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Department of Computer and Information Science
University of Massachusetts
Amherst, Massachusetts 01003

Abstract: This paper attempts to unify
two problems in cognitive science: the re-
lationship between “controlled” and “auto-
matic” processing and the competing com-
putational models of intelligence proposed by
eymbolic Artificial Intelligence and the con-
nectionist school. An architecture is proposed
in which symbolic and connectionist problem
solving systems interact and take advantage
of their different strengths. It is argued that
the resulting system can account for much of
the problem solving behavior associated with
automatic and controlled processing as well
as their complex interplay. Thus, the ar-
chitecture can account for how expertise can
be transformed from “explicit” to “compiled”
forms via automatization, and how the opac-
ity of the resulting automatic behavior can
be counterbalanced in a cognitively plausi-
ble manner by explanations generated ez post
facto.

1. Introduction.

This paper proposes a model for integrat-
ing controlled and automatic processing. This
model assumes that these two problem solv-
ing styles are distinct not only in behavior but
in implementation as well, and so an archi-
tecture has been designed in which the two
competing mechanieme can also communicate
and cooperate with each other. It is believed
that this will result in system-wide behavior
that accords well with peychological accounts
of controlled and automatic problem solving
and related behaviors.

The assumption of the distinct implementa-
tion of controlled and automatic problem solv-
ing grows out of the current progress in con-
nectionist models of cognition and the result-

ing tension between this view and that of the
symbolic Artificial Intelligence (Al) approach
to these same problems. A debate has formed
that pits these two views against each other as
competing models. The present work joins a
emall but growing corpus of research devoted
to establishing that a synthesis of these two
models is both possible and desirable. (See, for
example, Touretsky & Hinton [17], Touretsky
(18], Derthick 3], Rumelhart, Smolensky, Mc-
Clelland & Hinton [11], Anderson (1], Derthick
& Plaut (4], among others.) Whereas other
work has concentrated on establishing the the-
oretical possibility of incorporating one model
within another—usually by simulating sym-
bolic Al techniques in connectionist systems—
we advocate the pragmatic incorporation of
both models into a single system to study the
complex interplay between these types of com-
putation. Specifically, thie paper claims that
the proper computational model for controlled
problem solving is derivable from the symbolic
Al view of rule-based, categorical reasoning,
while the proper computational model for au-
tomatic problem solving can be found in the
connectionist view of parallel distributed pro-
cessing.

This claim requires demonstrating how such
distinct computational models can interact eo
as to present a plausible account of the rich
interplay characteristic of the corresponding
cognitive phenomena. The design of an ar-
chitecture to support this interplay is the first
step in this direction; an implementation of
the system described here has not yet been
completed.

The ultimate goal of this research is to elim-
inate the knowledge- or rule-based techniques
uged to implement this system. That is to say,
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we believe that the categorical, multi-step rea-
soning that is currently best exhibited by sym-
bolic Al programs can eventually be incorpo-
rated into a wholly connectionist framework.
However, we feel that attempting to accom-
plish this directly delays addressing important
questions whose answers can help direct the
eventual development of the totally connec-
tionist systems. In addition, some of the issues
brought out by this attempt to integrate what
can be called the “propositional” and the “ex-
periential” are interesting in their own right.
For example, we believe that it is necessary
for connectionist models to adopt some form
of propositional representation to successfully
model the important cognitive behaviors de-
scribed later in this paper.

2. Competition and Cooperation Be-
tween the Controlled and the Auto-
matic.

The concepts of controlled and automatic
processing have been a topic of research in
psychology for some time. (See, for exam-
ple, Schneider & Shiffrin [16], Treisman [19],
and Schneider, Dumais & Shiffrin, among oth-
ers.) Shiffrin & Dumais (13| characterize au-
tomatic processes as highly parallel, exhibit-
ing a marked ability to improve with practice,
a limited propensity to “transfer” this exper-
tise to dissimilar problem solving situations,
making minimal demands on processing re-
sources (other than those on which the pro-
cessing is being directly carried out), and be-
ing outside of the explicit control of the prob-
lem solver. Controlled processing, on the other
hand, is characterized as serial, exhibiting lit-
tle improvement with practice!, being under
the direct and explicit control of the problem
solver, and being much more amenable to its
application in “unfamiliar” situations.

While these behaviors seem quite distinct,
there is considerable interplay between the two
types of processes. First, virtually all auto-
matic skills (we will concentrate on cognitive

IThis excludes the process of automatization, of
course, in which the skill becomes automatic over time.

skills in this paper) are originally played out
under the direct control of the problem solver.
Thus, a complex chess opening requires con-
siderable analysis by a player when it is first
encountered, but given that this opening ap-
pears a large number of times in subsequent
play, it is likely that recognizing and reacting
to the defense will tend to become automatic
and stylized. How is this transformation,
or “automatization,” effected? Some prob-
lem solving is of a “mixed” character, where
some steps are automated, and others require
“strategic” intervention. Even when some be-
havior has been automated it may be possi-
ble to override its “suggestions” and solve the
problem again, “from first principles.” This
might be done in situations that call for ex-
treme care for one reason or another. In ad-
dition, fully automated behaviors tend to be
opaque with respect to introspection and ex-
planation, and yet sometimes explanations (or
“justifications”) are nonetheless provided for
what clearly seem automatic cognitive skills.?
All of this suggests that an explanation of this
behavior requires a model not just of the in-
dependent mechanisms but of their interaction
as well.

While the psychological literature on these
issues has grown, Schneider [14] points out
that the treatment of many of the particu-
lar phenomena associated with this distinc-
tion has tended to remain at the level of only
vague verbal descriptions of the underlying
mechanisms. Schneider’s paper proposes a
four phase model of the development of au-
tomatic processing. While Schneider’s work
concentrates on a particular problem and pro-
vides a very detailed account of this example,
the present paper advocates a general com-
putational architecture. Schneider describes a
particular algorithm for variably-mapped cat-
egory search with two categories. The imple-

3This has been illustrated in many places. For ex-
ample, in Expert System construction it has appeared
when interviewing experts about why they performed
certain actions in some task. Often their explanations
seem either to disagree with the rapidity of the sub-
ject's choice of action, or else the explanation is insuf-
ficient to account for actions chosen in other similar
situations.
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mentation involves the comparison, modifica-
tion and combination of activation values of
threshold units. As a controlled process, these
steps are carried out by an algorithm that is
“hard-coded” into the system, which manip-
ulates the values and gates in the system of
units.

The JANUS architecture described in this pa-
per might be seen as a generalisation of this
process, since this and any other algorithm can
be encoded within a system of productions.’
This allows the researcher to further study ef-
fects of attention and problem solving strat-
egy within the production system paradigm—
at least zo far as controlled cognitive skills are
concerned. The relationship between these
productions and the values of units that are
involved in the subsequent automatization is
much more complex than that in Schneider’s
model due to the translation of these rules into
a distributed representation. Despite these
differences, we believe a set of phases similar
to Schneider’s four phase model will fall out of
the system described here as well (see Section
3).

2. A Description of the JANUS Architec-
ture.

The proposed system contains three mod-
ules (see Figure 2-1). One contains a sim-
ple rule-based problem solving system. This
is called the P-module (for “propositional”).
Ae with any rule-based system, the P-module
consists of a long term memory in which
are stored the rules, and a working memory
(PWM in Figure 2-1) in which are stored what
is currently asserted (or “believed”) by the P-
module.* The PWM of the P-module contains
the description of the current problem state.
As the steps in solving a problem are followed,

33chneider makes note of the logical connection
between the controlled-processing operations in his
model and rules in a production system.

4One atypical restriction on this rule-based system
is that the size of the working-memory is limited to
a fairly small number of propositions—approximately
twenty or go. This is to keep the P-module's available
working memory close to the same size as that of the
C- and R-modules, discussed below.

R-Module

(0

nl I“I | " "II:;:I AN

Figure 2-1.

the intermediate results, hypotheses and final
solution proposed are also placed in this work-
ing memory.

The other two modules are both three layer
feedforward networks (where two layers have
modifiable weights) utilizing the backpropa-
gation learning rule (Rumelhart, Hinton &
Williams [10]). These two modules are the
C-module (for “connectionist”) and the R-
module (for “resolution” —though it, too, is
a connectionist module). The input layer
of both connectionist modules is obtained in
the following way. Ae each new proposi-
tion is asserted by the P-module and thereby
placed in its local propositional working mem-
ory (PWM), it gets coarse-coded (in a manner
to be described shortly), and this distributed
representation of the proposition is placed at
the front of a relatively amall queue of such en-
coded propositions—it can hold only ten such
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propositions. This queue is called the DWM
(Distributed Working Memory) and as each
new distributed proposition is added to the
top-most cell, all the other proposition are
pushed down, removing the proposition in the
bottom-most cell altogether. All ten of these
distributed representations of propositions are
then coalesced into one distributed represen-
tation of all of them by simply adding the vec-
tors together. It is this coalesced vector (the
CDWM in the figure) which is the input layer
for both the C- and R-modules.

It might at first appear that information is
being hopelessly confused when the separate
propositions in the DWM are “coalesced” into
the single CDWM. However, the loss of infor-
mation can be significantly reduced by using
an adequate coarse-coding scheme. This is be-
cause each feature in the coarse-coded repre-
sentation has the ability to distinguish the role
being played by some domain object (or con-
cept) in the proposition from which it is de-
rived. This allows the C-module and the R-
module to include a more complete “descrip-
tion” of the current problem state by view-
ing up to ten propositions at one time. (Mec-
Clelland’s CID mechanism (8] utilizes a similar
technique.)

The C- and R-modules differ, however, in
their output layers and the effects of different
values on these output layers. The output of
the C-module is a distributed representation
of a proposition. The output of the R-module
is a single binary unit. The C-module’s out-
put layer is placed in a vector (“C’s Sugges-
tion”) which is then translated into a local
(propositional) representation of the module’s
output. That is, there is a single layer net-
work which takes a distributed representation
of a proposition and generates on its output
layer a “local” representation of that proposi-
tion. This process is simply computing the in-
verse of the coarse-coding procese mentioned
earlier. If the value of the R-module’s out-
put unit is greater than zero, it has the effect
of placing this local representation of the C-
module’s output layer in the “New Proposi-
tion” buffer (see Figure 2-1). If the R-module

has instead produced an output less than sero,
then the C-module's output layer would be
ignored, and the contents of the local work-
ing memory buffer within the P-module (“P’s
Suggestion”) would be the source of the next
addition to the propositional working memory
(“New Proposition”) within the P-module.

Thus, the basic structure of the system is
that the P- and C-modules are both generat-
ing propositions based on the contents of the
P-module’s working memory (though the C-
module’s version is somewhat removed from
the original because of the coarse-coding and
coalescing processes), and both are “compet-
ing” to have their proposed propositions “as-
serted” by the system as a whole by having
them placed in the “New Proposition” buffer,
from whence it is forwarded to the working
memories of all three modules. The arbiter of
this competition is the R-module. The actions
that the C- and P-modules would carry out on
the P-module’s propositional working memory
(PWM) are ‘gated,” and this gate is controlled
by the R-module.

Training the Connectionist Modules.

The R-Module. The R-module is a back-
propagation network, and the basis of its
training schedule is to prefer the suggestions
from that module which lead to a solution.
However, the R-module also has a built-in
bias towards letting the C-module set the
PWM (since we want to encourage this more
efficient form of problem solving). The R-
module is thus computing a confidence rating
of the C-module’s abilities. This means that
in the early stages of performance, since the
C-module has had too little time to learn any-
thing, the R-module will quickly learn to favor
the P-module’s suggestions for how to change
the state of PWM in order to solve a given
problem. Over time, as the C-module begins
to learn to mimic the P-module’s actions, the
R-module’s bias towards automatic processing
will lead to the C-module’s taking over some
or all of the problem solving. The R-module’s
input layer is provided with the whole CDWM
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in order to allow it to distinguish those prob-
lem states for which the suggestions from ei-
ther the C- or P-module should be selected.®

The C-Module. The C-module is only
trained (it’s error backpropagated and weights
modified) if the P-module’s “suggestion” is
placed in the PWM (via the “New Proposi-
tion” buffer). In this event, the C-module is
trained to match the P-module’s suggestion. If
the C-module’s own suggestion has been cho-
gen by the R-module to be placed in the PWM,
then no training of the C-module is done. If
the resulting solution leads to an error, then
only the R-module is penalized for relying on
the C-module’s suggestion. (This is discussed
further in the next section.)

Distributed Representation of Propositions.
The propositional working memory (PWM)
of the P-module requires that propositions be
used to represent the problems and the inter-
mediate states leading to solution in order to
allow rules to be invoked using pattern match-
ing. But symbolic propositions cannot be pre-
sented directly to the connectionist modules
C- and R-; they require feature vectors. Space
precludes a detailed treatment of this impor-
tant representational issue, but a transforma-
tion of the P-module’s local propositional WM
can be performed by a coarse-coding technique
adapted from the work of Hinton [6], McClel-
land & Kawamoto (7], and Saund [12]. The
basic idea here is that symbols in the propo-
sitional patterns of WM should be identifiable
independent of the different roles they might
play in different propositions. At the same
time, the role they play is also important to
express the meaning of the proposition. The
method adopted by Hinton [6] is particularly
useful in this regard.

The distributed representation is generated
by a training schedule which must be per-

5It is probable that the R-module could actually
be incorporated into the C-module by adding an extra
output unit to the C-module with the above interpre-
tation. However, this aspect is separated out for ease
in testing alternative formulations of the R-module’s
behavior.

formed before the various modules are put to-
gether. This network would be trained to map
the local feature vector representation of the
proposition to another local feature vector rep-
resentation of this same proposition through
the intermediate layer of units, which would
congist of a smaller number of units than either
of the other two layers (see Saund (12| for a
similar setup). It is this process which derives
the coarse coding representation used in the
C- and R-modules of the JANUS architecture.
Once this set of weights has been developed,
the weights between the first and intermedi-
ate layer of this network (coarse encoding)
are used to translate between the most re-
cent propositional addition to the P-module’s
PWM (via the “New Proposition”) and the
distributed representation of that proposition
in the top-most queue entry of the DWM (see
Figure 2-1). The weights between the inter-
mediate and output layers (coarse de-coding)
are used to map the C-module’s propositional
“suggestion” before being placed in the “New
Proposition” buffer.

8. Using the Architecture to Model Cog-
nitive Behavior.

The architecture just outlined was devel-
oped as an attempt to model the following
types of behavior.

Categorical Reasoning. The basis of con-
nectionist problem solving is, so far, via prob-
lem recognition; a solution to even a novel sit-
uation is based on having generated a map-
ping from problem states to solutions which,
through generalization, will capture situations
sufficiently similar to those in the training
set. However, there are classes of problems—
addition is a good example, as is trying to de-
termine the voltage on some wire in a fairly
complex circuit diagram—where it seems that
a multiple step solution is called for based on
what has been called a ‘model’ of the domain.
Similarity to previous problems tends to be
a weak indicator. So far, such models have
been able to be most easily expressed and used
in ‘categorical,” symbolic Al systems. As the
P-module is a relatively standard rule-based
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gystem, such knowledge will be able to be en-
coded and used in this powerful way by the
P-module. As mentioned in the previous sec-
tion, the P-module will very soon tend to be
favored over the C-module as the module to be
“trusted” in novel situations—that is, in novel

states of the PWM.)

Automaticity, The C-module is not idle,
however, when the P-module is being deferred
to. While the P-module is holding sway,® the
C-module is being trained to produce the so-
lutions generated by the P-module, which is
the source of training examples for the C-
module. As a growing number of problems
are presented to the system as a whole, it is
presumed that the C-module will be able to
generate a mapping such that the solutions
can be suggested on the basis of the simi-
larity of the problem state to previously seen
problems.” This is simply the standard way in
which connectionist networks learn to perform
mappings.

Automatization. This refers to the trans-
fer of knowledge from an explicit, categorical
(or propositional) form (in the P-module) to
the distributed and more efficient recognition-
based form in the C-module. It is the main
goal of this research to demonstrate that the
knowledge that is initially encoded explicitly
and that can be used only by chaining through
some number of reasoning steps will be subject
to incorporation into the C-module after suffi-
cient instances of such problem solving are pre-
sented. This process would proceed in stages
not dissimilar to those described in Schneider
[14] and the “compilation” process modelled in

SThis will tend to happen for relatively long periods
of time, since the PWM changes only slowly at each
cycle, and it is on the basis of recognizing states of
the PWM that the R-module assigns priority to either
module.

"This relies, of course, on the R-module also noting
this similarity and being prepared to ‘trust’ the solu-
tion 'proposed’ by the C-module. This suggests that
the “natural degree” to which the R-module has pref-
erential bias for the C-module might be out of line—
either too much or too little—with the rate at which
the C-module actually learns; this should make itself
readily apparent when testing the system.

Anderson, et al. [2]. As inferences become au-
tomated by the C-module, this allows the cor-
responding propositions in the P-module to be
skipped. This, in turn, allows more proposi-
tions of the PWM to “fit into” the distributed
working memory (DWM), which would allow
further automatigation to occur. In this way,
more and more multi-step inferences are slowly
encompassed by single step inferences carried
out by the C-module. The advantage of this
scheme over the rule-based scheme adopted by
Anderson, et al. (2] is that the C-module can
generalize and thereby generate plausible sug-
gestions for changing the PWM for problems
never seen before by the system as a whole, as
long as there is sufficient similiarity to previ-
ously seen problems.

Ezplanation. A major difficulty of connec-
tionist systems has been their opacity. When
a network presents some ‘solution’ on its out-
put units, it is not at all clear the ‘reasons’
that support this computation. Of course, the
only truly valid explanation would involve a
complete listing of all the net’s previous train-
ing examples which led it to have the weights
it now has; and then these weights, and their
ramifications, might also be explicated in some
fashion. Except for trivial problems, this ap-
proach seems ludicrous,

On the other hand, following a plausible
model of how we generate some explanations
ourselves, we can imagine that the explana-
tions of fully (or partially) automatic behav-
iors are generated post facto by utilizing any
relevant categorical knowledge within the P-
module. For example, in solving for the volt-
age on a wire in some complex circuit diagram
a system as described here might generate an
opinion based on the similarity of the network
layout to a large number of previously seen
layouts. Asked for an explanation (‘justifica-
tion’ might be a more accurate term), the sys-
tem might use the proposed solution and the
known initial problem state to generate a so-
lution using the P-module’s knowledge alone.
This post facto (and more expensively derived)
solution has the advantage of perspicuousness
of the knowledge used to generate the solution.



Of course, this is hardly the same way in which
the original solution was in fact generated.
On the other hand, to the extent that the C-
module’s knowledge is the result of automa-
tization of previous explicitly encoded knowl-
edge in the P-module, such an ‘explanation’
might not be so inappropriate or unrelated to
the automatically derived solution.

It should be noted that with this method
it is perfectly possible that the “explanation”
would not agree with the original solution.
This would hardly seem to be undesirable,
however, since if we are to make assumptions
on the basis of generalizing from past expe-
rience, it is very useful to know when those
assumptions disagree with the knowledge ac-
quired directly in the form of rules or other
propositions.

Other Types of ‘Mized Reasoning’. The
previous description of explanation introduces
other possibilities for intermixing the two
types of knowledge to obtain satisfactory per-
formance. Such techniques would take the
form of the R-module’s alternating between
the two ‘knowledge sources’ to modify work-
ing memory in the intermediate steps of solv-
ing some larger problem. For example, in
the circuit analysis example, an initial set
of solutions might be ‘proposed’ by the C-
module on the basis of the circuit’s similarity
to other circuits, which might be followed by
an explanation-like process in which the rough
possible solutions are checked and/or refined
by more expensive (but possibly better sup-
ported by reference to ‘first principles’) cate-
gorical reasoning of the P-module.

4. Summary.

This paper proposes a method of integrat-
ing automatic and controlled forms of problem
solving by building an architecture in which
connectionist and standard symbolic Al imple-
mentation techniques complement each other
in a single system. This is seen as an impor-
tant step towards eventually incorporating the
propositional (or rule-based) form of knowl-
edge found in Al systems into completely con-

nectionist networks. This architecture is de-
scribed structurally. The paper describes var-
ious cognitive behaviors which derive from
the interplay between the two problem solving
styles and that this architecture would be able
to model. The emphasis of this research is on
the way in which expertise can be transformed
from “explicit” to “compiled” via automatiza-
tion, and how the opacity of the resulting au-
tomatic behavior can be counterbalanced in a
cognitively plausible manner.
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