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Abstract

Recent work suggests that learning perceptual classifications can
be enhanced by combining single item classifications with adaptive
comparisons triggered by each learner’s confusions. Here, we
asked whether learning might work equally well using all
comparison trials. In a face identification paradigm, we tested
single item classifications, paired comparisons, and dual instance
classifications that resembled comparisons but required two
identification responses. In initial results, the comparisons
condition showed evidence of greater efficiency (learning gain
divided by trials or time invested). We suspected that this effect
may have been driven by easier attainment of mastery criteria in
the comparisons condition, and a negatively accelerated learning
curve. To test this idea, we fit learning curves and found data
consistent with the same underlying learning rate in all conditions.
These results suggest that paired comparison trials may be as
effective in driving learning of multiple perceptual classifications
as more demanding single item classifications.

Keywords: perceptual learning; categories; comparison;
adaptive learning; face perception

Introduction
Many real-world learning tasks involve classification of
objects, displays, or situations into perceptual categories,
such as a person recognizing a face as belonging to a
particular person or a dermatologist classifying a skin lesion
into one of several diagnostic categories. Improvement in
such tasks rests heavily on processes of perceptual learning
– experience-driven improvements in the pickup of
information (Gibson, 1969). There are a number of different
ways in which perception improves with experience in some
domain (Gibson, 1969; Goldstone, 1998; Kellman, 2002).
Of these, learning to classify exemplars into perceptual
categories requires the discovery and selective pickup of
commonalities amongst members within a category, as well
as the discovery of features and relations that distinguish
different categories (Gibson, 1969; Homa & Chambliss,
1975). These improvements in the pickup of information are
often accompanied by more rapid classification that occurs
with reduced effort and attentional load.

Because of the importance of multi-category perceptual
classification to many educational and training situations,
there has been considerable interest in how to optimize this
kind of learning in instruction and learning technology.

Comparisons
Considerable research has identified comparison as
important for facilitating the learning of categories (Medin,

Goldstone, & Genter, 1993; Spalding & Ross, 1994).
Comparison has been studied in various ways including as a
learning strategy by which multiple stimuli are assessed in
terms of their common structural features (Gentner & Namy,
1999; Kurtz & Gentner, 2013; Lowenstein, Thompson &
Gentner, 1999). One form of comparison consists of
simultaneous presentation of information from the same or
alternative categories. These simultaneous comparisons may
be especially helpful in perceptual learning tasks involving
categories with variable instances that share common
structural characteristics. Concurrent presentation of items
from different categories may allow learners to more easily
discover distinguishing characteristics. Evidence suggests
that such concurrent exposure can lead to improved
differentiation for those items later on (e.g., Mundy, Honey,
& Dwyer, 2007, 2009), as well as enhanced transfer
performance in perceptual and category learning paradigms
(Andrews, Livingston, & Kurtz, 2011; Carvalho &
Goldstone, 2014; Higgins & Ross, 2011; Homa, Powell, &
Ferguson, 2014; Kurtz, Boukrina & Gentner, 2013).

Recent research has begun to study the effectiveness of
simultaneous comparisons in the context of adaptive
learning. In studies conducted by Jacoby, Massey, and
Kellman (2021), participants received a combination of
single item classification and simultaneous comparison
trials. Most trials involved single classification trials, but
when two errors involving the same pair of categories were
made, an adaptively-triggered comparison trial was
generated. On these trials, participants were presented with
a category label and instructed to choose between two
images from the confused categories before resuming
standard trials. Ultimately, when compared to a condition
containing only single classification trials, the inclusion of
comparison trials resulted in faster and more efficient
learning. A separate study showed that adaptively-triggered
comparisons were more effective in enhancing learning than
an equal number of non-adaptive comparison trials inserted
into the learning phase. The benefit of adaptively-triggered
comparisons was attributed to their providing targeted
opportunities to identify distinguishing features and resolve
learner-specific confusions between categories.

Whereas comparison trials that are presented when
learners struggle with certain category discriminations are
helpful, an interesting question is whether using all
comparison trials throughout learning might be as good or
even better than presenting individual classifications with
selective comparisons. Unlike most active learning

2372
In J. Culbertson, A. Perfors, H. Rabagliati & V. Ramenzoni (Eds.), Proceedings of the 44th Annual Conference of the Cognitive Science
Society. ©2022 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



approaches which require the classification of each
presented item, comparison trials restrict participants to
choosing between a limited set of options (often two).
Without the cognitive load of considering all possible
categories, this format may enable participants to devote
more attention to extracting perceptual invariants that will
advance learning. However, there is a concern that learning
in this format alone may be too easy to produce meaningful,
long-lasting learning. In particular, it may be difficult to
transition from differentiating between only two items to
making future classification judgments across all learned
categories. Additionally, with guessing rates at 50% for
paired-comparison trials, there is the potential to induce a
misleading sense of fluency, as participants may be able to
progress quickly through learning based partially on chance
responding. In the present work, we evaluated the utility of
paired-comparisons for learning relative to single item
classification trials in which learners must identify an item
with one out of a large set of possible response categories.

Adaptive Spacing
In the present study, all conditions employed an adaptive
learning system that spaced categories as a function of the
individual’s accuracy and response times. Detailed
descriptions of this adaptive response-time based scheduling
(ARTS) system can be found elsewhere (Mettler, Massey &
Kellman, 2011, 2016).

Prior research has demonstrated a benefit of spaced item
presentation on the learning and transfer of perceptual
categories, (Kang & Pashler, 2012; Kornell & Bjork, 2008),
and the application of adaptive methods have been
evidenced to amplify this benefit (Mettler & Kellman,
2014). While adaptive systems have been successfully
tested in a variety of perceptual learning domains, they have
not been systematically examined with respect to type of
classifications that learners make on each trial. Assessing
the present learning formats within an adaptive context
could contribute to understanding of learning processes and
also yield useful information about presentation modes in
learning technology systems.

We assessed learning and transfer performances across
three types of learning conditions: an All Comparisons
condition, a Single Classification condition, and a Dual
Classification condition, in which participants chose a name
to go with each of two faces presented side by side. Dual
classification was included as a hybrid format that might
leverage possible learning benefits of both single item
classifications and paired comparisons. Following learning,
participants were tested on their ability to classify
previously seen as well as novel images of the learned face
categories.

Method
Participants
75 total participants were recruited from the University of
California, Los Angeles subject pool to participate in this
experiment.

Stimuli
The stimuli used were five distinct pictures of 22 different
human male faces for a total of 110 unique images taken
from a larger database (Min, Kose, & Dugelay, 2014). Four
images of each of the 22 categories were used in the
learning phase. Non–face details such as hairstyle or visible
clothing could vary across images within the same category;
however, the distance from camera, background, and final
image size (256 X 256 pixels) remained identical across all
exemplars. Variations in pose and non-face details
encouraged participants to focus on learning perceptual
structure of faces rather than specific image details. The
fifth image in each category was set aside for use as a novel
stimulus in immediate and delayed posttests.

Each learning category consisted of face images from the
same person, and each category was identified with a name.
The names were chosen to be unremarkable, and were taken
from the Social Security list of most common names given
in the United States in 2000-2009.

Design & Procedure
Each participant was assigned to one of three learning
conditions. All participants completed a learning phase
followed by an immediate posttest. Delayed posttests were
completed one week later.

In the Single Classification condition, on each trial, one
face was presented with all 22 possible name options
organized alphabetically below. Participants selected the
name corresponding to the face presented. In the All
Comparisons condition, two faces, each from a separate
category, were presented side-by-side under the prompt
“Which one is [Category Name].” Participants were
instructed to click on the image of the person named.
Immediate feedback was given, with the correct label being
presented for both images. In the Dual Classification
condition, two faces were presented side by side, as in the
All Comparisons condition, but participants chose the
correct name for each face, as in the Single Classification
condition. Participants could compare the two faces in the
Dual Classification condition, but they were not directly
instructed to do so. Figure 1 shows the layout for the 3 trial
types.

In all conditions, participants were given 40 seconds to
complete each learning trial and up to 10 seconds to view
feedback. Feedback was given in the form of a green
checkmark appearing alongside their answer choice when
correct and a red ‘X’ appearing when incorrect.
Additionally, when an incorrect answer was given, the
correct name label appeared below the face.

Categories were adaptively scheduled and interleaved
through the Adaptive Response Time-Based Sequencing
(ARTS) system. During learning, each learning item is
assigned a priority score indicating the relative benefit of
that item appearing on the next learning trial. The priority
score for each item, updated after every trial, was a function
of learner accuracy, response times, trials elapsed since last
presentation, and progress toward meeting mastery criteria.
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Figure 1. Trial layout for the three learning conditions. A.
Single Classification (“Choose the name that goes with the
face”) B. Dual Classification (“Choose the name that goes

with each face”) C. All Comparisons (“Which one is
Ryan?”)

(See Mettler, Massey & Kellman, 2016 for computational
details.) The sequencing algorithm presented the highest
priority item on each trial. Incorrect responses indicated low
learning strength for an item and generated a high priority
for recurrence. However, ARTS also utilizes an enforced
delay, such that even a high priority item cannot recur while
feedback from a recent instance still resides in working
memory. In the present study, we used an enforced delay of
3 classifications with some “jitter,” such that the delay was
sometimes 2 or 4 (each 25% of the time). As an individual’s
learning strength for a given learning item increased
(indicated by accuracy and lower RTs), the ARTS algorithm
automatically generated lower priority, and longer
recurrence intervals, as an inverse function of the logarithm
of reaction time. For the All Comparisons condition, where
two faces were presented but only one response was made,
one face category was considered the target on each trial,
and accuracy and RT from that trial influenced only the
scheduling of that category.

In all conditions, a category was considered mastered and
subsequently retired from the learning set after four
consecutive correct classifications were made. Retired
categories only re-emerged when necessary to achieve
correct spacing intervals for the remaining, unmastered
categories. Immediately following learning, participants
were administered a posttest. One previously seen exemplar
per category, as well as one novel exemplar per category,
were randomized and presented sequentially for
classification. The layout of each test trial was identical to
the learning trials in the Single Classification condition;
however, no feedback was given during testing. A delayed
posttest, administered one week later, was identical in
content and structure to that of the immediate posttest.

Dependent Measures and Data Analysis
For each participant, we recorded the number of
classifications invested in learning to achieve mastery for
each category, the total time invested in learning, and

accuracies on the immediate and delayed posttests. Learning
efficiencies were also calculated. Efficiency measures
provide a way of measuring learning that incorporates
variations in both learning and posttest performances.
Because mastery criteria were used, participants differed in
the number of trials and time invested in learning.
Efficiency combines accuracy gain and the investment in
learning by dividing accuracy gains by classifications or
time invested. A classification-based efficiency measure
divided posttest accuracies by the number of classifications
made for each participant. For this measure, we counted
each trial in the Dual Classification condition as two
classifications. A second approach looked at the total
amount of time invested in the learning phase. This
time-based efficiency measure was calculated for each
participant by dividing posttest accuracy by time, measured
in minutes. As an additional method for comparing
conditions, we modeled learning rates during training by
fitting exponential functions for each participant (Dosher &
Lu, 2007; Cochrane & Green, 2021). Initial levels of
knowledge were assumed to be zero, asymptotic learning
was assumed to be 100%, and the learning time was used
along with posttest percent correct to obtain the single free
parameter of learning rate for each participant. Condition
comparisons for all measures were compared using ANOVA
and other standard parametric statistical methods. Since we
sought to compare differences among the conditions, we
conducted planned comparisons between pairs of conditions
for each measure. Previous research on adaptive
comparisons (Jacoby, et al., 2021) revealed condition
differences with medium to large effect sizes; we anticipated
similar effect sizes in the present study.

Results
We first examine the differences among conditions in the
number of learning classifications and time required to
reach mastery criteria during learning and in accuracy
scores on posttests. We then turn to our primary measure of
learning efficiency which relates investment during learning
to posttest performance as a rate and is a particularly
informative measure when all participants learn to criterion.
Finally, we report the results of modeling the average
learning rates for each condition to assess the degree to
which the learning curves were similar or divergent.

Learning Measures
Learning classifications to criterion differed across the three
conditions and favored the All Comparisons condition. A
3-way ANOVA on classifications invested by learning
condition revealed a reliable main effect of condition, F(2,
74) = 11.92, p < .001, ηp

2 = .244. Contrasts between
conditions revealed a reliable difference between the mean
number of classifications made in the the All Comparisons
condition (M = 136.88, SD = 38.23) and Single
Classification condition (M = 235.28, SD = 97.78), t(48) =
4.69, p < .001, d = 1.32, as well as between the All
Comparisons condition and the Dual Classification
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condition (M = 220.44, SD = 81.77), t(48) = 4.63, p < .001,
d = .83.

Total time invested in learning was assessed in a separate
ANOVA. We observed a reliable main effect of condition,
F(2, 74) = 18.57, p < .001, ηp

2 = .334, with reliable
differences between the mean time (min) invested in the All
Comparisons condition (M = 16.36, SD = 8.51) and the
Single Classification condition (M = 34.56, SD = 12.94,
t(48) = 5.876, p < .001, d = 1.66, as well as between the All
Comparisons condition and Dual Classification condition
(M = 29.92, SD = 11.02), t(48) = 4.87, p < .001, d = 1.34.

Accuracy Measures
Accuracy in both the immediate and delayed posttests was
highest for the Single Classification condition, followed by
the Dual Classification condition, and then the All
Comparisons condition. These patterns were confirmed by
the analyses. A 3 X 2 mixed factor ANOVA with a
between-subjects factor of learning condition and a
within-subjects factor of posttest phase showed a main
effect of posttest phase, F(1, 72) = 182.85, p < .001, ηp

2 =
.717 as well as a main effect of learning condition, F(2, 72)
= 17.87, p < .001, ηp

2 = .332, and no reliable interaction. At
immediate posttest, accuracy was highest for the Single
Classification condition (M = .88, SD = .10), followed by
the Dual Classification condition (M = .84, SD = .14), and
the All Comparisons condition (M = .62, SD = .20). There
was a reliable difference between the Single Classification
and All Comparisons conditions, t(48) = 6.02, p < .001, d =
1.70, as well as between the Dual Classification and All
Comparisons conditions, t(48) = 4.50, p < .001, d = 1.27.

At the delayed posttest, accuracy was again highest for
the Single Classification condition (M = .64, SD = .19),
followed by the Dual Classification condition (M = .63, SD
= .19), and then the All Comparisons condition (M = .41,
SD = .20). The difference between the Dual Classification
condition and All Comparisons condition was significant,
t(48) = 3.92, p < .001, d = 1.11, as was the difference
between the Single Classification and All Comparisons
condition t(48) = 4.09, p < .001, d = 1.15.

Subsequent analyses examined posttest performance
broken down into old versus novel items. At immediate
posttest, there was a reliable main effect of item type, such
that all conditions performed better on old items than novel
items, F(1, 72) = 40.125, p < .001, ηp

2 = .358. This pattern
was also present in the delayed posttest, with old items
being classified correctly more often than novel items, F(1,
72) = 10.84, p = .002, ηp

2 = .131. There was no interaction
found between condition and item type at either phase of the
posttest, both p > .130.

Efficiency Measures
Efficiency comprised the primary measure in this work,
because it combines the classifications or time invested in
learning and the learning outcome of accurate identification
performance. It may be considered a rate measure of
learning.

Figure 2 shows the efficiency results based on time by
condition on the immediate and delayed posttests. For
convenience, we express this measure in terms of accuracy
gain per 10 min of learning time. At the immediate posttest,
efficiency based on time favored the All Comparisons
condition such that for every 10 minutes invested there was
a 47.45% mean increase in posttest accuracy (SD = 27.33),
whereas those in the Single Classification condition saw a
28.90% (SD = 10.50) increase, and those in the Dual
Classification condition saw a 32.36% (SD = 13.51)
increase. A 3 x 2 ANOVA on condition and posttest version
showed a main effect of posttest phase, F(1, 72) = 119.62, p
< .001, ηp

2 = .624, and a main effect of condition, F(2, 72) =
5.33, p = .007, ηp

2 = .129, as well as a significant condition
by posttest interaction, F(2, 72) = 6.55, p = .002, ηp

2 = .154.
A test of simple main effects revealed significant differences
in efficiency at both the immediate posttest, F(2, 72) = 7.02,
p = .002, ηp

2 = .159, and delayed posttest, F(2, 72) = 3.25, p
= .045, ηp

2 = .129. Planned contrasts revealed reliable
differences between the All Comparisons condition and the
Single Classification condition, t(48) = 3.17, p = .003, d =
.84, as well as between the All Comparisons and Dual
Classification conditions, t(48) = 2.48, p = .017, d = .70.

At the delayed posttest, time-based efficiency again
favored the All Comparisons condition such that for every
10 minutes invested in learning, we observed a 32.65% (SD
= 23.37) mean increase in accuracy. Those in the Single
Classification condition saw a 21.33% (SD = 93.75)
accuracy increase, and those in the Dual Classification
condition saw a 24.48% (SD = 12.17) increase. The All
Comparison condition reliably exceeded the Single
Classification condition, t(48) = 2.23, p = .030, d = .63. The
difference between the All Comparisons and the Dual
Classification conditions was not statistically reliable, p =
.128, nor was the difference between the Single
Classification and Dual Classification conditions, p = .317.

Based on classifications completed in learning rather than
time, the mean efficiency rate at immediate posttest was
highest for the All Comparison condition (M = .0051, SD =
.003), followed by the Dual Classification condition (M =
.0043 SD = .0016), and the Single Classification condition
(M = .0043 SD = .002. At the delayed posttest, efficiency
was again highest in the All Comparisons condition (M =
.0034, SD = .002), followed by the Dual Classification
condition (M = .0033, SD = .002), and then the Single
Classification condition (M = .0032, SD = .002). However,
these differences at both the immediate and delayed
posttests were not reliable. A 3 X 2 mixed factor ANOVA
on learning condition and posttest phase revealed a
significant main effect of posttest phase, F(1, 72) = 128.73,
p < .001, ηp

2 =.641, as well as a significant condition by
posttest interaction, F(2, 72) = 3.43, p = .038, ηp

2 = .087.
However, tests of simple main effects did not reveal a
significant difference among conditions at either phase of
the posttest, both p > .280.
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Figure 2. Time-based efficiency in immediate and delayed
posttest by learning condition.

Learning Rate
The efficiency results suggest that the All Comparisons
condition actually produced the best learning. If so, this
would be a remarkably useful finding, in that individual
trials requiring the learner only to make a two-choice
discrimination are relatively easy, and the time to criterion
was shortest. Individual trials took about 8.82 sec in the
Single Classification condition but only 7.17 sec in the All
Comparisons condition. (These times include the time
learners spent examining feedback.)

Despite the appeal of the possible finding that using all
comparisons might be a superior approach to learning, both
in ease and efficiency, we were concerned that this result
might be somewhat illusory. All conditions used the same
mastery criterion of 4 consecutive accurate responses (for a
category), but this criterion was easier to achieve in the All
Comparisons condition, due to a chance accuracy rate of .50
(as compared to 1/22 in the classification conditions). Note
that this difference in chance accuracy was not inadvertent;
it was a consequence of the research goal to test paired
comparisons vs. multi-category item classification.
However, it allowed the All Comparisons condition to
achieve apparently higher efficiencies, despite lower
accuracy at posttest, due to a much lower number of
learning classifications or time.

These considerations are especially important given that
learning curves tend to be negatively accelerated. A
condition that is actually proceeding along the same
learning curve might actually appear to give “more bang for
the buck” if it stops at an earlier point in the course of
learning than another condition that continues longer. Yet,
these might be equivalent as learning conditions in that they
are sampling from the same underlying rate of learning.

To investigate this possibility, we modeled learning
curves in the three conditions based on their learning
investments and posttest outcomes. Rates of learning were
modeled using a simple exponential function relating the
time spent in learning to the performance level at immediate
posttest (c.f., Dosher & Lu, 2007; Heathcote, Brown &
Mewhort, 2000). Posttest accuracy is given as:

(1)𝑝𝑜𝑠𝑡𝑡𝑒𝑠𝑡 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (1 − 𝑖) − 𝑒(−𝑎𝑡)

where i is the initial level of knowledge (set to zero for this
experiment), a is the learning rate and t is time. This
analysis allowed us to compare conditions because
participants in all conditions took a common posttest and all
were measured for time in training.

Equation 1 was fit to each participant’s data, and the
estimates of a were averaged to obtain each group’s learning
curve. Figure 2 shows the curves for each condition by time.
A one-way ANOVA showed no reliable differences among
conditions, F(2, 72) = 0.58, p = .561, n.s. When analyzed by
classifications, rather than time, there was no significant
main effect of condition on learning rates, F(2, 72) = 1.70, p
= .189, but there were marginal advantages of both
classification conditions over the All Comparisons condition
(t(48)=1.789, p = .080 for the Dual Comparison condition,
and t(48) = 1.699, p = .096 for Single Classification).

Figure 3. Learning curves by condition based on time.
Dashed lines show curve fits for each condition based on a
learning rate parameter that is +/- 1 standard error of the

group mean learning rate parameter.

Discussion
Prior research has demonstrated that perceptual learning can
be enhanced through the inclusion of comparison trials.
However, little research has investigated the efficacy of
learning exclusively through paired-comparison trials. The
results of this experiment demonstrate that learning with all
comparisons may be an equally viable approach to
perceptual category learning as the more common
classification-based trials.

Participants in all learning conditions showed significant
learning and transfer to 22 distinct face categories. While
prior research has traditionally been conducted with
significantly fewer categories (e.g. 2 or 3), this finding
provides evidence for the effectiveness of perceptual and
adaptive learning methods in handling large quantities of
unknown categories at once.

Use of all comparison trials led to faster learning as
measured through classifications made and time invested,
and time-based efficiency measures suggested an advantage
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of learning with all comparison trials relative to the other
conditions. However, subsequent learning curve analyses
did not show underlying differences, especially when
learning was considered in terms of time invested. These
results suggest that the learning trial formats tested here may
be best characterized in terms of the same or similar, rather
than divergent, learning rates.

The higher measured efficiency of the All Comparisons
condition likely derived from the higher chance accuracy on
comparison trials and the use of the same mastery criteria
for all conditions. While this chance accuracy disparity was
a necessary consequence of comparing two fundamentally
different trial formats, participants in the All Comparisons
condition were likely assessed on posttests before they had
learned the material to the same strength as those in the
other conditions. As the modeled learning rates suggest, had
participants in the All Comparisons condition invested as
much time or as many classifications in learning as those in
the other conditions, they likely would have performed more
similarly on the posttest as well. Future work will address
rates of learning under equivalent durations of learning and
conditions of category retirement.

The performance of the All Comparisons condition may
be particularly impressive given the structure of the
posttests. As described, the posttest trials were identical in
format and task to the single classification learning trials
(and thus also very similar to the dual classification trials);
consequently when learners in these conditions reached the
posttest, they were already familiar with both the layout of
the trial and name options and had received repeated
practice with the particular task. For those in the All
Comparisons condition to have been able to perform as
strongly as they did at testing, it suggests that learners were
able to pick up the relevant information for face
identification in a way that was long-lasting and transferable
to a new task format.

Surprisingly, despite the reported benefits of simultaneous
presentations, we observed no benefit of the dual
classification trials relative to the single classification,
sequential trials. There are a few possible explanations for
this result. First, as previously mentioned, while the design
of the dual classification trials does allow for comparisons
between the presented categories, it is also possible to
approach each classification independently. If participants
focused on each face separately without considering the
relation between the faces, potential benefits of the
simultaneous presentation were likely not utilized. Recent
research has also provided evidence to suggest that in
classification-based learning, the goal of making successful
classifications on a trial may actually detract learners from
comparing presented items, thus undercutting the benefit of
simultaneous presentation (Patterson & Kurtz, 2020). As
previous research has shown an advantage to comparisons
that direct attention to relevant features (Hammer, et al.,
2008; Kurtz, Boukrina & Gentner, 2013; Kurtz & Gentner,
2013), it is unsurprising that simultaneous presentations that

do not incentivize comparison do not produce
discrimination benefits in learning.

An alternative explanation for why a difference was not
detected may have to do with the interleaved presentation of
categories used in this experiment. While we have focused
on comparisons as occurring between simultaneously
presented stimuli, it has been suggested that in paradigms
with single, sequential trials, participants may make
sequential comparisons between the currently viewed item
and the most recently viewed item, or with prior information
relevant to the structural relations between categories
(Carvalho & Goldstone, 2015, 2017; Kang & Pashler, 2012;
Kurtz & Gentner, 2013). Interleaved presentation of
categories in the present experiment may have allowed
participants in the Single Classification condition to attain
some of the benefits of comparisons.

Despite significant research on the benefit of comparison
in perceptual learning, category learning paradigms and
applications in learning technology have relied heavily on
single classification trials. The present research offers
another effective approach to learning: paired comparison
trials. The critical information learned through this trial type
is shown to be long-lasting and generalizable. Intuitively,
this format is comfortable and probably lower in cognitive
load than considering multiple categories in single
classification trials.

This study has limitations. While the modeled learning
rates across conditions served to mitigate some concern
regarding differences in terminal learning strength, they
relied on the assumption that learning increases in
accordance with the exponential model across all conditions
and at all points in learning. If learning gains follow an
alternative pattern, it may not be adequately accounted for
in the present analyses.

Although the use and structure of comparison trials in
perceptual learning deserves further research, the results of
this study already suggest interesting implications for future
designs of learning interventions for multi-category
perceptual classification. More generally, as the role of
perceptual learning in the development of expertise has
become better recognized in a variety of learning domains,
advances in understanding this form of learning and the
conditions that optimize it have important implications for
instruction and learning technology. The finding that
effective learning can be based exclusively on
paired-comparisons is both theoretically interesting and
likely to be practically useful in applications of learning
technology to real-world learning settings.
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