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Costs Simultaneously
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Abstract—Intelligent partitioning models are commonly used for efficient parallelization of irregular applications on distributed
systems. These models usually aim to minimize a single communication cost metric, which is either related to communication volume
or message count. However, both volume- and message-related metrics should be taken into account during partitioning for a more
efficient parallelization. There are only a few works that consider both of them and they usually address each in separate phases of a
two-phase approach. In this work, we propose a recursive hypergraph bipartitioning framework that reduces the total volume and total
message count in a single phase. In this framework, the standard hypergraph models, nets of which already capture the bandwidth
cost, are augmented with message nets. The message nets encode the message count so that minimizing conventional cutsize
captures the minimization of bandwidth and latency costs together. Our model provides a more accurate representation of the overall
communication cost by incorporating both the bandwidth and the latency components into the partitioning objective. The use of the
widely-adopted successful recursive bipartitioning framework provides the flexibility of using any existing hypergraph partitioner. The
experiments on instances from different domains show that our model on the average achieves up to 52% reduction in total message
count and hence results in 29% reduction in parallel running time compared to the model that considers only the total volume.

Index Terms—Communication cost, bandwidth, latency, partitioning, hypergraph, recursive bipartitioning, load balancing, sparse
matrix vector multiplication, combinatorial scientific computing.
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1 INTRODUCTION

For irregular applications in the scientific computing do-
main and several other domains, the intelligent partitioning
methods are commonly employed to reduce the communi-
cation overhead for efficient parallelization in a distributed
setting. Graph and hypergraph partitioning models are
ubiquitously utilized in this regard.

1.1 Motivation and Related Work
A common cost model for representing the communication
requirements of parallel applications consists of the band-
width and latency components. The bandwidth component
is proportional to the amount (volume) of data transferred
and the latency component is proportional to the num-
ber of messages communicated. In order to capture the
communication requirements of parallel applications more
accurately, both components should be taken into account
in the partitioning models.

Although graph/hypergraph partitioning models that
address the bandwidth component are abundant in the
literature [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], there
exist only a few works that also address the latency com-
ponent. A relatively early work by Uçar and Aykanat [12]
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proposes a two-phase approach in which the bandwidth
and latency components are respectively addressed in the
first and second phases by reducing total communication
volume in the former and total message count in the latter.
They propose the communication hypergraph model for the
second phase to capture the messages and the processors
involved. Their method is used for partitioning sparse ma-
trices in the context of iterative solvers for nonsymmetric
linear systems and exploits the flexibility of using noncon-
formal partitions for the vectors in the solver. A recent study
by Deveci et al. [13] addresses multiple communication cost
metrics via hypergraph partitioning in a single phase. These
metrics involve the bandwidth-related metrics such as total
volume, maximum send/receive volume, etc. as well as
the latency-related metrics such as total message count and
maximum send message count. All metrics are addressed
in the refinement stage of the partitioning. Their approach
introduces an additional cost of O(V K2) to each refinement
pass for handling multiple metrics, where V and K denote
the number of tasks in the application and the number
of processors, respectively. Another work that is reported
to reduce the latency cost in an indirect manner uses the
λ(λ − 1) metric in order to correctly encapsulate the total
communication volume in the target application [14].

There are studies that address the latency overhead via
providing an upper bound on the number of messages com-
municated [8], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25]. These works usually assume that K processors
are organized as a

√
K×
√
K mesh and restrict the commu-

nication along the rows and the columns of the processor



2

mesh, which results in O(
√
K) messages for each processor.

Most of the works bounding the latency component do
not explicitly reduce the bandwidth component. The target
applications in these works are usually centered around
parallelizing sparse matrix computations.

There are a few studies that also aim at reducing vol-
ume besides bounding the message count. Çatalyürek and
Aykanat [8] propose a two-phase method that makes use of
hypergraph partitioning to achieve a Cartesian distribution
of sparse matrices, namely 2D checkerboard partitioning. In
the first phase, they obtain a rowwise

√
K-way partition

and in the second phase, they use multiple vertex weights
determined from the partition information of the first phase
and obtain a columnwise

√
K-way partition. In both phases,

the objective is to minimize the total volume. Boman et
al. [23] achieves a similar feat with a faster method for scale-
free graphs, again in two phases. In the first phase, their
approach can make use of any available graph/hypergraph
partitioner to obtain a 1D vertex partition. In the second
phase, they use an effective algorithm to redistribute the
nonzeros in the off-diagonal blocks to guarantee theO(

√
K)

upper bound. These two methods are proposed for efficient
parallelization of sparse matrix vector multiplication.

1.2 Contributions
Most of the existing graph/hypergraph partitioning models
in the literature address only the bandwidth component
while ignoring the latency component. In this work, we
propose an augmentation to the existing models in order to
minimize the bandwidth and the latency components simul-
taneously in a single phase. Our approach relies on the com-
monly adopted recursive bipartitioning (RB) framework [1],
[5], [26], [27], [28]. The RB framework recursively partitions
a given domain of computational tasks and data items into
two until desired number subdomains is obtained. Consider
a subdomain to be bipartitioned and the set of data items
in this subdomain that are required by the tasks in some
other subdomain. Keeping these items together in the bipar-
titioning ensures only one of the new subdomains to send
a message to that other subdomain, avoiding an increase
in the total number of messages. In order to encourage
keeping these items together, we introduce message nets
to the standard hypergraph model so that dividing these
items is penalized with a cost equal to startup latency. The
nets of the standard hypergraph model are referred to as
the volume nets and with the addition of the message nets,
this augmented hypergraph now contains both the volume
and message nets. Partitioning this hypergraph presents a
more accurate picture of the communication cost model as
the objective of minimizing the cutsize in the partitioning
encapsulates the reduction of both the total volume and the
total message count.

Our approach is tailored for the parallel applications in
which there exists a single communication phase, that is
either preceded or succeeded by a computational phase.
The parallel application is also assumed to be performed
iteratively and a conformal partition on input and output
data is required, where the input of the next iteration is
obtained from the output of the current iteration. These
common assumptions are suited well to the needs of sev-
eral applications from various domains. Compared to the

standard hypergraph partitioning model in which only the
bandwidth component is minimized [1], our approach intro-
duces an additional cost of O(p lg2K) due to the addition
of the message nets, where p is the number of pins in the
hypergraph. The proposed model does not depend on a
specific hypergraph partitioning tool implementation, hence
it can make use of any hypergraph partitioner such as
PaToH [1], [29], hMetis [26] or Mondriaan [7]. In our exper-
iments, we consider 1D parallel sparse matrix vector multi-
plication (SpMV) as an example application. Our approach
is shown to be effective at reducing the latency component
as it attains an 18%-52% reduction in the total number of
messages at the expense of an 8%-70% increase in the total
volume compared to the standard model. The experiments
validate the necessity of addressing both communication
components as the proposed model reduces the parallel
running time of SpMV up to 29% for 2048 processors on
the average.

The rest of the paper is organized as follows. Section 2
describes the properties of the target applications and how
to model them with hypergraphs for parallelization. The
proposed hypergraph partitioning model and its extensions
are given in Section 3. Section 4 evaluates the proposed
model in terms of both the communication statistics and
the parallel running time of SpMV. Section 5 concludes.

2 BACKGROUND

2.1 Hypergraph Partitioning Problem

A hypergraph H = (V,N ) is defined as a set of n vertices
V={v1, . . . , vn} and a set of m netsN ={n1, . . . , nm}. Each
net nj ∈N connects a subset of vertices, which is denoted
by Pins(nj) ⊆ V . The set of nets that connect vi is denoted
by Nets(vi) ⊆ N . Each vertex vi has an associated weight
w(vi) and each net nj has an associated cost c(nj).

Π = {V1, . . . ,VK} is said to be a K-way vertex partition
of H if parts are mutually disjoint and exhaustive. In Π,
net nj is said to connect part Vk if it connects at least one
vertex in Vk, i.e., Pins(nj) ∩ Vk 6= ∅. The connectivity set
Λ(nj) of nj is defined as the set of parts connected by nj .
The connectivity of nj , λ(nj), denotes the number of parts
connected by nj . nj is said to be cut if it connects more than
one part, i.e., λ(nj) > 1, and uncut otherwise.

The hypergraph partitioning problem is defined as find-
ing a K-way vertex partition Π with the objective of mini-
mizing cutsize, which is defined as

cut(Π) =
∑

nj∈N cut

c(nj)(λ(nj)− 1), (1)

subject to the balance constraint

W (Vk) ≤ (1 + ε)Wavg, (2)

where N cut denotes the set of cut nets, W (Vk) =∑
vi∈Vk w(vi) denotes the weight of Vk, Wavg =∑
kW (Vk)/K denotes the average part weight and ε de-

notes the maximum allowed imbalance ratio. The hyper-
graph partitioning problem is NP-hard [30].
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Fig. 1: (a) An example for APRE . (b) The hypergraph HE

that represents APRE .

2.2 Recursive Hypergraph Bipartitioning

Our work relies on recursive bipartitioning (RB), hence we
give the relevant notation. In RB, a given hypergraph H
is recursively partitioned into two parts until K parts are
obtained. Obtaining a K-way partition of H through RB
induces a binary tree with dlog2Ke levels, which is referred
to as an RB tree. For the sake of simplicity, we assume K
is a power of two. The `th level of the RB tree contains 2`

hypergraphs, denoted withH`
0, . . . ,H`

2`−1 from left to right,
0 ≤ ` ≤ log2K . A bipartition Π = {VL,VR} on hypergraph
H`

k in the `th level forms two new vertex-induced hyper-
graphs H`+1

2k = (VL,NL) and H`+1
2k+1 = (VR,NR), both in

level ` + 1. Here, VL and VR are respectively used to refer
to the left and right part of the bipartition without loss of
generality. A single bipartitioning is also referred to as an
RB step.

The net sets of the newly formed hypergraphs in an RB
step are constructed via cut-net splitting method [1] in order
to capture the cutsize (1). In this method, a cut-net nj in Π=
{VL,VR} is split into two new nets nLj ∈ NL and nRj ∈ NR,
where Pins(nLj )=Pins(nj)∩VL and Pins(nRj )=Pins(nj)∩
VR. Internal nets of VL and VR are respectively included in
NL and NR.

2.3 Parallelizing Applications

2.3.1 Target Application Properties

Consider an application A = (I, T ,O) to be parallelized,
where I = {i1, . . . , iI} is the set of input data items,
T = {t1, . . . , tT } is the set of tasks and O = {o1, . . . , oO}
is the set of output data items. I , T and O respectively
denote the sizes of I , T and O. The items and tasks
of this application constitute a domain to be partitioned
for parallelization. The tasks operate on input items and
produce output items. There is no dependency among tasks,
however there is interaction among the tasks that need the
same input as well as the tasks that contribute to the same
output. Input ij ∈ I is required by a subset of tasks, denoted
by tasks(ij) ⊆ T . A subset of tasks produce intermediate
results for output oj ∈ O, again denoted by tasks(oj) ⊆ T .
size(ti) denotes the amount of time required to complete
task ti and size(ij) (size(oj)) denotes the storage size of
item ij (oj). The tasks are atomic, i.e., each task is processed
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Fig. 2: (a) An example for APOST . (b) The hypergraph HF

that represents APOST .

exactly by one processor. In a parallel setting, tasks and
items are distributed among a number of processors.

We focus on applications in which either the interme-
diate results for oj are produced by a single task for each
oj ∈ O (|tasks(oj)| = 1) or ij is required by a single task for
each ij ∈ I (|tasks(ij)| = 1). In a distributed setting, there
is only a single communication phase in both cases, in which
either only the inputs or only the intermediate results of the
outputs are communicated. The applications that exhibit the
properties in the former and the latter cases are respectively
denoted with APRE and APOST . In APRE , the communica-
tions are performed in a so-called pre-communication phase,
whereas in APOST , the communications are performed in a
so-called post-communication phase.

In APRE , the processor responsible for task tj is also
held responsible for storing output oj . First, for each input
ik, the processor that stores ik sends it to each processor
which is responsible for at least one task in tasks(ik). This
communication operation on ik is referred to as an expand
operation. Then, the processor responsible for tj executes it
by operating on inputs {ik : tj ∈ tasks(ik)} to compute the
result for oj in a communication-free manner. An example
for APRE is illustrated in Fig. 1(a).

In APOST , the processor responsible for task tj is also
held responsible for storing input ij . First, the processor
responsible for tj executes it on ij in a communication-free
manner and produces intermediate results for the outputs
{ok : tj ∈ tasks(ok)}. Then, the processor responsible for
ok receives corresponding intermediate results from each
processor which is responsible for at least one task in
tasks(ok) and reduces them through an associative and/or
commutative operator. This communication operation on ok
is referred to as a fold operation. An example for APOST is
illustrated in Fig. 2(a).

We assume that APRE and APOST accommodate the
following common properties: (i) they are performed repeat-
edly, (ii) the number of input and output items are equal,
and (iii) there exists a one-to-one dependency between input
and output items through successive iterations, i.e., output
oj of the current iteration is used to obtain input ij of the
next iteration. Note that if this one-to-one dependency is
not respected in assigning items to processors, redundant
communication is incurred. For this reason, a conformal
partition on input and output items should be adopted in
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Fig. 3: Two 3-way partitionings of the same hypergraph APRE . Only the parts of v3, v6 and v7 differ in ΠA and ΠB . ΠA

incurs less volume but more messages while ΠB incurs more volume but less messages. Note that vj represents both task
tj and input ij .

which ij and oj are assigned to the same processor.

2.3.2 Hypergraph Models for APRE and APOST

We use hypergraphs HE = (VE ,NE) and HF = (VF ,NF )
to represent APRE and APOST , respectively. Subscripts “E”
and “F” are used to denote the fact that APRE and APOST

contain “Expand” and “Fold” operations, respectively. In
both HE and HF , the vertices represent tasks and items,
i.e., VE = VF = {v1, . . . , vT }, where vi represents task ti
together with possibly multiple input-output pairs (ij , oj)
such that tasks(oj) = {ti} for APRE and tasks(ij) = {ti}
for APOST . The weight of a vertex w(vi) in both HE and
HF is assigned the amount of time required to execute ti,
i.e., w(vi) = size(ti). Both net sets NE and NF consist
of I = O nets, NE = NF = {n1, . . . , nI=O}. The nets in
NE capture the interactions between tasks and inputs: For
each input ij , there exists an expand net nj to represent the
expand operation on ij with Pins(nj)={vi : ti∈ tasks(ij)}.
The nets in NF capture the interactions between tasks and
outputs: For each output oj , there exists a fold net nj to
represent the fold operation on oj with Pins(nj) = {vi :
ti ∈ tasks(oj)}. The cost of an expand net nj ∈ NE is
assigned the size of the respective input ij multiplied with
tw, i.e., c(nj) = size(ij) tw. In a similar manner, the cost
of a fold net nj ∈ NF is assigned the size of the respective
output oj multiplied with tw, i.e., c(nj) = size(oj) tw. Here,
tw is the time required to transfer a single unit of data
item. Figures 1(b) and 2(b) display the hypergraphsHE and
HF that respectively represent the example applications in
Figures 1(a) and 2(a).

A K-way partition of HE/HF is decoded to obtain a
distribution of tasks and data items among K processors.
The responsibility of executing tasks and storing items in
the subdomain represented by part Vk is, without loss of
generality, assigned to processor Pk. A cut-net nj in the
partition of HE necessitates an expand operation on input
ij from the processor that stores ij to λ(nj) − 1 processors,
whereas a cut-net nj in the partition of HF necessitates

a fold operation on the intermediate results for output oj
from λ(nj) − 1 processors to the processor that stores oj .
These operations respectively amount to size(ij)(λ(nj)−1)
and size(oj)(λ(nj) − 1) volume of communication units.
The partitioning constraint of maintaining balance on part
weights (2) in both HE and HF corresponds to maintaining
balance on the processors’ expected execution time. The
partitioning objective of minimizing cutsize (1) in both HE

andHF corresponds to minimizing the total communication
volume incurred in pre-/post-communication phases.

2.3.3 Examples for APRE and APOST

We consider parallel sparse matrix vector multiplication
(SpMV) y ← Ax performed in a repeated manner (such as
in iterative solvers) which is a common kernel in scientific
computing. Here, A is an n × n matrix, and x and y are
vectors of size n. In SpMV, the inputs are x-vector elements,
i.e., I = {x1, . . . , xn}, and the outputs are y-vector ele-
ments, i.e., O = {y1, . . . , yn}, where xj and yi respectively
denote the jth x-vector element and ith y-vector element. A
conformal partition on input and output vectors is usually
preferred in order to avoid redundant communication.

1D row-parallel SpMV and 1D column-parallel SpMV
are examples for APRE and APOST . In 1D row-parallel
SpMV, task tj stands for the inner product 〈aj∗, x〉, while
in 1D column-parallel SpMV, tj stands for the scalar multi-
plication xja∗j , where aj∗ and a∗j respectively denote the
jth row and jth column of A, for 1 ≤ j ≤ n. The size
of tj is equal to the number of nonzeros in jth row and
jth column of A, respectively in APRE and APOST , i.e.,
the number of multiply-and-add operations in 〈aj∗, x〉 and
xja∗j . In both, there exist a total of n inputs, n tasks and
n outputs. In 1D row-parallel SpMV, input xj is required
by each inner product 〈ai∗, x〉 such that ai∗ contains a
nonzero in jth column, that is, tasks(xj) = {ti : aij 6= 0}.
The intermediate results for each output yj are produced
only by the task 〈aj∗, x〉, i.e., tasks(yj) = {tj}. In 1D
column-parallel SpMV, input xj is required only by the task
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xja∗j , i.e., tasks(xj) = {tj}. Each task xia∗i produces an
intermediate result for output yj such that a∗i contains a
nonzero in its jth row, that is, tasks(yj)={ti :aji 6= 0}. We
represent 1D row-parallel and 1D column-parallel SpMVs
respectively with HE = (VE ,NE) and HF = (VF ,NF ).
The cost of net nj in both HE and HF is assigned tw since
it incurs the communication of a single item if it is cut. HE

and HF are respectively called the column-net and row-net
hypergraph models and they are proposed in [1].

The objective of partitioning HE/HF correctly captures
the total volume while disregarding the message count
(Section 2.3.2). To illustrate the aspects of different partitions
on these two metrics, we present a motivating example in
Fig. 3, where the same HE is 3-way partitioned in two
different ways. The arrows represent the messages between
processors that are associated with the parts in the figure.
For example, in Fig. 3(a), i2 (=v2) needs to be sent from P1

to P2 since it is stored by P1 and the tasks t4 (= v4) and
t5 (= v5) in P2 need it (n2 captures this dependency). The
contents of the messages are indicated next to the arrows.
In the first partition ΠA in Fig. 3(a), there are five messages
and six communicated items, making up a total of 5ts+6tw
communication cost. In the second partition ΠB in Fig. 3(b),
there are three messages and seven communicated items,
making up a total of 3ts +7tw communication cost. Parti-
tioning HE is more likely to produce ΠA since total volume
is lower in ΠA as nets of HE encode volume. However, ΠB

is more desirable since 3ts+7tw is less than 5ts+6tw as ts is
usually much larger than tw.

3 SIMULTANEOUS REDUCTION OF BANDWIDTH
AND LATENCY COSTS

We consider parallelizations of APRE and APOST via K-
way partitions on HE and HF . We describe our model first
forAPRE in detail (Section 3.1) and then show how to apply
it to APOST (Section 3.2.1), as they are dual of each other.
Hereinafter, we refer to HE as H and ΠE as Π. We first
assume that I = O = T and describe the model for this
case and then extend it to the more general case I =O≥T
(Section 3.2.2).

3.1 Encoding Messages in Recursive Hypergraph Bi-
partitioning
Consider a recursive bipartitioning (RB) tree being pro-
duced in a breadth-first manner to obtain a K-way partition
of H = (V,N ). Let the RB process be currently at the `th
level, prior to bipartitioning hypergraph H`

i in this level.
There are currently 2`+i hypergraphs, enumerated from left
to right, H`

i , . . . ,H`
2`−1,H

`+1
0 , . . . ,H`+1

2i−1, at the leaf nodes
of the RB tree: 2`− i of them at level ` and 2i of them at
level `+1. The vertex sets of these hypergraphs induce a
(2`+i)-way vertex partition

Πcur(H) = {V`
i , . . . ,V`

2`−1,V
`+1
0 , . . . ,V`+1

2i−1}.

This vertex partition is also assumed to induce a (2`+i)-way
processor partition Pcur ={P`

i , . . . ,P`
2`−1,P

`+1
0 , . . . ,P`+1

2i−1},
where processor group P`

i is held responsible for the
items/tasks that are in the subdomain represented by V`

i .
An example Πcur is seen in the upper RB tree in Fig. 4.
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Fig. 4: The state of the RB tree and the number of messages
from/to Pcur and {PL,PR} to/from the other processor
groups before and after bipartitioning Hcur. The processor
groups corresponding to the vertex sets of the hypergraphs
are shown in the box.

We refer to the current hypergraph to be bipartitioned
H`

i as Hcur = (Vcur = V`
i ,Ncur = N `

i ). This bipartitioning
generates Π(Hcur) = {VL,VR} and forms two new hyper-
graphs HL = (VL,NL) and HR = (VR,NR). Note that
HL = H`+1

2i and HR = H`+1
2i+1. After bipartitioning, there

now exist 2`+i+1 hypergraphs at the leaf nodes and their
vertex sets induce a (2`+i+1)-way partition:

Πnew(H) = Πcur(H)−{Vcur} ∪ {VL,VR}.

Bipartitioning Vcur into VL and VR is assumed to also bipar-
tition the processor group Pcur into two processor groups
PL and PR. In accordance, Pnew =Pcur−{Pcur}∪{PL,PR}.

Fig. 4 displays the two states of the RB tree before and
after bipartitioning Hcur and highlights the messages com-
municated. Let Mcur be the number of messages between
Pcur and Pcur−{Pcur} and Mnew ≥Mcur be the number of
messages between {PL,PR} and Pnew−{PL,PR}. Mnew

can be at most 2Mcur which occurs when both PL and
PR communicate with every Pk that Pcur communicates
with. A new message is incurred when items/tasks that
necessitate a message between Pcur and Pk get scattered
across PL and PR. Consequently, after bipartitioning, both
PL and PR communicate with Pk. Here, the idea is to find a
way for items/tasks which as a whole necessitate a message
between Pcur and Pk to be assigned together to either PL

or PR so that only one of them communicates with Pk.
By doing so, the goal is to keep the number of messages
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between {PL,PR} and the remaining processor groups in
Pnew as small as possible.

To this end, we define new nets, referred to as message
nets, to keep the vertices corresponding to items/tasks
that necessitate messages altogether. We extend Hcur =
(Vcur,Ncur) to HM

cur = (Vcur,NM
cur) by adding message nets

and keeping the expand nets as is, referred to as volume
nets. We include both volume and message nets in HM

cur in
order to reduce the total volume and the total message count
simultaneously. The following sections define message nets
and present an algorithm for forming them.

3.1.1 Message Nets
Recall that a vertex vj in V represents input ij besides task
tj and output oj , and the processor that stores ij is also held
responsible for the possible expand operation on ij . Since
net nj represents this expand operation, for convenience, we
define a function src :N →V , that maps each original net
nj ∈N to its source vertex src(nj)∈V , where src(nj)=vj .

To aid the discussions in this section, we present an
example RB tree in Fig. 5 that currently consists of four
leaf hypergraphs Hcur, Ha, Hb and Hc, whose vertex sets
form 4-way partition Πcur. We refer to the nets in given
H = H0

0 as original nets and use these nets in describing
the algorithm for forming the message nets. An original
net may split several times during RB or it may not split
by being uncut in the bipartitionings it takes part in. For
example in Fig. 5, the original net n3 has split three times,
producing n′3, n′′3 and n′′′3 in Hcur, Ha and Hb, respectively.
Observe that the vertices connected by n3 in H are equal
to the union of the vertices connected by n′3, n′′3 and n′′′3 in
the hypergraphs at the leaf nodes. On the other hand, the
original net n5 is never split and currently in Hcur. In the
figure, without loss of generality, a split net with a single
prime in the superscript (e.g., n′3) connects the source vertex
of the respective original net (n3), while split nets with two
or more primes (e.g., n′′3 , n′′′3 ) do not.

In the formation of the message nets, we make use of
the most recent (2`+i)-way partition information Πcur. The
message nets are categorized into two as send message nets
and receive message nets, or simply send nets and receive
nets.

We form a send net sk for each Pk 6=Pcur to which Pcur

sends a message. sk connects the vertices corresponding to
the items sent to Pk:

Pins(sk) = {vj ∈ Vcur : src(nj) = vj and
Pins(nj) ∩ Vk 6=cur 6= ∅}. (3)

In other words, sk connects source vertex vj of each original
net nj that represents the expand operation which necessi-
tates sending ij to Pk. Algorithm 1 shows the formation of
the set of send nets NSND, which is initially empty (line 1).
For each vertex vj ∈ Vcur, we first retrieve net nj such that
src(nj)=vj (line 4). Then, the vertices which are connected
by nj and not in Vcur are traversed (line 5). Let v be such
a vertex, currently in part Vk. Since Pk needs ij due to the
task represented by v, ij is sent from Pcur to Pk. Hence, the
vertices connected by send net sk representing this message
are updated (lines 7-12): If sk is processed for the first time,
Pins(sk) is initialized with {vj} and sk is added to NSND

Algorithm 1 FORM-MESSAGE-NETS
Require: H = (V,N ),Vcur, ts

1: NSND = ∅ B The set of send nets
2: NRCV = ∅ B The set of receive nets

3: for vj ∈ Vcur do
4: Let src(nj) = vj

B Add send nets
5: for v ∈ Pins(nj) and v /∈ Vcur do
6: Let Vk be the part v is currently in
7: if sk /∈ NSND then
8: Pins(sk) = {vj}
9: c(sk) = ts

10: NSND = NSND ∪ {sk}
11: else
12: Pins(sk) = Pins(sk) ∪ {vj}

B Add receive nets
13: for n ∈ Nets(vj) and n 6= nj and src(n) /∈ Vcur do
14: v = src(n)
15: Let Vk be the part v is currently in
16: if rk /∈ NRCV then
17: Pins(rk) = {vj}
18: c(rk) = ts
19: NRCV = NRCV ∪ {rk}
20: else
21: Pins(rk) = Pins(rk) ∪ {vj}
22: return NSND,NRCV

(lines 8 and 10), otherwise, Pins(sk) is updated to include
vj (line 12). Since Pcur can send at most one message to
each of 2`+i− 1 processor groups, the number of send nets
included inHM

cur is at most 2`+i−1, i.e., 0≤|NSND|≤2`+i−1.
In Fig. 5, the send nets sa and sb are formed and included in
HM

cur to represent the messages from Pcur to Pa and Pb. sa
connects the respective source vertices v1, v2 and v3 of the
original nets n1, n2 and n3 since Ha contains vertices that
are also connected by these nets (indicated by the split nets
n′′1 , n

′′
2 and n′′3 ). Similarly, sb connects v3 and v4 due to the

vertices connected by n3 and n4 in Hb.
We form a receive net rk for each Pk 6= Pcur from

which Pcur receives a message. rk connects the vertices
corresponding to the tasks that need items from Pk:

Pins(rk) = {vj ∈ Vcur : vj ∈ Pins(n) and
src(n) ∈ Vk 6=cur}. (4)

In other words, rk connects vertex vj which is connected
by each original net n representing the expand operation
that necessitates to receive the respective item from Pk.
Algorithm 1 shows the formation of the set of receive nets
NRCV, which is initially empty (line 2). For each vertex
vj ∈ Vcur, we traverse the nets that connect vj other than
nj whose source vertices are not in Vcur (line 13). Let n be
such a net and v be its source vertex, currently in Vk (lines
14-15). Since Pcur needs the item corresponding to v due
to task tj represented by vj , this item is received by Pcur

from Pk. Hence, the vertices connected by receive net rk
representing this message are updated (lines 16-21): If rk
is processed for the first time, Pins(rk) is initialized with
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Fig. 5: The illustration of formation and addition of message nets to Hcur and bipartitioning of HM
cur. Initially, there are

four hypergraphs in the leaf nodes of the RB tree: Hcur, Ha, Hb and Hc. Two send (sa and sb) and two receive (rb and rc)
message nets are added to form HM

cur. Then, HM
cur is bipartitioned to obtain HL and HR. The split nets are shown in a table

where a shaded entry indicates the existence of the split net in the respective hypergraph. The messages communicated
among the respective processor groups are illustrated in the frame at the right bottom corner, where Pcur, Pa, Pb and Pc

are respectively associated with Hcur, Ha, Hb and Hc. The colors of the message nets indicate the processor groups that
the respective messages are sent to or received from. The dashed line separates the hypergraphs/processor groups before
and after bipartitioning. The volume nets in HM

cur, HL and HR are faded out to attract the focus on the message nets.

{vj} and rk is added to NRCV (lines 17 and 19), otherwise,
Pins(rk) is updated to include vj (line 21). Since Pcur can
receive at most one message from each of the 2` + i − 1
processor groups, the number of receive nets included in
HM

cur is at most 2` + i − 1, i.e., 0 ≤ |NRCV| ≤ 2` + i − 1. In
Fig. 5, the receive nets rb and rc are formed and included in
HM

cur to represent the messages from Pb and Pc to Pcur. rb
connects v1 and v2, which are connected by n6 (indicated by
the split net n′′6 ), since Hb contains the source vertex of n6.
Similarly, rc connects v2, v4 and v5 due to the nets n7 and
n8, both of which have their source vertices in Hc.

Recall that the cost of a volume net inHcur is size(ij) tw
and captures the bandwidth cost. To capture the latency cost
via message nets, the costs of these nets are assigned the

startup latency:

c(sk) = c(rk) = ts, for sk ∈ NSND and rk ∈ NRCV, (5)

in lines 9 and 18 of Algorithm 1. Note that the cost of a
volume net is the size of the corresponding item in terms
of tw, whereas the cost of a message net is unit in terms of
ts since it encapsulates exactly one message. The message
nets have a higher cost than the volume nets since the
startup time of a message is significantly higher than the
time required to transmit a word. Finally, the message nets
in NSND and NRCV are returned (line 22).

3.1.2 Partitioning and Correctness
The newly formed hypergraph HM

cur is then bipartitioned
to obtain Π(HM

cur) = {VL,VR}. Maintaining balance in



8

partitioningHM
cur is the same with that ofHcur since vertices

and their weights are the same in both hypergraphs. With
the newly introduced message nets, the cutsize of Π is given
by

cut(Π) =
∑

nj∈N cut
cur

c(nj) +
∑

sk∈N cut
SND

c(sk) +
∑

rk∈N cut
RCV

c(rk)

=
∑

nj∈N cut
cur

size(ij) tw + |N cut
SND| ts + |N cut

RCV| ts (6)

where N cut
cur , N cut

SND and N cut
RCV respectively denote the sets

of cut volume nets, cut send nets and cut receive nets in
Π(HM

cur).
Let msg(P) denote the total number of messages com-

municated among the processor groups in P.

Theorem 1. Consider an RB tree prior to bipartitioning the ith
hypergraph HM

cur = (Vcur,NM
cur) in the `th level with message

nets added. The vertex sets of the leaf hypergraphs of the RB tree
are assumed to induce a (2` + i)-way processor partition Pcur.
Suppose that the bipartition Π(HM

cur) ={VL,VR} generates two
new leaf hypergraphs HL and HR, where processor groups PL

and PR are associated with VL and VR. After bipartitioning, the
vertex sets of the hypergraphs are assumed to induce a (2`+i+1)-
way processor partition Pnew =Pcur−{Pcur}∪{PL,PR}. Min-
imizing the number of cut message nets in Π(HM

cur) minimizes
the increase ∆M in the number of messages between Pcur and
Pcur−{Pcur}, which is given by

∆M = msg(Pnew)−msg(Pcur)−msg({PL,PR}), (7)

where msg({PL,PR}) ∈ {0, 1, 2}.

Proof: A send net sk in HM
cur signifies a message

from Pcur to Pk ∈ Pcur − {Pcur}. If sk is a cut-net in
Π(HM

cur), then both PL and PR send a message to Pk. The
message from PL to Pk and the message from PR to Pk

respectively contain the items corresponding to the vertices
in Pins(sk) ∩ VL and Pins(sk) ∩ VR. Hence, a cut send
net contributes one to ∆M . If sk is uncut being in either
VL or VR, then only the respective processor group sends a
message to Pk, whose content is exactly the same with the
message from Pcur to Pk. Hence, an uncut send net does not
contribute to ∆M .

In a dual manner, a receive net rk in HM
cur signifies a

message from Pk ∈ Pcur−{Pcur} to Pcur. If rk is a cut-net
in Π(HM

cur), then both PL and PR receive a message from
Pk. The message from Pk to PL and the message from
Pk to PR respectively contain the items required by the
tasks corresponding to the vertices in Pins(rk) ∩ VL and
Pins(rk)∩VR. Hence, a cut receive net also contributes one
to ∆M . If rk is uncut being in either VL or VR, then only
the respective processor group receives a message from Pk,
whose content is exactly the same with the message from
Pk to Pcur. Hence, an uncut receive net does not contribute
to ∆M .

The message nets are oblivious to the messages between
PL and PR since our approach introduces these message
nets for the processor groups in Pcur. For this reason,
msg({PL,PR}) is not taken into account. Therefore, ∆M
is equal to the number of cut message nets.

By Theorem 1, the number of cut message nets in
Π(HM

cur), |N cut
SND|+ |N cut

RCV|, is equal to the increase in the

message count, where the new messages between PL and
PR are excluded. In other words, the number of cut message
nets corresponds to the increase in the number of messages
between Pcur and Pcur − {Pcur} with Pcur bipartitioned
into {PL,PR} in Pnew. Observe that each cut message net
contributes its associated cost c(sk) or c(rk) to the cut-
size (6). For this reason as well as because of the presence of
volume nets in (6), minimizing the cutsize does not exactly
correspond to but relates to minimizing the number of cut
message nets. Considering both the volume and the mes-
sage nets, minimizing the cutsize corresponds to reducing
both the total volume and the total message count.

Partitioning HM
cur is oblivious to the messages between

PL and PR. However, msg({PL,PR}) is negligible com-
pared to msg(Pnew)−msg(Pcur) since it is upper bounded
by two. Moreover, msg({PL,PR}) is empirically found to
be almost constant as 2, being 0 or 1 in only 0.1% of 1M
bipartitions. Note that 0≤∆M≤2(2`+i−1). The worst case
for ∆M occurs whenHM

cur contains a send and a receive net
for each other processor group in Pcur and they all become
cut in Π(HM

cur).
In Fig. 5, there are two send nets sa and sb and two

receive nets rb and rc in HM
cur. Among the send nets, sa is a

cut-net whereas sb is an uncut net inHR after bipartitioning.
sa necessitates both PL and PR to send a message to Pa

due to the items {i1, i2} and {i3}, respectively. Since sa is a
cut-net, it increases the total message count by one as Pcur

was sending a message to Pa. sb necessitates only PR to
send a message to Pb due to the items {i3, i4}. Since sb is
an uncut net, it does not change the total message count
as Pcur was already sending a message to Pb. Among the
receive nets, rc is a cut-net whereas rb is an uncut net in
HL after bipartitioning. rc necessitates both PL and PR

to receive a message from Pc due to the tasks {t2} and
{t4, t5}, respectively. Since rc is a cut-net, it increases the
total message count by one as Pcur was receiving a message
from Pc. rb necessitates only PL to receive a message from
Pb due to the tasks {t1, t2}. Since rb is an uncut net, it does
not change the total message count as Pcur was already
receiving a message from Pb. Hence, two cut message nets
cause an increase of two in the number of messages between
Pcur and the other processor groups.

Algorithm 2 displays the overall RB process in which
both the bandwidth and the latency costs are reduced.
As inputs, the algorithm takes a hypergraph H = (V,N ),
K (the number of parts to be obtained), and ts as the
cost of the message nets. The partitioning proceeds in a
breadth-first manner (lines 2-3). Each hypergraph Hcur to
be bipartitioned does not contain message nets initially (line
4). The sets of send and receive nets NSND and NRCV are
formed via FORM-MESSAGE-NETS (Algorithm 1) (line 6).
Then, these message nets are added to Ncur to obtain NM

cur

(line 7) and consequently HM
cur (line 8). Note that if Hcur is

the root hypergraph H0
0 of the RB tree, no message nets can

be added since there is only a single processor group at this
point (line 10). The current hypergraph is bipartitioned with
the BIPARTITION function to obtain the vertex parts VL and
VR (lines 9 and 11). The call to BIPARTITION can be realized
with any hypergraph partitioning tool; it is a call to obtain
only a two-way partition. New hypergraphsHL =H`+1

2i and
HR = H`+1

2i+1 are formed as described in Section 2.2 (lines
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Algorithm 2 RB-BANDWIDTH-LATENCY

Require: H = (V,N ),K, ts
1: H0

0 = H
B RB in breadth-first order

2: for ` = 0 to log2K − 1 do
3: for i = 0 to 2` − 1 do

4: Let Hcur = (Vcur,Ncur) denote H`
i = (V`

i ,N `
i )

5: if ` > 0 then
6: NSND,NRCV = FORM-MESSAGE-NETS(H,Vcur, ts)

7: NM
cur = Ncur ∪NSND ∪NRCV

8: HM
cur = (Vcur,NM

cur)
9: Π = BIPARTITION(HM

cur) B Π = {VL,VR}
10: else
11: Π = BIPARTITION(Hcur) B Π = {VL,VR}

B Subhypergraphs HL and HR contain only volume nets
12: Form HL=H`+1

2i =(VL,NL) of Hcur induced by VL

13: Form HR=H`+1
2i+1=(VR,NR) of Hcur induced by VR

12-13). NL and NR do not contain any message nets since
these nets rely on the most recent partitioning information
and thus need to be introduced from scratch just prior to
bipartitioning H`+1

2i and H`+1
2i+1. Notice that at any step of

the RB, among all the leaf hypergraphs, only the current
Hcur is subject to the addition of the message nets, whereas
other hypergraphs remain intact.

3.1.3 Running Time Analysis
We consider the cost of adding message nets in the `th level
of the RB tree produced in partitioning H into K parts,
0<`< log2K . Recall that Algorithm 1 utilizes Pins(·) and
Nets(·) functions on the original hypergraph H=(V,N ).

In the addition of the send nets, for each vertex vj in the
`th level, Pins(nj) is visited once, where src(nj) = vj (line
5 in Algorithm 1). Observe that each net inN is visited only
once since nj is retrieved only for vj . Updates related to a
send net (lines 7-12) can be performed in O(1) time. Hence,
each pin of H is processed exactly once, making the cost of
formation and addition of send nets O(p) in the `th level,
where p is the number of pins in H.

In the addition of the receive nets, for each vertex vj
in the `th level, Nets(vj) is visited once (line 13 in Algo-
rithm 1). Updates related to a receive net (lines 16-21) can
also be performed in O(1) time. Hence, each pin of H is
again processed exactly once, making the cost of formation
and addition of receive nets O(p) in the `th level.

Therefore, the cost of adding message nets in a single
level of RB is O(p), which results in the overall cost of
O(p log2K) for adding message nets. The solution of the
partitioning problem with the addition of message nets is
likely to be more expensive compared to partitioning of the
original hypergraph.

3.2 Extensions
3.2.1 Encoding Messages for APOST

We now describe how to apply the proposed model to
APOST . In HF , we define a function dest : N → V to
determine the responsibility of the fold operation on each

oj , similar to the definition of src for expand operations in
HE . In partitioning HF , a send net sk connects the vertices
corresponding to the tasks that produce intermediate results
to be sent to Pk:

Pins(sk) = {vj ∈ Vcur : vj ∈ Pins(n) and
dest(n) ∈ Vk 6=cur}. (8)

A receive net rk connects the vertices corresponding to
the output items for which the intermediate results need to
be received from Pk:

Pins(rk)={vj ∈ Vcur : dest(nj) = vj and
Pins(nj) ∩ Vk 6=cur 6= ∅}. (9)

Observe that the formation of a send net for HF (8) is the
same as that of a receive net for HE (4) and the formation
of a receive net for HF (9) is the same as that of a send
net for HE (3). So, the message nets in HE are the dual
of the message nets in HF . Therefore, the correctness and
complexity analysis carried out for APRE are also valid for
APOST .

3.2.2 Encoding Messages for I = O ≥ T
To extend the proposed model to the case I = O ≥ T for
APRE , we need a minor change in the formation of the
message nets. In this case, a net nj might be held respon-
sible for multiple expand operations (see src definition).
To reflect this change, line 4 of Algorithm 1 needs to be
executed for each net nj such that src(nj)=vj . The meaning
of a message net does not change. The complexity of adding
message nets is still O(p log2K) since each net nj is again
retrieved exactly once, uniquely by vj . A similar discussion
holds for APOST by extending the definition of dest.

4 EXPERIMENTS

4.1 Setup

For evaluation, we target the parallelization of an APRE

application: 1D row-parallel SpMV. We model this applica-
tion with hypergraph HE as described in Section 2.3. We
compare two schemes for the partitioning of HE :

• HP: The standard hypergraph partitioning model
in which only the bandwidth cost is minimized
(Section 2.3). In this scheme, HE contains only the
volume nets.

• HP-L: The proposed hypergraph partitioning model
in which the bandwidth and the latency costs are
reduced simultaneously (Section 3). In this scheme,
HE contains both the volume and the message nets.

Both HP and HP-L utilize recursive bipartitioning. We tested
these schemes for K ∈ {128, 256, 512, 1024, 2048} proces-
sors.

The two schemes are evaluated on 30 square matrices
from the UFL Sparse Matrix Collection [31]. Table 1 dis-
plays the properties of these matrices. We consider square
matrices since the proposed scheme aims at obtaining a
conformal partition on the input and output items. The
numbers of nonzeros in the test matrices range from 1.2M to
27.1M. This dataset contains small matrices (e.g., bcsstk31,
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TABLE 1: Properties of test matrices.

name kind #rows/cols #nonzeros

d pretok 2D/3D 182,730 1,641,672
turon m 2D/3D 189,924 1,690,876
cop20k A 2D/3D 121,192 2,624,331
torso3 2D/3D 259,156 4,429,042
mono 500Hz acoustics 169,410 5,036,288
memchip circuit sim. 2,707,524 14,810,202
Freescale1 circuit sim. 3,428,755 18,920,347
circuit5M dc circuit sim. 3,523,317 19,194,193
rajat31 circuit sim. 4,690,002 20,316,253
laminar duct3D comp. fluid dyn. 67,173 3,833,077
StocF-1465 comp. fluid dyn. 1,465,137 21,005,389
web-Google directed graph 916,428 5,105,039
in-2004 directed graph 1,382,908 16,917,053
eu-2005 directed graph 862,664 19,235,140
cage14 directed graph 1,505,785 27,130,349
mac econ fwd500 economic 206,500 1,273,389
gsm 106857 electromagnetics 589,446 21,758,924
pre2 freq.-dom. circuit sim. 659,033 5,959,282
kkt power optimization 2,063,494 14,612,663
bcsstk31 structural 35,588 1,181,416
engine structural 143,571 4,706,073
shipsec8 structural 114,919 6,653,399
Transport structural 1,602,111 23,500,731
CO theor./quant. chem. 221,119 7,666,057
598a undirected graph 110,971 1,483,868
m14b undirected graph 214,765 3,358,036
roadNet-CA undirected graph 1,971,281 5,533,214
great-britain osm undirected graph 7,733,822 16,313,034
germany osm undirected graph 11,548,845 24,738,362
debr undirected graph seq. 1,048,576 4,194,298

mac_econ_fwd500, etc.) for which the latency cost is ex-
pected to be more important.

The partitionings for both HP and HP-L are performed
with the hypergraph partitioner PaToH [1]. Specifically, for
each bipartitioning, we call PaToH_Part function of PaToH
(lines 7 and 9 of Algorithm 2). The partitioning imbalance
is set to 10%. Since PaToH contains randomized algorithms,
we run each partitioning instance five times and report the
average results of these runs.

We present the communication statistics for partitionings
obtained via HP and HP-L and the corresponding parallel
SpMV times. We used parallel SpMV of PETSc toolkit [32]
on a Blue Gene/Q system. A node on this system consists
of 16 PowerPC A2 processors with 1.6 GHz clock frequency
and 16 GB memory. The nodes are connected by a 5D torus
chip-to-chip network.

4.2 Message Net Costs

Recall that in our model, the volume nets are assigned the
cost of tw (transfer time of a single word) and the message
nets are assigned the cost of ts (startup time). Hereinafter,
both the bandwidth and the latency costs are expressed in
terms of tw for the sake of presentation. Hence, the costs
of volume nets are unit whereas the costs of message nets
are ts/tw. The message net costs are denoted with mnc to
simplify the notation. We conducted ping-pong experiments
on BlueGene/Q with varying message sizes and the average
ts/tw ratio was found to be around 200 for the matrices in
our dataset.

Compared to HP, HP-L is expected to obtain a higher
total volume since HP-L addresses two communication
components simultaneously while HP solely optimizes a
single component, which is determined by the total volume.
We found out that the cost assignment of message nets in

TABLE 2: Communication statistics, PaToH partitioning
times and parallel SpMV running times for HP-L normal-
ized with respect to those for HP averaged over 30 matrices.

message
net
cost

PaToH
part.
time

parallel
SpMV
time

volume #messages

K tot max tot max

128 1.08 1.11 0.82 0.87 1.07 0.956
256 1.10 1.16 0.78 0.83 1.13 0.904

10 512 1.12 1.22 0.75 0.83 1.13 0.838
1024 1.16 1.29 0.73 0.84 1.25 0.792
2048 1.20 1.37 0.71 0.88 1.28 0.774

128 1.17 1.25 0.65 0.76 1.08 0.924
256 1.25 1.44 0.59 0.70 1.14 0.846

50 512 1.33 1.57 0.56 0.69 1.21 0.760
1024 1.41 1.69 0.57 0.74 1.24 0.715
2048 1.48 1.85 0.59 0.80 1.33 0.708

128 1.24 1.43 0.59 0.73 1.09 0.954
256 1.35 1.66 0.53 0.68 1.17 0.858

100 512 1.45 1.86 0.51 0.68 1.19 0.768
1024 1.54 1.92 0.53 0.71 1.31 0.706
2048 1.61 2.06 0.57 0.80 1.41 0.707

128 1.33 1.60 0.54 0.72 1.15 1.031
256 1.46 1.87 0.48 0.67 1.19 0.872

200 512 1.57 2.02 0.49 0.67 1.25 0.778
1024 1.65 2.09 0.52 0.72 1.37 0.722
2048 1.70 2.17 0.57 0.79 1.48 0.712

HP-L has a crucial impact on the parallel performance. The
ts/tw ratio varies in practice for different message sizes and
depends on the protocol used for transmitting messages as
well as the characteristics of the target application which
is likely to incur a higher tw, hence a lower ts/tw, than
that was found. For this reason, as well as to control the
balance between the increase in the volume and the decrease
in the message count compared to HP, we tried out different
values for mnc in HP-L. The tested mnc values are 10, 50,
100 and 200. The reason for including smaller mnc values
is that when the communication cost is dominated by the
bandwidth component, utilizing a high mnc value has an
adverse affect on the parallel performance compared to HP
as the volume increase caused by HP-L is more apparent.
Hence, small mnc values become more preferable in such
cases.

4.3 Results
Table 2 presents the average communication statistics and
the parallel SpMV running times of HP-L normalized with
respect to those of HP for four mnc values and five K
values. Each entry at a specific K value is the geometric
mean of the normalized results obtained at that K value.
The communication statistics are grouped under “volume”
and “#messages”. Under the “volume” grouping, the col-
umn “tot” denotes the total volume of communication and
the column “max” denotes the maximum send volume of
processors. Under the “#messages” grouping, the column
“tot” denotes the total number of messages and the column
“max” denotes the maximum number of messages that a
processor sends. The PaToH partitioning times and paral-
lel SpMV running times are respectively given under the
columns “PaToH part. time” and “parallel SpMV time”.

As seen in Table 2, HP-L achieves a significant reduction
in the latency overhead. HP-L reduces the total number
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of messages by 18%-29%, 35%-44%, 41%-49% and 43%-
52% for mnc values of 10, 50, 100 and 200, respectively,
compared to HP. This substantial improvement comes at
the expense of increased volume as expected. Compared to
HP, HP-L increases the total volume by 8%-20%, 17%-48%,
24%-61% and 33%-70% for mnc values of 10, 50, 100 and
200, respectively. In other words, HP-L achieves a factor of
1.22-1.41, 1.54-1.79, 1.69-1.96 and 1.75-2.08 reductions in
the total number of messages while causing a factor of 1.08-
1.20, 1.17-1.48, 1.24-1.61 and 1.33-1.70 increase in the total
volume, over HP for mnc values of 10, 50, 100 and 200,
respectively.

The proposed HP-L scheme achieves significantly lower
parallel SpMV running times compared to the HP scheme.
As seen in Table 2, HP-L achieves 4%-23%, 8%-29%, 5%-
29% and −3%-29% lower running times for mnc values of
10, 50, 100 and 200, respectively, compared to HP. The lowest
average running times for K values of 128, 256, 512, 1024
and 2048 are obtained with mnc values of 50, 50, 50, 100 and
100, respectively. Since using a low mnc (e.g., 10) does not
attribute enough importance to the reduction of the latency
cost, the parallel running times attained by this value are
generally higher than those of other mnc values. Observe
that for a specific K value, increasing the mnc leads to a
decrease in the total message count and an increase in the
total volume.

The performance improvement of HP-L over HP in-
creases in terms of parallel SpMV time with increasingK for
almost all mnc values. For example, for mnc = 100, HP-L
only achieves a 5% improvement in running time over HP at
K = 128, whereas at K = 2048 this improvement becomes
29%. The effect of reducing total message count becomes
more apparent in parallel running time with increasing K
since the latency component gets more important at high K
values.

When we compare HP and HP-L in terms of partitioning
times in Table 2, we see that HP-L has higher partitioning
overhead as expected. HP-L incurs 7%-28%, 8%-33%, 9%-
41% and 15%-48% slower partitionings for mnc values of
10, 50, 100 and 200, respectively. Although the formation of
message nets is not expensive (O(p log2K)), note that the
partitioning with HP-L includes the message nets in addi-
tion to volume nets, which leads to increased bipartitioning
times compared to HP. As K increases, HP-L’s partitioning
time also increases compared to HP since the number of
message nets increases as well.

In Table 3, we present the detailed communication statis-
tics and the parallel SpMV running times and speedups of
30 matrices for K = 512 and mnc = 50. In this table, the
actual results of HP and HP-L are presented. The unit of
the total volume is one kilo-item whereas the unit of the
total number of messages is one kilo-message. The columns
under “running time” denote the parallel SpMV running
time in microseconds and the columns under “speedup”
denote the speedups.

In 27 out of 30 matrices, HP-L obtains better speedup
values than HP. As also observed and discussed for Table 2,
reducing both the total volume and total message count sig-
nificantly improves the parallel performance. For example,
for memchip, HP-L increases the speedup by 71% (from 188
to 322) by reducing the total message count by 45% (from

3.9k to 2.2k). On the other hand, for gsm_106857, having
a reduction of 18% in the total message count (from 3.8k to
3.1k) by HP-L does not lead to an improved parallel running
time.

The reduction in the total number of messages leads to
a reduction in the maximum number messages, as observed
in Tables 2 and 3. In a similar manner, the increase in
the total volume leads to an increase in the maximum
volume. The models that provide an upper bound on the
maximum message count usually have two communication
phases, in each of which the maximum message count is√
K − 1. Compared to these models, apart from the scale-

free matrices, although our model does not provide such an
upper bound, it usually obtains values below this bound,
which is approximately 2(

√
512− 1) ≈ 43 for K = 512.

As seen in Table 3, a significant reduction in the total
message count generally leads to a better performance.
There are a couple of basic factors that can be argued to
determine whether improving latency cost at the expense of
bandwidth cost will result in a better parallel performance.
For a partitioning instance, in general, if the average mes-
sage size is relatively high and/or the maximum message
count is relatively low, then it can be said that the bandwidth
component dominates the latency component. For example,
for gsm_106857, the average message size is high and
the maximum message count is low compared to the other
matrices. Hence, reducing the total message count by 18%
does not pay off as the latency component is not worth
exploiting.

Fig. 6 displays the speedup values of 16 matrices
for parallel SpMV attained by two schemes for K ∈
{128, 256, 512, 1024, 2048}. We do not present any matrices
of the directed graph kind in the figure since their efficien-
cies are very low. HP-L-10, HP-L-50, HP-L-100 and HP-L-
200 respectively denote the HP-L scheme with mnc values
of 10, 50, 100 and 200. For certain matrices, HP-L drastically
changes the scalability by scaling up the parallel SpMV
while HP scales down. This is observed for the matrices
in the circuit simulation category, and the matrices pre2
and kkt_power. For these matrices, reducing the latency
overhead seems to be more important than reducing the
bandwidth overhead. HP already exhibits good scalabil-
ity for the matrices such as m14b, great-britain_osm
and Transport. Reducing latency cost for these matrices
pays off as HP-L further improves their scalability. HP
and HP-L attain comparable scalability for gsm_106857,
StocF-1465 and shipsec8. The latency costs for these
matrices are a minor component of their overall communi-
cation cost. Among the HP-L schemes, the scalability of HP-
L-10 resembles that of HP the most since HP-L-10 attributes
less importance to reducing the latency overhead compared
to the other HP-L schemes. For CO and mono_500Hz, both
HP and HP-L scale down after a certain number of proces-
sors. Nonetheless, HP-L still improves the parallel SpMV
running time.

The HP-L schemes with the four different mnc values
generally exhibit different parallel performance, as seen
in Fig. 6. For any K value, increasing the mnc further
decreases the message count and further increases the total
volume (see Table 2). How this affects the parallel SpMV
running time depends on the communication requirements
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Fig. 6: Speedup values for 16 matrices.
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TABLE 3: Communication statistics and parallel SpMV times/speedups for HP and HP-L for K = 512 and mnc = 50.
Running time is in microseconds.

tot vol max vol tot msg max msg running time speedup

name HP HP-L HP HP-L HP HP-L HP HP-L HP HP-L HP HP-L

d pretok 108k 141k 302 451 5.3k 2.8k 19 11 312 232 66 88
turon m 106k 127k 296 434 4.8k 2.5k 16 9 268 210 79 100
cop20k A 142k 167k 411 482 5.2k 3.6k 20 15 542 466 82 95
torso3 197k 227k 550 825 4.9k 3.2k 21 15 411 348 112 132
mono 500Hz 226k 255k 703 812 6.0k 4.7k 26 26 492 498 158 157
memchip 102k 149k 679 705 3.9k 2.2k 51 16 1224 714 188 322
Freescale1 85k 151k 473 972 5.4k 2.4k 68 28 1697 1105 176 271
circuit5M dc 84k 145k 386 939 5.5k 2.3k 64 24 1554 1030 196 295
rajat31 139k 184k 403 786 2.9k 2.0k 23 20 1010 983 325 334
laminar duct3D 186k 211k 538 694 7.4k 5.9k 26 21 445 387 74 85
StocF-1465 581k 613k 1650 2109 6.8k 5.5k 31 29 1062 1048 229 233
web-Google 126k 266k 872 2971 37.2k 11.9k 281 231 17385 3492 12 61
in-2004 122k 169k 1933 2641 12.8k 6.4k 137 181 15690 4164 17 64
eu-2005 338k 408k 4207 6934 18.9k 9.9k 305 351 8375 4849 26 44
cage14 3184k 3291k 10528 10922 27.4k 19.7k 125 100 5757 4587 57 71
mac econ fwd500 124k 160k 335 490 5.6k 3.1k 16 11 252 231 80 88
gsm 106857 338k 371k 1161 1400 3.8k 3.1k 16 16 710 748 521 495
pre2 245k 261k 1143 1332 6.5k 3.8k 33 26 787 646 100 122
kkt power 662k 684k 2930 3459 7.2k 4.2k 50 29 2072 1554 197 262
bcsstk31 62k 76k 223 297 4.3k 3.2k 19 17 283 253 45 50
engine 117k 144k 477 671 4.6k 3.1k 32 27 525 496 96 102
shipsec8 139k 159k 471 606 4.2k 3.2k 16 15 353 337 170 178
Transport 582k 645k 1487 1700 5.3k 3.2k 16 10 782 1230 313 199
CO 1044k 1070k 2710 2792 13.4k 10.1k 45 35 906 783 85 99
598a 104k 131k 341 529 5.6k 3.6k 29 24 435 382 103 117
m14b 158k 190k 596 804 5.3k 3.5k 38 31 630 547 123 142
roadNet-CA 35k 67k 138 496 3.1k 1.3k 15 8 848 753 178 200
great-britain osm 26k 59k 168 640 4.1k 1.4k 29 11 1202 1151 509 532
germany osm 33k 74k 242 772 4.2k 1.5k 31 13 1759 1719 603 617
debr 505k 899k 1268 2793 68.3k 16.9k 185 74 6047 1747 11 37

of the respective partitioning instance. It may pay off to use
a high mnc value to further reduce the latency overhead
(as is the case for rajat31) or doing so may worsen the
parallel running time (as is the case for StocF-1465).

5 CONCLUSION

We have proposed a hypergraph partitioning model in order
to parallelize certain types of applications with the objec-
tive of reducing the total volume and the total number of
messages simultaneously. Our model exploits the recursive
bipartitioning paradigm and hence provides the flexibility
of using any available hypergraph partitioner. The proposed
approach provides a better way for capturing the communi-
cation requirements of the target parallel applications. The
experimental results showed that the better representation
of the communication costs in the proposed hypergraph
partitioning model led to a reduction of up to 29% in the
parallel running time on the average.

As future work, we plan to develop heuristics to dynam-
ically find the best message net cost for each bipartitioning
by evaluating the relative importance of the components
in the communication cost. We also wish to incorporate
the other latency-based communication metrics such as the
maximum number of messages communicated by a proces-
sor into our model.
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