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Targeting the JAK/STAT pathway in solid tumors

Zoya Qureshy, Daniel E. Johnson, Jennifer R. Grandis
Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, 
San Francisco 94158, USA.

Abstract

Aberrant activation of signal transducer and activator of transcription (STAT) proteins is associated 

with the development and progression of solid tumors. However, as transcription factors, these 

proteins are difficult to target directly. In this review, we summarize the role of targeting Janus 

kinases (JAKs), upstream activators of STATs, as a strategy for decreasing STAT activation in solid 

tumors. Preclinical studies in solid tumor cell line models show that JAK inhibitors decrease STAT 

activation, cell proliferation, and cell survival; in in vivo models, they also inhibit tumor growth. 

JAK inhibitors, particularly the JAK1/2 inhibitor ruxolitinib, sensitize cell lines and murine 

models to chemotherapy, immunotherapy, and oncolytic viral therapy. Ten JAK inhibitors have 

been or are actively being tested in clinical trials as monotherapy or in combination with other 

agents in patients with solid tumors; two of these inhibitors are already Food and Drug 

Administration (FDA) approved for the treatment of myeloproliferative disorders and rheumatoid 

arthritis, making them attractive agents for use in patients with solid tumors as they are known to 

be well-tolerated. Four JAK inhibitors (two of which are FDA approved for other indications) have 

exhibited promising anti-cancer effects in preclinical studies; however, clinical studies specifically 

assessing their activity against the JAK/STAT pathway in solid tumors have not yet been 

conducted. In summary, JAK inhibition is a viable option for targeting the JAK/STAT pathway in 

solid tumors and merits further testing in clinical trials.
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INTRODUCTION

The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling 

pathway is implicated in the development and progression of many cancers[1,2]. 

Hyperactivation of STAT transcription factors, has been reported in both hematologic 

malignancies and solid tumors, including cancers of the breast, lung, liver, head and neck, 

and stomach, among others[3-8]. For many of these cancers, increased activation of the JAK/

STAT signaling pathway is associated with a worse prognosis, including increased 

recurrence and reduced overall survival[1,9,10]. Given the strong association between JAK/

STAT hyperactivity and the development and prognosis of multiple cancers, STATs and their 

upstream activators, JAKs, are being extensively explored as targets for cancer 

therapy[1,11-13].

Certain hematologic malignancies such as myeloproliferative neoplasms are associated with 

specific JAK mutations that serve as predictive biomarkers for JAK-targeted therapy[14]. The 

majority of cases of polycythemia vera, essential thrombocytopenia, and myelofibrosis are 

characterized by an activating valine to phenylalanine mutation in JAK2 (JAK2 V617F) that 

drives the development of these neoplasms[15]. Clinical trials studying the impact of 

ruxolitinib, a selective JAK1/2 inhibitor, on polycythemia vera and myelofibrosis 

demonstrated significant improvement in patient outcomes, leading to Food and Drug 

Administration (FDA) approval and widespread use of this agent for these diseases[16-22]. 

However, mutations in the JAK/STAT pathway are rare in solid tumors, and the role of JAK 

and/or STAT inhibitors for the treatment of solid tumors is incompletely understood. In this 

review, we describe the rationale for targeting the JAK/STAT pathway in solid tumors and 

summarize preclinical studies and clinical trials to date that evaluate the impact of agents 

targeting this pathway.

JAK/STAT SIGNALING

Ligands, particularly cytokines and growth factors, provide the initial stimulus for activating 

the JAK/STAT pathway[23]. Cytokines bind to their corresponding transmembrane receptor 

subunits, resulting in multimerization with other subunits and close physical interactions of 

receptor-associated JAKs[24]. The JAK family of tyrosine kinases consists of JAK1, JAK2, 

JAK3, and TYK2[25]. Once the receptor-associated JAKs are placed in close proximity, they 

become activated via trans-phosphorylation[24]. Activated JAKs phosphorylate tyrosine 

residues on the cytoplasmic region of the cytokine receptor to provide docking sites for the 

Src Homology 2 (SH2) domain of STAT proteins. The binding of a member of the STAT 

family of proteins (STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6) to the 

phosphorylated receptor intracellular domain results in JAK-mediated tyrosine 

phosphorylation and activation of the STAT protein [Figure 1][26]. In the case of receptors 

with intrinsic tyrosine kinase activity (e.g., epidermal growth factor receptor, EGFR), ligand 
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binding results in receptor autophosphorylation of tyrosine residues which serve as the 

docking sites for STATs, and the bound STATs are directly phosphorylated/activated by the 

receptor tyrosine kinase. Activated STATs dimerize and translocate into the nucleus where 

they serve as transcription factors, inducing the expression of genes that regulate cellular 

proliferation, survival, and invasion, as well as the host immune response[14,24,27,28].

The JAK/STAT signaling pathway is modulated by several negative regulators[29]. Members 

of the suppressors of cytokine signaling (SOCS) family of proteins, such as SOCS1 and 

SOCS3, are inhibitory against JAKs, while cytokine-inducible SH2-containing protein (CIS) 

blocks STAT binding sites on receptor proteins[29,30]. Another family of inhibitory 

molecules, the protein inhibitor of activated STAT (PIAS) proteins, inhibit the binding of 

STATs to response elements in target genes[29,31]. Protein tyrosine phosphatase receptors 

(PTPRs), specifically PTPRT, PTPRD, and PTPRK, have been shown to dephosphorylate 

STAT3, resulting in STAT3 inactivation; a handful of non-receptor PTPs harbor a similar 

function[32-37]. Increased activity of JAKs and STATs coupled with decreased activity of 

negative regulators can lead to an upregulation of pro-proliferative, anti-apoptotic, and 

immunosuppressive proteins, potentially driving oncogenesis.

DYSREGULATION OF THE JAK/STAT PATHWAY IN SOLID TUMORS

Hyperactivation of STAT3

Hyperactivation of STATs, particularly STAT3, has been implicated in many cancers. 

Upstream JAK2 V617F mutations in myeloproliferative diseases and STAT3 mutations in T-

cell large granular lymphocytic leukemia provide mechanisms for STAT3 hyperactivity in 

hematological malignancies[15,38,39]. JAK1 mutations have been identified in hepatocellular 

carcinoma (HCC) patient tumors; patient-derived xenografts with JAK1 S703I mutations 

had elevated levels of phosphorylated STAT3 and STAT5[40,41]. However, for most cases of 

solid tumors, activating mutations in this pathway have not been identified[42].

In most solid tumors associated with hyperactivation of STAT3, disease development and 

progression has been attributed to either increased cytokine signaling or inhibition of 

negative regulators of the JAK/STAT pathway[42,43]. In head and neck cancers (HNC), 

aberrant activation of STAT3, often through elevated IL-6 levels in the tumor 

microenvironment, is associated with increased tumor cell proliferation, survival, and 

metastasis, as well as immunosuppression of tumor-infiltrating immune cells[44-46]. As in 

HNC, gastric cancer cell lines exhibit IL-6-mediated STAT3 activation, which leads to 

increased cell survival and epithelial to mesenchymal transition in vitro[47,48]. Gastric cancer 

tumors were also found to have increased levels of phosphorylated STAT3 compared to 

healthy tissue[49]. In non-small cell lung cancer (NSCLC), secretion of oncostatin-M 

(OSM), a member of the IL-6 cytokine family, by cancer-associated fibroblasts increases 

STAT3 activity through activation of JAK1 and is a possible mechanism of resistance to 

targeted therapy such as EGFR and MEK inhibitors[50]. STAT3 hyperactivity seen in 

pancreatic cancers has been associated with increased IL-22-induced STAT3 signaling and 

SOCS3 suppression, leading to increased invasion, migration, and angiogenesis[51-53]. 

PTPRT, another negative regulator of the JAK/STAT pathway, is silenced via promoter 

hypermethylation in many cases of HNC and provides a likely mechanism for STAT3 
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hyperactivation in this cancer[54]. Loss-of-function mutations in PTPRD have also been 

implicated[55]. Hyperactivation of STAT3 has been reported in many other solid tumor 

malignancies, including breast cancer, HCC, and ovarian cancer, among others[56-58].

Hyperactivation of other STATs

While less common, hyperactivation of other members of the STAT protein family has been 

shown in some solid tumors. STAT1 drives aromatase inhibitor resistance in breast cancer, 

and is highly expressed in estrogen receptor-positive, tamoxifen-resistant breast cancer cell 

lines, indicating it may be a promising target in this malignancy[59]. STAT2 is not only 

highly expressed in ovarian cancer compared to normal ovarian tissue, but is also associated 

with metastasis and poor overall survival[60]. STAT2 is also associated with poor overall 

survival in NSCLC[61]. Hyperactivity of STAT5 is associated with enhanced cell viability, 

tumor growth, and recurrence in prostate cancers[62,63]. In colorectal cancer cell lines, 

elevated levels of activated STAT6 are correlated with metastasis and decreased 

apoptosis[64].

Collectively, there is ample evidence showing that increased JAK/STAT signaling is 

associated with increased cell proliferation, cell survival, immune evasion, recurrence, and 

drug resistance in solid tumors; this pathway therefore represents a promising target for 

therapeutic intervention.

JAK INHIBITORS

While hyperactivation of STATs, primarily STAT3, has been linked to the development and 

progression of solid tumors, STATs, similar to other transcription factors, have proven 

difficult to target directly. Therefore, upstream activators of STATs, such as JAKs, have been 

studied in preclinical and clinical settings as potential therapeutic targets. Several JAK 

inhibitors have been studied in solid tumors. Figure 2 depicts JAK inhibitors that are: (1) 

FDA approved and have been tested clinically in solid tumors [Figure 2A]; (2) not FDA 

approved, but have been tested clinically in solid tumors [Figure 2B]; and (3) have only been 

tested in solid tumor preclinical models. One multitarget agent (lestaurtinib) has been tested 

clinically for its activity against other targets [Figure 2C]. To date, there are 10 JAK 

inhibitors (two of which are FDA approved for other indications) that have been or are 

currently being investigated across 45 clinical trials in patients with solid tumors (excluding 

trials that have been withdrawn or in which JAK inhibitor was standard of care in studies 

investigating other agents) [Table 1]. Some compounds, a few of which are also FDA 

approved for other indications, have to date only been studied in solid tumor preclinical 

models.

JAK inhibitors investigated in clinical trials

Ruxolitinib—The JAK1/2-selective inhibitor ruxolitinib is FDA approved for the treatment 

of polycythemia vera, myelofibrosis, and graft versus host disease, and it has been shown to 

decrease STAT3 activation in preclinical models of several solid tumors[18,22,65]. Ruxolitinib 

inhibited STAT3 activation and decreased cell growth in breast cancer[66,67], NSCLC[68], 

HNC[69], esophageal cancer[70], bladder cancer[71], HCC[72], cervical cancer[73], and 
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colorectal cancer[74,75] cell lines. In pancreatic cancer cells, ruxolitinib treatment was also 

shown to decrease expression of pro-angiogenic genes and impede epithelial-to-

mesenchymal transition[76,77]. In in vivo xenograft models of neuroblastoma[78,79], HCC (in 

which there was a JAK1 S703I mutation)[40], and KRAS-mutated lung adenocarcinoma[80], 

among others, ruxolitinib treatment significantly inhibited tumor growth. Ruxolitinib 

treatment was associated with an increase in CD8+ T cells in pancreatic cancer xenograft 

models and a decrease in myeloid-derived suppressor cells in KRAS-mutated lung 

adenocarcinoma models, indicating an impact on immune activity[52,80].

Ruxolitinib has also been shown to overcome drug resistance and increase sensitivity to 

several chemotherapeutic or targeted agents. In preclinical in vitro and in vivo models of 

cisplatin-resistant NSCLC, with increased JAK2 and STAT3 activation levels, the addition of 

ruxolitinib to cisplatin decreased STAT3 activation and cell growth, enhanced apoptosis, and 

inhibited tumor growth[81]. In myxoid liposarcoma cancer stem cells, which can be resistant 

to chemotherapy due to upregulated JAK/STAT signaling, ruxolitinib treatment inhibited 

phosphorylation of STAT3 and cell viability, overcoming chemotherapy resistance[82]. 

Ruxolitinib in combination with antibodies against cytokines such as IL-6 (tocilizumab) 

improved survival in mice bearing ovarian cancer tumors. Ruxolitinib in combination with 

paclitaxel reduced cell proliferation and colony formation in ovarian cancer cell lines and 

inhibited tumor growth in in vivo models[83,84]. Ruxolitinib has been shown to improve 

sensitivity to oncolytic viral therapy in HNC[85], pancreatic cancer[86], glioblastoma 

multiforme (GBM)[87], and NSCLC[88]. Collectively, the safety profile of ruxolitinib in 

conjunction with promising preclinical findings in a variety of tumor models make 

ruxolitinib an attractive therapeutic agent against solid tumors.

Several clinical trials have studied the impact of ruxolitinib in patients with solid tumors. In 

a Phase II study of ruxolitinib and capecitabine in patients with pancreatic cancer who failed 

to respond to gemcitabine, known as the RECAP trial, there was improved survival among a 

subgroup of patients with inflammation, defined by a C-reactive protein (CRP) greater than 

the population median of 13 mg/L (NCT01423604)[89]. Given these initial promising results, 

ruxolitinib was administered to patients with pancreatic cancer and an elevated CRP in two 

Phase III trials, JANUS 1 (NCT02117479) and JANUS 2 (NCT02119663). In both trials, 

patients were randomized to be treated with either ruxolitinib and capecitabine or placebo 

and capecitabine. However, these studies were terminated as there was no increase in overall 

or progression-free survival observed in the group receiving ruxolitinib compared with 

placebo[90]. The combination of ruxolitinib and capecitabine in breast cancer patients with 

elevated CRP was also investigated in a Phase II clinical trial (NCT02120417). While 

patients receiving ruxolitinib and capecitabine had a more favorable health-related quality of 

life outcome, this study was terminated because there was no improvement in overall 

survival compared to the group receiving placebo and capecitabine[91]. A Phase II trial of 

ruxolitinib in triple-negative breast cancer confirmed inhibition of STAT3 activation in 

patient tumor samples; however, no clinical response was observed, as evaluated by the 

RECIST criteria, and the study was terminated (NCT01562873)[92,93]. The most recently 

completed clinical trial (results not reported or published) included a Phase II study testing 

ruxolitinib in combination with exemestane in patients with estrogen receptor-positive breast 

cancer (NCT01594216). The addition of ruxolitinib to regorafenib in a Phase II trial in 
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patients with colorectal cancer did not show a difference in overall survival or progression-

free survival as compared to placebo and regorafenib; therefore, this study was terminated 

early (NCT02119676)[94]. Ruxolitinib was also tested in patients with lung cancers. A Phase 

II trial of ruxolitinib (or placebo), pemetrexed, and cisplatin in patients with stage IIIb/IV or 

recurrent NSCLC demonstrated that this combination was well-tolerated; the study was 

terminated without achieving an efficacy endpoint (NCT02119650)[95]. Partial responses 

were seen in 31% of patients who received ruxolitinib and in 35% of patients who received 

placebo. A Phase Ib study of ruxolitinib combined with afatinib, an inhibitor of mutant 

EGFR, in patients with NSCLC showed that this regimen was both well-tolerated and 

displayed activity against this malignancy, as 23.3% displayed a partial response and 80% 

had stable disease (NCT02145637)[96]. In a Phase I/II study, ruxolitinib combined with the 

EGFR inhibitor erlotinib in lung adenocarcinoma was shown to be well-tolerated but 

ineffective (NCT02155465)[97]. A Phase Ib study of ruxolitinib with gemcitabine or nab-

paclitaxel in solid tumors showed that this combination was well-tolerated (NCT01822756). 

However, efficacy could not be evaluated due to early termination of the trial after results 

from JANUS 1 showed no benefit of ruxolitinib and capecitabine compared to placebo and 

capecitabine[98]. In a Phase II trial of ruxolitinib in metastatic prostate cancer, there was no 

significant clinical response and the trial was terminated (NCT00638378). There is currently 

a rollover study that is providing continued access to ruxolitinib for patients with pancreatic, 

colorectal, lung, and breast cancers enrolled in previous trials (NCT02955940).

Several ongoing early-stage clinical trials are investigating ruxolitinib as monotherapy. 

There are two current window-of-opportunity trials: one testing neoadjuvant ruxolitinib in 

HNC (NCT03153982) and one examining ruxolitinib in premalignant breast disease 

(NCT02928978). Some trials are also investigating ruxolitinib in combination other agents. 

Among these are a Phase I study testing ruxolitinib in combination with temozolomide in 

patients with high-grade gliomas (NCT03514069), a Phase Ib study of ruxolitinib and 

trametinib (MEK inhibitor) in colon and pancreatic cancers with RAS mutations 

(NCT04303403), a Phase I study testing ruxolitinib with pembrolizumab (PD-L1 inhibitor) 

in triple-negative breast cancer (NCT03012230), two Phase II studies investigating 

ruxolitinib with chemotherapy in inflammatory breast cancer (NCT02876302, 

NCT02041429), a Phase I/II trial evaluating ruxolitinib with trastuzumab (HER2 inhibitor) 

in HER2+ breast cancer (NCT02066532), and a Phase I/II study of ruxolitinib with 

paclitaxel and carboplatin in ovarian, fallopian tube, and peritoneal cancers (NCT02713386). 

Ruxolitinib is one of 75 approved agents being tested in a trial that uses the Co-eXpression 

ExtrapolatioN (COXEN) model to identify biomarkers and to predict which drugs would 

provide the most benefit to patients with urothelial cancer (NCT02788201).

Tofacitinib—Tofacitinib is a JAK1/3 inhibitor that is FDA approved for treatment of 

rheumatoid arthritis and ulcerative colitis[99-102]. Tofacitinib treatment of breast cancer cells 

prevented activation and nuclear localization of STAT3[103]. In prostate cancer preclinical 

models, tofacitinib decreased STAT5 activation and epithelial-to-mesenchymal 

transition[104]. This JAK inhibitor is currently being tested in patients with solid tumors 

(mainly pancreatic adenocarcinoma and cholangiocarcinoma) in a Phase I trial 

(NCT04034238).
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AZD1480—AZD1480 is a selective ATP-competitive JAK1/2 inhibitor that showed 

promising activity against many solid tumor preclinical models. AZD1480 treatment of cell 

lines and murine models, including but not limited to GBM[105], breast cancer[106,107], 

HNC[108], and ovarian cancer[109], inhibited STAT3 activation, cell viability, and tumor 

growth. Despite these encouraging preclinical findings, neurotoxicity was observed in a 

Phase I clinical trial of AZD1480 in solid tumors and halted the development of this agent, 

leading to the termination of this trial (NCT01112397) and a parallel Phase I study in 

patients with HCC, NSCLC, and gastric cancer (NCT01219543)[110].

AZD4205—AZD4205 is a selective JAK1 inhibitor[111]. In a preclinical NSCLC in vivo 
model, AZD4205 treatment inhibited tumor growth and STAT3 activation; these findings 

were more significant when AZD4205 was administered in combination with the EGFR 

inhibitor osimertinib. A Phase I/II clinical trial investigating AZD4205 combined with 

osimertinib was initiated in patients with NSCLC (NCT03450330).

INCB047986 and INCB052793—INCB047986 and INCB052793 are selective inhibitors 

of JAK1. INCB047986 was studied in a Phase I clinical trial in breast and pancreatic 

cancers, among other solid tumors, but the trial was terminated early (NCT01929941). 

INCB052793 has been studied in multiple myeloma (MM) preclinical models, but there are 

no reports using this agent in solid tumors. In combination with other anti-MM agents, 

INCB052793 decreased cell viability and inhibited tumor growth[112]. A Phase I/II trial was 

initiated investigating this agent in solid tumors but was terminated due to lack of efficacy 

(NCT02265510).

Itacitinib—Preclinical studies of the JAK1 inhibitor itacitinib have mostly been conducted 

in preclinical models of hematological malignancies. In conjunction with INCB054329, an 

inhibitor of bromodomain and extra-terminal motif proteins, itacitinib inhibited STAT3 

activation and tumor growth in MM cell lines and murine models[113]. Given this effect of 

JAK1 inhibition on STAT3 activity, clinical studies with this agent were initiated in solid 

tumors. In a Phase Ib/II study of itacitinib in combination with nab-paclitaxel and 

gemcitabine in solid tumors (84% of which had pancreatic cancer), 24% of patients 

responded (all partial response) (NCT01858883). The therapeutic combination was well-

tolerated after dose reduction of itacitinib; however, this study was terminated due to another 

Phase III clinical trial reporting no impact of the JAK1/2 inhibitor ruxolitinib on overall 

survival in pancreatic cancer[114]. Other ongoing clinical trials are studying itacitinib in 

patients with HCC (NCT04358185), NSCLC (NCT03425006 and NCT02917993), and a 

variety of advanced solid tumors (NCT02646748). A Phase II study in soft tissue sarcoma is 

currently suspended (NCT03670069); a Phase II study in NSCLC (NCT02257619) and a 

Phase Ib study in other solid tumors (NCT02559492) were terminated, with no published 

findings.

Momelotinib—Momelotinib is a JAK1/2 inhibitor that also has activity against TANK-

binding kinase 1 (TBK1)[115,116]. Several preclinical studies in solid tumor models have 

investigated the impact of momelotinib on the JAK/STAT pathway. Momelotinib has been 

shown to increase sensitivity of ovarian cancer to chemotherapy in in vitro and in vivo 
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preclinical models[117,118]. In combination with paclitaxel, momelotinib inhibited tumor 

growth, suppressed STAT3 activation, reduced expression of the stem cell marker OCT4, 

significantly increased the time to recurrence, and decreased tumor burden[117,118]. 

Similarly, in GBM preclinical models, momelotinib in combination with temozolomide 

inhibited STAT3 activation, decreased cell growth, increased apoptosis, and inhibited tumor 

growth compared to temozolomide monotherapy[119]. In colorectal cancer cells, 

momelotinib inhibited STAT5 activation, decreased cell growth, and increased cell 

death[120]. These promising preclinical results across several types of solid tumors support 

further investigation of momelotinib as a therapeutic agent.

Clinical use of momelotinib has been studied extensively in myeloproliferative diseases: in 

myelofibrosis, treatment with this agent was associated with a reduction in splenic volume 

that was non-inferior to ruxolitinib[121]. Its impact in solid tumors is under active clinical 

investigation. In a Phase I dose-escalation study in patients with untreated metastatic 

pancreatic cancer, momelotinib in combination with gemcitabine and nab-paclitaxel was 

well-tolerated; however, limited efficacy and no apparent association between efficacy and 

increasing dose led to the termination of this trial prior to the initiation of planned Phase III 

studies (NCT02101021)[122]. A Phase Ib study of momelotinib combined with trametinib in 

KRAS-mutated NSCLC showed no improvement in response compared with historic data 

with trametinib monotherapy (NCT02258607)[123]. In a Phase Ib study of momelotinib in 

combination with erlotinib in EGFR-mutated, metastatic NSCLC, patients experienced 

neutropenia as an adverse effect of this drug combination, and the trial was halted 

(NCT02206763)[124]. Another Phase Ib clinical trial of momelotinib with chemotherapeutic 

agents, capecitabine and oxaliplatin, in pancreatic adenocarcinoma was terminated 

(NCT02244489).

Pacritinib—Pacritinib is a selective JAK2 inhibitor currently being studied in a Phase III 

clinical trial for treatment of myelofibrosis (NCT02055781)[125,126]. In GBM cell lines, 

pacritinib, alone or in combination with afatinib, inhibited STAT3 activation, cell viability, 

and spheroid formation[127-129]. Pacritinib plus afatinib was also shown to decrease tumor 

burden in mice with GBM tumors[129]. Similar to momelotinib, pacritinib reduced resistance 

to temozolomide in GBM in vivo models[127,128]. Pacritinib has been shown to inhibit liver 

fibrosis and thus may be effective in preventing HCC[130]. A Phase II trial of pacritinib in 

refractory colorectal cancers is ongoing (NCT02277093)[131]. Pacritinib was also studied in 

combination with erlotinib in a Phase I/II trial in NSCLC, which was terminated 

(NCT02342353).

WP1066—WP1066 inhibits JAK2 phosphorylation and causes JAK2 degradation; it is an 

analog of the JAK2 inhibitor AG490, an agent which was widely tested in preclinical modes 

of solid tumors[132,133]. Preclinical studies have shown that WP1066 exhibits anti-cancer 

activity including inhibition of cell proliferation and survival, and/or inhibition of tumor 

growth in solid tumors including, but not limited to, bladder cancer, renal cell carcinoma (in 

which it was shown to inhibit angiogenesis), HNC, GBM, and NSCLC[134-139]. This agent 

also inhibited migration and invasion in bladder cancer, hepatocellular carcinoma, and GBM 

cell lines[134,139,140]. WP1066 treatment overcame STAT3-mediated cisplatin resistance in 
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oral squamous cell carcinoma and ovarian cancer cell lines, and doxorubicin resistance in 

breast cancer cell lines[141-143]. Two current Phase I trials investigating the safety and 

efficacy of WP1066 are being conducted in pediatric medulloblastomas (NCT04334863) 

and adult malignant gliomas or brain metastases (NCT01904123).

JAK inhibitors with preclinical evidence supporting activity against solid tumors

While several JAK inhibitors have not yet been tested in patients with solid tumors, they 

have shown promising anti-cancer effects in preclinical models. Agents such as AG490, the 

compound from which WP1066 was derived, and JAK inhibitor I have been widely tested in 

preclinical in vitro and in vivo models. AG490 inhibited STAT3 activation and exhibited 

anti-cancer effects such as inhibition of cell growth and induction of apoptosis via targeting 

of JAK2 in preclinical models of breast cancer[4], gastric cancer[48], pancreatic cancer[144], 

and gallbladder cancer[145], among others. JAK inhibitor I is a JAK1/2/3 inhibitor that 

decreased cell proliferation in breast cancer cells[146], increased apoptosis in esophageal 

squamous cell carcinoma cancer stem cells[147], inhibited STAT3 phosphorylation in HCC 

cells[148], and, in combination with cisplatin, decreased PD-L1 expression in prostate cancer 

cells[149]. In addition to these agents, there are a handful of inhibitors that have either 

already been FDA approved or are being tested currently in clinical trials for other 

indications and have also shown promising findings in solid tumor preclinical models. The 

following inhibitors, therefore, are potential candidates for clinical testing and use in patients 

with solid tumors.

Fedratinib—Fedratinib is an orally bioavailable, small molecule, JAK2 inhibitor that is 

FDA approved for the treatment of myelofibrosis[150-153]. NSCLC cells have been shown to 

be sensitive to fedratinib; sensitivity was shown to be correlated with elevated JAK2 

expression[154]. Two studies showed that fedratinib in combination with erlotinib (EGFR 

tyrosine kinase inhibitor) decreased STAT3 activation and increased apoptosis in erlotinib-

resistant NSCLC cells and inhibited tumor growth in in vivo murine models[155,156]. This 

agent has also demonstrated cell-killing activity against ovarian and cervical cancer 

cells[157]. Fedratinib inhibited mammosphere formation and in combination with 

carboplatin, inhibited breast cancer tumor growth in mice[158]. In human papilloma virus 

(HPV)-positive cervical cancer cells, fedratinib treatment inhibited JAK2 and STAT3/5 

activation, increased apoptosis, and reduced cyclin D1 expression, cell proliferation, and 

colony formation[73]. In HNC cells, treatment with fedratinib increased susceptibility to 

natural killer cell killing[159].

Filgotinib—Filgotinib is a selective JAK1 inhibitor currently being investigated in clinical 

trials for treatment of rheumatoid arthritis and inflammatory bowel disease; to date, this drug 

demonstrates a significant anti-inflammatory effect, as it reduces levels of cytokines such as 

IL-6[160-162]. Findings from preclinical studies in solid tumors have been reported. The 

OSM-JAK-STAT pathway has been implicated in progression of several cancers, including 

NSCLC; treatment of NSCLC cells with filgotinib resulted in inhibition of STAT3 activation 

and reduced OSM receptor expression[50]. Furthermore, treatment with filgotinib inhibited 

resistance to targeted therapy such as MEK, EGFR tyrosine kinase, and ALK inhibitors. In 

NCI-H889 lung cancer cells, derived from a metastatic site, filgotinib inhibited STAT3 
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activation[163]. In vivo, filgotinib treatment reduced metastatic seeding of NCI-H889-derived 

tumors. In a breast cancer cell line, filgotinib inhibited STAT3 phosphorylation; in 

combination with a histone deacetylase inhibitor, there was increased apoptosis in breast 

cancer cells as well as tumor growth inhibition in mice harboring breast cancer tumors[164].

Lestaurtinib

Lestaurtinib is a multitarget inhibitor that has activity against JAK2, in addition to fms-like 

tyrosine kinase tyrosine 3 (FLT3) and tropomyosin related kinase B (TrkB)[165]. Its impact 

on the JAK/STAT pathway has been studied clinically in myeloproliferative disorders, but 

trials in solid tumors such as neuroblastoma focus on its activity against other targets such as 

TrkB. One preclinical study showed that lestaurtinib treatment of anaplastic thyroid cancer 

cell lines inhibited STAT5 phosphorylation/activation, cell proliferation, cell survival, and 

cell migration, in addition to tumor growth in in vivo models[166].

Peficitinib

Peficitinib is a JAK1/2/3 and TYK2 inhibitor, approved in Japan in 2019 for rheumatoid 

arthritis after Phase III clinical trials demonstrated a reduction in symptoms and minimal 

toxicity compared to placebo in clinical trials[167,168]. Only one study to date has reported its 

potential use in solid tumors[169]. In ovarian cancer stem cells engineered to overexpress 

OCT4, peficitinib induced apoptosis and inhibited proliferation in conjunction with JAK1 

inhibition.

CONCLUSION

Aberrant JAK/STAT signaling is associated with solid tumor development and progression. 

However, unlike hematopoietic malignancies which harbor activating JAK mutations that 

lead to increased JAK/STAT signaling, the majority of solid tumors that demonstrate 

increased JAK/STAT signaling lack somatic JAK mutations. Studies in preclinical cancer 

models of solid tumors collectively show that small molecule JAK inhibitors inhibit 

activation of STATs, particularly STAT3, in conjunction with inhibition of proliferation and 

tumor growth. The majority of JAK inhibitors tested in clinical trials, with the exception of 

AZD1480, were found to be safe and well-tolerated. Among these, ruxolitinib is the only 

inhibitor to date to demonstrate responses in early stage trials. While Phase II trial results in 

pancreatic cancer suggested an association between elevated CRP and response to 

ruxolitinib plus capecitabine, these findings were not seen in the Phase III trials[89,90]. In 

patients with elevated CRP, ruxolitinib combined with capecitabine was associated with 

improved health-related quality of life in breast cancer[91]. Additionally, treatment of 

patients with NSCLC with ruxolitinib plus afatinib resulted in partial responses and stable 

disease[96]. However, most trials testing ruxolitinib exhibited disappointing results, and 

several were terminated early; this could possibly be explained by JAK inhibition impeding 

immune cell function, which may counteract some of the drug’s other anti-cancer 

effects[170]. It is clear that only a subset of solid tumors is likely to be sensitive to JAK 

inhibition. Candidate predictive biomarkers to date include elevated CRP in pancreatic and 

breast cancers, PTPRT/D mutations in HNC, and a JAK1 S703I mutation in HCC, and 

assessments of biologically plausible biomarkers that predict clinical responses are 
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needed[40,54,55,89,91]. The JAK inhibitors fedratinib, filgotinib, and peficitinib have been 

shown to abrogate JAK/STAT signaling and induce anti-tumor effects in solid tumor cell 

lines, but, to date, there are no clinical trials investigating these agents in solid tumors; 

lestaurtinib has been tested clinically in solid tumors for its activity against other targets not 

directly involved in the JAK/STAT pathway. Ruxolitinib, tofacitinib, fedratinib, and 

peficitinib are JAK inhibitors already approved for other indications, making them especially 

attractive options as they are known to be well-tolerated. Further investigation of JAK 

inhibitors in clinical trials is warranted to determine the therapeutic potential in solid tumors.
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Figure 1. 
JAK/STAT pathway involving receptors lacking intrinsic tyrosine kinase activity: Upon 

ligand binding, transmembrane cytokine receptors multimerize, bringing receptor-associated 

JAKs into close physical proximity. Once activated via transphosphorylation, JAKs 

phosphorylate the cytoplasmic domain of the receptor to provide a docking site for STAT. 

The bound STATs are then phosphorylated and activated by JAKs. Activated STATs 

dimerize and translocate into the nucleus where act as transcription factors. Suppressors of 

cytokine signaling (SOCS) family of proteins inhibit JAK activation; cytokine-inducible 

SH2-containing protein (CIS) blocks the STAT docking site on the receptor; Protein 

inhibitor of activated STAT (PIAS) proteins inhibit STAT binding to promoter regions of 

target genes; and protein tyrosine phosphatase receptors (PTPRs) dephosphorylate STATs. 

JAKs: Janus kinases; STAT: signal transducer and activator of transcription
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Figure 2. 
JAK inhibitors: chemical structures for JAK inhibitors described in this review were created 

using MarvinSketch software downloaded from ChemAxon (Budapest, Hungary)
[115,171-183]. Food and Drug Administration (FDA)-approved JAK inhibitors that have been 

tested clinically in solid tumors (A); JAK inhibitors that are not FDA approved but have 

been tested clinically in solid tumors (B); JAK inhibitors that have only been tested in solid 

tumor preclinical models, and lestaurtinib, which has been tested clinically in solid tumors 

for its activity against other targets (C). Structures for INCB047986 and INCB052793 are 
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not publicly available and therefore are not shown in this figure. *FDA approved for another 

indication; JAKs: Janus kinases
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Table 1.

JAK inhibitors tested clinically in solid tumors

Inhibitor Direct
Target(s) NCT# Type(s) of solid tumor Status Outcome

Ruxolitinib* JAK1/2 NCT01423604 PDAC Completed Improved overall survival in 
subgroup of patients with 
inflammation[89]

NCT02117479 PDAC Terminated No overall survival benefit[90]

NCT02119663 PDAC Terminated No overall survival benefit[90]

NCT02120417 BC Terminated Favorable HRQoL, no overall 
survival benefit[91]

NCT01562873 BC Terminated No tumor response[92]

NCT01594216 BC Completed None published

NCT02119676 CRC Terminated No overall survival benefit[94]

NCT02119650 NSCLC Terminated Unable to interpret efficacy[96]

NCT02145637 NSCLC Completed 23.3% PR, 70.0% SD[96]

NCT02155465 Lung adenocarcinoma Completed Lack of efficacy[97]

NCT01822756 Advanced solid tumors Terminated Unable to interpret efficacy[98]

NCT00638378 PC Terminated Lack of clinical response

NCT02955940 PDAC, CRC, BC, NSCLC Active

NCT03153982 HNC Active

NCT02928978 Premalignant breast disease Active

NCT03514069 High-grade gliomas Active

NCT04303403 CRC, PDAC Active

NCT03012230 BC Active

NCT02876302 IBC Active

NCT02041429 IBC Active

NCT02066532 BC Active

NCT02713386 OC, fallopian tube cancer, peritoneal 
cancer

Active

NCT02788201 UC Completed None published

Tofacitinib* JAK1 NCT04034238 Epithelioid mesothelioma, 
cholangiocarcinoma, PDAC

Active

AZD1480 JAK1/2 NCT01112397 Advanced solid tumors, not specified Terminated pSTAT3 inhibition in granulocytes, 
neurotoxicity in patients[110]

NCT01219543 HCC, NSCLC, GC Terminated None published

AZD4205 JAK1 NCT03450330 NSCLC Completed None published

INCB047986 JAK1 NCT01929941 PDAC, BC, non-specified advanced solid 
tumors

Terminated None published

INCB052793 JAK1 NCT02265510 Non-specified advanced solid tumors Terminated Lack of efficacy

Itacitinib JAK1 NCT01858883 Variety (84% PDAC) Completed Lack of efficacy in JANUS 1 and 
JANUS 2 trials[114]

NCT04358185 HCC Active

NCT03425006 NSCLC Active

NCT02917993 NSCLC Active
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Inhibitor Direct
Target(s) NCT# Type(s) of solid tumor Status Outcome

NCT02646748 CRC, endometrial cancer, HNC, lung 
cancer, BC, PDAC, RCC, UC

Active

NCT03670069 Soft tissue sarcoma Suspended

NCT02257619 NSCLC Terminated None published

NCT02559492 Non-specified advanced solid tumors Terminated None published

Momelotinib JAK1/2 NCT02101021 PDAC Terminated No overall survival benefit[122]

TBK1 NCT02258607 NSCLC Terminated No overall survival benefit[123]

NCT02206763 NSCLC Terminated Neutropenia[124]

NCT02244489 PDAC Terminated None published

Pacritinib JAK2 NCT02277093 CRC Terminated Lack of clinical response

NCT02342353 NSCLC Terminated None published

WP1066 JAK2 NCT04334863 Medulloblastoma, brain metastases Active

NCT01904123 Glioma, brain metastases Active

This table summarizes active, completed, or terminated clinical trials registered in ClinicalTrials.gov of JAK inhibitors in solid tumors. Outcomes 
of the studies were reported in published articles describing the trials or in the study descriptions at ClinicalTrials.gov.

*
Agents FDA-approved for other indication. JAK: Janus kinase; PDAC: pancreatic ductal adenocarcinoma; BC: breast cancer; HRQoL: health-

related quality of life; CRC: colorectal cancer; NSCLC: non- small cell lung cancer; PR: partial response; SD: stable disease; PC: prostate cancer; 
HNC: head and neck cancer; IBC: inflammatory breast cancer; OC: ovarian cancer; UC: urothelial cancer; pSTAT3: phosphorylated signal 
transducer and activator of transcription 3; HCC: hepatocellular carcinoma; GC: gastric cancer; RCC: renal cell carcinoma; TBK1: TANK-binding 
kinase 1
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