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ARTICLE

Rheological inheritance controls the formation of
segmented rifted margins in cratonic lithosphere
M. Gouiza 1✉ & J. Naliboff2,3✉

Observations from rifted margins reveal that significant structural and crustal variability

develops through the process of continental extension and breakup. While a clear link exists

between distinct margin structural domains and specific phases of rifting, the origin of strong

segmentation along the length of margins remains relatively ambiguous and may reflect

multiple competing factors. Given that rifting frequently initiates on heterogenous basements

with a complex tectonic history, the role of structural inheritance and shear zone reactivation

is frequently examined. However, the link between large-scale variations in lithospheric

structure and rheology and 3-D rifted margin geometries remains relatively unconstrained.

Here, we use 3-D thermo-mechanical simulations of continental rifting, constrained by

observations from the Labrador Sea, to unravel the effects of inherited variable lithospheric

properties on margin segmentation. The modelling results demonstrate that variations in the

initial crustal and lithospheric thickness, composition, and rheology produce sharp gradients

in rifted margin width, the timing of breakup and its magmatic budget, leading to strong

margin segmentation.
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The formation of rifted continental margins occurs through
multiple phases of extension with distinct structural,
sedimentary, and magmatic characteristics1,2. A synthesis

of key features at Atlantic rifted margins2 suggests that most
rifted margins undergo a similar sequence of deformation phases,
which reflect progressive thinning of the continental lithosphere
that produces a transition from distributed to highly localized
deformation. While this sequence produces genetically similar
‘domains’ from the un-rifted continent to the seafloor (i.e.,
proximal, necking, and distal domains), significant segmentation
can occur either at plate-scale (e.g. South, Central, and North
Atlantic segments3), between different rifted margins (e.g.
between the Labrador Sea and the Baffin Bay through the Davis
Strait4), or within a single basin (e.g. Labrador Sea5). Thus,
changes in rifting style, strain distribution, crustal architecture,
timing, and nature of continental breakup can develop across
distinct rifted margins and along the length of individual rift
systems.

As most rift basins form along (or near) former orogens6,
inheritance is commonly invoked to explain the segmentation of
both rifts and rifted margins7,8. Numerical modelling supports
this inferred link between pre-rift structure and rifted margin
architecture, with a wide range of 2-D investigations demon-
strating the first-order effects of the initial thermal and rheolo-
gical structure on continental rifting9–14. 2-D modelling also
suggests that extension velocity12–14, multiphase rifting15,16, and
complex deformation network localization17–19 exert a first-order
control on rifted margin structure. Furthermore, 3-D numerical
simulations can now achieve similar spatial resolutions to 2-D
studies and were used to illustrate the margin-parallel effects of
structural inheritance4,20–22, fault network coalescence23 and out-
of-plane24,25 or oblique26,27 boundary conditions. Nonetheless, to
date no studies have explicitly examined the effects of a hetero-
geneous pre-rift lithosphere, with domains of varying rheology
(i.e., composition, thickness, and thermal structure), on the 3-D
evolution of continental rifting and rifted margin segmentation.
This in part reflects that many rifted margins initiate on complex
pre-rift lithosphere6, which may be difficult to accurately recon-
struct without sufficient data to connect onshore and offshore
domains28. In the case of the Labrador Sea, geological, and geo-
physical data indicate an offshore along-strike segmentation that
is clearly defined by onshore variations of crustal and lithospheric
thickness, composition, and thermal structure5,29,30.

The Labrador Sea formed between E Canada and SW Green-
land as a branch of the North Atlantic Ocean31. The Early to Late
Cretaceous rifting initiated on an Archean to Proterozoic cratonic
lithosphere with different tectonic terrains amalgamated during
the late Mesoproterozoic Grenvillian orogenic collision (ca.
1.08–0.97 Ga)5. Recent studies revealed important changes in rift
geometry, crustal architecture, timing, and nature of breakup
along the Labrador margin5,32,33. These changes occur across
major Precambrian structures, which run perpendicular to the
main NW rift trend and define three margin segments (Fig. 1).
The southern segment has a Mesoproterozoic basement and
shows a typical wide magma-poor rifted margin architecture with
hyperextended continental crust and exhumed mantle. The cen-
tral segment has a Palaeoproterozoic basement and also contains
domains of hyperextended crust and exhumed mantle, but con-
sists of volcanics in the continent-ocean transition not observed
in the south. The northern segment, which formed on Archean
terrains, displays a narrow magma-rich margin architecture with
thick packages of seaward-dipping flood basalts and magmatic
underplating (Fig. 1). Magnetic34 and seismic5 data indicate a
diachronous continental breakup younging northward, with ca. 8
Myr gap between the onset of oceanic accretion in the southern
segment and the northern segment (Supplementary Note 1). In

the latter, breakup appears to coincide with flood basalts located
near the Davis Strait (ca. 61–56Ma), whose link to the Iceland
plume is suggested but still debated35–37. The crustal architecture,
depicted by seismic data and gravity modelling, suggest an
asymmetric rifting in the Labrador Sea (Fig. 1) and that the line of
breakup was closer to the Greenland side (i.e., upper plate) than
the Labrador side (i.e., lower plate)5,32,33,38,39. It implies that most
of the crustal stretching is preserved on the Canadian side of the
basin.

Geophysical data collected from the hinterland of the Labrador
Sea (i.e., Canadian Shield) reveal the existence of variable het-
erogeneity in the un-rifted lithosphere of the distinct margin
segments29,30,40,41. Seismic refraction across the Grenville
suture41 shows a crust, which is ca. 35 km thick in the Makkovik
domain and ca. 50 km thick in the Grenville domain. A thick-
ening attributed to underplating of a high velocity/density mafic
crust during the Neoproterozoic-Early Cambrian Iapetan
rifting41. In contrast, seismic tomography studies examining the
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Fig. 1 Geologic overview of the Labrador Sea and the surrounding un-
rifted cratonic domains. (a) Map of the Labrador Sea showing the rifted
margins and the Archean-Proterozoic cratonic basement in onshore East
Canada and South Greenland5. Cross-sections A–C illustrate the crustal
architecture in the northern (b), central (c), and southern (e) segments of
the Labrador margin5, respectively. (d) Cross-section D shows the crustal
architecture in the conjugate SW Greenland margin39. SDR: seaward-
dipping reflections, CC: continental crust, OC: oceanic crust, SM:
serpentinized mantle.
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lithosphere structure in the Canadian Shield29,30 reveal that the
lithosphere-asthenosphere boundary is 200–150 km deep under-
neath the Grenville domain, but deepens to 200–250 km north of
the Grenville suture. The observed lithosphere structure in the
Labrador Sea and its hinterland is consistent with surface heat
flow data42, which show an E-W trend within the Labrador Sea,
parallel to the rifted margin, and a N-S trend in the hinterland
(i.e., Canadian Shield), parallel to the pre-rift tectonic domains42.
The E-W trend is related to the Mesozoic rifting as heat flow
steadily decreases from the distal margin to its hinterland.
Whereas, the N-S trend is ascribed to pre-rift variation in both
basal heat (i.e., lithosphere thickness) and crustal radiogenic heat
production42. This suggests that the effect of the Labrador rifting
on the thermal structure was restricted to the rifted domain and
negligible in the margin hinterland.

Here, we use recent observations from the Labrador rifted
margin5 and thermo-mechanical modelling to examine the effects
of variations in pre-rift lithosphere rheology on rift evolution and
margin architecture. The numerical design and assessment are
directly informed by the geological and geophysical constraints
on pre-rift and syn-rift evolution, which are outlined above (see
also Supplementary Notes 1–3). Our investigation reveals that
inherited variations in lithosphere thickness, thermal structure
and composition can reproduce key first-order observations from
the Labrador Sea and should be considered when examining
segmentation in rifts and rifted margins.

Results
To examine the effects of these observed variations of lithospheric
thickness, composition, and thermal structure on rift segmenta-
tion and margin architecture, we have developed thermo-
mechanical models that assimilate the unique onshore geophy-
sical constraints for each domain (Supplementary Fig. 1). While
the observations sufficiently constrain first-order variations of
crustal and lithospheric thickness (Supplementary Note 2), the
rheology of distinct crustal layers is largely unknown. Conse-
quently, a robust sensitivity analysis is necessary to account for
the uncertainties in both crustal rheological layering and rates of
extension. Given the extensive computational requirements of
high-resolution 3-D simulations, our analysis uses a combination
of 2-D and 3-D models, with the 2-D models constructed to
represent the southern, central, or northern margin segments. We
conduct the numerical experiments using the open-source finite
element code ASPECT (v2.1.0-pre)43,44, which is capable of
efficiently solving for highly non-linear 3-D lithospheric defor-
mation. The full results of the sensitivity analysis (Supplementary
Movie 1–12) and model parameters (Supplementary Table 2) are
presented in the Supplementary Information.

Cratonic structure controls the timing and style of breakup.
The interplay between rheology and extension rate in each margin
segment is assessed by running 2-D numerical experiments of
slow (5mm yr−1, Fig. 2) and fast (10mm yr−1, Fig. 3) lithospheric
extension with either an entirely weak crust (wet quartzite45,
Fig. 2a–b, e–f, Fig. 3a–b, e–f) or a weak upper crust and a strong
(wet anorthite46) lower crust (Figs. 2c–d, g–h, Fig. 3c–d, g–h).
Here, we focus on the end-member northern and southern seg-
ments. In all models, the lithosphere undergoes a three-stage rift
evolution with a short-lived distributed stretching phase, followed
by a localized necking phase, and finally a breakup phase (Sup-
plementary Movie 1–12).

When the lower crust is weak (Supplementary Movie 1–3 and
7–9), the initial lithospheric stretching duration is governed by a
variable crustal ductile layer thickness(es), which increases
southward as the geothermal gradient and crustal thickness

increase (Fig. 2a–b, e–f, Fig. 3a–b, e–f). Once ductile flow in the
upper lithosphere becomes negligible and coupling occurs
between the brittle lithospheric layers, deformation localizes
along a lithospheric-scale shear zone and ensuing rapid thinning
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Fig. 2 2-D models at 5 mm yr−1 extension rate. Lithospheric geometry at
40Myr after rift initiation, assuming an extension rate of 5 mm yr−1 for the
northern segment (a–d) and the southern segment (e–h). Models with a
weak lower crust (a, b, e, f) results in a wide and asymmetric crust geometry
at crustal breakup, with hyperextended continental domain. Models with a
strong lower crust (c, d, g, h) show a narrower and more symmetrical crust
geometry at breakup, with no hyperextension. Shown are strength profiles
(in dark grey), geotherms (in red), strain rate (in magma colourmap),
isotherms at 400 (blue line), 800 (light grey line), 1200 °C (yellow line),
and material boundaries (white lines; UC: upper crust, LC: lower crust, HDC:
underplated high density crust, ML: mantle lithosphere, As: asthenosphere).
WQ: wet quartz, WA: wet anorthite, WO: wet olivine, DO: dry olivine. Full
simulation results are shown in Supplementary Movie 1–6.
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leads to the necking of the lithosphere. Early during the necking
stage, extension switches from a pure to simple shear mode and
results in the asymmetric hyperextension of the crust, crustal
breakup, mantle exhumation, and finally full lithospheric
breakup. Consistent with previous studies12–14, an increase in

extension rate, a higher geothermal gradient, and a thicker crust
promote a longer phase of hyperextension and thus a wider zone
of hyperextended crust in the final rift configuration.

In the case of a strong lower crust (Fig. 2c–d, g–h, Fig. 3c–d,
g–h, Supplementary Movie 4–6 and 10–12), ductile layers within
the crust are absent and deformation initiates in a coupled manner
between the crust and mantle lithosphere. In both the north and
the south, the stronger crust suppresses the hyperextension phase
and crust breakup occurs both earlier (less total strain) and in a
symmetric manner. Prior to the full lithospheric breakup, the sub-
continental mantle is exposed, and simple shear appears to
dominate the final thinning of the mantle lithosphere. In contrast
to the weak crust scenario, the extension rate, geothermal gradient
and crustal thickness have significantly less impact on the final
crustal architecture (Figs. 2 and 3).

These results support the hypothesis that observed crustal
architecture variability along the Labrador margin is related to
initial variation in geothermal gradient, thickness, and composi-
tion of the crust and the lithosphere. Furthermore, the results
suggest that the initial lower crust was stronger in the north than
in the south, which in combination with variations in the
geothermal gradient enabled north-south gradients in the degree
of hyperextension and margin asymmetry. However, the lack of
margin-parallel deformation in the 2-D simulations could also
neglect a process that produces margin segmentation without
invoking a north-south change in crustal rheology. To test this
finding, we conducted a suite of 3-D simulations (Fig. 4 and
Supplementary Movie 13–18) that encompass the physical
parameters examined with the 2-D simulations.

Lateral rheological heterogeneities promote margin segmen-
tation. Our 3-D model design (Supplementary Fig. 1) captures
the lateral rheological variability that is observed in the Canadian
Shield, which is defined by variations in the geothermal gradient,
crustal and lithospheric architecture. First, we conducted four 3-
D simulations of a uniform lower crust composition, with either a
strong or a weak lower crust rheology and an extension rate of 5
or 10 mm yr−1 (Supplementary Movie 13–16). These scenarios do
not produce any along-strike changes if the lower crust is strong,
which results in a narrow rift system, a synchronous breakup, and
a symmetrical conjugate margin system across all three segments
(Supplementary Movie 14 and 16). Assigning a weak lower crust
to the lithosphere induces some hyperextension in the southern
segment (Supplementary Movie 13 and 15), where lithospheric
breakup takes place 4Myr earlier than in the other segments (in
the case of 5 mm yr−1 extension rate; Supplementary Movie 13).

However, imposing a variable lower crust composition with a
strong lower crust in the northern segment and a weak lower
crust in the central and southern segments leads to significant
margin segmentation regardless of the extension velocity (Fig. 4
and Supplementary Movie 17 and 18). The temporal evolution
(Fig. 4a–b) reveals that structural segmentation occurs early on in
the stretching process as primary shear zones develop across the
entire model crosscutting the rheological boundaries. Concur-
rently, secondary shear zones remain restricted to certain
segments and either terminate or coalesce near segment
boundaries (Fig. 4). The segmentation between the southern,
central, and northern segments becomes more pronounced once
the necking phase initiates. In the northern segment, where the
lithosphere is cold and strong, deformation is coupled at the start
of rifting and crustal necking leads to the complete thinning of
the crust. Whereas in the southern segment, where the litho-
sphere is hotter and weaker and the crust is thicker, coupling is
delayed and crustal necking leads to a prolonged phase of
hyperextension. As a result, crustal breakup starts in the north
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Fig. 3 2-D models at 10mm yr−1 extension rate. Lithospheric geometry at
20Myr after rift initiation, assuming an extension rate of 10mm yr−1 for the
northern segment (a–d) and the southern segment (e–h). The model
assuming a weak lower crust in the northern segment (a, b) shows an
asymmetric crustal geometry with a wide hyperextended domain, while the
other models (c–h) show a narrower and symmetric crust geometry
regardless of the rheology of the lower crust. Shown are strength profiles
(in dark grey), geotherms (in red), strain rate (in magma colourmap),
isotherms at 400 (blue line), 800 (light grey line), 1200 °C (yellow line),
and material boundaries (white lines; UC: upper crust, LC: lower crust,
HDC: underplated high density crust, ML: mantle lithosphere, As:
asthenosphere). WQ: wet quartz, WA: wet anorthite, WO: wet olivine, DO:
dry olivine. Full simulation results are shown in Supplementary Movie 7–12.
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and propagates southward. In contrast, lithospheric breakup
initiates in the south, where the initial mantle lithosphere is
thinner, and propagates northward. The breakup process spreads
over 18Myr for the crust and 6Myr for the mantle lithosphere.

The margin architecture at breakup shows a pronounced crustal
segmentation between the three tectonic domains, with a crustal
geometry that is narrow in the north and widens southward
(Fig. 4d–e).

The change in rifting mode, rift geometry, and timing of
breakup produced by the 3-D models are consistent with
observations from the Labrador Sea5 (Fig. 4c–e), which is
characterized by a southward increase in margin width and
crustal hyperextension, and a northward younging of lithospheric
breakup.

Extension rate and mantle composition govern magmatic
budget during breakup. The diachronous continental breakup
along the Labrador margin is complemented by a northward
increase in magmatic budget, with a continent-ocean transition
that is magma-rich (i.e., SDRs) in the north and magma-poor
(i.e., exhumed serpentinized mantle) in the south. The magma
supply in the northern segment of the Labrador Sea is con-
temporaneous with the nearby Davis Strait Palaeocene flood
basalts. The latter have been linked to adiabatic decompression
melting due simply to the tectonics of rifting in the Davis
Strait36,37 or to excess temperature from the proto-Iceland
plume35. In order to assess the potential of our modelling
initial conditions in producing decompression melting during
lithospheric stretching, we use the outputs from our two variable
rheology 3-D models (i.e., with slow and fast extension) to
compute melting. We extract the temperature and pressure fields
at each time step of the models to calculate melt fraction based on
the parametrization for batch melting of anhydrous and hydrous
peridotite47 (see parameters in Supplementary Table 3). Although
this approach neglects the implications of melt-induced viscosity
decrease and depletion of residual mantle on the geodynamics of
rifting and melt production, it allows us to examine the likelihood
of melt generation and its timing.

In the case of a dry depleted mantle (i.e., 0 wt% water), the
thermal regime in slow rifting (i.e., 5 mm yr−1) remains colder
than the anhydrous peridotite solidus47, and fails to produce any
melt (Fig. 5a), whereas, the fast rifting mode (i.e., 10 mm yr−1) is
able to generate small volumes of melt but very late during the
rifting process (Fig. 5a). In the second scenario, which assumes a
hydrated enriched mantle (i.e., 0.05 wt% water), much larger melt
volumes are produced and melt generation starts in the early rift
stage regardless of the extension rate (Fig. 5a–d). In all cases, melt
generation takes place first in the southern segment, where the
initial geothermal gradient is higher, before reaching the central
and northern segments, respectively, with up to 4Myr delay
(Fig. 5b).

These results show that the interplay between extension rate
and mantle geochemistry could be the main factor controlling the
magmatic budget during rifting and continental breakup in the
Labrador Sea. A northward increase in extension rate and/or in
mantle water (i.e., volatiles) content suffice to explain the increase
in magmatism along the Labrador margin. Although the north-
ward decrease in margin width indicates a decrease in the amount
of extension, it does not necessarily correlate with a decrease in
extension rate (see Supplementary Note 1 and Table 1). Lower to
Upper Cretaceous syn-rift packages are well imaged in seismic
reflection from the southern and central segments, providing a
good constraint on the duration of rifting, whereas the lack of
obvious syn-rift structures in the northern segment hinder any
inference about the timing of extension5,32,33. On the other hand,
tomography data from the Canadian Shield suggests that the
Archean terrains and the surrounding Proterozoic to Palaeozoic
domains are underlain by a geochemically different upper
mantle29,30. The complex tectonics history of these domains
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seems to result in variable degrees of chemical depletion of the
underlying mantle lithosphere30.

Discussion
Our geodynamic models emphasise the role of pre-rift rheological
heterogeneities in defining rift evolution and crustal architecture
along rifted margins. The results of the 2-D experiments are con-
sistent with previous numerical studies on the role of rheology in
lithospheric 10–14, and demonstrate that the initial strength of the
lower crust (i.e., composition and temperature), geothermal gra-
dient, and the competition between frictional and viscous strain
(i.e., decoupling) dictate the nature and timing of tectonic processes
controlling lithospheric thinning. However, the 3-D models with
variable lithosphere rheology between the southern, central, and
northern segments provide new insights into how lateral rheological
variation can promote segmentation along rifted margins.

The segmentation is not only expressed by a reactivation of pre-
existing structures (e.g. sutures and shear zones), as shown in pre-
vious studies, but can also be driven by a change in the processes
controlling rifting within each segment, as indicated by our 3-D
models. It manifests laterally in the distribution of rift structures, the
variability in crustal architecture, and the change in the timing and
magmatic budget of continental breakup. In addition, this magmatic
budget variability is more likely to be driven by changes in the
extension rate during rifting and/or changes in the geochemistry
(i.e., fertility/depletion) of the mantle underneath the rifted plate.

We note that most Atlantic margins exhibit some degree of
segmentation and along-strike variability3. The Scotian margin,

for instance, shows major changes in the crustal architecture and
the magmatic budget during breakup, with a magma-poor seg-
ment in the north and a magma-rich segment in the south48.
Whereas the Norwegian margin, on the other hand, appears to be
affected by a strong structural segmentation from the earliest
phases of extension preserved in the proximal domain49,50 to
segmentation along the necking and hyperextension-exhumation
domains51. Unlike the Labrador Sea, which opened perpendicular
to Precambrian terrains, these margins initiated on, and parallel
to, Palaeozoic Appalachian and Caledonian terrains, respectively,
with a substantially more complex structural inheritance.

Indeed, recent detailed mapping along the proximal Norwegian
margin demonstrates strong structural inheritance at a range of
scales49. Nonetheless, because the basement terrains do not
continue into the un-rifted onshore domain, their pre-rift litho-
spheric properties (i.e., composition and thermal structure)
remain enigmatic. While the assimilation of such pre-rift struc-
tural inheritance into numerical simulations presents significantly
more challenges than the simulations presented here, they also
provide new opportunities to rigorously examine the relationship
between inherited shear zone rheology and extensional reactiva-
tion. In examining such complex structural inheritance scenarios,
future modelling efforts may include the effects of grain size
evolution and strain healing to help provide further constraints
on lithospheric and rifted margin processes.

The Labrador Sea provides an ideal natural laboratory to con-
strain the pre-rift variations of the basement lithospheric properties
and examine their impact on rifting processes, segmentation, and
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Fig. 5 Decompression melt calculation. Decompression melting generated during lithospheric stretching, using temperature and pressure outputs from
the 3-D models (i.e., 5 and 10mm yr−1 extension rate). Calculations are based on the parametrization for batch melting of anhydrous and hydrous
peridotite47 (see parameters in Supplementary Table 3). We compute the volume of generated melt assuming different extension rates (5 and 10mm yr−1)
and different water content in the mantle (0 and 0.05 wt%). The total melt volume produced at each time step is shown for the entire 3-D model (a) and
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respectively, assuming an extension rate of 10mm yr−1 and a mantle with 0.05 wt% water content. BU: continental breakup.
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nature of continental breakup. Our findings show that variations in
heat flow, lithospheric and crustal thickness and composition exert
a first-order control on the evolution of rifted margins, which in
most cases initiate on a lithosphere with strong inherited lateral
heterogeneities. We also demonstrate that observations from mar-
gin hinterland could be used as a proxy to gain insights into the
initial (thermal and compositional) state of the lithosphere.

Methods
Governing equations. We model the thermal-mechanical evolution of con-
tinental extension in a heterogenous initial lithosphere using the open-source
and CIG-supported finite element code ASPECT version 2.0.1-pre43,44. The
ASPECT version and parameter files required to reproduce our experiments
can be found in the following GitHub branch: https://github.com/naliboff/
aspect/tree/labrador_sea_gouiza_naliboff_2020.

Velocity and pressure are solved for assuming incompressible viscous flow,
where the Stokes equations are defined as:

∇ � u ¼ 0 ð1Þ

�∇ � 2 μ_εðuÞ þ ∇p ¼ ρg ð2Þ
Above, u is velocity, μ is viscosity, _ε is the strain rate, p is pressure ρ is density,

and g is gravity.
Temperature evolves through a combination of advection, heat conduction,

shear heating, and adiabatic heating:

ρCp
∂T
∂t

þ u � ∇T
� �

� ∇ � ðκρCpÞ∇T ¼ ρH þ 2η_εðuÞ þ αTðu � ∇pÞ ð3Þ

where Cp is the heat capacity, T is temperature, t is time, κ is thermal diffusivity,
and H is the rate of internal heating. Respectively, the terms on the right-hand side
correspond to internal head production, shear heating, and adiabatic heating.

Density varies linearly as a function of the reference density (ρ0), thermal
expansivity (α), reference temperature (T0), and temperature:

ρ ¼ ρ0ð1� αðT � T0ÞÞ ð4Þ

Rheological formulation. The constitutive behaviour combines non-linear viscous
flow with brittle failure52, with viscous flow following a dislocation creep (Eq. (5))
in the lithosphere:

σ 0II ¼ A�1
n _ε

1
n
II e

QþPV
nRT ð5Þ

Within the asthenosphere, viscous flow is a composite (harmonic average) of
dislocation and diffusion creep (Eq. (6)):

σ 0II ¼ A�1 _εd
p
ne

QþPV
nRT ð6Þ

Above, σ 0II is the second invariant of the deviatoric stress, A is the viscous
prefactor, n is the stress exponent, _εII is the second invariant of the deviatoric strain
rate (effective strain rate), Q is the activation energy, P is pressure, V is the
activation volume, T is temperature, and R is the gas constant, d is grain size, and p
is the grain size exponent.

Brittle (plastic) behaviour follows a Drucker-Prager yield criterion formulation,
where the yield stress in 3-D is a function of the cohesion (C), angle of internal
friction (ϕ), and pressure (P):

σ 0II ¼
6C cos ϕþ 2 P sin ϕffiffiffiffiffiffi

ð3Þ
p

ð3þ sin ϕÞ ð7Þ

To help localize deformation and account for geologic observations of strain
localization, we track the accumulation of plastic strain (invariant form) and
weaken the cohesion and friction linearly by a factor of 4 between plastic strain
values of 0.5 and 1.515,19.

The procedure for calculating the viscosity at every point follows the viscosity
rescaling method, which first compares the predicted effective stresses from viscous
flow and plastic failure. If the viscous stress exceeds the plastic yield stress, the
viscosity is reduced so the effective stress exactly matches the plastic yield
stress23,52.

Discretization and non-linear solvers. Throughout the model domain we use
quadratic elements (Q2) elements to solve the advection-diffusion equation for
temperature, while the Stokes equation is solved on elements that are quadratic for
velocity and continuous linear for pressure (Q2Q1). The element size is 10 km
beneath 300 km depth, 5 km from 100 to 200 km depth, and 2.5 km above 100 km
depth. In total, the 3-D numerical simulations contain ~463 million degrees of
freedom. Compositional fields are used to track and advect distinct lithologic
domains (e.g. rock types) and other time-dependent quantities (strain). The use of
discontinuous Galerkin element with a limiter for compositional fields53 minimizes
diffusion of distinct layers and improves the accuracy of interface advection
through time.

Nonlinearity introduced by the constitutive model is resolved using standard
Picard iterations for the velocity and pressure to a tolerance of 10−4. In most
models we use a conservative maximum time step of 20,000 years to limit
numerical instabilities during advection and improve the non-linear convergence
behaviour. This value is adjusted proportionally as the boundary velocity values
increase or decrease. We use this outlined numerical approach to construct a series
of 2-D and 3-D continental rifting simulations that reveal the relationship between
initial lithospheric structure and rifted margin structure. In order to provide a
robust sensitivity analysis of key modelling variables, we first carefully consider the
geologic constraints on the pre-rift lithospheric structure.

Initial conditions and material properties. The simulations in this study use a
wide range of initial conditions (composition, temperature) and material properties
to characterize different scenarios for pre-rift lithospheric structure. The details of
these simulation features and the methods used to define them are outlined in
Supplementary note 3.

Future model improvements. The forward modelling software used in this study
(ASPECT) is community driven, actively developed, and used for a wide range of
mantle convection and lithospheric dynamics investigations. In the duration since the
models in this study were designed and run, development on portions of the code
relating to lithospheric rheology, adiabatic heating, material tracking, free surface sta-
bilization, and non-linear solver schemes has occurred. While these changes do not
affect the first- or second-order conclusions reached in this study, future investigations
should take advantage of new or updated functionality. Readers wishing to build on the
results presented here are encouraged to contact the authors for advice and guidance on
how to modify the provided parameter files to take advantage of these changes.

Data availability
The modelling results generated in this study have been deposited in the Mendeley Data
Repository (https://doi.org/10.17632/9h3vjvn2ms.1).

Code availability
The code ASEPCT, used in this work, is open source and can be downloaded at https://
aspect.geodynamics.org/. The code version of ASPECT and parameter files required to
reproduce our experiments are freely available on GitHub at https://github.com/naliboff/
aspect/tree/labrador_sea_gouiza_naliboff_2020. We encourage any readers that would
like to use the methodology and parameter files presented here to contact us in order to
take advantage of recent improvements to ASPECT. ASPECT is built on the open‐source
finite element package deal. II, which we built (version 9.0.0) through the candi
installation package (https://github.com/dealii/candi). Additional dependencies built
through candi include Trilinos (12.10.1) and p4est (2.0.0). Detailed instructions for
building ASPECT and deal. II on the XSEDE‐supported supercomputer Stampede2 are
available at https://github.com/geodynamics/aspect/wiki.
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