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Abstract

Essays in the Economics of Crime and Health
by

Michael Topper

This dissertation contains three chapters on the economics of crime and health. In Chap-
ter 1, we study how technology is integral to police departments, automating officer tasks,
but inherently changing their time allocation. We investigate this by studying ShotSpot-
ter, a technology that automates gunfire detection. Following a detection, officers are
dispatched to the scene, thereby reallocating their time. We leverage this shock to offi-
cers’ time allocation using the rollout of ShotSpotter across Chicago police districts to
study the effects on 911 call response. We find substantial consequences—officers are dis-
patched to calls slower (23%), arrive on-scene later (13%), and the probability of arrest is
decreased 9%. Consequently, police departments must evaluate their resource capacities

prior to implementing technologies.

In Chapter 2, I exploit variation in timing from 44 temporary university-wide halts on
all fraternity activity with alcohol (moratoriums) across 37 universities over 2014-2019.
I construct a novel data set, merging incident-level crime logs from university police de-
partments to provide the first causal estimates of the effect of moratoriums on reports
of alcohol offenses and sexual assaults. In particular, I find robust evidence that mora-
toriums decrease alcohol offenses by 26%. Additionally, I find suggestive evidence that
moratoriums decrease reports of sexual assault on the weekends by 29%. However, I do

not find evidence of long-term changes once the moratorium is lifted.
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Finally, in Chapter 3, we study the prevalence of gunfire, which results in loud and
potentially stress-inducing sounds that may adversely affect critical stages of in utero
development. However, gunfire is largely unreported, creating a unique challenge for
researchers to understand its consequences. In this paper, we mitigate this shortcoming
by leveraging data from ShotSpotter—an acoustic gunshot technology which uses an
array of sensors placed on city structures to detect the sound of gunfire. We combine this
unique data source with the universe of births from nine California cities, each matched
to a mother’s residence. Using the variation in gunfire detections from ShotSpotter at
the census-block level, we employ a difference-in-differences methodology and find that
gunshot noise creates substantial increases in very low birth weight (j 1,500 grams) and
very pre-term births (j 32 weeks). These effects are driven by times of the day when
mothers are likely to be at-home, and are particularly concentrated among mothers
with low levels of education. These results suggest that gunshot noise is a major factor

contributing to the income inequities in pregnancy outcomes.
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Abstract

Technology is integral to police departments, automating officer tasks, but inherently changing
their time allocation. We investigate this by studying ShotSpotter, a technology that automates
gunfire detection. Following a detection, officers are dispatched to the scene, thereby real-
locating their time. We leverage this shock to officers’ time allocation using the rollout of
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1 Introduction

In the contemporary police department, technology possesses the potential to serve as either
a substitute or complement to human capital. In particular, police departments are utilizing
technologies both as substitutes, effectively functioning as ‘eyes-on-the-street’ through facial
recognition and traffic cameras, as well as collaborative complements in targeting high-crime
areas. These technologies are seen as imperative for public safety moving forward, addressing
the issues of both officer shortages and eroding public opinion of the police (Gallup, 2022).
Nevertheless, the integration of officers and technology systems is fundamentally reshaping
the nature of policing.

One quickly expanding and widely adopted police technology is ShotSpotter—an
acoustic gunfire detection technology that is currently implemented in over 150 cities world-
wide. ShotSpotter’s primary intention is to rapidly dispatch police officers to violent crime
scenes with the goal of reducing gun violence. The technology utilizes an array of microphones
and sensors placed on streetlights and buildings that use machine learning algorithms to detect
the sound of gunfire, triangulate its location, and alert police officers for rapid response. Be-
cause of its unique functionality, ShotSpotter bypasses the reliance on civilian reporting. In
effect, previous studies have utilized this feature of ShotSpotter as a measure of underlying
crime that is independent of reporting habits (Carr and Doleac, 2016, 2018; Ang et al., 2021).
As aresult, it has been estimated that only 12% of gunfire is reported, leaving a significant por-
tion of these occurrences unattended (Carr and Doleac, 2016). Therefore, ShotSpotter offers a
solution wherein police officers are dispatched to additional instances of gunfire. In Chicago,
the setting of this paper, this results in approximately 70 ShotSpotter-related dispatches each

day, equating to 75 hours of officer investigation time.! This represents a two-fold increase in

A ShotSpotter investigation takes roughly 20 minutes to complete. While we cannot delineate between the
number of officers dispatched to the scene for our entire sample period, we find, using another source of data from
2019-2023, that the average number of officers dispatched to a ShotSpotter detection is approximately 3.35. On
the other hand, a lower bound, assuming only one officer dispatched to each ShotSpotter alert, would result in 23
total hours.



the number of gunfire reports that require officers to engage in rapid response.>

However, reallocating resources to gunfire detection changes an officer’s time allo-
cation. On one hand, this reallocation could be beneficial—ShotSpotter may frequently place
officers closer to locations that foster higher volumes of crime. In this situation, an officer’s
time of arrival may be reduced. On the other hand, these investigations of previously unre-
ported gunfire may incapacitate officers from attending to reports of other crimes in the form
of 911 calls—a lifeline for citizens in distress. In effect, these calls may suffer from increased
response times, as officers are busy investigating ShotSpotter detections.® Consequently, this
may have far-reaching implications given the critical importance of rapid response, which has
shown to alter the probability of crime clearance (Blanes i Vidal and Kirchmaier, 2018) and
victim injury (DeAngelo et al., 2023). Furthermore, response times may affect timely medical
treatment, as emergency medical personnel are required to delay their services until police ar-
rive if their safety is compromised.* Thus, while ShotSpotter is implemented with the intention
of enhancing public safety, it may have unintended consequences that are socially costly.

In this paper, we utilize variation in timing from the staggered ShotSpotter rollout
across Chicago police districts from 2016-2022 to estimate the causal effect of ShotSpotter
technology on the response times from 911 calls designated as Priority 1—the most frequent
call classification in Chicago which pertains to life-threatening and time-sensitive events. Us-
ing 911 call dispatch data from the Chicago Police Department (CPD), we construct two mea-
sures of police response: the time from a 911 call to when a dispatcher finds an available police
officer for dispatch (Call-to-Dispatch) and the time from a 911 call to when the officer arrives
on-scene (Call-to-On-Scene). By applying a staggered difference-in-differences framework,

we find that both Call-to-Dispatch time and Call-to-On-Scene time are significantly increased

2This statistic is based on the average number of 911 dispatches relating to a ‘Shots Fired‘ report and the
average number of ShotSpotter dispatches post-implementation in all police districts.

3Two reports from Chicago show descriptive evidence that ShotSpotter dispatches may be unproductive (Fer-
guson and Witzburg, 2021; Manes, 2021). As discussed in Section 7, we find descriptive evidence corroborating
these. However, given the data limitations, we cannot truly verify whether ShotSpotter dispatches are more or less
productive than a 911 dispatch.

4This is found from the Chicago EMS System Policies and Procedures: https://chicagoems.org/
wp-content/uploads/sites/2/2017/08/2017-PP_APPROVED.pdf

3



following the implementation of ShotSpotter by approximately one minute (23%) and two
minutes (13%) respectively. These estimates are robust to a variety of sensitivity tests and
estimators.

Moreover, we find that the delays in response times are driven by resource-constrained
periods, consistent with the hypothesis that ShotSpotter is affecting police officers’ time con-
straints. We test this using days when there are fewer officers on-duty and times of day with
higher numbers of ShotSpotter detections. Each of these subsets show significantly larger effect
sizes during these resource-constrained periods, suggesting that ShotSpotter forces officers to
make trade-offs in favor of responding to ShotSpotter alerts. Consistent with this mechanism,
response times from other time-sensitive calls (Priority 2) are also increased, and in addition,
time-insensitive calls (Priority 3) show suggestive evidence of longer delays, providing further
evidence of heightened officer responsibilities.

Consequently, these elevated response times come at a significant cost. In Section
5.3, we analyze the relationship between police response time and the likelihood of an arrest.
We find that Priority 1 calls are 9% less likely to have the perpetrator arrested, consistent
with Blanes i Vidal and Kirchmaier (2018) who attribute faster rapid response to higher crime
clearance rates. The effect is particularly strong in calls regarding domestic battery (14%)
and domestic disturbances (13%)—two situations where reoffending is likely (Maxwell et al.,
2001). However, distinct from this previous work, we are able to closely examine a determinant
of rapid-response directly, rather than focus solely on its consequences.

Despite these unintended consequences, we also find suggestive evidence that ShotSpot-
ter may reduce the probability of gun-related 911 calls resulting in a victim injury. Although
only suggestive, this hints at the possibility that gun-related 911 calls may benefit from ShotSpot-
ter technology by corroborating 911 reports of gunshots and providing more accurate location
information for police officers to rapidly intervene (Piza et al., 2023). However, we find no
evidence of these effects for non-gun-related 911 calls and cannot rule out the possibility of

increases in victim injuries from delayed police response, as found in DeAngelo et al. (2023).



Although few studies have examined the effects of ShotSpotter, we contribute to a
growing literature on the effect of technology on policing, the criminal justice system, and in a
wider context, efficient workforce allocation and policies. While previous studies have found
positive effects of criminal justice and police technology in the form of algorithmic bail deci-
sions (Kleinberg et al., 2018), body-worn cameras (Zamoff et al., 2022; Ferrazares, 2023; Kim,
2019a), electronic monitoring (Williams and Weatherburn, 2022; Rivera, 2023), military-grade
equipment (Harris et al., 2017; Bove and Gavrilova, 2017), predictive policing (Mastrobuoni,
2020; Jabri, 2021; Heller et al., 2022), and traffic cameras (Conover et al., 2023), we conversely
find significant unintended consequences that are both fiscally and socially expensive.” As a
consequence, our results give further evidence that efficient allocation and effective policies
are imperative for better policing outcomes (Getty et al., 2016; Ba et al., 2021; Kapustin et al.,
2022a; Rivera and Ba, 2023; Adger et al., 2023), and on a larger scale, general workforce
productivity (Hsieh and Klenow, 2009; Fenizia, 2022).

More broadly, this study adds to the claim that police departments are personnel-
constrained, and potentially understaffed Chalfin and McCrary (2018). Similar studies have
explored the elasticity of crime with respect to police presence, generally finding that increased
police presence lowers crime (Levitt, 1997; Chalfin and McCrary, 2018; Mello, 2019; Weis-
burst, 2019; Weisburd, 2021). Of these works, the most related is Weisburd (2021), which
leverages changes in police locations, prompted by service calls, to explore a reduction in
the availability of police officers that arises from increased demand for police officer time.
However, in contrast to Weisburd (2021), this study unpacks a mechanism which determines
response times, allowing us to explore how the time constraints of police officers affect their
availability to respond to crime. We find that when police resources are stretched thin, the
effectiveness of a police force to respond to crimes and arrest perpetrators is diminished. As
a result, our findings suggest that implementing a personnel-intensive policy should be paired

with an increase in officer availability, achieved through hiring or redistributing responsibili-

3Chicago is estimated to spend approximately 8.9 million each year on ShotSpotter technology. For compari-
son, a 2016 estimate put body-worn cameras at 6.5 million annually.
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ties, in order to prevent under-policing in communities.

Lastly, we build upon the rapid-response literature related to health outcomes (Leslie
and Wilson, 2020; DeAngelo et al., 2023). In Section 6.1 we find that police dispatches for
emergency medical services are delayed by nearly one minute due to ShotSpotter implemen-
tation. As mentioned earlier, this could prolong treatment to critical injuries if ambulance
personnel are waiting for police to arrive at the crime scene. In turn, this could have significant
implications, as longer travel times and ambulance response times have been linked to higher
mortality rates (Avdic, 2016; Wilde, 2013).

The paper proceeds as follows: Section 2 provides background information on dis-
patching procedures and implementation of ShotSpotter in Chicago, Section 3 discusses the
data, Section 4 describes the empirical strategy, Section 5 presents the main results, mecha-
nism, and effect on arrest probability, Section 6 discusses other outcomes and implications,

and Section 7 concludes.

2 Background

2.1 ShotSpotter Technology and Implementation in Chicago

ShotSpotter is an acoustic gunfire technology that employs a network of microphones and sen-
sors on buildings and light-posts to detect gunfire sounds. These sounds are used to triangulate
the location of potential gunfire, which is then relayed to police departments to rapidly de-
ploy police officers to the potential crime scene. Over the past decade, this technology has
seen significant expansion and is now operational in over 150 cities globally. The rationale for
adopting ShotSpotter is to enable police departments to respond to gunfire faster and with more
geographic precision. Moreover, the unique functionality of ShotSpotter allows police depart-
ments to bypass their reliance on civilian reporting, which only accounts for approximately
12% of gunfire occurrences (Carr and Doleac, 2016). While previous studies support some of

these rationales in the form of geographic accuracy (Piza et al., 2023) and faster gun-related
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dispatch times (Choi et al., 2014), others have found little impact on gun violence (Mares and
Blackburn, 2012; Connealy et al., 2024) and case resolution (Choi et al., 2014).

The technology relies on machine learning algorithms to classify sounds of potential
gunfire.® When a potential gunshot is detected, the sensors triangulate the location of the noise
and data/recordings of the incident are forwarded to ShotSpotter’s Incident Review Center. At
this center, a human reviewer assesses the data, and flags for false-positives to avoid erroneous
alerts. Once a gunshot is confirmed, information regarding the location and number of shots
fired are shared with the police department, where dispatchers then send officers to the scene.
This entire process from gunshot noise to police dispatch is known as a ShotSpotter dispatch.

In Chicago, ShotSpotter technology has been implemented in 12 of the 22 police
districts in order to respond to gun-related issues faster and with more geographic accuracy.’
The staggered roll-out began in January 2017, coinciding closely with new Strategic Decision
and Support Centers (see Section 4.2 for more details), in response to the large influx in gun
violence in 2016.% ShotSpotter was first implemented in the districts with the highest rates
of gun violence, and after evaluation, was subsequently implemented in less violent areas.’
The expansion ended in May 2018, with no further police districts receiving the technology.
Appendix Figure D1 shows the locations of the 12 police districts in Chicago that received

ShotSpotter technology. As mentioned, the areas where this technology is implemented (the

South and West Chicago areas) experience higher rates of gun crime on average.

® According to ShotSpotter’s website, from 2019 to 2021, the aggregate accuracy rate across all of their cus-
tomers was 97% with a very small false-positive rate of approximately 0.5%, however this has not been indepen-
dently tested.

"In Chicago, each police district has a population of approximately 100k.

8This wide-scale adoption follows previous testing of select areas between 2003 and 2007, 2012, and again in
2016. However, to our knowledge, no district received district-wide coverage during this trial period and the ex-
tent of testing was small (https://www.cbsnews.com/chicago/news/chicago-police-testing-new-gunshot-detection-
technology/). Moreover, there appears to be no ShotSpotter dispatches in the data prior to the official dates. In an
abundance of caution, we conduct a leave-one-out analysis and find that the results are consistent.

Note that difference-in-differences relies on the assumption of common trends, not random assignment of the
rollout.



2.2 Dispatching 911 Calls and ShotSpotter Alerts in Chicago

In Chicago, the coordination of emergency 911 calls involves two main entities: the Office of
Emergency Management and Communications (OEMC) and the Chicago Police Department
(CPD). The OEMC oversees 911 calls and dispatches police officers from the CPD. Each 911
call is prioritized on a scale of imminent danger/threat ranging from Priority 1 (immediate
dispatch) to Priority 3 (routine dispatch).!®

When a 911 call is made, the call is received by an OEMC call-taker who records
the caller’s information, assigns a call type that they believe best characterizes the incident,
and forwards this information to the dispatcher.!! Next, the dispatcher assigns the event to an
available CPD unit in the call’s police district. Once the scene has been cleared, officers will
notify the OEMC and will be marked as available for future call assignments.

On the other hand, the coordination of ShotSpotter dispatches is a collaborative effort
involving the OEMC, CPD, and the Strategic Decision Support Center (SDSC). When gunfire
is detected, ShotSpotter’s headquarters sends vital information such as the location, time, es-
timated severity, amount of shots being fired, and direction of possible offender to the SDSC.
The SDSC then synthesizes this information and notifies the OEMC to immediately dispatch a
police officer to the location of the gunfire.

Importantly, there is a clear distinction between 911 calls and ShotSpotter dispatches.
A 911 call is the result of a civilian reporting a crime, while a ShotSpotter dispatch is a police
dispatch to the location of a potential gunfire sound from ShotSpotter sensors. The focus of this
paper concerns only 911 calls, which we show to be impacted by the presence of ShotSpotter
dispatches.

However, both 911 calls and ShotSpotter dispatches share a variety of operating pro-

cedure similarities. For instance, each ShotSpotter dispatch is classified with the same distinc-

10Technically, there are six priorities ranging from Priority 0-5. However, Priority 0, 4, and 5 are reserved
for special cases such as police officers calling for emergency assistance, administrative meetings, or alternate
responses that do not need a field unit, respectively.

L ater in Section 3.1, we define the beginning of a 911 call as the time when a call-taker assigns a call-type.
This is done rapidly and allows us to more closely target delays due to police officers.
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tion as a Priority 1 911 call. Priority 1 necessitates immediate dispatch due to the imminent
threat to life, bodily injury, or major property damage/loss.'?> Hence, both Priority 1 911 calls
and ShotSpotter dispatches share the same dispatch procedures and responding officers. Fur-
thermore, the OEMC prioritizes both 911 calls and ShotSpotter dispatches to rapid response
units and police officers within the police district of occurrence.!? Only in rare circumstances
are police officers assigned to these emergencies outside their district.!*

Despite the similarities in ShotSpotter dispatches and Priority 1 911 calls, police offi-
cers must follow an additional operating procedure when arriving to the location of a ShotSpot-
ter alert. In particular, officers are instructed to canvass a 25-meter radius of the precise location
identified via the ShotSpotter system for victims, evidence, and witnesses. Moreover, officers
are also expected to notify the SDSC if they are aware of any deficiencies in ShotSpotter data
or alerts, and, if completing a case report, to document if the case incident is ShotSpotter-
related. According to the data on ShotSpotter-related dispatches, each ShotSpotter dispatch
takes an officer an average of 20 minutes to complete the investigation once they have arrived
on-scene. As a comparison, gun-related 911 calls prior to ShotSpotter average approximately

65 minutes. >

I2Priority 1 calls account for roughly 43% of all 911 calls during the sample period.

BSpecifically, dispatchers prioritize dispatching police officers within the beat they are assigned to. Police
beats are subsections within police districts.

%In particular, the dispatching order is in the following order of priority: rapid response unit or beat unit
from the beat of occurrence, tactical unit, rapid response sergeant, sector sergeant, tactical sergeant, other field
supervisor, and closest available unit.

I5This surprising discrepancy may be due to the productivity of ShotSpotter dispatches relative to 911 calls.
Some reports in 2021 on the effectiveness of ShotSpotter dispatches in Chicago from the Office of the Inspector
General and The MacArthur Justice center show descriptive evidence that ShotSpotter dispatches do not result
in more gun-related evidence. However, this study stays ambivalent to these claims, as the data we use does not
contain the same information.



3 Data

3.1 Data Sources

The main sample contains several data sources from years 2016 to 2022 that are obtained
through Freedom of Information Act requests to the Chicago Police Department (CPD). These
data include 911 call dispatches, officer shifts of sworn police officers, incidents of crime,
arrest reports, and district-level ShotSpotter activation dates.

The CPD 911 call dispatch data encompasses all 911 calls that led to the dispatch of
a CPD officer. This administrative data is rich, containing information on the time of the 911
call, the time an officer is dispatched to the scene of the crime, and the time the officer arrives
on-scene, each recorded at the seconds level. Additionally, the data details the priority-level of
the call, a brief description, a block-level location, and a case report number that can be linked
to arrests and incident reports.

Based on this information, we construct the two main outcome variables: the time
from the beginning of a 911 call to an officer being dispatched (Call-to-Dispatch) and the
time from the beginning of a 911 call to an officer’s arrival (Call-to-On-Scene). We define
the beginning of the 911 call as the time that a 911 call-taker creates an event number for
the associated incident—an action that typically occurs immediately following the call being
received. Notably, while Call-to-Dispatch contains no missing data, approximately 45% of the
Call-to-On-Scene information is missing. This is likely due to officers failing to report when
they arrive at the scene (OIG, 2023). However, we address this potential limitation in Appendix
A where we provide several analyses to maintain confidence in the Call-to-On-Scene results.

These two measures of rapid response capture separate degrees of police availability.
First, if an officer is too busy, they will be delayed or unable to be dispatched. In particular,
the officer will not be classified as available to take Priority 1 calls on the Computer Aided
Dispatch (CAD) system, and a dispatcher will not assign them to a call. This increase in time

would be observed as a higher Call-to-Dispatch time and is a function of the coordination
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between the dispatcher and an individual police officer. On the other hand, Call-to-On-Scene,
which captures both the dispatch time and the time an officer takes to arrive on-scene, may
increase independently of Call-to-Dispatch time if, for example, an officer is located farther
away from their dispatch location.

The police shift data contains information on every shift start time, end time, and
district/beat assignment worked by CPD staff in the sample period. We restrict the shift data
to include only police officers that are present for duty, excluding administrative positions and
higher level managerial roles such as police lieutenants and police chiefs. To assess officer
availability, we construct the number of officer hours within a police district-day. By using on
the number of officer hours rather than the number of shifts, we account for the possibility of
overtime or early-leave.

The ShotSpotter activation dates indicate when each police district is equipped with
ShotSpotter technology. However, since the records provide only the month of implementation,
we rely on the raw data corresponding to ShotSpotter dispatches to determine the specific
activation day for each police district. Nonetheless, we observe several small discrepancies
in the activation dates when comparing to the number of ShotSpotter dispatches in District
6, 9, 10, and 15. In particular, these districts have no ShotSpotter dispatches until several
months after their official activation date. Therefore, we adjust these four dates of activation
to align with the onset of ShotSpotter alerts. This adjustment ensures that the effects observed
are accurately attributed to police officers responding to ShotSpotter alerts. However, as a
robustness check, we estimate the results using the official dates in Appendix Figure D2 and
find that the results remain consistent.

Figure 1 plots the monthly trend of dispatches relating to both ShotSpotter and civil-
ian reports of gunshots. In addition, the ShotSpotter activation dates are plotted with dashed
red lines. In this figure, each police district exhibits an increase in ShotSpotter dispatches as
time progresses. This is possibly due to a combination of ShotSpotter’s machine learning al-

gorithms refining with time, and the increasing amounts of gun violence which began in 2020.
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Notably, this figure also depicts the substantial increase in police resources devoted to gunfire

post-implementation due to the addition of ShotSpotter detections.

3.2 Sample Restrictions

The main sample is restricted to only 911 call dispatches of Priority 1—the highest priority
level.'® Priority 1 is defined as any situation that may involve an imminent threat to life,
bodily injury, or major property damage/loss. By including only Priority 1 calls, the analysis
focuses only on the types of calls that require the most time-sensitive responses. However, for
completeness, Section 6.1 analyzes lower-priority calls of Priority 2 and Priority 3.

As an important distinction, recall that 911 call dispatches do not include dispatches
for ShotSpotter gunshot detections. While ShotSpotter detections are classified as Priority 1
and responded to by the same police units, these are not reported by civilians. By implementing
this restriction, we ensure that we are comparing similar distributions of civilian reports of
crime before and after the ShotSpotter rollout.

Three further restrictions are implemented to reduce potential noise in the response
time data. First, all observations that exhibit a negative Call-to-Dispatch or Call-to-On-Scene
time are removed, accounting for approximately 0.03% of the data. Second, Call-to-Dispatch
and Call-to-On-Scene outliers that exceed three standard deviations from the mean are omitted,
which account for 0.4% and 1.6% of each outcome, respectively. This restriction mitigates
the impact of potentially erroneous outliers on the ordinary least squares estimator, which is
sensitive to extreme values. We relax this restriction in Appendix Figure D2 to verify the
consistency of the results. Last, specific dates including January 1, July 4, and December 31
are excluded from the analysis. These dates coincide with celebratory gunfire and fireworks
that may generate many false-positive ShotSpotter alerts. However, we also show that the

results are robust to including these dates in Appendix Figure D2.

16Priority 0 is actually the highest level of priority, but this is a special case reserved for situations where police
or firefighters are calling for assistance in life-threatening situations. These are extremely rare, and make up only
0.01% of the top four priority dispatches.
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3.3 Descriptive Statistics

Table 1 shows summary statistics of the main outcome variables in Panel A and corresponding
secondary outcomes and control variables in Panel B. All statistics are based on only Priority
1 911 dispatches unless otherwise noted. Panel A reports that the average Call-to-Dispatch
time is approximately five minutes, while the average Call-to-On-Scene time is approximately
13 minutes. Additionally, the distribution of these outcomes are plotted in Figure 2 showing
that response times can be particularly lengthy (1+ hours) in rare cases. Furthermore, the
probability of making an arrest on a 911 dispatch is low, with an average of 2%, while the
likelihood of a victim being injured is roughly 3%.

In Panel B, Priority 2 and Priority 3 calls are reported to be less frequent than Priority
1. Priority 2 calls are defined as those in which timely police action has the potential to affect
the outcome of an incident, while Priority 3 calls are those in which a reasonable delay in police
action will not affect the outcome of the incident. Consistent with these definitions, Priority
2 and Priority 3 have slower response times for both Call-to-Dispatch and Call-to-On-Scene
measures.

Furthermore, statistics on the number of Priority 1 911 dispatches, ShotSpotter dis-
patches, and number of officer hours, are reported in Panel C of Table 1—each measured at
the district-day level. The average number of Priority 1 dispatches within each district-day
is approximately 73, although these have considerable variability, with a maximum of 223.
ShotSpotter dispatches are reported to be an average of approximately three per-district-day,
yet this includes both time periods and districts that do not necessary have ShotSpotter im-
plemented. When restricting the sample to only post-ShotSpotter implementation dates, the
average number of ShotSpotter dispatches in each treated district-day is six (~ 70 city-wide).
Finally, due to the high level of crime in the South and West locations of Chicago, the presence
of officers varies considerably across districts, ranging from as little as 231 officer hours to as
many as 6,558 officer hours. We later analyze this heterogeneity in Section 5.2 where we find
longer response times when there are fewer officers.
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4 Empirical Strategy

4.1 Baseline Specification

To estimate the causal effect of ShotSpotter technology on police response times, we estimate

the following staggered difference-in-differences equation using ordinary least squares (OLS):

ResponseTimeq = BShotSpottery, +Ne + 8a + VX p(r) + Ecar (1)

where ResponseTime,q; is the Priority 1 Call-to-Dispatch or Call-to-On-Scene time for call c,
in police district d, at time . The treatment variable is ShotSpottery,, which is an indicator
variable equal to one if police district d is equipped with ShotSpotter at time . Moreover, 1z
and &, are call-type and police district fixed effects respectively. X #(r) 1s @ vector of time-
varying controls which include day-by-month-by-year and hour-of-the-day fixed effects. Last,
€.4; 18 the error term. The standard errors are clustered by police district (N = 22) to allow for
serial correlation within districts, although we also report wild cluster bootstrapped standard
errors in the main results as recommended by Cameron et al. (2008) since the number of clus-
ters is below 30. Intuitively, Equation 1 is comparing response times on days with ShotSpotter
activated to days without ShotSpotter activated, while accounting for the expected differences
in call types, police districts, and different times of the year and day.

Controlling for the type of call, ¢, accounts for the fixed differences between different
911 calls.!” While we restrict the main sample to only Priority 1 types, there is a possibility that
dispatchers or officers may innately prioritize responding to certain call-types that they believe
are most critical. By including call-type fixed effects, we circumvent this particular issue.
Additionally, police district fixed effects, d;, are included to account for the systematic, time-
invariant differences between police districts. Given that Chicago’s police districts have distinct

baseline characteristics such as levels of wealth, crime, and potential policing tactics, adding

17Each 911 call is given a final dispatch code. When controlling for type of call, we use the final dispatch code
as the distinction.
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police district fixed effects controls for these fixed differences. Finally, day-by-month-by-year
and hour-of-the-day fixed effects, X (), are included to control for time-varying fluctuations

that occur over particular days of each year and different times of the day.

4.2 Identification

The coefficient of interest in Equation 1 is 8, which measures the average change in response
times between days with and without ShotSpotter technology. To identify 8 as a causal ef-
fect, there are several assumptions that must be satisfied: response times in ShotSpotter dis-
tricts would have continued on a similar trend to non-ShotSpotter districts in the absence of
ShotSpotter, there is no change in 911 dispatching procedures post-ShotSpotter implementa-
tion, the distribution of 911 calls/dispatches did not change post-ShotSpotter, and there are no
other policies that coincide with the timing of ShotSpotter that may affect response times.

The first key identification assumption is that police districts that adopt ShotSpotter
would have continued to have similar response times to non-ShotSpotter districts in the absence
of adoption (i.e., common trends). Specifically, ShotSpotter adoption must not be correlated
with a systematic rise or fall in response times. To address this concern, we estimate an event

study framework given by the following model:

ResponseTime.q; = f" B! ShotSpotteriit + M+ 00+ ¥Xp () + Ecar (2)

i;;] 12 "
where ShotSpotterfit is a set of indicators that are set to 1 if ShotSpotter is adopted i months
from time ¢ in district d. Each period is relative to the month before ShotSpotter adoption.
Twelve periods pre-ShotSpotter are estimated to maintain a balanced panel, and 24 periods
post-ShotSpotter are estimated, where the first and final periods are binned endpoints as de-

scribed in Schmidheiny and Siegloch (2023). We opt to use monthly periods instead of day

periods in order to increase statistical power of each coefficient estimate and thereby reduce
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potential noise that arises from using small sets of data. Moreover, this also allows us to explore
dynamic treatment effects over a substantially longer time period.

Figures 3 and 4 show the event study estimations for Call-to-Dispatch and Call-to-
On-Scene response times, and display little visual evidence of an upward or downward trend
prior to the implementation of ShotSpotter. The error-bars represent 95% confidence inter-
vals, while the coefficient estimates are reported in seconds. We report two sets of estimates
in this visualization: the two-stage difference-in-differences imputation estimator (Gardner,
2021) and the OLS estimator. The two-stage difference-in-differences estimator is robust to
the negative weights which arise in OLS estimates when there are heterogeneous treatment ef-
fects across groups and over time in staggered designs (de Chaisemartin and D’Haultfoeuille,
2020; Callaway and Sant’ Anna, 2021; Goodman-Bacon, 2021; Athey and Imbens, 2022). Un-
like the estimators proposed in Sun and Abraham (2021) and Callaway and Sant’ Anna (2021),
this estimator allows us to maintain the preferred day-by-month-by-year fixed effects while
simultaneously estimating monthly bins without aggregation. Moreover, this estimator allows
for comparisons of treated units between both never-treated and not-yet treated units. In each
set of estimations, there appears to be little evidence of a trend prior to ShotSpotter implemen-
tation. We later enhance this visual test in Section 5.1 (and more thoroughly in Appendix C)
with a sensitivity test as described in Rambachan and Roth (2023) where we allow for relax-
ations of the common trends assumption.

The second assumption states that there is no change in how police are dispatched
to 911 calls in the presence of ShotSpotter. Recall that this study only analyzes 911 call dis-
patches, and there is no indication that the operating procedures for 911 calls changes (CPD,
2016). However, the same police units that respond to Priority 1 911 dispatches also respond
to ShotSpotter alerts, and therefore ShotSpotter increases an officer’s set of responsibilities.

Third, we address the assumption that the distribution of 911 calls is not changing
due to ShotSpotter implementation. For instance, one concern may be that dispatchers are

combining 911 calls that relate to gunfire with ShotSpotter alerts in order to save officer re-
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sources. To mitigate this issue, we estimate Equation 1 removing 911 dispatches relating to
civilians hearing gunfire.!® The results remain consistent as shown in Appendix Figure D2.
Additionally, in Section 6.1, we analyze distinct call-types and show that the effects persist
even when analyzing individual types of 911 call.

For the final assumption that there are no other police department policies that di-
rectly coincide with ShotSpotter implementation, we discuss two initiatives that are imple-
mented at similar (although not exact) time periods as ShotSpotter: Strategic Decision Support
Centers (SDSCs) and Body Worn Cameras (BWC). A more thorough description and analysis
of these is presented in Appendix B, yet we report the key takeaways here.

To begin, SDSCs have the most similar implementation dates to ShotSpotter with an
average of 73 days apart, although not all SDSCs are equipped with ShotSpotter technology
as shown in Appendix Table B1. SDSCs are housed with policing technology software such
as police observation displays, geospatial predictive policing software, and social media mon-
itoring. However, only one of these technologies coincides directly with the SDSC roll-out
(geospatial predictive policing), and the others have been utilized in Chicago for years prior.
While we understand that predictive policing software may change officer patrolling patterns,
and therefore affect response times, a thorough study of this particular software implementa-
tion is discussed in Kapustin et al. (2022b) where they find patrolling changes in only two of
Chicago’s police districts. In Appendix B, we estimate the main results and the corresponding
event studies while controlling for SDSC roll-out dates, and report consistent findings with
the main results. In addition, we perform separate analysis removing the two districts where
patrolling tactics changed, and find similar conclusions. Finally, in Section 5.2, we present
intensive margin estimates of ShotSpotter using the number of ShotSpotter dispatches as iden-
tifying variation. This variation is less correlated with the SDSC roll-out, and provides further
evidence that ShotSpotter is causing the increase in response times.

Last, BWCs are another technology that are implemented near ShotSpotter dates,

'8This is approximately 8% of Priority 1 911 calls.
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although the district-timing differs by 283 days on average (see Appendix Table B1). In Ap-
pendix Table B2, we control for the BWC implementation and find little differences from
the main results. This aligns with intuition, as body worn cameras have been found to affect
complaints (Kim, 2019b; Braga et al., 2022; Zamoff et al., 2022; Ferrazares, 2023) and stops
(Braga et al., 2022; Zamoff et al., 2022), but are unlikely to affect an officer’s ability to rapidly

respond.

5 Results

In this section, we present the main estimates on the effect of ShotSpotter on Priority 1 response
times using Equation 1. We show that the results are robust across various specifications,
estimators, sample selections, and sensitivity tests. Moreover, we analyze dynamic effects
and present evidence that ShotSpotter affects response times by constraining officer resources.
Last, we show that increased response times lead to fewer perpetrators being arrested, thereby
showing that ShotSpotter has costly implications.

Figure 5 serves as an intuitive preview of the main results, plotting only the raw data.
We plot the average Call-to-Dispatch and Call-to-On-Scene times within each police district
before/after ShotSpotter implementation. Consistent with the main results, districts that receive
ShotSpotter show a substantial increase in the average Call-to-Dispatch and Call-to-On-Scene
times. Notably, there does not appear to be significant visual evidence that average response

times are different in districts that receive ShotSpotter in comparison to those that did not.

5.1 Main Results - Response Time Changes

Table 2 reports estimates from Equation 1 for Call-to-Dispatch (Panel A) and Call-to-On-Scene
(Panel B) response times, where each coefficient estimate is reported in seconds. Recall that
Call-to-Dispatch and Call-to-On-Scene are the length of time from when a 911 call is received

to when a police is dispatched or subsequently arrives at the scene, respectively. First, in
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Column 1 of Table 2, we estimate Equation 1 with only the time and group fixed effects.
We find a statistically significant increase in Call-to-Dispatch and Call-to-On-Scene times of
64 seconds and 101 seconds, respectively. Remarkably, the Call-to-On-Scene estimates show
that travel time is increasing by approximately 40 seconds in addition to the delays in finding
responding officers to dispatch. This suggests that ShotSpotter is not placing officers in areas
closer to the majority of other 911 call locations, whereby travel time may be reduced.

Column 2 of Panel A and Panel B report estimates from the preferred specifica-
tion outlined in Section 4.2 where we supplement the model in Column 1 with controls for
time-of-day and the type of 911 call. When including these controls, the results for both Call-
to-Dispatch and Call-to-On-Scene times are similar, showing increases from the mean of ap-
proximately 22% and 13%, respectively. In Column 3, we further enrich the model to include
controls for both the number of 911 dispatches and officer hours per-district-day to ensure that
the estimates are not confounded by days in which there are more police officers or a higher
amount of reported crimes to respond to. However, prior literature suggests that controls that
are significantly affected by treatment could cause substantial bias in the coefficient estimates
(Angrist and Pischke, 2009; Wooldridge, 2010). While we find ShotSpotter implementation
is unrelated to the number of 911 dispatches and officer hours (Appendix Table D1), we omit
these from the preferred specification out of an abundance of caution.

Given the staggered difference-in-differences research design, Column 4 reports es-
timates that are robust to treatment heterogeneity across groups and over time using the two-
stage difference-in-differences imputation estimator (Gardner, 2021). This estimator equally
weights each district-date estimate, making it robust to the bias from negative weighting in the
presence of treatment effect heterogeneity (Callaway and Sant’ Anna, 2021; Goodman-Bacon,
2021; Athey and Imbens, 2022). We opt to use this estimator since it allows for comparisons of
treated units between both never treated units and not-yet treated units and requires no aggre-
gation, unlike similar approaches discussed in Callaway and Sant’Anna (2021). The estimates,

albeit slightly larger than the preferred specification, remain consistent with the main findings.
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Furthermore, we consider spillover effects in Column 4 by including an indicator
variable (Border Activated) equal to one for any police district that is adjacent to a ShotSpotter-
activated district. In effect, the coefficient on the indicator for a neighboring ShotSpotter dis-
trict measures the spillover impacts of the implementation. As reported in both Panel A and
Panel B, there does not appear to be evidence of spillover effects on response times. This result
aligns with the standard dispatching procedures discussed in Section 2.2 whereby officers are
only dispatched outside their beat/district of patrol in rare circumstances.

Next, to analyze the dynamic effects of ShotSpotter implementation over time, we es-
timate an event study using Equation 2. We estimate this model using both OLS and the Gard-
ner (2021) robust estimator to account for potential treatment heterogeneity across groups and
time periods. Figure 3 and Figure 4, for Call-to-Dispatch and Call-to-On-Scene respectively,
show that the effect of ShotSpotter implementation takes several months post-implementation
to significantly alter response times. In each figure, the red error-bars represent the 95% con-
fidence intervals using OLS, while the blue error bars are derived from the Gardner (2021)
estimator. We attribute the delayed effect in response times to a composition of ShotSpotter’s
functionality and overall violence in the city. Specifically, ShotSpotter relies on a machine
learning algorithm to detect gunfire, which improves with the volume of data it receives. There-
fore, the initial months of implementation may not exhibit significant effects on response times
due to lower quantities of ShotSpotter alerts. Moreover, violent crime also began to increase
in Chicago beginning in 2020, which may also contribute to this slightly delayed response. As
shown previously in Figure 1, the number of ShotSpotter dispatches appears to be increasing
over time across each district.

Importantly, these main results are robust to a variety of sample selections and sensi-
tivity tests. First, Appendix Figure D2 shows estimations of Equation 1 for six different sample
selections estimated with both OLS and the Gardner (2021) robust estimator: omitting the year
2020 (Covid-19 pandemic), omitting 911 calls for gun shots fired (in case dispatchers begin to

merge reports of gunfire and ShotSpotter alerts), including all outliers that are removed in the
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main sample, using the official activation dates from the Freedom of Information Act request
rather than the observed beginning of ShotSpotter alerts, including January 1/July 4/Decem-
ber 31 which may have many false-positive ShotSpotter alerts, and omitting the never-treated
police districts. In nearly all of these samples, the results for both response time outcomes
remain consistent with the main results. The one exception is when the never-treated districts
are removed. However, we attribute this inconsistency to a loss in precision from removing
approximately half the sample, and in addition, note that the point estimates still remain pos-
itive. Second, we perform a leave-one-out analysis in Appendix Figure D3 where Equation
1 is estimated 22 times, with each iteration excluding a unique police district. Given that the
results remain consistent with the main findings in each iteration, we rule out the possibility
that these effects are driven by only one police district. Finally, in Appendix C, we conduct
analysis following Rambachan and Roth (2023) to illustrate the sensitivity of the event study
estimates to possible violations of parallel trends. Specifically, we evaluate the degree of non-
linearity we can impose on a linear extrapolation of the pre-treatment trend while maintaining
a significant post-treatment average treatment effect. As explained further in Appendix B, we
find that the average of all post-implementation periods maintain their statistical significance
under both a linear extrapolation of the pre-period and increasing amounts of non-linearity for

both the Call-to-Dispatch and Call-to-On-Scene time.

5.2 Mechanism - Resource Constraints

In this subsection, we provide evidence that the longer response times associated with ShotSpot-
ter are a result of the allocation of scarce police resources. Recall from Section 3.3 that post-
implementation, there are approximately 70 ShotSpotter dispatches each day in Chicago—a
two-fold increase in the number of gunfire-related incidents officers must respond to com-
pared to pre-implementation. These dispatches are resource-intensive, taking an average of

20 minutes each, which collectively amounts to roughly 75 hours of officer time allocated to
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ShotSpotter.'® To establish this link, we conduct three sets of analyses to show that ShotSpotter
creates longer 911 response time delays on both the extensive margin (implementation) and the
intensive margin (number of ShotSpotter dispatches).

First, on the extensive margin, we differentiate the effect of ShotSpotter by officer
watch schedules, which represent times when officers begin and end their shift. This division
allows us to examine periods with varying levels of ShotSpotter dispatches, wherein officers
may be more or less constrained by attending to ShotSpotter investigations. Panel A of Figure
6 plots the distribution of ShotSpotter dispatches by the hour of the day and corresponding
watch. As shown in the figure, the nighttime shifts of Watch 1 (11:00pm - 7:00am) and Watch
3 (3:00pm - 11:00pm) have significantly higher counts of ShotSpotter dispatches than Watch 2
(7:00am - 3:OOpm).20

In Panel B of Figure 6, we plot estimations of Equation 1 by officer watch and show
that shift times with higher levels of ShotSpotter dispatches have longer response time delays.
On the x-axis, each coefficient estimate and 95% confidence interval is plotted for the corre-
sponding watch number on the y-axis. For both Call-to-Dispatch and Call-to-On-Scene times,
the magnitude of the effects correspond to the distribution of ShotSpotter dispatches in Panel
A; Watch 1 and Watch 3 exhibit effects that are both statistically significant and larger in mag-
nitude than Watch 2. Moreover, while the Call-to-On-Scene delays reach nearly 3 minutes in
Watch 3, the Call-to-On-Scene estimates are near-zero for Watch 2, and are not statistically
significant.

Second, also on the extensive margin, we show that the longer response times are
driven by district-days that have fewer officers on duty. Similar to the prior analysis, this tests
the notion that times with less officer availability will result in larger effects. In Columns 2

and 3 of Table 3, we split the sample by the district-day median of officer availability. We

19 As mentioned in the introduction, we calculate this using the average number of officers that are dispatched
to ShotSpotter detections over a sample period of 2019-2023 (roughly three officers). Unfortunately, records
retention schedules did not allow us to receive this data for our sample period.

20The typical police watches in Chicago last for 9 hours total with a 45-minute briefing to begin the shift. We
use 8-hour intervals to account for these briefings.
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measure officer availability using the number of working hours from all police officers within
a district-day. Column 2 shows estimates from district-days that have officer availability above
the median and are therefore less resource constrained. The percentage change for both Call-
to-Dispatch and Call-to-On-Scene are 14% and 8% respectively, suggesting that ShotSpotter
does not impact response times as significantly when there are ample officer resources. On the
other hand, Column 3 shows that when officer availability are below the district-day median,
ShotSpotter’s effect on response times are greatly increased. In particular, Call-to-Dispatch and
Call-to-On-Scene times exhibit percentage changes of 27% and 17%, which are higher than the
pooled estimates of 23% and 13% in Column 1, respectively. Interestingly, the larger effects in
both outcomes suggest that dispatchers struggle to find an available officer to dispatch and that
officers are placed in areas increasingly far away from other reports of crimes.

Finally, on the intensive margin, we exploit an alternative source of variation to test
whether ShotSpotter allocates resources away from 911 calls: the number of daily ShotSpotter
dispatches within a district. Recall from Section 2 that ShotSpotter dispatches are the result
of ShotSpotter sensors detecting gunfire, which are distinct from civilian 911 calls. To do so,

Equation 1 is modified to the following:

ResponseTimeg = {ShotSpotterDispatchesg; + 04+ Y + €4 3)

where ShotSpotterDispatchesg; is the number of dispatches attributed to ShotSpotter alerts in
district d at time ¢, O, are police district fixed effects, and ¥ are day-by-month-by-year fixed ef-
fects. Importantly, since the identifying variation is at the district-day level (rather than the call-
level), we aggregate the call-level response times to the district-day. Hence, ReponseTime ;
represents the average response time in police district d at time ¢. Furthermore, the identifying
assumption in this specification is that the number of detected gunshots within a district-day
is uncorrelated with confounding factors in €, that may affect response times. To ensure we

isolate the effects of the intensive margin, rather than ShotSpotter implementation itself, we re-
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strict the sample to treated police districts and days when ShotSpotter has been implemented.

Consequently, this alternative specification more precisely tests the hypothesis that
ShotSpotter affects response times by diverting officer resources away from 911 calls. If true,
then days without ShotSpotter dispatches should see no significant change in response times,
since the installation of the technology does not affect other day-to-day police operations. On
the other hand, a day with more ShotSpotter dispatches may allocate less time for police officers
to respond to 911 calls and therefore increase response times. In effect, the coefficient of
interest { measures the marginal effect of an additional ShotSpotter dispatch.

Column 4 of Table 3 shows that one additional ShotSpotter dispatch is associated
with an increase in the average Call-to-Dispatch time of 6 seconds and an increase in the
average Call-to-On-Scene time of 8 seconds. These results are statistically significant at the
1% level. However, we note that these results are under the assumption of a linear relationship
between the number of ShotSpotter dispatches and response times. We show the plausibility of
this assumption in Appendix Figure D4 where we split the number of ShotSpotter dispatches
into deciles and re-estimate Equation 3. Interestingly, we find that each response time increases
monotonically with ShotSpotter dispatches, further implicating the incapacitation effect that
ShotSpotter has on police officers.

Taken together, these findings underscore the significance of police resource alloca-
tion within a day. If ShotSpotter affects response times by overloading officer responsibilities,
then it is imperative to reallocate the appropriate amount of staffing to times when ShotSpotter

dispatches are more frequent.

5.3 Impact on Arrest Probability

Although the findings demonstrate that ShotSpotter affects police officer response times, we
acknowledge that this influence might not necessarily yield detrimental consequences if it does
not affect the likelihood of apprehending perpetrators. To address this concern, we examine
the potential changes in arrest probability associated with the observed increases in response
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times. We begin by merging the 911 dispatch data with arrest records, utilizing incident report
number as the common identifier.! In doing so, we build on the results of Blanes i Vidal and
Kirchmaier (2018), who find that increases in response times lowers the likelihood of a crime
being cleared. Similarly, we provide evidence that the increased response times attributed to
ShotSpotter result in a lower likelihood of perpetrators being arrested when responding to 911
calls.

Table 4 shows the results from estimation of Equation 1 focusing on the probability of
arrest for Priority 1 dispatches as the dependent variable.?? In Column 1, the analysis reveals
that the arrest likelihood decreases by 9% relative to the mean. This finding is statistically
significant at the 1% level and highlights the substantial costs that extended response times
impose on community safety and crime resolution.

Column 2 and Column 3 separate the effect on arrests into 911 calls that are catego-
rized as gun-related and non-gun-related calls.”> Notably, Column 3 highlights that the decline
in arrest probability is driven by 911 calls that are unrelated to gun crimes. Conversely, Col-
umn 2 suggests that there is no change in the probability of a gun-related 911 call ending in an
arrest, indicating that ShotSpotter might effectively guide officers to the vicinity of gun-related
incidents, thus mitigating the impact of a delayed response.

In Columns 4-6, we isolate the effects for the three most frequent calls that end in
arrests: domestic battery, domestic disturbance, and battery. Columns 4 and 5 report that the
arrest probability for domestic disturbance and domestic battery both exhibit a statistically
significant decline of 13% and 14%, respectively.

In light of these findings, it is evident that the observed impacts of ShotSpotter-
induced delays extend beyond their immediate effect on police arrival. Specifically, the de-

creases in arrest rates for domestic disturbance and battery could potentially have significant

2I'We use two sets of arrest data. Arrests from the arrest database, and also case reports that end in arrests.
Based on conversations with the Chicago Police Department, this is the best way to map 911 calls to arrests.

22In addition, we estimate this table using logistic regressions rather than OLS. The results are shown in Ap-
pendix Table D2. The results remain consistent.

23We classify gun-related 911 calls as those with descriptions of ‘person with a gun’, ‘shots fired’, and ‘person
shot’.
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implications for the victims, as domestic violence offenders are likely to reoffend (Maxwell
et al., 2001). These results not only highlight the importance of efficient response times in
enhancing crime resolution, but also underscore the health implications that may arise in terms

of domestic battery.

6 Discussion

6.1 How does ShotSpotter affect other priority response times?

Within this subsection, we pivot the analysis beyond response times for Priority 1 dispatches to
lower level priorities, Priority 2 (rapid dispatch) and Priority 3 (routine dispatch).?* In doing so,
we show implications that extend beyond Priority 1 dispatches, introducing trade-offs that dis-
patchers and officers face for lower-level reports of crime. Specifically, we find a ‘trickle-down’
effect, wherein time-sensitive lower-priority calls (Priority 2) are also impacted by ShotSpot-
ter implementation. Interestingly, we find suggestive evidence that time-insensitive dispatches
(Priority 3) may also be affected, implying a potential strain on officers’ responsibilities when
ShotSpotter is implemented. Moreover, we separately analyze the five most frequent types of
calls within each priority. This provides two benefits; first, we are able to determine which
types of calls drive the overall results, and second, we can mitigate the concern that ShotSpot-
ter is leading to a change in the distribution of call types. Surprisingly, this analysis leads to
significant health implications where ShotSpotter may be unintentionally costly for victims in
need of medical services.

First, Equation 1 is estimated by priority on Call-to-Dispatch and Call-to-On-Scene
times in Figures 7 and 8, respectively. In each figure, the point estimates and confidence

intervals are divided by the mean of the dependent variable to show percentage changes. As

24 A Priority 2 dispatch is defined as a response in which timely police action which has the potential to affect
the outcome of an incident. A Priority 3 dispatch is defined as a response to a call for service that does not involve
an imminent threat to life, bodily injury, or major property damage/loss, and a reasonable delay in police action
will not affect the outcome of the incident.
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an example, the top rows of each corresponding priority, labeled “Pooled Estimate,” represent
the 95% confidence intervals for the percentage change from the mean. Moreover, within each
priority, the five most frequent call types are uniquely estimated and plotted in descending
order of their mean response time. For instance, in the Priority 1 panel of Figure 7, the call
description Battery in Progress has the lowest average Call-to-Dispatch time, while Suspicious
Person and Check Well Being have the second and third lowest. Using this ranking, we find
that the Priority 1 call-types that have the fastest response times exhibit the largest effects for
both outcomes after ShotSpotter implementation.

As shown in the first row of both Figure 7 and Figure 8, labeled Pooled Estimate,
Priority 2 response times for both outcomes show significant increases. Priority 2 calls are
categorized as incidents that are non-life-threatening, but where police intervention may affect
the outcome of the event. This significant increase in Priority 2 response times suggests a
‘trickle down’ effect from delays in Priority 1 dispatches. Intuitively, an officer that is delayed
for a higher priority call, may also be delayed for less important tasks. However, for Priority 3
calls, which are time insensitive, we find only suggestive evidence of increased response times
as Call-to-Dispatch is not statistically significant and Call-to-On-Scene is significant at the
10% level. Despite this, the point estimates for Priority 3 calls are positive, and the insignificant
estimates may be a result of the large average response times for Priority 3 call types. As shown
in the first row of Figures 7 and 8, the average response times for Priority 3 Call-to-Dispatch
and Call-to-On-Scene are 16 minutes and 31 minutes, respectively. Given that these averages
are substantially larger than Priority 1 and Priority 2, the estimated change in average time may
not be large enough to detect. Despite this limitation, the positive coefficient estimates support
the notion that officers’ responsibilities are strained in the presence of ShotSpotter, creating
further delays in responding to time-insensitive calls.

Second, as mentioned, Equation 1 is estimated for each of the five most frequent call
types by priority. The results of these estimations are also plotted in Figures 7 and 8 below the

Pooled Estimate. For Priority 1 and Priority 2 calls, we find consistent evidence of increased
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delays for both response times for nearly all call-types, thus showing that the effects are wide-
spread across different emergency situations. Of notable importance, Figure 7 reports longer
Call-to-On-Scene times for Emergency Medical Services (EMS), which may have significant
health implications. In particular, the point estimate reports a 69-second increase in the re-
sponse time for EMS calls. According to the Chicago EMS System Policies and Procedures,
treatment and transport of injured civilians should be delayed pending police arrival if the safety
of the EMS personnel could be jeopardized. Therefore, this observed delay in police response
may postpone critical medical services. Specifically, Wilde (2013) find that a minute increase
in response times increases mortality between 8-17%. Given the additional minute increase we
find in Call-to-On-Scene times, ShotSpotter may have significant social costs beyond a lower
likelihood of arresting perpetrators, and may hinder injured civilians from receiving timely

carce.

6.2 Are victim injuries more likely?

Given that faster police response times have been shown to lower the probability of a victim in-
jury (DeAngelo et al., 2023), we study this possibility in our setting where ShotSpotter is caus-
ing slower response times. Specifically, we create a binary outcome variable for any Priority 1
911 call that results in a victim being injured. We perform two analyses: first, we estimate the
overall effect of ShotSpotter implementation on the likelihood of a 911 call resulting in a vic-
tim injury, and second, we separate this effect by gun-related calls and non-gun-related calls.
In doing so, we test the notion that ShotSpotter may have differential effects on gun-related
calls, since ShotSpotter can increase locational precision of 911 calls regarding gun-violence
(Piza et al., 2023).

In Column 1 of Table 5, there is little evidence of a change in the probability of a vic-

tim injury following a 911 call. Column 1 is estimated using Equation 1 where the dependent
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variable is an indicator equal to one if the 911 call resulted in a victim injury.?> Although the
coefficient estimate is negative, there is no statistical significance.

Moving on, Columns 2 and 3 of Table 5 split the sample by gun-related and non-
gun-related 911 calls, respectively.?® While there appears to be no change in the probability
of a victim injury for non-gun-related calls, Column 2 shows suggestive decreases in victim
injuries for gun-related calls of approximately 6% which is statistically significant at the 10%
level. This result suggests that ShotSpotter may place officers closer to particular gun-related
911 calls. For instance, if a 911 call is corroborated with a ShotSpotter alert, ShotSpotter’s
triangulation component may provide officers better locational precision, placing them closer
to the crime scene whereby they can intervene. As mentioned earlier, there is evidence that
ShotSpotter increases the locational precision of the crime scene that is relayed to officers.

Importantly, the pooled and non-gun-related findings in Columns 1 and 3 do not rule
out the possibility of increased victim injury, as found in DeAngelo et al. (2023). Moreover,
we note several differences in our analysis; we focus on Priority 1 calls rather than Priority 2,
and we are unable to observe a victim injury if the victim is a minor (approximately 11% of
all victims).?” Therefore, although we find suggestive evidence of decreases in victim injuries
for gun-related 911 calls, we cannot reject the possibility of increases in victim injuries for

non-gun-related calls.

7 Conclusion

In this study, we analyze the adoption of a new policing technology that crowds out police offi-

cer time and disrupts the availability of officers. We do so by exploring the effect of ShotSpotter

2SWe also estimate these results using logistic regressions as shown in Appendix Table D3. The results are
mostly consistent, showing that the effects are driven by gun-related 911 calls. However, the pooled estimates
show statistical significance when using this estimation.

26Gun-related crimes are those that have the call descriptions ‘SHOTS FIRED’, ‘PERSON WITH A GUN’,
and ‘PERSON SHOT".

2"Minors are protected under the Freedom of Information Act. Therefore, we could only receive aggregate
numbers of juvenile victims. This accounted for approximately 11% of all victims over the course of the sample
period.

29



technology on two measures of police response times, Call-to-Dispatch and Call-to-On-Scene.
Using a comprehensive dataset of all Priority 1 911 calls that result in police dispatch over a
seven-year period (2016-2022), we find that response times are significantly increased follow-
ing the implementation of ShotSpotter in Chicago. Specifically, we find that 911 dispatchers
exhibit a minute increase in finding an available officer to dispatch (Call-to-Dispatch) and
officers subsequently arrive at the scene of the crime approximately two minutes slower (Call-
to-On-Scene). These increases have significant implications, as officers exhibit a decrease in
the likelihood of arresting perpetrators following a 911 dispatch (9%)—a result driven by calls
associated with domestic violence.

Furthermore, we find evidence that ShotSpotter increases response times by reallo-
cating scarce police resources from 911 emergency calls to ShotSpotter-detected gunfire alerts
(ShotSpotter dispatches), resulting in a significant time trade-off. Given the substantial re-
sources that ShotSpotter requires, police officers are forced to allocate a significant portion
of their time to fulfill ShotSpotter requirements, thereby incapacitating them from attending to
911 calls. In particular, we show that the effects are driven by times when there are fewer police
officers on-duty and times of the day when ShotSpotter dispatches are most frequent. On the
intensive margin, we find that each additional ShotSpotter dispatch results in a six-second in-
crease in Call-to-Dispatch time and an eight-second increase in Call-to-On-Scene time, further
implying that ShotSpotter is creating a costly time allotment.

Importantly, we do not rule out the possibility that ShotSpotter may be an effective
tool for police departments. As a limitation, the data cannot evaluate the productivity of a
ShotSpotter dispatch in comparison to a 911 dispatch over the sample period.?® However,
based on a subset of the data (2019-2022), we find descriptive evidence that approximately

2.2% of all ShotSpotter dispatches result in an arrest.?? For context, gun-related 911 calls in

28Two reports from Chicago have raised concerns over ShotSpotter’s productivity (Ferguson and Witzburg,
2021; Manes, 2021).

2Officers were not required to note whether an arrest was associated to ShotSpotter until after February 2019
according to a Freedom of Information Act request for such information. This number is found using the total
number of distinct arrests that are associated with a ShotSpotter and dividing by the number of ShotSpotter
dispatches post-February 2019.
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ShotSpotter districts prior to implementation end in an arrest approximately 3.5% of the time.
Despite this discrepancy, we emphasize that an arrest is not the only productivity measure
in a dispatch; police may gather valuable intelligence at the crime scene, or the presence of
officers may produce a deterrence effect from subsequent crimes occurring in the area (Chalfin
and McCrary, 2017). As a result, further research is needed to understand the productivity of
ShotSpotter dispatches to perform a rigorous cost-benefit analysis.

Hence, we cannot advocate for, nor against ShotSpotter, but aim to inform policy-
makers of the substantial unintended consequence it, and similar technologies, creates. How-
ever, given the analysis, we find that ShotSpotter creates a resource constraint problem where
officers have too many responsibilities. This is important given that police dispatch queu-
ing models suggest that response time is highly sensitive to the arrival rate of 911 emergency
calls.>® Therefore, we recommend that police departments carefully evaluate whether their
departments have the staffing required to accommodate the intensive resources that this tech-
nology requires in order to mitigate the consequences. In our setting, a back-of-the-envelope
calculation shows that in order to eliminate the on-scene time delays, 36% more officers are
needed.?! This underscores the notion that police technology such as ShotSpotter, as of now,

can possibly act as a valuable complement for police officers, but not as a perfect substitute.

30See Green and Kolesar (1989) for the M/M/d queuing model setup (also called Erlang-C) and application to
empirical data.

31To calculate this, we estimate the specification in Equation 3, replacing the NumberSST Dispatchesg; with
the number of officers within district d at time ¢ and the number of officers within district d at time ¢ squared.
The marginal effect of an additional officer on response times using this model is to 1.78 seconds increased in
on-scene time. We then use the average increase in Call-to-On-Scene from Column 2 of Table 2 (103.7) and
divide by the 1.78 to find the number of officers needed to negate this effect. Using the average number of officer
hours (1277.86), and dividing by 8 (the average shift time), we find the average number of officers within a district
(159.73). Finally, dividing the number of officers needed by the average number of officers within a district gives
the percentage increase (36%).
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Figure 1: ShotSpotter Alert Trends and Enactment Dates

Note: This figure depicts police districts that are implemented with ShotSpotter technology.
Months are on the x-axis, while the y-axis is the number of ShotSpotter dispatches aggregated
to the monthly level. The table on the right shows the corresponding implementation date for
ShotSpotter technology. In Chicago, 12 of the 22 police districts have ShotSpotter technology.
The dashed red line shows the implementation dates used in the main results. In some cases, the
implementation date we use differs from the date given from the Chicago Police Department,
since the ShotSpotter dispatches data does not align. Analysis using public records date is
shown in Appendix Figure D2. Prior to implementation, some districts may observe some
ShotSpotter dispatches if sensors in a neighboring district detect gunshots from afar. However,
this is a rare occurrence.
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Figure 2: Distribution of Outcome Variables

Note: The two plotted variables are Call-to-Dispatch and Call-to-On-Scene. Call-to-Dispatch
is the time from a 911 call to when a police officer is dispatched to the crime scene. Call-to-
On-Scene is the time from a 911 call to the time a police officer arrives at the scene of the
reported crime. This sample excludes outliers that are greater than three standard deviations
from the mean for each outcome. Observations with response times higher than 3000 seconds
are binned. However, the main results remain consistent when including these outliers, as
shown in Appendix Figure D2. The dashed blue line represents the mean of Call-to-Dispatch
time, while the dashed red line represents the mean of Call-to-On-Scene time.
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Figure 3: Event Study (Call-to-Dispatch)

Note: This figure shows the event study as specified in Equation 2 for Call-to-Dispatch times.
Call-to-Dispatch is the amount of time from a 911 call to a police officer being dispatched to
the crime scene. The x-axis denotes the number of months pre-/post-adoption of ShotSpotter
technology. The y-axis denotes the 95% confidence intervals and point estimates (in seconds).
The red error-bars/points represent confidence intervals/point estimates from OLS estimation
while the blue are using the Gardner (2021) two-stage difference-in-difference estimator, which
is robust to heterogeneous treatment effects in staggered adoptions. All pre-/post-periods are
relative to the month before ShotSpotter adoption. Twelve pre-periods (24 post-periods) are
estimated, but only 11 pre-periods (23 post-periods) are reported, as the -12 (+24) is a binned
endpoint. Controls match the preferred specification. Standard errors are clustered at the dis-
trict level.
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Figure 4: Event Study (Call-to-On-Scene)

Note: This figure shows the event study as specified in Equation 2 for Call-to-On-Scene times.
Call-to-On-Scene is the amount of time from a 911 call to a police officer arriving to the crime
scene. The x-axis denotes the number of months pre-/post-adoption of ShotSpotter technol-
ogy. The y-axis denotes the 95% confidence intervals and point estimates (in seconds). The
red error-bars/points represent confidence intervals/point estimates from OLS estimation while
the blue are using the Gardner (2021) two-stage difference-in-difference estimator, which is
robust to heterogeneous treatment effects in staggered adoptions. All pre-/ post-periods are
normalized by the month before ShotSpotter adoption. Twelve pre-periods (24 post-periods)
are estimated, but only 11 pre-periods (23 post-periods) are reported, as the -12 (+24) is a
binned endpoint. Controls match the preferred specification. Standard errors are clustered at
the district level.
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Note: Each police district is plotted on the y-axis, and the average of Call-to-Dispatch and Call-
to-On-Scene (seconds) is on the x-axis. In the top panel, police districts that receive ShotSpot-
ter technology are plotted. In the bottom panel, police districts that never receive ShotSpotter
are plotted. All ShotSpotter-implemented districts have two distinctions: ShotSpotter Active
and ShotSpotter Inactive. The red lines correspond to periods prior to ShotSpotter implemen-
tation, and the blue bars correspond to post-implementation. There are 12 of 22 police districts
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Figure 5: Average Outcomes in Police Districts

in Chicago that receive ShotSpotter technology.
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Figure 6: Effect of ShotSpotter by Officer Watch Times

Note: This figure shows that in times when officers are responding to more ShotSpotter (SST)
detections, their response times are slower. In Panel A, the number of ShotSpotter dispatches
are plotted by the hour of occurrence. The y-axis is the number of ShotSpotter dispatches, while
the x-axis the hour of the day. In Panel B, Call-to-Dispatch and Call-to-On-Scene estimates
using the specification in Equation 1 are shown along with the 95% confidence intervals, split
by officer watch. There are three main watches in Chicago: Watch 1 (11:00pm-7:00-am),
Watch 2 (7:00am-3:00pm), and Watch 3 (3:00pm-11:00pm).
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Figure 7: Effect of ShotSpotter by Priority (Call-to-Dispatch)
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Note: This figure plots the effects of ShotSpotter on Call-to-Dispatch times by priority and
by most frequent call-type. In the first row of each panel, the pooled estimate combining all
respective call types is reported. The subsequent rows report estimates for the most frequent
call-types, ranked by their average Call-to-Dispatch time. For instance, in Priority 1, Battery in
Progress has the lowest average Call-to-Dispatch time, while Suspicious Person has the second
lowest. The x-axis shows the percent change from the mean (i.e., the point estimate divided
by the mean of the outcome), as well as the corresponding 95% confidence interval using the
specification from Equation 1. The number of observations and means are shown in the y-axis
for each call-type. All estimations are estimated using OLS and the preferred specification.



Priority 1 Priority 2

(Immediate Dispatch) (Rapid Dispatch)
| 1
Pooled Estimate | . Pooled Estimate | A
Mean: 770.86 N: 1,997,102 | Mean: 964.45 N: 776,304 |
Battery In Progress ! Person Down ! A
Mean: 628.63 N: 153,566 : Mean: 714.42 N: 43,476 :
Suspicious Person 1 Alarm Commercial 1 ;
Mean: 753.33 N: 110,805 | Mean: 821.7 N: 121,562 |
EMS ! Suspicious Auto ! X
Mean: 793.64 N: 116,971 : Mean: 907.43 N: 47,959 :
Domestic Disturbance I Alarm Burglar I
Mean: 821.72 N: 425,305 I Mean: 909.65 N: 247,250 |
Check Well Being ! Auto Accident PI ! A
Mean: 858.73 N: 188,881 : Mean: 1307.43 N: 56,622 !
Priority 3 -10% 0% 10% 20% 30%
(Routine Dispatch)
|
Pooled Estimate 1
Mean: 1915.35 N: 1,226,135 |
Disturbance !
. : —
Mean: 1517.26 N: 373,607 |
Disturbance: Noise ] -

Mean: 1706.76 N: 106,594 1

Parking Violation 1 !
Mean: 2119.8 N: 172,622 |

Parking Violation 2 1
Mean: 2564.96 N: 55,080 |

Parking Violation 1 !
Mean: 2569.72 N: 97,592 !

-10% 0% 10% 20% 30%
Percent Change from Mean and 95% Confidence Interval

Figure 8: Effect of ShotSpotter by Priority (Call-to-On-Scene)

Note: This figure plots the effects of ShotSpotter on Call-to-On-Scene times by priority. In
the first row of each panel, the pooled estimate combining all respective call types is reported.
The subsequent rows report estimates for the most frequent call-types, ranked by their average
Call-to-On-Scene time. For instance, in Priority 1, Battery in Progress has the lowest average
Call-to-On-Scene time, while Suspicious Person has the second lowest. The x-axis shows the
percent change from the mean (i.e., the point estimate divided by the mean of the outcome),
as well as the corresponding 95% confidence interval using the specification from Equation
1. The number of observations and means are shown in the y-axis for each call-type. All
estimations are estimated using OLS and the preferred specification.
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9 Tables

Table 1: Summary Statistics

Mean Std. Dev. Min Max N
Panel A: Priority 1 Outcomes:
Call-to-Dispatch 281.89 436.53 2.00 3,111.00 3,582,560
(4.70 mins) (7.28 mins) (0.03 mins) (51.85 mins)
Call-to-On-Scene 770.86 784.69 11.00 7,671.00 1,997,102
(12.85 mins)  (13.08 mins) (0.18 mins) (127.85 mins)
Arrest Made 0.02 0.15 0.00 1.00 3,582,560
Victim Injury 0.03 0.17 0.00 1.00 3,582,560
Panel B: Secondary Outcomes:
Call-to-Dispatch (Priority 2) 362.04 524.78 2.00 3,577.00 1,604,709
(6.03 mins) (8.75 mins) (0.03 mins)  (59.62 mins)
Call-to-On-Scene (Priority 2) 964.45 901.10 14.00 6,615.00 776,304
(16.07 mins)  (15.02 mins) (0.23 mins)  (110.25 mins)
Call-to-Dispatch (Priority 3)  1,012.99 1,258.17 2.00 6,550.00 3,284,127
(16.88 mins)  (20.97 mins) (0.03 mins) (109.17 mins)
Call-to-On-Scene (Priority 3) 1,915.35 1,820.17 10.00 11,702.00 1,226,135
(31.92 mins) (30.34 mins) (0.17 mins)  (195.03 mins)
Panel C: Other Variables:
Priority 1 911 Dispatches 73.01 24.63 8.00 223.00 3,582,560
ShotSpotter Dispatches 2.96 4.19 0.00 57.00 3,582,560
Officer Hours 1,342.21 395.08 231.00 6,558.10 3,582,560
Note:

Units are in seconds unless otherwise noted. Data is at the call-level. Call-to-Dispatch represents the amount
of time from the 911 call to an officer dispatching to the scene. Call-to-On-Scene is the time from a 911
call to when an officer arrives on-scene. Priority 1 Call-to-On-Scene is missing approximately 45 percent
of on-scene times. This is discussed further in Appendix A. Arrest Made is and indicator equal to one if
the 911 dispatch resulted in an arrest. Victim Injury is an indicator equal to one if the 911 dispatch resulted
in a victim injury. Priority 1 refers to an immediate dispatch, Priority 2 a rapid dispatch, and Priority 3 a
routine dispatch. Priority 1 911 Dispatches is the number of Priority 1 dispatches at the district-day level.
ShotSpotter Dispatches is the number of dispatches due to ShotSpotter detections. Importantly, ShotSpotter
Dispatches is also at the district-by-day level and includes days in which ShotSpotter is not implemented.
The average number of ShotSpotter dispatches on post-implementation days is approximately 6. The average
daily number of ShotSpotter dispatches across Chicago once all 12 districts have implemented ShotSpotter
is approximately 70. Note that New Years Eve/New Years Day/Fourth of July are excluded from the sample
as these days correspond with high amounts of celebratory gunfire. Officer Hours are the number of working
hours sworn police officers work at the district-day level.
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Table 2: Effect of ShotSpotter on Response Times (OLS)

(1) (2) (3) 4) ()
Panel A: Call-to-Dispatch
ShotSpotter Activated 64.142%**%  64.058***  65.659%**  71.929%** (] 373%%*
(21.541) (22.394) (21.888) (22.405) (21.641)
Border District Activated 21.406
(16.503)
Mean of Dependent Variable 281.890 281.890 281.890 281.890 281.890
Observations 3,582,560 3,582,560 3,582,560 3,582,528 3,582,560
Wild Bootstrap P-Value 0.015 0.012 0.015 0.017
Panel B: Call-to-On-Scene
ShotSpotter Activated 101.813***  103.107*** 105.146*** 120.721*** 101.392%*%%*
(26.205) (28.801) (28.269) (27.992) (28.167)
Border District Activated 24.407
(17.882)
Mean of Dependent Variable 770.863 770.863 770.863 770.863 770.863
Observations 1,997,102 1,997,102 1,997,102 1,997,075 1,997,102
Wild Bootstrap P-Value 0.005 0.001 0.002 0.001
FE: Day-by-Month-by- Year X X X X X
FE: District X X X X X
FE: Call-Type X X X X
FE: Hour-of-Day X X X X
Officer Hours X
Number 911 Dispatches X
Gardner (2021) Robust X
Note:

*p<0.1, ¥ p<0.05, *** p < 0.01

Standard errors are clustered by district. All coefficient estimates are in seconds. Shotspotter is acti-
vated in 12 of the 22 police districts in Chicago. Panel A shows results for Call-to-Dispatch while Panel
B shows results for Call-to-On-Scene. Column 1 reports only time and group fixed effects. Column
2 reports the preferred specification from Equation 1, which includes hour-of-day and call-type fixed
effects. Column 3 includes number of Priority 1 dispatches and Officer Hours as controls. However,
considering these may be correlated with treatment, we do not consider this the preferred specification.
Column 4 reports estimates using the Gardner (2021) estimator which is robust to heterogeneous treat-
ment effects across groups and time periods in staggered designs. Due to its two-stage method, some
observations are dropped if unable to predict values in the first stage. Column 5 includes Border District
Activated which is an indicator for when a district is adjacent to a ShotSpotter implemented district.
Wild cluster bootstrap p-values using 999 iterations are also reported as the number of clusters (22) is
below the threshold of 30 put forth in Cameron et al. (2008). The bootstrap cannot be performed using
the Gardner (2021) estimator.
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Table 3: Effect of ShotSpotter on Response Times Mechanisms (OLS)

ShotSpotter Rollout ShotSpotter Dispatches
Officer Availability
Pooled > Median <= Median Pooled
(1) (2) 3) “)
Panel A: Call-to-Dispatch
ShotSpotter Activated 64.131%**%  34.500%*  85.180%***
(22.379) (13.630) (27.959)
Number SST Dispatches 6.094%**
(1.513)
Mean of Dependent Variable 281.890 239.951 323.077 269.365
Observations 3,582,560 1,775,086 1,807,474 47,933
Panel B: Call-to-On-Scene
ShotSpotter Activated 102.682***  59.706***  138.102%**
(28.724) (21.061) (37.671)
Number SST Dispatches 8.023##*
(1.842)
Mean of Dependent Variable 770.863 711.409 827.843 770.462
Observations 1,997,102 977,332 1,019,770 47,932
FE: Day-by-Month-by- Year X X X X
FE: District X X X X
FE: Call-Type X X X
FE: Hour-of-Day X X X

Note:

*p<0.1, ¥ p<0.05, ** p < 0.01

Standard errors are clustered by district. ShotSpotter Activated is a binary equal to one when a dis-
trict has ShotSpotter technology (extensive margin). Number SST Dispatches refers to the number
of ShotSpotter dispatches that occur within a district-day (intensive margin). All coefficient esti-
mates are in seconds. Panel A reports results for Call-to-Dispatch while Panel B reports results for
Call-to-On-Scene. Officer availability is measured by number of officer hours within a district-day.
Column 2 corresponds to district-days that have officer hours above their district median (more of-
ficer availability), while Column 3 corresponds to district-days that have officer hours below their
district median (less officer availability). Analyses for Columns 1-3 are on the extensive margin, and
utilze call-level data. The coefficients for these analyses are interpreted as average effects. Anal-
ysis for Column 4 is on the intensive margin, and the data is aggregated to the district-day level.
The coefficients of interest for Column 4 are interpreted as marginal effects. We aggregate to the
district-day since the number of ShotSpotter dispatches is measured at the district-day. Because of
this, we cannot use call-level data to correctly identify the marginal effects. Moreover, we restrict
the sample to only post-implementation days for treated districts to ensure that only the intensive
margin, rather than extensive margin, is identified. Further explanation of this model is given in
Section 5.3.
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Table 4: Effect of ShotSpotter Enactment on 911 Arrest Likelihood (OLS)

Gun-Relation Most Frequent Arrest 911 Calls
Domestic ~ Domestic
All Gun Non-Gun Disturbance  Battery Robbery
(1 2) 3) “4) ) (6)
ShotSpotter Activated -0.221%**%  -0.157  -0.221%*%*  -0.829*%**  -0.281**  -0.303
(0.063) (0.189) (0.066) (0.241) (0.123) (0.177)
Mean of Dependent Variable 2.449 3.355 2.361 6.110 2.021 4.185
Observations 3,582,560 317,937 3,264,623 224,022 675,025 270,735
Wild Bootstrap P-Value 0.001 0.412 0.003 0.003 0.049 0.109
FE: Day-by-Month-by-Year X X X X X X
FE: District X X X X X X
FE: Call-Type X X X X X X
FE: Hour-of-Day X X X X X X

Note:

*p<0.1, ** p<0.05, ** p < 0.01

Standard errors are clustered by district. All coefficient estimates are in percentages. The dependent
variable is an indicator equal to one if a 911 call ended in an arrest. Column 1 reports the pooled
estimates using the entire sample. Columns 2 and 3 subset Column 1 by gun-related and non-gun-
related 911 calls. Gun-related crimes are those corresponding to the following 911 code descriptions:
‘person with a gun’, ‘shots fired’, or ‘person shot’. Columns 4-6 report the three most frequent 911
calls that end in arrest: Domestic Disturbance, Domestic Battery, and Robbery. Wild cluster bootstrap
p-values using 999 replications are also reported since the number of clusters (22) is below the threshold
of 30 put forth in Cameron et al. (2008).
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Table 5: Effect of ShotSpotter Implementation on Likelihood of 911 Victim Injury (OLS)

Likelihood of Victim Injury

Pooled  Gun Dispatch Non-Gun Dispatch

(1 (2) 3)
ShotSpotter Activated -0.062 -0.422% -0.007
(0.051) (0.211) (0.054)
Mean of Dependent Variable 2.990 4.185 2.874
Observations 3,582,560 317,937 3,264,623
Wild Cluster Bootstrap P-Value 0.245 0.067 0.895
FE: Day-by-Month-by- Year X X X
FE: District X X X
FE: Call-Type X X X
FE: Hour-of-Day X X X

Note:

*p<0.1, ** p<0.05, ¥* p <0.01

Standard errors are clustered by district. All coefficient estimates are in percentages. The main variable
is the probability of a victim being injured during a 911 call dispatch. The Pooled column reports
estimates using the entire sample of Priority 1 dispatches. Gun Dispatch (Column 2) is restricted to
only gun-related 911 call dispatches which have the following 911 code descriptions: ‘person with a
gun’, ‘shots fired’, or ‘person shot’. Non-Gun Dispatch (Column 3) are all other 911 call dispatches
that are not related to gun descriptions. In all columns the preferred specification is estimated using
OLS. Wild cluster bootstrap p-values using 999 replications are also reported since the number of
clusters (22) is below the threshold of 30 put forth in Cameron et al. (2008).
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Appendix A Missing Call-to-On-Scene Data

In this appendix, we conduct analyses regarding the notable amount of data missing for one of
the key outcome variables, Call-to-On-Scene. Recall that Call-to-On-Scene denotes the time
interval between a 911 call and an officer’s arrival at the scene of the incident. While we
find suggestive evidence that missing Call-to-On-Scene times are correlated with ShotSpotter
implementation, this section outlines several reasons to maintain confidence in the main results

despite this limitation.

A.1 Reasons for Missing Data

First, we note that the underlying reason behind a missing Call-to-On-Scene entry is an officer’s
failure to report to the dispatcher that they have arrived on-scene. This could be due to an
officer forgetting to report, or more likely, an officer being immediately engaged on-scene.
Importantly, we provide suggestive evidence that the latter is happening more frequently post-
implementation of ShotSpotter due to officers being more time-constrained.

In Panel A of Appendix Table A1, we estimate the preferred specification from Equa-
tion 1 on an indicator for a missing Call-to-On-Scene time and find suggestive evidence of a
correlation. Column 1 of Panel A reports a 3.8% increase in the likelihood of missing Call-to-
On-Scene when ShotSpotter is implemented, which is statistically significant at the 10% level.
However, Columns 2 and 3 show that this effect is driven by times in which there are fewer offi-
cers on duty, implying that ShotSpotter may be straining officers’ time allotment. For instance,
if an officer feels they have fallen behind, they may disregard relaying to the dispatcher that
they have arrived to the scene. If this is the case, then the missing on-scene times may be larger

than the non-missing times, thereby suggesting that the main results are biased downward.
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A.2 Impact on Call-to-Dispatch Times

Second, we examine the impact of missing data on Call-to-Dispatch times—the time from a
911 call to when an officer is dispatched to the crime scene. Notably, Call-to-Dispatch times, a
mechanism underlying Call-to-On-Scene times as discussed in Section 5, are 100% reported.
To begin, we supplement Equation 1 with an interaction between ShotSpotter imple-
mentation (ShotSpotter Activate) and an indicator for missing Call-to-On-Scene times (Missing
On-Scene).*? In doing so, we test whether there are differences in the effect of ShotSpotter on
Call-to-Dispatch times between cases with missing and no missing data. Panel B of Appendix
Table A1 reports no significant change in Call-to-Dispatch times when there is missing Call-
to-On-Scene data. As shown across Columns 1-3, there is little evidence that Call-to-Dispatch
times differ in a missing data case. Specifically, the coefficient on the interaction term is small
and statistically insignificant. This result instills confidence that officers are likely still arriv-
ing on-scene at later times even in missing data cases, as there appears to be no change in

Call-to-Dispatch times when on-scene times are missing.

A.3 Consistent Trends

Last, given that Call-to-Dispatch times are fully reported and there is no change when Call-
to-On-Scene times are missing, we plot the event study coefficients from Figures 3 and 4 in
Appendix Figure A1 which shows that there is a consistent time trend for each outcome vari-
able. The convergence in trends reinforces the notion that even when Call-to-On-Scene data
is absent, officers may still experience delays in reaching the scene due to slower dispatching
procedures. This consistent pattern underscores the reliability of the Call-to-On-Scene find-

ings.

32The fixed effects are also interacted with Missing On-Scene.
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Table Al: Analysis of Missing Call-to-On-Scene Data (OLS)

Officer Availability
Pooled >Median <= Median
1) () (3)
Panel A: Missing Call-to-On-Scene
ShotSpotter Activated 0.038* 0.032 0.042%*
(0.019) (0.019) (0.022)
Mean of Dependent Variable 0.443 0.456 0.429
Observations 3,582,560 1,789,157 1,793,403
Panel B: Call-to-Dispatch
ShotSpotter Activated 66.408***  29.280%*  97.359%**
(23.059) (12.846) (32.122)
ShotSpotter Activated x Missing -0.249 -1.435 -2.469
(32.877) (18.407) (44.942)
Mean of Dependent Variable 281.890 229.785 333.871
Observations 3,582,560 1,789,157 1,793,403
Note:

*p<0.1,** p<0.05, *** p < 0.01

Standard errors are clustered by district. All coefficient estimates are in seconds. In Panel A,
the table shows regressions on a binary variable equal to one if Call-to-On-Scene is missing.
Columns 2 and 3 are split by district-day medians of officer hours. In Panel B, Call-to-
Dispatch time, which contains no missing data, is estimated with an additional interaction
term which interacts Call-to-Dispatch time with the indicator for whether on-scene time is
missing. The coefficient estimate on this term shows that that there is no difference in Call-
to-Dispatch time when there is missing on-scene data. Note that in these specifications, the
fixed effects are also interacted to get a similar interpretation as if there were two separate
regressions estimated. All controls utilized in these regressions are consistent with the
preferred specification and are estimated using OLS.
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Figure Al: Event Study Point Estimates Trend

Note: This figure plots the point estimates of the event study specifications in Equation 2
for both Call-to-Dispatch (blue) and Call-to-On-Scene (red). In effect, this figure shows that
the trends for each of these outcomes are similar. The y-axis denotes the point estimate in
seconds, and the x-axis displays the number of months to ShotSpotter implementation. Recall
that Call-to-Dispatch has no missing data, while Call-to-On-Scene is approximately 45 percent
missing. This figure is intended to show that Call-to-Dispatch, a mechanism underlying slower
on-scene times, has a similar trend to Call-to-On-Scene, suggesting that missing data may not
be a substantial issue.

%)



Appendix B Coinciding Initiatives

In this appendix, we discuss two initiatives that were implemented in the Chicago Police De-
partment (CPD) near the timing of ShotSpotter: Strategic Decision Support Centers and Body-
worn Cameras. While neither of these exactly coincide with ShotSpotter implementation, we
perform several sets of analyses to mitigate concerns that these, rather than ShotSpotter, are

causing increases in response times.

B.1 Strategic Decision Support Centers

Strategic Decision Support Centers (SDSC) are command and control centers created to give
police officers more awareness of what is occurring in their districts, and decide on responses.
The main objective of SDSCs is to reduce crime, improve officer safety, and reduce service
times. Each SDSC has staff members which include a dedicated supervisor (usually a sworn
officer who i1s a lieutenant or sergeant) and a data analyst.

These support centers act as a hub for all of Chicago’s policing technologies, whereby
they can relay real-time information to police officers in the field. In particular, these centers
are constantly analyzing data from automated license plate readers, social media monitoring,
police observation cameras and devices, and geospatial predictive police software (Hunch-
lab).33> While most of these technologies have already been in utilization by the CPD prior to
SDSCs,** the Hunchlab software is implemented at the exact timing of an SDSC.

Importantly, as described in further detail in Kapustin et al. (2022b), the implementa-
tion of an SDSC did not include an infusion of officers in the form of new officers being hired,
existing officers being relocated, or officers working extra hours. Moreover, SDSCs were told
not to implement new policing strategies, but to only assist department members with crime

forecasting.

33Hunchlab was bought by ShotSpotter in fall of 2018 and is now known as ShotSpotter Missions. We refrain
from using this terminology, as it might be confusing to a reader.

34 Automated license plate readers began as early as 2006, social media monitoring as early as 2014, and police
observation cameras and devices as early as 2003.
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B.1.1 SDSC Technology Effect on Police Patrolling

There may be reason to suspect that Hunchlab, the geospatial predictive policing technology
implemented with SDSCs, affects police response times. Hunchlab functions by creating lo-
cation hot-spots in which police officers are supposed to visit more frequently in their patrols.
These hot-spots are places where Hunchlab algorithms are predicting crime to occur. Hence,
Hunchlab could affect response times by placing officers closer (or farther) to reported inci-
dents of crime, or by placing them in areas where they are more likely to make arrests/stops
and be unavailable for dispatch.

Despite this potential limitation, a thorough analysis of this exact technology is
provided in Kapustin et al. (2022b). Specifically, they find that Hunchlab causes significant
changes in police patrolling behavior for only two police districts (District 7 and District 9).
The null results they report in the other police districts are attributed to commanders or officers

disregarding the software’s suggestions.

B.1.2 Main Results Controlling for SDSCs

In this subsection, we re-estimate the main specification and corresponding event studies on
Call-to-Dispatch and Call-to-On-Scene times while controlling for the SDSC implementation.
SDSCs are implemented in a district-by-district roll-out that is similar (although not exact) to
ShotSpotter’s implementation. Appendix Table B1 reports the districts and corresponding dates
of their implementation. On average, SDSCs are implemented 76 days prior to ShotSpotter,
although not every district with an SDSC receives ShotSpotter.

Appendix Table B2, shows consistent findings of the effects of ShotSpotter on re-
sponse times while controlling for the roll-out of SDSCs. In Columns 1, we use the OLS
estimator while in Column 2, we use the Gardner (2021) estimator to account for possible
treatment heterogeneity across groups and over time given the staggered design. In Panel A,
Call-to-Dispatch times show increases of approximately one-minute, while in Panel B, Call-

to-On-Scene times exhibit increases of two-minutes—each statistically significant at the 1%
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level. On the other hand, there appears to be a decrease in response times due to the SDSC
roll-out on both Call-to-Dispatch and Call-to-On-Scene times, suggesting that the Hunchlab
technology in the SDSCs is not incapacitating officers’ availability, and that the SDSCs may
provide some efficiency gains with the reorganization of intelligence software.

In Columns 3 and 4 of Appendix Table B2, we re-estimate the specifications from
Columns 1 and 2, but exclude police districts 7 and 9 which have been found to have changes in
police patrolling behavior following the SDSC rollout (Kapustin et al., 2022b). In doing so, we
focus the analysis on districts in which there are no patrolling changes whereby response times
could be affected. The results for both Call-to-Dispatch and Call-to-On-Scene are consistent
with the main findings, and in addition, show larger effect sizes than the entire pooled sample.
This suggests that the Hunchlab technology utilized in the SDSCs, when properly utilized, may
mitigate some of the response time lag attributed to ShotSpotter.

Next, we estimate the event study specifications in Equation 2 while controlling
for SDSC implementation. Appendix Figures B1 and B2 plot the event studies for Call-to-
Dispatch and Call-to-On-Scene times using both the OLS estimator (red) and the Gardner
(2021) estimator (blue). In both plots, the standard errors get significantly larger relative to the
models without SDSC controls. This is likely due to the proximity of both ShotSpotter imple-
mentation and SDSCs. However, despite these larger standard errors, the pre-period shows no
visual evidence of a violation of the common trends assumptions, and the post period results

appear similar to the main event studies in Figures 3 and 4.

B.2 Body-Worn Cameras

In this subsection, we show that controlling for the body-worn camera (BWC) implementation

in Chicago has no effect on the response time results. As mentioned in the main text, the district

implementation of BWCs differs by 283 days on average (see Appendix Table B1) from the

ShotSpotter roll-out (see Appendix Table B1). Moreover, while body worn cameras have been

found to affect complaints (Kim, 2019b; Braga et al., 2022; Zamoff et al., 2022; Ferrazares,
58



2023), arrests, and stops (Braga et al., 2022; Zamoff et al., 2022), there is little reason to suspect
that they significantly affect an officer’s ability to rapidly respond.

Columns 5 and 6 of Appendix Table B2 report the results for both Call-to-Dispatch
and Call-to-On-Scene times while controlling for BWC implementation. The results are con-
sistent with the main findings, and the negative coefficient on BWC does not show any evidence

of affecting response times.

Table B1: Implementation Dates of ShotSpotter/SDSC/BWC

District  ShotSpotter SDSC BWC Difference SDSC  Difference BWC
2 2018-05-16  2018-03-01  2016-06-29 76 days 686 days
3 2018-01-04 2018-01-01 2017-11-06 3 days 59 days
4 2018-02-01  2018-01-01 2016-08-13 31 days 537 days
5 2018-03-07 2018-01-01 2017-11-20 65 days 107 days
6 2017-09-24  2017-03-15 2016-08-04 193 days 416 days
7 2017-01-13  2017-01-07 2017-05-01 6 days 108 days
8 2018-04-01 2018-03-01 2017-10-02 31 days 181 days
9 2017-06-01 2017-03-15 2016-08-18 78 days 287 days
10 2017-10-16  2017-03-15 2016-07-25 215 days 448 days
11 2017-03-01  2017-02-17 2017-06-05 12 days 96 days
15 2017-05-13  2017-03-15 2016-06-13 59 days 334 days
25 2018-04-24 2018-01-01 2017-12-04 113 days 141 days

—_—

2020-06-01  2017-03-10

12 2018-03-01 2017-12-04
14 2019-02-25 2016-06-01
16 2017-11-20
17 2019-02-25 2017-11-27
18 2018-08-01 2017-03-31
19 2019-02-01  2017-10-30
20 2019-02-25 2017-10-23
22 2019-02-25 2017-10-30
24 2019-02-01 2017-10-16
Note:

This table shows the implementation dates of ShotSpotter technology and Strategic Deci-
sion Support Centers (SDSC). SDSCs are implemented in similar, although not the same
time period. The Difference column shows the number of days between the SDSC imple-
mentation and ShotSpotter activation. On average, this is approximately 73 days in districts
that have both ShotSpotter and an SDSC. SDSCs contain many police prediction softwares,
however, only Hunchlab, a location prediction software, is implemented in conjuction with
these as the others had been previously used in Chicago prior to SDSCs. Hunchlab has been
found to only change patrolling behaviors in districts 7 and 9 as discussed in Kapustin et al.
(2022). Further robustness of the results including SDSC implementation dates as controls
are shown in Appendix Table B2.
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Table B2: Robustness of Estimates Controlling for Other Technologies (OLS)

SDSC Controls BWC Controls

Onmitting Districts 7 and 9

(H 2 (3) ) ) (6)
Panel A: Call-to-Dispatch
ShotSpotter Activated 75.429%*% 7], 817*** 84.736***  90.334%**  §].256%**  71.856%**
(25.028) (22.497) (26.894) (22.057) (20.988) (22.523)
SDSC Activated -36.742%* -48.221%%*
(16.585) (16.930)
BWC Activated -30.735
(20.755)
Mean of Dependent Variable 281.890 281.890 289.018 289.018 281.890 281.890
Observations 3,582,560 3,582,528 3,198,525 3,198,500 3,582,560 3,582,528
Wild Bootstrap P-Value 0.006 0.004 0.010
Panel B: Call-to-On-Scene
ShotSpotter Activated 120.530%**  120.080%***  127.822%**  145931%%* 08.403%**  120.214%%*
(30.436) (28.141) (32.875) (24.339) (27.843) (28.246)
SDSC Activated -60.324%** -71.208%#:**
(18.978) (20.381)
BWC Activated -40.821
(26.223)
Mean of Dependent Variable 770.863 770.863 790.897 790.897 770.863 770.863
Observations 1,997,102 1,997,076 1,762,676 1,762,656 1,997,102 1,997,076
Wild Bootstrap P-Value 0.002 0.001 0.002
Gardner (2021) Robust X X X

Note:

*p<0.1, # p<0.05, *** p <0.01

Standard errors are clustered by district. Coefficient estimates are in seconds. Columns 1 and 2 of Panel A show
Call-to-Dispatch estimates when controlling for the implementation of Strategic Decision Support Centers (SDSC). In
Columns 3 and 4, police districts 7 and 9 are omitted as Kapustin et al. (2022) shows that SDSCs affect police patrolling
in these districts. Panel B is similar to Panel A, with the outcome of interest being Call-to-On-Scene times. In Columns
5 and 6, we control for Body-Worn Camera (BWC) adoption. Note that in each specification, controls are consistent
with the preferred specification. OLS estimates are reported in odd-numbered columns, while Gardner (2021) robust
estimates are reported in even columns. The coefficient estimates of controls when using Gardner (2021) estimator are
not reported as the two-stage method only returns the coefficient estimate of interest on the treated variable. In addition,
the two-stage procedure may drop observations in the first stage if unable to predict values. This happens infrequently
as shown in the observation counts, but is worth noting. Finally, wild cluster bootstrap p-values using 999 iterations
are also reported as the number of clusters (22) is below the threshold of 30 put forth in Cameron et al. (2008). The
bootstrap procedure cannot be performed using the Gardner (2021) estimator.
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Figure B1: Event Study w/ SDSC Controls (Call-to-Dispatch)

Note: This figure shows the event study as specified in Equation 2 for Call-to-Dispatch times.
Call-to-Dispatch is the amount of time from a 911 call to a police officer being dispatched to
the crime scene. The x-axis denotes the number of months pre-/post-adoption of ShotSpotter
technology. The y-axis denotes the 95% confidence intervals and point estimates (in seconds).
The red error-bars/points represent confidence intervals/point estimates from OLS estimation,
while the blue are from Gardner (2021) two-stage difference-in-difference estimators which
are robust to heterogeneous treatment effects in staggered adoptions. All pre-/post-periods
are normalized by the month before ShotSpotter adoption. Twelve periods are estimated, but
only 11 pre-periods and 23 post-periods are reported as the -12 and +24 are binned endpoints.
Controls match the preferred specification in addition to SDSC rollout. Standard errors are
clustered at the district level.
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Figure B2: Event Study w/ SDSC Controls (Call-to-On-Scene)

Note: This figure shows the event study as specified in Equation 2 for Call-to-On-Scene times.
Call-to-On-Scene is the amount of time from a 911 call to a police officer arriving to the crime
scene. The x-axis denotes the number of months pre-/post-adoption of ShotSpotter technology.
The y-axis denotes the 95% confidence intervals and point estimates (in seconds). The red
error-bars/points represent confidence intervals/point estimates from OLS estimation, while the
blue are from Gardner (2021) two-stage difference-in-difference estimators which are robust to
heterogeneous treatment effects in staggered adoptions. All pre-/post-periods are normalized
by the month before ShotSpotter adoption. Twelve periods are estimated, but only 11 pre-
periods and 23 post-periods are reported as the -12 and +24 are binned endpoints. Controls
match the preferred specification in addition to SDSC rollout. Standard errors are clustered at
the district level.
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Appendix C Sensitivity Analysis of Event Studies

In this appendix, we conduct analysis following Rambachan and Roth (2023) on the OLS
event study specifications in Figures 3 and 4 to illustrate the sensitivity of the estimates to
possible violations of parallel trends. Specifically, we evaluate the degree of nonlinearity we
can impose on a linear extrapolation of the pre-treatment trend. We adopt the notation used
in Rambachan and Roth (2023) and define M as the maximum amount that the pre-treatment
trend can change across consecutive periods. As an example, M = 0 implies no change in the
post-treatment trends—the counterfactual difference in trends is exactly linear. Conversely, as
M increases (M > 0), we allow for more nonlinearity in the pre-treatment trend and therefore
greater uncertainty in the treatment effect estimates.

Since we are most interested in the average effect of ShotSpotter post-implementation,
rather than one particular post-period, we perform the sensitivity analysis on the average of all
post-implementation estimates obtained from Equation 2. Appendix Figures C1 and C2 re-
port two important features: the confidence interval of the average of all post-period estimates
(Original) and the corresponding robust fixed-length confidence intervals (FLCI) which show
the average post-period effect under the assumption that the difference in pre-period trends
can differ by up to M across consecutive periods. For both outcomes, the average of all post-
implementation periods maintain their statistical significance under both a linear extrapolation
of the pre-period (M = 0) and increasing amounts of non-linearity (M > 0) for both the Call-

to-Dispatch and Call-to-On-Scene time.
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Figure C1: Sensitivity Analysis of Pre-Trends

Note: This figure shows sensitivity analysis of the event study plot in Figure 3. The x-axis
shows the maximum change in slope of pre-trends across consecutive periods (M). We grad-
ually increase M where M = 0 corresponds to allowing a linear trend and M > 0 allows for
increasingly more varied nonlinear trends. In red, the average of the post-implementation peri-
ods are plotted. In blue, alternative Fixed-Length Confidence Intervals (FLCI), averaged over
all post-implementation periods, that are proposed by Rambachan and Roth (2023) are plotted
which relaxes the parallel trends assumption and requires only that differential trends evolve
smoothly over time. Note that here, the breakdown value is 0.2 which means the significant
effects observed in the post-implementation periods are only valid if we allow for the change
in slope of the pre-period to change by no more than 0.2.
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Figure C2: Sensitivity Analysis of Pre-Trends (Call-to-On-Scene)

Note: This figure shows sensitivity analysis of the event study plot in Figure 4. The x-axis
shows the maximum change in slope of pre-trends across consecutive periods (M). We grad-
ually increase M where M = 0 corresponds to allowing a linear trend and M > 0 allows for
increasingly more varied nonlinear trends. In red, the average of the post-implementation peri-
ods are plotted. In blue, alternative Fixed-Length Confidence Intervals (FLCI), averaged over
all post-implementation periods, that are proposed by Rambachan and Roth (2023) are plotted
which relaxes the parallel trends assumption and requires only that differential trends evolve
smoothly over time. Note that here, the breakdown value is larger than 0.5 which means the
significant effects observed in the post-implementation periods are only valid if we allow for
the change in slope of the pre-period to change by no more than a number larger than 0.5.
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Appendix D Supplemental Figures and Tables

Table D1: Effect of ShotSpotter Implementation on Confounding Controls (OLS)

ey 2)
Panel A: Number 911 Dispatches
ShotSpotter Activated -3.378 -3.521
(2.208) (2.518)
Mean of Dependent Variable 151.864 151.864
Observations 55,792 55,792
Panel B: Officer Availability
ShotSpotter Activated -23.949  -42.806*
(22.709)  (25.534)
Mean of Dependent Variable 1,277.860 1,277.860
Observations 55,792 55,792
FE: Day-by-Month-by- Year X X
FE: District X X
Gardner (2021) Robust X

Note:

*p<0.1, ¥ p<0.05, *** p < 0.01

Standard errors are clustered by district. Coefficient estimates are reported in
seconds. This table shows estimations on two outcome variables, Number of
911 Dispatches and Officer Availability, which are not included in the main
specification due to the possibility of being confounding controls. Each panel
refers to a distinct outcome variable. Since each outcome variable is at the
district-day level, we aggregate the call-level data to the district-day. Hence,
in these models, we cannot control for call-type nor hour of the day. Number
911 Dispatches is the number of 911 dispatches. Officer Availability is the
number of police officer hours within a district. ShotSpotter Activated refers
to the timing in which each district receives ShotSpotter technology. The
Gardner (2021) estimator is robust to the heterogeneous treatment effects in
staggered two-way-fixed-effects designs. January 1, July 4, and December
31 are omitted due to their correspondance with potential celebratory gunfire.
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Table D2: Effect of ShotSpotter Enactment on 911 Arrest Probability (Logit)

Gun-Relation Most Frequent Arrest 911 Calls
Domestic ~ Domestic
All Gun Non-Gun Disturbance  Battery Robbery
(1 2) 3) “4) ) (6)
ShotSpotter Activated -0.085%**  -0.041  -0.092%**  -0.144***  -0.130**  -0.077*
(0.022) (0.060) (0.024) (0.040) (0.055) (0.042)
Mean of Dependent Variable 0.025 0.034 0.024 0.062 0.020 0.042
Observations 3,523,729 312,283 3,205,792 220,976 668,286 266,890
FE: Day-by-Month-by- Year X X X X X X
FE: District X X X X X X
FE: Call-Type X X X X X X
FE: Hour-of-Day X X X X X X

Note:

*p<0.1, ** p<0.05, ** p < 0.01

Standard errors are clustered by district. All estimations are using logit estimation. The dependent
variable is an indicator equal to one if a 911 call ended in an arrest. Column 1 reports the pooled
estimates using the entire sample. Columns 2 and 3 subset Column 1 by gun-related and non-gun-
related 911 calls. Gun-related crimes are those corresponding to the following 911 code descriptions:
‘person with a gun’, ‘shots fired’, or ‘person shot’. Columns 4-6 report the three most frequent 911
calls that end in arrest: Domestic Disturbance, Domestic Battery, and Robbery. In some cases, some
observations may be dropped due to no variation with certain fixed effects.
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Table D3: Effect of ShotSpotter Implementation on Probablity of 911 Victim Injury (Logit)

Probability of Victim Injury

Pooled  Gun Dispatch Non-Gun Dispatch

(1) (2) 3)

ShotSpotter Activated -0.039%** -0.115%* -0.025

(0.020) (0.057) (0.020)
Mean of Dependent Variable 0.030 0.042 0.029
Observations 3,520,402 314,375 3,202,465
FE: Day-by-Month-by- Year X X X
FE: District X X X
FE: Call-Type X X X
FE: Hour-of-Day X X X

Note:

*p<0.1, ** p<0.05, ** p < 0.01

Standard errors are clustered by district. The main outcome variable is the probability of a victim being
injured. The Pooled column refers to using the entire sample of time-sensitive Priority 1 dispatches.
Gun Dispatch is restricted to only gun-related dispatches including *Person with a Gun’, *Person Shot’,
and ’Shots Fired’. Non-Gun Dispatch are all other dispatches. In all columns the preferred specifica-
tion is estimated using logistic regressions. In some cases, some observations may be dropped due to
no variation with certain fixed effects.
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Figure D1: Map of ShotSpotter Districts in Chicago
Note: There are 22 police districts in Chicago, and 12 are equipped with ShotSpotter technol-
ogy. Each district contains beats which are designated by the boxes within the district lines.
ShotSpotter implementation began in January 2017 and ended in May 2018.
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Figure D2: Robustness of Main Results

Note: This figure shows the results from estimation of Equation 1 with six different samples
for both Call-to-Dispatch and Call-to-On-Scene. Main Sample refers to the main sample used
in the paper. Omitting 2020 uses the main specification in the paper, but omits the year 2020
due to Covid-19. Omitting Shots Fired omits any 911 call dispatches related to the description
of ‘Shots Fired’ in case dispatchers begin combining reports of gun fire with ShotSpotter alerts.
Including Outliers includes all outliers that are removed from the main analysis (+3 standard
deviations from the mean). Official Activate Dates uses the official ShotSpotter activation dates
as received from a Freedom of Information Request from the Chicago Police Department.
These dates are similar, but not exact, to the dates we use due to what we observe in the
data. Next, we include July 4th, New Year’s Eve, and New Year’s Day, which are excluded
from the preferred sample since there may be many false-positive reports of gunfire. Last,
Omitting Never-Treated uses the full sample, but omits any police districts that did not receive
ShotSpotter technology.
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Figure D3: Leave-One-Out Analysis

Note: This figure shows the results from 22 distinct OLS and Gardner (2021) regressions using
Equation 1. Both outcomes of Call-to-Dispatch and Call-to-On-Scene are pictured. In each
iteration, one police district is removed from estimation to ensure that the effects of ShotSpotter
are not driven by one district. The blue points and error-bars represent Gardner (2021) point
estimates and 95% confidence intervals, which are robust to heterogeneous treatment effects
in staggered designs. The red points and lines denote point estimates and 95% confidence
intervals from OLS estimates. Standard errors are clustered at the district level.
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Figure D4: Marginal Effect of ShotSpotter Dispatches on Response Times (OLS)
Note: This figure shows the marginal effect of ShotSpotter dispatches as reported in Equation
3. However, the number of ShotSpotter dispatches is split into deciles to show the linear
relationship between number of ShotSpotter dispatches and response times. In this figure, 9
deciles are plotted, with the reference decile being when the number of ShotSpotter dispatches
is zero. All coefficient estimates are in seconds. Deciles are on the x-axis, and the number of
ShotSpotter dispatches corresponding to each decile is in parentheses.
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The Effect of Fraternity Moratoriums on Alcohol

Offenses and Sexual Assaults
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Abstract

I exploit variation in timing from 44 temporary university-wide halts on all fraternity ac-
tivity with alcohol (moratoriums) across 37 universities over 2014-2019. I construct a novel
data set, merging incident-level crime logs from university police departments to provide the
first causal estimates of the effect of moratoriums on reports of alcohol offenses and sexual
assaults. In particular, I find robust evidence that moratoriums decrease alcohol offenses by
26%. Additionally, I find suggestive evidence that moratoriums decrease reports of sexual
assault on the weekends by 29%. However, I do not find evidence of long-term changes once
the moratorium is lifted.
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1 Introduction

Over 800 universities in the United States have fraternities (Hechinger 2017). Existing lit-
erature has documented benefits of membership which include higher future income (Mara,
Davis, and Schmidt 2018) and significantly more hours spent participating in community ser-
vice and volunteering (Hayek et al. 2002; Asel, Seifert, and Pascarella 2009). Moreover,
according to a Gallup survey in 2021, over 80% of fraternity alumni agreed that they would
join their fraternity again if they were to redo their college experience.

Despite these benefits, fraternity membership has been associated with risky behaviors. In
particular, at least one hazing-related death has occurred each year in the US between 2000 and
2019,! and studies have found that fraternity members binge drink and party more frequently
than their non-member peers (DeSimone 2007; Routon and Walker 2014). While universities
have regularly banned specific misbehaving fraternities from their campuses, the past decade
popularized a new policy tool called moratoriums—campus-wide halts on fraternity social
events with alcohol—as a way to change member behavior.

This paper is the first to estimate the causal effects of moratoriums on campus-wide police
reports of alcohol offenses and sexual assaults. Between 2010 and 2019, over 50 moratoriums
have been enacted across university campuses, becoming a common policy used by school ad-
ministrators. However, studying this topic is challenging for several reasons; moratorium dates
are difficult to find/confirm and there does not exist a centralized data source for university-
specific crime with enough detail to enable casual inference. Despite the lack of research
surrounding the efficacy of moratoriums, administrators continue to implement moratoriums
as a disciplinary action on fraternities.

Nonetheless, how these moratoriums affect student behavior, and thus on-campus crime,
is theoretically unclear. On one hand, prohibiting alcohol from fraternity social events may
reduce the incidence of crime. Fraternities are a source of alcohol for underage drinking,
as fraternities are typically a mix of lower and upperclassmen (Armstrong, Hamilton, and

Sweeney 2006). Given that the literature has documented that alcohol causes higher prevalence
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of crimes such as assaults and alcohol offenses (Carpenter and Dobkin 2015), road accidents
and arrests (Francesconi and James 2019), and reports of rape (Zimmerman and Benson 2007;
Lindo, Siminski, and Swensen 2018), prohibiting such events could reduce the incidence of on-
campus crime—especially for underage students. On the other hand, moratoriums may have
the opposite effect. Without alcohol-fueled fraternity parties, students may substitute away
from consuming alcohol at fraternity houses to potentially riskier places off-campus where be-
havior is less regulated by the university. As a result, the net effect of moratoriums remains
ambiguous.

In this paper, I estimate the causal effect of 44 fraternity moratoriums across 37 universities
over a six-year period (2014-2019) on university police reports of alcohol offenses and sex-
ual assaults. I use a difference-in-differences identification strategy, leveraging the variation
in timing of moratoriums. Intuitively, I compare academic-calendar days (excluding summer
and winter breaks) with a moratorium to academic-calendar days without a moratorium while
accounting for expected differences across days of the week and different times of the year.
I construct a novel data set, merging two particularly unique data sources: university-specific
Daily Crime Logs, which contain the universe of all incidents of crime reported to the univer-
sity police at the incident-level, and moratorium start and end dates obtained through school
newspapers and public records requests.

Using these data, I find that moratoriums significantly decrease alcohol offenses campus-
wide by 26%. This effect is driven by weekends (Fridays-Sundays) when college partying is
most frequent and is robust across various specifications, estimation methods, and sensitivity
tests. Furthermore, I find suggestive evidence that reports of sexual assaults decrease by 29%
on the weekends. Both of these declines are concentrated only when a moratorium is in place,
therefore suggesting that there are no persistent effects once a moratorium is lifted. In partic-
ular, the immediate and subsequent weeks following a moratorium show little evidence that
alcohol offenses or sexual assaults significantly decline and this is consistent across moratori-

ums of different lengths.

76



A key distinction of this work is that I am able to closely link changes in student behavior
to a campus-wide policy that directly affects college partying. As a result, this study provides
further evidence that stronger sanctions on alcohol decrease the number of alcohol-related
incidents in college-aged individuals, consistent with Liang and Huang (2008) who study zero-
tolerance drunk driving laws. However, unlike state or federal laws, moratoriums are unique
in that university officials have the power to enact them immediately and indefinitely. This
makes moratoriums an appealing policy tool as university officials can implement them at
times when they see fit. Moratoriums therefore represent an understudied policy lever that
university officials can readily use to reduce campus-wide partying, which in-turn, may affect
alcohol and sexual assault incidence.

More broadly, this paper adds to the literature in several bodies of work, the first of which is
the effect of college partying. While the literature shows that college partying increases daily
reports of rape and alcohol offenses when using football game variation (Lindo, Siminski, and
Swensen 2018), this study more directly focuses on a policy tool that reduces college partying.
I later analyze in Section 7.A whether moratoriums have mitigating effects on college partying
behavior when coinciding with college football game-days, although I find no clear evidence in
support of this. Second, this paper contributes to an emerging body of economic work relating
to the effectiveness of university policy, and more specifically, fraternity policy. Although uni-
versity policies such as academic probation (Lindo, Swensen, and Waddell 2013) and financial
aid (Dynarski 2003) have been found to be effective in improving GPA and recruiting stu-
dents respectively, there are only two studies as of this writing that analyze fraternity-targeted
policies—both of which study the effects of deferring fraternity recruitment from freshman to
sophomore year (De Donato and Thomas 2017; Even and Smith 2020). Moratoriums, in con-
trast, alter a university’s party culture instantly, since unaffiliated undergraduates also attend
fraternity parties (Harford, Wechsler, and Seibring 2002). However, as discussed in Section
5.D, the moratorium effects diminish following the first month of implementation, making

them ill-suited as a long-term solution for mitigating excessive partying. Currently, only one
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related study has examined the relationship between fraternities and university crime (Raghav
and Diette 2022), although this study focuses on how the size of a fraternity population affects
campus crime rather than the effect of a typical fraternity policy. I explore a similar idea in
Online Appendix D which shows suggestive evidence that universities with higher shares of
fraternity members exhibit larger moratorium effects. Last, this paper adds to the literature re-
lating to the effects of alcohol on college-aged individuals which include health effects, such as
increases in mortality (Carpenter and Dobkin 2009), emergency room visits (Francesconi and
James 2019), and adolescent brain development (Silveri 2012), and behavioral effects, such as
increases in crime (Carpenter and Dobkin 2015) and hindering academic performance (Carrell,
Hoekstra, and West 2011; Ha and Smith 2019).

This paper proceeds as follows: Section 2 discusses the background on fraternities and
moratoriums. Section 3 describes the construction of the data. Section 4 describes the empirical
strategy used to estimate causal effects. Section 5 presents the main results. Section 6 explores
the differences in effectiveness between different types of schools and moratoriums. Section 7

analyzes possible implications. Section 8 concludes.

2 Fraternities in the US

A Fraternity Demographics and Oversight

On average, fraternities consist of students from families of higher-than-average educational
attainment and income; they are predominantly white, and prior research has linked fraternity
membership to positive outcomes such as increases in graduation rates (Routon and Walker
2014), future income (Mara, Davis, and Schmidt 2018), and social capital formation (Mara,
Davis, and Schmidt 2018). On the other hand, fraternity members spend approximately two
more hours per-week partying than non-members (Routon and Walker 2014), binge drink on
approximately two additional days per-month (DeSimone 2007), and membership has been
found to decrease GPA (De Donato and Thomas 2017; Even and Smith 2020). Additionally,
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other research finds that membership causes students to select into easier courses and complete
fewer course credits (Even and Smith 2020). While not causal, there is also survey evidence
that fraternity members are more accepting of sexual violence than nonmembers (Seabrook
2019) and that sorority women, who frequently interact with fraternity men, are four times
more likely to be victims of sexual assault than nonmembers (Minow and Einolf 2009).

This paper focuses on the Interfraternity Council (IFC) fraternities which are a type of social
fraternity. These fraternities are the most common at universities and differ from professional,
academic, or service fraternities. IFC fraternities engage in philanthropy and professional de-
velopment, and according to their creed, they “exist to promote the shared interests and val-
ues of our member fraternities: leadership, service, brotherhood and scholarship” (Hechinger
2017). Importantly, IFC fraternities are the fraternities that are restricted by moratoriums in the
sample.

Each IFC fraternity chapter? has three sources of oversight: the chapter national headquar-
ters, the parent university, and the parent university’s own IFC council—a group of student
representatives from each recognized IFC fraternity chapter whom regularly meet with univer-
sity staff to discuss rules/boundaries. Failure to abide by the rules outlined by these overseers’
policies can result in a fraternity being unrecognized by the university which is costly—a fra-

ternity relies on the university for new students to recruit.

B Moratoriums

A moratorium is defined as a temporary ban on social events with alcohol for IFC frater-
nities.® This can include the cancellation of new member recruitment, philanthropy activities,
tailgates, or third party vendor events, although the scope of restrictions differs by university.
For example, some universities may allow philanthropy events provided no alcohol is present.
Importantly, moratoriums differ from individual chapter suspensions. While universities may
temporarily suspend individual fraternity chapters each year, moratoriums apply to all IFC fra-

ternities. Moreover, the timing and length of a moratorium varies substantially. Figure 1 shows
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the start and end dates of each moratorium over time. Moratoriums in the sample can range
from as short as six calendar-days to as long as 848 calendar-days.* Additionally, moratoriums
are generally implemented due to triggering events (see Online Appendix Table E1). These
events can be a prominent sexual assault allegation, a fraternity-related death (usually due to
alcohol poisoning), or an extreme behavior violation.? Figure 2 shows the distribution of the
triggering events: 19 are triggered by behavior violations, 10 by sexual assaults, nine by a
fraternity-related death, and six are unspecified. As alluded to in the introduction, moratori-
ums are enacted across the US. Figure 3 shows the locations of the 37 universities in the sample
(see Section 3.A for further details on sample construction). Most universities are located in
the Midwest and South, although there are several universities from both the West and East
Coast.

Moratoriums can be implemented by two sources of jurisdiction: the university or the
IFC council.® When a moratorium is implemented by the university, the university sets the
guidelines that fraternities must abide by during the moratorium. On the other hand, an IFC-
implemented moratorium is student-enforced. This means that the IFC council is responsi-
ble for producing both the guidelines and oversight of the morator