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Abstract

Human learning in complex environments critically depends
on the ability to perform model selection, that is to assess com-
peting hypotheses about the structure of the environment. Im-
portantly, information is accumulated continuously, which ne-
cessitates an online process for model selection. While model
selection in human learning has been explored extensively, it is
unclear how memory systems support learning in an online set-
ting. We formulate a semantic learner and demonstrate that on-
line learning on open model spaces results in a delicate choice
between either tracking a possibly infinite number of compet-
ing models or retaining experiences in an intact form. Since
none of these choices is feasible for a bounded-resource mem-
ory system, we propose an episodic learner that retains an op-
timised subset of experiences in addition to semantic memory.
On a simple model system we demonstrate that this norma-
tive theory of episodic memory can effectively circumvent the
challenge of online model selection.

Keywords: episodic memory; semantic memory; online
model selection; Bayesian modeling; bounded-resource-
rationality

Introduction
In a complex, structured environment that is capable of pro-
viding a practically infinite variety of possible experiences,
storing them in all their detail would take a prohibitive
amount of memory and would be useless in responding to
novel situations. It is more beneficial for an learning agent to
extract the structure of the world into a concise model, which
enables both compression and generalisation, and store this
model instead of the observations. But then what is the ben-
efit of devoting precious mental resources to encoding incon-
sequential contingencies by storing rich snapshots of actual
experience, that is, what use is episodic memory?

We argue that online learning in open-ended hypothesis
spaces under realistic resource constraints — similar to what
the human brain faces — presents a computational challenge
that makes such a memory system necessary. In an online
learning scenario, observations arrive sequentially and pre-
dictions have to be continuously updated. Iterative updates
of a particular model’s parameters do not require storing the
data, since it is sufficient to retain only the information rel-
evant to the specification of the parameters. However, if the
structural form of the model is a priori unknown (Kemp &
Tenenbaum, 2008), then only a subset of candidate models
can be tracked at any given time, since the memory cost of re-
taining even such compressed statistics becomes prohibitive
for an infinite set of models. The inevitable information loss
resulting from this restriction presents the brain with a deli-
cate problem: relevance judgements, that is, decisions about
what to forget and what to remember can only be based on the

currently tracked models, but the initial guess for which mod-
els these should be is likely to be wrong because the initial
data will only warrant an overly simple model and because
it might be misleading about the correct structure and form.
Introducing such a bias in the interpretation of new experi-
ences towards the wrong models means that statistical power
required for model updating cannot accumulate, since the ev-
idence for alternative models and the information needed for
fitting those models will often be deemed irrelevant and dis-
carded, preventing the discovery of the correct representation.

We propose that an episodic memory can alleviate the fun-
damental problem of online learning described above, by re-
taining a selected subset of samples. This mini-batch allows
evidence for a novel model to accumulate by retaining the
contingent details of observations irrespective of how rele-
vant they appear under the current model. We also argue that
to take full advantage of episodic memory, its contents should
be chosen selectively, so that the combination of episodic and
semantic memories provide an efficient representation of the
observations.

We are aware of two prior attempts to provide a normative
explanation for an episodic memory based on computational
principles. The complementary learning systems account of
(McClelland, McNaughton, & O’Reilly, 1995) suggests that
a hippocampal learning system is required in order to avoid
interference with knowledge stored in a neocortical system
where learning occurs via slow changes of synaptic connec-
tivity in a network of neurons. Catastrophic interference can
be seen as a special case of the detrimental consequences of
an inability to maintain a lossless representation of observa-
tions during learning, but in contrast to our treatment, the
complementary learning systems approach lacks a normative
framework and only concerns parameter estimation within a
single model. Lengyel & Dayan (2009) argue that using the
data samples directly for control is advantageous at the early
stages of learning in a new environment. A different but re-
lated question about how the combination of semantic and
episodic memories can be used to optimize reconstruction is
explored by (Hemmer & Steyvers, 2009).

While this paper is intended primarily as a normative ar-
gument for the existence of a cognitive system, the prob-
lem explored here is intimately related to the efforts in ma-
chine learning to handle the problem of online Bayesian
model selection in arbitrarily complex model spaces. There
are numerous proposals for methods that deal with on-
line model selection or model selection in infinite model-
spaces (Grosse, Salakhutdinov, Freeman, & Tenenbaum,
2012; Hjort, Holmes, Müller, & Walker, 2010) separately.
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Recently, there have been attempts to tackle both challenges
at once in a similar setting, but these are concerned with a
restricted hypothesis space over possible model forms, such
as mixture models (Sato, 2001; Fearnhead, 2004; Gomes,
Welling, & Perona, 2008). Methods that are specific to a
given model form have the potential to be vastly more effi-
cient within their domain, but we are striving to find the prin-
ciples for a general purpose computational architecture that is
flexible enough to accommodate uncertainty in the structural
form of the model (Kemp & Tenenbaum, 2008). To the best
of our knowledge, such a scenario has not yet been explored.

Learning paradigm
In this paper we aim to study how the computational prob-
lem of learning shapes the architecture and dynamics of long-
term memory. We assume that the main goal of human learn-
ing is the acquisition of a suitable representation of the world
and propose that this learning process is characterised by the
following fundamental properties: i) it is incremental; ii) it
requires an open-ended hypothesis space which incorporates
not only an arbitrary amount of complexity but also enables
the discovery of the appropriate model form; and iii) it is
subject to computational constraints, most notably a limited
amount of memory.

Our main argument is agnostic to the choice of learning
method, but we are adopting the Bayesian inference frame-
work. This framework provides us with a consistent, gen-
eral and arguably elegant solution for dealing with uncer-
tainty during learning and is central to many state-of-the-art
advances in machine learning (Ghahramani, 2015) while si-
multaneously being able to capture a large body of knowledge
concerning the acquisition of abstract knowledge in humans
(Tenenbaum, Kemp, Griffiths, & Goodman, 2011; Orbán,
Fiser, Aslin, & Lengyel, 2008). In this framework the prob-
lem of learning can be formalised as the continual refinement
and updating of a probabilistic generative model, where in-
formation about unobservable or currently not observed vari-
ables, parameters and candidate world structures can all be
expressed as probability distributions over latent variables.

In our treatment the memory constraints are formalised
such that after the model has been updated, the observation
is discarded and only the sufficient statistics for the best per-
forming model is kept. The two main challenges introduced
by these constraints are that the learner needs to both: i) as-
sess the plausibility and ii) approximate the right parameter
settings of alternative models based solely on the sufficient
statistics of the tracked model, without having access to the
data.

We set out with an example learning problem that can
demonstrate both the challenges and the power of the pro-
posed approach: a mixture of Gaussians model (MoG) has
the benefit of showing non-trivial model-learning dynamics
while also providing an opportunity for analytical treatment.
Mixture models are also frequently used as cognitive models
of human category learning (Sanborn, Griffiths, & Navarro,

2006). We use a version where model selection corresponds
to determining the correct number of mixture components
based solely on the data; parameter learning consists of find-
ing the means for the components; while mixture weights and
variance of mixture components are assumed to be fixed and
known. Although a more flexible model would provide richer
dynamics, the main challenges stated earlier can be clearly
demonstrated on this simplified model.

The rest of the paper is structured as follows: first, we show
how incremental Bayesian inference works in a setting with-
out resource constraints; next, we introduce a learning agent
that only has access to a semantic memory and demonstrate
that it has a propensity to discard the information that would
enable model change; finally, we show that the introduction
of an episodic memory substantially mitigates this problem.

Learning in an unconstrained setting
Bayesian inference provides a consistent framework for
learning the form, the structure and the parameters of the
model estimating the probability distribution of data. Learn-
ing entails the estimation of the posterior probability of pa-
rameters (θ) in a given model and/or that of the model (m)
itself:

P(θ |D,m) ∝ P(D |θ,m)P(θ,m) (1)
P(m |D) ∝ P(D |m)P(m) (2)

Posterior probabilities for alternative model structures, and/or
forms need to be assessed individually and the marginal like-
lihood (mLLH),

P(D |m) =
∫

dθP(D |θ,m)P (θ |m) , (3)

plays a critical role in comparing these models: even with a
uniform prior probability distribution over alternative models,
the mLLH function implements the automatic Occam’s razor
principle, which ensures that the simplest model that can ac-
count for the observed variance in the data has the highest
posterior probability. Even when the model prior is flat, the
evaluation of mLLH is sufficient to compare the models.

In the analytic treatment of MoG, the posterior over the
means µ is a MoG again, in which the number of mixture
components grows exponentially with the number of obser-
vations T . Whether learning is performed on the whole batch
of data at once or is done in an online manner, Bayesian in-
ference yields the posterior distribution of parameters for any
particular model structure at any particular time (Fig. 1a-d).
This posterior distribution can be used to make predictions
on upcoming data and learning helps to disentangle the pre-
dictions of different models. While early in the training a
complex model that reflects the actual statistics of the data
adequately might be discounted because of lack of sufficient
evidence, after extended experience the marginal likelihood
of the simpler model will be overcome by the model of right
complexity (Fig. 1a-d). Switching time in model selection is
determined by the actual data samples and is defined by the
evolution of the mLLH (Fig. 1e,f). The Automatic Occam’s
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Figure 1: Illustration of model learning on a MoG model. a,
The goal of learning is the estimation of the probability distri-
bution of the data (left panel, dashed grey line) from a limited
sample (asterisks, n = 4). Inference in a given model yields a
posterior probability distribution over model parameters (up-
per right panel). The model assumes two mixture compo-
nents (k = 2). Based on the posterior, the predictive posterior
distribution (solid black line) provides our estimate on how
data points are distributed. Marginal likelihood assesses the
statistical power of the model (lower right panel). b, Same as
a but using a larger data set (n = 10). Tighter posterior results
in a tighter and more accurate predictive probability distribu-
tion and higher average marginal likelihood. c, d, Same as a
and b but for a k = 1 model. e, Evolution of mLLH as more
data is accumulated from a k = 2 model. Colours show mod-
els with different number of mixture components. Equality
of mLLH at T = 1 is a consequence of learning limited to the
means. f, Same as e but for a data set from a k = 3 mixture.

razor that is implemented by the mLLH function ensures that
no overfitting happens: the learner discovers more complex
structures if data statistics justifies such a model but keeps
the model as simple as possible.

Semantic-only learner under constraints
While Eq. 1 provides a general recipe for adjusting the
model parameters to data, learning can be formulated in two
markedly different ways. i), In order to obtain a posterior at
a particular time T , the whole data set DT is evaluated ac-
cording to Eq. 1. ii), Online learning relies on a parameter
posterior obtained at an earlier time point T −1 to provide a
prior for the evaluation of novel data:

P
(
θ |DT ,m

)
∝ P

(
xT |θ,m

)
P
(
θ |DT−1,m

)
(4)

While online learning has the same power as batch learning,
it has the benefit that it is explicitly formulated such that the

effect of the earlier data points is summarized in the poste-
rior calculated for DT−1. As a consequence, online learning
liberates us from the need to retain the whole data set: once
the posterior has been updated the data can be discarded. As
long as both parameters and models are updated, this proce-
dure provides a consistent method to update and compare al-
ternative hypotheses on how the model was generated without
needing to keep a growing data set in memory. In contrast, if
we track only a limited number of models (one model being
an extreme but valid approach), discarding data prevents the
consistent assessment of alternative models.

The unavailability of the original data leads to an uncer-
tainty as to the possible past data sets that could lead to the
same available statistics. An ideal learner represents this un-
certainty by means of a probability distribution over possible
past data sets. The learner needs a method for constructing
such a distribution based solely on the posterior of the cur-
rent model, since this contains all the information that it has
retained. Given such a distribution, a method is required to
compare alternative models (i.e. estimate the mLLHs, Eq.
3) and to assess what the parameters of the alternative mod-
els would have been had those been tracked from the begin-
ning (i.e. estimate parameter posteriors of novel models Eq.
1). We propose that a natural approximation of the current
model’s estimate of the distribution of possible past data sets
can be obtained by the assessment of the posterior predic-
tive distribution, P(x |D,m) =

∫
dθP(x |θ,m)P(θ |D,m), of

the tracked model. This choice is conceptually related to us-
ing “pseudopatterns” to transfer knowledge between different
models (French, 1999). It has the benefit that while the pa-
rameter posteriors of different models in general span very
different spaces and are thus not comparable, all models give
predictions over the same data space (Fig. 1a-d). Another
benefit is that the predictive distribution is presumably avail-
able for the learner in any case, since it is a fundamental com-
ponent of numerous other cognitive computations as well.

Inferring the posterior of a novel model
In a given model, the posterior distribution of parameters
summarises the model’s knowledge about the statistics of the
data. Since the predictive distribution of the tracked model
carries information about the uncertainty of the parameters
this can be used to approximate the posterior of the parame-
ters in a novel model by minimising the dissimilarity of the
predictive posterior distributions. Minimising the KL diver-
gence solves exactly this problem:

P
(
θ |D,m′

)
≈ argmin

P(θ|D,m′)
KL

[
P(x |D,m) ||P

(
x |D,m′

)]
. (5)

Calculating the KL divergence analytically is in most cases
unfeasible, therefore two approximations have been made.
First, inspired by Snelson and Ghahramani (2005) we were
looking for a compact representation of the predictive poste-
rior, but instead of achieving this by simply taking a likely set
of parameter settings, we’ve assumed that the posterior comes

2701



a b

µ
2

µ1

- 6 4
-6

4

-6 4
-6

4

- 6 4
-6

4

-6 4
-6

4
-

-

µ
2

µ1
-6 -2 2 6

0.1

0.2

x
P
(
x
|D

,k
)

Figure 2: Reconstruction of the parameter posterior from the
predictive posterior distribution. a, Posterior distribution of
the component means in a k = 2 model after observing n= 10
data points. Black contour plot: posterior obtained by analyt-
ical calculation; coloured contour plots: posterior reconstruc-
tions. b, Comparison of the true predictive posterior distribu-
tion (black line) and its approximations. Colours are matched
across panels, dashed line: data distribution.

from a simple parametric distribution family:

P
(
θ |D,m′

)
→ P

(
θ|η,m′

)
, (6)

where η provides a parametrisation of the approximate poste-
rior. As a result, the former functional optimization problem
in (Eq. 5) reduces to

η̂ = argmin
η

KL
[
P(x|D,m) ||P

(
x|η,m′

)]
, (7)

where P(x|η,m′) = ∫
dθP(x|θ,m′)P(θ|η,m′) is the approxi-

mate predictive posterior distribution. Eq. 7 is equivalent to
minimising the cross entropy, which can be approximated us-
ing a Monte Carlo integral. After sampling x̂i ∼ P(x |D,m)
we have to choose the η for which the expected value of
log(P(x|η,m′)) is maximal, concluding to a maximum likeli-
hood estimation over the generated ’fake data’

η̂ = argmax
η

∑
i

log
(
P
(
x̂i|η,m′

))
(8)

The resulting P(θ|η̂,m′) is our estimate of the parameter pos-
terior on the original data. The parameter posterior in our
implementation of MoG is a MoG again, hence a convenient
and effective parametrisation of the posterior uses a single
mixture component. This approximate posterior effectively
reproduces both the true posterior and the true predictive pos-
terior distribution of the model (Fig. 2).

Model comparison in constrained learners
Model comparison requires the assessment of the mLLH
function for alternative models (Eq. 3). However, even if we
have access to the marginal likelihood of the tracked model,
discarding the original data points renders the construction of
the mLLH for the novel model impossible. Again, the pos-
terior of the tracked model summarises our knowledge of the
data and and therefore we rely on the predictions that can be
drawn from the model posterior in order to assess the possible
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Figure 3: Inability of the memory-constrained learner to in-
crease model complexity. Evolution of the true mLLH (ana-
lytic batch learner) of different models (continuous lines) and
the mLLH of a constrained semantic learner (dashed lines).
Inset:the data set used.

data sets. This can be achieved by calculating the expected
value of the marginal likelihood over the predictive posterior:〈

P
(
D∗ |m′

)〉
D∗∼P(D∗ |D,m)

, (9)

where D∗ denotes fake data sets obtained from the predictive
posterior distribution. This expected value can be evaluated
by Monte Carlo sampling. Upon the arrival of a novel data
point xT , fake data sets are sampled from the predictive dis-
tribution. The novel data point is then appended to the fake
dataset and the marginal likelihoods are calculated and aver-
aged. In general, a single experience does not constitute ade-
quate evidence for switching to an alternative model, since it
lacks sufficient statistical power (Fig. 3). Note, that this claim
is not true in extreme cases: there always exist outliers such
that the marginal likelihood’s automatic Occam’s Razor ef-
fect will be overpowered by the unlikeliness of the new data
(data not shown). If the present model estimate is correct,
and the observed data corroborates this model then it can be
integrated without information loss. We argue however, that
models of differing form and complexity have different kinds
of regularities that they can capture, and it is exactly the recur-
ring appearance of features of the data that the current model
is unable to represent that necessitates model change. Con-
sequently, when a novel data point arrives which pushes the
learner toward a change of model form but is insufficient in
itself to force a switch, then the information loss prevents any
subsequent model change (Fig. 3). This results in an inabil-
ity to switch models for the memory-constrained learner even
after observing arbitrary amount of evidence that supports a
different one.

Episodic learner
The episodic learner differs from the semantic learner only in
an additional limited capacity storage for observations. Since
the semantic learner’s inability to change models is a result of
loss of information about past data, it is reasonable to expect
that providing a buffer for data points is bound to help. How-
ever, we also require that the capacity of episodic memory
necessary to enable model change should be small relative to
the memory demands of a batch learner. Simply using this
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Figure 4: Effect of introducing episodic memory. mLLHs of
the analytic batch learners (solid lines) approximate learners
(dashed lines). a, b, Using ordered data and retaining the last
two data points, the more complex model can obtain sufficient
statistical power to overcome the Occam’s razor effect at tran-
sitions k = 1→ 2 and k = 2→ 3, respectively. c, For sampled
data (unordered) a sliding window for two data points is in-
sufficient to induce model switch. d, Episodic memory effec-
tively rearranges data points (compare with panel c) such that
the arrival of a subsequent data point(s) incompatible with the
simple model induces model switch.

storage indiscriminately as a sliding window is inefficient for
enabling model change (Fig. 4) since the experiences that
taken together would provide the necessary statistical power
for model change might not arrive consecutively. Taking full
advantage of episodic storage requires the learner to optimise
its contents and use it selectively. Thus, given a bounded
capacity, the selection criterion for determining which data
points to store in episodic and which in semantic memory
is expected to be optimised to support the learner in dealing
with online model selection.

In order to retain statistics necessary for model transitions,
an episodic learner needs to identify points that have a large
information content with respect to fitting the models. The
Shannon definition of surprise −log(P(D|m)) has been crit-
icised as being unfit for this purpose because low predictive
probably does not guarantee that the observation is informa-
tive with respect to the appropriateness of the model. There-
fore we adopt the Bayesian definition of surprise (Itti & Baldi,
2005), which characterises the extent to which the posterior
is different from the prior expectations

S(D,m) = KL(P(m|D)||P(m)). (10)

Ideally, episodes that are maximally informative regarding
the model form would be sought but that would require eval-
uating the model posterior, P(m|DT−1), which is not accessi-
ble, since the learner doesn’t necessarily evaluate the same set
of models at different steps. Instead, we use the surprise in the
model parameters as a proxy: this selects observations that

change the learner’s beliefs about the parameters the most.
A large change in the parameter posterior signifies a diffi-
culty in explaining the new observations and previously seen
data under the current model which suggests that a change
of models might be appropriate. Another insight can shed
further light on the motivation behind our choice of selection
criterion. Adopting the perspective that the memory trace is
a lossily compressed form of the data, it should be optimised
so that the distribution over past data – used in approximating
the mLLH and alternative posteriors – is going to be as ac-
curate as possible. We can view the combination of episodic
and semantic memories as jointly providing a representation
of the agent’s past experiences PSM(x|η)+∑xm∈EM δ(x−xm).
In order to achieve the best compression the learner needs
to use each kind of memory system to store the information
it is most suited to reconstruct. Performing such an optimi-
sation would be relatively straightforward by comparing the
combined representation with the data, but the data was pre-
viously discarded. The learner can, however, select the data
points that would change the reconstruction to a large extent,
by seeing how much the posterior would change if the given
experience was stored in semantic memory. Taken together,
we formulated the criterion for selecting a data point for stor-
ing in episodic memory by assessing whether the dissimilar-
ity of posteriors with the novel data exceeds a fixed threshold:

KL(P(µ|xT ,η,k)||P(µ|η,k))> τ. (11)

Threshold τ is measured in units of surprise and its value
was determined empirically, but performance is relatively ro-
bust to its choice. At low threshold values the learner be-
comes non-selective, which results in accumulating sequen-
tial mini-batches. On the other hand, at high threshold lev-
els the learner will be reluctant to store anything in episodic
memory and is thus asymptotically equivalent to the seman-
tic learner. When episodic memory is saturated the learner
“consolidates” the episodes by performing batch learning on
its content. Upon triggering a model change the episodes
also serve to find the parameter posterior of the novel model.
For demonstration we have set the maximal size of episodic
memory to one and used it to show that the problems of a con-
strained semantic learner can be effectively alleviated (Fig.4).

We have directly contrasted the performance of learning
models in the model selection task on random data sets of
length T = 12 where the generating distribution had k = 2
or k = 3 components (Fig. 5). Besides the unconstrained
learner and the semantic learner, we set up models for an
episodic learner with a memory capacity of one and two
items, and also a pseudo-episodic learner that does not per-
form optimisation on the items to be stored in episodic mem-
ory. The episodic learner can demonstrate a remarkable in-
crease in performance even with an extremely limited capac-
ity. In order to make a fair comparison between k = 1→ 2
and k = 2→ 3 switches we balanced the difficulty of model
switch. Our analysis on k = 2→ 3 switch revealed an even
more pronounced advantage of the episodic learner over the
semantic learner, doubling the probability of a correct switch.
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Figure 5: Comparison of model learning in different learn-
ers. UL:unconstrained; EL2: episodic with capacity 2; EL1:
episodic with capacity 1; ELb: pseudo episodic with no selec-
tivity; SL: semantic. Probability of k = 1→ 2 and k = 2→ 3
model switch when data comes from a MoG with k = 2 and
k = 3 (left and right panels, respectively) estimated from a
thousand model runs each.

Discussion
We have offered a normative argument for the existence of
episodic memory by analysing a computational problem that
the brain has to solve, namely online model selection in an
open-ended model space. We used a simple minimal model to
demonstrate that the introduction of memory constraints has
dire consequences for a semantic-only learner and showed
that these problems are substantially mitigated by an episodic
memory, the contents of which are selected based on the
Bayesian formalisation of surprise.

Our choice of model was motivated by analytical tractabil-
ity which helped us to set a benchmark to model learning.
While this choice constrained the form of the model and the
size of the data set, the demonstrated problem is fundamen-
tal. These restrictions can be lifted by allowing the iterative
posterior updates to be approximate, for example by using
particle filters. Importantly, we strove to only use principles
and approximations that are agnostic to the model class, so
that the episodic learner can straightforwardly be extended to
richer hypothesis spaces.

The overall goal of our normative account is to shed light
on the dynamics underlying the organisation of long-term
memory: from a continuous stream of experience, how does
the human brain determine what parts to remember and what
to forget? It is extensively documented that humans are prone
to systematic biases in these decisions. We share the widely-
held belief that these systematic memory errors reflect ratio-
nal adaptations to computational resource constraints. In our
assessment, a comprehensive explanation and detailed pre-
dictions on how these processes work requires an understand-
ing of both the computational function and the constraints that
shape the dynamics of long-term memory. In this paper, we
aimed to provide the computational backbone for such a nor-
mative understanding: although some aspects of the current
treatment are reminiscent of the characteristics of the dynam-
ics of human memory (e.g. storing detailed representations of
surprising events), a more direct comparison between model

predictions and human performance will require the analysis
of model classes that can be related to available human data.

Acknowledgements.
We thank Zoubin Ghahramani and Szabolcs Káli for discus-
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