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A study design for statistical learning technique to predict 
radiological progression with an application of idiopathic 
pulmonary fibrosis using chest CT images

Grace Hyun J. Kim1,2, Yu Shi1,2, Wenxi Yu1,2, Weng Kee Wong1

1Biostatistics, Fielding School of Public Health, University of California, Los Angeles.

2Radiological Science, David Geffen School of Medicine, University of California, Los Angeles.

Abstract

Background: Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease characterized 

by an unpredictable decline in lung function. Predicting IPF progression from the early changes in 

lung function tests have known to be a challenge due to acute exacerbation. Although it is 

unpredictable, the neighboring regions of fibrotic reticulation increase during IPF’s progression. 

With this clinical information, quantitative characteristics of high-resolution computed 

tomography (HRCT) and a statistical learning paradigm, the aim is to build a model to predict IPF 

progression.

Design: A paired set of anonymized 193 HRCT images from IPF subjects with 6–12 month 

intervals were collected retrospectively. The study was conducted in two parts: (1) Part A collects 

the ground truth in small regions of interest (ROIs) with labels of “expected to progress” or 

“expected to be stable” at baseline HRCT and develop a statistical learning model to classify 

voxels in the ROIs. (2) Part B uses the voxel-level classifier from Part A to produce whole-lung 

level scores of a single-scan total probability’s (STP) baseline.

Methods: Using annotated ROIs from 71 subjects’ HRCT scans in Part A, we applied Quantum 

Particle Swarm Optimization–Random Forest (QPSO-RF) to build the classifier. Then, 122 

subjects’ HRCT scans were used to test the prediction. Using Spearman rank correlations and 

survival analyses, we ascertained STP associations with 6–12 month changes in quantitative lung 

fibrosis and forced vital capacity.

Conclusion: This study can serve as a reference for collecting ground truth, and developing 

statistical learning techniques to predict progression in medical imaging.
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1. Introduction and background

Statistical Learning is an integral component of Artificial Intelligence (AI) in medical 

imaging [1]. However, broadly implementing AI in medical imaging can result in several 

issues, such as, lack of reproducibility, generalizability, and computational power [1]–[3]. 

Thus, it is important to develop algorithms that maintain adequate repeatability and 

reproducibility by using one or more independent sets of data for clinical validation [4]. 

Generally, there are three steps involved in developing an algorithm: (1) model development, 

(2) analytic validation, and (3) clinical validation [2]. The first two steps can be achieved by 

using an appropriate statistical design and model. The last step of clinical validation involves 

multiple aspects, including reproducibility, limit of agreement, and minimal clinical 

difference. The last step requires collecting repeated measurements from independent 

cohorts [5] and consequently, it usually requires a longer time to complete the evaluation.

Statistical learning algorithms broadly fall into the category of supervised learning and 

unsupervised learning. The former directly utilizes a ground truth or reference typically 

provided by a medical expert to develop a model. In contrast, most of the unsupervised 

learning methods, such as a clustering approach, build a model without using the reference 

or ground truth. There are pros and cons of both approaches and many statistical methods 

have been utilized jointly with them in feature selection, segmentation, and classification 

problems [6]–[11].

Developing effective feature selection methods are increasingly important to identify the 

right variables for accurate predictions. Popular model-based methods for feature selection 

are least absolute shrinkage and selection operator (LASSO), and smoothly clipped absolute 

deviation (SCAD) using a penalized likelihood as a loss function [7], [12], [13]. An 

increasingly powerful class of optimization tools is nature-inspired metaheuristic algorithms 

and quantum particle swarm optimization (QPSO) is a popular member of this class. QPSO 

is inspired by particle movements in the quantum mechanics and is a global optimization 

algorithm [14] with superior searching capabilities. Its performance has been compared 

favorably with other evolutionary algorithms, for tackling a wide variety of high-

dimensional and complex optimization problems in the real-world [15]–[17]. Two 

drawbacks of QPSO are its longer running time relative to other evolutionary methods and 

open source codes for QPSO are not easily available for implementation. In our work, we 

used QPSO, which is not based on the penalized likelihood function, and hybridized it with 

statistical learning methods to select features for prediction. This is a common and modern 

approach in engineering, where we hybridize different types of algorithms for enhanced 

effectiveness. For example, classification models, a kernel-based support vector machine 

(SVM) and random forest (RF) for classification and regression tree techniques were applied 

to tackle a few challenging problems [18]–[20]. The synchronized feature selection methods 
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and classification models can create a generalizable and robust model utilizing statistical 

learning.

A statistical learning algorithm is typically conducted in two stages: a training stage and a 

test stage. The training stage is an exploratory phase and uses statistical learning to 

constantly improve the quality of the model fit by employing an optimization algorithm to 

update model parameters iteratively. During the model building process, an n-fold cross-

validation procedure is usually used to check the adequacy of the fit and the robustness 

properties of the training model. Afterwards, an independent test set is used to evaluate the 

model performance. The subjects in the test set are expected to have similar characteristics 

of the cohort and not from the training set [1], [4].

The major challenge is to build a model that accurately predicts important outcomes that are 

not readily available. Our aim is to develop a state-of-the-art algorithm and a model using 

HRCT baseline scans to predict progression in idiopathic pulmonary fibrosis (IPF) in 

follow-up measurements.

2. Research design and methods

2.1. Objectives

The purpose of this study is to predict disease progression in the natural follow-up of 6–12 

months in subjects with IPF using the baseline HRCT. IPF is a rare and fatal interstitial lung 

disease (ILD) with a median survival time of 3 to 5 years after diagnosis [21]. Progression in 

IPF is known to have heterogeneous and unpredictable patterns of progression – stable, slow 

progression or, rapid progression [21], [22]. Although gender, age, and pulmonary function 

tests (GAP) and usual interstitial pneumonia on HRCT images are known to be prognostic 

factors for overall survival, it is difficult to reliably predict disease progression in subjects 

with IPF even with the GAP index [23]–[25]. For IPF subjects, a clinically acceptable 

outcome is progression free survival (PFS), which is defined as the duration of time after 

baseline and prior to progression, where progression is defined by 10% or more decline in 

lung function as measured by the variable of forced vital capacity (FVC). However, it is well 

known that the clinical outcome of FVC teds to show substantial intra-subject variability in 

subjects with IPF [26]. Changes in the percent predicted FVC are not necessarily linear over 

time.

Our work is partly motivated by a recent study that shows the quantitative changes from 

HRCT scans, measured by quantitative lung fibrosis, from 6 to 9 months predicts PFS within 

2 years [27]. However, this approach requires paired HRCT scans of 6–9 months apart, 

which may not be commonly available. Our innovative approach is to use baseline HRCT 

scans to predict IPF progression. Because we are using information at single time point 

(baseline prognosis), it is helpful to have follow up clinical validation, which are both 

feasible and more realistic than requiring two or more HRCT scans [4]. The potential impact 

of our works is that it can be used easier in practice to stratify subjects into a different risk 

group; stable, moderate, rapid progressing groups and apply drug therapies to each subgroup 

and estimate the relative therapeutic effect. Results from our classification can also be used 

for early referrals of patients for lung transplants.
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This study describes the development and evaluation of the model using a separate dataset to 

predict the progression of IPF based on the prognosis of CT images at single time point. Our 

description follows the guideline from Transparent Reporting of a multivariable prediction 

model for Individual Prognosis Or Diagnosis (TRIPOD) [4].

2.2. Design

The study is to build a supervised statistical learning approach using a collection of 

retrospective HRCT image data in subjects with IPF who were naïve to the anti-fibrotic 

treatments for 6–12 months [28], [29]. HRCT image is a three-dimensional matrix of size 

512-by-512-by the number of slices, where elements of matrix are called as voxels. Each 

voxel is of size (< 1.0 mm3) and has a quantitative gray scaled-intensity value of 

radiodensity ranging from −1024 HU to 1024 HU. The Hounsfield unit (HU) scale is named 

after Sir Godfrey Hounsfield who invented CT [30].

Our study for predicting a progression using HRCT imaging has two parts: (A) build a 

model at a small region of interest (ROI) level by optimizing a collection of voxel 

classification within the ROI and (B) expand the prediction using the model from Part A to 

all the voxels in the whole lung and produce a metric of single-scan total probability (STP) 

in predicting progression in ILD (See our study schema in Figure 1). The outcome of the 

prediction model is a STP score in a percent scale, ranging from 0 to 100. The model 

performance of STP classification in Part A was assessed in small ROIs compared with the 

visual reference truth provided by a thoracic radiologist. In Part B, STP scores for the whole 

were lung compared with the change in QLF score from CT and the percent predicted FVC 

from pulmonary function tests.

In Part A of our algorithm, our study design collects data by taking advantages of 

retrospective data. A pair of HRCT images from baseline and at a follow up visit between 6–

12 months were presented to a thoracic radiologist. The expert was instructed to contour a 

region of interest in the baseline image and label them as ‘expected to progress’ or ‘expected 

not to progress’ (i.e. stable) based on the changes in the follow-up HRCT. After collecting 

the training set of the reference truth of ROI status of being stable or progression, a 

statistical learning algorithm was built to classify voxels within each ROI into two types: (1) 

expected to progress or (2) stable. In particular, every voxel within a ROI is assumed to have 

same labels, because we instructed a radiologist to contour a homogeneous and 

representative region as a ROI. Our algorithm then searches for a classifier with a 

combination of features selection iteratively. Upon convergence, the voxels from the test set 

(i.e. not part of training set) were used to evaluate the model performance for predicting 

progression as a part of supervised learning. If more than 50% of voxels within a ROI are 

classified as progression, the ROI is classified as expected to progress. Similarly, if more 

than 50% of voxels within a ROI are classified as stable, the ROI is classified as expect to be 

stable.

In Part B, the algorithm classified each voxel in a 4 voxels-by-4 voxels of grid per slice from 

the whole lung into two types, i.e. whether they are expected to progress or not. We use the 

baseline scan as a percentage scale to calculate the predicted progression in the follow up 

visit and call this metric the STP score. The score was compared with the change in lung 
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function test, FVC, and changes in radiographic outcomes. Change in the percent predicted 

FVC, measured by the difference between two visits, is commonly used as a primary 

endpoint in many clinical trials and 10% changes is used as a threshold of defining 

progression [28], [29], [31]. A radiological outcome, quantitative lung fibrosis (QLF) score 

is a extent of fibrotic reticular patterns on HRCT images, which is generated by a statistical 

learning technique using denoised texture features, SCAD feature selection, and SVM 

classifier [32], [33]. Changes in QLF scores, measured by the difference between two visits, 

have been utilized as secondary and exploratory imaging endpoints, and the primary 

endpoint (NCT01979952) in several NIH and industry sponsored clinical trials [34]–[41]. 

Figure 1 provides a schema of Part A and B in our study design, which is a type 2a study per 

TRIPOD criteria, where training and test sets are randomly split into samples for 

development and validation [4].

Patient Selection

We retrospectively collected anonymized longitudinal HRCT images from 215 IPF subjects 

in multiple studies and the dates of baseline scans ranged from May 2011 to March 2015, 

which included research time for utilizing existing data to investigate a new imaging model 

(NIH-NHLBI R21HL 140465–01). The use of anonymous image data was approved by a 

local institutional review board. A paired HRCT scans (baseline and 6 months to 1 year 

follow up) from each subject were required for building a model and evaluating its 

performance. Most of the collected HRCT scans were for IPF diagnosis and from follow up 

visits without active treatment between the study intervals. Of the 215 IPF subjects, 22 were 

excluded because of image quality issues, lack of follow-up visits, or the follow-up visits 

were before 5 months or after 13 months from the baseline visits. The eligible cohort of 193 

IPF subjects had a mean age of 70.0 years (SD ±7.5 years), 73% male/27% female, with the 

percent predictive forced vital capacity (FVC) of 67.8% (SD ±12.3%). The average time 

from baseline to follow-up visits was 7.6 months (SD ±1.8 months). The baseline 

quantitative lung fibrosis (QLF) score is 15.4% (SD ±8.7%).

We divided the total sample randomly into a training and a test set. The sample sizes were 

71 and 122, respectively. A direct calculation shows the 71 subjects in the training set can 

provide approximately 93% of the population with 95% tolerance internal [42] and the 122 

subjects in the test set can provide approximately 85% power to detect a normalized hazard 

ratio (HZ) of 2.0 using our proposed STP cut-off score between two groups of high and low 

values with a two-sided test and at the 5% significance level [43]. To ensure that the training 

and test sets have about the same distribution of patients’ stratification with stable and 

progressed ROIs, both training and test sets have about 40% subjects with stable ROIs and 

60% subjects with at least one progressed ROI in the follow up HRCT scans.

2.2.1. Study Design for Part A—To predict a progression at follow-up, we design the 

reading paradigm in the traditional supervised approach using the baseline and 6–9 months 

follow-up HRCT scans from subjects with IPF. The dominant area of usual interstitial 

pneumonia (UIP) in IPF is located peripherally in the lower or middle lobes of the right and 

left lungs. As part of disease progression assessment in patients with ILD on HRCT images, 

an expert thoracic radiologist provided a reference truth (See Figure 1 for details of the 
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process). The radiologist contoured the classic homogeneous patterns of ROIs with various 

sizes and labeled them as ‘expected to progress’ or ‘expected not to progress’ (i.e. stable) at 

baseline scans. Each ROI contains elemental voxels in the HRCT imaging matrix and all 

voxels received the same label as its own ROI’s label (i.e. either all expected to be stable or 

all expected to progress). Typically, the radiologist contoured approximately 5 ROIs in a 

subject’s HRCT image if representative regions were available.

In the training set, there were 434 annotated ROIs from 71 subjects to build the classifier. 

Out of 434 ROIs, 193 (44.5%) of the annotated ROIs were labeled as expected to progress 

and 241 (55.5%) ROIs were labeled as expected not to progress; 149 (34%) ROIs are from 

the upper lung, 185 (43%) ROIs are from the middle lung, and 100 (23%) ROIs are from the 

lower lung. There are 423 ROIs (97%) that contain the partial or full peripheral of the lung 

(within 1cm from the chest wall), which is consistent with the nature of the disease. In the 

test set, there were 549 annotated ROIs from 122 subjects to evaluate the classifier. Out of 

549 ROIs, 208 (37.9%) of the annotated ROIs were labeled as expected to progress and 341 

(62.1%) ROIs were labeled as expected not to progress.

2.2.2. Measurements for Part A of the study—The study was conducted at the 

UCLA Computer Vision and Imaging Biomarker (CVIB) in-house workstation that has been 

built and upgraded since 1997 [44]. Quantitative imaging analysis system has many models 

and one of many modules is texture features. The types of texture features are : (1) statistical 

features, which are summary measurements from histogram (e.g. mean, standard deviation, 

skewness and kurtosis), (2) co-occurrence texture features, which are measures of contrast or 

uniformity in neighboring voxels by estimating the probabilities of changes gray-level, and 

(3) run-length parameters, which are the estimated length of uniform gray-level [45], [46]. 

These features have been frequently used for classifying the patterns of diffuse lung disease 

on HRCT images since early 1990s in medical imaging [32], [47]. Recently texture features 

are called radiomic, a type of the many omic features from radiological images.

Pre-processing Image data

Prior to obtaining quantitative texture features, we mitigated the heterogeneous HRCT 

imaging quality from different acquisition parameters using an image denoising technique 

[32]. To this end, we applied the denoised technique by Aujol and Gilles. It uses total 

variation methods [48–50] and for space consideration, we briefly describe the method for 

our HRCT application. The original CT image (ƒ) is decomposed into the denoised images 

(u) and noised images (w), respectively. Noise can be modeled using the dual norm in the 

Besov space with a nonlinear projection (PBG) where the norm of noise δ is less than the 

norm of signal. The elements of P are denoted by {pi,j}. The method ensures that when the 

algorithm converges, the sum of denoised (u) and noise images (w) is approximately equal 

to original CT image (ƒ). There are parameters in the algorithm and they include δ, λ, and τ, 

which are, respectively, for noise, residual, and the step size of the gradient descent (fixed 

point) algorithm. We refer technical details and further notational definitions to [32] and 

highlight the key steps in the algorithm as follows:

1. Initialization: Set u0 = 0
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1. Iterations: Define wn+1 = PδBG(f – un), where PδBG is an orthogonal 

matrix, f = u + v un + 1 = f − wn + 1 − P λBG f−wn + 1 , and the gradient 

descent (fixed point) algorithm runs iteratively using

pi, j
n + 1 =

pi, jn + τ ∇ div pn − f λ i, j
1 + τ ∇(div pn) − f λ )i, j

2. Stopping the test: if max(|un+1 − un| and, |wn+1 − wn|) ≤ ε, where ε is a 

user pre-selected constant.

Using the local adaptively variation of uniform region of air in the background, trachea, and 

aorta on HRCT image, we set the noise parameter (δ) as 50. The residual parameter (λ) was 

set to 1, which controls the convergence of the algorithm (See the detail [32]). The 

parameter τ is set to 0.25 [48–50] and ε is set to 1 for the model convergence. By the 

standard convex duality theory, the projection of P is an orthogonal projection matrix onto 

BG and it involves in a fixed point method and the numerical divergence operator. Figure 2 

shows an example of the original and denoised axial slice and a ROI of normal lung patterns 

from HRCT before and after the grainy scatter noises were removed by Aujol and 

Chamboll’s image decomposition methods [51].

Extracting Quantitative Texture Features from Image data

We extracted texture features from the original HRCT and denoised HRCT images for 

comparison using our models. Texture features quantify the levels of grayness and contrast 

of the images. A reading of −1024 HU appears as black on the image and indicates air in the 

lung, and a reading of −700HU to −200HU appears as white on the image and indicates 

fibrotic reticulation. A square of approximately 4×4 (approximately 4mm-by-4mm) grid 

sampling on the contoured slice was implemented to generate voxel instances within each 

ROI. A ROI is a collection of voxels where a size of voxel is typically < 1mm3. We denote 

that fij and uij are the intensity, radiodensity, of voxel at ith and jth on image, respectively. 

And yij is the label of voxel at ith and jth within a ROI, where yk is the label of kth ROI by a 
radiologist. The notation of slice number is omitted for simplicity. The neighboring of each 

voxel is used to calculate the 191 texture features, which includes a set of statistical features, 

run-length parameters, and co-occurrence parameters, see for example, [45], [46] A size of 

the window for calculating the texture feature was 12×12 voxels of neighboring voxels, 

which is a typical size in ILD classification. Texture features were computed per voxel 

within a ROI. A same label of ROI is assigned to the label for every voxel within the ROI. 

To clarify ideas, we define two useful notations, where each voxel fij from HRCT image:

ROI expected to be stable yk = 0 = ∪
i, j

label of fij = 0 all voxels in fij ∈ ROI

ROI expected to progress yk = 1 = ∪
i, j

label of fij = 1 all voxels in fij ∈ ROI

Similarly, each voxel uij was from a denoised HRCT image:

Kim et al. Page 7

Contemp Clin Trials. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ROI expected to be stable yk = 0 = ∪
i, j

label of uij = 0 all voxels in uij ∈ ROI

ROI expected to progress yk = 1 = ∪i, j label of uij = 1 all voxels in uij ∈ ROI .

All the labeled voxels within the ROI is equal to the labels provided by the expert 

radiologist. If a label of ROI is ‘expected to be stable’ (yk = 0 for any kth ROI), all the labels 

of voxels within the ROI are ‘expected to be stable’ (labels of fij or uij = yij = 0 for all i and j 
in the ROI). Similarly, if a label of ROI is ‘expected to progress (yk = 1 for any kth ROI) , all 
the labels of voxels within the ROI to be ‘expected to progress’ (labels of fij or uij = yij = 1 

for all i and j in the ROI).

2.2.3. Model Building of Part A—A usual approach in statistical learning is to build an 

initial classifier model and then use it to build the next model with better classification 

ability. These iterative steps, along with powerful optimization algorithms, can lead to an 

effective and robust model for accurate classification. Our models used the traditional ROIs 

and the labels from the baseline HRCT information to predict the ROIs at follow-up scans 

by classifying them as progression (yi = 1) or stable (yi = 0) in the follow-up visit. Each 

voxel within a ROI was classified as expect to progress or to be stable. The classification of 

the ROI is then determined by the majority votes in the voxels’ classification. For example if 

there are more than 50% voxels in the ROI are expected to progress, then the ROI is 

classified with the same label as expected to progress (>50%).

Quantum PSO - Random Forest (QPSO-RF) is an integrated algorithm that selects the best 

HRCT texture features to predict imaging patterns optimally. Previously, we used Quantum 

PSO to select variables/features from the original HRCT images, and along with RF, built a 

classification model with satisfactory performance. We plan to compare two QPSO-RF 

classifiers using texture features from the original HRCT with the denoised HRCT images. 

The QPSO algorithm selects a candidate feature subsets and to train RF classifiers iteratively 

until it optimizes the objective function. QPSO then iteratively searches for a better feature 

subset to train the RF classifier to attain a better objective function value than the one found 

from the previously selected feature subset by QPSO (see the details of the comparisons 

with other classifiers [52]). Throughout, we adjust for the imbalanced rates of a classifier 

(e.g. the rate of progression vs. no-progression) by using a synthetic minority over-sampling 

technique (SMOTE). Specifically, we used QPSO as the optimizer to search the feature 

subsets and build the RF from the selected subsets; the built RF produces the evaluation 

metrics of sensitivity and specificity. The QPSO-RF searches for the feature space iteratively 

and returns the global best solution at the last iteration as the best feature subset that gives 

the best classification performance. The figure below illustrates our process and the 

objective for optimization:

maxmizeFθ min sensitiviyt, sepcificity ,
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where

sensitivity =
∑ij

N yij ∗ pij
∑i

N I yij = 1
,

specificity =
∑ij

N 1 − yij ∗ 1 − pij

∑ij
N I yij = 1

,

and accuracy =
∑ pijI yij = 1 + 1 − pij I yij = 0

N .

Here, we use QPSO-RF to optimize the objective function by first searching all over 

possible subsets of texture features for the minimum value of either sensitivity (true positive 

rate) or specificity (true negative rate). Let yij be a binary variable that takes the value of 1 

(yij = 1) if the voxel of ith and jth location shows ground truth of progression and a value 0 if 

the voxel is stable (yij = 0); let N be the total number of voxels and let pij be the binary 

probability of progression in the next visit at location of ith and jth voxel based on the QPSO-

RF model. We ran QPSO-RP at a voxel-level using five-fold cross-validation procedure, 4 

folds for building a model and 1 fold for validation.

The sensitivity and specificity at ROI level was determined by majority voting from the 

classification labels on the voxel in the ROI. Letting I be the indicator function, we have

Esimate of tℎe kth ROI being stable yk = 0 = pk = 0 = 1 − I(
∑i, j I pkij = 0

nk
> 0.5)

Esimate of tℎe ktℎ ROI being progressed yk = 1 = pk = 1 = I(
∑i, jI pkij = 1

nk
> 0.5),

Here, nk is the total number of voxels in the kth ROI and pkij is equal to 0 if the voxel fij in 

kth ROI is expected to be stable by our classification model. Similarly, pkij is equal to 1 if 

the voxel fij in kth ROI is expected to be progressed by our classification model. The 

estimated label for the kth ROI of pk is 1 (i.e. expected to be progressed) if the 50% or more 

voxels are classified as being progressed. Similarly, the estimated label for the kth ROI of pk
is 0 (i.e. expected to be stable) if the 50% or more voxels are classified as being stable. Here 

we recall that the diagnostic measure of the sensitivity, specificity, and accuracy of kth ROI 

follows:
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sensitivity =
∑k

N1 yk ∗ pk
∑k

N1 I yk = 1
, speciicity =

∑k
N2 1 − yk ∗ 1 − pk

∑k
N2 I yk = 1

,

and accuracy =
∑ pkI yk = 1 + 1 − pk I yk = 0

N1 + N2 .

Here, N1 is the total number of ROIs, expected to progress and N2 is the total number of 

ROIs expected to be stable, and pk is the binary outcome of kth ROI from the majority voting 

of voxel-wise classification of QPSO-RF model.

Two models of QPSO-RF statistical learning were developed using two types of texture 

features from the original and denoised HRCT images. The texture features were derived at 

voxel-level and the models were optimized at ROI-level. The model performance was 

compared using metrics, such as, sensitivity, specificity and accuracy at ROI-level to ensure 

consistency with the unit of visual labels of our reference truth.

2.2.4. Study Design and Measurements for Part B—We next apply the training 

model built at voxel-level to the whole lung. The classifier model from Part A is designed as 

a function to be easily integrated into a quantitative imaging analysis system, which averts 

importing high dimensional CT images (Fig 1B). In the test set, there were 122 independent 

subjects’ HRCT images to test the generated baseline metric at the whole lung level.

To expand and apply the prediction model from Part A to the whole lung level, we first had 

to determine the boundary of lung segmentation. We used our in-house developed software 

for semi-automated lung segmentation [44]. The semi-automated tool serves two purposes: 

(1) to review the results of the segmentation and edit the edge of the lung, when the 

automated lung segmentation failed to include the parenchymal area of the lung; and (2) to 

approve the lung segmentation by an experienced radiologist. The algorithm is programmed 

to classify the voxels within the segmented parenchymal regions, thus the accuracy can be 

dependent on the quality of the lung segmentation.

After implementing the voxel-level classifier into quantitative imaging analysis system, we 

estimate the prediction probability using a single-scan total probability (STP) for the whole 

lung, where we recall STP was created to predict the disease progression in 6 to 9 month of 

follow up using a baseline HRCT.

There are 5 steps for obtaining a STP metric in quantitative imaging analysis after lung 

segmentation: (1) denoise HRCT image; (2) conduct grid sampling within a whole lung; (3) 

calculate texture features selected by QPSO; (4) run random forest classifier, which was 

built on the QPSO selected features, to obtain classification results for each sampled voxel; 

(5) record the number of progression voxels predicted by the classifier and total number of 

voxels, and calculate the STP metric by dividing the former with the latter (See Part B of 

Figure 1 for graphical explanation). These integrated STP codes with the quantitative 
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imaging analyses preclude the unnecessary imaging transfers for Part B. The metric of STP 

is in a percent scale and derived only from baseline imaging information:

STP = Number of voxels tℎat classified as expected to be progressed in wℎole lung
Number of total voxels in wℎole lung × 100.

2.2.5. Statistical Analysis for Part B—The STP metric was compared with two 

outcomes of functional and radiological changes, which are the percent predicted FVC and 

QLF scores, respectively. We used the STP score driven from a single baseline scan to 

compare the changes in clinical outcomes: (a) computing the association in changes by 

Spearman rank test (rho) with the first available follow-ups, and (b) comparing the 

predictability of high and low STP groups in progression-free-survival in the functional and 

radiological changes. Complete-case analysis was used. No imputations were used in the 

missing data.

Continuous scale of scores of STP and changes of QLF and changes in the percent predicted 

FVC in the first follow-up will be used for testing the association. STP at baseline ranges 

from 0% to 100%, where higher scores are indicative of high probability of being progressed 

in the next 6–9 months of visits. The QLF scores represent the extent of the fibrotic reticular 

patterns on a HRCT scan, which range from 0 to 100% [54]. Higher quantitative scores are 

indicative of more severe disease. Increasing QLF score indicates the worsening of fibrotic 

reticulation over time. The percent predicted FVC also ranges 0% to approximately 120%, 

where 100% predicted FVC indicates the individual lung function is close to normal 

population adjusted by race, ethnicity, sex, and height [55]. Decreasing in the percent 

predicted FVC indicates the worsening lung function.

We defined an increase of 4% in QLF between baseline and the follow-up scans as 

radiographic progression in IPF [56], [57]. Based the previous studies, the minimal clinically 

important differences was determined to be between 2–4% in the most severe lobe, where 

the most severe lobe was defined as the one with the largest QLF score at baseline [57] and 

subjects with >4% changes in QLF score had associated with clinical progression after 6–8 

months [58]. In functional changes, we used the clinical definition of PFS, which is the 

reduction in the percent predicted FVC of 10% [28], [29]. Cox proportional hazard 

regressions and ad-hoc log-rank analyses were performed to compare two groups high and 

low baseline STP scores in predicting progression where the outcomes of PFS were defined 

by the change in QLF and in the percent predicted FVC. We divided two groups based on 

the approximate of mean: >40% and ≤ 40% for high and low baseline STP scores, 

respectively.

3. Results

We now present results from the three steps in our algorithm in the following order: (1) 

model development, (2) analytic validation, and (3) clinical validation.
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3.1 Result of Model Development

The five-fold cross-validation method yields a parsimonious model with 23 features from the 

original HRCT images, whereas our algorithm yields a set of 18 texture features from the 

denoised HRCT images using QPSO-RF. The latter model is favorable due to the less 

number of important features, which indicate a more parsimonious model that saves 

computation time and prevents a model from overfitting [59].

3.2 Analytic Evaluation and Validation from Part A

Table 1 shows the sensitivity, specificity, and accuracy of the QPSO-RF statistical learning 

approach using two types of texture features from the original and denoised HRCT images 

from Part A. The performance of the model ranges approximately 70% in the training set 

and 65%−68% in the test set in terms of sensitivity, specificity, and accuracy using the 

texture features from the original HRCT images. Moreover, the performance of the model 

from the denoised texture features reached approximately 60–73% in the training set and 

70% in the test set in terms of sensitivity, specificity, and accuracy. Model performance in 

accuracy was numerically higher as 70% when using the denoised texture features, 

compared to 67% for the original texture features.

We produced a set of texture features from the denoised HRCT images, which had superior 

robust results in the test set. At the same time, the model performed reasonably well in ROIs 

matching with visual reference in predicting progression in the next HRCT scans given that 

the prediction using only the baseline characteristics only is a challenging problem, it 

remains approximately 30% (i.e. 100–70% accuracy) of non-deterministic factors

3.3 Clinical Evaluation from Part B

In Part B of the study, we integrated the selected denoised features from Part A of the study 

and the classification algorithm of QPSO-RF that was deployed for prediction in the whole 

lung level to obtain a STP score. Table 2 provides the baseline characteristics of the 122 IPF 

subjects in the test set, by their follow-up progression status, namely, whether or not subjects 

had QLF scores increased by more than 4%. The non-progression group had a higher 

percentage of female, were slightly older, had lower QLF and higher percentage predicted 

FVC at baseline.

Figures 3 and 4 contain four subfigures and represent the examples of the expected to be 

progressed and stable cases, respectively. The figures display the representative axial HRCT 

images at baseline and the corresponding the dichotomized results and probability of 

predictive progression, as well as the follow-up axial HRCT images.

Figure 3 is a representative sample of IPF subject with a STP of 49.1%. This subject had an 

increased QLF of 12.6% from baseline to 17.3% at 7-month follow-up, which was more 

than 4% QLF change in the follow-up scan, and had experienced a more than 10% drop 

(from 69% to 55%) in FVC percent predicted value. Figure 3 shows that the majority of 

voxels were classified as expected to progress. Overall STP consists of the voxels that 

classified as expected to progress in both dichotomized and continuous probabilities (Fig 3.b 

and Fig 3.c), which can be confirmed in baseline and 7 month HRCT scans (Fig 3.a, and Fig 
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3.d). This model is able to pick up many voxels expected to progress in their exact locations 

at the follow-up HRCT.

Figure 4 is a representative stable case of IPF subject with a STP of 14.9%. The subject had 

the same QLF score of 4% from baseline and 12-month follow-up, which indicates 

progression. Figure 4 shows that the majority of voxels were classified as expected to be 

stable and the overall STP consists of the signals with being stable (Fig 4.b and Fig 4.c), 

which can be confirmed in baseline and 12 month HRCT scans (Fig 4.a, and Fig 4.d). The 

prediction model is able to pick up many stable voxels in their exact locations at the follow-

up HRCT.

3.4 STP Associations with QLF and FVC

We used the STP score from a single baseline scan to compare the changes in clinical 

outcomes: (a) association correlation coefficient (rho) in changes, and (b) testing 

predictability of progression-free-survival (PFS). Disease progression are defined by (i) the 

lung functional change in the percent predicted FVC of 10% or more reduction; this is a 

common criteria for evaluating a therapeutic effect on the lung function [28], [29], and (ii) 

an increase in radiological outcome QLF of 4% or more [58]. In our study, STP had a weak 

trend with the changes in QLF at 6–9 month follow-ups (rho ρ=0.1295; p=0.155) with no 

significant association with the percent predicted FVC scores (rho ρ=−0.0115; p=0.90). 

However, a moderate association was found between changes in QLF and the percent 

predicted FVC (rho ρ=−0.25; p=0.0074).

In PFS analyses, high STP score at baseline scans had poor prognosis with QLF changes, 

and PFS defined by FVC changes did not reach statistical significance. In a univariate 

analysis, higher STP is associated with higher risk of progression in a univariate analysis, 

with a normalized hazard ratio of 1.45 (p = 0.027). In a multivariate analysis after adjusting 

for subjects’ age and gender, the normalized hazard ratio is 1.53 (p = 0.041). No statistically 

significant trend was found in PFS using FVC percent predicted outcome; the normalized 

hazard ratio is 0.88, p=0.49 for univariate analysis, and the normalized hazard ratio is 0.92 

p=0.70 for multivariate analysis adjusting for gender and age. Table 3 summarizes the results 

from Cox regression using the two types of outcomes with the baseline STP as a covariate.

The mean (± SE) follow up time was 7.6 (± 0.2) months for HRCT and 8.0 (± 0.4) months 

for pulmonary function test. Figure 5 shows that the STP was well correlated with QLF 

based progression with the median of 6–7 month follow-ups. Mean of STP at baseline was 

high in the group with progression compared with group without progression, as is shown in 

Table 3. Subjects with 40 or higher in STP had earlier PFS than those with STP score below 

than 40 (log-rank test, p=0.0196). However, STP was not significantly related to levels in 

functional progression-free survival using FVC, even after examining the longitudinal 

observations beyond 1 year follow-ups (log-rank test, p=0.65). Of note that 75% of 

population for those who had >40% STP (~=33 subjects) were missing after 12 months. No 

significant result in STP was found in PFS using FVC as an outcome, after we right 

censored the data at 400 days, which is about the last days of QLF follow-ups (log-rank test, 

p=0.50).
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4. Discussion

Building a robust model to produce results for clinical validation requires careful 

consideration of the processes that include the targeted population for a training data set 

[60], [61]. Overall, our proposed STP score is significantly associated with the changes in 

QLF scores, where both scores are derived from HRCT images. However, the STP score was 

not associated with the expected changes in the percent predicted FVC. There are several 

possible reasons for this observation. One of the main reason for the disassociation is that 

the data set was collected from subjects with paired HRCT scans to build a classifier model. 

The inclusion criteria in this retrospective study were: (a) subjects who have not yet 

undergone a lung transplant (b) available HRCT within 6–12 months (c) available percent 

predicted FVC measurements who met conditions (a) and (b). Thus, the sequence of 

inclusion criteria may have resulted in more missing FVC during data collection than the 

other scenario of FVC data first collected and then checked for available HRCT data. 

Furthermore, there were many incidences where the duration of percent predicted FVC in 

the follow up visit were less than a year, which is deemed unreliable in the natural follow up. 

The main reason for a missing FVC is that the subject could no longer be in the study; for 

subjects who had more than 40% STP, it is likely that he or she had moved on to an anti-

fibrotic treatment or opted into a lung transplant program.

To build a robust model with good classification results, it is also important to clearly 

identify the target population [60]. First, the characteristics of the independent test set have 

to be similar to the training set. For example, both the prevalence of population and 

inclusion criteria for model building should be similar. Second, the generalizability of a 

model is an important attribute of a successful model; to achieve greater generalizability, it is 

crucial that we understand the sources of measurement variations in data collection and able 

to resolve or control the sources of variation. Beyond the statistical techniques of feature 

selection and classification for developing a model, it is important to consider the data 

collection method. In particular, careful attention must be given to the imaging data 

collection, because the quality of the lung segmentation can affect accuracy in the 

classification model. For example, the choice of the segmentation model and setting a lung 

boundary for the domains of data elements can have an impact on the next steps of analytic 

validation in calculating texture features and clinical validation. The data collection method 

should also be developed specific to the intended population of the training set. This is 

critical to maintain the quality and characteristics of the training data set and mitigate factors 

that require normalization of the heterogeneous data for generalizability in a test set.

The significance of this study can be summarized as follows. Our integrated procedure uses 

statistical learning to collect data and development for predicting disease progression along 

with an analytic evaluation methodology, and a practical model for clinical evaluation. The 

proposed methods requires multidisciplinary approaches, such as statistical learning and 

analytic tools from the mathematical and engineering disciplines to solve some of the 

problems that typically arise in imaging studies. The problems include situations when there 

are (a) unbalanced rates of classifier (e.g. different prevalence rates), (b) different sources of 

measurement variations from multicenter studies, and (c) requirements to simultaneous to 

identify and process the important feature selections. In our work, we solve (a) by using a 
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synthetic minority over-sampling technique, (b) by using features from denoised images, and 

(c) by using particle swamp optimization with random forest classifier to overcome the inter-

dependency between feature selection and the classification model. Because the 

characteristics of the training data set can influence the accuracy of prediction in a test set 

for a prediction model, , we emphasize the source of the training and test data sets have to be 

the same as much as possible to facilitate algorithm or AI implementation.

The performance of our model in the analytic evaluation of ROIs ranged between 65% and 

70% in sensitivity, specificity, and accuracy (Table 1). This indicates that prediction is a 

difficult problem and the rest of the 30% to 35% remains unpredictable. There may be due to 

genetic, environmental, and clinical factors. Prediction using medical imaging can play a 

role in precision medicine as additional laboratory results [28], [29] . The clinical evaluation 

of STP model performs well in accordance with radiological outcomes. However, the model 

performance was dragged down by the pulmonary function test, FVC. Considering that the 

early changes of QLF predict the FVC changes and the duration of FVC follow-up was less 

than a year, we expect to have higher concordance of STP with the lung function for longer 

follow-ups [25]. Normally the duration of 1 year changes in FVC has been commonly used 

in clinical trials; a longer follow-up can be explored in the next planning and data collection 

[28], [29].

Overall, our approach seems promising but note that there are practical limitations. First, this 

study is a retrospective study. Evaluating whether the proposed algorithm is correctly 

predicting disease progression can be limited due to missing data who are no longer in the 

natural follow up without treatment, where active anti-fibrotic treatments are available since 

year 2014 [28], [29]. There could be multiple reasons for missing data in FVC measurement. 

Clinical measurements of pulmonary function tests may not be routinely performed and 

electrically stored. Secondly this supervised statistical learning approach may require a long 

time in data collection for gathering the reference truth from an expert and for examining 

and deriving a set of standardized features from approved lung segmentation. In contrast, 

deep learning or unsupervised learning may requires short time in a model development. 

Another limitation of our approach is that the current training model did not incorporate 

directly clinical information of FVC decline. We used only radiographic worsening as a 

reference truth in the training model.

After STP score is validated through several clinical studies, another potential application is 

to provide a counterfactual scenario to estimate the probability of progression in ILD if a 

subject decides not to take or continue with an effective treatment. We note that a subject 

who experienced disease progression may not undergo the HRCT scanning in a clinic. In 

this scenario, prediction of disease progression using STP can be derived from baseline or 

the prior scans. Our work in STP is initial work in predicting the radiological progression or 

worsening in a short term of 6–12 months with only a single HRCT scan. This is the first 

study to use the baseline HRCT scan to predict the progression in whole lung. A new study 

is currently underway for evaluation and validation.
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5. Conclusions

Recent medical research is completed to analyze and make an inference because of 

increasingly huge data set. Standard statistical methods may no longer be adequate and 

modern analytic tools can be used. Increasingly, this involves statistical learning techniques 

and nature-inspired metaheuristic algorithms, such as quantum particle swam optimization, 

or some hybridization thereof. Our initial work of a statistical learning paradigm is an 

integrate approach, coupled with a hybrid of quantum particle swamp optimization and a 

random forest algorithm built upon a reference truth of visual assessment. The classifier 

model is designed to easily integrate into quantitative imaging analysis system which averts 

importing high dimensional CT images. The results of statistical learning model is to 

quantify a score of progression in IPF patients using a single HRCT scan. To attain clinical 

utility, clinical evaluation is further required.
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Figure 1: 
Study Design of Flow Chart and Graphical Illustration of ROI and Whole Lung Level. 

HRCT: high-resolution computed tomography, ROI: region of interest, QPSO: quantum 

particle swarm optimization, RF: random forest, CV: cross validation, STP: single-scan total 

probability, QLF: quantitative lung fibrosis
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Figure 2. 
Example of original axial slice HRCT image and its denoised image with enlarged region of 

interest (ROI): (A) original axial HRCT; (B) corresponding denoised image of (A); (C) 
original ROI; (D) corresponding denoised image of (C).
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Figure 3. 
Whole Lung Predictive Progression from Part B (Progressed case): The subject has a QLF of 

12.6% at baseline and 17.3% in a 7-month follow-up and the percent predicted FVC was 

69% and 55% at baseline and 12-months, respectively: (a) baseline HRCT; (b) dichotomized 

classification results of (a) (green dots = voxels expected not to progress, red dots = voxels 

expected to progress, with 0.5 probability cutoff), the percentage of predicted progression 

voxel is 52.4% on this slide; (c) classification result of predictive probability of progression 

of (a); (d) 7-month follow-up HRCT.
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Figure 4. 
Whole Lung Predictive Progression from Part B (Stable case): The subject has a QLF of 4% 

at baseline and 4% in a 12-month follow-up and the percent predicted FVC was 74.6% and 

76.0% at baseline and 12-months, respectively: (a) baseline HRCT; (b) dichotomized 

classification results (a) (green dots = voxels expected not to progress (stable), red dots = 

voxels expected to progress, with 0.5 probability cutoff), the STP of predicting progression 

voxel is 8.7% on this slide; (c) classification result of predictive probability of progression of 

(a); (d) 12-month follow-up HRCT.
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Figure5: 
Kaplan-Meier Curve by the Single-scan Total Prediction (STP) in interstitial lung disease: 

(A) Progression defined by QLF score more than 4% increase; (B) Progression defined by 

the percent predicted FVC 10% or more reduction
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Table 1.

Evaluation of Classification in the Region of Interests (ROIs) from Part A of the study.

QPSO-RF model Machine Learning

Texture Features from the original images Texture Features from denoised images

For 5-fold Cross-Validation (71 subjects) For 5-fold Cross-Validation (71 subjects)

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

0.71 0.70 0.70 0.73 0.60 0.65

For independent test set (122 subjects) For independent test set (122 subjects)

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

0.68 0.65 0.67 0.70 0.70 0.70
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Table 2.

Baseline characteristics of the 122 subjects in the test set, by their progression status in the follow-up visits

ΔQLF > 4%
(progression group)

ΔQLF ≤ 4%
(non-progression group) Total

# Subjects (%) 38 (31%) 84 (69%) 122

% Female 13% 34% 27%

Age, mean in years (SE) 68.1 (± 1.3) 71.0 (± 0.9) 70.0 (± 0.7)

Quantitative Lung Fibrosis, %, mean (SE) 17.6 (± 1.2) 14.5 (± 1.0) 15.4 (± 0.8)

Total Lung Capacity*, L, mean (SE) 3.82 (± 0.113) 3.88 (± 1.31) 3.84 (± 0.874)

FVC predicted percentage,%, mean (SE) 64.2 (± 1.7) 69.4 (± 1.4) 67.8 (± 1.1)

*
Total Lung volume from HRCT
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Table 3.

Summary results of baseline STP by the progression status in the follow-up visits

Baseline STP

QLF changes

Baseline mean (±SE)

ΔQLF > 4% 40.0 (± 1.8)

ΔQLF ≤ 4% 35.4 (± 1.2)

Total 36.8 (± 1.0)

Univariate normalized hazard ratio (p-value) 1.45 (p=0.027*)

Dichotomized STP # of subjects (%)

> 40% 44 (36%)

≤ 40% 78 (64%)

log-rank test p=0.020*

Multivariate normalized hazard ratio (p-value) 1.53 (p=0.041*)

Changes in % predicted FVC (ppFVC)

Baseline mean (±SE)

ΔppFVC < −10% 35.2 (± 2.3)

ΔppFVC ≥ −10% 37.3 (± 1.1)

Total 36.7 (± 1.0)

Univariate normalized hazard ratio (p-value) 0.88 (p=0.49)

Dichotomized STP # of subjects (%)

> 40% 44 (36%)

≤ 40% 78 (64%)

log-rank test p=0.974

Multivariate normalized hazard ratio (p-value) 0.92 (p=0.70)

Asterisk(*) indicates significance at 0.05 alpha level; ΔQLF: changes in QLF score , where a threshold of 10% reduction based on [58]; ΔppFVC: 
changes in the percent predicted FVC score, where a threshold of 10% reduction based on [28], [29]; Dichotomized Single-scan total probability 
(STP) at 40%

#
: the threshold is an approximate of 36.8% mean and 37.6% median STP at baseline scan.
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