
  

Abstract— There are 50 billion pieces of litter in the 

U.S. alone. Grass fields contribute to this problem because 

picnickers tend to leave trash on the field. We propose 

building a robot that can autonomously navigate, identify, 

and pick up trash in parks. To autonomously navigate the 

park, we used a Spanning Tree Coverage (STC) algorithm 

to generate a coverage path the robot could follow. To 

navigate this path, we successfully used Real-Time 

Kinematic (RTK) GPS, which provides a centimeter-level 

reading every second. For computer vision, we utilized the 

ResNet50 Convolutional Neural Network (CNN), which 

detects trash with 94.52% accuracy. For trash pickup, we 

tested multiple design concepts. We select a new pickup 

mechanism that specifically targets the trash we 

encounter on the field. Our solution achieved an overall 

success rate of 80%, demonstrating that autonomous 

trash pickup robots on grass fields are a viable solution. 

I. INTRODUCTION 

Litter continues to be a significant problem around the 

world. Indeed, a 2020 study revealed that, in America alone, 

there are 50 billion pieces of litter [1]. Furthermore, this 

statistic has been increasing since 2010 [2]. 

There have been robotic solutions that tackle different 

aspects of litter, notably on beaches and water [3][4]. Beach-

cleaning robots take advantage of sand’s forgiving nature, 

allowing simple sifters to be implemented effectively. There 

are also water-cleaning robots which leverage water currents: 

the movement of water groups the trash together, removing 

the need for autonomous movement. 

Grass terrain presents its own challenges. Grass is a living 

organism; sifting methods used in the sand would damage the 

grass. Indeed, Roomba-style continuous vacuuming and 

brushing would dig up the roots. Furthermore, litter is spread 

out in the field, and autonomous navigation is required to 

reach it. 

There have been robotic solutions that work in conjunction 

with humans [5]. In this method, human workers still need to 

pick up the litter, thus making it an incomplete solution to 

litter clean up. 

There have also been research that simulates trash 

collecting robots in a virtual environment. Such research 

tends to simplify the problem. One such article focuses only 

on the path planning aspect and does not propose a design for 

the robot [6]. Instead, it creates a 2D environment for the robot 

to traverse, assuming perfect sensor data. This does not 

account for sensor noise and variability of actions in the real 

world. Another article proposes a design for a trash collecting 

robot [7]. However, the robot is only simulated in Solidworks. 

It was neither constructed, nor field tested. 

Autonomous cleaning robots on land have also been 

proposed. For instance, one cleaning robot leverages 

ultrasonic sensors to detect trash [8]. However, the design 

would not function in grass fields. Furthermore, the ultrasonic 

sensor would easily mistake obstacles for trash, 

 Previous research on using autonomous robots on grass 

fields to pick up litter has been limited. A prior article 

proposed a robot which utilizes a 5 degrees-of-freedom arm 

and a ResNet Convolutional Neural Network (CNN) that does 

image segmentation [9]. The robot differentiates between 

different types of trash, meaning it can only detect the types 

of trash it has been trained on. Furthermore, the path planning 

of the robot is limited, only allowing the robot to cover 

rectangular areas. 

This paper expands on current research, proposing a robot 

that can pick up a wide variety of trash, and cover a grass field 

of any shape and size with maximum efficiency. To 

accomplish this, we draw upon research done in autonomous 

navigation, path planning, and image classification.  

The most versatile algorithm for path planning is 

simultaneous localization and mapping (SLAM). This method 

is utilized when the robot must actively gather information 

about and traverse the area at the same time [10]. This 

algorithm is prevalent in room cleaning robots but does not 

produce the optimal path: the robot will double back on itself 

whilst exploring the area. Instead, we chose a different 

solution called Spanning Tree Covering (STC) algorithm. 

When given some information about the area’s shape and size, 

the algorithm first divides the area to cover into cells 

corresponding to the detection area. Then, it follows a tree that 

spans the entire graph, covering the area only once [11]. 

There has also been significant research done in using 

image segmentation and CNNs to detect trash [12][13]. The 

Trash Annotations in Context (TACO) dataset is used for 

training such models due to its varied environments and types 

of trash [14]. This approach, however, does not meet the needs 

of our project. By using image segmentation, the models are 

limited to the 60 classes of trash in the TACO dataset. 

Furthermore, these research use artificial backgrounds to 

highlight the trash when testing the model [12]. In contrast, 

we aim to detect a wider variety of trash beyond the TACO 

dataset and detect on a natural background. To accomplish 

this, we decided on an image classification model, with the 
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two classes being “trash” and “no-trash”. We also collected 

our own dataset of 18,154 images to ensure that the model 

performs well. 

Lastly, there has been much research done in robotic pickup 

methods. The research is focused on precise pickup 

mechanisms that can pick up single items at a time. These 

methods typically use a robotic arm to manipulate an end 

effector [9]. As for the end effector, research has been done in 

soft grippers, which can grab a wider range of items. One such 

end effector is the granular jammer, which deforms around 

the item to pick it up [15]. However, this method relies on a 

solid edge or corner to deform around; this makes the 

mechanism ineffective against flimsy pieces of plastic litter. 

We tested multiple designs before choosing a pickup 

mechanism inspired by the bow rake. By brushing an area of 

the grass, it can pick up trash that rests on the grass. This takes 

advantage of the lightweight nature of the trash we are picking 

up to perform better than other methods. 

II. METHODOLOGY 

A. Robot Structure 

The main structure of our robot must be adaptable as 

components and modules are added to the robot while still 

providing a stable structure on which to build the robot from. 

We decided to pursue a prefabricated robot chassis from 

SuperDroid Robots to house the drive motors, which are REV 

Neo 775 Pro motors controlled with REV Spark MAX Motor 

Controllers. We utilized T-Slots to build shelves and housing 

for the other components and mechanisms.  

The main robot processor is the roboRIO. We also utilized 

the Arduino ecosystem as an interface between the roboRIO 

and components including limit switches, linear actuators, 

GPS module, and a computer co-processor. 

B. Autonomous Navigation 

There are several criteria the autonomous navigation 

solution must meet. First, the solution must limit the robot to 

only the coverage area. Many grass fields have fences 

surrounding them; any attempted movement out of the field 

would result in a crash. Furthermore, the solution should 

avoid any obstacles in the coverage area, such as trees, rocks, 

and signs. Finally, the field traversal should not double back 

on itself. This ensures that we minimize the amount of time it 

takes to traverse the field. Accomplishing these tasks will 

require the robot to know its location and orientation in the 

field. The following paragraphs will present our approach. 

1) Path Planning 

Optimized path planning plays a crucial role in having an 

efficient robot. The algorithm we decided to use is the STC 

algorithm [11]. It is a general yet methodical solution to path 

planning when given only the vertices of the area and 

obstacles. As shown in Figure 1, the robot implements the 

algorithm as follows: 1) The robot is given the vertices of the 

area it needs to cover, and vertices of any obstacles in the area. 

2) The robot splits the area to cover into a grid of 2 x 2-unit 

squares, with a unit square (0.3 m x 0.3 m) representing the 

size of the detection zone. 3) Generate a tree using the grid of 

2 x 2-unit squares. This tree represents the “walls” from which 

the robot will plan its path. 4) From the starting point, which 

is where the robot is positioned initially, the path is created by 

keeping the wall on the path’s right side until it gets back to 

the starting position. Once this is done, the entire area will 

have been covered once. 

 
Fig. 1: Visualization of STC Algorithm. In 2), the thick blue lines mark the 2 

x 2-unit squares, while the thin blue lines mark the unit squares. In 3), the 
dark blue lines mark the tree generated from the algorithm. In 4), the red lines 

mark the path the robot follows. 

2) Localization 

To perform autonomous navigation, we need precise and 

accurate positioning data. The common solution is Global 

Positioning System (GPS). However, GPS itself is only 

accurate within a 4.9-meter radius in optimal conditions [16]. 

This is too coarse to navigate safely and accurately; if the 

robot is adjacent to a fence, it risks running through the 

barrier. However, combining Real-Time Kinematic (RTK) 

with GPS allows the robot to achieve location accuracy down 

to 0.01 m. As shown in Figure 2, RTK-GPS uses a separate 

base station whose exact location is known. When the base 

station receives a location estimate from the GPS signal, it 

calculates the error in that estimate. If the base station is close 

enough to the robot or rover—less than 10,000 m away—the 

location error of the base station can be used to correct the 

rover’s location error down to 0.01 m [17][18][19]. In 

addition, there are many different RTK networks with 

widespread coverage, making RTK-GPS an easy and 

inexpensive solution [20]. 



  

To implement RTK-GPS, we used a ZED-F9P breakout 

board that is part of the Arduino Ecosystem. It gives the robot 

an RTK-GPS signal every second [21]. 

 
Fig. 2: RTK-GPS Implementation Diagram. The corrections calculated by the 

base station (reference station) are sent to the robot, which uses it to correct 

the GPS data of its own location. 

Due to the slow update frequency of the GPS, we also used 

a gyroscope and dead reckoning to estimate our location 

between GPS signals. We used the navX2-MXP Inertial 

Navigation Unit (IMU) board as our gyroscope. During 

testing, we observed yaw drift which caused inaccuracies in 

the robot’s position estimation. To rectify this, our system 

uses two GPS signals that are recorded apart from each other 

when the robot is driving in a straight line. From these 

readings, our system uses the following equation to calculate 

and correct the error from the IMU: 

Δ𝑌 = arctan (
Δ𝜙

Δ𝜆
) − 𝑌 

Where Δ𝑌 is the error, Δ𝜙 is the change in longitude, Δ𝜆 is 

the change in latitude, and 𝑌 is the estimate from the IMU. 

To test this algorithm, Figure 3 shows the graph of two 

different autonomous navigation trials: A) is the path when 

the robot is not using our correction algorithm, and B) is the 

path when the robot is. As shown, our yaw drift correction 

algorithm significantly boosts the accuracy of the robot. In A), 

the robot’s location estimate (orange) does not line up with 

the calculated path (blue). Furthermore, there is a jump every 

so often of the orange line, signaling that the robot has a poor 

estimate of its location, which is drastically corrected every 

time the robot receives a GPS signal of its true location. On 

the other hand, B) depicts a trial using the yaw drift correction 

algorithm. In contrast to A), in B), the robot’s estimated 

location lines up closely with the target path, meaning the 

robot is following the intended path much more closely. In 

addition, there are far fewer jumps in the orange path, 

meaning the robot’s location estimate is much closer to its true 

location. 

 

Fig. 3: Graph of robot path without calibration (A) vs. with calibration (B). 

The total area is 7.701 square meters. In both graphs, the blue line is the path 

to follow; the gray nodes are the locations where the robot receives a GPS 
signal; and the orange nodes are the estimated locations between GPS signals. 

C. Computer Vision Machine Learning Trash Detection 

Trash identification is an integral part of the project. To be 

able to detect any type of trash, we utilize research in CNNs. 

To ensure we could detect all types of trash, we use image 

classification instead of segmentation, defining two classes—

trash and no-trash. By classifying into these two categories, 

the model learns to generalize the characteristics of trash to a 

variety of shapes and sizes. 

We first need a feasible way to gather thousands of pictures 

of trash and grass. There are existing trash datasets, notably 

TACO Dataset [14]. However, this dataset is small, with only 

1500 annotated images. Furthermore, TACO contains a wide 

variety of backgrounds, whereas our problem focuses on a 

grass background. Consequently, we decided to create our 



  

own dataset. To do so, we created a python script that utilized 

the camera mounted on our robot to rapidly take frames from 

the video feed. By predefining what the camera is looking 

at—trash or no-trash—the robot puts the images into their 

respective folder, without human labeling. Next, we 

augmented the data using the techniques outlined in Table I. 

This was to account for the varied grass color and texture of 

different local fields: including sparse blades, dense clumps, 

and yellow dried out fields as shown in Figure 4. Through 

these techniques, we reached 18,154 images, which were split 

into a training and validation dataset. The test images were 

sampled from a different dataset, which we gathered from a 

different location than where the training and validation 

dataset was collected. The testing dataset has 6,093 images, 

with 2,920 ‘no-trash’ images and 3,173 ‘trash’ images. 

TABLE I: Data augmentation techniques. 

Augmentation 

Used 
Description 

Rotation 
To generate more than one training data point 
from one image 

Hue 
To account for different colors of grass, including 

lush grass and dried yellow grass 

Brightness 
To account for testing in different lighting 

conditions 

Saturation 
To account for quality of lighting & weather 

conditions. 

 

 
Fig. 4: Variable grass conditions seen in parks. 

Next, we trained three different models: EfficientNet, 

MobileNet, and ResNet50. We compared the validation 

accuracy and test accuracy of each model, as shown in Table 

II. While all three models had >96% validation accuracy, the 

ResNet50 model performed better on the test dataset with a 

94.52% test accuracy, compared to the 83.99% and 92.71% 

accuracy of the MobileNet and EfficientNet respectively. 

From these results, we decided to implement the ResNet50 

model for our project. 

TABLE II: Accuracies of different models 

Model Name 
Validation 

Accuracy 
Test Accuracy 

MobileNet 96.53% 83.99% 

EfficientNet 96.61% 92.71% 

ResNet50 96.36% 94.52% 

The flowchart of the trash detection algorithm is shown in 

Figure 5. A webcam gives a live feed of what is in front of the 

robot. Each frame is fed to the python trash detection script 

running on the laptop connected to the webcam. The frame is 

then downsized to 300 x 300 pixels to increase inference 

speed; the ResNet50 model makes an inference from this 

frame. Since false positives are better than false negatives 

(rather excessively pickup than miss pieces of trash), we set 

the threshold for inferring ‘trash’ to 50%. The prediction is 

then sent to the roboRIO. To minimize false positives caused 

by this low threshold, the roboRIO takes the moving average 

of 10 predictions. If the average is more than 90% trash, the 

robot begins the trash pickup mechanism. 

 

 
Fig. 5: Computer vision trash identification flowchart. 

D. Trash Pickup Mechanism 

Autonomously picking up litter is a hard task, with many 

prior papers using elaborate techniques such as origami 

design [22], Fin-Ray effect gripper [23], and granular jammer 

[15]. To select the best pickup design for our task, we tested 

existing designs as well as common household methods. For 

each mechanism, we simulated a robotic movement. We used 

10 different pieces of trash from local fast-food places against 

each pickup method. For each piece of trash, we had 4 pickup 

attempts. The result of our testing is shown in Table III. 

From our results, we found the most promising pickup 

method to be the rake pickup. It picks up trash in an area rather 

than singular pieces of trash, which would be more effective 

to implement. The rake picks up trash when the tines are 

parallel to the ground. This allows part of the tines to skirt the 

grass like a comb through hair. This leaves the grass alone but 

will pick up trash resting on top of the grass. Once the trash is 

picked up, however, the mechanism cannot move the litter to 

a compartment inside the robot. To solve this, we used the 

brush in junction with the rake pickup concept to sweep the 

trash picked up into a receptacle in the robot. 

 

 

 



  

TABLE III: Trash pickup methods tested. 

Image Accuracy Comments 

Fin-Ray 

Grabber 

65.0% 

    The Fin-Ray effect gripper [23] is 

inspired by the physiology of fish fins, 
gripping more around the object. 

 While the Fin-Ray effect gripper does work 

well for solid objects, there was no 
advantage to other established pickup 

methods, like the Reacher Grabber. 

Granular 

Jammer 

12.5% 

    The granular jammer [15] has three parts: 

the granules, boundary layer membrane, and 
a vacuum pump. Once the membrane filled 

with granules is pressed against an object, 
the vacuum removes air and locks the 

granules in place. This creates the grip force. 

    The granular jammer relies on solid 

protrusions on the object to grip on and hold. 

Without this, it won’t work. Thus, the 

granular jammer works poorly on soft trash, 
like bags, wrappers, and flat boxes. 

Reacher 
Grabber 

70.0% 

    The Reacher Grabber [24] is the go-to 

gripper for most. It is quite simple, with a 

single tendon closing a two-point claw when 
tensioned. 

    It performs comparably to the Fin-Ray 

Gripper. The main concern is that it can only 
pick up from one place at a time. This means 

the mechanism would not be feasible 

without image segmentation. 

Vacuum 

40.0% 

    The vacuum has a 0.02 m x 0.04 m 

opening which sucks up anything directly 

below it. This makes it effective with small 
objects. 

    However, bigger, soft trash will clog the 

opening, making the vacuum inoperable. 

Brush & 
Dustpan 

65.0% 

    The brush and dustpan work by sliding 

the brush towards the dustpan, usually in an 

elliptical motion. For the sake of simplicity, 
we used a lateral motion parallel to the 

ground. 

    It works quite well, picking up all sorts of 
trash. The only drawback is it tends to 

uproot the grass. 

Rake 

(Tines) 

82.5% 

    The bow rake works by sliding in the 
grass, like a comb through hair. Since the 

trash is light, it would rest on top of the 

grass. We would slide underneath and pick 
it up. 

    This method also works quite well for 

light pieces of litter, which we encounter 
often. 

III. RESULTS 

We tested our completed robot, shown in Figure 6, against 

10 commonly found pieces of trash at the park, shown in 

Figure 7. These pieces of trash are of different varieties to 

ensure a thorough and accurate representation of the research. 

The varied geometry of the trash demonstrates our robot’s 

capability to pick up any piece of trash, no matter shape or 

size. Furthermore, to demonstrate the ability of our algorithm 

to detect any type of trash, half of the trash we used in the 

final test are not in the dataset used to train the model. 

 
Fig. 6: Final robot design. The camera sees a 0.3 m x 0.3 m square in front of 

the robot. If there is trash in that area, then the green pickup mechanism is 

deployed. The GPS Antenna is placed at the very top to ensure a strong signal. 

 
Fig. 7: Trash used in final test 

To evaluate the autonomous navigation solution, we tested 

it in our local park. The coverage area is a quadrilateral shape 

with an area of 44.87 square meters, and the robot cleaned the 

area in 16 minutes and 47 seconds. We also included an 

obstacle defined by 3 vertices in the center of the field to 

demonstrate the robot’s ability to avoid static obstacles. We 

evaluated the success of each aspect of the robot in the 

following manner: 

• Autonomous Navigation is rated by the proportion of 

trash the robot drives over (e.g. If 85% of trash is driven 

over by the robot, then the Autonomous Navigation 

success Rate would be 85%). 

• Trash Detection success rate is the proportion of trash 

detected by the robot given that the trash was driven over 

by the robot.  

• Trash Pickup success rate is the proportion of trash 

collected given the trash was detected. The success rates 

from our test are shown in Tabel IV. 

TABLE IV: Success rate of different aspects of the robot. 

Aspect of Robot Success Rate 

Autonomous Navigation 100% 

Trash Detection 90% 

Trash Pickup 89% 

Total 80% 



  

IV. DISCUSSION 

Overall, the robot covered in this research paper performed 

well for the target task. 

The autonomous navigation method we used worked 

without error. The STC algorithm we leveraged was simple 

and efficient, properly covering the field, no matter what size 

or shape. The RTK-GPS gave the robot centimeter-level 

accuracy, allowing the robot to properly follow the generated 

path. Together, this method enabled the robot to navigate to 

every single piece of litter. 

The computer vision trash detection model had satisfactory 

performance. It was able to detect pieces of trash that it did 

not directly train on and maintain a high accuracy. Because 

we set the threshold of a ‘trash’ prediction low, the model 

predicted false positives which were caused by change in 

lighting from shadow. This did not impede the accuracy of the 

robot, though it did slow it down by initiating unneeded 

pickup cycles. This could be solved by increasing the 

confidence threshold at which to predict ‘trash’ or collect 

images specifically of shadows to train the model to ignore 

such variations. The model also failed to detect the small 

bottle cap. However, bottle caps by themselves are not 

common—most are still fastened to the plastic bottle—so this 

is an unlikely case to run into [1]. 

Lastly, the trash pickup mechanism performed at par for the 

target pieces of trash. The light plastic and paper trash was 

exactly what our pickup method was designed for; 

accordingly, it picked up the plastic bottles and wrappers with 

ease. The trash it struggled with was the paper bag, which was 

slightly too big for our pickup method to collect. This can be 

remedied by enlarging the pickup mechanism. This pickup 

method stands to be a new and effective solution. 

V. CONCLUSION 

We designed a robot for picking up trash in grass fields. 

Our trash mostly consists of plastic water bottles, wrappers, 

and boxes that are left from picnickers. The robot must be 

able to autonomously navigate, detect, and pick up trash. As 

shown by our research, such a robot is feasible, and picks up 

80% of trash. We believe this will relieve the strain on 

current park maintenance workers and make our parks nicer 

to visit for everyone. 
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