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Abstract

An exploration into adaptive methods for decreasing wear-leveling in SCM

by

Isaak Cherdak

Storage Class Memories (SCM) have recently emerged as promising technologies

for use as system memory because of their advantages such as non-volatility, byte

addressability and low idle power usage. Nevertheless, lower write endurance,

higher asymmetric read/write latencies, and stronger consistency requirements

pose new challenges for using SCM rather than DRAM as the next generation of

memory. In this report, we focus on endurance challenges in SCM. More specifi-

cally, we challenge traditional simplified wear-leveling methods like Flip-N-Write

[10] by exploring the merits of adapting to data sets dynamically. In the process,

we develop a novel method for improving wear leveling on SCM: Adaptive Bit

Flip Pattern Learning (ABFPL). We show that our method works best in software

rather than as a hardware implementation since it allows for more adaptability

to changing workloads. We provide and demonstrate a preliminary configuration

which can improve wear in a larger set of datasets than previous approaches.

We evaluate our method and show it to have up to a improvement of 57% over

Flip-N-Write [10].
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Chapter 1

Introduction

1.1 Existing approach to utilizing memory

Much of computing today is designed around the assumption that memory is

volatile and has much lower latency than that of persistent storage. DRAM is

usable on a byte-addressable bus, enabling its use as the store for all data that is

actively used in various applications that require in place updates. In addition,

DRAM provides flexibility for applications utilizing data structures which don’t

maintain failure consistency. Maintaining consistency after failures has been less

challenging in systems that utilize only DRAM since such errors do not persist in

memory across reboots. At the same time, this means that memory is looked at in

a more general way—as a storage write-back cache. However, failure consistency

models for in-memory data structures are being reconsidered with the advent of

Storage Class Memory (SCM) due to its persistence across reboots.
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1.2 Storage Class Memory is coming

Storage Class Memory [6] is a class of technologies that provides a middle

ground between memory and storage. Thus, like memory, it provides lower la-

tencies, byte-addressability, and usability on the memory bus. Additionally, it

provides data persistence across power cycles like persistent storage does. While

SCM enables new applications, such as instant reboot [42] after a safe shutdown,

and quick recovery [1] after unexpected crashes, it introduces new problems as well.

Among these issues exist concerns for crash consistency [43] and wear-leveling [38].

In particular, wear-leveling is important in SCM because unlike current persistent

devices, such as SSDs and HDDs which can automatically distribute writes evenly,

SCMs are byte addressable and thus permit use cases that cause certain sectors to

be written more frequently. Nevertheless, SCM technologies are promising, albeit

with much work still to be done before they can be deemed usable for consumers.

1.3 The challenges of adopting SCM

SCM permits new use methods while posing new challenges to usability. Stud-

ies have shown that the closest SCM technology to being released for commercial

use on the memory bus is Phase Change Memory (PCM) [28], which operates by

heating Chalcogenide cells to one of two states. The state of a cell is interpreted

as a one or zero and can be read much more quickly than can be overwritten.

A resulting difference is for PCM power usage, which scales primarily based on

writes that require a voltage spike to reheat the Chalcogenide, whereas reads have

negligible power utilization for reading a cell’s state. On the other hand, DRAM

has constant power scaling [46, 44] since it must be refreshed at a constant rate,

regardless of the frequency of reads and writes. This is done in order to avoid
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losing data. Another difference is that PCM has write latencies that are up to two

orders of magnitude higher than DRAM. More differences include the contrast be-

tween a PCM [38] endurance of 108 writes, and a DRAM [28, 2, 27] endurance of

1016 writes. These differences boil down to one major question: is it worthwhile to

consider algorithms that trade writes for additional reads [7]? In addition, simply

decreasing the total number of writes is not necessarily the best approach to de-

crease wear. As Bittman et al. demonstrate [5], we should focus on reducing the

Hamming distance, or the sum of bit-wise differences, when a write is performed.

Since SCM controllers only need to write the bits that are being flipped, Hamming

distance is a good metric for accurately measuring SCM wear-leveling.

1.4 Prior SCM wear-leveling approaches

Some existing approaches to wear-leveling focus on simple ways to decrease

the Hamming distance when a write occurs. These methods trade off additional

space and writes for fewer bits flipped. More specifically, they write an offset which

uniquely identifies the operation required to recover the original data. Generally,

these methods are very simple and as such, are proposed for implementation at

the hardware level.

Flip-N-Write [10] is a good example of existing SCM wear-leveling approaches.

In Flip-N-Write, a two bit offset is used to encode a changeset. If the Hamming

distance of a given half is more than 25% of the total Hamming distance, the half

gets inverted before being written. In addition, the corresponding offset bit is set

if the write is inverted. Despite the benefits of Flip-N-Write, this method is too

simple to adapt to any dataset dynamically. For example, a bit string of alternat-

ing ones and zeroes is a worst case scenario for the Flip-N-Write approach since

both halves have a Hamming distance of 25% the string length. This continues
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to be the case, regardless of how many times the bit string occurs. Therefore, in-

stead of this simplistic approach, we decided to use a technique that can decrease

bit-flips while also adapting to a larger variety of datasets.

1.5 A New SCM wear-leveling approach

Existing systems don’t provide mechanisms for adapting to datasets. This

leaves them in a position where the same worst case data can be provided repeat-

edly with no improvement over time as shown with Flip-N-Write above. We define

adaptive wear-leveling methods as those that save information about writes over

time to dynamically decrease their effect on endurance. Adaptive systems also

could have a number of parameters such as the frequency at which information

on writes is saved, and the maximum amount of information that can be saved

at a time. These parameters must be chosen differently depending on the system

for best results. Existing methods are simple enough to implement in the hard-

ware and would not gain any advantage from a software-level implementation.

However, while adaptive systems are likely to be more difficult to implement in

hardware due to their added complexity, they will also benefit from a software-

level implementation to maximize their flexibility. To the best of our knowledge,

no adaptive SCM wear-leveling methods have been proposed up until now.

1.6 Introducing ABFPL

To counter existing traditional methods, we propose a new approach called

Adaptive Bit-Flip Pattern Learning (ABFPL), which is designed to explore the

territory of adaptive wear-leveling on SCM. ABFPL works by tracking bit-flips

at per-bit granularity for each write requested, in order to dynamically construct
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an array of patterns—or bitmasks—which reflect the bits that flip the most. To

compare, Flip-N-Write can be seen as a method with four static patterns, de-

noting the inversion of left half, right half, all, or none of the bits. In contrast,

ABFPL can choose from a number of dynamically constructed patterns designed

to optimally consider the bits being flipped by incoming writes. ABFPL also has

a number of ways in which it can be pre-configured to optimize for datasets with

certain known characteristics. For example, if it is known that datasets generally

only vary the lower 16 bits of a write, ABFPL can be pre-configured to construct

patterns that only mask 16 bits. Next we will discuss some of the motivations for

creating ABFPL, discuss the design which includes the main features and major

pre-configurable parameters, and finally show the potential of using adaptive ap-

proaches to improve wear-leveling on SCM by comparing ABFPL to Flip-N-Write.

1.7 Contributions

1. We design and implement ABFPL, an adaptive approach to decreasing wear

leveling on SCM, which trades additional writes and latency for fewer bits

flipped.

2. We provide the results of an evaluation comparing the performance of ABFPL

against that of Flip-N-Write in bits flipped, latency, and write amplification.
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Chapter 2

Motivation

2.1 The application knows best

There is a common trend among a large portion of the literature on SCM wear-

leveling: ideas are focused on very simple algorithms, often primarily to allow for

the design to be implemented at the hardware level. However, Bittman et al.

demonstrate [5] that a large source of bit-flips originate from writes requested at

the application layer. This indicates that the application layer has much more

potential for being optimized for specific patterns. In addition, the application

has the most context regarding the data that it operates on. As an example,

Persistent Memory Logs [30] primarily contain ASCII characters, and an adaptive

approach can take advantage of this by optimizing for the datasets that will come

from this application.

2.2 From prediction to adaption

ABFPL was conceived by thinking about how to mask the bits that are flipped

most frequently. While most traditional approaches are simple, some methods like
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Captopril [23] take a more predictive approach where they consider patterns that

represent some preconceived notion of common bit-flip patterns. However, this

isn’t sufficient because there are too many different variations of datasets. For

example, if a system establishes that 16 particular bits are most likely to be

flipped in every dataset, it will not help against a dataset in which a different

16 bits are flipped the most. In contrast to the predictive approach, we decided

to calculate how many times each bit-flipped in a batch—or a group of writes

buffered to DRAM—and determine a pattern that would consider the bits which

flipped the most. However, in order to most optimally match patterns to writes,

an ordering must be established. Writes initially must be buffered to DRAM while

counting the number of times each bit has flipped. Once the batch is completed, a

pattern masking the most frequently flipped bits is added to the pattern table—or

array of patterns. Finally, before each write from a batch is written to SCM, the

optimal pattern, often being the one constructed from this batch, is selected. In

this way, ABFPL adapts to datasets rather than simply predicting based off a

preconceived notion of a common bit-flip pattern.

7



Chapter 3

Background

3.1 SCM Challenges

Low write endurance [38] means that it takes SCM fewer writes than DRAM

before cells become corrupted and do not consistently work as required.

High write latency and asymmetric read/write latency mean that SCM needs

to be utilized differently than DRAM. Normally read and write operations would

take the same time on a memory bus, however this would no longer be the case.

There is also a need for stricter consistency requirements since corruptions will

persist across reboots.

3.2 SCM Special Applications

3.2.1 Instant Restart

Since SCM doesn’t lose data across power cycles, normal reboots can set the

contents of memory to contain a valid system state. For example, memory could

be pre-loaded with the contents it would have by the time it normally reaches a
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login screen, and it would persist after a shutdown because SCM is non-volatile.

In addition, most of the time booting is normally spent copying the memory

from storage. With these two important concepts combined, instant reboot [42]

becomes possible.

3.2.2 Persistent Memory Logging

Persistent Memory Logging (PML) is a system of logging which is performed

on SCM rather than storage. This is because PML is often used to log critical

system data that would be lost in higher volumes if waiting for IOs to complete.

By logging directly to main memory, it is easier to guarantee that data loss is

minimized. Finally, PML guarantees that logs are up to date and consistent,

which enables fast recovery [1].

3.3 SCM wear-leveling

There is some work that focuses on reducing the number of extra writes

through a RBW (Read Before Write) mechanism. Flip-N-Write [10] and frequent

pattern compression [17] are among those approaches. In Flip-N-Write, they use

one overhead bit for each segment to show whether the recorded data is being in-

verted or not. This design ensures that the number of bit-flips will not exceed N
2 ,

where N is the total number of bits in a word (if we do not consider the overhead

bits). Frequent pattern compression [17] tries to find some common patterns and

then compress data to reduce the number of bit-flips in SCM. Although this ap-

proach has succeeded in reducing the number of writes compared to Flip-N-Write,

it might lead to premature failure of some specific high-entropy cells [40].

In Captopril [23], the authors show that because there are some specific pat-
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terns in written bits, they can reduce the total number of writes through consid-

ering some initial patterns to mask hot locations in writes. They determine these

hot locations by considering the bit-flip patterns of many different datasets. Their

results show some improvement in the number of bits written in NVM. However,

as it is clear, this method cannot guarantee that it works for any kind of appli-

cation and data set. In other words, Captopril’s practicality is limited to specific

data sets.

Flip-Mirror-Rotate [40] is another system that tries to reduce the number of

bit-flips per write. This method takes advantage of two existing methods, Flip-N-

Write [10] and Frequent Pattern Compression (FPC) [17], to reduce the number

of flipped bits. Again, this method uses only predefined patterns to mask some

bits, which cannot guarantee being application agnostic.

MinShift [34] proposes a method to reduce the total number of update bits to

SCMs. Essentially, if the Hamming distance falls between two specific bounds,

data is rotated until the Hamming distance no longer falls in this range. Although

this method is simple, it suffers from high overhead.

In minFS [18], the authors use a combination of MinShift and Flip-N-Write

to decrease the number of written bits. They compute the minimum amount of

some possible states to choose a pattern to encode the data. This method has

advantages and disadvantages of both methods.

The primary way our approach improves over previous ones is through being

adaptive. Previous methods would primarily determine what to write either en-

tirely based off the write request or by utilizing some predetermined prediction

mechanism. In contrast, ABFPL dynamically saves information about requested

writes to adaptively determine the bits that would benefit most from being in-

verted.

10



Chapter 4

Design

4.1 ABFPL Overview

ABFPL adapts to datasets by creating patterns based off the most commonly

flipped bits which are tracked in each batch. In addition, ABFPL can be pre-

configured with a number of variables that can affect performance, and are de-

scribed in 4.2.

Write requests go through a batch buffering procedure in ABFPL. First ABFPL

initializes a pattern table as described in section 4.3. As writes are requested, they

are put into a batch until a pre-configured number of them are gathered as men-

tioned in section 4.4. At this time, a pattern is created using the bit-flip array—an

array of bit-flip counters—and persisted to SCM through the method described

in section 4.5. Finally, the persisting of writes from a batch to SCM is performed

as described in section 4.6. Later patterns can also be deleted as mentioned in

section 4.7. This order must be maintained to ensure that patterns are completed

before writes are persisted to SCM. This is so that writes can be matched with

the patterns constructed from their respective batches.
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Figure 4.1: An overview of the main components of ABFPL and where they
reside. In addition, an example with values from our simulation is shown in A.1

ABFPL also has specific requirements for what data must be stored in SCM

and what must be done to prevent unnecessary wear. There is exactly one pattern

table, batch buffer, and bit-flip array per instance of ABFPL. The pattern table

is the only component of ABFPL that needs to reside on SCM. This is because

patterns in ABFPL are like keys in cryptography: if they are lost, any associated

data cannot be recovered. Figure 4.1 provides a high level illustration of the main

components of ABFPL and where they reside in the system.
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4.2 ABFPL Variables

Firstly, table_size refers to the maximum number of patterns in a pat-

tern table. This must be a power of two to be able to index all locations with

log2(table_size) bits. The table_size also determines the bit-width of the

offset that needs to be associated with each write (log2(table_size)).

Another variable, batch_size refers to the number of writes that will be

buffered to create each pattern. The implication of choosing a particular

batch_size is a trade-off between the creation of accurate patterns and filling

the pattern table too quickly. Smaller values make patterns more representative

of individual writes in a batch, whereas larger values will take longer to fill the

table.

In addition, size_mem_region refers to the portion of the SCM that is asso-

ciated with a given pattern table. This means that only writes that occur within a

particular pattern table’s associated region will be buffered in a batch, considered

for the creation of a new pattern, and written to SCM with an offset referring to

a pattern from this pattern table. Smaller values of size_mem_region mean

that the table will more likely be able to make accurate patterns, especially if the

bit patterns within a region are similar. However, using smaller regions means

more tables are required to cover a portion of memory that otherwise could have

been associated with a single large table.

Also, bit_prctl_cutoff refers to the minimum percentile of bit-flips for a

bit to be included in a pattern. For example, median, or a bit_prctl_cutoff

value of 50, means that a bit has to have at least median bit-flips to be included

and set to one in the new pattern.

In addition, word_bitsize refers to the number of bits per word. In our

preliminary experiments, increasing this results in improving bit-flip performance
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from ABFPL. This was kept at 64 bits for compatibility with the largest common

data type (unsigned long int, or uint64_t). However, writes can be set to take up

entire cachelines by setting word_bitsize to 512 bits, or 64 bytes.

Finally, freq_table_clear refers to the frequency with which the table’s

entries are cleared. However, regardless of the setting of freq_table_clear,

the table can only be cleared if the associated memory has either been cleared or

written back to storage.

4.3 Initializing ABFPL

In ABFPL, patterns are stored in a pattern table which resides in SCM. This

is important because the table is needed to reconstruct the original data: los-

ing it means the data is also lost. This table will take up table_size ×

word_bitsize / 8 bytes for all of its entries. The pattern table can be ini-

tialized with a number of common patterns, but this may not be as useful as

letting it create patterns on its own. However, in our case, the four patterns

analogous to Flip-N-Write are added to the top of our ABFPL pattern tables:

invert left half (0xFFFFFFFF00000000), invert right half (0xFFFFFFFF), invert

all (0xFFFFFFFFFFFFFFFF), and invert none (0x0). This is to ensure that as

a baseline we could at least mask the same bit-flips as Flip-N-Write.

In addition, an array of word_bitsize counters are needed to track the

number of bits flipped in the batch so that a pattern can be made later as described

in section 4.5. This bit-flip array has word_bitsize entries and is initialized

to all zeros. It is stored in DRAM since making it persistent would simply cause

unnecessary wear.
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4.4 Batching writes

In order to create patterns that are representative of the data we are writing,

we must use that same data as a reference. Before a write can be performed, a

pattern has to be created based off of it. Writes will continue to be buffered until

size_batch writes have been requested. All writes buffered for this batch are

stored in DRAM: this means that having a larger size_batch can result in a

larger number of writes lost. While buffering writes to DRAM, the bit-flip array

is updated. More specifically, if a bit would have been flipped when comparing

the write to the value previously in a location, then the associated index in the

bit-flip array is incremented by 1.

4.5 Constructing Patterns

Patterns are created at the end of a batch using the bit-flip array. First,

the batch is sorted by ascending bit-flips, but in an isolated fashion which doesn’t

change the order that writes will be written from the batch. Then a pattern is con-

structed such that bits set to one have as many flips as the bit_prctl_cutoffth

percentile. Thus, this pattern would pre-invert these bits if chosen, by later writ-

ing (pattern ⊕ new_write) rather than the original write value. Finally, the

bit-flip array is reset so that the next pattern will be created using a bit-flip ar-

ray solely considering the next batch. A simple example of creating patterns for

eight-bit words is provided in Figure 4.2 to illustrate this concept.
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Figure 4.2: Example of creating eight-bit patterns from a bit-flip array using a
bit_prctl_cutoff value of 50.

When a new pattern is requested in this case, the bits that have at least the

median number of flips are set to one. All other bits are zero. Note that eight

bits are used because illustrating pattern creation becomes easier than with 64

bits which our experiments are based on.

4.6 Persisting Writes to SCM

At this point, writes will persist to SCM. For each requested write in the

batch, the ideal pattern is found. The Hamming distance of overwriting an off-

set is also considered. In other words, a pattern is chosen for having a min-

imized Hamming distance for hdist(new_value ⊕ pattern,old_value) +

hdist(new_pattern_offset, old_pattern_offset). Once the ideal pat-

tern is chosen, two writes are performed: first a write of new_value⊕pattern,
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followed by a second write containing the pattern offset—or the index of the pat-

tern in the pattern table—and, if enabled, the valid bit.

4.7 Clearing the pattern table

An ABFPL table will eventually fill up and may not always have the best pat-

terns for future writes. Unfortunately, patterns can only be removed if a pattern

table’s associated memory is also cleared. This is because writes already written

to SCM require their original pattern to be recovered. Luckily, there are applica-

tions that clear entire portions of their memory periodically. A good example of

such an application is Persistent Memory Logging. In persistent memory logging,

data is eventually flushed to storage. During this flush, all the memory associated

with a given table can be cleared. This means that the table’s entries can also be

completely cleared at this time.

4.8 ABFPL Crash Consistency

ABFPL maintains consistency for its pattern table across crashes before, dur-

ing, and after each write operation. A write will also maintain consistency if its

pattern offset is written with a valid bit. Assuming that the valid bit is enabled

for writes, all conditions under each case will apply.

1. In all cases:

• ABFPL will maintain consistency for all patterns and flushed writes

up until the point of a crash, since they are stored in SCM.

• All writes in the recent unfinished batch as well as the state of the

bit-flip array will be lost due to the nature of DRAM losing its data
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across power cycles.

2. Before a write request:

• The write will not be performed.

3. During a write request:

• This write will not persist. Either it will have been only written par-

tially, if at all, to DRAM, or it may have been written partially to SCM

without succeeding to set the valid bit. In either case, the data for this

write will not be considered valid upon system restart.

• This may result in a new pattern being created if this write is the last in

the recent batch and the pattern is successfully written to SCM along

with corresponding pattern valid bit.

• If a pattern is constructed and persists to SCM as described in the

previous point, some writes in the batch, not including this one, may

persist to SCM.

4. After a write request:

• If this is not the last write in the batch, This write will be added to

the batch and be lost, because it was not yet persisted to SCM.

• If this is the last write in the buffer, a new pattern will be constructed

and persist to SCM successfully. In addition, all writes in the recent

batch, including this one, will be persisted to SCM.
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4.9 Conclusion

ABFPL adaptability has the potential to significantly improve bit-flip per-

formance and the flexibility to optimize for datasets with known characteristics.

Next we will look at how we setup our evaluation and our results.
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Chapter 5

Evaluation

5.1 Flip-N-Write Implementation

The implementation of Flip-N-Write is very simple. Both a two-bit offset and

a 64-bit write are considered when calculating bit-flip overhead. If the left half’s

Hamming distance is greater than 25% of the word size, the left half is inverted

and the left offset bit is set. Similarly, this applies to the right half. A valid bit is

not included with writes, since it is not part of the Flip-N-Write spec.

5.2 ABFPL Implementation

Pattern table initialization: The pattern table is created with a size_table

of 256. The size_mem_region varies depending on experiment. The patterns

are all 64 bits, since word_bitsize is also set to 64. The patterns of all zeros,

set right half, set left half, and all ones are included. The binary values of these

are 0x0, 0xFFFFFFFF, 0xFFFFFFFF00000000, and 0xFFFFFFFFFFFFFFFF.

This is so that we include all the cases of Flip-N-Write as a baseline for patterns

to mask.
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Buffering writes: The write is saved in a vector and all bit-flips are added to

the associated indices in the bit-flip array.

Creating new patterns: A pattern add is attempted every time size_batch =

100 writes have been requested. The bit_prctl_cutoff is set to 50, so every

bit that has at least median flips is set in a new pattern. If the pattern doesn’t

exist and there is still space, it is added. Specifically, it is added to the next

available spot in the table that would also result in the lowest Hamming distance.

The table may be cleared depending on the experiment, by choosing a value for

freq_table_clear, so that the table is either never cleared, or cleared soon

after being full.

Clearing the table: A pattern table clear simply sets the valid bit of every

pattern in the pattern table to zero, thus invalidating each one. In our case,

the initial Flip-N-Write patterns are never invalidated since we wanted to always

consider those as a baseline. Furthermore, when a pattern is later added, it is

always added to the index that would result in the smallest Hamming distance,

based off the left over pattern values.

Writing batch to SCM: For every write, the best pattern to decrease bit-

flips is determined. That is, a pattern and associated pattern offset such that

hdist(new_value⊕ pattern,old_value) +

hdist(new_pattern_offset,old_pattern_offset)

is minimized. This also requires reading the old value and old pattern offset in

order to determine which pattern is best. A valid bit is not included with writes

since Flip-N-Write doesn’t include one either. There still are valid bits for pattern

table entries because they are part of the design requirements for ABFPL.
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5.3 Bit-Flips per Write

The calculation for average bits flipped in Flip-N-Write (fnw_fs) and ABFPL

(abfpl_fs) are in equations 5.1a and 5.1c respectively. The Table overhead for

ABFPL (tbl_over) is defined below based off the table size (tbl_sz), the

number of tables (num_tbl), initial pattern bit-flips (init_ptrn_fs), and a

running count of bits flipped for all patterns in the table(all_ptrn_fs). Where

N is the number of actual writes requested, wrt_fsi is the number of bit-flips

for write i, and off_fsi is the number of bit-flips for the offset of write i, the

average bits flipped are:

fnw_fs =

N−1∑
i=0

(wrt_fsi + off_fsi)

N
(5.1a)

tbl_over = tbl_sz× num_tbl + init_ptrn_fs + all_ptrn_fs

(5.1b)

abfpl_fs =
tbl_over +

N−1∑
i=0

(wrt_fsi + off_fsi)

N
(5.1c)

Both the ABFPL structure and pointer are counted toward bit-flips. An ad-

ditional overhead is incurred when creating and deleting patterns. Namely, every

time a pattern is created, the number of bits flipped is added to a running pattern

bit-flip count (all_ptrn_fs). When a clear is performed, every dynamically

created entry is invalidated, not including those baseline Flip-N-Write patterns

that are initially added. This also adds an additional bit to the running pattern

bit-flip count for each invalidation.
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5.4 Gathering Memory Traces

Intel Pin, a programming instrumentation framework, was used to generate

memory traces of the runs for four different programs. These programs from

MiBench [22] are Basicmath, Typeset, Patricia, and Stringsearch. They are cho-

sen because they are also used for evaluation in the Flip-N-Write [10] paper.

In our experimental setup, the generated traces contained the values that are

read/written and their associated memory addresses. As a dataset, this simulates

the kinds of writes that traditional memory would experience during the run of

an application. Furthermore, we simulated performing these writes while keeping

track of bit-flips, latency, and write amplification.

5.5 Firmware Update experiment

Similarly to the Flip-N-Write paper’s [10] Firmware Update experiment, we

simulated a firmware update by overwriting a C executable compiled with -O1 by

code compiled with -O3. We did this by writing the former sequentially onto a

vector, and then overwriting that vector sequentially with the latter. As a dataset,

this is interesting for scenarios where data is being written to an uncached region

of SCM. This experiment keeps track of bit-flips, latency, and write amplifica-

tion. Once again, to compare with Flip-N-Write, these experiments are based off

Basicmath, Typeset, Patricia, and Stringsearch from the MiBench [22].

5.6 Benchmarking System

The benchmarking system evaluated the number of bits flipped per write re-

quest, simulation latency in microseconds per write request, and write amplifica-
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tion per write request using each of the methods. For ABFPL, multiple runs are

performed with different values for freq_table_clear and

size_mem_region. Our simulation generates CSVs for all metrics using each

method. Finally, all result CSVs are analyzed using the Pilot analysis tool [32].

Essentially, this tool provides the mean, variance, confidence intervals, and a num-

ber of other useful statistics on a CSV dataset. At this point we just described

how the evaluation is setup and next we will describe our results.
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Chapter 6

Results

6.1 Overview

The results comprise the bit-flips, latency, and writes of the naive writing

method, Flip-N-Write, and ABFPL. In addition, four parameter variations of

ABFPL are used. Refer to table 6.1 for a description of all methods. The bit-

flips and writes are tracked throughout the simulation. Latency is determined by

timing the functions that perform the associated method’s computations, reads,

and writes. Note that these latencies are gathered on a machine not equipped

with SCM.
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Method Description

Naive Write data directly to SCM without any

wear-leveling method

Flip-N-Write Flip-N-Write algorithm

ABFPL_M0_C0 ABFPL with one table and clear disabled

ABFPL_M0_C1 ABFPL with one table which is cleared

soon after the table fills up

ABFPL_M1_C0 ABFPL with a table every 100 kB, but

clear is disabled

ABFPL_M1_C1 ABFPL with a table every 100 kB, and

clear occurs soon after the table fills up.

Table 6.1: This table gives an overview of what each method does.

In Table 6.1, ABFPL is shown to have two options for the associated mem-

ory region: an associated memory region so large that only one table will ever be

needed, or a region small enough to result in multiple tables (a size_mem_region

value of 100 kB). ABFPL also has two options for clear: either clear is disabled

or it happens every time the batch associated with the last pattern is done being

flushed (a freq_table_clr value of table_size × batch_size).

There are eight datasets in total. Four are the memory traces from the four

different micro benchmarks. The other four are the simulation of a “firmware

update”, which is a dataset that the Flip-N-Write method made use of. Appendix

B also provides more information and discussion about these datasets. Finally,

ABFPL is configured with a table_size of 256, a batch_size of 100, a

bit_prctl_cutoff of 50, and a word_bitsize of 64 throughout all experi-

ments. These are chosen as good values over the course of our experiments and are
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kept constant in order to emphasize the impact of varying size_mem_region

and freq_table_clear instead.

6.2 Bit-flip Results

Bit-flip results are based on experiments using the Basicmath, Typeset, Patri-

cia, and Stringsearch microbenchmarks. Figure 6.1 shows the Trace experiments

with these four microbenchmarks, whereas Figure 6.2 shows the Firmware Update

experiment using these four microbenchmarks.

Figure 6.1: Shown is the number of bits flipped per write request (including
offset) for the naive, Flip-N-Write, and ABFPL benchmarks (less is better) from
the Trace experiment. The values for this graph are listed in Table C.1.
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Figure 6.2: Shown is the number of bits flipped per write request (including
offset) for the naive, Flip-N-Write, and ABFPL benchmarks (less is better) from
the Firmware Update experiment. The values for this graph are listed in Table
C.2.

ABFPL outperforms both the naive and Flip-N-Write methods on most datasets

in terms of total bits flipped per write request. Since naive just writes directly

to memory, it ends up resulting in the most bit-flips. Flip-N-Write is able to

optimize by ensuring that no more than 25% of the total bits flip in each half of

a word. However, ABFPL outperforms Flip-N-Write in most cases. In particular,

the Trace experiment shown in Figure 6.1, illustrates a case where Flip-N-Write

barely can make a difference. This is because on average the bit-flips are kept

under 25% of the 64-bit word size, meaning neither half can be optimized by

Flip-N-Write.
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In regards to the overhead associated with creating multiple tables and up-

dating them individually, the performance suffered where there are more tables

than necessary. In the Trace experiment show in Figure 6.1, certain addresses are

disproportionally written more than others, while some are sparsely written if at

all. This means that those areas which are written more frequently could benefit

from having more tables, whereas those that are sparsely written could perform

better by sharing one big table. On the other hand, in the Firmware Update

experiment shown in Figure 6.2, writes are sequential, meaning each address is

accessed in order and once, so the usage of memory addresses is uniform.

In contrast to the effects of having multiple tables, the pattern table clear

operation generally improved performance. This worked even in the Trace exper-

iment shown in Figure 6.1 because table clear didn’t occur for those tables that

are sparsely used, and therefore overhead of clearing didn’t significantly impact

performance in this aspect. On the other hand, when a table clear occurs, new

patterns are created for a decreased cost in bit flips, since similar patterns are

already written to the table. In addition, the new patterns are more representa-

tive of future batches which results in an overall improvement in bit-flips for most

cases. One particularly interesting case is the Patricia Trace experiment where we

found that the median number of flips was approximately 2× that of the others

on average. This means that the Patricia Trace has significantly more writes than

the other experiments which could benefit from inverting the bits with more than

median flips.

6.3 Simulation Latency

Latency results are based on experiments using the Basicmath, Typeset, Patri-

cia, and Stringsearch microbenchmarks. Figure 6.3 shows the Trace experiments
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with these four microbenchmarks, whereas Figure 6.4 shows the Firmware Update

experiment using these four microbenchmarks.

Figure 6.3: Shown is the simulation microsecond latency per write request (in-
cluding offset) for the naive, Flip-N-Write, and ABFPL benchmarks (less is better)
from the Trace experiment. The values for this graph are listed in Table C.3.
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Figure 6.4: Shown is the simulation microsecond latency per write request (in-
cluding offset) for the naive, Flip-N-Write, and ABFPL benchmarks (less is better)
from the Firmware Update experiment. The values for this graph are listed in
Table C.4.

ABFPL latencies reach up to 10 times that of the naive or Flip-N-Write meth-

ods in our simulations. The Naive method is the fastest because it simply writes

the original value without any additional offsets or optimizations. Flip-N-Write is

similar since it can compute a value to write entirely based off the requested write.

On the other hand, ABFPL has to look through the pattern table to determine

which entry to use before actually persisting a write.

ABFPL can be configured to significantly decrease latency. One method to

achieve this is to decrease the table_size, which will decrease the maximum num-

ber of patterns that will be considered per write. Another method is hinted by
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the results. In particular, the Trace experiment shown in Figure 6.3 shows that

having more tables can significantly decrease latency. This is because writes are

less likely to be associated with a full pattern table, and therefore will on average

spend less time considering patterns. In contrast, when there is only one table, it

fills up early in an experiment, making every write afterwards require the traver-

sal of the entire table to choose an optimal pattern. In the Firmware Update

experiment shown in Figure 6.4 the affects of having multiple tables still results

in better performance, but since writes are uniformly distributed to each memory

location, it’s not as helpful an optimization as for the Trace experiment which is

disproportionately written to a sparse set of locations.

Overall, we can conclude that decreasing latency in ABFPL primarily boils

down to decreasing the time spent choosing patterns. Finally, ABFPL latency

will improve but not likely outperform Flip-N-Write when using SCM because

write latencies are significantly longer than read latencies, and ABFPL’s largest

latency overhead is reading the pattern table.

6.4 Write Amplification

Write amplification results are based on experiments using the Basicmath,

Typeset, Patricia, and Stringsearch microbenchmarks. Figure 6.5 shows the

Trace experiments with these four microbenchmarks, whereas Figure 6.6 shows

the firmware update experiment using these four microbenchmarks.
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Figure 6.5: Shown is the write amplification per write request (including offset)
for the naive, Flip-N-Write, and ABFPL benchmarks (less is better) from the
Trace experiment. The values for this graph are listed in Table C.5.
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Figure 6.6: Shown is the write amplification per write request (including offset)
for the naive, Flip-N-Write, and ABFPL benchmarks (less is better) from the
Firmware Update experiment. The values for this graph are listed in Table C.6.

ABFPL and Flip-N-Write have about the same write amplification ratio of

about 2× that of the naive method in most cases. The naive method performs

exactly one write per write request and thus is the baseline with a 1× factor.

While Flip-N-Write only does simple computations to determine what to actually

write, it still needs a second write to store the offset. On the other hand, despite

the writes required to fill the table, the maximum 256 pattern entries are a small

fraction of the about 1-30 million line traces and approximately 1-2MB Firmware

Update executables. Appendix B provides additional context, especially for the

write amplification results.

One interesting observation is that the additional ABFPL overhead, when
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both “clear” and “multiple tables” are enabled, is roughly the sum of the addi-

tional overhead from their individual results. For example, the Typeset Trace

has 2.010 and 2.115 write amplification respectively for ABFPL_M0_C1 and

ABFPL_M1_C0 while ABFPL_M1_C1 is 2.124. This makes sense since 0.010+

0.115 = 0.125 ≈ 0.124.

Another interesting observation is the variation in error bars. In the Trace ex-

periment shown in Figure 6.5 which accesses a roughly 400MB range of addresses,

approximately 4500 tables are spawned due to the 100 kB associated memory re-

gions. Initializing and filling in these tables results in large write spikes. On the

other hand, in the firmware experiments shown in Figure 6.6, only 9 – 21 tables

are created, which was small enough that it did not have a significant effect on

write amplification in ABFPL.

Finally, another interesting finding is the especially high amplification on the

Stringsearch Trace experiment. Despite having the same maximum memory range

and the same number of tables as the other Trace experiments, it has roughly 1
30th

the number of memory traces. This means that the writes incurred for initializing

tables has a much larger affect on write amplification compared to the other

experiments.

6.5 Conclusion

While ABFPL incurred some additional write amplification and significant

latency overhead, it is able to decrease bits flips in most of our experiments. In

addition, some interesting relevant metrics are also established.

Firstly, a higher number of bit-flips at the bit_prctl_cutoffth percentile

is correlated with significant performance improvements when paired with frequent

table clears.
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Next, we observed that in our memory traces, accesses are disproportionate,

thus resulting in some locations being written frequently while most are sparsely

touched, if at all. Thus, one future optimization is to have tables with different

values for size_mem_region based on the frequency of writes to a region. In

other words, large tables can cover many regions that are sparsely used, and small

tables can cover regions of memory that are written frequently.

Finally, the performance could have also improved by varying the

bit_prctl_cutoff for each group of datasets. This can be seen in the con-

sistency of the results for the naive method in bit-flips. In the Trace experiment

shown in Figure 6.1 the number of bits flipped by the naive method was always

around 10, whereas in the Firmware Update experiment shown in Figure 6.2 the

number of bits flipped by the naive method was always around 43. This means

that we may have benefited from setting a bit_prctl_cutoff value of (100×

10 /word_bitsize) for the former, and a value of (100×43 /word_bitsize)

for the latter.

In the end, ABFPL is an exploration into the implications of adaptive ap-

proaches to wear-leveling and has potential, but plenty of room for improvement.
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Chapter 7

Conclusion

We provide an implementation of a novel adaptive approach to SCM wear-

leveling called Adaptive Bit-Flip Pattern Learning (ABFPL) and benchmark it

against Flip-N-Write. Our experiments show that ABFPL is a viable solution

for decreasing wear on SCM. ABFPL trades off higher write amplification and

latency for up to a 57% improvement over Flip-N-Write in bit-flips.

In addition, future research in adaptive SCM wear-leveling can further identify

ways to tune ABFPL and optimize its performance for different datasets. One

particularly interesting thing we learned throughout this work is that there is

much more depth to dataset adaption than making patterns. For example, the

configuration variables we have described in our design came about as a result of

observing ABFPL’s response to certain workloads and understanding what parts

of the design may vary to optimize for those cases. However, even though we have

not been able to find definitive ways to configure these variables, we are now able

to establish new metrics that have an effect on them such as high bit-flips for a

chosen certain percentile or uniformity of writes on all memory locations.
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In conclusion, while hardware approaches to SCM wear-leveling may seem

more appropriate due to the simplicity of manipulating writes directly to and

from SCM, software approaches are worth pursuing due to their potential for

adaptability and flexibility.

38



Appendix A

ABFPL components during

experiments

Figure A.1 shows the components of ABFPL with real values from our exper-

iments. The numbers used are gathered during execution of the results for the

Basicmath Trace experiment with a single table and clear enabled. table_size

is illustrated as the maximum number of patterns allowed and batch_size is

shown to be all of the writes in the buffer before they are persisted to SCM. The

bit-flip array is shown with the values it has before dynamically creating the first

pattern, which can be found as the fourth index in the pattern table.
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Figure A.1: An overview of the main components of ABFPL and where they
reside with values from experimental runs
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Appendix B

Dataset in-depth information

The datasets, their memory access ranges, and sizes are displayed in Table

B.1. The memory access range is defined by the largest address accessed from a

dataset, whereas the size refers to the number of entries in the dataset.

Dataset Memory Access Range Size
Trace Basicmath 454641221B 17840335
Trace Patricia 454641221B 26242035
Trace Stringsearch 454641221B 1119875
Trace Typeset 454641221B 28400867
FW Basicmath 1326928B 1326928
FW Patricia 963064B 963064
FW Stringsearch 875432B 875432
FW Typeset 2055176B 2055176

Table B.1: This table lists each dataset, its memory access range, and its size.

As shown in Table B.1, Traces always ended up accessing the same maximum

memory address despite having different numbers of entries, whereas Firmware

Updates are sequential, using as many addresses as there are entries in each

case. This information is needed to understand some of the performance num-

bers. Access ranges are used to determine the number of tables that will be cre-

ated. This can be calculated with d(access_range /size_mem_region)e.

41



We know that in our results, which are introduced in section 6.1, we use a

size_mem_region value of 100 kB to achieve multiple tables. Thus all Trace

ABFPL_M1 experiments have 454641221B / 100 kB = 4547 tables. On the other

hand, the Firmware Update ABFPL_M1 experiments have 14, 10, 9, and 21

tables respectively for Basicmath, Patricia, Stringsearch, and Typeset.
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Appendix C

Experimental Data

These tables are meant to be used in conjunction with their respective ref-

erenced graphs and associated explanations in Chapter 6. Table C.1 shows the

complete Trace bit-flip results. Table C.2 shows the complete Firmware Update

bit-flip results. Table C.3 shows the complete Trace microsecond latency results.

Table C.4 shows the complete Firmware Update microsecond latency results. Ta-

ble C.5 shows the complete Trace microsecond latency results. Finally, Table C.6

shows the complete Firmware Update microsecond latency results.
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Method Bm-v Bm-c P-v P-c Ss-v Ss-c Ts-v Ts-c

Naive 12.637 0.006 14.150 0.005 8.364 0.047 9.092 0.007

Flip-N-Write 12.636 0.006 14.150 0.005 8.364 0.047 9.092 0.007

ABFPL_M0_C0 8.511 0.005 10.972 0.002 10.246 0.016 9.072 0.004

ABFPL_M0_C1 8.446 0.005 4.799 0.004 10.246 0.016 8.418 0.005

ABFPL_M1_C0 14.017 0.467 9.846 0.327 12.429 5.876 8.713 0.325

ABFPL_M1_C1 14.019 0.467 9.846 0.327 12.429 5.876 8.564 0.325

Table C.1: This table contains the complete bit-flips and associated confi-
dence intervals for the Trace experiment. Bm is Basicmath, P is Patricia, Ss is
Stringsearch, and Ts is Typeset. Furthermore, -v is the value for the experiment
and -c is the confidence interval. This data is illustrated in Figure 6.1.

Method Bm-v Bm-c P-v P-c Ss-v Ss-c Ts-v Ts-c

Naive 45.056 0.255 42.475 0.312 40.564 0.340 46.073 0.192

Flip-N-Write 10.380 0.092 10.654 0.112 10.842 0.120 10.533 0.073

ABFPL_M0_C0 9.531 0.093 9.553 0.104 9.945 0.112 9.532 0.740

ABFPL_M0_C1 9.086 0.084 9.620 0.107 10.024 0.115 9.136 0.068

ABFPL_M1_C0 9.609 0.155 9.587 0.160 9.879 0.163 9.213 0.139

ABFPL_M1_C1 9.183 0.150 9.657 0.162 9.946 0.165 9.052 0.138

Table C.2: This table contains the complete bit-flips and associated confidence
intervals for the Firmware Update experiment. Bm is Basicmath, P is Patricia, Ss
is Stringsearch, and Ts is Typeset. Furthermore, -v is the value for the experiment
and -c is the confidence interval. This data is illustrated in Figure 6.2.
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Method Bm-v Bm-c P-v P-c Ss-v Ss-c Ts-v Ts-c

Naive 0.178 0.004 0.177 0.001 0.170 0.002 0.182 0.001

Flip-N-Write 0.186 0.001 0.172 0.001 0.175 0.002 0.191 0.003

ABFPL_M0_C0 1.453 0.009 1.587 0.004 0.633 0.004 1.645 0.004

ABFPL_M0_C1 1.472 0.013 1.742 0.009 0.635 0.004 1.682 0.007

ABFPL_M1_C0 0.612 0.012 0.703 0.013 0.533 0.052 1.477 0.014

ABFPL_M1_C1 0.633 0.006 0.692 0.005 0.519 0.019 1.470 0.013

Table C.3: This table contains the complete microsecond latencies and associated
confidence intervals for the Trace experiment. Bm is Basicmath, P is Patricia, Ss
is Stringsearch, and Ts is Typeset. Furthermore, -v is the value for the experiment
and -c is the confidence interval. This data is illustrated in Figure 6.3.

Method Bm-v Bm-c P-v P-c Ss-v Ss-c Ts-v Ts-c

Naive 0.192 0.007 0.209 0.008 0.235 0.008 0.195 0.005

Flip-N-Write 0.245 0.010 0.242 0.009 0.266 0.015 0.233 0.007

ABFPL_M0_C0 1.311 0.013 1.149 0.014 1.243 0.198 1.251 0.011

ABFPL_M0_C1 1.283 0.020 1.033 0.020 1.058 0.154 1.141 0.012

ABFPL_M1_C0 1.286 0.013 1.142 0.015 1.199 0.181 1.075 0.013

ABFPL_M1_C1 1.274 0.013 1.033 0.015 1.049 0.188 1.033 0.012

Table C.4: This table contains the complete microsecond latencies and associated
confidence intervals for the Firmware Update experiment. Bm is Basicmath, P is
Patricia, Ss is Stringsearch, and Ts is Typeset. Furthermore, -v is the value for
the experiment and -c is the confidence interval. This data is illustrated in Figure
6.4.
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Method Bm-v Bm-c P-v P-c Ss-v Ss-c Ts-v Ts-c

Naive 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

Flip-N-Write 2.000 0.000 2.000 0.000 2.000 0.000 2.000 0.000

ABFPL_M0_C0 2.000 0.029 2.000 0.024 2.001 0.103 2.000 0.024

ABFPL_M0_C1 2.000 0.029 2.002 0.024 2.001 0.103 2.010 0.024

ABFPL_M1_C0 2.165 0.646 2.116 0.454 4.073 8.127 2.115 0.451

ABFPL_M1_C1 0.165 0.646 2.116 0.454 4.073 8.127 2.124 0.451

Table C.5: This table contains the complete write amplifications and associated
confidence intervals for the Trace experiment. Bm is Basicmath, P is Patricia, Ss
is Stringsearch, and Ts is Typeset. Furthermore, -v is the value for the experiment
and -c is the confidence interval. This data is illustrated in Figure 6.5.

Method Bm-v Bm-c P-v P-c Ss-v Ss-c Ts-v Ts-c

Naive 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

Flip-N-Write 2.000 0.000 2.000 0.000 2.000 0.000 2.000 0.000

ABFPL_M0_C0 2.009 0.272 2.013 0.320 2.014 0.335 2.006 0.219

ABFPL_M0_C1 2.017 0.273 2.019 0.320 2.020 0.336 2.014 0.219

ABFPL_M1_C0 2.050 0.322 2.052 0.361 4.052 0.375 2.049 0.275

ABFPL_M1_C1 0.058 0.322 2.057 0.362 4.058 0.375 2.054 0.276

Table C.6: This table contains the complete write amplifications and associated
confidence intervals for the Firmware Update experiment. Bm is Basicmath, P is
Patricia, Ss is Stringsearch, and Ts is Typeset. Furthermore, -v is the value for
the experiment and -c is the confidence interval. This data is illustrated in Figure
6.6.
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