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Abstract

During vertebrate neurulation, the embryonic ectoderm is patterned into lineage progenitors

for neural plate, neural crest, placodes and epidermis. Here, we use Xenopus laevis

embryos to analyze the spatial and temporal transcriptome of distinct ectodermal domains

in the course of neurulation, during the establishment of cell lineages. In order to define the

transcriptome of small groups of cells from a single germ layer and to retain spatial informa-

tion, dorsal and ventral ectoderm was subdivided along the anterior-posterior and medial-

lateral axes by microdissections. Principal component analysis on the transcriptomes of

these ectoderm fragments primarily identifies embryonic axes and temporal dynamics. This

provides a genetic code to define positional information of any ectoderm sample along the

anterior-posterior and dorsal-ventral axes directly from its transcriptome. In parallel, we use

nonnegative matrix factorization to predict enhanced gene expression maps onto early and

mid-neurula embryos, and specific signatures for each ectoderm area. The clustering of

spatial and temporal datasets allowed detection of multiple biologically relevant groups

(e.g., Wnt signaling, neural crest development, sensory placode specification, ciliogenesis,

germ layer specification). We provide an interactive network interface, EctoMap, for explor-

ing synexpression relationships among genes expressed in the neurula, and suggest sev-

eral strategies to use this comprehensive dataset to address questions in developmental

biology as well as stem cell or cancer research.
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Author summary

Vertebrate embryo germ layers become progressively regionalized by evolutionarily con-

served molecular processes. Catching the early steps of this dynamic spatial cell diversifi-

cation at the scale of the transcriptome was challenging, even with the advent of efficient

RNA sequencing. We have microdissected complementary and defined areas of a single

germ layer, the developing ectoderm, and explored how the transcriptome changes over

time and space in the ectoderm during the differentiation of frog epidermis, neural plate,

and neural crest. We have created EctoMap, a searchable interface using these regional

transcriptomes, to predict the expression of the 31 thousand genes expressed in neurulae

and their networks of co-expression, predictive of functional relationships. Through sev-

eral examples, we illustrate how these data provide insights in development, cancer, evolu-

tion and stem cell biology.

Introduction

Neural induction and neurulation are the critical molecular and morphogenetic processes that

initiate spatial regionalization in the outer germ layer of vertebrate embryos, the ectoderm.

The ectoderm forms the protective epidermis, the central nervous system, including the brain

and spinal cord, as well as the neural crest (NC) cells and the sensory placodes. NC cells

emerge from the border of the neural plate (NP) and generate multiple derivatives, including

the peripheral nervous system, pigment cells, endocrine cells, and craniofacial structures [1].

The placodes are specialized ectodermal thickenings arising around the anterior neural plate

(NPa), which form sensory organs, including lens, inner ear, cranial ganglia, and olfactory epi-

thelium [2]. Diversification of ectodermal fates is initiated during gastrulation and early neu-

rulation by signaling interactions that take place within the ectoderm or between ectoderm

and mesoderm [3]. These developmental processes are highly conserved among vertebrates

and have been intensively explored in frog embryos [4]. However, the cellular and signaling

mechanisms that underlie progressive fate restriction and ectoderm patterning remain only

partially understood. Moreover, besides the activation of key transcription factors in response

to signaling molecules, the potential involvement of other cellular processes such as cell cycle

regulation, cell metabolism, or structural cell organization remains largely unexplored during

early embryo regionalization [5,6].

Development of transcriptome analyses using small samples has stimulated genome-wide

studies of transcription patterns in early embryos. Several recent studies have provided tran-

scriptomes for cleavage-stage or gastrulating embryos, either using whole embryos (WEs) or

more defined spatial areas by combining embryo sectioning and spatial reconstruction (e.g.,

zebrafish, mouse, Drosophila, and frog) [5,7–10]. For early stages, these studies have recon-

structed coarse-grained 3D gene expression patterns and identified important developmental

events such as the transition between pluripotent epiblast state and onset of germ layer specifi-

cation [11]. More recently, single-cell transcriptome analysis was applied to define cell clusters

in gastrula-stage fish embryo and correlated with reference gene expression patterns [12]. As

a necessary complement to these 2 approaches, the genome-wide molecular annotation of

regionalized embryonic domains within a single germ layer is critical to understand gene regu-

lation in space and time. Moreover, as previous analyses have mainly focused on the cleavage

and gastrulation stages, little is currently available for the neurulation and early organogenesis

steps.

Spatial and temporal transcriptomes in the ectoderm during neurulation
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We therefore aimed to document the spatial and temporal transcriptome of discrete cell

populations within the ectoderm germ layer at anatomically defined locations using the frog

neurula at critical stages of its development: at the end of gastrulation, as the dorsal ectoderm

responds robustly to neural induction; and then during regional specification into neural, non-

neural, NC, and placodal domains, at 2 later stages. At the early stages, prior to definitive cell

fate specification, there is no method to sort out these small ectoderm cell populations based

on a single specific gene expression; instead, to define each area, several partially overlapping

regional markers must be used. We therefore used a microdissection strategy, guided by the

expression of key transcription factors to define and dissect out 7 small, distinct, and comple-

mentary ectodermal domains from single embryos to provide their individual transcriptomes.

The individually collected samples enable us to provide the genome-wide transcriptome pro-

file of the anterior and posterior subdivisions of the NP and neural border (NB), the anterior

neural fold (ANF) and preplacodal ectoderm (PPE), and the nonneural ectoderm (NNE).

Additionally, transcriptomes for WEs at 7 stages of neurulation define a time course of gene

expression and link our work to time courses of gene expression in Xenopus laevis and to pre-

vious analysis in X. tropicalis and other vertebrate embryos [5,7,13–16]. Using the latest X. lae-
vis genome assembly [16] and extensive reannotation of genes to match standard human

nomenclature (human gene ortholog [HUGO]) names, included in X. laevisAnnotation 9.1/

Gene Model Annotation 1.8.3; Xenbase.org), we use 3 complementary tools to analyze the

data and provide a user-friendly and integrated web application called "EctoMap" (for ectoder-

mal map of differential gene expression) to visualize and explore them. EctoMap is a molecular

atlas defining the regional code of ectoderm development and a searchable interface to com-

pare gene expression levels, synexpression groups, and relationships between genes. This tool

will be broadly useful in embryos and evo-devo analyses, for example, to analyze and compare

gene regulatory networks (GRNs) in the evolution of NC and placodes or to study gene sub-

functionalization after genome duplication, as in the X. laevis genome. EctoMap and the tools

provided here constitute a spatial reference for single cell transcriptome analysis and for com-

paring gene expression in embryos with other contexts, such as cancer cells, stem cells, or in

congenital diseases.

Results

Transcriptional profiling of the developing ectoderm at late gastrulation

and neurulation stage

To capture how the dorsal ectoderm progressively differentiates into multiple distinct regions,

we divided the dorsal ectoderm into 7 defined areas at early and mid-neurula stages using X.

laevis embryos (Fig 1A, S1 Table). The choice of these areas was guided by the current knowl-

edge of ectoderm regionalization and corresponded to the main prospective regions (NP, epi-

dermis, NB or NC, and ectodermal placodes). Some regions were sufficiently large to allow

further subdivision into their dorsal-ventral (D-V) or anterior-posterior (A-P) portions. The

first stage captures the transition between gastrulation and neurulation at Nieuwkoop and

Faber stage (St.) 12.5 [17]. At this time, the ectoderm is classically divided into neural and

non-neural ectoderm, but signaling events have already started to define finer subdivisions

around the NP [18–22]. The second stage (St. 14) is an advanced NP stage, corresponding to

mid-neurulation, before the neural folds begin to elevate. NP, NB, or NNE specification mark-

ers are already robustly expressed by this stage, albeit in partially overlapping patterns (e.g.,

sox2, pax3, and epidermal keratin, respectively; Fig 1B and not shown). According to a previous

NP fate map [23], we have subdivided the NP into an anterior part (NPa), corresponding

mostly to diencephalon and mesencephalon, and a posterior part (NPp), corresponding to

Spatial and temporal transcriptomes in the ectoderm during neurulation
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Fig 1. Ectoderm microdissections and experimental strategy. (A) Xenopus laevis neurula-stage embryos

were dissected at Nieuwkoop and Faber stage (St.) 12.5 and St. 14 according to the patterns indicated. Live

embryos are shown in dorsal view. The superficial ectoderm was separated from the underlying mesoderm

germ layer. The tissues collected corresponded to the developing neural plate (NP, blue), medial and lateral

neural border (NB, red-pink-beige), anterior neural border and preplacodal ectoderm (ANB/PPE or ANF/PPE,

Spatial and temporal transcriptomes in the ectoderm during neurulation
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rhombencephalon and spinal cord. The ANF, corresponding to telencephalon, was dissected

together with PPE. Moreover, as the NB subdivisions are better characterized later on, when

premigratory NC and placodes are segregated and fully specified [24,25], we also dissected the

premigratory NC and the adjacent lateral preplacodal domain in late neurula St. 17, according

to published protocols [26,27]. These additional dissected regions allowed us to link gene

expression in progenitor cells from St. 14 early neurula to the transcriptome of specified St. 17

NC and placodes. To incorporate further temporal information into our dataset, we also

included WEs collected during late gastrulation and throughout neurulation: St. 11–11.5, 12,

12.5, 13, 14–15, 16–17, and 18–19 (Fig 1C, S1 Table). More than 300 dissected samples were

quality checked by quantitative PCR analysis (qPCR) using diagnostic markers for NP (sox2),

NNE (epidermal keratin, xk81a1), NB (pax3), NC (snai2), and paraxial mesoderm (myod1) (S2

Table). Despite the utmost care in dissections, a few attached mesoderm cells occasionally con-

taminated the posterior ectoderm samples; samples with the lowest myod1 expression were

selected. After this quality check, whenever possible, adjacent ectoderm pieces, i.e., dissected

out from a single embryo, were chosen (details available in Gene Expression Omnibus [GEO]

data repository, GSE103240). Finally, we selected samples with a yield above 40 ng of total

RNA. According to standards in the field, 3 biological replicates were collected per dissected

region, at St. 12.5 and St. 14. Each replicate originated from different embryos and different

clutches to buffer interindividual variations. For NB ectoderm regions, which are our main

research focus of interest, we were able to add a few more replicates, which would increase sta-

tistical power of the analyses in this region (S1 Table). For premigratory NC and PPE from the

late neurula, between 2 and 4 biological replicates were dissected at St. 17. A total of 79 samples

were finally used for polyadenylated RNA selection and cDNA library preparation. Each was

then subjected to a classical pipeline of downstream data analysis using paired-end sequencing

on a HiSeq 2000 (Illumina) (Fig 1D; S1 Table; see details in Materials and methods).

The RNA sequencing from polyadenylated transcripts yielded at least 14 million reads per

sample. About 88% of the reads mapped to unique loci in the X. laevis genome assembly (v9.1)

[16]. In addition, we predicted novel transcripts, which were included in Gene Model Annota-

tion 1.8.3 of the X. laevis 9.1 Genome Build (http://www.xenbase.org/entry/doNewsRead.do?

id=223). In the following sections, we focus on spatial and temporal analyses at early and mid-

neurula stages. Then, we describe how we use the whole dataset (tissue dissections and time

series) to build a gene co-expression network. Finally, we present EctoMap, a user-friendly

interactive tool that aims to provide insight on the study of temporal and spatial relationships

of genes using X. laevis neurula as a prototypical vertebrate model.

violet), and nonneural ectoderm (NNE, green, yellow-brown). NP, NB (at St. 12.5 and St. 14), and NNE (at

St. 14 only) were further subdivided into 2 or 3 pieces: anterior (a, darker color) and posterior (p, lighter color)

fragments, as indicated. For St. 12.5 NB only, a more lateral fragment was cut (l, beige), (lateral refers to

medial-lateral coordinates on the dorsal view or corresponds to more ventral if using dorsal-ventral whole

embryo coordinates). Each sample is associated to 1 color throughout this study (color code reference in S1

Table). (B) This dissection pattern (dotted lines) matches with reference genes expression patterns in the

developing neurula ectoderm as indicated for pax3 (dorsal-lateral NP and NB), sox2 (NP and St. 14 PPE), and

snail2 (premigratory neural crest within the NB). The dissection line is indicated outside the embryo whenever

the dissection encompasses tissues located more ventrally than seen in dorsal view (e.g., for PPE and NNE).

Similarly, the blastopore (white circle) can be indicated shifted outside the embryo if located more ventrally.

(C) Whole embryos at each stage of neurulation were used for studying the time course of gene expression in

neurulas. Drawing after living embryos. (D) The main steps of sample treatments and bioinformatics analysis

are indicated. After total RNA purification from each individual dissected sample or whole embryo, quality was

checked using quantitative PCR. Suitable samples (see text) were processed for deep transcriptome

sequencing. Details of analysis workflow are indicated in Results and Materials and methods.

https://doi.org/10.1371/journal.pbio.2004045.g001
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Principal component analysis decoded fine positional information from

the transcriptome

The first step of analysis was to visually evaluate samples grouping. We compared 2 commonly

used dimension reduction techniques: principal component analysis (PCA), a linear multivari-

ate technique, and t-distributed stochastic neighbor embedding (tSNE), a stochastic and non-

linear approach.

A total of 31,597 transcribed loci were found in the dissected samples, out of 45,099

reported in the X. laevis genome [16]. In order to improve the analysis, we have filtered out the

genes with little variation in expression (S1A and S1B Fig). Based on silhouette analysis, which

also indicates the number of genes to keep, we defined a list of 2,198 genes with high range of

expression (1,174 at St. 12.5 and 1,859 at St. 14, see Materials and methods). This list of genes

was used in the subsequent unsupervised approaches (PCA, tSNE, and in expression pattern

predictions calculated using a nonnegative matrix factorization [NMF] algorithm, see below).

All the transcripts excluded from the initial analyses were reintroduced later in the study,

including in NMF analysis, to document their spatial distribution and time course.

PCA and tSNE capture the major differences in gene expression between samples, with the

aim to describe a complex dataset (consisting of a large number of samples, each defined by

thousands of gene expression values) and represent this dataset in a space with fewer dimen-

sions. While these algorithms are often used merely to check that replicate samples group

together and that experimental conditions (here, dissected regions) are well separated, the

mathematical definition of PCA potentially allows exploring further the structure of the data-

set. In the case of PCA, dimensions are defined to capture the highest amount of variation

(percentage of the variance) from the high-dimensional gene expression space. By identifying

the biological meaning of each dimension (called "component"), one could get insight into the

most important factors influencing gene expression in the dataset.

We first analyzed each stage separately, using data from genes selected at the corresponding

stage (Fig 2). For PCA, samples were plotted along the first 2 components and in 2 dimensions

for tSNE (Fig 2A, 2B, 2C and 2D). With either method, we observed a good separation of most

samples according to the dissected regions and adequate grouping of the samples representing

replicates for the same dissected region (Fig 2). To further visualize the outcome of the PCA/

tSNE plots, we used Voronoi diagrams. These diagrams partition the plane of PCA using the

barycenter of replicates for a given dissected region; each area contains all points closer to this

barycenter than to barycenters of other regions (Fig 2A–2D). These diagrams are meant to

show whether replicate samples for the same dissected region lay closer to each other than to

other dissected regions. In particular, this could be used to identify outlier samples. At St. 14,

tSNE separates, better than PCA, the ANF/PPE from the NBa. This difference between meth-

ods could reflect the complexity of the edges of the neural plate, which have been separated

into different subregions here (medially located ANF versus laterally located NBa); these adja-

cent ectoderm regions, which are highly dynamic and rather small, could share an important

part of their transcriptomes and were likely to be dissected out with some variation from

embryo to embryo. In this case, tSNE would be preferable to PCA. From simple usage of unsu-

pervised dimension reduction algorithms, the first conclusion was that the replicate samples

grouped as expected using thousands of genes with high variation in expression. This meant

that for each neurula stage, ectoderm dissected regions could be recognized based on a large

part of their transcriptome.

Moreover, exploiting PCA mathematical properties, we could retrieve interesting biological

information from the structure of the dataset, as explained below. This deeper analysis was

possible in the case of our experimental design, because a few PCA dimensions (named

Spatial and temporal transcriptomes in the ectoderm during neurulation
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Fig 2. Unsupervised analysis of variance between samples using principal component analysis (PCA) retrieves

biologically meaningful components, matching embryo polarity axes, neural border (NB) formation, and

developmental stage. (A, B) At Nieuwkoop and Faber stage (St.) 12.5 (A, circles) and St. 14 (B, triangles), the first 2 PCA

components segregated ectodermal samples according to their position along the dorsal-ventral (D-V) and anterior-posterior

(A-P) embryonic axes, respectively. Percent of total gene expression variance captured by each component is indicated

Spatial and temporal transcriptomes in the ectoderm during neurulation
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components) captured a large amount of the variance between samples (S2 Fig). At both

stages, St. 12.5 and St. 14, the first PCA components, which capture the highest percentage of

variance, were identified as significant at the 1% level: components 1 to 3 at St. 12.5 and com-

ponents 1 to 4 at St. 14, respectively (S2 Fig). Moreover, the first 2 components retain a very

significant amount of total variation both at St. 12.5 and St. 14, respectively, 76% and 60% (S2

Fig). When samples were plotted along these first 2 dimensions, at both stages, the first compo-

nent separated dissected regions according to their position along the embryonic D-V axis,

and the second component separated dissected regions according to their position along the

A-P axis of the embryo (Fig 2A and 2B). A similar distribution of dissected regions along the

first PCA components was obtained when, instead of computing PCA with all samples, it was

computed from average gene expression values for each dissected region (not shown).

Together, these results indicated that transcriptome-scale differences between 2 given ecto-

derm regions, either at St. 12.5 or at St. 14, were primarily and significantly correlated to the

position of the dissected region along the D-V axis first, and secondly along the A-P axis. In

biological terms, this means that more than 60% of variation in gene expression in the ecto-

derm during early and mid-neurulation is related to positional information along these 2 axes.

Experimental analyses have previously identified genes whose expression strongly corre-

lates to embryonic axes. For example, transcription factors such as regional neural markers are

clearly differentially expressed along D-V or A-P axes (otx2, gbx2, cdx[28,29]). Here, using

PCA, we could identify which genes best correlate with PCA components 1 and 2. Because

PCA component 1 matches with embryonic D-V axis and PCA component 2 with A-P axis,

we propose that by knowing the expression level of the genes most correlated with each axis,

we could approximate the spatial position of unknown ectoderm sample along these axes. For

each axis, expression level of selected genes would provide D-V and A-P coordinates (posi-

tional information) in the plane of ectoderm.

To test and illustrate this hypothesis, we identified which genes significantly contribute to

components 1 and 2 (p-value< 0.05) at both embryonic stages. We provided the list of the 60

most significant ones for each axis at each stage of development (S4 Table). These were also

the genes most correlated with the 2 main PCA components, at St. 12.5 and St. 14 (S3 Fig). As

an independent confirmation of the assignment of the PCA components, we reconstructed the

spatial expression of the 5 genes most correlated to components 1 and 2 at St. 12.5 and St. 14

(S4 Fig, see NMF prediction below). Indeed, the genes most negatively correlated to compo-

nent 2 included caudal family genes cdx2 and cdx4, and hox genes, all expressed in posterior

structures in vivo, while genes correlated positively to component 2 were brain-specific genes

otx1, otx2, fezf2, or crx [30–34]. Most correlated genes maintained a pattern restricted along

D-V or A-P axes at mid-neurula stage (S3 Fig, S4 Table). We concluded that the expression

between parentheses. Sample color code is identical to Fig 1A. Lighter background colors are Voronoi diagram areas. These

areas are drawn using the barycenter of samples belonging to the same dissected region. Each area indicates the regions of the

PCA plane, where all points are closer to the barycenter of this dissected region than to any other barycenter. Arrows indicate

anterior neural border samples falling slightly outside their intended dissected region (see text for details). (C, D) At St. 12.5 (C)

and St. 14 (D), t-distributed stochastic neighbor embedding (tSNE) groups samples according to dissected regions. (E, F) At

St. 12.5 (E) and St. 14 (F), neural border samples are located higher than most others along the third PCA component. This

indicates that component 3 correlates with the acquisition of the NB characteristics during neurulation. (G, H) When combining

St. 12.5 (circles) and St. 14 (triangles) samples together, the first component remains correlated to the D-V axis. The second

component sorts out most samples according to their stage, irrespective of their position along the D-V axis (triangles separated

from circles, (G). The first and third PCA components segregate most samples according to their position along the D-V and A-P

axes, irrespective of their stage (circles and triangles of same color together, [H], Voronoi diagram). The posterior neural border

(NBp), which is known to resemble the posterior neural plate (NPp) at St. 12.5, grouped with the NPp, while the anterior neural

border (NBa)–St. 12.5, NBa–St. 14, and the lateral neural border (NBl)–St. 12.5 belong to the same Voronoi cell. As noticed

above, NBa–St. 14 is more heterogeneous (red triangles).

https://doi.org/10.1371/journal.pbio.2004045.g002
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level of the genes most correlated to PCA components 1 and 2 are diagnostic markers for cell

position along D-V and A-P embryonic axes during neurulation.

According to this hypothesis, if PCA faithfully described D-V and A-P position in the plane

of ectoderm, it should also uncover subtle spatial heterogeneities between the biological repli-

cates for a given dissected region (Fig 2). Hence, for a given sample (known or unknown),

comparing the expression level of the diagnostic genes for each axis would indicate a sample’s

position along each axis. For example, at St. 12.5 (Fig 2A), the 3 replicates for each ectoderm

area fall into the defined zones homogeneously, as all 3 dots, 1 for each replicate, are included

in the domain defining a given sample type, usually close to one another. One exception is a

fourth replicate of the NBa (dark red, black arrow), which shares more global gene expression

similarity with the adjacent NPa (navy blue), suggesting that this sample may have been dis-

sected slightly more medially than the other St. 12.5 NBas. For this sample, we tested expres-

sion levels of the 2 genes most correlated to the D-V axis to test this hypothesis. Indeed, zc4h2.l
and rfx4.l expression were higher in this sample than in the other NBa replicates (S3 Fig).

As another example, at St. 14 (Fig 2B), biological replicates for the neural plate (NP(a) and

NP(p), light and navy blue), ANF/PPE (dark blue), and the lateral NNE (a and p), (brown and

yellow) are rather homogeneous. However, as the dorsal ectoderm is patterned into smaller

subdomains with few morphological landmarks to guide the dissection, the heterogeneity

between replicates is higher in the transition zone formed by the lateral NB, mainly the ante-

rior part (NB(a), dark red). As expected for an accurate dissection, all NBa replicates display

high snail2 and pax3 expression, a known characteristic of this area. However, additionally, we

find that 2 replicates shared a partial signature with the ANF/PPE (black arrows), 1 with the

NP(a) (white arrow), and 2 with the NNE(a) (green arrows). In terms of landmark gene

expression, the 2 samples closer to the preplacode domain express the lowest level of the poste-

rior gene cdx4 expression of the 5 replicates, thus marking them as more anterior along the

A-P axis (PCA axis 2). Similarly, the 2 replicates close to the lateral ectoderm samples (green

arrows) express the lowest sox2 levels of the 5 replicates, thus suggesting they were dissected

slightly farther from the dorsal midline of the embryo. This suggests that the samples all cover

the intended area, with small variations around a “typical” or average transcriptome estab-

lished by PCA. This also means that the PCA, computed for the genes with highest expression

range, accurately reconstitutes individual replicate position around a median point defined for

each sample type, without prior information on a dissected region gene signature. Such refined

analysis may be important for including or excluding individual replicates or for assigning a

spatial identity to an unknown sample, even a single cell, in future analyses (e.g., assessing

modifications of positional information after mutation of a given gene or identifying differ-

ences in position for a cluster of single cells). Here, as we performed a global analysis of ecto-

derm patterning, we were interested in depicting all samples, including variability in their

positions, and we have chosen to keep all samples in the analysis.

PCA identified gene expression variations due to ectoderm

developmental timing and NB formation

Statistical analysis of PCA component distribution showed that a third dimension was also

informative (S2 Fig): when plotting samples along the first and third PCA dimension, the NB

samples were positioned higher than the others along PCA component 3. This third dimension

behaved similarly at St. 12.5 and St. 14 and captured 6% and 10% of gene expression variance,

respectively (Fig 2E and 2F). Genes most correlated with this third dimension included known

NB/NC specifiers such as snail1, pax3, sox9, msx2, and lmx1b. This meant that a small but mea-

surable amount of gene expression variation was linked to NB differentiation and that PCA

Spatial and temporal transcriptomes in the ectoderm during neurulation
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captured the emergence of the NB as a significant contributor to region-specific transcriptome

variations during early neurulation, in addition to variation along the D-V axis already cap-

tured by the first PCA dimension.

Next, to test if dissected regions at St. 12.5 and St. 14 shared similar variations in gene

expression, we analyzed together the 65 samples using PCA (Fig 2G and 2H). In this larger

analysis with both neurula stages together, the first PCA dimension still positioned the samples

along the D-V axis, while the third (and not the second as previously) dimension referred to

the A-P axis (Fig 2H). Interestingly, similar dissected regions from both stages occupied simi-

lar locations along component 1; this suggested that D-V positional information of a given

ectoderm region, as encoded in the transcriptome, was relatively stable during early and mid-

neurulation (Fig 2G). However, the temporal dynamics of gene expression was important, as

the second dimension encoded the temporal differences because it segregated most samples

from St. 12.5 (circles) and St. 14 (triangles), irrespective of their dissected region identity (Fig

2G). Further functional studies are needed to identify the main parameters supporting this var-

iation between early and mid-neurula samples, as a biological function for the genes most cor-

related to component 2 remained elusive. Finally, the fourth dimension separated the NB

region from the other ectoderm areas, with high correlation of genes expressed in the NB and

NB to this component, as seen in the stage-specific analysis (egr4, msx1, msx2, pfkfb4, and

sox9) [6,35–37].

In general conclusion on this part of the analysis, PCA and related approaches allowed visu-

alizing the most prominent differences between samples and dissected regions for the various

experimental conditions. We confirmed the accuracy of dissections using thousands of genes

with the highest expression range and observed that most samples tend to group according to

the 7 dissected regions at each stage. Compared to landmark gene analysis (e.g., a few marker

genes analyzed by qPCR), PCA was more detailed and retrieved the main factors (compo-

nents) that accounted for variation between samples. These components significantly corre-

lated with positional information (D-V and A-P axes), NB formation, and developmental time

progression. PCA also revealed small variations between biological replicates that could com-

plicate the establishment of a unique and robust gene signature for each dissected region. We

thus turned to a deconvolution approach to overcome this last point.

Coarse-grained quantitative ectoderm-specific gene expression patterns

were reconstructed by nonnegative matrix factorization (NMF)

deconvolution

In order to complement the PCA, which highlights variation in gene expression between

samples, we next focused on identifying robust spatial tissue signatures from our samples by

looking for a common gene signature for biological replicates of a given dissected region, irre-

spective of technical/biological variation between replicates. However, statistical tests of differ-

ential expression applied to adjacent dissected regions did not recover any dissected-region

specific genes signature. This was explained as we observed that markers highly specific for a

tissue could be found at lower levels of expression in some samples from adjacent tissues,

potentially indicative of slight shifts in dissection position; snai2, a specific marker of the lateral

NB at St. 14, was found expressed at lower levels in 3 out of 8 biological replicates of the adja-

cent NPa and anterior ectoderm, suggesting that these 3 samples contained a few NB cells (Fig

1, S5A Fig). At the same time, in such early embryos, most genes are not tissue specific; sox2
marks NP with high expression levels but is also expressed in the adjacent NB and in the lateral

PPE at lower levels (S5B Fig). We were therefore looking for an algorithm that could identify

and discard small contributions from adjacent tissues, due to biological or technical variability,

Spatial and temporal transcriptomes in the ectoderm during neurulation
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while correctly identifying contribution of the main dissected tissue. This is commonly

achieved using such deconvolution approaches as the NMF algorithm [38,39].

In this model, each dissected region is "a priori" proposed to be a mix of a few "prototypical"

ectoderm regions, the transcriptome and proportions of which must be estimated in each dis-

sected region. For example, one could hypothesize that the NB transcriptome could either be

unique compared to the other ectoderm regions or could result from a combination of NP

transcriptome and NNE transcriptome. The algorithm of choice should identify how many

prototypical transcriptomes could be defined from the dataset and reconstruct how the actual

transcriptome of each dissected region corresponds to a combination of the prototypical tran-

scriptomes. The NMF algorithm reconstructs a sample expression matrix (our complex tran-

scriptome dataset) as a product of 2 matrices: the prototypical tissue expression matrix, which

describes gene expression in the reconstructed tissues (named below as "NMF-tissue" or

"NMF-predicted"), and the mixing matrix, which describes how NMF reconstructs dissected

regions from NMF-tissue with the constraint that the transcriptome expression and the pro-

portions matrices are nonnegative. When running the algorithm, one looks for the number of

prototypical tissues that produce a robust solution (convergence on a single solution from

multiple random initializations, see Materials and methods). When applied to our dataset, the

NMF algorithm robustly recovered 5 prototypical NMF-tissues at each neurula stage (Fig 3, S6

Fig). Based on the contribution of NMF-tissues to each dissected sample (represented in

shades of blue [low] to red [high]), these NMF-predicted tissues could be straightforwardly

assigned to the 7 dissected tissues (Fig 3A and 3B). The hypothesis of 6 or 7 prototypical tissues

did not produce stable results, indicating that the NMF algorithm could not find a robust solu-

tion (S6 Fig).

The hypothesis of 5 prototypical NMF-tissues results in the mixing matrix shown in Fig 3A

and 3B. The embryo map shows how these 5 prototypical tissues relate to our 7 dissected ecto-

derm regions (Fig 3A and 3B). First, the main contributions were considered in the mixing

matrix (indicated in red). At St. 12.5, 3 of the 5 domains identified by NMF matched directly

with the dissected region pattern: the ANB/PPE (violet), the NPa (navy blue), and the ventral

NNE (green) (Fig 3A). These 3 biological tissues thus showed a clear-cut and specific signature

by NMF deconvolution as also reflected by their clear segregation along the first 2 PCA dimen-

sions. In contrast, the NMF algorithm merged the dissected NPp (light blue) and NBp (pink),

indicating that the transcriptomes of these 2 tissues are very similar, although they could

clearly be separated along the first 2 PCA dimensions. They were grouped into a single NMF-

tissue named "posterior neural plate" (NPp, solid blue and hatched blue-red) (Fig 3A). Simi-

larly, anterior (red) and lateral (beige) NB were merged into a single NMF-predicted tissue

named "neural border" (NB, red). The comparison between the dissection pattern and the

deconvoluted NMF profile was schematized in Fig 3A. Besides these main components (in

bright red), when secondary contributions were considered (indicated in shades of light blue

to pink in the mixing matrix, Fig 3A), St. 12.5 analysis by NMF also identified that the NMF-

predicted NB tissue (red) displays a minor contribution to the dissected NBp (pink, in dotted

square, ���) and that the NMF-predicted NPa domain (navy blue) contributed to adjacent dis-

sected regions, the NPp (light blue) and the NBa (red) (in dotted squares � and ��). In a similar

manner, the NMF-defined ventral ectoderm partly contributed to the lateral NB component

(beige, ����). In conclusion, when similarities were considered (and not differences, as for

PCA), unsupervised deconvolution by NMF distinguished 5 main tissues in the late gastrula

ectoderm, giving rise to the simplified pattern depicted in Fig 3A. Moreover, NMF analysis

was also able to identify minor contributions of NMF-tissues to samples from adjacent dis-

sected regions. In contrast, NMF-tissues did not contribute to more distant dissected regions

Spatial and temporal transcriptomes in the ectoderm during neurulation
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(meaning that there was no cross contribution between NNE and NP). This indicated that

NMF-tissues indeed corresponded to spatially restricted tissue types.

At St. 14, using a similar interpretation, the algorithm also identified 5 tissues with a differ-

ent grouping of dissected tissues as compared to St. 12.5. The ANF/PPE (violet), the anterior

lateral NB (red), and the posterior lateral NB (pink) were defined as anticipated by dissections.

In contrast, the anterior and posterior NP (blue) as well as anterior and posterior NNE (brown

and yellow) were merged (Fig 3B). Thus, by using NMF analysis, we retrieved information on

spatial gene pattern within 5 expression domains, allowing us to define tissue-specific gene sig-

natures on the genome scale, albeit with less spatial sensitivity than PCA (which recognized

variations between 7 domains). When compared to the results of plotting averaged gene

expression (made from averaging biological replicate expression levels, as more usual), NMF-

defined spatial gene expression was useful to detect the areas of high expression, when

Fig 3. Nonnegative matrix factorization (NMF) efficiently deconvolutes differential expression profiles. The

NMF algorithm defines a set of ectoderm tissues (NMF-tissues) at Nieuwkoop and Faber stage (St.) 12.5 (A) and

St. 14 (B). Columns in the mixing matrix indicate how these tissues contribute to the initial dissected samples. Red

indicates high contribution; blue indicates low/no contribution. Interesting intermediate contributions are outlined by

white dotted lines; stars (*) refer to comments in text. From these contributions, dissected samples (left part of the

pattern drawn on embryo) were matched with 1 of the NMF-tissues (right part of the pattern). At St. 12.5, striped

pattern indicated the mixed contribution of posterior neural plate and neural border (NMF-NP(p), NMF-NB(p)) to NBp

samples. Abbreviations and colors are the same as in Fig 1 and S1 Table.

https://doi.org/10.1371/journal.pbio.2004045.g003
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dissection shifts may have occurred between adjacent regions or when genes may be expressed

with high variability between 2 adjacent regions (S3 Fig), compared to somewhat noisier aver-

aged expression. In particular, this improved inference of gene expression in the NBa at St. 14

(see, for example, snai2 or sox10 expression at St. 14, with low expression in the NPa on aver-

age pattern, while NMF-predicted pattern matches better with in situ hybridization pattern,

Fig 4, S8 Fig).

Above all, NMF was advantageous because it retrieved semiquantitative information on

sample identity on the genome scale, even when a statistical approach for defining differential

expression could not distinguish between adjacent areas. As mentioned above, in addition to

the identification of each sample with a major contributing dissected tissue (in red), NMF

deconvolution highlighted minor contributions to the transcriptome signatures of adjacent tis-

sue samples (shades of pink and light blue, Fig 3A and 3B). Using this mixing matrix, which is

based on the subset of genes with high variation in expression, we could thus extrapolate the

NMF information to generate a semiquantitative, coarse-grained spatial map of gene expres-

sion for all of the 31,597 transcripts expressed in our samples. We then validated that the NMF

algorithm was able to accurately predict the expression pattern of specific X. laevis transcripts

in the ectoderm, post hoc, by comparing the NMF-predicted expression patterns with in situ

hybridization patterns for known genes (pax3, sox8, and foxi1), or predictively, after cloning

and examining novel genes of previously unknown pattern (sp8 and sh3pxd2a) (Fig 4, S4 and

S7 Figs).

Thus, using NMF, we could present sensitive and semiquantitative coarse-grained (5

regions at each stage) expression predictions for each of the 31,597 transcripts expressed in the

developing ectoderm of a frog embryo at the neurula stage (Fig 4). When compared to in situ

hybridization patterns in vivo, the predicted NMF patterns closely resembled the in vivo pat-

terns and were sharper compared to the average patterns. As seen for genes expressed at low/

very low level, such as snai2, sh3pxd2a, and sp8 at St. 12.5, the predicted patterns were rescaled

to enhance them: color intensity in each domain is a percent of highest expression (compare

the rendering for low sp8 expression in whole ectoderm to the difference with foxi1e, highly

expressed ventrally but absent dorsally).

In order to provide an accurate description for each gene expression pattern, we comple-

mented the expression pattern prediction with 2 additional levels of information: the aver-

aged level of expression in each dissected region (in mean reads per kilobase per million

[RPKM], matching the average pattern in a quantitative manner) and an index of gene

expression enrichment in the ectoderm dissected region compared to WE at the same stage

(Fig 4). We obtained this "ectoderm enrichment" indication by dividing the average expres-

sion level of a gene in each dissected region by the expression level in the WE (Fig 4, S8 Fig).

This was plotted for each transcript with the normalized and averaged expression level on the

y-axis and the dissected region on the x-axis; the relative enrichment in the ectoderm is indi-

cated as a color gradient. Genes expressed highly in the ectoderm compared to WE average

expression appear in dark green, while genes expressed at similar levels appear in dark

orange. This allowed identifying ectoderm-specific gene expression (e.g., sox10.l displays

high ectoderm enrichment, S8 Fig) compared to genes expressed in other germ layers, as

well, or genes found because of mesoderm contamination (especially in posterior dissected

samples; e.g., myod.l and myf5.l, found in NPp samples, are displayed in dark orange, indicat-

ing very low ectoderm enrichment, S8 Fig) [40,41]. Finally, these patterns at early and mid-

neurula stages were completed with a time course of WE expression level at 5 neurula stages

(S8 Fig).

Finally, we used the Gini coefficient (an index classically used in Economics to measure

income distribution [42]) to evaluate the tissue-specific enrichment in gene expression for

Spatial and temporal transcriptomes in the ectoderm during neurulation
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each NMF-predicted region and retrieved a tissue-specific gene signature list defining each

NMF-predicted domain (S5 Table, S7 Fig). This signature consisted of the genes with the high-

est Gini index (0.8 for our dataset) or close to the maximum (0.7–0.8 on a scale of 0 to 0.8), as

listed in S5 Table. At early neurula stage, this is the first genomic annotation of specific ecto-

derm spatial domains. In sum, we have described a genome-scale optimized pattern prediction

using NMF, accompanied by an ectodermal enrichment score. Using the Gini index, we have

defined the first tissue-specific gene signature for each ectoderm region.

Fig 4. Nonnegative matrix factorization (NMF) predicts accurate expression patterns for neural border (NB) genes. In order to

represent gene expression levels on the map of the developing ectoderm, we used 2 approaches: averaging the expression values for each

of 7 domains or using NMF deconvolution predictions in 5 domains. We found those 2 approaches complementary. Average patterns

directly describe raw data but are sensitive to shifts in dissection. NMF deconvolution predicted expression levels in each NMF-tissue. In the

case of the anterior neural border (NBa), the NMF pattern is closer to in situ hybridization patterns than average patterns, e.g., for known

genes expressed in various ectoderm areas, sox2, snail2, pax3, and foxi1e (also see Fig 8, S4 and S7 Figs for more examples). Moreover,

these patterns predict expression for genes of unknown pattern and with low expression level, such as sp8. We present the average pattern

and NMF-predicted pattern (NMF pattern); each is normalized on a percent scale, 100% being maximal expression of the gene of interest.

This implies that genes with low expression will be represented in similar shades as genes expressed at high level, which allows better

visualization but could be misleading if the gene is very weakly expressed in all ectoderm (e.g., sp8 at Nieuwkoop and Faber stage [St.]

12.5). To complete pattern prediction with expression level information, we thus also include the average expression levels per dissected

sample for each gene (reads per kilobase per million [RPKM] shown for St. 14 here). Robustly expressed genes (>100 RPKM, e.g., sox2,

snail2, and pax3 at St. 14) are predicted as well as genes with very low expression (e.g., snail2 at St. 12.5 or sp8 at St. 14). In addition, the

color of the dot indicates high ectoderm specificity (green) to low ectoderm enrichment (orange). See text and Materials and methods for

details, see S11 Table for numerical data.

https://doi.org/10.1371/journal.pbio.2004045.g004
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Clustering of spatial and temporal expression data identified

synexpression groups associated to important cell and developmental

biology processes

In eukaryotes, genes involved in related biological processes are often co-regulated and share

similar regulatory inputs that coordinate their expression, temporally and spatially [43,44]. To

gain insights into the temporal and spatial dynamics of the genes expressed at neurulation, we

used weighted gene co-expression network analysis (WGCNA), a data-mining method widely

used in biology to identify groups that share similar expression profiles from large gene expres-

sion datasets [45]. For this part of analysis, we used 10,073 transcripts, expressed above a back-

ground threshold level (see Materials and methods), using the whole dataset, i.e., 79 samples,

including the dissected samples at 3 neurula stages (St. 12.5, St. 14, and St. 17) and the WE

series (Fig 1C and S1 Table). These transcripts corresponded to a subset of 6,035 unique

human orthologous genes, identified by their respective HUGO names. WGCNA generated

141 synexpression groups, which were ordered according to their number of transcripts (Fig 5;

S9 Fig). Group #1 (referred as G-1) was the largest, with 653 transcripts, and G-140 the small-

est, with 15 transcripts (15 being the minimal number required to form a cluster), with the

exception of group #0 (G-0, n = 90, unclassified transcripts) (Fig 5A, S9 Fig).

In order to identify biological functions associated to each WGCNA generated gene mod-

ule, we used an unsupervised functional enrichment test using gene ontology (GO). We found

that 64/141 groups were significantly enriched for important biological functions (see Materi-

als and methods, S6A and S6B Table). We next tested if this enrichment was significant over a

randomized result. Overall, these overrepresented functions were more significant and more

sensitive than random datasets (Fig 5B and 5C). We challenged the biological significance of

WGCNA synexpression groups by exploring the distribution of 2 distinct sets of genes across

the WGCNA modules: genes related to canonical Wnt signaling and genes involved in NC

and placode GRNs.

Wnt signaling is essential in embryonic development and cancer [46,47]. In development,

canonical Wnt signaling acts during gastrulation and neurulation to induce posterior ecto-

derm structures and NC [48]. To examine how WGCNA would cluster genes implicated in

Wnt signaling, we retrieved a list of 97 X. laevis transcripts responsive to Wnt signaling inhibi-

tion in gastrulas (S7B Table) [49]. From this initial set, 67 transcripts (70%) were expressed in

our neurula-stage dataset above the minimal threshold. We found that half of these Wnt-

responding transcripts (33/67) were significantly overrepresented in 4/141 groups: G-23, G-

31, G-41, and G-92 (Fig 6A, S7 and S7A Table, see Materials and methods for statistical tests).

In particular, G-23 contained 62% of genes previously associated with Wnt signaling in cell

cycle, cancer, or patterning including many transcription factors expressed posteriorly and

known to directly respond to canonical Wnt signaling and participate in posterior embryo pat-

terning, such as meis3, cdx2/4, hes5, hoxa1, and znf703 (S7A-B [49,50]). These observations

and the GO functions associated to this group (S6A and S7 Tables) suggest that G-23 gathered

known and novel genes responding positively to canonical Wnt signaling and involved in pos-

terior patterning or skeletal morphogenesis. G-31 contained genes expressed in the endoderm

and mesoderm, which directly and positively respond to Wnt signaling (msgn1, myf5, t, vegT)

[49]. G-41 did not associate to a particular GO term but contained genes encoding putative

components of Wnt signaling pathway (fdz10, tcf7, xarp). Finally, the transcripts negatively

regulated by Wnt signaling were significantly enriched in G-92 (no GO association) (Fig 6A).

This first example showed that WGCNA synexpression grouping is biologically meaningful: it

groups together, based on their spatial and temporal synexpression, genes with related biologi-

cal functions. This could prompt further research on the novel genes clustered in G-23 with
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Fig 5. Identification of gene ontology (GO) biological functions enriched in weighted gene co-

expression network analysis (WGCNA) groups. (A) Distribution of Xenopus laevis transcripts in WGCNA

groups. The color-filled bars on the histogram indicate the number of unique Entrez geneID records per group.

Functions of some developmentally relevant groups are highlighted: the Wnt responding genes in blue

(Groups #23 and #41 in blue), neural crest (#51, purple), forebrain (#38, orange), mRNA splicing (#80, pink),
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known Wnt-responsive genes, to test their response to Wnt and their function in development

or other cell contexts (S7 Table).

We next investigated the efficiency of WGCNA clustering on a list gathering genes

expressed in progenitors of neural tube, NC-GRN, and placodes (PPE-GRN) (S7C Table,

[10,24,48,51–54]. The regional and temporal segregation of these progenitors during neurula-

tion should be retrieved in our dissections as shown by PCA or NMF analyses. In total, we

and cilium morphogenesis in green (#22, green). Refer to S6 and S6B Table for the full list of functions

associated with each group. (B) Comparison between groups generated by WGCNA (blue) and those created

by random assignment of transcripts (red). About 45% of the WGCNA groups associate to at least 1 biological

function, which is significantly more than the average obtained for the random dataset groups (4%; the 5

random datasets of 141 groups). The distribution of adjusted p-values and sensitivities (1-β) of

overrepresented terms show that, overall, WGCNA groups are more likely to contain a relevant biological

function than groups assigned randomly. (C) Specificity versus sensitivity plot, in which each of the data

points represents a single GO function enriched in a group. Black circles represent all 80 biological functions

enriched in the 5 random datasets (total of 705 groups). The Wnt responding genes (Groups #23, blue),

neural crest (#51, purple), forebrain (#38, orange) are highlighted. For further description of the function, refer

to S6B Table; see S11 Table for numerical data.

https://doi.org/10.1371/journal.pbio.2004045.g005

Fig 6. Distribution of Wnt-responding genes and genes involved in neural, neural crest (NC), and placodal development across

weighted gene co-expression network analysis (WGCNA) synexpression groups. The histogram shows how many transcripts were

found in each synexpression group and if this represented a significant enrichment compared to uniform distribution in all groups; see S11

Table for numerical data. (A) The Wnt-responsive transcripts identified by Kjolby and Harland [49] were mainly distributed in 4 co-expression

groups: 47% of the genes positively regulated by Wnt signaling from the input list were found in groups #23, #31, and #41, while 62% of

genes negatively regulated by Wnt were found in group #92. Group #23 contained posterior genes (e.g., cdx1/2/4, hes5/9, ngfr, kremen2);

group #31, Wnt-signaling components (xarp, tcf7); group #41, meso-endoderm specifiers (e.g., msgn1, myf5, t, vegt); and group #92, genes

up-regulated in absence of Wnt signaling. (B) Placodal and NC genes were enriched in groups #38 (43% of the input list) and #51 (70% of

the input list), respectively. Contrarily to NC markers, the neural border genes, many of which are more broadly expressed, were distributed

across many different co-expression groups; however, pax3 and myc were part of group #51.

https://doi.org/10.1371/journal.pbio.2004045.g006
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tested the distribution of 99 transcripts, encoding 56 vertebrate homologs across the 140

WGCNA groups (S7 Table). The selected transcripts were overrepresented in G-38 and G-51

(Fig 6B, S7D Table). G-38 contained 43% of input placodal transcripts and other genes

required for forebrain and anterior development (fzd, lhx2, rax, fezf2, S4 Table) [55–58]. This

grouping was thus similar to NMF deconvolution for ANF/PPE and matched with forebrain

and placodes development. G-51 gathered 70% of input NC genes (Fig 6B, S7 and S10 Tables).

We then looked for the spatial expression of G-51 genes not present in the input list. Published

in situ hybridization experiments confirmed that 87% of the G-51 annotated transcripts were

expressed in the pre-migratory NC (S7D Table). Moreover, the NMF analysis predicted that

the remaining uncharacterized G-51 genes were expressed in NC progenitors at St. 14 (Fig 7,

S11 Fig). Finally, we cloned a PCR fragment of sh3pxd2a, one of the uncharacterized genes in

G-51, and confirmed its NC expression in neurula-stage WEs, as predicted by both WGCNA

and NMF (Fig 7). Interestingly, this gene was expressed at very low levels (mean of 20 RPKM

in NBa, compared to 1,000 RPKM for snail2 in the same tissue, Figs 4 and 7); it would probably

not have been picked up by an approach based on in situ hybridization in vivo, showing how

our large-scale analysis followed by pattern predictions could help in identifying novel genes

of interest. Also, in this case, due to low expression levels, the average pattern was much less

clear cut than the NMF-deconvoluted pattern (Fig 7).

All together, these results show how a list of genes, taken either from a broadly used path-

way (Wnt) or merged from diverse pathways and GRNs (neural, NC, placodes, mesoderm pat-

terning, and various signaling), was distributed across the WGCNA groups. As a whole, this

grouping displayed biologically relevant co-expression groups from the temporal and spatial

profiles extracted from our neurula dataset. For further research, we provide a list of all

WGCNA groups (S7B Table). Moreover, we concluded that the combination of WGCNA, GO

enrichment analyses, and NMF was a powerful and reliable approach to point out interesting

gene candidates from large-scale genomics datasets and prioritize gene analysis.

Differential expression and WCGNA identified spatial and temporal

variation in homeologous genes expression

X. laevis genome is allotetraploid, with 56% of the genes retained as 2 copies, named homeolo-

gous genes [16]. Polyploidy, while rare in amniotes, is frequently found in amphibians, fish,

and plants. X. laevis genome arose from an interspecific hybridization between 2 diploid pro-

genitor species about 17–18 million years (My) ago [16]. The chromosomes originating from

each species are identified and named L (long) and S (short):.l or.s suffix is added accordingly

to each gene name. This redundancy in the gene set may relax functional constraints on the 2

copies of a gene, either in protein or in regulatory sequences. In the latter situation, this could

result in variation in gene expression. So far, a few studies have compared homeologous gene

expression levels in developing WEs; no study of spatial expression was available [59,60]. We

have here used 2 complementary approaches to evaluate differential expression in homeolo-

gous gene pairs.

First, we used WGCNA clustering to get a global look at differences in homeologous gene

expression by assessing their co-clustering. In the gene set used for WGCNA, we identified a

subset of 2,520 homeologous gene pairs, which exactly matched to the same HUGO name

(S10 Fig, S8B Table, [16]). This approach detected 740 gene pairs found in the same WGCNA

group (29%, S8 Table). Many of these pairs encoded transcription factors, in agreement

with [59] (S11 Fig). This indicated that the remaining 1,780 pairs exhibited expression differ-

ences (S8 Table). When a few transcription factors were evaluated qualitatively on spatial dis-

sections and temporal WEs profiles, most tested genes showed comparable expression for
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homeologous pairs (e.g., pax3.l versus pax3.s and six3.l versus six3.s; S11 Fig), but some

showed clear differences in spatial and/or temporal profiles (e.g., snai2.l versus snai2.s and

six4.l versus six4.s; S11 Fig). Interestingly, a closer look at Snail2.l and Snail2.s protein

sequences revealed increased amino acid substitutions associated with reduced transcript level

in Snail2.s, suggesting that a relaxation of functional constraints is occurring on this copy

(S12 Fig).

Fig 7. Genes with predicted expression and functional association to the neural crest (NC). (A) Validation of the expression pattern of

sh3pxd2a at Nieuwkoop and Faber stages (St.) 12.5 and St. 14. Upon prediction of NC expression by nonnegative matrix factorization

(NMF), we cloned a probe for novel gene sh3pxd2a and analyzed its in vivo pattern: while expressed at very low levels (B, 25 reads per

kilobase per million [RPKM] in the anterior neural plate border [NBa] St. 14), it was readily detected, at low level, in the prospective NC in

vivo. (B) Average RPKM expression per tissue dissection highlighting sh3pxd2a ectodermal enrichment in the NBa. Expression level for

each homeologous gene copy is indicated. (C) Expression pattern predictions for 2 novel genes grouped in G-51, a group associated with

NC development: cacng, cdon. Egr4 was recently shown expressed in cranial NC [35]. Mean expression of both homeologous copies is

indicated for each dissected region. (D) Temporal expression during neurulation (mean expression levels in whole embryos) for each

homeologous copy of cacng4, cdon, and egr4. See S11 Table for numerical data.

https://doi.org/10.1371/journal.pbio.2004045.g007
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Differential expression could reflect 2 different phenomena: the first is decreased expression

of 1 homeologous copy, while the other copy retains expression (asymmetrical decrease),

which is a means for maintaining gene dosage in polyploid species; alternatively, differential

expression could reflect genuine spatial subfunctionalization. To get a more quantitative view

and identify precise spatial subfunctionalization during ectoderm formation, we used differen-

tial expression (p< 5%) between homeologous pairs in each dissected ectoderm region at

either stage. In order to avoid detecting differences in expression level due to variations in

gene size, we selected the 2,001 pairs whose gene length differed by less than 20%, with at least

10 counts, from the whole 7,949 homeologous gene list. Among these, 1,036 gene pairs were

differentially expressed within at least 1 dissected region at St. 12.5 and 1,118 pairs at St. 14.

When differential expression between at least 2 dissected regions was tested in order to identify

subfunctionalization from asymmetrical decrease [61], we found 640 gene pairs at St. 12.5 and

602 pairs at St. 14. At St. 12.5, 634 homeologous pairs exhibited asymmetrical decrease. This

decrease significantly affected the S chromosome in 364/634 of the pairs, (p< 0.01%). At this

stage, we found only 6 gene pairs with spatial subfunctionalization in the ectoderm (alas1,

ccdc68, gmnc-like, larp6, sept8, and hs6st1). All but gmnc-like were also found in different

WGCNA groups above (S8 Table). NMF pattern predictions for these genes are shown in

Fig 8. At St. 14, similar analysis found 601 gene pairs showing asymmetrical decrease (with S

chromosome copy down-regulated in 336/601 cases, p-value< 0.2%) and a single gene (p2ry1)
with spatial subfunctionalization (Fig 8).

We concluded that these 2 complementary approaches, spatial differential expression analy-

sis and WGCNA, highlighted heterogeneity in gene expression among homeologous pairs

resulting from X. laevis genome evolution. In-depth analysis provided temporal and spatial

resolution for differential expression within a given gene pair. Asymmetrical decrease was

observed in the vast majority of cases, with diminished expression occurring statistically more

often for copies located on the S chromosomes. Finally, tissue-specific gene subfunctionaliza-

tion was observed in a few rare cases.

A gene co-expression network enhanced clustering and highlighted

potential functional relationships between clusters

In an effort to expand and customize the previous analysis, we implemented a web interface to

query and visualize the gene co-expression network from a user-defined list of seed transcripts.

This retrieved the co-expression relationships between the genes of interest (seed) and all tran-

scripts in the dataset that shared strong correlations (positive or negative). In particular, this

would allow visualizing the relationships between genes from different co-expression groups.

To create the network, the user simply specifies the list of gene names and a minimal p-value

cutoff that will be used to determine the number of transcripts (nodes) connected with each of

the inputs. The large nodes in the network represented each of the input transcripts. The lines

(edges) connected 2 correlated transcripts: a thick line for a negative correlation and thin line

for a positive correlation. The color of each node corresponded to the gene co-expression

group determined by WGCNA in the previous section. With such network, one could explore

the hierarchical temporal and spatial relationships between the factors involved in neurula

ectodermal patterning, as exemplified below.

We challenged the gene co-expression network by entering a large list of genes, mixing sev-

eral distinct biological processes, and testing how they would be subgrouped by unsupervised

clustering: we included 54 genes (large nodes) associated with various signaling pathways

(bone morphogenetic protein [BMP], Wingless-Int [WNT], and fibroblast growth factors

[FGF] pathways), neural patterning, placode GRN, NC-GRN, mesoderm patterning, and
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endoderm formation (S10 Table). With a p-value cutoff of 1E-09, we obtained a network com-

prising 2,001 nodes and 4,945 edges (Fig 9). As expected, the network construction grouped

genes from the same WGCNA cluster and linked them to other biologically relevant clusters.

For example, the NC groups (G-51 and G-132) were close to the NB genes (msx1/2, pax3,

tfap2a/c, and zic1/5), which were positively connected to their inducers, Wnt and FGF (in G-

23, G-31, and G-45): this close linkage reflected relationships within the NC-GRN. Similarly,

the genes downstream of canonical Wnt signaling, required for posterior tissue specification

(G-23, G-41), positively associated to several posterior signaling pathways, Wnt (G-31, G-95,

Fig 8. A few Xenopus laevis homeologous gene pairs display spatial subfunctionalization. We have studied how homeologous

genes are expressed in the whole dataset (using weighted gene co-expression network analysis [WGCNA]) or in the dissected regions. We

found that most pairs with differential expression exhibit asymmetrical decrease of 1 copy (e.g., egr4, sh3pxd2a, snail2, Fig 7, S11 Fig). We

found 5 pairs with spatial differential expression, suggesting spatial subfunctionalizations: at Nieuwkoop and Faber stage (St.) 12.5, alas1,

ccdc68, gmnc-like, and hs6st1 and at St. 14, p2ry1. Average and nonnegative matrix factorization (NMF) expression patterns are shown at

the relevant stage.

https://doi.org/10.1371/journal.pbio.2004045.g008
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e.g., wnt8a and wnt3a), retinoic acid (G-23, e.g., rara), and Fgf pathways (G-45, e.g., fgf8)

[62,63]. In contrast, negative correlations were observed between posterior (G-23) and ante-

rior expressed genes (e.g., forebrain and anterior sensory placodes, G-38). We concluded that

the grouping of known genes agreed with their related function. This strongly suggested that

this network, based on spatial and temporal gene synexpression during neurulation, would

predict meaningful novel relationships between known and unknown genes at the genome

scale.

Fig 9. Gene co-expression network of Xenopus neurula visualized biologically meaningful relationships between

weighted gene co-expression network analysis (WGCNA) groups and subsets of genes. We obtained a gene co-

expression network using a large input gene list, including Wnt-related transcripts, neural, neural crest (NC), placode, and

mesoderm genes as input nodes (large points, S10 Table). The p-value cutoff <1E-09 generated 2,001 nodes (small points

indicate closely correlated genes; the color of the points refers to a given WGCNA group) and 4,945 edges. Circles are drawn to

groups of genes with close spatial/temporal expression patterns. The group was named based on known members of the

group. Groups are linked to other groups with positive (thin line) or negative (thick line) correlation. As an example, NC genes

(groups #51 and #132) and placodes (group #38, in green) display negative correlation of expression with posterior genes

(groups #23, #20, thick lines). The network also indicates interactions between ventral genes such as ventx genes (group

#138), positively correlated with bmp4 and bmp7.2 (thin lines). When running the EctoMap application, the network is

interactive and indicates each gene name upon selection.

https://doi.org/10.1371/journal.pbio.2004045.g009
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Comparing human cancer-related genes to developmental gene co-

expression facilitates data mining of large-scale datasets

Finally, we evaluated whether this neurula embryo dataset, with its accompanying data-mining

tools, could shed interesting light on other types of genome-scale approaches, either in cell

biology or human pathologies. Genome-wide association studies (GWASs) aim to identify

genes correlated with a specific phenotype or pathology, with the goal of identifying diagnosis

markers [64]. One of the biggest challenges of a GWAS is to identify the genes primarily

driving the pathology, among thousands of altered genes, and to understand how these con-

tribute to disease development. We propose that the GWAS could be coupled with the devel-

opmental co-expression networks to get a better understanding of the etiology of complex

traits. Because our samples collection focuses on ectoderm, this dataset would be most suitable

for phenotypes associated with ectodermal-derived neonatal disorders (e.g., neurocristopa-

thies, ciliopathies, neural tube defects), tumors of ectodermal origin (i.e., melanoma, schwa-

noma, neuroblastoma), and pathologies related to epithelium-to-mesenchyme transition

(EMT) such as cancer and fibrosis [1,65].

Melanoma is an aggressive, NC-derived tumor, initiation of which involves a NC-like state,

i.e., the reactivation of early, neurula-stage NC-specific genes such as sox10 in adults [47]. This

correlates with the reactivation of "super-enhancers" proximal to NC genes. Super-enhancers

are regulatory elements highly enriched in active chromatin marks (K27-acetylated histone 3

[H3K27Ac] mark) and involved in cell differentiation and cancer [66,67]. The presence of

super-enhancers close to the sox10 gene was associated with elevated sox10 expression both

human melanoma cells and in a zebrafish melanoma model [47]. Additionally, these authors

provided a list of 843 super-enhancers present in human melanoma cell lines in close proxim-

ity to 778 other human genes. Here, we asked if we could extract information on the genes

associated with those super-enhancers using the gene co-expression network derived from the

neurula-stage embryo (S9 Table).

We selected X. laevis genes corresponding to human gene names in immediate proximity

with the top super-enhancers in human melanoma cell lines (ranked by enrichment levels of

H3K27Ac) [47]. Sixty-five Xenopus orthologs were expressed in our neurula-stage develop-

mental dataset. Using WGCNA, we found that transcripts highlighted in red were significantly

enriched in groups associated with posterior patterning and canonical Wnt signaling (G-23,

p-value = 3E-02) and NC (G-51, p-value = 2E-02) (Fig 10A). In contrast, no enrichment was

found for the 64 genes close but not immediately adjacent to the top 200 super-enhancers

([47], not shown). We then asked the complementary question: which of the genes associated

to the 843 super-enhancers defined in human melanoma were part of G-23 and G-51, and

found 26 genes falling in these groups (Fig 10; S9 Table). This analysis further supports the

notion that melanoma initiation, WNT signaling, and NC development share common molec-

ular signatures [47,68] and supports investigating the roles of uncharacterized genes either in

NC development or during melanoma initiation.

To investigate how often these 26 genes were altered in cancer, we looked in public repos-

itories of human tumor datasets and found that melanomas have one of the largest propor-

tions of genomic alterations in at least 1 of these genes (Fig 10B). When focusing only on

melanoma patients, we observed that the vast majority of alterations correspond to up-regu-

lation or amplification events [69–72] (Fig 10C). We found complex results for 1 of the

genes, CDON, as it appeared either up-regulated (>2%) or deleted (>3.5%) in uveal and

skin cutaneous melanoma (Fig 10C). Deletion of both copies of CDON was also commonly

observed in other types of cancer: 11% of testicular germ cell cancer and 5% of cervical can-

cer (TCGA Research Network: http://cancergenome.nih.gov [TCGA] not shown). Such
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mixed observations, in adults, have complicated the understanding of CDON function.

Cdon serves as a multifunctional co-receptor with different roles in signaling transduction.

On the one hand, it acts as co-receptor for Hedgehog proteins; on the other hand, it interacts

with N-cadherin to activate p38α/β mitogen-activated protein kinase (MAPK) [73].

Fig 10. Genes linked to human melanoma are tightly associated with Wnt-associated genes and neural crest (NC) genes during

development. (A) Several (26) genes linked to melanoma super-enhancers defined by Kauffman et al. (2016) were found among the

posterior/Wnt genes group (#23) and the NC group (#51). (B) Cumulative frequency of genetic alterations found in these 26 genes in various

cancer types: NC-derived cancers are outlined in purple. High mutation frequency (>45%) is found in melanomas. The nature of the genetic

alteration is plotted along y-axis. We used 70 studies describing at least 100 tumors of each kind (TCGA). (C) These 26 genes were

frequently mutated in cutaneous and uveal melanoma: this diagram displays genetic alterations found for each gene above 5% frequency, in

191 out of 287 cutaneous melanomas and in 24 out of 80 uveal melanomas. See S11 Table for numerical data. Panels (B) and (C) are

based on data obtained by the TCGA Research Network: http://cancergenome.nih.gov and visualized by cBioPortal.

https://doi.org/10.1371/journal.pbio.2004045.g010
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Currently, the functional characterization of frog cdon is lacking, but our expression

predictions and analysis on other model organisms [74,75] support potential roles of

CDON in human melanoma. Our NMF expression pattern predictions localize cdon pre-

dominantly in the NB in neurula (St. 12.5 and St. 14) (Fig 7C). Likewise, the adjacency co-

expression matrix and the network positions cdon in close relationship with other NC tran-

scripts (e.g., sh3pxd2a, sox9, rapgef2, and gdf5), Sonic Hedgehog receptor (disp1), and genes

related to Wnt signaling pathway (e.g., axin2 and xarp). Hence, we conclude that a com-

bined strategy of mining human cancer databases and searching our developmental gene co-

expression network may be useful to prioritize gene candidates for further functional

studies.

Integration of the temporal and spatial transcriptomic datasets in

EctoMap, a user-friendly online tool

We integrated this large transcriptomic dataset as a comprehensive suite of interactive

tools to explore the expression of 1 or more genes of interest (Fig 11). The application was

called "EctoMap" and it was intended to allow users to explore gene expression levels over

different developmental time points and tissues and retrieve expression pattern prediction

obtained by NMF along with a list of co-expressed genes identified by WGCNA analysis

(see example in S1 Web Archive). We also provided the interactive gene co-expression net-

work, to which we recommend adding landmark genes for a more informative interpreta-

tion of the temporal and spatial relationships between genes. The tool was implemented in

R using the Shiny-app and the dynamic network visualization using the Network-D3 library

(please download the full application and run locally). A simplified version of EctoMap

(EctoMap Lite) is made publicly available (https://monsoro-lab-ectomap.shinyapps.io/

EctoMAP/).

Discussion

In vertebrate late gastrula and neurula embryos, dynamic cell fate diversification is initiated in

the ectoderm by progressive individualization of broad progenitor areas positioned along the

A-P and D-V axes. These processes are highly conserved from basal vertebrates to mammals

[76–78]. Before the definitive establishment of specific cell fate markers in the late neurula, no

sharp boundary can be drawn in the ectoderm, as progenitor cells globally share substantial

gene expression with cells from the neighboring areas. This property is inherent to the early

neurula and precludes, so far, the reliable development and use of lineage-specific tracers.

Rather, there is an urgent need to document the progressive spatial and temporal diversifica-

tion of genome expression across the ectoderm during early neurulation. This study defines

the regional transcriptome of a single germ layer, the ectoderm, at 2 developmental stages,

early and mid-neurula. Microdissecting small ectoderm regions from single embryos for low-

input RNA-sequencing allowed retaining precise spatial information for each sample. We pro-

vide a comprehensive searchable interface, EctoMap, integrating gene co-expression dynamics

during ectoderm early patterning into progenitors for nervous system, skin, sensory placodes,

and NC. EctoMap provides enhanced in silico quantitative pattern prediction and generates

synexpression networks for any gene expressed during early neurulation. We characterized

the regional and temporal molecular signature in each area of the neurula ectoderm, which

corresponds to the regionalization of cell fates. Customized networks retrieve gene expression

relationships relevant for developmental biology or other research fields including evolution,

stem cells, or cancer biology.
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A molecular map of vertebrate ectoderm during neurulation

Besides WE transcriptome analyses, previous genome-wide gene expression studies in verte-

brates using low-input RNA sequencing have focused on cleavage, gastrulation, or early organ-

ogenesis [5,7,8,11,79,80]. At the end of neurulation in particular, transcriptome of definitive

NC cells has been obtained just prior to or during their migration [81–83]. Other studies have

taken advantage of naive ectoderm reprogrammed in vitro into different ectoderm cell fates

such as neural, NC, or placodes cells [10,84–87]. Because collecting small ectoderm-restricted

areas in vivo was a technical challenge, this study is the first germ-layer specific transcriptome

Fig 11. EctoMap: An application to explore gene synexpression during neurulation. (A) Workflow for the EctoMap application,

indicating the input options and the files needed to produce the output plots. (B) Example of outputs (see also S1 Web Archive).

https://doi.org/10.1371/journal.pbio.2004045.g011
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analysis in early neurula. We used the tetrapod X. laevis embryo, a classical and prototypical

vertebrate embryo, allowing stereotypical in vivo microdissections of the ectoderm during

neurulation in reference to known gene expression patterns and previous fate maps (Fig 1).

We document the transcriptome-wide signature for spatially and temporally defined ectoderm

areas at 2 developmental time points when critical cell fate decisions are made: at the end of

gastrulation, as the ectoderm cells respond to key signaling cues from the surrounding cells

and underlying tissues, and at mid-neurula stage, as the initial positional information has

been established across the ectoderm and is followed by further subdivision of the ectoderm-

derived tissues [4,77]. Hence, we report quantitative expression data for the 31,700 transcripts

expressed in early neurula (i.e., 82% of the genome), corresponding at least to 11,616 unique

human homologs (based on HUGO nomenclature). With the advent of single-cell transcrip-

tomics, this study provides an unprecedented spatial reference and a deep sequencing coverage

that are needed for analysis of isolated cells transcriptome.

A transcriptome-scale referential for positional information in the

developing neurula ectoderm

Unsupervised analysis of transcriptome variations between neurula-stage ectoderm regions

might implicate diverse biological processes; for example, cell proliferation, polarity, metabo-

lism, signaling, or patterning might distinguish ectoderm areas. To enhance sensitivity, we

focused on genes with high variation in expression between different ectoderm areas. PCA

revealed that the major transcriptome-level variations between 2 different neurula ectoderm

areas were strongly and primarily related to their position along the D-V and A-P axes, rather

than to other cellular processes (Fig 2). Hence, at the end of gastrulation and during neurula-

tion, the differential transcriptional response of ectoderm cells to the surrounding develop-

mental cues and signaling gradients was clearly readable in their transcriptome and was

precisely related to their position in the plane of ectoderm. This was coherent with previous

analyses for selected genes [76,88–91]. This result allows precise spatial positioning of any

given ectoderm sample, based its transcriptome coordinates, prior to morphological feature

appearance in the ectoderm. In addition, we provide gene signatures correlated to the D-V

and A-P axes (S4 Table, S4 Fig). The third PCA component was ectoderm subregionalization,

with the emergence of the NB, identified as a separate territory, supported by the expression of

transcription factors such as pax3, snail1, sox9, and msx in the late gastrula. This confirmed

previous analyses showing NB emergence at the end of gastrulation, characterized by pax3/7
expression [18,19,36,92]. Known and novel gene expression also correlate with this third PCA

component. Moreover, the timing of cell specification into different progenitor cell types was

also readable in their transcriptome and identified by PCA. The novel gene functions support-

ing this temporal differentiation remain to be explored. We conclude that similar use of tran-

scriptome coordinates could allow precise spatial allocation in the ectoderm plane, either for

wild-type ectoderm samples (e.g., selected ectoderm areas or ectoderm single cells at similar or

different developmental stages) or for understanding the genome-scale modifications follow-

ing mutation or other experimental gene perturbations. A similar strategy could also be used

to understand the main features of embryonic tissues undergoing precise patterning within

morphogenetic fields [88].

An enhanced atlas of individual gene expression and regional gene

signatures across the developing ectoderm

Next, we provided a comprehensive quantitative atlas of individual gene expression in the

single ectoderm germ layer, enhanced by NMF deconvolution. We anticipate that this
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repertoire will be of broad use in vertebrate embryos, given the high conservation of develop-

mental mechanisms and gene expression patterns in vertebrates, in general, and in tetrapods,

in particular [93]. We have compared the usual averaging strategies (i.e., averaging expres-

sion level between biological replicates for a given dissected region) to an unsupervised

approach using NMF, designed to define homogeneous domains in the neurula ectoderm,

independently of potential variations between replicate samples for a given dissected region,

especially in the case of closely located regions. Using this approach, we provide a better esti-

mate of gene expression patterns than by simple averaging for complex regions such as the

NPa and NBa at St. 14 (Fig 4). Both average patterns and NMF patterns are coarse-resolution

renderings of fine gene expression patterns and are meant to give a quick and global view of

gene expression in an ectoderm domain, which cannot reach the refinement of an in situ

hybridization pattern. However, we can now predict the pattern of all 31,700 genes expressed

during early neurulation.

When compared to NMF patterns, average patterns are more sensitive to variability in dis-

sections. The main example is for NBa at St. 14, the average patterns for which show larger

expression than the in situ hybridization pattern (Figs 4 and 7, S8 Fig). In St. 14 embryos, NBa,

NPa, and ANF/PPE are closely located in the ectoderm, and the corresponding samples tend

to display dispersion (as shown by PCA or tSNE). In this case, average patterns will show con-

tribution to NPa and ANF/PPE, even for genes expressed only in NBa (e.g., NC-specific genes

snail2 and sox10). In contrast, NMF distinguishes neatly NBa from NP and ANF/PPE, because

it is designed to deconvolute contributions between neighboring tissues. In this case, NMF pat-

tern is closer to in situ hybridization pattern. For example, snail2/st14 is indicated in NBa only,

while a gene such as sox2/st14 is predicted in NP, ANF/PPE, and at lower level in NBa/p, very

similarly to average and NMF patterns. On the other hand, NMF is less sensitive than other

approaches to discriminate some dissected regions; it does not distinguish between NBp and

NPp at St. 12.5 or between NPa/NPp and anterior NNE [NNE(a)]/posterior NNE [NNE(p)].

In this case, average pattern combined with ectoderm specificity index (to indicate potential

contribution of underlying mesoderm) would provide better information.

We designed a searchable web tool, EctoMap, to share this information, using human gene

name nomenclature (HUGO names) and the latest genome annotations. For each gene, Ecto-

Map enables an immediate visualization of semiquantitative gene expression pattern in the 7

key ectoderm regions defined for deep sequencing, at early and mid-neurulation stage, and of

gene expression dynamics during neurulation in WEs. This predicted pattern is accompanied

by an average pattern and an ectoderm specificity index for each region to provide maximum

information in queries regarding unknown gene spatial and temporal expression.

As orthologs for over 79% of genes implicated in human disease are conserved in frog

[16,94], the discovery of novel genes implicated either in cancers derived from ectoderm or

during stem cell reprogramming into ectoderm-derived fate could prompt immediate in silico

analysis of their expression during development, even in absence of in situ hybridization data

in the current databases.

Importantly, NMF defined 5 basic areas from the transcriptome of the 7 dissected domains,

unlike PCA, which discriminated all 7 tissues at each stage. Theoretically, this could either

reflect mixed cellular contributions in the dissected samples, due to slight spatial variations

between replicates or due to cell heterogeneity within the tissue, or it could reflect that a given

ectoderm domain transcriptome can be explained by a combination of 2 basic transcriptomes.

Future single cell transcriptome analysis should help in resolving between these options.

With NMF, we also defined a specific gene signature for each area using the Gini coefficient

[42] to evaluate enrichment in gene expression for each domain. We retrieved a characteristic

gene signature defining each NMF-predicted ectoderm domain (S5 Table, S7 Fig), thus
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providing the first genome-scale unsupervised annotation of the different ectoderm spatial

domains. These results will allow the derivation of accurate area-specific lineage reporters for

these early neurula stages. A recently study in late chick neurula identified a few transcription

factors controlling NC heterogeneity along the A-P axis, based on their differential expression

in transcriptome datasets [95]. Similarly, but in earlier embryos, our spatial and temporal ecto-

derm gene signature should stimulate functional analyses on differential fate determination

during early stages of neural, NC, and placode formation.

Finally, X. laevis genome arose from recent genome allotetraploidization [16], with 56% of

genes retaining 2 copies from the ancestral genomes. EctoMap provides spatial and temporal

expression for each homeologous copy. Using spatial differential expression, we found that

about half of homeologous pairs display significant differential expression due to asymmetrical

decrease, a potential means to maintain gene dosage. Only a handful of pairs were subjected to

spatial subfunctionalization (Fig 8, S11 Fig, S8 Table). This strong bias towards asymmetrical

decrease is also found in mammals after gene tandem duplication [61]. Tissue-specific gene

subfunctionalization could involve complex context-specific regulation of gene expression and

potential creation of novel functions for 1 gene in the homeologous pair. In both cases, our

gene lists could allow investigating the evolution of gene regulatory elements, following a 17–

18 My-old whole genome duplication, as compared to older genome duplications in vertebrate

or teleost lineage.

A dynamic co-expression network to explore gene synexpression during

neurulation

During development as well as in adult life, control of gene co-expression is an efficient and

widely used way of coordinating spatial and temporal activity of groups of factors involved

in related functions. Consequently, gene synexpression in time and space may indicate

potential related activity between a set of factors. We thus completed this analysis by unsu-

pervised WGCNA clustering and co-expression network analysis. We retrieved gene groups

and validated the biological relevance of several groups, including Wnt-responsive gene

group, premigratory NC group, and placode group. Further analyses of our clustering would

shed light on potentially related molecules in multiple pathways or processes. As an example,

we shortlisted interesting candidates among novel genes involved in melanoma based on

their synexpression with NC, Wnt signaling, and EMT-related factors in neurula. Finally, we

have developed an online searchable network application allowing querying the synexpres-

sion and correlation among groups of genes. This query could involve genes acting in devel-

opment, stem cells reprogramming, epithelium-mesenchyme transition, signaling, or

various pathologies. We propose that the analysis of their expression in the developing ecto-

derm and the identification of their potential partners during neurulation will provide, with

ease, novel and important insights into their biological roles and trigger relevant functional

studies.

Materials and methods

Ethics statement

All animal care and experimentation were conducted in accordance with institutional guide-

lines, under the institutional license #C91-471-108, project # AP AFIS#7043–20 160930

14156646 v2 (Direction Départementale de la Protection des Populations, Courcouronnes,

France).
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Embryos

X. laevis embryos were obtained by in vitro fertilization using standard procedures [96] and

grown until the desired stage according to the Nieuwkoop and Faber developmental table [17].

Sample microdissection

The embryo dissections were done as described in [26]. To ensure accurate dissections, a

drawing of X. laevis embryo was made with respect to known in situ hybridization expression

patterns for pax3, snai2, and sox2 at St. 12.5, St. 14, and St. 17. This ectodermal map is shown

in Fig 1A. The ectodermal regions were dissected using an eyebrow knife inserted first between

the mesoderm and ectoderm layer prior to cutting. The dissected tissue was immediately lysed

in Trizol (Life Technologies). A single dissection from a single embryo was used for each

library preparation, after assessing RNA quality and confirming tissue sample identity by

qPCR. A total of 79 dissected fragments were selected out of about 300 individual dissections.

In situ hybridization

Embryos were fixed and prepared for whole mount in situ hybridization according to [97].

Antisense digoxigenin-labelled RNA probes were used at a final concentration of 10 μg/ml.

The following probes were used: snai2, pax3, sox2, and foxi1e[36,98–100]. PCR fragments for

sh3pxd2a and sp8 were cloned from neurula stage cDNA and used as probes.

RNA extraction and quality control

Total RNA from each individual dissected tissue was isolated by Trizol extraction (Life Tech-

nologies) with a step of shearing through a 25G needle. The aqueous phase was recovered

using Phase Lock Gel (Eppendorf). Nucleic acids were precipitated with isopropanol and Lin-

ear polyacrylamide (LPA, Ambion), then washed in 70% Ethanol. RNA was resuspended in

30 μl RNAse-free water (Ambion) and dosed using a Nanodrop 2000 (Thermo Scientific).

RNA quality was assessed on Bioanalyzer 2100 chips (Agilent).

Quantitative real-time PCR

Reverse transcription was used M-MLV-Reverse Transcription (Promega). Quantitative real-

time PCR (qPCR) reactions used SsoFast EvaGreen Supermix (Bio-Rad) on a C1000 thermal

cycler (CFX96 real-time system, Bio-Rad). We quantified the relative expression levels of sev-

eral dorsal ectoderm markers (sox2, xk81a1, pax3, and snai2) and a mesodermal marker

(myod1) in order to confirm the sample ectodermal identity and detect a potential mesoderm

contamination. Relative expressions were normalized using reference markers (odc1 and

ef1a1). Sequences for qPCR primers are listed in S2 Table.

RNA sequencing and gene expression quantitation

Samples were selected for RNA library preparation if they met the following 3 requirements:

(1) a ratio of the ribosomal 18S over 28S greater than 1.7-fold on bioanalyzer total RNA traces,

(2) a confirmed tissue identity, and (3) a total RNA amount greater than 40 ng. RNA-seq

libraries were prepared using the TruSeq Stranded mRNA library preparation kit (Illumina),

starting with 40–300 ng of total RNA and sequenced on a HiSeq 2000 (Illumina) with a target

of 15–20 million 100 bp paired reads per sample. Reads were mapped on the X. laevis genome

(9.1) [16] using tophat 2.0.14 [101], with the following parameters (—rg-library Illumina—rg-

platform Illumina—keep-fasta-order -N 6—read-gap-length 6—read-edit-dist 6—segment-

mismatches 3 -i 5 -I 500000 -r 155—mate-std-dev 80—no-coverage-search -p 6—library-type
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fr-firststrand -g 2). 92% of the reads mapped on X. laevis genome. Paired reads mapping multi-

ple times on the genome (approximately 4% of them) were excluded from the downstream

analysis, leaving 88% of the reads for analysis. Putative transcript models were predicted using

cufflinks 2.2.1 with the following parameters (—library-type fr-firststrand —3-overhang-toler-

ance 0—intron-overhang-tolerance 0), then merged with the annotation of the X. laevis
genome (annotation version 1.8 of the 9.1 version of the genome, Xenbase ftp://ftp.xenbase.

org/pub/Genomics/JGI/Xenla9.1/) using cuffmerge v2.2.1 [102]. Transcript annotation was

done with a custom script BLASTing transcript nucleotide sequences against the X. tropicalis
transcript nucleotide sequence database (JGI 4.2) [94] retaining only the first hit for each tran-

script with an E-value lower than 1E-100. Gene models and annotations were computed by

merge overlapping transcript models and their annotation using BedTools [103] and a custom

Perl script. Read counts were computed on each gene model using HTSeq [104]. Only genes

with at least 10 counts in at least 2 samples were further considered. Read counts were then

normalized using library size with trimmed mean of M-value normalization [105], as imple-

mented in EdgeR [106], then transformed to log2-CPM (counts per million), and processed by

the limma/voom package [107] to estimate the mean-variance relationship of the log-counts

for subsequent statistical analysis. The data discussed in this publication have been deposited

in NCBI’s Gene Expression Omnibus [108] and are accessible through GEO Series accession

number GSE103240 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103240).

Gene filtering

Many genes display little variation in expression across dissected samples (S1E and S1F Fig).

For such genes, variations in expression between samples will be dominated by technical or

biological noise. To filter out these genes, we have tested 3 commonly used methods: the range

of log2(expression) (range), the variance (var), and the interquartile range (iqr). We have used

the silhouette number (a clustering quality measure, https://cran.r-project.org/web/packages/

cluster/) to assess how samples cluster according to their dissected region in the space defined

by the first 3 PCA components. Silhouette number allows us to compare these 3 methods and

define the appropriate number of genes to select (S1A and S1B Fig). All 3 methods gave similar

silhouette profiles as a function of number of genes, with a sharp drop as genes with lower

differential expression were included (S1A–S1D Fig). We used these curves to define that

between 60 and 1,200 genes should be selected for St. 12.5, and between 1,100 and 6,000 genes

at St. 14. The highest ranked genes were thus selected, using their range of log2(expression)

and a minimum range threshold of 5, at both stages; 1,174 genes and 1,859 genes were selected

at each of St. 12.5 and St. 14, for a total list of 2,198 genes.

PCA, tSNE

PCA was computed with the standard R library on the sample expression vectors. The gene

expression matrix was normalized by subtracting from each gene expression vector its average

across all samples considered and dividing it by its standard deviation. To identify significant

eigenvalues and genes displaying significant loading in each eigenvector, we generated a null

distribution of eigenvectors by scrambling sample expression vectors through random permu-

tation and computing PCA eigenvectors on the scrambled dataset 10,000 times. We inferred

from this null distribution the 1% p-value threshold for each eigenvalue and the range of sig-

nificant loading values for each eigenvector.

tSNE (perplexity parameter = 7 or 9) plots were computed from the gene expression matrix

using, respectively, the R tSNE package Rtsne version 0.11 (https://github.com/jkrijthe/Rtsne)

and the cmdscale function for the R standard library (package stats).
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To help visualizing sample position along PCA components and in tSNE plots and whether

samples from the same dissected region grouped together, we computed the barycenter of

samples position for each tissue and drew the Voronoi tessellation of that set of points; this

allows us to display the areas where points are closer to each barycenter in the plane of chosen

PCA component or tSNE dimension.

NMF matrix deconvolution

To compute the NMF deconvolution of the sample expression matrix (restricted to genes

selected as differentially expressed at that stage), log2-transformed gene expression levels were

converted back to expression levels and normalized by setting maximum expression of each

gene to 1. NMF deconvolution was then computed on that normalized expression matrix with

the R package NMF [109]. NMF rank was chosen by running the NMF algorithm on 20 ran-

dom initializations of the component and mixing matrices and clustering rows of the resulting

mixing matrices to visually identify if the algorithm converges robustly to the same minimum.

The chosen NMF mixing and component matrices were computed as the median mixing and

component matrices out of 100 runs with random initializations at the selected rank.

The computed component matrix contains only NMF-tissue expression data for the

selected differentially expressed genes. We therefore computed an approximate measure of

NMF-tissue gene expression for all genes by simply solving the NMF linear system (compo-

nent matrix × mixing matrix = sample expression matrix) using the known sample expression

matrix and the chosen mixing matrix and assigning all negative expression values in the esti-

mated component matrix to 0. The approximate NMF-tissue expression values in this com-

puted component matrix were found to be within 10% (relative to the highest expression level)

of the expression values computed by the NMF algorithm for the selected differentially

expressed genes.

NMF expression patterns were displayed on the NMF-tissue map by assigning the blue

color to the NMF-tissue with highest expression and computing the relative color of other

NMF-tissues on a white to blue scale using their relative expression level and the RcolorBrewer

package (https://cran.r-project.org/web/packages/RcolorBrewer/). To measure NMF-tissue

expression specificity and identify genes selectively expressed in a single NMF-tissue, we com-

puted an inequality in gene expression distribution index using the Gini coefficient formula

(https://en.wikipedia.org/wiki/Gini_coefficient). Among these, genes that did not display ecto-

dermal enrichment (i.e., difference between highest median log2-expression in dissected tis-

sues and median log2-expression in WE <0) were not included in S5 Table.

WGCNA analysis

For the WGCNA analysis, we filtered out 80% of the transcripts with very low read counts

across all 79 tissue and whole samples (S1 Table). We kept 10,073 informative transcripts out

of a total of 50,974, as they passed 1 of 2 selection filters: the normalized CPM value for at least

1 of the all samples was above 50 CPM, or the absolute sum of normalized CPM values across

all samples was greater than 40 CPM. The normalized CPM values from this set of “informa-

tive” transcripts were log-transformed and used as input for all WGCNA analyses.

To create the co-expression groups, we determined that a soft threshold power of 22

approximated the input data to a scale-free topology network (R2 = 0.91) and provided a

mean connectivity of 3.92 (S9 Fig). From the signed adjacency matrix (power = 22, type =

"signed," corFac = "bicor"), we calculated the dissimilarity topology overlap matrix (TOM-

Type = "signed"), which was subsequently used to create a distance tree (method = "average").

To determine the co-expression groups, we dynamically cut the branches of the tree with a
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minimal cluster size of 15 transcripts per group (method = "hybrid", deepSplit = 4,

pamRespectsDendro = FALSE, minClusterSize = 15).

Biological process enrichment in WGCNA gene groups

To identify overrepresented GO terms in gene groups, we used "clusterProfiler v1.9" R library

[110], which relies on the Fisher’s exact test. As background dataset, we provided a list of non-

redundant genes from the frog genome, which was obtained by retrieving, for each of the

X. laevis transcripts, the HUGO and corresponding Entrez IDs. All GO biological function

terms used were from the ensembl88 human annotation database. We required p-value and

q-value cutoffs of 5%, and the p-values were adjusted by applying the Bonferroni multiple sam-

ple correction test. S6B Table has GO biological functions associated with the WGCNA

groups. Randomized datasets were produced by swapping the group assignments from each

transcript while maintaining the number of transcripts per group, similar to those from the

WGCNA. The complete list of GO biological functions enriched per WGCNA group can be

found on S6B Table.

Analysis of differential expression in homeologous gene pairs

We used the homeologous gene pairs defined by the X. laevis genome annotation 9.1 as dupli-

cated copies of a gene present both in the long and short genome (7,949 pairs). Pairs that were

not expressed (0 counts in both copies) were discarded. Because gene expression measured by

counts depend on transcript length (longer transcripts generate more fragments for sequenc-

ing), we decided to compare only paired duplicates whose transcript lengths were close (<20%

difference) so the comparison of their expression would not be affected by their length differ-

ence. At each stage, we then tested the difference in expression between duplicates for each tis-

sue with the limma package [107] (5% p-value threshold corrected for multiple testing). Pairs

for which 1 of the duplicates was significantly more expressed in at least 2 dissected regions

and similarly expressed in the other regions were termed asymmetrically expressed pairs. Pairs

for which 1 of the duplicates was significantly more expressed in at least 1 region and signifi-

cantly less in at least another region were termed subfunctionalized pairs.

Co-expression network

To create a customizable co-expression network, the user needs to provide 1 or more tran-

script names and select a p-value cutoff associated with the Pearson’s correlation (rcorr func-

tion of the Hmisc library from R). To visualize the gene co-expression network, we used the

networkD3 library (https://cran.r-project.org/package=networkD3) in the R shiny app

(https://cran.r-project.org/package=shiny). NetworkD3 creates a dynamic network after

receiving 2 data frames, one that describes the nodes and the other one, the edges (links). Each

transcript of interest (input node) is represented as a large node. The absolute value of the cor-

relation coefficients defines the distance between the transcript of interest (input node) and its

associated transcripts (associated node). Positive correlations are represented as thin lines,

while negative correlations are represented by a thick line. The node colors are assigned

according to the co-expression group obtained by WGCNA. The user can modulate the

number of links by changing the p-value cutoff used for the correlation. To create such a

gene co-expression network, we generated an unsigned adjacency matrix (power = 22,

corFnc = "bicor") with WGCNA [44]. The unsigned adjacency matrix allows identifying posi-

tive and negative associations for each of the transcripts. For the network visualization, the

program retrieves the 50 most adjacent transcripts and computes pairwise comparisons (Pear-

son’s correlation and p-value) between the input gene and the associated transcripts using the
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log-transformed normalized CPM values from all 79 samples. The number of transcripts asso-

ciated with a node is determined by the p-value cutoff defined by the user (1E-10 as default).

Databases

Xenbase (http://www.xenbase.org/, RRID:SCR_003280). Data generated by the TGCA

(https://cancergenome.nih.gov/) was facilitated by the cBioPortal data visualization website

[111,112].

EctoMap application

In order to allow broad access to these data, we developed an application, EctoMap, either as

full version to download and run locally (full version, Fig 11) or as light version online. Below

are indicated the characteristics of each version. Given a list of genes (or a single gene for the

light online version of EctoMap), the application provides different complementary informa-

tion extracted from the sequencing data: (1) Ectodermal expression pattern prediction using

either the average pattern or the NMF pattern, both normalized as percent of the highest

expression level, for each of St. 12.5 and St. 14. In the full application, this is accompanied by

the list of genes with the closest expression profile (spatial and temporal) and their respective

correlation values. (2) Expression values (FPKM) for WEs throughout neurulation (St. 11–

St. 19) describe the temporal dynamics of gene expression. (3) The absolute expression levels

(log-2 [mean RPKM] values) and an index of ectoderm enrichment are plotted for each dis-

sected region at St. 12.5 or St. 14. Ectoderm enrichment ranges from bright orange (value of 0)

to dark green (value of 100). This enrichment is the ratio of expression in a given tissue com-

pared to global expression in WE at the same stage. For example, a score over 90 indicates that

the gene is ranked above 90% of all genes enriched in that particular tissue, whereas a rank of

10 suggests the gene is expressed elsewhere in the embryo (mesoderm, endoderm). This func-

tion is implemented in the full version; in EctoMap Lite online, WE average expression level is

simply indicated by a dotted line. A heat plot of hierarchical cluster based on the Pearson or

Spearman’s correlation on 79 samples, i.e., from dissected tissues and WEs at different devel-

opmental time points, is provided to gain insights into the expression profile similarity of a

particular gene compared to other well-characterized genes that serve as ectodermal land-

marks (e.g., NC, NB, epidermal, ventral, anterior). (5) A gene co-expression network shows

the expression pattern relationships between the genes selected by the user (input nodes) and

genes having strong correlations.

The application tool was built in R using the shiny app (http://shiny.rstudio.com/). The

code and its documentation are deposited in Github and can be downloaded from supplemen-

tary materials (EctoMap.v1.3.zip). The link for online access of a light version of EctoMap is

https://monsoro-lab-ectomap.shinyapps.io/EctoMAP/. The scripts can be adopted by any user

who would like to include additional RNA-seq datasets, e.g., WEs or single tissues from wild

types or gene knockdowns. The scripts can be modified and submitted for revision via Github.

Supporting information

S1 Fig. Silhouette analysis. (A, B) We have used the silhouette number (a clustering quality

measure) to assess how samples cluster according to their dissected region in the space defined

by the first 3 principal component analysis (PCA) components. We have compared 3 com-

monly used methods at stage 12.5 and stage 14: the range of log2(expression) (range), the vari-

ance (var), and the interquartile range (iqr). The silhouette number allows comparing these 3

methods and defining the appropriate number of genes to select (red line). All 3 methods gave

similar silhouette profiles as a function of number of genes, with a sharp drop as genes with
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lower differential expression were included. We used these curves to define that between 60

and 1,200 genes should be selected for stage 12.5 and between 1,100 and 6,000 genes for stage

14. (C, D) PCA plots along component 1 (PC1) and component 2 (PC2) illustrate the influence

of the number of genes selected on the quality of PCA results. (E, F) At both stages 12.5 and

14, a common threshold of 5 (red dotted line) in the range of gene expression was used to

define the set of genes used in the first analyses: 1,174 genes at stage 12.5 and 1,859 genes at

stage 14.

(TIFF)

S2 Fig. Distribution of principal component analysis (PCA) components. Each PCA com-

ponent captures a decreasing part of the variance in gene expression between samples. Signifi-

cance is computed as indicated in Materials and methods, and 1% significance line is drawn.

PCA component contribution to variance is plotted for stage 12.5 samples (A), stage 14 sam-

ples (B), and both stages together (C).

(TIFF)

S3 Fig. Principal component analysis (PCA) identifies genes whose expression is strongly

correlated with PCA components 1 and 2. As we matched PCA components 1 and 2 to dor-

sal-ventral (D-V) and anterior-posterior (A-P) axes, we looked for the genes best correlated to

each component (S4 Table). Color code indicates dissection region identity of the sample

according to Fig 1 and S1 Table. (A, B) Neural plate gene sox2.1 expression is correlated to

PCA component 1 at both stages, more weakly at stage 12.5 (A, correlation coefficient = −0.86)

than at stage 14 (B, correlation coefficient = −0.91). (C, D) Novel gene zc4h2.l expression is

even more highly correlated to PCA component 1 at stage 12.5 (C, correlation coefficient =

−0.98) and stage 14 (D, correlation coefficient = −0.96). (E, F) Posterior gene cdx2.s presents a

high negative correlation with PCA component 2, both at stage 12.5 (E, correlation coefficient

= −0.93) and 14 (F, correlation coefficient = −0.95). (G, H) Anterior gene fzd8.s is highly posi-

tively correlated with PCA component 2, both at stage 12.5 (G, correlation coefficient = 0.91)

and 14 (H, correlation coefficient = 0.88). See S11 Table for numerical data.

(TIFF)

S4 Fig. Nonnegative matrix factorization (NMF)-predicted expression for genes most cor-

related to principal component analysis (PCA) axes 1 and 2. Dissected regions are projected

along PCA components 1 and 2 in a pattern matching with embryonic dorsal-ventral (D-V)

and anterior-posterior (A-P) axes, respectively. We have selected the 5 genes most correlated

to these components (from list in S4 Table) and predicted their expression pattern using NMF.

Patterns for the 5 genes with best positive or negative correlation are presented. This indepen-

dent analysis confirms that the selected genes show clear D-V or A-P pattern restrictions and

could thus be good diagnostic markers for position along each axis, respectively.

(TIFF)

S5 Fig. Expression level distribution between biological replicates. (A, B) Expression level

for each biological replicate is plotted for snail2 and sox2, for each dissected tissue. This high-

lights the variability of expression that complicates the establishment of region-specific gene

signatures for adjacent regions. Ec = NNE, nonneural ectoderm. See S11 Table for numerical

data.

(TIFF)

S6 Fig. Nonnegative matrix factorization (NMF) convergence. Convergence of NMF to a

single minimum was assessed by clustering rows of the mixing matrix obtained by running

NMF deconvolution with random initialization 20 times and checking that the number of
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tight clusters obtained equal NMF rank. This procedure shows that a single minimum is

obtained up to rank 5 both at stage 12.5 (A) and stage 14 (B), although for stage 12.5, rank 4

does not lead to tight clusters. Higher ranks do not lead to a single solution, as the number of

clusters recovered exceeds the rank and/or clusters are not tight (rank 6 at stage 12.5). Mixing

matrices for each solution from 2 to 7 ranks are shown. Stars (�) point out clusters that are not

tight.

(TIFF)

S7 Fig. Gini index defines a specific gene signature for each nonnegative matrix factoriza-

tion (NMF)-predicted ectoderm region. Gini enrichment index was used to define the genes

most specifically enriched in 1 of the 5 tissues predicted by NMF deconvolution (S5 Table).

Five genes with highest Gini index are shown for each NMF-tissue. This defined known and

novel genes to characterize each ectoderm region.

(TIFF)

S8 Fig. Distinction between ectoderm-enriched genes and posterior mesoderm-expressed

genes by combining nonnegative matrix factorization (NMF) pattern and average expres-

sion analysis. In complement to average or NMF-predicted expression patterns, we indicate

the enrichment of gene expression in ectoderm, compared to whole embryo expression. Ecto-

derm enrichment index allows distinguishing between genes highly and specifically expressed

in the ectoderm germ layer (e.g., sox10, dark green, expression of which is initiated at stage 14)

and genes found in the posterior neural tissue because of attached mesoderm cells (myod,

myf5, yellow, low level). All intermediate situations are found, including ubiquitously

expressed genes or genes enriched in 1 dissected region but not in the others. Ec = NNE, non-

neural ectoderm. See S11 Table for numerical data.

(TIFF)

S9 Fig. Weighted gene correlation network analysis (WGCNA). (A) Selection of the soft

threshold power used to obtain the signed matrix. (B) Mean connectivity for each of the soft

threshold powers. (C) Dendrogram displaying the 141 gene co-expression groups obtained by

the high topological overlap using the dynamic tree cut algorithm, using a soft power threshold

of 22, hybrid cut, deep split = 4. A minimum of 15 genes were required to belong to a cluster;

otherwise, genes were assigned to Group #0. See S11 Table for numerical data.

(TIFF)

S10 Fig. Weighted gene correlation network analysis (WGCNA) identifies homeologous

gene pairs expressed with different spatial or temporal dynamics during neurulation.

(A) The gene set used for WGCNA contained 2,520 gene pairs, most of which display different

expression dynamics, thus falling into different WGCNA groups. (B) Global analysis of

groups: groups associated with developmental processes (G51, G23, G34, and G38) tend to

contain both copies of homeologous pairs, while groups associated with global cell biology

retained few pairs. (C) Gene ontology (GO) terms associated with groups retaining few pairs

(terms related to cell—cell relationships) or with groups retaining pairs (terms related to tran-

scription). See S11 Table for numerical data.

(TIFF)

S11 Fig. Expression dynamics of homeologous gene copies during neurulation. Expression

pattern comparison between selected homeologous transcription factor pairs. The spatial and

temporal expression of both copies of pax3, sox10, and six3 highly correlate in all 79 tissue

samples (R2 > 96, p-value = 0). Other genes exhibit expression level differences over different
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time points (id2, zic1, six4) or across space and time (snai2, id2). The lowest correlations

observed between the displayed homeologous pairs are snai2.l and snai2.s (R2 = 0.60, p-value =

4e-09) and zic1.s and zic1.l (R2 = 0.65, p-value = 4e-11). The parentheses after the gene names

correspond to the co-expression groups assigned by weighted gene correlation network analy-

sis (WGCNA). See S11 Table for numerical data.

(TIFF)

S12 Fig. Analysis of evolution of snail2 homeologous gene pair. Snail2.l and snail2.s exhibit

differential expression with asymmetrical decrease of snail2.s (S11 Fig). (A) Tree for snail2
genes. Snail2.l, the copy with retained expression in X. laevis, is closer to X. tropicalis gene than

to X. laevis snail2.s. (B) In X. laevis, mutations are accumulating in the low complexity regions

of Snail2.s protein compared to Snail2.l or X. tropicalis Snail2. (C) Detail of the mutation

observed on Snail2 proteins. (D) Protein alignment confirms that the mutations in Snail2.s are

found on residues conserved in other vertebrates.

(TIFF)

S1 Application. EctoMap and EctoMap Lite codes.

(ZIP)

S2 Application. Codes for generating article figures.

(ZIP)

S1 Web Archive. Example of EctoMap run on bmp4 gene, showing the different features in

the complete application (not interactive).

(ZIP)

S1 Table. Samples used for deep sequencing. The individual samples used for each stage and

each area are listed and color coded to match patterns in Figs 1 and 3. The number of biologi-

cal replicates for each sample is indicated.

(XLSX)

S2 Table. Primers used for sample validation by quantitative PCR prior to sequencing.

Sequences and references for the published primer pairs used to validate sample quality.

(XLSX)

S3 Table. Ectoderm enrichment filtering. Genes expressed at a higher level in the whole

embryo than in any ectoderm sample were filtered out. This would remove potential minor

mesoderm contamination from neural plate and neural border posterior halves.

(XLSX)

S4 Table. Genes most correlated to principal component analysis (PCA) axes 1 and 2. At

each stage, PCA axes indicate which variables discriminate better each sample (dissected tis-

sue). Genes most correlated to axes 1 and 2 are retrieved for each stage (positive and negative

correlation). Genes most correlated to axis 3 at stage 14 are msx2, pfkfb4, and sox9 (positive

correlation, all expressed in the neural border) and tll1, traf4, dag1, and sox21 (negative corre-

lation).

(XLSX)

S5 Table. Genes most enriched in nonnegative matrix factorization (NMF)-tissues. Gini

enrichment index was used to define the genes most specifically enriched in 1 of the 5 tissues

predicted by NMF deconvolution.

(XLSX)
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S6 Table. (A) Main weighted gene correlation network analysis (WGCNA) groups with asso-

ciated gene ontology (GO) terms. (B) All GO terms with associated WGCNA groups.

(XLSX)

S7 Table. (A) Genes contained into the weighted gene correlation network analysis

(WGCNA) groups described in the Result section. (B) Fisher’s tests for enrichment in Wnt

signaling-associated genes. (C) Genes related to neural crest and placodes: repartition into

WGCNA groups. (D) Fisher’s tests for enrichment in neural crest and placode-related genes in

WGCNA groups.

(XLSX)

S8 Table. (A) Homeologous gene pairs distribution into weighted gene correlation network

analysis (WGCNA) groups. The 2,520 homeologous pairs were selected by choosing the

human gene ortholog (HUGO) gene names that had exactly 2 annotations that corresponded

to the homeologous pairs. Columns (A) and (D) are colored based on whether both homeolo-

gous genes are found in a single WGCNA group (white); yellow means the genes are found in

a different module. (B) List of Xenopus laevis gene pairs associated to 1 HUGO name.

(XLSX)

S9 Table. Analysis linked to super-enhancers in melanoma.

(XLSX)

S10 Table. Gene list selected for illustrating the network analysis. Gene list used as an input

for WGCNA clustering and to generate the co-expression network. For generating the net-

work, a mixed list of genes was used as an input, including neural, neural crest, placodes,

mesoderm, and signaling genes.

(XLSX)

S11 Table. Numerical data to build each figure.

(XLSX)
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