial : Node {
21 ch i l d r en {
22 ch i l d : [Node] ;
23 }
24 a t t r i b u t e s {
25 var numOpenChildren : i n t ;
26 }

28 a c t i on s {

30 r := (maxR � parentTotR)/3 < 10 ? 10 : (maxR � parentTotR)/4 ;

32 loop ch i l d {
33 // subtreeWeight := f o l d 1 . . $� . subtreeWeight + ch i l d $ i . subtreeWeight ;

35 ch i l d . parentTotR := parentTotR + r ;

APPENDIX A. LAYOUT GRAMMARS 116

37 ch i l d . rootCenterX := rootCenterX ;
38 ch i l d . rootCenterY := rootCenterY ;

40 ch i l d . show := show ⇤ ch i l d $ i . open ;

43 ch i l d .maxR := maxR;

45 ch i l d . sectorAng := $$. numOpenChildren > 0 .01 ?
46 ch i l d $ i . show ⇤ sectorAng / $$. numOpenChildren : 0 ;

48 ch i l d . alpha :=
49 f o l d
50 $$. numOpenChildren > 0 .01?
51 alpha � (sectorAng / 2 .0 f) � (sectorAng /($$. numOpenChildren ⇤2))
52 : 0
53 . .
54 $$. numOpenChildren > 0 .01 ?
55 ch i l d $� . a lpha + ch i l d $ i . show ⇤ (sectorAng/$$. numOpenChildren)
56 : 0 ;

58 numOpenChildren := f o l d 0 . . $� . numOpenChildren + ch i l d $ i . show ;
59 }
60 @render @Arc(rootCenterX , rootCenterY , show ⇤ (parentTotR + r) , alpha , sectorAng , (show ⇤ 4 ⇤ r) / 5 , bgco lo r) ;
61 }
62 }

65 i n t e r f a c e IRoot { }

67 c l a s s Root : IRoot {
68 ch i l d r en {
69 ch i l d : Node ;
70 }

72 a t t r i b u t e s {
73 input rad iu s : f l o a t ;
74 input centerRadius : f l o a t ;
75 input centerAlpha : f l o a t ;

77 input w : f l o a t ;
78 input h : f l o a t ;
79 }

81 a c t i on s {
82 ch i l d . alpha := 45 ;
83 ch i l d .maxR := rad iu s ;
84 ch i l d . parentTotR := 0 ;
85 ch i l d . sectorAng := 360 .0 f ;

87 ch i l d . show := 1 . 0 ;

89 ch i l d . rootCenterX := centerRadius ⇤ cos (PI () ⇤ centerAlpha / 180) ;
90 ch i l d . rootCenterY := centerRadius ⇤ s i n (PI () ⇤ centerAlpha / 180) ;
91 }
92 }

APPENDIX A. LAYOUT GRAMMARS 117

A.2 Table Layout

The following attribute grammar demonstrates the automatic table layout algorithm in
HTML and CSS.

1 schedu le {
2 ”P = [(, td , , ,) , (, td , , ,) , (, bu , , ,) , (, td , , ,) ,
3 (, td , , ,) , (, bu , , ,) , (, td , , ,)] ”
4 }

6 /⇤⇤⇤⇤⇤
7 standard i n t e r f a c e s and t r a i t s
8 ⇤⇤⇤⇤⇤⇤/
9 i n t e r f a c e Node {

10 var canvas : i n t ;
11 var render : i n t ;
12 input he ight : ? i n t ;
13 var i n t r i n sHe i gh t : i n t ;
14 var computedHeight : i n t ;
15 var re lRightX : i n t ;
16 var re lX : i n t ;
17 var absX : i n t ;
18 var relBotY : i n t ;
19 var re lY : i n t ;
20 var absY : i n t ;

22 input minWidth : ? i n t ;
23 input maxWidth : ? i n t ;
24 input percentWidth : ? i n t ;
25 input width : ? i n t ;
26 var int r in sPre fWidth : i n t ;
27 var intrinsMinWidth : i n t ;
28 var ava i lab leWidth : i n t ;
29 var computedWidth : i n t ;

31 var l ineH : i n t ;
32 }

34 t r a i t shrinkToFitHeightWidth {
35 a c t i on s {
36 computedWidth :=
37 ! isEmptyInt (width) ?
38 va lue In t (width) :
39 (! isEmptyInt (percentWidth) ?
40 (0 . 01 ⇤ va lue In t (percentWidth) ⇤ avai lab leWidth) :
41 min (
42 max(
43 max(intrinsMinWidth , ! isEmptyInt (minWidth) ? va lue In t (minWidth) : 0) ,
44 avai lab leWidth) ,
45 min (intr insPre fWidth , ! isEmptyInt (maxWidth) ? va lue In t (maxWidth) : in t r in sPre fWidth))) ;
46 computedHeight := isEmptyInt (he ight) ? i n t r i n sHe i gh t : va lue In t (he ight) ;
47 }
48 }

50 t r a i t re lToAbsChilds {
51 a c t i on s {
52 loop c h i l d s {
53 c h i l d s . absY := absY + ch i l d s $ i . re lY ;
54 c h i l d s . absX := absX + ch i l d s $ i . re lX ;

APPENDIX A. LAYOUT GRAMMARS 118

55 }
56 }
57 }

59 t r a i t strokeBox {
60 a c t i on s {
61 render :=
62 canvas
63 + paintL ine (absX , absY , absX+computedWidth , absY , borderc) // top
64 + paintL ine (absX+computedWidth , absY , absX+computedWidth , absY+computedHeight , borderc)
65 + paintL ine (absX+computedWidth , absY+computedHeight , absX , absY+computedHeight , borderc)
66 + paintL ine (absX , absY+computedHeight , absX , absY , borderc) ; // l e f t
67 }
68 }

70 t r a i t countChi lds {
71 a t t r i b u t e s {
72 var numChilds : i n t ;
73 }
74 a c t i on s {
75 loop c h i l d s {
76 numChilds := f o l d 0 . . $� . numChilds + 1 ;
77 }
78 }
79 }

83 /⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤
84 some t yp i c a l f u l l y�handled box nodes
85 ⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/
86 i n t e r f a c e Root {
87 input w : i n t = 100 ;
88 input h : i n t = 100 ;
89 }

91 c l a s s Top : Root {
92 ch i l d r en { ch i l d : Node }
93 a c t i on s {
94 ch i l d . re lRightX := 0 ;
95 ch i l d . re lX := 0 ;
96 ch i l d . absX := 0 ;
97 ch i l d . relBotY := 0 ;
98 ch i l d . re lY := 0 ;
99 ch i l d . absY := 0 ;

100 ch i l d . canvas := pa in tS ta r t (c h i l d . computedWidth , c h i l d . computedHeight) ;
101 ch i l d . ava i lab leWidth := w; //FIXME
102 }
103 }

107 t r a i t Wrapping {
108 ch i l d r en { c h i l d s : [Node] ; }
109 a c t i on s {
110 loop c h i l d s {
111 int r insPre fWidth :=
112 f o l d
113 ($$. numChilds == 0 ? 10 : 5)
114 . .

APPENDIX A. LAYOUT GRAMMARS 119

115 s e l f $� . i n t r in sPre fWidth + ch i l d s $ i . in t r insPre fWidth + 5 ;
116 intrinsMinWidth :=
117 f o l d
118 ($$. numChilds == 0 ? 10 : 5)
119 . .
120 max(s e l f $� . intrinsMinWidth , 5 + ch i l d s $ i . intrinsMinWidth + 5) ;

122 c h i l d s . re lRightX :=
123 f o l d
124 0 . .
125 (c h i l d s $� . re lRightX + 5 + ch i l d s $ i . computedWidth > computedWidth) ?
126 (5 + ch i l d s $ i . computedWidth) : (c h i l d s $� . re lRightX + 5 + ch i l d s $ i . computedWidth) ;
127 c h i l d s . re lX := ch i l d s $ i . re lRightX � c h i l d s $ i . computedWidth ;

129 c h i l d s . l ineH := f o l d 0
130 . . c h i l d s $ i . re lX == 5 ?
131 c h i l d s $ i . computedHeight
132 : (c h i l d s $ i . computedHeight > c h i l d s $� . l ineH ?
133 c h i l d s $ i . computedHeight : c h i l d s $� . l ineH) ;
134 c h i l d s . re lY := f o l d 0
135 . . c h i l d s $� . re lY + (c h i l d s $ i . re lX == 5 ? c h i l d s $� . l ineH + 5 : 0) ;
136 c h i l d s . relBotY := f o l d 0 . . c h i l d s $ i . re lY + ch i l d s $ i . computedHeight ;
137 c h i l d s . canvas := f o l d render . . c h i l d s $� . canvas ;
138 i n t r i n sHe i gh t := f o l d 10 . . c h i l d s $ i . re lY + ch i l d s $ i . l ineH + 5 ;
139 c h i l d s . ava i lab leWidth := computedWidth � 10 ;
140 }
141 }
142 }

145 /⇤⇤⇤⇤
146 tab l e s t u f f
147 ⇤⇤⇤⇤⇤/

149 i n t e r f a c e Ce l l I {

151 input colSpan : ? i n t ;
152 input rowSpan : ? i n t ;

154 //Node
155 var canvas : i n t ;
156 var render : i n t ;
157 input he ight : ? i n t ;
158 var i n t r i n sHe i gh t : i n t ;
159 var computedHeight : i n t ;
160 var re lX : i n t ;
161 var absX : i n t ;
162 var relBotY : i n t ;
163 var re lY : i n t ;
164 var absY : i n t ;

167 input width : ? i n t ;
168 input minWidth : ? i n t ;
169 input maxWidth : ? i n t ;
170 input percentWidth : ? i n t ;
171 var int r in sPre fWidth : i n t ;
172 var intrinsMinWidth : i n t ;
173 var ava i lab leWidth : i n t ;
174 var computedWidth : i n t ;

APPENDIX A. LAYOUT GRAMMARS 120

176 var cellNum : i n t ;
177 var column : i n t ;
178 var row : i n t ;

180 }
181 i n t e r f a c e RowI {
182 var intr insCo lCount : i n t ;
183 var colCount : i n t ;
184 input he ight : ? i n t ;
185 var i n t r i n sHe i gh t : i n t ;
186 var computedHeight : i n t ;
187 var relBotY : i n t ;
188 var re lY : i n t ;
189 var absY : i n t ;
190 var absX : i n t ;

192 var rowNum : i n t ;
193 var c e l l s : i n t ;
194 var colAssignment : i n t ;

196 var canvas : i n t ;
197 var render : i n t ;

199 var computedWidth : i n t ;
200 var tableContentWidth : i n t ;

202 }

205 c l a s s Ce l l (shrinkToFitHeightWidth , relToAbsChilds , strokeBox , countChi lds , Wrapping) : C e l l I {
206 a t t r i b u t e s {
207 input borderc : c o l o r = #777;
208 }
209 }

211 c l a s s Row : RowI {
212 a t t r i b u t e s {
213 input borderc : c o l o r = #070;
214 }
215 ch i l d r en {
216 c h i l d s : [C e l l I] ;
217 }
218 phantom { //do not emit code f o r these
219 c h i l d s . re lX ;
220 c h i l d s . absX ;
221 c h i l d s . ava i lab leWidth ;
222 }
223 a c t i on s {
224 loop c h i l d s {
225 intr insColCount :=
226 f o l d 0 . . $� . in t r insCo lCount +
227 (isEmptyInt (c h i l d s $ i . colSpan) ? 1 : va lue In t (c h i l d s $ i . colSpan)) ;
228 i n t r i n sHe i gh t :=
229 f o l d 10
230 . .
231 (isEmptyInt (c h i l d s $ i . rowSpan) va lue In t (c h i l d s $ i . rowSpan) == 1) ?
232 max($� . i n t r i n sHe i gh t , c h i l d s $ i . computedHeight + 10)
233 : $� . i n t r i n sHe i gh t ;
234 c h i l d s . relBotY := f o l d 0 . . 5 + ch i l d s $ i . computedHeight ;

APPENDIX A. LAYOUT GRAMMARS 121

235 c h i l d s . re lY := f o l d 0 . . 5 ;
236 c h i l d s . absY := absY + ch i l d s $ i . re lY ;
237 }
238 computedHeight := isEmptyInt (he ight) ? i n t r i n sHe i gh t : va lue In t (he ight) ;

240 loop c h i l d s {
241 computedWidth := f o l d 0 . . $� . computedWidth + ch i l d s $ i . intrinsMinWidth ;
242 }

244 loop c h i l d s {
245 c e l l s :=
246 f o l d
247 mtIntPa i rL i s t ()
248 . .
249 appendIntPa i rL i s t (
250 $� . c e l l s ,
251 pa i r I n t (
252 isEmptyInt (c h i l d s $ i . rowSpan) ? 1 : va lue In t (c h i l d s $ i . rowSpan) ,
253 isEmptyInt (c h i l d s $ i . colSpan) ? 1 : va lue In t (c h i l d s $ i . colSpan))) ;
254 c h i l d s . column := columnsGetCol (colAssignment , c h i l d s . cellNum) ;
255 c h i l d s . row := rowNum;
256 c h i l d s . cellNum := f o l d 0 . . c h i l d s $� . cellNum + 1 ;
257 }

259 render :=
260 canvas
261 + paintL ine (absX , absY , absX+tableContentWidth , absY , borderc) // top
262 + paintL ine (absX+tableContentWidth , absY , absX+tableContentWidth ,
263 absY+computedHeight , borderc)
264 + paintL ine (absX+tableContentWidth , absY+computedHeight , absX ,
265 absY+computedHeight , borderc)
266 + paintL ine (absX , absY+computedHeight , absX , absY , borderc) ; // l e f t
267 }
268 }

270 i n t e r f a c e ColI {
271 var colCount : i n t ;
272 var colNum : i n t ;

274 var intrinsMinWidth : i n t ;
275 var int r in sPre fWidth : i n t ;
276 var ava i lab leWidth : i n t ;
277 var computedWidth : i n t ;

279 var i n t r i n sHe i gh t : i n t ;
280 var computedHeight : i n t ;

282 var re lRightX : i n t ;
283 var re lX : i n t ;
284 var re lY : i n t ;
285 var absX : i n t ;
286 var absY : i n t ;
287 var canvas : i n t ;
288 var render : i n t ;

290 var ce l l sReady : i n t ;
291 var tableContentHeight : i n t ;

293 var borderc : c o l o r ;
294 }

APPENDIX A. LAYOUT GRAMMARS 122

296 c l a s s Col (shrinkToFitHeightWidth , countChi lds) : ColI {
297 a t t r i b u t e s {
298 input width : ? i n t ;
299 input percentWidth : ? i n t ;
300 input minWidth : ? i n t ;
301 input maxWidth : ? i n t ;
302 input he ight : ? i n t ;
303 }
304 phantom {
305 c h i l d s . column ;
306 c h i l d s . row ;
307 c h i l d s . cellNum ;
308 c h i l d s . relBotY ;
309 c h i l d s . re lY ;
310 c h i l d s . absY ;
311 }
312 ch i l d r en {
313 c h i l d s : [C e l l I] ; // . . / rows/ c h i l d s [. column == s e l f . colNum]
314 }
315 a c t i on s {
316 loop c h i l d s {
317 intrinsMinWidth :=
318 f o l d
319 10
320 . .
321 (isEmptyInt (c h i l d s $ i . colSpan) va lue In t (c h i l d s $ i . colSpan) == 1) ?
322 max($� . intrinsMinWidth , 10 + ch i l d s $ i . intrinsMinWidth)
323 : $� . intrinsMinWidth ;
324 int r insPre fWidth :=
325 f o l d
326 10
327 . .
328 (isEmptyInt (c h i l d s $ i . colSpan) va lue In t (c h i l d s $ i . colSpan) == 1) ?
329 max($� . intr insPre fWidth , 10 + ch i l d s $ i . in t r insPre fWidth)
330 : $� . i n t r in sPre fWidth ;

332 i n t r i n sHe i gh t := f o l d 5 + ($$. numChilds == 0 ? 0 : 0) . .
333 $� . i n t r i n sHe i gh t + ch i l d s $ i . computedHeight + 5 ;
334 c h i l d s . ava i lab leWidth := computedWidth ;

336 c h i l d s . re lX := 5 ;
337 c h i l d s . absX := absX + ch i l d s $ i . re lX ;

339 c h i l d s . canvas := f o l d render . . c h i l d s $� . canvas ;
340 }

342 render :=
343 canvas
344 + paintL ine (absX , absY , absX+computedWidth , absY , borderc) // top
345 + paintL ine (absX+computedWidth , absY , absX+computedWidth ,
346 absY+tableContentHeight , borderc)
347 + paintL ine (absX+computedWidth , absY+tableContentHeight , absX ,
348 absY+tableContentHeight , borderc)
349 + paintL ine (absX , absY+tableContentHeight , absX , absY , borderc) ; // l e f t

351 }
352 }

APPENDIX A. LAYOUT GRAMMARS 123

355 i n t e r f a c e Co l s I {
356 var int r in sPre fWidth : i n t ;
357 var intrinsMinWidth : i n t ;

359 var colCount : i n t ;
360 var ava i lab leWidth : i n t ;
361 var absX : i n t ;
362 var absY : i n t ;
363 var canvas : i n t ;

365 var ce l l sReady : i n t ;
366 var tableContentHeight : i n t ;
367 var tableContentWidth : i n t ;
368 }
369 c l a s s Cols : Co l s I {
370 a t t r i b u t e s {
371 input borderc : c o l o r = #F00 ;
372 }
373 ch i l d r en {
374 c o l s : [ColI] ;
375 }
376 a c t i on s {
377 //do not know un t i l colCount , put in dep
378 loop c o l s {
379 c o l s . borderc := borderc ;
380 c o l s . colCount := colCount ;
381 int r insPre fWidth :=
382 f o l d
383 10
384 . .
385 $� . i n t r in sPre fWidth + c o l s $ i . in t r insPre fWidth ;
386 intrinsMinWidth :=
387 f o l d
388 10
389 . .
390 $� . intrinsMinWidth + c o l s $ i . intrinsMinWidth ;
391 c o l s . colNum := f o l d 0 . . c o l s $� . colNum + 1 ;
392 c o l s . ava i lab leWidth := avai lab leWidth ;

394 c o l s . re lRightX := f o l d 5 . . c o l s $� . re lRightX + co l s $ i . computedWidth ;
395 c o l s . re lX := f o l d 0 . . c o l s $ i . re lRightX � c o l s $ i . computedWidth ;
396 c o l s . absX := absX + co l s $ i . re lX ;

398 c o l s . re lY := 5 ;
399 c o l s . absY := absY + co l s $ i . re lY ;
400 c o l s . canvas := f o l d canvas . . c o l s $� . canvas ;
401 c o l s . c e l l sReady := ce l l sReady ;
402 c o l s . tableContentHeight := tableContentHeight ;
403 tableContentWidth := f o l d 0 . . $� . tableContentWidth + c o l s $ i . computedWidth ;
404 }
405 }
406 }

409 c l a s s TableBox (shrinkToFitHeightWidth , strokeBox) : Node {
410 a t t r i b u t e s {
411 input borderc : c o l o r = #DDD;
412 var colCount : i n t ;
413 var ce l l sReady : i n t ;
414 }

APPENDIX A. LAYOUT GRAMMARS 124

415 ch i l d r en {
416 rows : [RowI] ;
417 columns : Co l s I ;
418 }
419 a c t i on s {
420 loop rows {
421 colCount := f o l d 0 . . max($� . colCount , rows$ i . int r insColCount) ;
422 rows . colCount := $$. colCount ;
423 i n t r i n sHe i gh t := f o l d 10 . . $� . i n t r i n sHe i gh t + rows$ i . computedHeight ;
424 rows . relBotY := f o l d 5 . . rows$� . relBotY + rows$ i . computedHeight ;
425 rows . re lY := f o l d 0 . . rows$ i . relBotY � rows$ i . computedHeight ;
426 rows . absY := absY + rows$ i . re lY ;
427 rows . absX := absX + 5 ;
428 rows . colAssignment :=
429 f o l d
430 emptyColumnList (colCount)
431 . .
432 columnsAppendRow(rows$� . colAssignment , rows$ i . c e l l s , rows$ i . rowNum) ;
433 rows . rowNum := f o l d 0 . . rows$� . rowNum + 1 ;
434 rows . canvas := f o l d render . . rows$� . canvas ;
435 ce l l sReady := rows$$. colAssignment ;
436 rows . tableContentWidth := columns . tableContentWidth ;
437 }

439 int r insPre fWidth := columns . in t r in sPre fWidth ;
440 intrinsMinWidth := columns . intrinsMinWidth ;
441 columns . colCount := colCount ;
442 columns . ce l l sReady := ce l l sReady ? true : t rue ;
443 columns . ava i lab leWidth := computedWidth ;
444 columns . absX := absX ;
445 columns . absY := absY ;
446 columns . canvas := render ;
447 columns . tableContentHeight := i n t r i n sHe i gh t � 10 ;
448 }
449 }

A.3 Multiple Time Series

The following attribute grammar demonstrates 3D layout of multiple time series data. In-
teractive controls enable examining di↵erent subintervals.

1 schedu le {
2 ”P = [(, td , , ,) , (, bu , , ,) , (, td , , ,)] ”
3 }
4 i n t e r f a c e IRoot {

6 input xOf f s e t : i n t ;
7 input yOf f s e t : i n t ;

9 input tweenMin : f l o a t ;
10 input tweenMax : f l o a t ;

12 input rad iu s : f l o a t ;
13 input minRadius : f l o a t ;
14 input he ight : f l o a t ;
15 input r o t a t i on : i n t ;

APPENDIX A. LAYOUT GRAMMARS 125

17 ///////

19 var depth : i n t ;

21 }

23 i n t e r f a c e SecondI {
24 var xOf f s e t : i n t ;
25 var yOf f s e t : i n t ;
26 var tweenMin : f l o a t ;
27 var tweenMax : f l o a t ;
28 var rad iu s : f l o a t ;
29 var minRadius : f l o a t ;
30 var he ight : f l o a t ;
31 var r o t a t i on : i n t ;

34 var w : f l o a t ;
35 var x : f l o a t ;
36 var rx : f l o a t ;

38 var depth : i n t ;
39 }

42 i n t e r f a c e Node {
43 var xOf f s e t : i n t ;
44 var yOf f s e t : i n t ;
45 var tweenMin : f l o a t ;
46 var tweenMax : f l o a t ;
47 var rad iu s : f l o a t ;
48 var minRadius : f l o a t ;
49 var he ight : f l o a t ;
50 var r o t a t i on : i n t ;

52 var x : f l o a t ;
53 var rx : f l o a t ;

55 var depth : i n t ;
56 var l eve lLength : i n t ;
57 var idx : i n t ;
58 }

60 i n t e r f a c e Leaf {
61 var xOf f s e t : i n t ;
62 var yOf f s e t : i n t ;
63 var tweenMin : f l o a t ;
64 var tweenMax : f l o a t ;
65 var tween : f l o a t ;
66 var rad iu s : f l o a t ;
67 var minRadius : f l o a t ;
68 var he ight : f l o a t ;
69 var r o t a t i on : i n t ;

71 input va l : f l o a t ;

74 var valPrev : f l o a t ;
75 var valCopy : f l o a t ;
76 var ang le : f l o a t ;

APPENDIX A. LAYOUT GRAMMARS 126

77 var increment : f l o a t ;

79 var i s F i r s t : i n t ;
80 var i sLa s t : i n t ;

82 //////

84 var depth : i n t ;
85 var idx : i n t ;
86 }

89 t r a i t propagateChi lds {
90 a c t i on s {
91 loop c h i l d s {
92 c h i l d s . xOf f s e t := xOf f s e t ;
93 c h i l d s . yOf f s e t := yOf f s e t ;
94 c h i l d s . tweenMin := tweenMin ;
95 c h i l d s . tweenMax := tweenMax ;
96 c h i l d s . r ad iu s := rad iu s ;
97 c h i l d s . minRadius := minRadius ;
98 c h i l d s . he ight := he ight ;
99 c h i l d s . r o t a t i on := ro t a t i on ;

100 }
101 }
102 }
103 t r a i t propagateChi ld {
104 a c t i on s {
105 ch i l d . xOf f s e t := xOf f s e t ;
106 ch i l d . yOf f s e t := yOf f s e t ;
107 ch i l d . tweenMin := tweenMin ;
108 ch i l d . tweenMax := tweenMax ;
109 ch i l d . r ad iu s := rad iu s ;
110 ch i l d . minRadius := minRadius ;
111 ch i l d . he ight := he ight ;
112 ch i l d . r o t a t i on := ro t a t i on ;
113 }
114 }

116 t r a i t propagate Intermediate {
117 a c t i on s {
118 loop c h i l d s {
119 c h i l d s . depth := depth + 1 ;
120 }
121 }
122 }

124 c l a s s Root (propagateChi ld) : IRoot {
125 a t t r i b u t e s {}
126 ch i l d r en {
127 ch i l d : SecondI ;
128 }
129 a c t i on s {

131 ch i l d . rx := 5 + ch i l d .w;
132 ch i l d . x := ch i l d . rx � ch i l d .w;
133 ch i l d . depth := depth + 1 ;
134 depth := 1 ;
135 }
136 }

APPENDIX A. LAYOUT GRAMMARS 127

138 c l a s s Second (propagateIntermediate , propagateChi lds) : SecondI {
139 a t t r i b u t e s {
140 var l en : i n t ;
141 }
142 ch i l d r en {
143 c h i l d s : [Node] ;
144 }
145 a c t i on s {
146 loop c h i l d s {
147 l en := f o l d 0 . . $� . l en + 1 ;
148 c h i l d s . l eve lLength := $$. l en ;
149 c h i l d s . idx := f o l d 0 . . c h i l d s $� . idx + 1 ;
150 }

152 //background
153 @render @RectangleZ (xOf f s e t � rad ius , yOf f s e t � rad ius ,
154 4 ⇤ rad ius , 4 ⇤ rad ius , �0 .1 f , rgb (0 , 0 , 0)) ;
155 w := 10 ;
156 loop c h i l d s {
157 c h i l d s . rx := f o l d x . . c h i l d s $� . rx + 5 + 10 ;
158 c h i l d s . x := ch i l d s $ i . rx � 10 ;
159 }
160 }
161 }

163 // [a , b] o f i f o r [l %,h%] out o f n
164 // i < l% ⇤ n OR i > h% ⇤ n :
165 // o f f
166 // e l s e :
167 // on , tween = (i � l%n) / (h%n � l%n)
168 c l a s s Generator (propagateIntermediate , propagateChi lds) : Node {
169 a t t r i b u t e s {
170 var numSpikes : i n t ;
171 var increment : f l o a t ;
172 var ang le : f l o a t ;
173 }
174 ch i l d r en {
175 c h i l d s : [Leaf] ;
176 }
177 a c t i on s {
178 numSpikes := ch i l d s $$. idx ;
179 increment := 1 .0 f / ((tweenMax � tweenMin) ⇤ numSpikes) ;
180 ang le := 2 ⇤ PI () ⇤ ((r o t a t i on / 360 .0 f) + (idx + 0 .0 f) / l eve lLength) ;
181 loop c h i l d s {
182 c h i l d s . idx := f o l d 0 . . c h i l d s $� . idx + 1 ;
183 c h i l d s . increment := increment ;

185 c h i l d s . tween :=
186 ((c h i l d s $ i . idx < tweenMin ⇤ numSpikes) (c h i l d s $ i . idx > tweenMax ⇤ numSpikes))
187 ? �1 .0 f
188 : ((c h i l d s . idx � tweenMin ⇤ c h i l d s $$. idx)
189 / (tweenMax ⇤ numSpikes � tweenMin ⇤ numSpikes)) ;

191 c h i l d s . i s F i r s t :=
192 ((c h i l d s $ i . idx >= tweenMin ⇤ numSpikes)
193 && ((c h i l d s $ i . idx � 1) < tweenMin ⇤ numSpikes)) ? 1 : 0 ;
194 c h i l d s . i s La s t :=
195 ((c h i l d s $ i . idx <= tweenMax ⇤ numSpikes)
196 && ((c h i l d s $ i . idx + 1) > tweenMax ⇤ numSpikes)) ? 1 : 0 ;

APPENDIX A. LAYOUT GRAMMARS 128

198 c h i l d s . ang le := 0 .01 f + ang le ;
199 c h i l d s . valCopy := f o l d 0 . . c h i l d s $ i . va l ;
200 c h i l d s . valPrev := f o l d 0 . . c h i l d s $� . valCopy ;
201 }
202 }
203 }
204 c l a s s Spike : Leaf {
205 a t t r i b u t e s {
206 var isOn : i n t ;
207 var enableShadow : i n t ;
208 }
209 a c t i on s {
210 enableShadow := 0 ;
211 isOn := tween >= 0.0 f ? 1 : 0 ;

213 @render (isOn != 1) ? 0 : // segment
214 @Line3D(xOf f s e t + 1 .5 + rad iu s + minRadius ⇤ cos (ang le) + (rad iu s ⇤
215 ((i sLa s t == 1) ? (1 . 0 f + increment /1 .0 f) : (tween + increment /1 .0 f))
216) ⇤ cos (ang le) ,
217 yOf f s e t + 1 .5 + rad iu s + minRadius ⇤ s i n (ang le) + (rad iu s ⇤
218 ((i sLa s t == 1) ? (1 . 0 f + increment /1 .0 f) : (tween + increment /1 .0 f))
219) ⇤ s i n (ang le) ,
220 he ight ⇤ val ,
221 xOf f s e t + 1 .5 + rad iu s + minRadius ⇤ cos (ang le) + (rad iu s ⇤
222 ((i s F i r s t == 1) ? increment /1 .0 f : tween)
223) ⇤ cos (ang le) ,
224 yOf f s e t + 1 .5 + rad iu s + minRadius ⇤ s i n (ang le) + (rad iu s ⇤
225 ((i s F i r s t == 1) ? increment /1 .0 f : tween)
226) ⇤ s i n (ang le) ,
227 he ight ⇤ valPrev ,
228 0 .15 f , rgba (0 , 204 , 255 , 1 0 2)) ;
229 @render (isOn != 1 enableShadow != 1) ? 0 : //shadow
230 @Line3D(
231 xOf f s e t + 1 .5 + rad iu s + minRadius ⇤ cos (ang le) + (rad iu s ⇤
232 ((i sLa s t == 1) ? (1 . 0 f + increment /1 .0 f) : (tween + increment /1 .0 f))
233) ⇤ cos (ang le) ,
234 yOf f s e t + 1 .5 + rad iu s + minRadius ⇤ s i n (ang le) + (rad iu s ⇤
235 ((i sLa s t == 1) ? (1 . 0 f + increment /1 .0 f) : (tween + increment /1 .0 f))
236) ⇤ s i n (ang le) ,
237 0 .0 f ,
238 xOf f s e t + 1 .5 + rad iu s + minRadius ⇤ cos (ang le) + (rad iu s ⇤
239 ((i s F i r s t == 1) ? increment /1 .0 f : tween)
240) ⇤ cos (ang le) ,
241 yOf f s e t + 1 .5 + rad iu s + minRadius ⇤ s i n (ang le) + (rad iu s ⇤
242 ((i s F i r s t == 1) ? increment /1 .0 f : tween)
243) ⇤ s i n (ang le) ,
244 0 .0 f ,
245 0 .1 f , rgb (255 , 255 , 2 5 5)) ;
246 @render (isOn != 1 i sLa s t != 1) ? 0 : // v e r t i c a l ending
247 @Line3D(
248 xOf f s e t + 1 .5 + rad iu s + minRadius ⇤ cos (ang le) + (rad iu s ⇤ (1 . 0 f + increment /1 .0 f)

) ⇤ cos (ang le) ,
249 yOf f s e t + 1 .5 + rad iu s + minRadius ⇤ s i n (ang le) + (rad iu s ⇤ (1 . 0 f + increment /1 .0 f)

) ⇤ s i n (ang le) ,
250 he ight ⇤ val ,
251 xOf f s e t + 1 .5 + rad iu s + minRadius ⇤ cos (ang le) + (rad iu s ⇤ (1 . 0 f + increment /1 .0 f)

) ⇤ cos (ang le) ,
252 yOf f s e t + 1 .5 + rad iu s + minRadius ⇤ s i n (ang le) + (rad iu s ⇤ (1 . 0 f + increment /1 .0 f)

) ⇤ s i n (ang le) ,

APPENDIX A. LAYOUT GRAMMARS 129

253 0 .0 f ,
254 0 .1 f , rgba (255 , 255 , 255 , 1 2 5)) ;
255 @render (isOn != 1 i s F i r s t != 1) ? 0 : // v e r t i c a l beg inn ing
256 @Line3D(
257 xOf f s e t + 1 .5 + rad iu s + minRadius ⇤ cos (ang le) + (rad iu s ⇤
258 increment /1 .0 f
259) ⇤ cos (ang le) ,
260 yOf f s e t + 1 .5 + rad iu s + minRadius ⇤ s i n (ang le) + (rad iu s ⇤
261 increment /1 .0 f
262) ⇤ s i n (ang le) ,
263 he ight ⇤ valPrev ,
264 xOf f s e t + 1 .5 + rad iu s + minRadius ⇤ cos (ang le) + (rad iu s ⇤
265 increment /1 .0 f
266) ⇤ cos (ang le) ,
267 yOf f s e t + 1 .5 + rad iu s + minRadius ⇤ s i n (ang le) + (rad iu s ⇤
268 increment /1 .0 f
269) ⇤ s i n (ang le) ,
270 0 .0 f ,
271 0 .1 f , rgba (0 , 204 , 255 , 1 0 2)) ;
272 }
273 }

A.4 Tree Map

The following attribute grammar demonstrates an interactive treemap. Interactive controls
enable toggling which value to use for each node and filtering which nodes to show by
performing value comparisons.

1 schedu le {
2 ”P = [(, td , , ,) , (, bu , , ,) , (, td , , ,) , (, bu , , ,) , (, td , , ,)] ”
3 }
4 i n t e r f a c e IRoot {
5 input width : f l o a t ;
6 input he ight : f l o a t ;

8 // Only show po l l i n g p l a c ee with turnout from (minTurnout , maxTurnout]
9 input minTurnout : f l o a t ;

10 input maxTurnout : f l o a t ;

12 // Change c o l o r o f f r audu l en t nodes to f raudColor
13 input showFraud : f l o a t ;

15 // [0 . 0� 1 . 0] When at 1 . 0 , f r audu l en t nodes have c o l o r correspond to
16 // p ro j e c t ed non� f r adu l en t votes , i n s t ead o f t h e i r a c tua l va lue
17 input showProjected : f l o a t ;

19 var votesUR : f l o a t ;

21 // I f true , width as data r e s i z e s s tay s f i x ed (but he ight may vary) ;
22 // i f f a l s e , width v a r i e s a long with he ight .
23 input fixWidth : i n t ;

25 // Tween value . When at 0 , only shows Java s c r i p t s imu la t i on nodes ;
26 //when at 1 , a l l nodes shown as normal .
27 input showJavascr ipt : f l o a t ;

29 // Here in the top so we can e a s i l y read i t in host code

APPENDIX A. LAYOUT GRAMMARS 130

30 var totalMag : f l o a t ;
31 }

33 i n t e r f a c e Node{
34 var totalMag : f l o a t ;

36 var minTurnout : f l o a t ;
37 var maxTurnout : f l o a t ;

39 var votesUR : i n t ;

41 var showFraud : f l o a t ;
42 var showProjected : f l o a t ;

44 var f ixWidth : i n t ;

46 var showJavascr ipt : f l o a t ;

48 var w : f l o a t ;
49 var h : f l o a t ;
50 var x : f l o a t ;
51 var rx : f l o a t ;
52 var y : f l o a t ;
53 var by : f l o a t ;
54 }

56 t r a i t tweenMagnitude{
57 a c t i on s {
58 loop c h i l d s {
59 totalMag := f o l d 0 . . $� . totalMag + ch i l d s $ i . totalMag ;
60 c h i l d s . minTurnout := minTurnout ;
61 c h i l d s . maxTurnout := maxTurnout ;

63 c h i l d s . showFraud := showFraud ;
64 c h i l d s . showProjected := showProjected ;

66 c h i l d s . f ixWidth := fixWidth ;

68 c h i l d s . showJavascr ipt := showJavascr ipt ;

70 votesUR := f o l d 0 . . $� . votesUR + ch i l d s $ i . votesUR ;
71 }
72 }
73 }

75 c l a s s Root : IRoot {
76 ch i l d r en { c h i l d s : Node ; }
77 a t t r i b u t e s {
78 }
79 a c t i on s {
80 c h i l d s .w := (fixWidth != 0) ? width : width ⇤ (totalMag / 63895164) ;
81 // Make he ight a func t i on o f the cur rent totalMag and our pre�computed
82 // d e f au l t totalMag
83 c h i l d s . h := he ight ⇤ (totalMag / 63895164) ;
84 c h i l d s . rx := width ;
85 c h i l d s . by := he ight ;

87 c h i l d s . minTurnout := minTurnout ;
88 c h i l d s . maxTurnout := maxTurnout ;

APPENDIX A. LAYOUT GRAMMARS 131

90 c h i l d s . showFraud := showFraud ;
91 c h i l d s . showProjected := showProjected ;

93 c h i l d s . f ixWidth := fixWidth ;
94 c h i l d s . showJavascr ipt := showJavascr ipt ;

96 totalMag := ch i l d s . totalMag ;
97 votesUR := ch i l d s . votesUR / totalMag ;
98 }
99 }

101 c l a s s CountryContainer (tweenMagnitude) : Node{
102 ch i l d r en { c h i l d s : [Node] ; }
103 a t t r i b u t e s {
104 }
105 a c t i on s {
106 x := rx � w;
107 y := by � h ;

109 @render f ixWidth != 0 ? @RectangleOutl ine (x , y , w, h , rgb (0 , 0 , 0)) : 0 ;

111 loop c h i l d s {
112 c h i l d s .w := (c h i l d s $ i . totalMag / totalMag) ⇤ w;
113 c h i l d s . h := h ;
114 c h i l d s . rx := f o l d x . . c h i l d s $� . rx + ch i l d s $ i .w;
115 c h i l d s . by := y + h ;
116 }
117 }
118 }

120 c l a s s Region (tweenMagnitude) : Node{
121 ch i l d r en { c h i l d s : [Node] ; }
122 a t t r i b u t e s {
123 }
124 a c t i on s {
125 x := rx � w;
126 y := by � h ;

128 loop c h i l d s {
129 c h i l d s .w := w;
130 c h i l d s . h := (c h i l d s $ i . totalMag / totalMag) ⇤ h ;
131 c h i l d s . rx := x + w;
132 c h i l d s . by := f o l d y . . c h i l d s $� . by + ch i l d s $ i . h ;
133 }
134 }
135 }

137 c l a s s D i s t r i c t (tweenMagnitude) : Node{
138 ch i l d r en { c h i l d s : [Node] ; }
139 a t t r i b u t e s {
140 }
141 a c t i on s {
142 x := rx � w;
143 y := by � h ;

145 @render f ixWidth != 0 ? @RectangleOutl ine (x , y , w, h , rgb (0 , 0 , 0)) : 0 ;

147 loop c h i l d s {
148 c h i l d s .w := (c h i l d s $ i . totalMag / totalMag) ⇤ w;
149 c h i l d s . h := h ;

APPENDIX A. LAYOUT GRAMMARS 132

150 c h i l d s . rx := f o l d x . . c h i l d s $� . rx + ch i l d s $ i .w;
151 c h i l d s . by := y + h ;
152 }
153 }
154 }

156 c l a s s VSquare (tweenMagnitude) : Node{
157 ch i l d r en { c h i l d s : [Node] ; }
158 a t t r i b u t e s {
159 }
160 a c t i on s {
161 x := rx � w;
162 y := by � h ;

164 loop c h i l d s {
165 c h i l d s .w := w;
166 c h i l d s . h := (c h i l d s $ i . totalMag / totalMag) ⇤ h ;
167 c h i l d s . rx := x + w;
168 c h i l d s . by := f o l d y . . c h i l d s $� . by + ch i l d s $ i . h ;
169 }
170 }
171 }

173 c l a s s HSquare (tweenMagnitude) : Node{
174 ch i l d r en { c h i l d s : [Node] ; }
175 a t t r i b u t e s {
176 }
177 a c t i on s {
178 x := rx � w;
179 y := by � h ;

181 loop c h i l d s {
182 c h i l d s .w := (c h i l d s $ i . totalMag / totalMag) ⇤ w;
183 c h i l d s . h := h ;
184 c h i l d s . rx := f o l d x . . c h i l d s $� . rx + ch i l d s $ i .w;
185 c h i l d s . by := y + h ;
186 }
187 }
188 }

190 c l a s s Po l l i ngP la c e : Node{
191 a t t r i b u t e s {
192 // Total number o f b a l l o t s ca s t in t h i s p lace
193 input to ta lVote s : i n t ;
194 // Number o f b a l l o t s ca s t f o r UR
195 input totalVotesUR : i n t ;
196 // Percent o f votes f o r UR
197 input urVotes : f l o a t ;
198 // Average o f d i s t r i c t ’ s percent o f votes f o r UR (e . g . , p r o j e c t ed UR vote %)
199 input urVotesPro jected : f l o a t ;
200 // Percent o f r e g i s t e r e d vo t e r s who ca s t a b a l l o t in t h i s p lace
201 input turnout : f l o a t ;

203 // Defau l t c o l o r (e . g . , c o l o r when % of votes f o r UR i s 0%)
204 input de fCo lor : c o l o r ;
205 // UR co l o r s (e . g . , c o l o r when % of votes f o r UR i s 100%)
206 input urColor : c o l o r ; // Red
207 // Color to turn f raudu l en t nodes
208 input f raudColor : c o l o r ;

APPENDIX A. LAYOUT GRAMMARS 133

210 // Bool� l i k e i n t to l e t us know i f t h i s node should be rendered in our JS s imu la t i on
211 input i nJava s c r i p t : i n t ;

213 var ca l cRegu la rCo lor : c o l o r ;
214 var ca lcFraudColor : c o l o r ;
215 var ca l cPro j e c t edCo lo r : c o l o r ;
216 var ca l cVotesCo lor : c o l o r ;

218 var magnitude : f l o a t ;
219 }

221 a c t i on s {
222 ca l cPro j e c t edCo lo r := l e rpCo lo r (defColor , urColor , urVotesPro jected) ;
223 ca l cRegu la rCo lo r := l e rpCo lo r (defColor , urColor , urVotes) ;
224 ca l cVotesCo lor := turnout > 0 .83 f ?
225 l e rpCo lo r (ca lcRegularColor , ca l cPro j ec t edCo lo r , showProjected)
226 : ca l cRegu la rCo lor ;
227 ca lcFraudColor := (turnout > 0 .83 f) ? f raudColor : ca l cVotesCo lor ;

229 @render @Rectangle (x , y , w, h ,
230 255⇤256⇤256⇤256 + le rpCo lo r (ca lcVotesColor , calcFraudColor , showFraud)) ;

232 x := rx � w;
233 y := by � h ;

235 magnitude := (turnout > minTurnout && turnout <= maxTurnout) ? to ta lVote s : 0 ;
236 totalMag := (i nJava s c r i p t != 0) ? magnitude : showJavascr ipt ⇤ magnitude ;

238 // How many votes f o r UR does t h i s node con t r i bu t e ?
239 // Turn to 0 i f we ’ re not showing t h i s bin
240 // I f t h i s i s a suspec t p o l l i n g place , i n t e r p o l a t e between r e a l and
241 // pro j e c t ed va lue s based o f f showProjected .
242 votesUR := (turnout > minTurnout && turnout <= maxTurnout) ?
243 ((turnout > 0 .83 f) ?
244 ((totalVotesUR ⇤ (1 � showProjected))
245 + ((to ta lVote s ⇤ urVotesPro jected) ⇤ showProjected))
246 : totalVotesUR)
247 : 0 ;
248 }

250 }

A.5 Box Model

The following attribute grammar demonstrates specifying a subset of the CSS box model.
It is su�cient to render static content from Wikipedia and Wordpress blog.

1 schedu le {
2 ”BUS = [W,X,Y,Z] , member(blockimg ,BUS) , member(normalblock , BUS) ,
3 member(f lowblock ,BUS) , member(root ,BUS) ,
4 P = [(, td , , ,) , (, td , , ,) , (, td , , ,) , (, bu , , ,) ,
5 (, td , , ,) , (, td , , ,) , (, bu , , ,) , (, buSubInorder , , , ((BUS,) ,)) ,
6 (, td , , ,)] ”
7 }

9 i n t e r f a c e Block{
10 var canvas : i n t ;

APPENDIX A. LAYOUT GRAMMARS 134

11 var render : i n t ;

13 var absX : i n t ;
14 var absY : i n t ;
15 var computedX : i n t ;
16 var computedY : i n t ;

18 var ava i lab leWidth : i n t ;
19 var conta inHeight : i n t ;
20 var computedWidth : i n t ;
21 input width : taggedInt = {1 ,0} ;
22 var computedHeight : i n t ;
23 input he ight : taggedInt = {1 ,0} ;

25 var int r in sPre fWidth : i n t ;
26 var intrinsMinWidth : i n t ;
27 var i n t r i n sHe i gh t : i n t ;

29 var inhFontSize : i n t ;
30 input i n t r i n sFon tS i z e : taggedInt = {2 ,0} ;

32 var inhColor : c o l o r ;
33 input c o l o r : ? c o l o r ;

35 input p o s i t i o n : s t r i n g = ” s t a t i c ” ;
36 input l e f t : taggedInt = {1 ,0} ;
37 input r i g h t : taggedInt = {1 ,0} ;
38 input top : taggedInt = {1 ,0} ;
39 input bottom : taggedInt = {1 ,0} ;

41 //box model
42 input borderc : ? c o l o r ;
43 input borderw : i n t ;
44 input borders : s t r i n g = ”none ” ;
45 input bgc : ? c o l o r ;

47 input marginTop : taggedInt = {302 ,0} ;
48 input marginBottom : taggedInt = {302 ,0} ;
49 input marginLeft : taggedInt = {302 ,0} ;
50 input marginRight : taggedInt = {302 ,0} ;
51 var mt : i n t ;
52 var mb : i n t ;
53 var ml : i n t ;
54 var mr : i n t ;
55 input paddingTop : taggedInt = {302 ,0} ;
56 input paddingBottom : taggedInt = {302 ,0} ;
57 input paddingLeft : taggedInt = {302 ,0} ;
58 input paddingRight : taggedInt = {302 ,0} ;
59 var pt : i n t ;
60 var pb : i n t ;
61 var p l : i n t ;
62 var pr : i n t ;

64 var childNum : i n t ;
65 }

68 i n t e r f a c e FlowRoot{
69 var canvas : i n t ;
70 var render : i n t ;

APPENDIX A. LAYOUT GRAMMARS 135

72 var re lRightX : i n t ;
73 var re lX : i n t ;
74 var re lRightY : i n t ;
75 var re lY : i n t ;
76 var oldLineH : i n t ;
77 var maxLineH : i n t ;

79 var f i r s tCh i ldWidth : i n t ;
80 var r ightPadding : i n t ;

82 var minX : i n t ;
83 var minY : i n t ;
84 var maxWidth : i n t ;
85 var conta inHeight : i n t ;

87 var int r in sPre fWidth : i n t ;
88 var intrinsMinWidth : i n t ;
89 var i n t r i n sHe i gh t : i n t ;

91 var inhFontSize : i n t ;
92 input i n t r i n sFon tS i z e : taggedInt = {2 ,0} ;

95 var inhColor : c o l o r ;
96 input c o l o r : ? c o l o r = ” i n h e r i t ” ;

98 input p o s i t i o n : s t r i n g = ” s t a t i c ” ;
99 //box model

100 input marginTop : taggedInt = {302 ,0} ;
101 input marginBottom : taggedInt = {302 ,0} ;
102 input marginLeft : taggedInt = {302 ,0} ;
103 input marginRight : taggedInt = {302 ,0} ;
104 var mt : i n t ;
105 var mb : i n t ;
106 var ml : i n t ;
107 var mr : i n t ;
108 input paddingTop : taggedInt = {302 ,0} ;
109 input paddingBottom : taggedInt = {302 ,0} ;
110 input paddingLeft : taggedInt = {302 ,0} ;
111 input paddingRight : taggedInt = {302 ,0} ;
112 var pt : i n t ;
113 var pb : i n t ;
114 var p l : i n t ;
115 var pr : i n t ;
116 }

118 i n t e r f a c e I n l i n e {
119 var canvas : i n t ;
120 var render : i n t ;

122 var re lRightX : i n t ;
123 var re lX : i n t ;
124 var re lRightY : i n t ;
125 var re lY : i n t ;
126 var oldLineH : i n t ;
127 var maxLineH : i n t ;

129 var f i r s tCh i ldWidth : i n t ;
130 var r ightPadding : i n t ;

APPENDIX A. LAYOUT GRAMMARS 136

132 var minX : i n t ;
133 var minY : i n t ;
134 var maxWidth : i n t ;
135 var conta inHeight : i n t ;

137 var int r in sPre fWidth : i n t ;
138 var intrinsMinWidth : i n t ;
139 var i n t r i n sHe i gh t : i n t ;

141 var inhFontSize : i n t ;
142 input i n t r i n sFon tS i z e : taggedInt = {2 ,0} ;

144 var inhColor : c o l o r ;
145 input c o l o r : ? c o l o r = ” i n h e r i t ” ;

147 // Re la t i v e p o s i t i o n i n g
148 var o f f s e tX : i n t ;
149 var o f f s e tY : i n t ;
150 var inhOffsetX : i n t ;
151 var inhOffsetY : i n t ;

153 input p o s i t i o n : s t r i n g = ” s t a t i c ” ;
154 input l e f t : taggedInt = {1 ,0} ;
155 input r i g h t : taggedInt = {1 ,0} ;
156 input top : taggedInt = {1 ,0} ;
157 input bottom : taggedInt = {1 ,0} ;

160 //box model
161 input marginTop : taggedInt = {302 ,0} ;
162 input marginBottom : taggedInt = {302 ,0} ;
163 input marginLeft : taggedInt = {302 ,0} ;
164 input marginRight : taggedInt = {302 ,0} ;
165 var mt : i n t ;
166 var mb : i n t ;
167 var ml : i n t ;
168 var mr : i n t ;
169 input paddingTop : taggedInt = {302 ,0} ;
170 input paddingBottom : taggedInt = {302 ,0} ;
171 input paddingLeft : taggedInt = {302 ,0} ;
172 input paddingRight : taggedInt = {302 ,0} ;
173 var pt : i n t ;
174 var pb : i n t ;
175 var p l : i n t ;
176 var pr : i n t ;

178 var childNum : i n t ;
179 }

181 i n t e r f a c e Pos i t i oned {
182 var canvas : i n t ;
183 var render : i n t ;

185 var computedX : i n t ;
186 var computedY : i n t ;

188 var posX : i n t ;
189 var posY : i n t ;
190 var posWidth : i n t ;

APPENDIX A. LAYOUT GRAMMARS 137

191 var posHeight : i n t ;

193 var computedWidth : i n t ;
194 input width : taggedInt = {1 ,0} ;
195 var computedHeight : i n t ;
196 input he ight : taggedInt = {1 ,0} ;

198 var int r in sPre fWidth : i n t ;
199 var intrinsMinWidth : i n t ;
200 var i n t r i n sHe i gh t : i n t ;

202 var inhFontSize : i n t ;
203 input i n t r i n sFon tS i z e : taggedInt = {2 ,0} ;

205 var inhColor : c o l o r ;
206 input c o l o r : ? c o l o r = ”none ” ;

208 input l e f t : taggedInt = {1 ,0} ;
209 input r i g h t : taggedInt = {1 ,0} ;
210 input top : taggedInt = {1 ,0} ;
211 input bottom : taggedInt = {1 ,0} ;
212 input p o s i t i o n : s t r i n g ;
213 //box model
214 input marginTop : taggedInt = {302 ,0} ;
215 input marginBottom : taggedInt = {302 ,0} ;
216 input marginLeft : taggedInt = {302 ,0} ;
217 input marginRight : taggedInt = {302 ,0} ;
218 var mt : i n t ;
219 var mb : i n t ;
220 var ml : i n t ;
221 var mr : i n t ;
222 input paddingTop : taggedInt = {302 ,0} ;
223 input paddingBottom : taggedInt = {302 ,0} ;
224 input paddingLeft : taggedInt = {302 ,0} ;
225 input paddingRight : taggedInt = {302 ,0} ;
226 var pt : i n t ;
227 var pb : i n t ;
228 var p l : i n t ;
229 var pr : i n t ;

231 }

233 t r a i t countChi lds {
234 a t t r i b u t e s {
235 var numChilds : i n t ;
236 }
237 a c t i on s {
238 loop c h i l d s {
239 numChilds := f o l d 0 . . s e l f $� . numChilds + 1 ;
240 c h i l d s . childNum := f o l d 0 . . c h i l d s $� . childNum + 1 ;
241 }
242 }
243 }
244 t r a i t i n l i n eW id t h I n t r i n s i c s {
245 a t t r i b u t e s {
246 var sumMarginsPadding : i n t ;
247 }
248 a c t i on s {
249 sumMarginsPadding :=
250 (getTag (marginLeft) == CONST AUTO() ?

APPENDIX A. LAYOUT GRAMMARS 138

251 0 : getValue (marginLeft , usedFontSize , 0)) +
252 (getTag (marginRight) == CONST AUTO() ?
253 0 : getValue (marginRight , usedFontSize , 0)) +
254 (getTag (paddingLeft) == CONST AUTO() ?
255 0 : getValue (paddingLeft , usedFontSize , 0)) +
256 (getTag (paddingRight) == CONST AUTO() ?
257 0 : getValue (paddingRight , usedFontSize , 0)) ;
258 }
259 }

261 t r a i t strokeBox {
262 a c t i on s {
263 render :=
264 canvas + (va l i dCo lo r (bgc) ?
265 paintRect (absX + ml , absY + mt ,
266 computedWidth + pl + pr , computedHeight + pt + pb , getColor (bgc)) : 0) +
267 (borders != ” s o l i d ” ? 0 :
268 pa intL ine (absX + ml , absY + mt ,
269 absX+ml+pr+pl+computedWidth , absY + mt , borderw , getColor (borderc)) +
270 pa intL ine (absX + ml + pr + pl + computedWidth , absY + mt ,
271 absX + ml + pl + pr + computedWidth , absY + mt + pt + pb + computedHeight ,
272 borderw , getColor (borderc)) +
273 pa intL ine (absX + ml + pr + pl + computedWidth , absY + mt + pt + pb + computedHeight ,
274 absX + ml , absY + mt + pt + pb + computedHeight , borderw , getColor (borderc)) +
275 pa intL ine (absX + ml , absY + mt + pt + pb + computedHeight , absX + ml ,
276 absY + mt , borderw , getColor (borderc))
277) ;
278 }
279 }

282 t r a i t blockPosCont{
283 a c t i on s {
284 loop posChi lds {
285 posChi lds . posX := computedX ;
286 posChi lds . posY := computedY ;
287 posChi lds . posWidth := computedWidth ;
288 posChi lds . posHeight := computedHeight ;

290 posChi lds . inhFontSize := usedFontSize ;
291 posChi lds . inhColor := usedColor ;
292 posChi lds . canvas := f o l d render . . posChi lds$� . canvas ;
293 }
294 }
295 }

297 t r a i t in l inePosCont {
298 a c t i on s {
299 loop posChi lds {
300 posChi lds . posX := minX + relX + o f f s e tX ;
301 posChi lds . posY := minY + relY + o f f s e tY ;
302 posChi lds . posWidth := int r insPre fWidth ;
303 posChi lds . posHeight := i n t r i n sHe i gh t ;

305 posChi lds . inhFontSize := usedFontSize ;
306 posChi lds . inhColor := usedColor ;
307 posChi lds . canvas := f o l d render . . posChi lds$� . canvas ;
308 }
309 }
310 }

APPENDIX A. LAYOUT GRAMMARS 139

312 t r a i t w i d t h I n t r i n s i c s {
313 a t t r i b u t e s {
314 var sumMarginsPadding : i n t ;
315 var s e l f I n t r i n sWid th : i n t ;
316 }
317 a c t i on s {
318 sumMarginsPadding :=
319 (getTag (marginLeft) == CONST AUTO() ?
320 0 : getValue (marginLeft , usedFontSize , 0)) +
321 (getTag (marginRight) == CONST AUTO() ?
322 0 : getValue (marginRight , usedFontSize , 0)) +
323 (getTag (paddingLeft) == CONST AUTO() ?
324 0 : getValue (paddingLeft , usedFontSize , 0)) +
325 (getTag (paddingRight) == CONST AUTO() ?
326 0 : getValue (paddingRight , usedFontSize , 0)) ;

328 s e l f I n t r i n sWid th := (getTag (width) == CONST AUTO() ?
329 0 : getValue (width , usedFontSize , 0)) ;
330 }

332 }

334 t r a i t f o n tS t y l e {
335 a t t r i b u t e s {
336 var usedFontSize : i n t ;
337 var usedColor : c o l o r ;
338 }
339 a c t i on s {
340 usedColor := va l i dCo lo r (c o l o r) ? getColor (c o l o r) : inhColor ;
341 usedFontSize := va l idFontS i z e (i n t r i n sFon tS i z e) ?
342 getFontS ize (i n t r i n sFontS i z e , inhFontSize) : inhFontSize ;

344 loop c h i l d s {
345 c h i l d s . inhColor := usedColor ;
346 c h i l d s . inhFontSize := usedFontSize ;
347 }
348 }
349 }

351 t r a i t blockWidth{
352 a t t r i b u t e s { var tmpComputedHeight : i n t ; }
353 a c t i on s {
354 computedWidth := getTag (width) != CONST AUTO() ?
355 getValue (width , usedFontSize , ava i lab leWidth) :
356 max(intrinsMinWidth , ava i lab leWidth) � ml � mr � pl � pr ;

358 tmpComputedHeight := getTag (he ight) != CONST AUTO() ?
359 getValue (height , usedFontSize , conta inHeight) : i n t r i n sHe i gh t ;
360 computedHeight := isNaN (tmpComputedHeight) ? i n t r i n sHe i gh t : tmpComputedHeight ;

362 pt := getValue (paddingTop , usedFontSize , ava i lab leWidth) ;
363 pb := getValue (paddingBottom , usedFontSize , ava i lab leWidth) ;
364 p l := getValue (paddingLeft , usedFontSize , ava i lab leWidth) ;
365 pr := getValue (paddingRight , usedFontSize , ava i lab leWidth) ;

367 mt := getTag (marginTop) != CONST AUTO() ?
368 getValue (marginTop , usedFontSize , ava i lab leWidth) : 0 ;
369 mb := getTag (marginBottom) != CONST AUTO() ?
370 getValue (marginBottom , usedFontSize , ava i lab leWidth) : 0 ;

APPENDIX A. LAYOUT GRAMMARS 140

372 ml := (getTag (marginLeft) != CONST AUTO()) ?
373 getValue (marginLeft , usedFontSize , ava i lab leWidth) :
374 (getTag (width) == CONST AUTO() ?
375 0 : (getTag (marginRight) == CONST AUTO() ?
376 (ava i lab leWidth � pr � pl � getValue (width , usedFontSize , ava i lab leWidth))/2
377 : (ava i lab leWidth � pr � pl
378 � getValue (width , usedFontSize , ava i lab leWidth)
379 � getVal (marginRight , usedFontSize , ava i lab leWidth)))) ;

381 mr := (getTag (marginRight) != CONST AUTO()) &&
382 (getTag (width) == CONST AUTO() getTag (marginLeft) == CONST AUTO()) ?
383 getValue (marginRight , usedFontSize , ava i lab leWidth) :
384 (getTag (width) == CONST AUTO() ?
385 0 : (getTag (marginLeft) == CONST AUTO() ?
386 (ava i lab leWidth � pr � pl
387 � getValue (width , usedFontSize , ava i lab leWidth))/2
388 : (ava i lab leWidth � pr � pl
389 � getValue (width , usedFontSize , ava i lab leWidth)
390 � getValue (marginLeft , usedFontSize , ava i lab leWidth)))) ;
391 }
392 }

396 t r a i t blockRelPos {
397 a c t i on s {
398 computedX := absX + (po s i t i o n == ” r e l a t i v e ” ?
399 (getTag (l e f t) == CONST AUTO() ?
400 (getTag (r i g h t) == CONST AUTO() ? 0
401 : �getValue (r i ght , usedFontSize , ava i lab leWidth))
402 : getValue (l e f t , usedFontSize , ava i lab leWidth)) : 0) ;
403 computedY := absY + (po s i t i o n == ” r e l a t i v e ” ?
404 (getTag (top) == CONST AUTO() ?
405 (getTag (bottom) == CONST AUTO() ? 0 :
406 �getValue (bottom , usedFontSize , ava i lab leWidth))
407 : getValue (top , usedFontSize , ava i lab leWidth)) : 0) ;
408 }
409 }

411 t r a i t i n l i n eRe lPo s {
412 a c t i on s {
413 o f f s e tX := inhOffsetX + (po s i t i o n == ” r e l a t i v e ” ?
414 (getTag (l e f t) == CONST AUTO() ?
415 (getTag (r i g h t) == CONST AUTO() ? 0
416 : �getValue (r i ght , usedFontSize ,maxWidth))
417 : getValue (l e f t , usedFontSize ,maxWidth)) : 0) ;
418 o f f s e tY := inhOffsetY + (po s i t i o n == ” r e l a t i v e ” ?
419 (getTag (top) == CONST AUTO() ?
420 (getTag (bottom) == CONST AUTO() ? 0
421 : �getValue (bottom , usedFontSize ,maxWidth))
422 : getValue (top , usedFontSize ,maxWidth)) : 0) ;

424 loop c h i l d s {
425 c h i l d s . inhOffsetX := o f f s e tX ;
426 c h i l d s . inhOffsetY := o f f s e tY ;
427 }
428 }
429 }

APPENDIX A. LAYOUT GRAMMARS 141

431 t r a i t in l ineb lockWidth {
432 a t t r i b u t e s { var tmpComputedHeight : i n t ; }
433 a c t i on s {
434 computedWidth := getTag (width) != CONST AUTO() ?
435 getValue (width , usedFontSize ,maxWidth)
436 : min (max(intrinsMinWidth ,maxWidth) , in t r in sPre fWidth)
437 � ml � mr � pl � pr ;
438 tmpComputedHeight := getTag (he ight != CONST AUTO()) ?
439 getValue (height , usedFontSize , conta inHeight) : i n t r i n sHe i gh t ;
440 computedHeight := isNaN (tmpComputedHeight) ?
441 i n t r i n sHe i gh t : tmpComputedHeight ;

443 pt := getValue (paddingTop , usedFontSize ,maxWidth) ;
444 pb := getValue (paddingBottom , usedFontSize ,maxWidth) ;
445 p l := getValue (paddingLeft , usedFontSize ,maxWidth) ;
446 pr := getValue (paddingRight , usedFontSize ,maxWidth) ;

448 mt := getTag (marginTop) != CONST AUTO() ?
449 getValue (marginTop , usedFontSize , maxWidth) : 0 ;
450 mr := getTag (marginLeft) != CONST AUTO() ?
451 getValue (marginLeft , usedFontSize , maxWidth) : 0 ;
452 ml := getTag (marginRight) != CONST AUTO() ?
453 getValue (marginRight , usedFontSize , maxWidth) : 0 ;
454 mb := getTag (marginBottom) != CONST AUTO() ?
455 getValue (marginBottom , usedFontSize , maxWidth) : 0 ;

457 }
458 }

460 t r a i t i n l i n eMarg in s {
461 a c t i on s {
462 pt := 0 ;
463 pb := 0 ;
464 p l := getValue (paddingLeft , usedFontSize ,maxWidth) ;
465 pr := getValue (paddingRight , usedFontSize ,maxWidth) ;

467 mt := 0 ;
468 mb := 0 ;
469 mr := getTag (marginLeft) != CONST AUTO() ?
470 getValue (marginLeft , usedFontSize , maxWidth) : 0 ;
471 ml := getTag (marginRight) != CONST AUTO() ?
472 getValue (marginRight , usedFontSize , maxWidth) : 0 ;
473 }
474 }

476 t r a i t Stack ing {
477 a c t i on s {
478 loop c h i l d s {
479 c h i l d s . absX := computedX + ml+pl ;
480 c h i l d s . absY := f o l d computedY + mt+pt . .
481 c h i l d s $� . absY + (ch i l d s $ i . childNum == 1 ?
482 0 : (c h i l d s $� . computedHeight + ch i l d s $� . pt
483 + ch i l d s $� . pb + ch i l d s $� .mt + ch i l d s $� .mb)) ;
484 c h i l d s . ava i lab leWidth := computedWidth ;
485 c h i l d s . conta inHeight := getTag (he ight) != CONST AUTO() ?
486 getValue (height , i n t r i n sFon tS i z e , conta inHeight) : CONST NAN() ;

488 intrinsMinWidth := f o l d s e l f I n t r i n sWid th + sumMarginsPadding . .
489 max(s e l f $� . intrinsMinWidth ,
490 sumMarginsPadding + ch i l d s $ i . intrinsMinWidth) ;

APPENDIX A. LAYOUT GRAMMARS 142

491 int r insPre fWidth := f o l d s e l f I n t r i n sWid th + sumMarginsPadding . .
492 s e l f I n t r i n sWid th == 0 ?
493 max($� . intr insPre fWidth ,
494 sumMarginsPadding + ch i l d s $ i . in t r in sPre fWidth)
495 : $� . i n t r in sPre fWidth ;
496 i n t r i n sHe i gh t := f o l d 0 . .
497 $� . i n t r i n sHe i gh t + ch i l d s $ i . computedHeight + ch i l d s $ i .mt
498 + ch i l d s $ i .mb + ch i l d s $ i . pt + ch i l d s $ i . pb ;
499 }
500 }
501 }

503 t r a i t WrappingLeaf{
504 a c t i on s {
505 relRightX := relX + computedWidth + pl + pr + ml + mr ;
506 relRightY := relY ;
507 f i r s tCh i ldWidth := computedWidth + rightPadding + pl + pr + ml + mr ;
508 maxLineH := max(oldLineH , computedHeight + pt + pb) ;
509 }
510 }

512 t r a i t Wrapping {
513 a c t i on s {
514 loop c h i l d s {
515 c h i l d s .minX := minX ;
516 c h i l d s .minY := minY ;
517 c h i l d s .maxWidth := maxWidth ;
518 c h i l d s . conta inHeight := conta inHeight ;

520 int r insPre fWidth :=
521 f o l d ($$. numChilds == 0 ? 0 : �5) + sumMarginsPadding
522 . .
523 s e l f $� . i n t r in sPre fWidth + ch i l d s $ i . in t r insPre fWidth + 5 ;
524 intrinsMinWidth := f o l d sumMarginsPadding . .
525 max(s e l f $� . intrinsMinWidth ,
526 sumMarginsPadding + ch i l d s $ i . intrinsMinWidth) ;
527 i n t r i n sHe i gh t := f o l d 0 . .
528 max(s e l f $� . i n t r i n sHe i gh t ,
529 c h i l d s $ i . i n t r i n sHe i gh t + ch i l d s $ i .mt + ch i l d s $ i .mb
530 + ch i l d s $ i . pt + ch i l d s $ i . pb) ;

533 f i r s tCh i ldWidth := f o l d ml+pl . .
534 (c h i l d s $ i . childNum == 1) ?
535 c h i l d s $ i . f i r s tCh i ldWidth + ml+mr+pl+pr : $� . f i r s tCh i ldWidth ;

537 c h i l d s . r ightPadding := f o l d 0 . .
538 (c h i l d s $ i . childNum == $$. numChilds) ?
539 r ightPadding + mr+pr : 0 ;

541 c h i l d s . re lX := f o l d 0 . .
542 ((c h i l d s $ i . childNum == 1 ? relX + ml+pl : c h i l d s $� . re lRightX + 5)
543 + ch i l d s $ i . f i r s tCh i ldWidth > maxWidth) ?
544 0 : (c h i l d s $ i . childNum == 1 ?
545 relX + ml+pl : c h i l d s $� . re lRightX + 5) ;

547 c h i l d s . re lY := f o l d 0 . .
548 (c h i l d s $ i . childNum == 1 ? relY : c h i l d s $� . re lRightY)
549 + (c h i l d s $ i . re lX == 0 ?
550 (c h i l d s $ i . childNum == 1 ?

APPENDIX A. LAYOUT GRAMMARS 143

551 oldLineH : c h i l d s $� . maxLineH + 5) : 0) ;

553 c h i l d s . oldLineH := (c h i l d s $ i . childNum == 1) ?
554 oldLineH : ((c h i l d s $ i . re lX == 0) ? 0 : c h i l d s $� . maxLineH) ;

556 re lRightX := f o l d relX + int r insPre fWidth . . c h i l d s $ i . re lRightX + mr+pr ;
557 re lRightY := f o l d relY . . c h i l d s $ i . re lRightY ;
558 maxLineH := f o l d max(oldLineH , 0) . . c h i l d s $ i . maxLineH ;
559 }
560 }
561 }

563 i n t e r f a c e Top{}
564 c l a s s Root : Top{
565 ch i l d r en { ch i l d : Block ; }
566 a c t i on s {
567 ch i l d . absX := ch i l d . computedHeight ? 0 : 0 ;
568 ch i l d . absY := ch i l d . computedHeight ? 0 : 0 ;
569 ch i l d . ava i lab leWidth := getPageWidth () � 15 ;
570 ch i l d . canvas :=
571 pa in tS ta r t (c h i l d . computedWidth + ch i l d . pr + ch i l d . p l + ch i l d .mr + ch i l d . ml ,
572 ch i l d . computedHeight + ch i l d .mt + ch i l d .mb + ch i l d . pt + ch i l d . pb) ;
573 ch i l d . childNum := 1 ;
574 ch i l d . inhColor := ” black ” ;
575 ch i l d . inhFontSize := 20 ;
576 ch i l d . conta inHeight := getPageHeight () ;
577 }
578 }

580 //Misc

582 c l a s s BlockImg (blockRelPos) : Block{
583 a t t r i b u t e s {
584 input imagehandle : i n t ;
585 var usedFontSize : i n t ;
586 var usedColor : c o l o r ;
587 }
588 a c t i on s {
589 usedColor := va l i dCo lo r (c o l o r) ? getColor (c o l o r) : inhColor ;
590 usedFontSize := va l idFontS i z e (i n t r i n sFon tS i z e) ?
591 getFontS ize (i n t r i n sFontS i z e , inhFontSize) : inhFontSize ;

593 render := canvas + paintImg (computedX , computedY , imagehandle) ;
594 i n t r i n sHe i gh t := getImageHeight (imagehandle) ;
595 intrinsMinWidth := getImageWidth (imagehandle) ;
596 int r insPre fWidth := getImageWidth (imagehandle) ;
597 computedWidth := int r insPre fWidth ;
598 computedHeight := i n t r i n sHe i gh t ;

600 pt := 0 ;
601 pb := 0 ;
602 p l := 0 ;
603 pr := 0 ;

605 mt := 0 ;
606 mb := 0 ;
607 mr := 0 ;
608 ml := 0 ;
609 }
610 }

APPENDIX A. LAYOUT GRAMMARS 144

612 c l a s s In l ine Img (WrappingLeaf) : I n l i n e {
613 a t t r i b u t e s {
614 input imagehandle : i n t ;
615 var usedFontSize : i n t ;
616 var usedColor : c o l o r ;
617 var computedHeight : i n t ;
618 var computedWidth : i n t ;
619 }
620 a c t i on s {
621 usedColor := va l i dCo lo r (c o l o r) ? getColor (c o l o r) : inhColor ;
622 usedFontSize := va l idFontS i z e (i n t r i n sFon tS i z e) ?
623 getFontS ize (i n t r i n sFontS i z e , inhFontSize) : inhFontSize ;

625 render := canvas
626 + paintImg (minX + relX + of f s e tX , minY + relY + of f s e tY , imagehandle) ;
627 i n t r i n sHe i gh t := getImageHeight (imagehandle) ;
628 intrinsMinWidth := getImageWidth (imagehandle) ;
629 int r insPre fWidth := getImageWidth (imagehandle) ;
630 computedWidth := int r insPre fWidth ;
631 computedHeight := i n t r i n sHe i gh t ;

633 o f f s e tX := inhOffsetX + (po s i t i o n == ” r e l a t i v e ” ?
634 (getTag (l e f t) == CONST AUTO() ?
635 (getTag (r i g h t) == CONST AUTO() ? 0
636 : �getValue (r i ght , usedFontSize ,maxWidth))
637 : getValue (l e f t , usedFontSize ,maxWidth))
638 : 0) ;
639 o f f s e tY := inhOffsetY + (po s i t i o n == ” r e l a t i v e ” ?
640 (getTag (top) == CONST AUTO() ?
641 (getTag (bottom) == CONST AUTO() ?
642 0 : �getValue (bottom , usedFontSize ,maxWidth))
643 : getValue (top , usedFontSize ,maxWidth))
644 : 0) ;

646 pt := 0 ;
647 pb := 0 ;
648 p l := 0 ;
649 pr := 0 ;

651 mt := 0 ;
652 mb := 0 ;
653 mr := 0 ;
654 ml := 0 ;
655 }

657 }

659 //Blocks

661 c l a s s FlowBlock (blockWidth , strokeBox , w id th In t r i n s i c s , blockRelPos) : Block{
662 ch i l d r en { ch i l d : FlowRoot ;}
663 a t t r i b u t e s {
664 var usedFontSize : i n t ;
665 var usedColor : c o l o r ;
666 }
667 a c t i on s {
668 ch i l d . canvas := render ;

670 ch i l d . re lX := 0 ;

APPENDIX A. LAYOUT GRAMMARS 145

671 ch i l d . re lY := 0 ;
672 ch i l d . oldLineH := 0 ;

674 ch i l d . r ightPadding := 0 ;
675 ch i l d .minX := computedX + ml + pl ;
676 ch i l d .minY := computedY + mt + pt ;
677 ch i l d .maxWidth := computedWidth ;
678 ch i l d . conta inHeight := getTag (he ight) != CONST AUTO() ?
679 getValue (height , usedFontSize , conta inHeight) : CONST NAN() ;

681 intrinsMinWidth := max(s e l f I n t r i n sWid th + sumMarginsPadding ,
682 ch i l d . intrinsMinWidth + sumMarginsPadding) ;
683 int r insPre fWidth := s e l f I n t r i n sWid th == 0 ?
684 ch i l d . in t r in sPre fWidth + sumMarginsPadding :
685 s e l f I n t r i n sWid th + sumMarginsPadding ;
686 i n t r i n sHe i gh t := ch i l d . re lRightY + ch i l d . maxLineH � ch i l d . re lY
687 + ch i l d .mt + ch i l d .mb + ch i l d . pt + ch i l d . pb ;

689 usedColor := va l i dCo lo r (c o l o r) ? getColor (c o l o r) : inhColor ;
690 usedFontSize := va l idFontS i z e (i n t r i n sFon tS i z e) ?
691 getFontS ize (i n t r i n sFontS i z e , inhFontSize) : inhFontSize ;

693 ch i l d . inhColor := usedColor ;
694 ch i l d . inhFontSize := usedFontSize ;
695 }
696 }

698 c l a s s NormalBlock (Stacking , blockWidth , strokeBox , f on tS ty l e , countChi lds ,
699 w id th In t r i n s i c s , blockRelPos , blockPosCont) : Block{
700 ch i l d r en { c h i l d s : [Block] ; posChi lds : [Pos i t i oned] ; }
701 a c t i on s {
702 loop c h i l d s {
703 c h i l d s . canvas := f o l d render . . c h i l d s $� . canvas ;
704 }
705 }
706 }

708 // I n l i n e s
709 c l a s s FlowRootC (Wrapping , i n l i n eWid th In t r i n s i c s , f on tS ty l e ,
710 in l ineMarg ins , countChi lds , in l inePosCont) : FlowRoot{
711 ch i l d r en { c h i l d s : [I n l i n e] ; posChi lds : [Pos i t i oned] ; }
712 a t t r i b u t e s {
713 var o f f s e tX : i n t ;
714 var o f f s e tY : i n t ;
715 }
716 a c t i on s {
717 render := canvas ;
718 o f f s e tX := 0 ;
719 o f f s e tY := 0 ;
720 loop c h i l d s {
721 c h i l d s . canvas := render ;
722 c h i l d s . inhOffsetX := 0 ;
723 c h i l d s . inhOffsetY := 0 ;
724 }
725 }
726 }

728 c l a s s NormalIn l ine (Wrapping , f on tS ty l e , in l ineMarg ins , countChi lds ,
729 i n l i n eWid th In t r i n s i c s , in l ineRe lPos , in l inePosCont) : I n l i n e {
730 ch i l d r en { c h i l d s : [I n l i n e] ; posChi lds : [Pos i t i oned] ; }

APPENDIX A. LAYOUT GRAMMARS 146

731 a c t i on s {
732 render := canvas ;
733 loop c h i l d s {
734 c h i l d s . canvas := f o l d render . . c h i l d s $� . canvas ;
735 }
736 }
737 }

739 c l a s s In l i n eB l o ck (WrappingLeaf , Stacking , f on tS ty l e , in l ineb lockWidth ,
740 countChi lds , w i d th In t r i n s i c s , blockPosCont , strokeBox) : I n l i n e {
741 ch i l d r en { c h i l d s : [Block] ; posChi lds : [Pos i t i oned] ; }
742 a t t r i b u t e s {
743 var computedWidth : i n t ;
744 var absX : i n t ;
745 var absY : i n t ;
746 var computedX : i n t ;
747 var computedY : i n t ;
748 var computedHeight : i n t ;
749 input width : taggedInt = {1 ,0} ;
750 input he ight : taggedInt = {1 ,0} ;

752 input borderc : ? c o l o r ;
753 input borderw : i n t ;
754 input borders : s t r i n g = ”none ” ;
755 input bgc : ? c o l o r ;
756 }
757 a c t i on s {
758 absX := minX + relX + o f f s e tX ;
759 absY := minY + relY + o f f s e tY ;
760 computedX := absX ;
761 computedY := absY ;

763 o f f s e tX := inhOffsetX + (po s i t i o n == ” r e l a t i v e ” ?
764 (getTag (l e f t) == CONST AUTO() ?
765 (getTag (r i g h t) == CONST AUTO() ?
766 0 : �getValue (r i ght , usedFontSize ,maxWidth))
767 : getValue (l e f t , usedFontSize ,maxWidth))
768 : 0) ;
769 o f f s e tY := inhOffsetY + (po s i t i o n == ” r e l a t i v e ” ?
770 (getTag (top) == CONST AUTO() ?
771 (getTag (bottom) == CONST AUTO() ?
772 0 : �getValue (bottom , usedFontSize ,maxWidth))
773 : getValue (top , usedFontSize ,maxWidth))
774 : 0) ;

776 loop c h i l d s {
777 c h i l d s . canvas := f o l d render . . c h i l d s $� . canvas ;
778 }
779 }
780 }

782 c l a s s TextBox (in l i n eMarg in s) : I n l i n e {
783 a t t r i b u t e s {
784 input text : s t r i n g ;
785 input fontFamily : s t r i n g = ”Ar i a l ” ;
786 var l i n eHe i gh t : i n t ;
787 var l i n eSpac ing : i n t ;
788 var numberLines : i n t ;
789 var over f l ow : bool ;
790 var renderFontS ize : i n t ;

APPENDIX A. LAYOUT GRAMMARS 147

791 var usedFontSize : i n t ;
792 var renderColor : c o l o r ;

794 var sp l i tTex t : i n t ;
795 var met r i c s : i n t ;

797 }
798 a c t i on s {
799 metr i c s := 0 ;

801 o f f s e tX := inhOffsetX + (po s i t i o n == ” r e l a t i v e ” ?
802 (getTag (l e f t) == CONST AUTO() ?
803 (getTag (r i g h t) == CONST AUTO() ?
804 0 : �getValue (r i ght , usedFontSize ,maxWidth))
805 : getValue (l e f t , usedFontSize ,maxWidth))
806 : 0) ;
807 o f f s e tY := inhOffsetY + (po s i t i o n == ” r e l a t i v e ” ?
808 (getTag (top) == CONST AUTO() ?
809 (getTag (bottom) == CONST AUTO() ?
810 0 : �getValue (bottom , usedFontSize ,maxWidth))
811 : getValue (top , usedFontSize ,maxWidth))
812 : 0) ;

815 renderFontS ize := va l idFontS i z e (i n t r i n sFon tS i z e) ?
816 getFontS ize (i n t r i n sFontS i z e , inhFontSize) : inhFontSize ;
817 renderColor := va l i dCo lo r (c o l o r) ? getColor (c o l o r) : inhColor ;
818 usedFontSize := renderFontS ize ;

820 over f l ow := f a l s e ;
821 l i n eSpac ing := 5 ;
822 render := canvas
823 + paintParagraph (sp l i tText , fontFamily , renderFontSize ,
824 minX + of f se tX , minY + of f se tY , relX , relY , maxWidth ,
825 f a l s e , l i neHe ight , renderColor , l i n eSpac ing) ;

827 sp l i tTex t := sp l i tTex t (relX ,maxWidth , text , fontFamily , renderFontS ize) ;

829 re lRightX := (numberLines == 1) ?
830 (re lX + int r insPre fWidth) : getLeftoverWidth (sp l i tTex t) ;
831 re lRightY := (numberLines � 1) ⇤ (l i n eHe i gh t + l i n eSpac ing) + relY ;
832 maxLineH := max(oldLineH , l i n eHe i gh t) ;

834 l i n eHe i gh t := getLineHeight (text , fontFamily , renderFontSize , met r i c s) ;
835 int r insPre fWidth := getSumWordW(text , fontFamily , renderFontSize , met r i c s) ;
836 intrinsMinWidth := getMaxWordW(text , fontFamily , renderFontSize , met r i c s) ;
837 i n t r i n sHe i gh t := l i n eHe i gh t ;
838 f i r s tCh i ldWidth := getFirstWordW(text , fontFamily , renderFontS ize) ;
839 numberLines := getNumberLines (sp l i tTex t) ;
840 }
841 }
842 // Pos i t i oned elements
843 c l a s s Pos i t ionedBlock (Stacking , f on tS ty l e , countChi lds , w i d t h I n t r i n s i c s) : Pos i t i oned {
844 ch i l d r en { c h i l d s : [Block] ; }
845 a t t r i b u t e s {
846 var posWidthTmp : i n t ;
847 var posHeightTmp : i n t ;
848 var posRelX : i n t ;
849 var posRelY : i n t ;
850 var conta inHeight : i n t ;

APPENDIX A. LAYOUT GRAMMARS 148

851 }
852 a c t i on s {
853 render := canvas ;

855 conta inHeight := posHeight � mt � mb � pt � pb ;
856 loop c h i l d s {
857 c h i l d s . canvas := f o l d render . . c h i l d s $� . canvas ;
858 }
859 computedHeight := i n t r i n sHe i gh t ;

861 pt := getValue (paddingTop , usedFontSize , posWidthTmp) ;
862 pb := getValue (paddingBottom , usedFontSize , posWidthTmp) ;
863 p l := getValue (paddingLeft , usedFontSize , posWidthTmp) ;
864 pr := getValue (paddingRight , usedFontSize , posWidthTmp) ;

866 ml := (getTag (marginLeft) != CONST AUTO()) ?
867 getValue (marginLeft , usedFontSize , posWidthTmp) : (
868 (getTag (width) != CONST AUTO() && getTag (l e f t) != CONST AUTO()
869 && getTag (r i g h t) != CONST AUTO()) ?
870 (getTag (marginRight) == CONST AUTO() ?
871 (posWidthTmp � pr � pl
872 � getValue (l e f t , usedFontSize , posWidthTmp)
873 � getValue (r i ght , usedFontSize , posWidthTmp)
874 � getValue (width , usedFontSize , posWidthTmp))/2 :
875 (posWidthTmp � pr � pl
876 � getValue (l e f t , usedFontSize , posWidthTmp)
877 � getValue (r i ght , usedFontSize , posWidthTmp)
878 � getValue ((marginRight) , usedFontSize , posWidthTmp)
879 � getValue (width , usedFontSize , posWidthTmp))) : 0) ;

881 mr := (getTag (marginRight) != CONST AUTO()) ?
882 getValue (marginRight , usedFontSize , posWidthTmp) : (
883 (getTag (width) != CONST AUTO() && getTag (l e f t) != CONST AUTO()
884 && getTag (r i g h t) != CONST AUTO()) ?
885 (getTag (marginLeft) == CONST AUTO() ?
886 (posWidthTmp � pr � pl
887 � getValue (l e f t , usedFontSize , posWidthTmp)
888 � getValue (r i ght , usedFontSize , posWidthTmp)
889 � getValue (width , usedFontSize , posWidthTmp))/2 :
890 (posWidthTmp � pr � pl
891 � getValue (l e f t , usedFontSize , posWidthTmp)
892 � getValue (r i ght , usedFontSize , posWidthTmp)
893 � getValue (marginLeft , usedFontSize , posWidthTmp)
894 � getValue (width , usedFontSize , posWidthTmp))) : 0) ;

896 mt := (getTag (marginTop) != CONST AUTO()) ?
897 getValue (marginTop , usedFontSize , posWidth) :
898 ((getTag (he ight) == CONST AUTO() getTag (top) == CONST AUTO()
899 getTag (bottom) == CONST AUTO()) ? 0 :
900 ((getTag (marginBottom) == CONST AUTO()) ?
901 (posWidthTmp � pr � pl
902 � getValue (top , usedFontSize , posWidthTmp)
903 � getValue (bottom , usedFontSize , posWidthTmp)
904 � getValue (width , usedFontSize , posWidthTmp))/2 :
905 (posWidthTmp � pr � pl
906 � getValue (top , usedFontSize , posWidthTmp)
907 � getValue (bottom , usedFontSize , posWidthTmp)
908 � getValue (width , usedFontSize , posWidthTmp)
909 � getValue (marginBottom , usedFontSize , posWidthTmp)))) ;

APPENDIX A. LAYOUT GRAMMARS 149

911 mb := (getTag (marginTop) != CONST AUTO()) ?
912 getValue (marginBottom , usedFontSize , posWidth) :
913 ((getTag (he ight) == CONST AUTO() getTag (top) == CONST AUTO()
914 getTag (bottom) == CONST AUTO()) ? 0 :
915 ((getTag (marginTop) == CONST AUTO()) ?
916 (posWidthTmp � pr � pl
917 � getValue (top , usedFontSize , posWidthTmp)
918 � getValue (bottom , usedFontSize , posWidthTmp)
919 � getValue (width , usedFontSize , posWidthTmp))/2 :
920 (posWidthTmp � pr � pl
921 � getValue (top , usedFontSize , posWidthTmp)
922 � getValue (bottom , usedFontSize , posWidthTmp)
923 � getValue (width , usedFontSize , posWidthTmp)
924 � getValue (marginTop , usedFontSize , posWidthTmp)))) ;

927 posWidthTmp := po s i t i o n == ” abso lu t e ” ? posWidth : getPageWidth () � 15 ;
928 posHeightTmp := po s i t i o n == ” abso lu t e ” ? posHeight : getPageHeight () ;

930 computedWidth := getTag (width) != CONST AUTO() ?
931 getValue (width , usedFontSize , posWidthTmp) : (
932 (getTag (l e f t) == CONST AUTO() getTag (r i g h t) == CONST AUTO()
933 getTag (marginLeft) == CONST AUTO()
934 getTag (marginRight) == CONST AUTO()) ?
935 min (max(intrinsMinWidth , posWidthTmp) , in t r in sPre fWidth)
936 : (posWidthTmp
937 � getValue (l e f t , usedFontSize , posWidthTmp)
938 � getValue (r i ght , usedFontSize , posWidthTmp)
939 � ml � mr � pl � pr)) ;

941 computedHeight := getTag (he ight) != CONST AUTO() ?
942 getValue (height , usedFontSize , posHeightTmp) : (
943 (getTag (top) == CONST AUTO() getTag (bottom) == CONST AUTO()
944 getTag (marginTop) == CONST AUTO()
945 getTag (marginBottom) == CONST AUTO()) ?
946 i n t r i n sHe i gh t :
947 (posHeightTmp
948 � getValue (l e f t , usedFontSize , posHeightTmp)
949 � getValue (r i ght , usedFontSize , posHeightTmp)
950 � ml � mr � pl � pr)) ;

952 posRelX := (getTag (l e f t) != CONST AUTO()) ?
953 getValue (l e f t , usedFontSize , posWidthTmp) :
954 (getTag (r i g h t) == CONST AUTO() ?
955 0 :
956 (posWidthTmp � pl � pr � ml � mr
957 � getValue (r i ght , usedFontSize , posWidthTmp)
958 � computedWidth)) ;
959 posRelY := (getTag (top) != CONST AUTO()) ?
960 getValue (top , usedFontSize , posWidthTmp) :
961 (getTag (bottom) == CONST AUTO() ?
962 0 :
963 (posWidthTmp � pl � pr � ml � mr
964 � getValue (bottom , usedFontSize , posWidthTmp)
965 � computedWidth)) ;

967 computedX := (po s i t i o n == ” abso lu t e ” ? posX : 0) + posRelX ;
968 computedY := (po s i t i o n == ” abso lu t e ” ? posY : 0) + posRelY ;
969 }
970 }

