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ABSTRACT OF THE DISSERTATION

Optimizing Discrete Text Prompts for Large Language Models

by

Jianyu Wang

/
Master of Science in Computer Science

University of California San Diego, 2023

Professor Zhiting Hu, Chair
Professor Jingbo Shang, Co-Chair

Prompting has shown impressive success in enabling large pretrained language models

(LMs) to perform diverse NLP tasks, especially when only few downstream data are available.

Automatically finding the optimal prompt for each task, however, is challenging. Most existing

work resorts to tuning soft prompt (e.g., embeddings) which falls short of interpretability,

reusability across LMs, and applicability when gradients are not accessible. Discrete prompt, on

the other hand, is difficult to optimize, and is often created by ”enumeration (e.g., paraphrasing)-

then-selection” heuristics that do not explore the prompt space systematically. This thesis will

mainly introduce our proposed RLPrompt, an efficient discrete prompt optimization approach

x



with reinforcement learning (RL). RLPrompt formulates a parameter-efficient policy network

that generates the desired discrete prompt after training with reward. To overcome the complexity

and stochasticity of reward signals by the large LM environment, we incorporate effective

reward stabilization that substantially enhances the training efficiency. RLPrompt is flexibly

applicable to different types of LMs, such as masked (e.g., BERT) and left-to-right models

(e.g., GPTs), for both classification and generation tasks. Experiments on few-shot classification

and unsupervised text style transfer show superior performance over a wide range of existing

finetuning or prompting methods. Interestingly, the resulting optimized prompts are often

ungrammatical gibberish text; and surprisingly, those gibberish prompts are transferrable between

different LMs to retain significant performance, indicating LM prompting may not follow human

language patterns.
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Chapter 1

Introduction

Starting from BERT [8], adapting language model for downstream tasks with fine-tuning

has become the de factor practice in NLP research. But recently, the GPT-3 model with 175B

parameters [9] has brought a new breakthrough to the whole NLP field, that is, the prompting

techniques. Specifically, as the title ”Language Models are Few-Shot Learners” suggests, GPT-3

can be prompted (this case is in-context demonstration prompt) to handle a wide range of tasks

while freezing its parameters, simply by leveraging tailored natural language prompts [10] for

target tasks. For instance, (see Figure 1.1) for translation tasks, we can simply prepend a few task

demonstrations with random task examples, formatted as input-output pairs, into our target input.

And our language model, an auto-regressive language model pre-trained to predict the next word,

will learn to follow the formatted prompts to predict the suitable output. In this case, language

models will learn from these demonstrations to translate the source input sentence into our target

French translated sentence. In addition, the prompting techniques can also be extended to many

other tasks beyond conditional text generation, such as question answering, text classification,

commonsense reasoning, etc, as long as you construct with the decent prompts and correct task

formulations.

However, things do not go very smoothly. Language Models are not clever enough as

human, in other words, for the same task instructions with different forms [11], they can perform

quite differently that a simple paraphrasing with the initial decent natural language prompts
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Figure 1.1. Prompting language models for downstream tasks.

can degrade the task performance to around chance level. In particular, prompts are so brittle

that a simple and negligible perturbation [2], without hurting its semantics and grammatically

correctness, can even lead to huge difference to its performance. This counter-intuitive behavior

of prompts may imply that its constructions do not follow any natural language patterns.

In order to fully realize its potential, the topic of “automatic prompt tuning/optimization”

has become a topic among NLP researchers, that is, searching for the ideal prompts for various

downstream tasks. However, the discrete nature of text prompts renders the optimization very

difficult. Previous work typically resort to various heuristics to tune the prompts, encompassing

enumeration (e.g., paraphrasing)-then-selection [2, 12, 1, 13] for natural language prompts,

retrieve-then-read [14] for in-context demonstrations, usually leading to sub-optimal performance

for downstream tasks. AutoPrompt [15], the only discrete prompt optimization framework

adapted from Hotflip [16], utilizes expensive gradient information to edit the prompt tokens.

Without enough labeled data for the gradient information, often, AutoPrompt is largely limited in

its performance. These heuristics restrict the real power of discrete text prompts. One alternative

2



way is to tune soft prompts that instead of locate ideal discrete text prompts, researchers

directly optimize continuous embedding vectors from task gradients. Although this paradigm

[17, 18, 19, 13, 20, 21, 22] in general achieves better performance than most of current discrete

prompt engineering techniques for downstream tasks given rich gradient information. However,

the resulting prompts are, by their nature, hard for humans to understand [23, 24, 25] and

incompatible for use with other LMs. Besides, the required LM internal gradients are often

expensive to compute, or simply unavailable for LMs deployed with only inference APIs (e.g.,

GPT-3). It is thus often desirable to use discrete prompts which consist of concrete tokens from

a vocabulary.

Figure 1.2. Guiding Frozen Language Models with Learned Soft Prompts.

In this thesis, I will introduce one new methodology named RLPrompt proposed by

me, which formulates prompt optimization as prompt generation framework guided by reward

signals, optimizing by reinforcement learning, which will be briefly reviewed in Chapter 2. To my

knowledge, this is the first work which systematically optimizes over exponentially large token

spaces. Specifically, extensive experiments conducted on both few-shot text classification task

3



(Chapter 3) and zero-shot unsupervised text style transfer task (Chapter 4) have demonstrated its

effectiveness over a wide range of existing work. To summary, the main content of this thesis is

based on the EMNLP 2022 conference paper, RLPrompt: Optimizing Discrete Text Prompts

with Reinforcement Learning. The thesis author is the primary investigator and co-first author of

this paper.

4



Chapter 2

Discrete Prompt Optimization with RL

In this chapter, I will first give a brief introduction to current prompting techniques and

the corresponding template formats for a wide range of NLP tasks, including both classification

and generation tasks. Then, I will introduce our motivation of optimzing discrete prompts with

reinforcement learning, and the formal RL formulation for the discrete prompt optimization.

2.1 Background: Prompting language models for numerous
NLP tasks

As introduced in Chapter 1, prompting language models [10] has become current de facto

for various NLP tasks, where the large language models perform the autocompletion following

the well-designed natural language prompts. Specifically, in addition to tuning soft prompts,

i.e., soft embedding vectors, there are basically three types of natural language prompts for

both classification and generation tasks (not included some advanced prompting techniques

directly invented for more intricate tasks, e.g., Chain-of-thought prompting [26, 27] for symbolic

reasoning tasks, adding task explanations [28, 29] into in-context demonstrations for very

large language models as emergent behaviors, etc), encompassing the most straightforward

hand-crafted natural language prompts, prepending task instructions, and few-shot examples as

in-context learning. These prompting techniques basically predict the highest-scoring output in

three steps (shown in Figure 2.1).

5



Figure 2.1. General procedure of prompting;

2.1.1 Prompt Addition

In this step, a prompting function fprompt(·) is applied to modify the input text x into a

prompt x′ = fprompt(x). Typically, this function consists of two steps:

1. Apply a template (prompt), which is a expression comprising two slots: an input slot [X]

for input x and an answer slot [Z] for an intermediate generated answer text z that will

later be mapped to the real predicted answer y.

2. Fill slot [X] with the input target text x.

In the case of text classification, for instance, the sentiment polarity classification

task. Given the input x =“I love this movie’s content! It is really interesting!”, the template,

i.e., prompt function may take the form as “[X]It was a[Z]movie!”. Then, x′ would become

“I love this movie’s content! It is really interesting! It was a[Z]movie!” given the input example.

In the case of generation, e.g., machine translation, the prompt template may take the form such

as “French: [x] English: [Z]”, similar as classification example, language model will be prompted

to predict the output [Z] following the prompt.

Notably, the prompts have an empty slot to fill in for z, either in the middle for masked

language models or at the end for both masked language models and causal language models.

And depending on task formats [30], you can flexibly change the number of [X]and[Z] slots.

6



2.1.2 Answer Search

For both classification and generation tasks, we can further intervene the answer z, that

is, we can define z as a set of permissible values, to restrict the search space. In the case of

sentiment classification task, we can select the verbalizers, i.e., the vocabulary list representing

class labels, “great ′′,“good′′,“OK′′,“bad′′,“terrible′′ to represent the label set in the five-way

sentiment classification task, e.g., SST-5 [31].

For this construction, there are also several approaches to automatically search for the best

verbalizers [1, 15]. Similar to template search, these methods mainly rely on various heuristics

to locate decent verbalizers. Usually, this search function can be an argmax search that searches

for the highest-scoring output, or simply sampling that randomly generates outputs following the

probability distribution of the language models.

2.1.3 Answer Mapping

Finally, that is to convert the highest-scoring answer z to the highest-scoring output

(predicted answer) y. This is trivial in most cases, where the answer might be itself, as most

generation tasks. And for classification task, this often is mapping the answer form z from

the verbalizers to target prediction y, according to the bijective mapping in construction. One

non-trivial case is when you use multiple answer forms to represent one target output, then you

would map them together to one target output.

2.2 Motivation & Introduction

Prompting has emerged as a promising approach to solving a wide range of NLP problems

using large pre-trained language models (LMs), including left-to-right models such as GPTs

[32, 9] and masked LMs such as BERT [8], RoBERTa [33], etc. Compared to conventional

fine-tuning that expensively updates the massive LM parameters for each downstream task,

prompting concatenates the inputs with an additional piece of text that steers the LM to produce

7



the desired outputs. A key question with prompting is how to find the optimal prompts to improve

the LM’s performance on various tasks, often with only a few training examples.

One of the most popular scheme is to tune soft prompts (i.e., continuous embedding vec-

tors) as they are amenable to gradient descent [17, 18, 19, 34, 20, 21, 22]. However, the resulting

prompts are, by their nature, hard for humans to understand [23, 24, 25] and incompatible for

use with other LMs. Besides, the required LM internal gradients are often expensive to compute,

or simply unavailable for LMs deployed with only inference APIs (e.g., GPT-3). It is thus often

desirable to use discrete prompts which consist of concrete tokens from a vocabulary. However,

their discrete nature renders the optimization very difficult. Previous work has typically relied on

manual engineering [35, 9, 36, 37], or selecting from multiple paraphrased/generated prompts

[2, 1, 14, 12, 38]. AutoPrompt [15] uses gradient information to edit the prompt tokens, which

suffers from training instability as well as the same applicability issue as gradient-based soft

prompting, showing limited effectiveness in practice.

This thesis would mainly introduce our proposed RLPROMPT, a new discrete prompt

optimization approach based on reinforcement learning (RL). This approach brings together

a wide range of desirable properties for efficient use on diverse tasks and LMs (Table 2.1).

Crucially, rather than directly editing the discrete tokens, which has been difficult and ineffi-

cient, RLPROMPT trains a policy network that generates the desired prompts. Discrete prompt

optimization thus amounts to learning a small number of policy parameters which we set as an

MLP layer inserted into a frozen compact model such as distilGPT-2 [39]. This formulation

also allows us to employ off-the-shelf RL algorithms [40] that learn the policy with arbitrary

reward functions—defined either with available data (e.g., in few-shot classification) or other

weak signals when no supervised data is accessible (e.g., in controllable text generation).

On the other hand, RL for prompt optimization poses new challenges to learning effi-

ciency: the large black-box LM presents a highly complex environment that, given the prompt

(i.e., actions), goes through a long series of complex transitions (e.g., reading the input and infer-

ring the output) before computing the rewards. This makes the reward signals extremely unstable
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Table 2.1. Comparison of different (prompting) paradigms for using pre-trained LMs on downstream
tasks, in terms of several desirable properties.

Methods Frozen
LMs Automated Gradient-

Free
Guided

Optimize
Few-
Shot

Zero-
Shot

Transferrable
b/w LMs Interpret.

Fine-Tuning ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗
Manual Prompt ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓
Instructions ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓
In-Context Demo. ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓
Soft Prompt Tuning ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗
Discrete Prompt Enum. ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓
AutoPrompt ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓

RLPrompt (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

and hard to learn from. To overcome this difficulty, we propose two simple yet surprisingly

effective ways to stabilize the rewards and improve the optimization efficiency.

Experiments on few-shot classification and unsupervised text style transfer show our

approach improves over a wide range of fine-tuning and prompting methods (e.g., those described

in Table 2.1), and is robust to different modeling choices (e.g., verbalizers in classification). The

resulting discrete prompts also facilitate rich interpretations and analyses for new insights into

LM prompting. In particular, the optimized prompts, though inducing strong task performance,

tend to be gibberish text without clear human-understandable meaning, echoing recent research

[41, 42, 12] that LMs making use of prompts do not necessarily follow human language patterns.

Perhaps surprisingly, those gibberish prompts learned with one LM can be used in other LMs

for significant performance, indicating that those different pre-trained LMs have grasped shared

structures for prompting.

2.3 Related Work

2.3.1 Prompting Paradigms

Fine-Tuning

The conventional approach to adapt pre-trained LMs is fine-tuning model parameters on

downstream datasets [8, 33, 43, 44, 32]. While driving progress in a wide range of NLP tasks,
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fine-tuning expensively updates all model parameters and shows limited success with small

datasets. Inspired by PET [36], Prompt-based fine-tuning [1, 36] (see Figure 2.2) updates model

parameters with a fixed prompted inserted to improve few-shot tuning performance, which is

regarded as a path towards better few-shot learners for small language models. However, same

as fine-tuning, it also suffers from several limitations, such as the problem of costly training,

catastrophic forgetting [45, 46], etc. And these techniques are not that practical to very large

language models due to their costly re-training.

Figure 2.2. General procedure of prompt-based fine-tuning [1].

Manual Prompt

As LMs show remarkable progress in understanding natural language [8], researchers

first use hand-crafted fill-in-the-blank prompts to extract knowledge from pre-trained LMs for

factual probing analyses [35, 2] (see Figure 2.4). Later on, [9] show that using manually-written

prompts, large LMs can perform a number of NLU and NLG tasks without any training examples.

Meanwhile, other studies [44, 36, 47] formulate various NLP tasks as manual prompts.

These research raises researcher’s interests to identify better prompts for various downstream

tasks.

Although seemingly easy for practitioners to come up with prompts for downstream tasks,
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Figure 2.3. General Procedure of probing factual knowledge in LMs [2].

the real patterns behind these prompts are still under-explored. A few works [2, 41] showcase

the brittleness of the manually crafted prompts that a small even negligible modification to

the initial prompt, e.g., changing the preposition “in” to “at” causes huge difference in factual

probing tasks, even though the two natural language prompts both seem reasonable and intuitive

to human common-sense. Therefore, manual tweaking textual prompts seem to be a challenging

engineering part, which requires practitioners to explore by trial and error.

Instructions

Separate from but related to manual prompts, another line of work [48, 49, 50, 51] makes

use of instructional prompts which provide task descriptions instead of fill-in-the-blank prompts.

In particular, instruction meta-tuning [50, 52, 3] trains models on some tasks with instructions

and supervised data in order to generalize to unseen tasks formulated as instructions without

training examples. This paradigm provides several benefits, as better alignment to user intuition

for building the language model assistants.

In-Context Demonstration

Besides the effectiveness of zero-shot learning by hand-crafting natural language prompts

aligning with human understandings, there is also one intriguing behavior of large language
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Figure 2.4. General procedure of instruction tuning [3] language models.

models, known as the “in-context learning” [9], where language models can learn to follow the

input-output patterns given a few input-output examples concatenated as demonstrations (see

Figure 2.5), thus leading to very strong performance for both classification and generation tasks.

Many recent works [1, 14, 53, 54] further explore the selection and analysis of in-context

demonstrations. Crucially, the inner working mechanism of ICL is still one puzzle [54, 55, 56]

to researchers, questioning its sufficiency to claim language models as the few-shot learner [57].

So current SOTA techniques for in-context exmaple selection is still based on some empirical

heuristics, e.g., the well-known retrieve-then-read technique [14] that given a test instance, similar

training examples might be more appreciated to form the in-context demonstration to prompt

language models to predict the correct answers. And recent work proposes a sensitivity-based

selection mechanism [58] to seek for more performant in-context pairs.

Recently, researchers start to explore the utility of adding task explanations [59, 60] in the

in-context demonstrations, and surprisingly, they find that it is an emergent behavior of very large

language models that they can benefit to notable level of improvements for various downstream

tasks. However, it is also found [60] that these improvements cannot cover more complex textual

reasoning tasks, namely natural language inference (NLI) and question answering.
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Figure 2.5. General Procedure of In-context Learning [4].

Discrete Prompt Enumeration

Because discrete prompts are difficult to optimize and susceptible to small design vari-

ations [42, 41, 53], a number of existing works seek to automatically locate better prompts

by augmenting human-written prompts with heuristics such as paraphrasing [2, 1], editing

[12], and reframing [61]. The final prompt is typically selected to maximize some downstream

performance metric, or some alternative metrics [62, 63] handling with low-source data scenarios.

AutoPrompt

AutoPrompt [15] optimize discrete prompts by editing prompt tokens with guidance from

model gradients. While seeing some success with large training data, the method relies heavily

on approximation based on rich gradient information from enough labeled data, which leads to

less stable training and limited applicability to few-shot settings.

Soft Prompt Tuning

Replacing discrete prompts with continuous embeddings, several parallel works [17, 34]

propose to optimize soft prompts with gradient-based tuning. Soft prompt tuning can be seen as

a variant of parameter-efficient transfer learning [64, 65, 66], and inspires a number of follow-up

works that boost its performance [67, 19, 18, 68] or explore novel applications [69, 70]. By its

nature, however, soft prompts are difficult for humans to understand because of its continuous

form [23, 24, 25, 20]. Defined in the latent space of specific models, learned prompts are also
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virtually impossible to use with a different model. Furthermore, their training typically requires

gradient information from the models they prompt, which can be expensive to compute or

simply inaccessible for models deployed as inference API, such as GPT-3 [9]. [6] and [71]

propose black-box tuning, which updates continuous prompts using gradient-free techniques

under low-resource regimes to some success.

2.4 The Reinforcement Learning Formulation

We present RLPROMPT, a framework for learning prompts of discrete tokens for pre-

trained LMs to succeed in a wide range of NLP tasks. The general pipeline is illustrated in

Figure 2.6.

As discussed before, discrete prompts can be easier to interpret and use than continuous

prompts, but also more challenging to learn due to intractable optimization over discrete tokens.

To solve this difficulty, we formulate discrete prompt optimization as an RL problem, using a

continuous policy network to explore the prompt space. The network is highly parameter-efficient,

only training a small MLP over a frozen compact LM (e.g., distilGPT-2).

Masked LM

[MASK] [Prompt] I have a …

P(“Tech”) = 0.76

Mask Infilling Probabilities

LM

LM Head

reviewer information

Task-Specific MLP θ

Left-to-Right LM

[Prompt] Food is disgusting 🤢…

Generated Tokens

Food is delicious 😋Reward = 86.3

Prompt Policy

Reward = 76.0

…

Figure 2.6. Overview of RLPROMPT for discrete prompt optimization.

Below, we present our RL formulation of discrete prompt optimization (§2.4.1-2.4.2).

We then discuss the design of our policy network (§2.4.3). Finally, we describe our reward

engineering techniques for both classification and generation tasks to improve RL training in the

next chapters.
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2.4.1 Discrete Prompt Optimization Problem

Extensive recent work [9, 2, 23, 1] has shown it is possible to combine discrete text

prompt z with input x to directly perform various NLP tasks using a pre-trained LM’s generative

distribution PLM(y|z,x), without needing to fine-tune the model. For instance, in classification,

the LM can be a masked language model (MLM) such as BERT [8], and y is the class-label token

(a.k.a. verbalizer like positive or negative) in the mask position; in a generation task, the

LM can be a left-to-right model such as GPT-2 [32], and y is the generated text. See Figure 2.6

for illustrative examples. We use yLM(z,x) to denote the LM output on x prompted by z.

Our goal is to find the optimal discrete prompt z∗ from vocabulary V to maximize some

downstream performance measure R of yLM(z∗,x).1 The metric R(y) can be as simple as match

with gold label y∗ (e.g., in classification when data is available), but can also be more complex

like the success criteria of controllable text generation, which composes aspects such as style

accuracy, language quality, and content preservation. Assuming the prompts have fixed length T ,

we write the task of discrete prompt optimization in the general format below:

maxz∈V T R(yLM(z,x)) . (2.1)

The optimization above, however, can be intractable because z’s discrete tokens are not

amenable to gradient-based optimization, while brute-force search has the exponential complexity

of O(|V |T ). Previous work has to either approximate gradients over z using continuous LM

embeddings [15] or tweak human-written prompts with heuristics [2, 61, 12].

2.4.2 The Reinforcement Learning Formulation

To overcome the difficulty, we formulate discrete text prompt optimization as an RL

problem, in which an agent selects prompt tokens [z1, . . . ,zT ] one by one to maximize the reward

R(yLM(z,x)). At time step t, the agent receives previous prompt tokens z<t and generates the

1Technically V can be any set of tokens. Here we simply use the downstream LM’s vocabulary.
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next prompt token zt according to a policy π(zt |z<t). After the agent finishes the entire prompt

ẑ, it receives the task reward R(yLM(ẑ,x)). Parameterizing the policy with , we can rewrite the

problem above as

max R(yLM(ẑ,x)), ẑ ∼ ∏
T
t=1 π(zt |z<t). (2.2)

Compared to typical (soft) prompt tuning approaches, the RL formulation above has the key

advantage of not needing gradient access to the LM, treating it instead as a black-box function.

This enables us to optimize prompts for LMs whose gradients are too expensive to compute, or

LMs that are solely available as inference APIs (e.g., GPT-3). Compared to previous discrete

prompt enumeration/paraphrasing, the RL approach explores the prompt space more efficiently

guided by the reward signals. The policy network also brings added flexibility, e.g., it can take

other information such as the input x, leading to input-specific prompts (e.g., as used in text style

transfer part).

During training, we explore the prompt space by sampling from the policy network. After

the policy is trained, we select tokens greedily during inference to produce a deterministic prompt.

The reward objective in Eq.(2.2) can be optimized with any off-the-shelf RL algorithm. We use

the latest soft Q-learning [40] which has shown advanced learning efficiency and performance

on various text generation problems, with open-source implementation.2 Specifically, we use

only its on-policy component. We refer interested readers to [40] for more details.

2.4.3 Efficient Parameterization of Policy

We present an efficient parameterization of the policy network π, which adapts a frozen

pre-trained LM (i.e., policy LM) with a simple MLP layer that contains all the parameters to

be trained. The policy LM need not be the same as the LM we optimize the prompt for (i.e.,

task LM). Figure 2.6 (left) illustrates the policy LM architecture. Specifically, we use the LM to

extract contextual embeddings of partial prompt ẑ<t , apply the added task-specific MLP layer

2Our preliminary experiments indicate SQL often achieves superior performance than common policy gradient
methods.
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to compute the adapted embeddings, and pass the output into the model’s original LM head to

obtain the next prompt token probabilities. During training, we compute the MLP gradients by

back-propagating through the policy LM. Our experiments (see following chapters for various

tasks) show that changing only the small set of MLP parameters is sufficient for producing strong

performance. After training, we discard the MLP and simply use the learned discrete text prompt

for inference.

2.4.4 Reward Engineering and Stabilization

Proper design of reward functions, a.k.a. reward engineering, is crucial to training effi-

ciency and success in RL [72]. Discrete prompt optimization, in particular, poses new challenges

due to its highly complex reward functions, which involve multiple steps (e.g., combining with

input, passing through a black-box LM, and inferring the outputs), each introducing its own

variations. This makes the reward signal unstable and difficult to assess progress towards the

task goal.

To solve these difficulties, we propose a few simple reward engineering techniques that

effectively encourage and stabilize the RL training, illustrated in the following chapters §3 and

§4.
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Chapter 3

Prompted Zero-Shot Text Generation Task

The gigantic amount of free text on the Web, several magnitude more than labeled

benchmark, enables large language models (LMs) training in scale. However, when generating

text samples from LMs by iteratively sampling the next token, we do not have explicit control

over attributes of the output text, namely the topic, the style, the sentiment, etc. And for some

other conditional text generation tasks, for instance, automatic summarization task [73, 74, 75],

table-to-text generation [76, 77, 17], image captioning task [20, 78], etc require the LMs to be

adaptive according to various application requirements. Therefore, how to steer LMs for various

types of output, or even some creative writing applications, would be a very interesting topic to

the whole community.

In this chapter, at the beginning, I will give an introduction of current work on the topic

of how to steer LMs for various generation tasks, with distinct requirements. Specifically, I will

put my main focus on the text style transfer, a higher-level controllable text generation tasks,

often with composable desideratums. Then, I will introduce our work on prompted zero-shot text

style transfer, with details on the crafted reward formulation for the high variance unavoidable in

current formulation, and corresponding experimental procedure. Note that our reward function

and tuned reward engineering hyper-parameters should be suitable for any text generation tasks,

as long as you create the correct reward function. Therefore, to adapt our framework to other

generation scenarios, you can simply tune the reward function, and the results should be clear
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with our comprehensive experiments.

3.1 Overview to Prompted Controllable Text Generation

There are mainly three approaches to adapt language models for downstream controllable

text generation tasks, encompassing guided decoding strategies, fine-tuning language models

with enough parallel corpus, and prompt designs for both parallel and non-parallel generation

tasks.

For the first paradigm, the guiding decoding strategies [79, 80, 81], that is, instead of re-

training the language models, we can simply re-use the fixed language models for any generation

tasks, with only decoding strategies varying. Specifically, we apply different guided decoding

approaches to different generation tasks, and select the desired outputs at test time.

Common Decoding Strategies

The final layer produces the logits o over the vocabulary space V, so we can sample the

next token from the probability built upon the logits by applying the softmax with temperature T .

The probability of sampling the i-th token is:

pi ∝
exp(oi/T)

∑ j exp(o j/T)

. A low temperature would make the distributions sharper, and a high temperature makes it

softer.

Greedy Search

It always picks the next token with the highest probability, equivalent to seeting tem-

perature T = 0. However, it tends to create repetitions of phrases, etc, even for well-trained

models.
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Beam Search

This is a relatively looser form of greedy decoding, where you implement optimal search

with a limited bandwidth rather than 1-size window in greedy decoding. Essentially, it uses

breadth-first search to maintain the token sequences with high joint probability.

For the two techniques shown above, in fact, for pre-trained language models, there are

few practitioners really adopting them. The main reason comes from the counter-intuitive text

de-generation issue [5] in accompany with these models, that is, output text would be bland,

incoherent, or get stuck in repetitive loops even sampling from the highest score-based tokens.

[5] also performs an empirical investigation of the distribution differences between human

generated text and model generated text, and the results shown in Figure 3.1 indicate that instead,

human-generated texts are usually from lower probability sequences.

Figure 3.1. Overview of neural text degeneration issues [5].

Therefore, for large language models, in practice, practitioners usually resort to top-k/p

sampling strategies [82, 5] to decode the output sentences. The interpretations are straightforward

as their names, e.g, top-k represents sample top-k tokens per step in an auto-regressive manner.
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Guided Decoding

In order to inject our preferences on topic, style, etc on the token candidates, we can use

guided decoding to adjust the ranking scores for each token. Combined with global planning,

we can derive the target sentence from the sampling strategies. Typically, the ranking score for

token selection at each decoding step can be set as a combination of LM log-likelihood and a set

of desired feature discriminators. Different approaches rely on different guiding principles to

design their guiding decoding strategies. In particular, there are mainly three types of approaches

to quantify the human preferences, including heuristics [81], supervised learning [80], and

reinforcement learning (RL) [79]. And another type of approach is to tune a trainable decoding

[83, 84, 85] to construct a new unnormalized distribution.

The second main paradigm is to fine-tune large language models [86, 87, 88, 89] to

realize its potential in various generation tasks. However, this paradigm limits its power in

parallel text generation tasks. In other words, since it requires a number of labeled data points,

with both source input text and target output text, it cannot support the non-parallel controllable

text generation tasks, such as several text style transfer tasks, which do not have any parallel

corpora. And simultaneously, this paradigm only supports one language model for one task,

which is heavily computational expensive for deployment. So a more efficient approach is more

desirable for real-world applications, such as the prospect of “one general large model can be

steered to various text generation tasks”.

The third paradigm mitigates all these issues mentioned before, as prompt-based text

generation tasks. That is, either by one crafted natural language prompts under zero-shot learning

[13, 40, 26, 90] or constructing in-context demonstrations for few-shot learning [9]. While

achieving non-trivial performance on a broad range of conditional text generation tasks, it also

enables the steerability of language models for Non-parallel text generation tasks, such as text

style transfer [91, 92]. In particular, [93] firstly proposes the framework of augmented zero-

shot prompting for text style transfer with arbitrary styles, especially for very large language

models (e.g., GPT-3). Our work takes a further step to directly optimize prompts for this type of
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non-parallel text generation task, for language models with various scales.

3.2 Prompted Text Style Transfer

In the controllable text generation section, we mainly focus on the unsupervised text

style transfer task, a non-parallel controllable text generation task.

Text style transfer (TST) [92] is a challenging problem, whose goal is to rewrite an

input sentence into a desired style, usually without supervised training data. For instance, in

a sentiment transfer task, given a negative sentence “The food is disgusting”, the model

should generate a positive sentence “The food is delicious”, without training on such

paired data.

Even without supervision data, our method can learn prompts with weak reward signals,

which is not possible for most previous prompt optimization methods. Compared to previous

TST work that trained models from scratch [91, 7] or fine-tuned pre-trained LMs [94, 89, 95],

our method presents a more efficient solution that learns discrete prompts for a LM without

updating the massive parameters.

3.3 Reward Formulation

To enable text generation applications, the ideal setting would be greedily generate one

output from the target language models, with beam search or greedy decoding, where you would

have very stable reward for the same task input and prompt. However, as mentioned in §3.1,

with these two techniques, there will be more generic, repetitive output. In our preliminary

experiments, we do meet with the same issue that generated text will tend to repeat the same

input sentence. Therefore, we have to turn to sampling-based decoding strategies, e.g., top-k

sampling or top-p sampling (i.e., nucleus sampling).

Given input sentence x, the goal of TST is to generate output y that preserves the

information in x while showing style attribute s. Following these priorities, we define the task

22



reward as a simple sum of content preservation and target style intensity, described formally

below:

R(x,y,s) = Content(x,y)+Style(y,s). (3.1)

We implement the reward using common model-based metrics. Specifically, We im-

plement our content preservation reward using its CTC metric [96], which measures the bi-

directional information alignment between input x and output y. We compute the alignment by

matching token embeddings from RoBERTa-large similarly to BERTScore [97], a technique

that shows the highest correlation with human judgments. For the style reward, we compute the

target style probability under a BERT-base-uncased classifier learned from the training data.

However, a straightforward reward function is not enough to handle this problem. Specif-

ically, for text generation task, we are pursing the input-conditioned prompt generation task

guided by reward signals. In our case, with sampling-based decoding approaches, we unevitably

face the issues of high variance, including 1) Even for the same input to the target language

models, we would achieve different output sentence with different reward values; 2) In our

input-conditioned setting, different inputs can have different levels of difficulty for reasoning

and prediction. Prompted LMs can thus see different reward scales for different inputs, further

enhancing its variance during optimization;

To handle these two challenges, we incorporate effective reward stablization which

significantly improve the efficiency of optimization.

For the first point, we propose one reward bootstrapping technique that for the same

input, instead of picking one sentence to evaluate its reward, we sample multiple sentences, and

average the rewards as the final reward for particular reward. This technique has been verified as

very useful in our stablization.

Then, on the other hand, we incorporate Input-Specific z-Score Reward techniques to

reduce the variance. Specifically, as different inputs can have different levels of difficulty for

reasoning and prediction, prompted LMs can see different reward scales for different inputs. In
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text style transfer, for instance, some sentences may only require changing a few words to alter

the style, so the LM naturally achieves higher rewards on them than on other more complex

sentences. Naively optimizing for all inputs with the same reward scale, therefore, can lead to

training bias and instability. To mitigate this problem, we propose to use input-specific z-score,

which normalizes the rewards by input-specific means and standard deviations. This can be seen

as a case of adaptive reward normalization, a commonly-used technique in RL [98]. Formally,

during prompt optimization, we sample a batch of prompts Z(x) for each input x, and compute

the reward R(yLM(z,x)) for each prompt z ∈ Z(x). After that, we compute the reward z-scores

across prompts Z(x). Using the shorthand Rx(z) for R(yLM(z,x)), namely the reward prompt z

receives for input x, we write the transformation as below:

z-score(z,x) =
Rx(z)−z′∈Z(x) Rx(z′)

z′∈Z(x)Rx(z′)
. (3.2)

To distinguish the z-scores of different inputs in the same batch, we condition our policy network

on the inputs, i.e., π(z|x).

3.4 Experimental Settings

3.4.1 Dataset Statistics

(1) Yelp [7] contains 266K positive and 177K negative reviews for training, 38K and

25K for validation, and 76K and 50K for testing, respectively. We perform evaluation on a

separate dataset consisting of 500 reviews for each sentiment, with reference outputs collected

by li-etal-2018-delete. (2) We use the Shakespeare [99] dataset compiled by jhamtani-etal-2017-

shakespearizing, which contains 18K parallel sentence pairs from Shakespeare’s plays and their

modern translations for training, 1.2K for validation, and 1.4K for testing. We treat the dataset as

a non-parallel corpus for training, but use the paired sentences as reference during evaluation.

We preprocess both datasets with a simple text cleaning function to remove tokenization artifacts

(e.g., “it ’s great .” becomes “it’s great.”). We include the function in our public
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codebase for reproducibility.

3.4.2 Evaluation Details

For automatic evaluation, We measure Content using the CTC metric [96] discussed ear-

lier. To compute Style, we train BERT-base-uncased classifiers on both training and testing data,

with validation accuracies of 98.4% and 93.7% on Yelp and Shakespeare, respectively. To evalu-

ate Fluency, we rate output grammaticality using the classifier from krishna2020reformulating.1

We also report popular metrics such as BLEU [100] and BERTScore [97] for content preserva-

tion, and perplexity (PPL) for fluency. To compute PPL, we fine-tune GPT-2 LMs on each TST

dataset. For human evaluation, we enlist 5 graduate students who are fluent in English to rate

Content, Style, and Fluency on a Likert scale of 1-5, and collect 3 ratings for each output. The

average inter-rater agreement is 0.35 in terms of Fleiss’ kappa [101], which is fair and similar to

previous work [102].

3.4.3 Backbone LMs & Picking the Prompts

We experiment with GPT-2 of varying sizes, ranging from the smallest distilGPT-2 with

82M parameters to the largest GPT-2-xl with 1.5B parameters. We fix the prompt length T = 5.

To generate output ŷ, for all comparison methods, we sample 32 candidates from the respective

models, and select the one with the highest reward.

Zero-shot Experiment Details

For sentiment transfer tasks, we evaluate our method against both training and prompting

baselines. We compare with two strong training methods, Style Transformer [103] and DiRR

[89]. In particular, DiRR fine-tunes GPT-2 [32] with RL signals, which can be seen as a

full-model tuning analogue to our method. For the prompting baselines, we compare with (1)

Null Prompt, which does not use any prompt, (2) Random Prompt, which samples 5 tokens

1https://huggingface.co/cointegrated/roberta-large-cola-krishna2020
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from the vocabulary as prompts, and (3) Manual Prompt, which averages the performance of 3

human-written templates, one by reif2021recipe and two written for this experiment.

Few-shot Experiment Details

As discussed before, we experiment with few-shot text style transfer on the Shakespeare

dataset. For the training baselines, we compare with Deep Latent [104] and STRAP [94], both

trained on the full data. STRAP fine-tunes a GPT-2 [32] with self-supervised paraphrasing

signals, which can be seen as a full-model tuning analogue to our method. We also compare with

the same prompting baselines tested for Yelp. Both prompting baselines and our method use

GPT-2-xl as the task LM.

3.5 Ablation Study

As discussed earlier, we transform the reward function for TST using input-specific

z-score to mitigate the training instabilities caused by the different scales of reward across inputs.

To study the impact of this technique on RL training, we compare our training success with and

without z-score normalization. Specifically, we test on Yelp [7] using the distilGPT-2 model as an

example. Following typical practice in RL, we run 5 experiments for each variant using different

random seeds and compute the validation reward every 50 training steps. As the visualized

results in Figures 3.2 and 3.3 show, z-score normalization achieves both superior performance

and more stable improvement across random seeds and training tasks. Because training easily

collapsed without z-score using the original hyperparameters, we tuned the reward shaping

scheme to transform a scale of [50,100] into [-50,50], which substantially improved training

stability and results.
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Figure 3.2. Comparison of our method with (orange) and without (purple) z-score reward normalization.
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Figure 3.3. Comparison of our method with (orange) and without (purple) z-score reward
normalization.

3.6 Results

Results for Sentiment Transfer

We present the automatic evaluation results for Yelp in Table 3.1. Compared to the

expensive training baselines (Style Transformer and DiRR), our method with GPT-2-xl shows

slightly lower content preservation and style accuracy, but have markedly better fluency, which

leads to higher or competitive overall joint score J(·) and geometric mean GM(·). This may

be because our method better preserves the LM’s fluent generation capability by freezing its

parameters. Relative to prompting baselines, our optimization strongly improves the default

performance. In particular, our trained prompts performs better on average with lower variance

than manual prompts, which sees performance vary wildly across prompts with similar meanings.

We present all manual and learned prompts along with their performance in Table A.4 in
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Table 3.1. Automatic evaluation of our method vs. baselines on the Yelp [7] sentiment transfer dataset.

Model Content Style Fluency J(C, S, F) GM(C, S, F)

Training Baselines
Style Transformer 75.2 96.4 58.6 46.1 75.2
DiRR 78.8 97.7 75.6 59.6 83.5
Prompting Baselines (GPT-2-xl)
Null Prompt 37.4 94.8 97.6 33.6 70.2
Random Prompt 39.6 93.8 97.8 34.7 71.3
Manual Prompt 64.2 (6.8) 91.5 (3.6) 93.2 (1.4) 53.4 (7.9) 81.8 (3.4)

RLPROMPT (Ours)
distilGPT-2 57.3 (1.7) 96.5 (0.1) 85.3 (1.3) 46.0 (0.9) 77.9 (0.4)

GPT-2-small 60.0 (0.4) 96.4 (0.3) 89.0 (2.8) 50.7 (1.3) 80.1 (0.8)

GPT-2-medium 65.7 (1.4) 95.2 (1.2) 89.3 (0.1) 56.1 (1.0) 82.3 (0.4)

GPT-2-large 65.1 (1.8) 94.6 (2.3) 91.6 (0.8) 56.5 (1.3) 82.6 (0.7)

GPT-2-xl 72.1 (1.5) 94.2 (2.4) 89.5 (0.5) 61.4 (2.2) 84.7 (1.0)

Table 3.2. Human evaluation on Yelp on 5-Likert scale.

Model Content Style Fluency GM(C, S, F)

DiRR 4.83 4.69 4.64 4.72
Manual Prompt 4.25 4.38 4.86 4.49
RLPROMPT (Ours) 4.41 4.68 4.80 4.63

appendix. Within our own method, we can see the performance increasing monotonically from

the smallest distilGPT-2 to the largest GPT-2-xl. Human evaluation results (Table 3.2) show

similar conclusions, where our method is competitive with the costly training method DiRR by

obtaining slightly lower content and style scores but higher fluency.

Results for Shakespeare Transfer

We present the automatic evaluation results for Shakespeare in Table 3.6 to illustrate our

few-shot performance. Even with only 100 training examples and no update to the model, our

method outperforms or gets close to training baselines using the full dataset such as Deep Latent

and STRAP. STRAP is also limited to a subset of styles (e.g., authorship and formality), whereas

our method accommodates a wider range of styles. Compared to prompting baselines, our

method not only improves the performance, but also shows higher robustness to randomly-drawn

training sets, as evidenced by the lower standard deviations for Content and Style.
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3.7 Analysis

3.7.1 Fluent vs. Gibberish Prompts

We propose to optimize fluent prompts with top-k filtering qin2022cold. That is, we limit

our policy’s action space at each step t to the tokens with top-20 probabilities under a GPT-2

LM, conditioning on the previous prompt tokens z<t . Other than that, we train the policy using

the same routine. To evaluate prompt perplexity, we use an out-of-the-box GPT-2 model.

Table 3.4. Comparison of prompt optimization with fluency constraint vs no constraint on the Yelp
dataset.

Method Prompt PPL↓ Content Style Fluency J(C, S, F) GM(C, S, F)

RLPROMPT 254K (238K) 72.1 (1.5) 94.2 (2.4) 89.5 (0.5) 61.4 (2.2) 84.7 (1.0)
+ Fluency 82.1 (2.4) 52.4 (1.5) 96.2 (0.9) 94.6 (1.0) 46.7 (0.7) 78.1 (0.4)

3.7.2 Transferring Prompts across LMs

For text style transfer, We use the prompts trained for each size of GPT-2 (from the

smallest distil to the largest xl) to perform generation using every other model, and present the

average performance over 5 evaluations in the heatmap of Figure 3.4. We also include Manual

Prompt for comparison and Random Prompt for the baseline performance without transfer.

Manual Prompt shows uniformly worse performance than learned prompts with smaller models

like distilGPT-2 and GPT-2-small, but generally better results with larger models like GPT-2-

large and -xl, suggesting that human-written prompts may better activate larger models. Overall,

all optimized prompts see some transfer, as evidenced by the uniformly better performance than

Random Prompt, and the level of success depends on both the prompt training and generation

models, similarly to classification.
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Chapter 4

Prompted Few-Shot Text Classification
Task

In this chapter, I will provide an overview to prompted few-shot text classification task,

and their progress along automatic prompt tuning. After that, I will elaborate how we design

experiments, and how do we tackle the unstable issues (in other words, the highly varied reward

in our RL training) faced in few-shot text classification experiments, i.e., reward engineering

part. Next, I will show our experimental results compared to various previous state-of-the-art

baselines, indicating the effectiveness of our proposed RLPROMPT in this task. And finally, I will

provide both qualitative and quantitative analysis to the learned prompts for text-classification

task.

4.1 Overview to Prompted Few-shot Text Classification

Learning text classification with few labeled examples has been a problem of interest

in many applications [105, 106]. We adopt the typical prompting setting [9, 36] which solves

classification by token infilling for an MLM like BERT or next-token prediction for a left-to-right

LM like GPT-2. Classification, therefore, amounts to selecting tokens that correspond to a

set of predetermined class labels, a.k.a., verbalizers (e.g., “great” for positive sentiment and

“terrible” for negative sentiment). For instance, to classify the sentiment of an input sentence

“food is delicious” using an MLM, we first fill our prompt and the input into a template
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“[Input] [Prompt] [MASK]”, and then select the verbalizer token with the highest probability

of filling into the [MASK] position.

4.2 Reward Formulation

To enable our RL training, we first insert one placeholder sentence into our prompt policy

network, e.g. “Text Classification: ”, and then train the policy network (i.e., the multi-step

decision process) with the reward during experience collection.

The simplest and the most straightforward reward designs come with two design princi-

ples: 1) Accuracy: we can simply resort to the few-shot accuracy as the reward. The intuition is

straightforward, that is, better accuracy on these validation examples indicate better prompts; 2)

Prediction Confidence: stronger prompts would give higher confidence in their prediction on

the labeled validation examples.

In our experiments, for the accuracy part, it is common for us to find our RL training will

stuck at certain point, with some biased prompts which can only show correct performance, e.g.,

100% on the few-shot examples, which hugely limits the prompted performance. So finally, we

mainly rely on the second principle.

However, when handling with this reward function, we still meet with some other

challenges. Specifically, at the beginning, we evaluate our prompt per 10 steps in training on one

particular validation example to speed up our training. However, we find that the training would

be highly unstable that high variance dominates at the very beginning, which yet significantly

hinders the sample efficiency. In order to handle this, for each evaluation step, we test the reward

on combined few-shot examples together in order to pursue more stable reward.

But even with this formulation, the training is still not that stable, which limits its final

performance under various random seeds. In order to handle this, our approach is illustrated as

below:
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Piecewise Reward

If a reward function is misspecified or vulnerable, the policy may maximize it without

moving towards the desired goal. For example, while learning classification using the ground-

truth probability as reward function, the policy may find adversarial prompts [107, 46] that

lead to very high probabilities for a single class given arbitrary inputs. To overcome the issue,

we propose to design piecewise reward functions [108, 109] with both smooth and disjoint

components to better express the task priorities and improve robustness. Typically, we can

include a dense, quantitative signal (e.g., label probability) to measure fine-grained progress

towards the goal, and a sparse, qualitative signal only when certain states are achieved (e.g.,

certain accuracy on each class) by applying a large sudden increase in the reward.

In our case, the final reward function is defined as: The text classification task aims to

correctly assign input text x to its ground truth label c from a set of classes C . To mitigate the

adversarial cases discussed in §2.4.4, we design a piecewise reward function that encourages

prompts to classify each examples correctly. Given prompt z and training example (x,c), we

compute the reward similarly to hinge loss as the gap between the label probability and the highest

probability from other classes. Using the short hand Pz(c) :=PLM(c|z,x) to denote the probability

of label c, we can write the gap as Gapz(c) := Pz(c)−maxc′ ̸=c Pz(c′). The gap value is positive

when the prediction is correct, and negative otherwise. We denote Correct := 1[Gapz(c)> 0]. For

a correct prediction, we multiply the positive reward by a large number to signal its desirability.

The resulting reward function is as below:

R(x,c) = λ
1−Correct
1 λ

Correct
2 Gapz(c), (4.1)

During training, we compute the reward for prompt z by averaging over all our few-shot

training examples. We set the balancing weights λ1 = 180 and λ2 = 200 by tuning on the

validation set.
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4.3 Experiments

4.3.1 Dataset Statistics

Following previous work [1, 6], we experiment on a wide range of popular few-shot

classification tasks including sentiment classification such as SST-2 [31], Yelp Polarity [110],

MR [111], CR [112], SST-5 [31], and Yelp [110], and topic classification such as AG’s

News [110]. We additionally experiment on Subj [113], TREC [114], Yahoo [110], and DBPe-

dia [115]. We train with 16 examples per class, and validate using the same number of examples,

in keeping with the standard few-shot setting [116].

Table 4.1. Main datasets evaluated in this work.

Dataset Type |C| |Train|=|Dev| |Test| Manual template Label words
SST-2 Sentiment (Movie reviews) 2 16×|C| 1.8k <S> It was [MASK] . terrible, great

Yelp P. Sentiment (Yelp reviews) 2 16×|C| 38k <S> It was [MASK] . terrible, great

MR Sentiment (Movie reviews) 2 16×|C| 2k <S> It was [MASK] . terrible, great

CR Sentiment (Product reviews) 2 16×|C| 2k <S> It was [MASK] . terrible, great

SST-5 Sentiment (Movie reviews) 5 16×|C| 2.2k <S> It was [MASK] . terrible, bad, okay, good, great

Yelp Sentiment (Yelp reviews) 5 16×|C| 50k <S> It was [MASK] . terrible, bad, okay, good, great

Subj Subjectivity (Movie reviews) 2 16×|C| 2k <S> This is [MASK] . subjective, objective

AG’s News Topic (News articles) 4 16×|C| 7.6k [MASK] News: <S> World, Sports, Business, Tech

TREC Topic (Question types) 6 16×|C| 0.5k [MASK]: <S>
Description, Entity, Expression, Human,
Location, Number

DBPedia Topic (Wikipedia ontologies) 14 16×|C| 70k [Category: [MASK]] <S>
Company, Education, Artist, Sports, Office,
Transportation, Building, Natural, Village,
Animal, Plant, Album, Film, Written

Yahoo Topic (Question types) 10 16×|C| 60k Topic [MASK]: <S>
culture, science, health, education, computer,
sports, business, music, family, politics

4.3.2 Baselines

We compare our approach with representative methods in the diverse training and prompt-

ing paradigms shown in Table 2.1. Additionally, we compare with the latest Black-Box (BB)

Tuning sun2022black, which mixes discrete and soft prompts and tunes the soft part. We describe

more details in Appendix.
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4.3.3 Backbone LMs & Picking the Prompts

We use RoBERTa-large [33] as our backbone model. For our approach, we experiment

with prompt lengths T ∈ {2,5}, and insert the prompt tokens at the same positions with our

manual prompts [36, 37].1 Please see Appendix for more training details.

4.4 Ablation Study

As mentioned before (§2.4.4), misspecified or vulnerable reward functions can prevent

the policy from discovering truly strong-performing prompts. To address this challenge, we

propose to design piecewise reward functions that provide bonus to qualitative behaviors such as

achieving certain accuracies on each class. As our reward function for few-shot classification

adopts this design, we assess its effectiveness by ablating the piecewise component. Specifically,

we test on SST-2 [31] and AG’s News [110] using 5 prompt tokens with the distilRoBERTa-base

model as an example. We run 5 RL experiments on the same few-shot dataset using different

random seeds, and compute the validation accuracy every 50 steps. As the results in Figure 4.1

show, our piecewise reward function improves training stability by leading to strong-performing

prompts more consistently, resulting in better average performance across random seeds and

datasets.
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Figure 4.1. Comparison of our method with (orange) and without (green) piecewise reward
function for few-shot classification.

1It is known that increasing prompt length and/or inserting prompt tokens in multiple positions can often lead to
improved performance. We leave further experiments to the future.
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Table 4.2. Results of few-shot text classification.

SST-2 Yelp P. MR CR SST-5 Yelp AG’s News Avg.

Fine-Tuning 80.6 (3.9) 88.7 (4.7) 67.4 (9.7) 73.3 (7.5) 40.7 (3.0) 51.0 (2.2) 84.9 (3.6) 69.5
Manual Prompt 82.8 83.0 80.9 79.6 34.9 42.1 76.9 68.6
Instructions 89.0 84.4 85.2 80.8 29.8 43.0 54.8 58.5
In-Context Demonstration 85.9 (0.7) 89.6 (0.4) 80.6 (1.4) 85.5 (1.5) 39.3 (0.9) 49.4 (0.3) 74.9 (0.8) 72.2
Prompt Tuning (Soft Prompt Tuning) 73.8 (10.9) 88.6 (2.1) 74.1 (14.6) 75.9 (11.8) 40.2 (6.5) 49.1 (3.1) 82.6 (0.9) 69.2
BB Tuning (2 soft tokens) 83.2 (3.5) 86.0 (1.6) 77.1 (3.9) 83.2 (2.5) 39.2 (2.4) 41.5 (1.9) 74.0 (1.9) 69.2
BB Tuning (5 soft tokens) 84.6 (4.0) 78.7 (2.3) 79.8 (1.5) 82.9 (3.6) 36.6 (2.1) 33.7 (2.3) 73.6 (3.6) 67.1
BB Tuning (Mixed, 50 soft tokens) 89.1 (0.9) 93.2 (0.5) 86.6 (1.3) 87.4 (1.0) 38.4 (1.1) 44.8 (1.3) 83.5 (0.9) 74.7
GrIPS (Discrete Prompt Enumeration) 87.1 (1.5) 88.2 (0.1) 86.1 (0.3) 80.0 (2.5) 32.0 (1.8) 47.2 (0.5) 65.4 (9.8) 69.4
AutoPrompt 75.0 (7.6) 79.8 (8.3) 62.0 (0.8) 57.5 (5.8) 27.8 (3.3) 29.0 (5.0) 65.7 (1.9) 56.7

RLPrompt (Ours, 2 discrete tokens) 90.3 (1.3) 94.1 (0.8) 86.5 (1.2) 87.4 (1.7) 40.1 (1.9) 45.6 (3.8) 76.8 (1.4) 74.4
RLPrompt (Ours, 5 discrete tokens) 92.5 (0.8) 95.1 (1.0) 87.1 (0.4) 89.5 (0.6) 41.4 (3.2) 44.8 (4.3) 80.2 (0.7) 75.8

4.5 Results

Main Results

We present our few-shot classification results in Table 4.2. Our method (5 tokens)

outperforms Manual Prompt and Instructions on all datasets, as well as In-Context Demonstration

and Fine-Tuning on all but 1 and 2 datasets, respectively. Compared to Prompt Tuning, our

method achieves higher average accuracy with lower standard deviations, showing our approach

is less sensitive to various training factors, a common issue for few-shot prompt tuning [17, 19].

Our approach substantially outperforms BB Tuning with soft prompts, and is slightly better even

after BB Tuning uses mixed discrete/soft prompts with 50 soft tokens. Compared to previous

discrete prompt optimization methods such as GrIPS [12] and AutoPrompt [15], our method

reaches superior accuracy on all benchmarks. On the additional datasets which tend to be

multi-way (e.g., 16-class), Fine-Tuning shows higher performance, but our method continues the

lead over prompting baselines.
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Table 4.3. Additional results of few-shot text classification. The best result on each dataset is
bolded and the second best result underscored.

Subj TREC Yahoo DBPedia Avg.

Fine-Tuning 89.0 (3.5) 83.9 (5.5) 65.6 (2.4) 97.7 (0.8) 84.1
Manual Prompt 51.5 31.8 18.1 59.2 40.2
Instructions 50.4 26.2 21.4 15.9 28.5
In-Context Demonstration 51.9 (1.3) 29.2 (2.0) 36.7 (2.1) 76.6 (0.4) 48.6
Prompt Tuning (Soft Prompt Tuning) 73.0 (7.3) 49.6 (6.1) 59.7 (1.3) 84.2 (5.3) 66.6
BB Tuning (2 soft tokens) 75.7 (3.4) 40.4 (2.5) 41.7 (1.4) 60.9 (6.0) 54.7
BB Tuning (5 soft tokens) 75.8 (4.4) 39.8 (4.6) 38.2 (1.8) 62.7 (4.1) 54.1
BB Tuning (Mixed, 50 soft tokens) 71.8 (5.1) 46.4 (8.2) 50.0 (0.9) 90.2 (0.8) 64.6
GrIPS (Discrete Prompt Enumeration) 74.8 (1.1) 9.5 (0.2) 22.5 (0.4) 22.1 (2.9) 32.2
AutoPrompt 78.9 (4.5) 38.8 (4.3) 35.5 (2.0) 63.1 (2.0) 54.1

RLPrompt (2 discrete tokens) 81.9 (1.2) 60.5 (3.3) 48.6 (0.6) 76.0 (0.6) 66.8
RLPrompt (5 discrete tokens) 81.2 (1.7) 57.6 (4.6) 48.6 (1.0) 84.6 (1.9) 68.0

4.6 Analysis

4.6.1 Training Efficiency

To assess the training efficiency of our method, we compare our test accuracy across

training steps with BB Tuning, which is also a gradient-free method but optimizes soft prompts.

As Figure 4.2 shows, our RL-based method is as efficient as soft prompt tuning without access to
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Figure 4.2. Comparison of our method (orange) and Black-Box (BB) Tuning [6] (blue) in terms of
training efficiency.
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LM gradients, converging in similar number of steps to BB Tuning, but with superior performance.

Our training is also relatively stable, for even the worst prompts encountered after convergence

perform comparably to BB Tuning on average.

4.6.2 Transferring Prompts across LMs

Specifically for classification, we train prompts on various sizes of RoBERTa and GPT-2

and apply them to every other model for classification. We tabulate the average performance

over 5 runs in the heatmap of Figure 4.3. Overall, all prompts can transfer between models,

but the success depends on both the source and target LMs. For example, prompts learned

from larger models see sharp performance declines when applied to smaller models, indicating

that the structures they activate in large LMs may be less present in smaller ones. In contrast,

prompts learned from smaller models reach similar or better performance on larger models (e.g.,

RoBERTa-base to -large). Perhaps surprisingly, prompts learned from MLMs like RoBERTa

transfer well to left-to-right LMs like GPT-2 and vice versa, showing the LM structures they

activate are largely shared across model types. These findings open up a promising and exciting

direction for future research—enabled by the transferrability across LMs, we may learn a prompt

cheaply from smaller models, and apply it to a larger, more powerful model for inference.
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Figure 4.3. Heatmap of sentiment analysis performance with transferred discrete prompts of 2 tokens.
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4.6.3 Robustness to Classification Verbalizers

It is known that prompted classification is sensitive to verbalizer choices. Manual design

requires domain expertise and understanding of the base LMs. Previous research devised various

methods for automatic verbalizer search [117, 15, 1]. In few-shot classification, our method

can discover well-performing prompts given a wide variety of verbalizers. Table 4.4 shows

the results on SST-2 with several intuitive verbalizers, averaged over 3 random seeds for each

verbalizer pair. Across different verbalizers, our prompts consistently outperform manual prompt

with smaller variation, showing our approach is robust to the choice of verbalizers. We report

similar results on AG’s News in Table 4.5 in the appendix.

Table 4.4. Comparison of RLPROMPT and manual prompt on SST-2 using different verbalizers.

Verbalizers RLPROMPT Manual

terrible, great 92.8 (0.8) 82.8
bad, good 91.2 (1.4) 79.7
negative, positive 92.2 (0.6) 76.8

Table 4.5. Comparison of our method vs. Manual Prompt on AG’s News using different
verbalizers.

Verbalizers RLPROMPT Manual

World, Sports, Business, Tech 77.6 (1.5) 76.9
Global, Athletics, Finance, Technology 65.3 (0.5) 63.5

4.6.4 Qualitative Analysis of Prompt Tokens

Empowered by the transparency of discrete tokens, we investigate the prompts we learned

for classification to characterize the similar patterns learned by different LMs discovered by

the prompt trasfer analysis. In particular, we frequently find semantically similar tokens among

our learned prompts, which we name “strong words” and list in Table 4.6. These strong words

make sense in the context of their specific tasks, indicating the LMs may indeed capture certain

human-understandable patterns during pre-training. For instance, “absolutely” may signal strong
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opinion before judging a sentence as positive or negative, whereas “News” appears to be a hint for

classifying the topic of a news piece. Besides these semantically meaningful prompt tokens, we

also find some unintelligible prompts that nevertheless achieve good performance on downstream

tasks, or so-called “secret language [118] of the LM” (e.g., “imentariesariesaryary” can

reach 80% accuracy with RoBERTa-large on AG’s News).

Table 4.6. The performance of manual prompt examples by composing strong words from
Table 4.6 for both sentiment analysis and news topic classification across RoBERTa-large and
GPT-2-large.

Task Category Strong Words

Sentiment Analysis Absolutely, absolutely,
Totally, downright, pro-
foundly, VERY, Very, Re-
ally, highly

News Classification News, Reviewer, Re-
ports, reported, Staff,
Information, Statement,
Stories, Guide, say,

Template RoBERTa GPT-2

SST-2
<S> downright [MASK] . 80.6 86.7
<S> Really downright [MASK] . 90.4 89.1
<S> Absolutely [MASK] . 91.7 87.8
<S> AbsolutelyAbsolutely [MASK] . 89.2 72.3
<S> Absolutely VERY absolute
VERY absolute [MASK] .

92.7 73.8

AG’s News
[MASK] Reviewer <S> 74.5 —
[MASK] Reviewer Stories <S> 81.0 —
[MASK] StaffInformationStatement <S> 76.8 —
[MASK] StaffInformationStatement
Reviewer Stories <S>

79.8 —

Beyond finding strong words, we also study whether we can construct strong-performing

prompts by arbitrarily composing these strong words, which can provide insight into whether

LMs use these strong words compositionally. To this end, we construct several prompts, evaluate
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their downstream performance, and tabulate the results in Table ??. Interestingly, composing

more strong words indeed can lead to improved performance, but the level of success is sensitive

to various factors, such as word order and the specific tokens we choose, indicating that existing

LMs are still brittle even when responding to discrete tokens learned from optimization.
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Appendix A

Additional Experiment Details

A.1 Policy Network

For all tasks, we uniformly use distilGPT-2 ([39]) with 82M parameters as a compact

policy LM, and implement a generously parameterized MLP with 1 hidden layer and 2048

hidden states. Given distilGPT-2’s hidden size of 768, we only add 3.1M parameters, or 3.8% of

the LM parameters.

A.2 Additional Implementation Details for Text Style
Transfer

In training, we sample 4 prompts for each input using top-50 sampling from our policy

network. During sampling, we bias all logits by -10 to encourage exploration. For each prompt,

we generate outputs using top-10 sampling, and bootstrap the reward 4 times to reduce variance.

For SQL training, we set the target learning rate to be 10−3, and shape the reward from a scale

of [0,1] to [-20,80]. We optimize the prompt generator using an Adam optimizer with learning

rate 10−4, except for Yelp negative-to-positive and Shakespeare using GPT-2-large and GPT-2-xl

models, which we train with learning rate 5×10−5. We train 2 inputs per batch for 6K steps

if learning rate is 10−4, and 12K steps if the learning rate is 5× 10−5. Also using the RTX

3090 GPU, each experiment typically takes from 10 hours using distilGPT-2 to 1 day using

GPT-2-xl. To reduce the performance variance caused by sample selection and RL initialization,
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we average the performance from 5 evaluation runs for each of 3 RL experiments using our own

method. Additionally, we perform the same sample selection for all our baselines for comparable

performance. For Shakespeare training baselines, we do not perform sample selection in order to

avoid biasing the full-dataset models with our few-shot style classifiers.

Table A.1. Additional automatic evaluation results on Yelp [7] sentiment transfer.

Content Preservation Fluency
Model BLEU BERTScore PPL↓

Training Baselines
Style Transformer 27.6 56.1 78.2
DiRR 30.0 61.7 40.6
Prompting Baselines (GPT-2-xl)
Null Prompt 6.6 35.8 59.5
Random Prompt 7.3 37.4 60.5
Manual Prompt 19.2 (4.1) 53.1 (5.0) 35.5 (9.0)

RLPROMPT (Ours)
distilGPT-2 15.7 (0.7) 49.1 (0.6) 43.6 (0.6)

GPT-2-small 16.5 (0.4) 51.3 (0.6) 37.8 (4.8)

GPT-2-medium 20.0 (1.2) 55.1 (1.1) 34.4 (0.8)

GPT-2-large 19.8 (0.5) 54.7 (0.7) 34.9 (1.4)

GPT-2-xl 24.2 (1.2) 59.0 (0.8) 34.3 (0.9)

A.3 Additional Implementation Details for Text Classifica-
tion

Baseline Implementation Details

For Manual Prompt, we take the hand-crafted prompts from schick2021exploiting. For

Instructions, we manually create task descriptions and label definitions following mishra2021NI’s

protocol (shown in Table A.4) and prepend the instructions to the inputs. For In-Context

Demonstration [9], we randomly select one training example per class and concatenate them

with the input texts. For Prompt Tuning [24], we replace the Manual Prompt tokens with five

soft tokens in the same positions for fair comparison, and optimize them using Adam optimizer

with learning rate 1×10−2 and batch size 16 for 400 epochs. For Black-Box Tuning [6] with

mixed prompt, we use 50 soft tokens and 8,000 budget following the default setting. For its
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soft-prompt-only setting, we also optimize with the same budget. For Fine-Tuning, we train

with Adam optimizer with learning rate 1×10−5 and batch size 16 for 100 epochs. For Discrete

Prompt Enumeration, we take GrIPS [12] as a state-of-the-art example. For AutoPrompt [15],

we use 5 prompt tokens and perform prompt search with a batch size of 16 using the few-shot

training examples. For each baseline, we pick the model with the best validation accuracy for

evaluation.

Additional Training Details

During training, we explore the prompt space using top-256 sampling from the policy

network, whose input is just one placeholder word “classification”. To update the parameters, we

use an Adam [119] optimizer with learning rate 5×10−5. Furthermore, we multiply all rewards

by 5 to increase the reward scale of well-performing prompts, and apply z-score normalization

(§??) across prompts for more efficient learning. We train the policy with 16 prompts per batch

for 6K steps for 2 tokens, 12k steps for 5 tokens, and compute validation performance every

10 steps. Using an NVIDIA GeForce RTX 3090 GPU, each experiment typically takes from

1.5 hours using distilRoBERTa-base to 4 hours using RoBERTa-large. During evaluation, we

average the performance of 3 prompts with the highest validation accuracy for each experiment.

Due to the instability and inherent randomness of the few-shot setup [120, 1], we sample 5

different training and validation sets, run 3 experiments per set with different random seeds, and

report the average accuracy and standard deviation.

A.4 Task Instructions & Prompts
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