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ORIGINAL ARTICLE – TRANSLATIONAL RESEARCH

Plasma Exosome Gene Signature Differentiates Colon Cancer
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ABSTRACT

Background. Liquid biopsies have become an integral

part of cancer management as minimally invasive options

to detect molecular and genetic changes. However, current

options show poor sensitivity in peritoneal carcinomatosis

(PC). Novel exosome-based liquid biopsies may provide

critical information on these challenging tumors. In this

initial feasibility analysis, we identified an exosome gene

signature of 445 genes (ExoSig445) from colon cancer

patients, including those with PC, that is distinct from

healthy controls.

Methods. Plasma exosomes from 42 patients with meta-

static and non-metastatic colon cancer and 10 healthy

controls were isolated and verified. RNAseq analysis of

exosomal RNA was performed and differentially expressed

genes (DEGs) were identified by the DESeq2 algorithm.

The ability of RNA transcripts to discriminate control and

cancer cases was assessed by principal component analysis

(PCA) and Bayesian compound covariate predictor classi-

fication. An exosomal gene signature was compared with

tumor expression profiles of The Cancer Genome Atlas.

Results. Unsupervised PCA using exosomal genes with

greatest expression variance showed stark separation

between controls and patient samples. Using separate

training and test sets, gene classifiers were constructed

capable of discriminating control and patient samples with

100% accuracy. Using a stringent statistical threshold, 445

DEGs fully delineated control from cancer samples. Fur-

thermore, 58 of these exosomal DEGs were found to be

overexpressed in colon tumors.

Conclusions. Plasma exosomal RNAs can robustly dis-

criminate colon cancer patients, including patients with PC,

from healthy controls. ExoSig445 can potentially be

developed as a highly sensitive liquid biopsy test in colon

cancer.

Cancer is a leading cause of death worldwide and is the

second leading cause of death in the United States (US).

Colorectal cancer (CRC) is the second most common cause

of cancer-related death in the US, with an estimated inci-

dence of 147,500 new cases and 52,980 deaths in 2021.1

Although most patients with CRC have excellent survival

when diagnosed at early stages and undergo curative
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resection, nearly 25% of patients present with distant dis-

ease at diagnosis and another 35% develop recurrence after

curative intent treatment.2–4

At present, liquid biopsies have become an integral part

of cancer care as they offer a rapid and minimally invasive

technique to detect and evaluate disease progression. First-

generation liquid biopsies utilizing cell-free circulating

tumor DNA (ctDNA) have shown promise in identification

of molecular-residual disease (MRD), somatic gene alter-

ations, and to assess treatment response in CRC; however,

there are significant limitations. Specifically, ctDNA has

poor sensitivity in mucinous cancers5 and peritoneal car-

cinomatosis (PC),6 with ctDNA detected in only 38–53%

of patients with PC.7, 8 We recently reported that ctDNA is

detected at significantly lower levels in PC compared with

visceral metastasis (VM) and is unreliable to detect somatic

gene alterations in gastrointestinal PC.6 Due to its dismal

prognosis and the only site of disease in 44% of patients

with CRC recurrence,9 there is an urgent need to identify

novel blood-based biomarkers that can accurately identify

colon cancer regardless of tumor type and metastasis

location.

Exosomes have gained popularity in recent years as

potential circulating biomarkers in cancer. Exosomes are

stable lipid-bilayer bound nanovesicles (30–150 nm),

released by most cells and found in blood, urine, and other

bodily fluids.10 Exosomes are released more abundantly by

cancer cells and have been reported to carry important

information for cancer cell–cell communication and pro-

gression.11–13 Exosome contents are rich in nucleic acids,

proteins, and lipids, and have similarities to the donor cell,

and hence show great promise as a liquid biopsy tool for

the evaluation of labile biomarkers (protein and RNA).

We hypothesize that plasma exosome gene expression in

patients with colon cancer will allow us to accurately

detect the presence of disease, including PC. In this study,

we sought to identify unique transcriptome profiles in

peripheral plasma exosomes of patients with colon cancer

grouped into non-metastatic (NM), metastatic to liver/lung

(VM), and metastatic to the peritoneum (PC) compared

with healthy controls.

METHODS AND MATERIALS

Patient Samples

Patients with colon cancer were divided into those with

localized disease (NM, n = 14), metastases to liver and

lung (VM, n = 16), and PC (n = 12). Healthy volunteers

who have no personal or family history of CRC or

inflammatory bowel disease were included as controls

(n = 10). Healthy volunteers were included to assess the

relative differential expression of genes in patients. Frozen

plasma samples collected immediately prior to primary

resection, metastasectomy or cytoreduction for the NM,

VM, and PC groups, respectively, were obtained. All

samples were obtained under the auspices of Institutional

Review Board (IRB)-approved studies, following the doc-

umentation of informed consent in accordance with

institutional policies.

Exosome Isolation and Characterization

Exosomes were isolated from patient plasma using

ExoQuick (Systems Biosciences [SBI], Palo Alto, CA,

USA; cat#EXOQ20A-1) following the manufacturer’s

protocol, as previously reported.14–16 Briefly, plasma

samples were thawed on ice and treated with thrombin for

defibrination. The serum-like samples were then cen-

trifuged at 1500 9 g at 4�C to remove any leftover debris.

Cleared serum was treated with ExoQuick overnight at the

recommended ratio. The sample was then centrifuged at

1500 9 g for 30 min to pellet the exosomes. The pellet

was then resuspended in 250 lL of 0.22 lm filtered

phosphate buffered saline (PBS) for further analysis.

Nanoparticle Tracking Analysis

Validation of exosome isolation was performed using

the NanoSight NS300 (Malvern, Inc., Malvern, UK) for

size and concentration as previously reported,17 with

instrument settings as follows: software NanoSight NTA

3.2, camera level 13–15, detection threshold 5, capture

time 60 s, captures 5, flow rate 30. Vesicles were diluted at

a ratio of 1:1000 in filtered PBS to achieve optimal con-

centrations of uniform particle distribution for accurate

sizing analysis. The sample was sonicated for 30 s in a

sonicating water bath and analyzed. Significance was tested

with a one-way analysis of variance (ANOVA) followed by

a post hoc Tukey test, as well as a two-tailed Student t-test

with unequal variance, using a p value of\0.05.

Western Blot Analysis

For Western blots of purified exosomes, vesicles were

solubilized with lysates loaded onto gels according to

protein concentration and nanoparticle tracking analysis

(NTA) quantification. For protein concentrations, the BCA

assay (Pierce, Rockford, IL, USA; 23225) was used as

previously described.15 Proteins (20–40 lg) were separated

using 12% Bis–Tris polyacrylamide gels, transferred onto

polyvinylidene difluoride membranes (Millipore, Danvers,

MA, USA) and probed using the following antibodies:

rabbit monoclonal anti-CD63 (1:1000, SBI; EXOAB-

CD63A-1), mouse monoclonal anti-Calnexin (1:1000,
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Santa Cruz Biotechnology, Dallas, TX, USA; sc-23954).

Secondary antibodies (IR-Dye conjugated) were goat anti-

mouse and goat anti-rabbit immunoglobulin (LICOR,

Lincoln, NE, USA). Immunoreactive bands were detected

using the Odyssey imaging system (LICOR) and quantified

using ImageQuant software.

Transmission Electron Microscopy

Purified exosome preparations (10 lL) were fixed with

an equal volume of 4% paraformaldehyde at 4 �C for 30

min then diluted in a ratio of 1:3 with ddH2O. The fixed

exosomes were then carefully placed on a carbon-coated

200-mesh copper grid for 20 min. The grids were con-

trasted with 1% uranyl acetate and then washed. The

morphology of isolated exosomes was visualized with

transmission electron microscopy (TEM; Talos L120C,

Thermo Scientific, Waltham, MA, USA). The images of

exosomes obtained from TEM were analyzed by ImageJ

software to calculate the radius of exosomes.

Next-Generation Sequencing (NGS) and Bioinformatics

Analysis

Exosomes were processed for total RNA isolation using

the SeraMir Exosome RNA Purification Column kit (SBI;

RA806TC-1) according to the manufacturer’s instructions.

RNA sequencing (RNA-seq) of 52 exosomal plasma sam-

ples was performed using paired-end sequencing on an

Illumina HiSeq (Illumina, Inc., San Diego, CA, USA).

Library preparation and RNA-seq was performed by SBI’s

next-generation sequencing (NGS) services (SBI). Reads

were aligned using BowTie218 to GRCh37/hg19. Read

count normalization (by median of ratios) and differential

expression analysis were performed using the R/Biocon-

ductor19 software package, DESeq2.20 Principal

component analysis (PCA) was conducted using ClustVis

software.21 The Bayesian Compound Covariate Predictor

(BCCP)22 was used as implemented in the BRB-Array-

Tools package (v4.6.0) developed by Dr. Richard Simon

(National Cancer Institute [NCI]) and the BRB-ArrayTools

Development Team.23 The ExoSig445 gene group was

identified as genes overexpressed in cancer cases deter-

mined by DESeq2 as having baseMean read values [ 10,

and with Benjamini–Hochberg adjusted p values\0.0001

for any one pairwise comparison of the controls versus a

cancer type (NM, PC, or VM).

The Gancer Genome Atlas Colon Adenocarcinoma

Gene Expression Comparison

The NCI Genomic Data Commons (GDC) project—The

Cancer Genome Atlas Colon Adenocarcinoma (TCGA-

COAD)—was accessed using the GDC harmonized

RNAseq data.24 TCGA consortium mapped to 57,000

transcripts for the COAD dataset, as well as each of the

other 19 comparison sets (electronic supplementary mate-

rial [ESM] Table 1). Gene-to-gene mapping was

performed between ExoSig445 and TCGA-COAD. Initial

comparison of common gene symbols identified 130 genes.

Using the HUGO Gene Nomenclature Committee (HGNC)

multi-symbol checker,25 alternate symbols were identified

and 9 additional genes were found, resulting in a total of

139 common genes. Of these 139 genes expressed in both

datasets, 58 were found to be overexpressed in colon

cancer tissue in comparison with normal adjacent tissue in

TCGA database. Several non-standard gene symbols in the

ExoSig445 signature, such as DIAPH3-AS1:antisense or

LOC100129636:copy41, were excluded from the gene-to-

gene mapping. In preparation for comparison of the COAD

database with those of other cancer types, redundant

samples were removed from each dataset. The Student t-

test and one-way ANOVA with post hoc Tukey were used

to evaluate gene expression levels between cancer types

and with gene expression between cancer and controls.

Significance was established with a p-value of\0.05.

RESULTS

Patient and Tumor Characteristics

Of the 42 patients with colon cancer, 14 had localized

disease (NM), 16 had VM, and 12 had PC. The median age

of patients in the NM, VM, and PC groups was 67, 58, and

56 years, respectively. The median age of the healthy

controls (n = 10) was 30. In our cohort, including healthy

controls, 55.8% were male and 51.9% were non-Hispanic

White (Table 1).

Among the patients with colon cancer, 61.9% had right-

sided disease, 33.3% had left-sided disease, and 4.8% had

disease on both sides. Moderately or poorly differentiated

tumors were 66.7% of the total, and 35.7% had a KRAS

mutation. The majority of colon cancer patients with

metastasis included in this study had also undergone

chemotherapy treatment (93%) (Table 1).

Isolation Procedure Generates High Purity Populations

of Exosomes

Isolated exosomes were evaluated for size using NTA

with a NanoSight NS300. Small volumes of four samples

from each group were pooled for the exosome characteri-

zation analysis. Exosome populations and concentrations

(Fig. 1a) were compatible with that previously reported for

exosomes by our laboratory and others.14, 16, 26 Indicative
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of the main population in the isolate, the mode vesicle

diameter for each group was as follows: healthy control,

89.7 nm (± 3.5 nm); NM, 120.4 nm (± 3.9 nm); VM, 127.3

nm (± 3 nm); and PC, 124 nm (± 3 nm). Finally, the

exosome concentration measured on the NanoSight showed

that the healthy control group (1.98 9 1011 particles/mL)

had extremely significantly lower amounts of vesicles than

all three of the tumor-bearing groups (ANOVA

p = 0.0000137). Interestingly, the PC exosome concen-

tration (3.17 9 1011 particles/mL) was significantly lower

than both the NM (4.47 9 1011 particles/mL, p = 0.014)

and VM groups (4.31 9 1011 particles/mL, p = 0.027)

To assess EV purity, a BCA assay was performed fol-

lowing isolation. The exosome purity ratio was calculated

to be as follows: healthy control, 5.56 9 109 particles/ug;

NM, 2.37 9 1010 particles/ug; VM, 2.14 9 1010 particles/

ug; and PC 1.41 9 1010 particles/ug (Fig. 1b). This is in

line with the literature for the purity of EV capture using

ExoQuick.27 To avoid possible contamination of our frac-

tion by subcellular components, which are typically from

the mitochondria, Golgi, or apoptotic bodies, we evaluated

the EVs/exosomes for a known exosomal protein marker

(CD63) and one endoplasmic reticulum marker (Calnexin)

(Fig. 1c). Our results indicate that the vesicle preparation

was enriched for those proteins known to be exosomal,

with no ER contamination. To further characterize the

isolated vesicles, TEM was performed to verify morphol-

ogy and size (Fig. 1d). Taken together with the isolation

technique, size, protein expression, and morphology, our

TABLE 1 Study participant characteristics

Healthy controls [n = 10] NM [n = 14] VM [n = 16] PC [n = 12]

Age, years

Median 30 67 58 56

Range (20–50) (45–82) (41–69) (32–63)

Sex

Male 5 5 12 7

Female 5 9 4 5

Ethnicity

Non-Hispanic White 5 5 9 8

Non-Hispanic Black 2 1 1 1

Asian/Pacific Islander 2 5 3 0

Hispanic 1 3 3 3

Histology

Low-grade/well-differentiated – 7 3 4

Moderately differentiated – 5 13 4

High grade/poorly differentiated – 2 – 4

Sidedness

Right – 10 10 6

Left – 4 5 5

Both – – 1 1

KRAS

Wild-type – 3 7 4

Mutant – – 7 8

Unknown – 11 2 –

BRAF

Wild-type – – 8 6

Mutant – – – –

Unknown – 14 8 6

Chemotherapy

No – 13 1 1

Yes – 1 15 11

NM non-metastatic, VM visceral metastasis, PC peritoneal carcinomatosis
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results indicate that these vesicles can be considered

exosomes.

Differential Expression Analysis of Total RNA

The RNA cargo of isolated exosomes was profiled by

RNA-seq. Unsupervised principal components analysis

(PCA) was used to investigate transcriptomic similarities

and differences among patient and control samples in an

unbiased fashion. For this purpose, PCA was performed

using 3000 genes that exhibited the greatest expression

variance across samples, regardless of sample origin. The

PCA clustering revealed a striking separation between

certain sample types. Healthy control samples clustered

together, with some overlap with NM samples, but showed

clear discernment from the PC and VM metastatic samples,

the latter of which showed greater alignment with one

another (Fig. 2a). Notably, this finding indicates that sig-

nificant systemic variation in the RNA cargo of blood-

derived exosomes exists between healthy individuals and

cancer patients, and metastatic cancer patients in particular.

Next, we employed a training and testing approach to

construct classification models using a common classifi-

cation algorithm based on the BCCP, and to validate model

performance on randomly held-out samples. In this anal-

ysis, we created a training set that consisted of control,

NM, and VM cases, and a separate test set consisting of

control and PC cases. Leave-one-out cross-validation was

used to create the classification models in the training set,

and resulting models were evaluated in the test set. Two

models, differing by significance threshold used for gene

selection, were evaluated in parallel. In Fig. 2b, a signifi-

cance threshold of p\ 0.0001 (n = 198 genes) was used to

construct the classifier, and in Fig. 2c, a significance

threshold of p\ 0.00001 (n = 78) genes was used to

construct the classifier. Strikingly, both models resulted in

the significant discernment of control and cancer patient

samples, with a classification accuracy for control and PC

samples of 100% (assuming a classification threshold of[
50% probability for class assignment).

Next, we applied a supervised approach to investigate

differentially expressed genes (DEGs) between control and

patient samples. We employed the DESeq2 algorithm and a

pairwise comparisons strategy (i.e., control vs. NM, control

control
NM
VM
PC

1200

3.00E+10

2.50E+10

2.00E+10

1.50E+10

Pa
rt

ic
le

s/
µg

1.00E+10

5.00E+09

0.00E+00
control

Control

control
130

70

45

Mr X 10–3 Exosomes

NM

NM

VM

VM

PC

NM

VM

PC

NM VM PC

PC CL

Calnexin

CD63

1000800600

Diameter (nm)

Mean size (nm) Mode size (nm) Concentration (particles/ml)

400200

139.2 ± 5.7

158.3 ± 2.6

172.7 ± 4

185.4 ± 2.9

89.7 ± 3.5

120.4 ± 3.9

127.3 ± 3

124 ± 3 3.17 × 1011*

0
0

1

2

3

C
on

ce
nt

ra
tio

n 
(P

ar
tic

le
s/
µL

) 
1 

×
 1

06

4

5

6

7

ba

c

d
1.98 × 1011***

4.31 × 1011

4.47 × 1011

FIG. 1 Characterization of extracellular vesicles from presurgical

plasma samples from colon cancer patient and healthy volunteer

samples. (a) Histogram and table of quantitative analysis of vesicle

diameter and concentration in particles per milliliter from

nanoparticle tracking analysis. Control vesicle concentration is

extremely significantly less (p = 0.0000137), as determined by one-

way ANOVA and a post hoc Tukey test, than the tumor-bearing

samples. PC is also significantly less than VM (p = 0.027) and NM

(p =0.014). (b) Exosome purity ratio was calculated as particles per

microgram of protein ± standard error of the mean. (c) Proteins from

vesicles were analyzed by immunoblotting using exosomal

marker CD63 (positive control) and endoplasmic reticulum marker

Calnexin (negative control), as well as CL. (d) Negative stain

transmission electron microscopy of colon cancer patient exosomes.

NM non-metastatic, VM visceral metastases, PC peritoneal

carcinomatosis, CL cell lysate, ANOVA analysis of variance
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vs. PC, and control vs. VM). The DEGs included mRNAs,

microRNAs and lincRNAs with baseMean read values [
10 and false discovery rate (FDR)-adjusted p values \
0.0001. After filtering of highly prevalent and overlapping

tRNA transcripts with strong internal correlation, 445

genes remained for downstream analyses and were termed

ExoSig445 (Fig. 3a, ESM Table 2). As illustrated by

supervised hierarchical clustering, the DEGs fully delin-

eated the control samples from the cancer samples,

primarily via reduced transcript levels in the control sam-

ples relative to the cancer samples. At a finer level of

correlation, multiple gene expression patterns were

observed to influence the further clustering of colon cancer

samples into 5–6 semi-distinct exosomal subtypes. There

were no significant differences in the gene expression

between the KRAS mutant and wild-type groups. The

BRAF status of the study population was either wild-type

or unknown with a lack of patients with mutations to

compare.

Evaluation of ExoSig445 expression scores (mean log2

expression of ExoSig445 genes) across colon cancer sam-

ples and healthy controls, as depicted in the violin plot

(Fig. 3b), showed a clear delineation between the colon

cancer groups and the healthy controls.

Comparison Analysis of NGS Data with the Cancer

Genome Atlas

Expression of ExoSig445 genes was compared with

those found in TCGA-COAD harmonized cancer database.

Using gene-to-gene mapping, 139 common genes were

identified between the tumor tissue database and the

plasma exosomal gene expression analysis. TCGA data-

base provides gene expression analysis of normal adjacent

tissue and upon comparison of the 139 common genes, 58

were overexpressed in colon cancer tissues, of which 53

were significantly overexpressed (p\ 0.05, FDR-adjusted)

(Table 2). The genes were grouped based on cancer-related

function as reported in the literature (Table 2). Thirty of

the overexpressed genes have been reported to have strong

association with clinical outcomes in various cancers (ESM

Table 3).

The 58 commonly overexpressed genes were then

compared with expression levels in other cancer types

using the same TCGA harmonized datasets. Similar

expression levels were found among all 19 cancer types

assessed without notable differences (Fig. 4a). However,

individual gene analysis confirmed a higher percentage of

genes (53/58, 91%) were overexpressed in the COAD

dataset than in all the other cancer type datasets (Fig. 4b).

Three of the 19 cancer types (ovarian cancer [OV], sar-

coma [SARC], and skin cutaneous melanoma [SKCM]) did
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FIG. 2 Classification of CC exosomal subtypes. (a) Delineation by

unsupervised PCA. Genes were selected based on baseMean read

values[100 (n = 14,898) and ranked by standard deviation across all

samples. PCA was performed using 3000 exosomal genes with

greatest expression variance across samples (i.e., standard deviation

? 0.812–3.314). (b, c) Class prediction using a Bayesian probabilistic

classifier of control and colon cases. To examine the potential

reproducibility of a classification model, a training set comprising of

healthy control, NM and VM cases was used to construct

classification models by leave-one-out cross-validation to

distinguish control from colon cases. Model performance was

evaluated using a separate testing set containing healthy control and

PC samples. Two models, differing by the significance threshold used

for gene selection, were evaluated in parallel. (b) A significance

threshold of p\ 0.0001 (n = 198 genes) was used to construct the

classifier. (c) A significance threshold of p\ 0.00001 (n = 78 genes)

was used to construct the classifier. Posterior probabilities computed

for class assignment are shown for each sample. Both models

predicted PC with 100% accuracy compared with healthy

controls. Cont control (n = 10), NM non-metastatic (n = 14), VM
visceral metastasis (n = 16), PC peritoneal carcinomatosis (n = 12).

CC colon cancer, PCA principal components analysis
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not have enough normal controls to facilitate the analysis

and were hence omitted.

Data Availability

The data generated in the development of ExoSig445 are

available upon request. The data used for tissue comparison

analysis were obtained from TCGA (https://portal.gdc.ca

ncer.gov/).

DISCUSSION

In this study, we demonstrated that peripheral plasma

exosomes from patients with colon cancer contain unique

gene expression patterns that are distinctly different from

healthy controls. We have also discovered that 58/445

overexpressed genes in exosomes (ExoSig445) were sim-

ilarly overexpressed in colon tumor tissue, of which 30

genes have been reported to have significant association

with clinical outcomes. Finally, we show that the shared

overexpressed genes in exosomes from patients with colon

cancer and colon tumor tissue are also shared among dif-

ferent cancer types, indicating common functional

significance across cancers.

First-generation liquid biopsies offer easily accessible

insight into tumor biology but are limited: cell-free DNA/

ctDNA by stability and sensitivity, and circulating tumor

cells by availability and heterogeneity.28 Release of ctDNA

is considered mostly a passive process by shedding of DNA

fragments from apoptotic or necrotic cells.29 On the other

hand, exosomes are released by metabolically active

cells,30 and are enriched with significant information that

can provide a more accurate and inclusive understanding of

tumor status.

We observed that the exosome concentrations were

significantly higher in cancer groups compared with heal-

thy controls, in concordance with other studies.31 The lack

of concentration difference between the NM and VM

groups is likely attributed to the fact that the majority of

patients with metastatic disease (26/28, 93%) were treated

with chemotherapy compared with patients in the NM

group (1/14, 7%). However, it is interesting to note that the

PC group had lower concentrations compared with the VM

group despite similar chemotherapy conditions suggesting

exosome concentration differences based on metastatic

location. A recent prospective clinical study of plasma

exosomes from patients with CRC showed that the exo-

some concentrations were higher in patients with

metastatic disease compared with those with localized

disease, and the concentrations decreased after
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clustered by average linkage analysis using exosomal RNAs (rows)

identified as overexpressed in colon cancer cases as follows. DEGs

were determined by DESeq2 analysis via pairwise group comparisons

(i.e., Cont vs. NM, Cont. vs. PC and Cont vs. VM). Genes having

baseMean read values [10, and with Benjamini–Hochberg adjusted

p-values \0.0001 for any one pairwise comparison were identified.

After filtering of prevalent and overlapping tRNA transcripts, 445

distinct transcripts (termed ExoSig445) were identified as highly

significantly overexpressed in the colon cancer cases relative to

controls. Multiple gene expression patterns were identified that

clustered colon cancer samples into 5–6 distinct exosomal subtypes.

Healthy control samples clustered apart from colon cancer samples

due to a relative reduction in transcript levels. Red color indicates

above mean expression; green color denotes below mean expression.

Color intensity reflects the magnitude of expression level. (b) Violin

plot of ExoSig445 expression scores defined as the per-sample

arithmetic mean of the 445 genes. Black vertical bars indicate the

interquartile range; black circle denotes the mean. Horizontal dashed

lines indicate the range of no overlap in expression scores between

healthy controls and colon cancer cases. Cont control (n = 10), NM
non-metastatic (n = 14), VM visceral metastasis (n = 16), PC
peritoneal carcinomatosis (n = 12), DEGs differentially expressed

genes
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FIG. 4 Comparison of ExoSig445 with TCGA. Of the 445 genes

identified in ExoSig445, 139 were common to the TCGA-COAD

database. Fifty-eight of those genes were overexpressed in tumor

samples relative to adjacent non-malignant (normal) tissues. (a) When

comparing the average expression values of the genes as a whole, no

difference was found between COAD tumor expression and

expression in other TCGA cancer types. (b) COAD tumor

expression of individual genes was analyzed in comparison with

normal tissue expression, and statistical significance was evaluated

using Student’s t-test. Fifty-three of the 58 overexpressed genes were

statistically significant in COAD. Other cancer types had a lower

percentage of significant overexpression. OV, SARC, and SKCM did

not have enough normal tissue in the database to conduct statistical

analyses. BLCA bladder urothelial carcinoma, BRCA breast invasive

carcinoma, CESC cervical squamous cell carcinoma and endocervical

adenocarcinoma, COAD colon adenocarcinoma, ESCA esophageal

carcinoma, GBM glioblastoma multiforme, HNSC head and neck

squamous cell carcinoma, KIRC kidney renal clear cell carcinoma,

LIHC liver hepatocellular carcinoma, LUAD lung adenocarcinoma,

OV ovarian serous cystadenocarcinoma, PAAD pancreatic

adenocarcinoma, PRAD prostate adenocarcinoma, READ rectum

adenocarcinoma, SARC sarcoma, SKCM skin cutaneous melanoma,

STAD stomach adenocarcinoma, UCEC uterine corpus endometrial

carcinoma, TCGA The Cancer Genome Atlas

TABLE 2 Cancer-related functions of ExoSig445 and TCGA-COAD shared overexpressed genes

Tumor growth Migration and invasion Immune involvement Metabolism Cell death Unknown

*BACE237

*BMI138

CCNC39

*DLGAP540

EAF141

HBS1L42

*LINC0021043

*MIR318244

NAA4045

NHLRC346

PTCSC347

PTS48

*REXO449

*SF3B150

SIX651

*SLC41A352

*TAZ53

VAC1454

*WDR455

ZNF69156

*ANGEL257

*EIF4A158

PKN359

POMGNT160

SETD661

SHF62

SPAG163

*STX664

ADAM265

C19orf6666

*CALCA67

*RBM1268

SNHG1269

TNFRSF970

*ALDOB71

CDC25B72

MRPS1473

*PLA2G374

RAET1K75

SELENOO76

SLC13A377

SLC25A673

*HSPBP178

SLC41A179

ZNF37BP57

AGPAT5

CLRN2

GPR89B

KCVN2

MANSC1

METTL12

MFSD2B

MIR6772

OCSTAMP

SYNDIG1

TATDN2

UBFD1

ZSCAN25

*Multiple identified cancer functions

TCGA-COAD The cancer genome atlas colon adenocarcinoma

3840 P. A. Vallejos et al.



chemotherapy. It was also noted that the exosome con-

centrations were influenced by the extent of metastatic

disease and increased with disease progression.32

We observed that the exosomal gene expression patterns

in metastatic disease were clearly different from the heal-

thy controls. One of the key observations of this study is

that the ExoSig445 gene signature found in colon cancer

patient-derived exosomes can accurately detect the pres-

ence of disease, including in patients with PC, 100% of the

time (Fig. 2). This is of major clinical significance as

ctDNA has poor sensitivity in detecting PC,7, 8 and relia-

bility in detection independent of tumor location is crucial

for meaningful treatment decisions. To the best of our

knowledge, this is the first study to evaluate plasma exo-

some gene expression in patients with colon cancer PC.

These observations in combination with previous studies

from our group in which we have shown the stability of

exosomes across a wide range of sample collection con-

ditions33 gives evidence of the utility of exosomes as a

liquid biopsy tool.34

The comparison of ExoSig445 with colon tumor gene

expression in TCGA database shows several important

findings. Only a subset of genes overexpressed in the

exosomes (58/445) was similarly overexpressed in the

tumor tissue. This finding is expected, as exosomal loading

is a highly regulated process resulting in a genetic profile

that supports a function beyond simple replication of cel-

lular/tissue character.35, 36 Therefore, comparison with

tissue gene expression seeks not to find duplication but to

identify validated biomarker genes within a novel exoso-

mal gene signature. Nevertheless, the 58 overexpressed

genes shared between exosomes and colon tumor tissue

have important functions in cancer (Table 2). Further

comparison conducted across common cancer types avail-

able in TCGA database demonstrated a remarkable

consistency and uniformity of expression of the gene sig-

nature across multiple cancer types, suggesting a high

correlation between gene expression and the processes of

carcinogenesis. However, it is important to note that indi-

vidual gene expression analysis demonstrated a higher

percentage of these genes to be overexpressed in colon

tumor tissue than the other cancer types, indicating signa-

ture specificity for colon cancer. Finally, these findings

support the hypothesis that genes extracted from a

heterogenous peripheral plasma exosomal population con-

tain detectable tumor-specific biomarkers.

In summary, despite the inherent heterogeneity of

plasma exosomes, we demonstrated that ExoSig445 is

capable of differentiating patients with colon cancer,

including PC, from healthy controls. Our study sheds light

on the translational potential and the distinct advantages of

exosome liquid biopsy. We are currently conducting a

prospective, longitudinal clinical study in which patients

with colon cancer are being monitored in various stages of

treatment and surveillance to correlate exosome concen-

trations and gene signature with clinical outcomes. This

will help refine the exosome gene signature and understand

the predictive and prognostic value of the overall gene

expression patterns. Further studies are also needed to

evaluate the significance of the shared gene expression in

plasma exosomes from patients with different cancers.

Limitations

Since this is an initial exploratory study utilizing

archived plasma samples, there are important limitations.

The blood samples analyzed in this study were collected at

a single time point (presurgical), therefore longitudinal

changes in exosomal gene expression patterns could not be

tested. The majority of patients with stage IV disease had

received chemotherapy, and the gene expression patterns

represent that of post-systemic treatment. The median age

of healthy controls was younger than the median age of

patients. We intentionally chose a younger cohort of con-

trols to avoid the likelihood of undetected carcinogenesis

that may occur with increasing age. Despite these limita-

tions, our study has significant strengths. To the best of our

knowledge, this is the first study to evaluate exosome gene

signature expression levels in colon cancer and different

metastatic states compared with healthy controls.

CONCLUSION

We demonstrated that ExoSig445 can accurately sepa-

rate patients with colon cancer from healthy controls. We

have shown that the peripheral plasma exosome gene sig-

nature has the potential to be a liquid biopsy tool in colon

cancer and may overcome the current challenges with

sensitivity of ctDNA liquid biopsy in PC. Exosomal gene

expression signatures may also provide valuable insights

into tumor biology, treatment resistance, and prognosis.

Further studies to refine this tool, along with validation in a

larger cohort of patients, are currently underway.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1245/s10434-

023-13219-7.
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