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Abstract

Differential sensitivity analysis is indispensable in fitting parameters, understanding uncer-

tainty, and forecasting the results of both thought and lab experiments. Although there are

many methods currently available for performing differential sensitivity analysis of biological

models, it can be difficult to determine which method is best suited for a particular model. In

this paper, we explain a variety of differential sensitivity methods and assess their value in

some typical biological models. First, we explain the mathematical basis for three numerical

methods: adjoint sensitivity analysis, complex perturbation sensitivity analysis, and forward

mode sensitivity analysis. We then carry out four instructive case studies. (a) The CARRGO

model for tumor-immune interaction highlights the additional information that differential

sensitivity analysis provides beyond traditional naive sensitivity methods, (b) the determin-

istic SIR model demonstrates the value of using second-order sensitivity in refining model

predictions, (c) the stochastic SIR model shows how differential sensitivity can be attacked

in stochastic modeling, and (d) a discrete birth-death-migration model illustrates how the

complex perturbation method of differential sensitivity can be generalized to a broader

range of biological models. Finally, we compare the speed, accuracy, and ease of use of

these methods. We find that forward mode automatic differentiation has the quickest

computational time, while the complex perturbation method is the simplest to implement and

the most generalizable.

Author summary

Over the past few decades, mathematical modeling has become an indispensable tool in

the biologist’s toolbox. From deterministic to stochastic to statistical models, computa-

tional modeling is ubiquitous in almost every field of biology. Because model parameter

estimates are often noisy or depend on poorly understood interactions, it is crucial to

examine how both quantitative and qualitative predictions change as parameter estimates
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change, especially as the number of parameters increases. Sensitivity analysis is the process

of understanding how a model’s behavior depends on parameter values. Sensitivity analy-

sis simultaneously quantifies prediction certainty and clarifies the underlying biological

mechanisms that drive computational models. While sensitivity analysis is universally rec-

ognized to be an important step in modeling, it is often unclear how to best leverage the

available differential sensitivity methods. In this manuscript we explain and compare vari-

ous differential sensitivity methods in the hope that best practices will be widely adopted.

We stress the relative advantages of existing software and their limitations. We also pres-

ent a new numerical technique for computing differential sensitivity.

This is a PLOS Computational Biology Methods paper.

1 Introduction

In many mathematical models underlying parameters are poorly specified. This problem is

particularly acute in biological and biomedical models. Model predictions can have profound

implications for scientific understanding, further experimentation, and even public-policy

decisions. For instance, in an epidemic some model parameters can be tweaked by societal or

scientific interventions to drive infection levels down. Differential sensitivity can inform medi-

cal judgement about the steps to take with the greatest impact at the least cost. Similar consid-

erations apply in economic modeling. Additionally, parameter estimation for model fitting

usually involves differential sensitivity through maximum likelihood or least squares criteria.

These optimization techniques depend heavily on gradients and Hessians with respect to

parameters. While some parameter estimation methods rely on Bayesian computational tech-

niques [1] rather than gradients, these techniques tend to scale poorly as the number of model

parameters increases. A common way to alleviate the poor scaling of Bayesian inference is

Hamiltonian Monte Carlo [2], which itself requires gradient calculations. Techniques for

assessing sensitivity of stochastic models often rely on the gradient-dependent Fisher informa-

tion matrix of the model, which is the basis for a variety of multi-step local sensitivity analysis

techniques for discrete stochastic models [3].

Calculation of gradients and Hessians of a model can also be important in other steps of the

scientific process. For example, iterative model development [4] involves using the Fisher

information matrix to inform experimental design. Extended Kalman filtering [5] incorporates

differential sensitivity into model construction. Regardless of the method, parameter estima-

tion is an important step in fitting a biological model, and the success of this step strongly

impacts the ultimate utility of the model. Understanding the uses and limitations of differential

sensitivity can aid in determining the identifiability of model parameters, how sensitive they

are to experimental error or measurement noise, and the overall importance of their existence

in the model. Finally, it is worth noting that while local sensitivity analysis is the focus of this

manuscript, global sensitivity analysis often relies on local differential sensitivity estimates to

inform optimal stepsizes in regional searching [6] or to resolve inconsistencies that arise when

local sensitivity is non-monotonic [7].

In any case it is imperative to know how sensitive model predictions are to changes in

parameter values. Unfortunately, assessment of model sensitivity can be time consuming,

computationally intensive, inaccurate, and simply confusing. Most models are nonlinear and
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resistant to exact mathematical analysis. Understanding their behavior is only approachable by

solving differential equations or intensive and noisy simulations. Sensitivity analysis is often

conducted over an entire bundle of neighboring parameters to capture interactions. If the

parameter space is large or high-dimensional, it is often unclear how to choose representative

points from this bundle. Faced with this dilemma, it is common for modelers to fall back on

varying just one or two parameters at a time. Model predictions also often take the form of

time trajectories. In this setting, sensitivity analysis is based on lower and upper trajectories

bounding the behavior of the dynamical system.

The differential sensitivity of a model quantity is measured by its gradient with respect to

the underlying parameters at their estimated values. The existing literature on differential sen-

sitivity is summarized in the modern references [8,9]. There are a variety of software packages

that evaluate parameter sensitivity. For example, the Julia software DifferentialEquations.jl

[10] makes sensitivity analysis routine for many problems. Additionally, PESTO [11] is a cur-

rent Matlab toolbox for parameter estimation that uses adjoint sensitivities implemented as

part of the CVODES method from SUNDIALS [12]. Although the physical sciences have

widely adopted the method of differential sensitivity [13,14], the papers and software generally

focus on a single sensitivity analysis method rather than a comparison of the various

approaches. This singular focus leaves open many questions when biologists conduct sensitiv-

ity analyses. Should the continuous sensitivity equations be used, or would automatic differen-

tiation of solvers be more efficient on biological models? On the types of models biologists

generally explore, would implicit parallelism within the sensitivity equations be beneficial, or

would the overhead cost of thread spawning overrule any benefits? How close do simpler

methods based on complex perturbation get to these techniques? The purpose of the current

paper is to explore these questions on a variety of models of interest to computational

biologists.

In the current paper we also suggest an accurate method of approximating gradients that

compares favorably against forward automatic differentiation techniques, provided a model

involves analytic functions without discontinuities, maxima, minima, absolute values, or any

other excursion outside the universe of analytic functions. In the sections immediately follow-

ing, we summarize known theory, including the important adjoint method for computing the

sensitivity of functions of solutions [13, 14]. Then we illustrate sensitivity analysis for a few

deterministic models and a few stochastic models. Our exposition includes some straightfor-

ward Julia code that readers can adapt to their own sensitivity needs. These examples are fol-

lowed by an evaluation of the accuracy and speed of the suggested numerical methods. The

concluding discussion summarizes our experience, indicates limitations of the methods, and

suggests new potential applications.

For the record, here are some notational conventions used throughout the paper. All func-

tions that we differentiate have real or real-vector arguments and real or real-vector values. All

vectors and matrices appear in boldface. The superscript indicates a vector or matrix trans-

pose. For a smooth real-valued function f(x), we write its gradient (column vector of partial

derivatives) asrf(x) and its differential (row vector of partial derivatives) as df ðxÞ ¼ rf ðxÞT .

If g(x) is vector-valued with ith component gi(x), then the differential (Jacobi matrix) dg(x) has

ith row dgi(x). The chain rule is expressed as the equality d½f � gðxÞ� ¼ df ½gðxÞ�dgðxÞ of differ-

entials. The transpose (adjoint) form of the chain rule isrf � gðxÞ ¼ dgðxÞTrf ½gðxÞ�. For a

twice-differentiable function, the second differential (Hessian matrix) d2f(x) = drf(x) is the

differential of the gradient. Finally, i will denote
ffiffiffiffiffiffiffi
� 1
p

.
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2 Methods for computing sensitivity

2.1 Forward method

S3 Appendix briefly discusses sensitivity analysis for the linear constant coefficient system
d
dt x tð Þ ¼ A βð Þx tð Þ of ordinary differential equations (ODEs). Sensitivity of the nonlinear sys-

tem d
dt x t; βð Þ ¼ f xðtÞ; β½ � can be evaluated by differentiating the original ODE with respect to

βj, interchanging the order of differentiation, and numerically integrating the system

d
dt

@

@bj
x t; βð Þ ¼

@

@bj
f xðtÞ; β½ � þ dxf xðtÞ; β½ �

@

@bj
x t; βð Þ:

This formulation of the problem depends on knowing x(t, β). In practice, one solves the

system

d
dt

xðt; βÞ

rβxðt; βÞ

" #

¼
f ½xðtÞ; β�

rβf ½xðtÞ; β� þ dβxðt; βÞ
T
rxf ½xðtÞ; β�

 !

ð1Þ

jointly, where dβx[t, β] is the Jacobi matrix of x(t, β) with respect to β. This is commonly

referred to as forward sensitivity analysis and is carried out by software suites such as Differen-

tialEquations.jl and SUNDIALS CVODES [12]. We note that a common implementation of

sensitivity analysis is to base calculations on directional derivatives. Thus, the directional deriv-

ative

dβxðt; βÞ
T
rxf xðtÞ; β½ � ¼ lim

�!0

f fxðtÞ þ �rxf ½xðtÞ; β�; βg � f ½xðtÞ; β�
�

version of the forward method allows one to evolve dynamical systems without ever comput-

ing full Jacobians. The forward method can also be applied when quantities of interest are

defined recursively.

2.2 Adjoint methods

The adjoint method is incorporated in the biological parameter estimation software PESTO

through CVODES [12]. This method [8,9] is defined directly on a function g[x(β), β] of the

solution of the ODE. The adjoint method introduces a Lagrange multiplier λ(β), numerically

solves the ODE system forward in time over [t0, tn], then solves the system

dβlðβÞ ¼ dxf ½xðβÞ; β�lðβÞ þ dβg½xðβÞ; β�;

for λ(β) in reverse time, and finally uses the introduced parameter to compute derivatives via

dβg½xðβÞ; β� ¼
Z tn

t0

lðt; βÞdβxðt; βÞdt:

The second and third stages are commonly combined by appending the last equation to the

set of ODEs being solved in reverse. This tactic achieves a lower computational complexity

than other techniques, which require solving an n-dimensional ODE system p times for p
parameters. In contrast, the adjoint method solves an n-dimensional ODE forwards and then

solves an n-dimensional and a p-dimensional system in reverse, changing the computational

complexity from OðnpÞ to Oðn þ pÞ. Whether such asymptotic cost advantages lead to more

efficiency on practical models is precisely one of the points studied in this paper.

Alternatively, one can find the partial derivatives using finite differences. The simplest

method here is to compute a slightly perturbed trajectory x(t, β+Δv) and form the forward
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differences

xðt; βþ DvÞ � xðt; βÞ
D

at all specified time points as approximations to the forward directional derivatives of x(t, β) in

the direction v. Choosing v to be unit vectors along each coordinate axis gives ordinary partial

derivatives. The accuracy of this crude method suffers from round-off error in subtracting two

nearly equal function values. These round-off errors are in addition to the usual errors com-

mitted in integrating the differential equation numerically. Round-off errors can be amelio-

rated by using central differences

x t; βþ D

2
v

� �
� x t; β � D

2
v

� �

D

rather than forward differences. However, the central difference method requires twice the

number of computations as the forward difference method. Thus, the choice of a difference

method depends on prioritization of accuracy versus computational efficiency. In small mod-

els, computational efficiency may be less of a priority, in which case central difference methods

are preferred.

2.3 Complex perturbation methods

There is a far more accurate way of computing model sensitivity when the function f[x, β]

defining the ODE is analytic in the parameter vector β [15]. An analytic function can be

expanded in a locally convergent power series around every point of its domain. This implies

that the trajectory x(t, β) is also analytic in β. For a real analytic function g(β) of a single vari-

able β, the derivative approximation

g0 bð Þ ¼
Imag gðbþ DiÞ

D
þ O D

2
� �

in the complex plane avoids roundoff and is highly accurate for Δ>0 very small [16,17]. Thus,

in calculating a directional derivative of x(t, β), it suffices to (a) solve the governing ODE
d
dt x t; βð Þ ¼ f xðtÞ; β½ � with β+Δiv replacing β, (b) take the imaginary part of the result, and (c)

divide by Δ. To make these calculations feasible, the computer language implementing the cal-

culations should support complex arithmetic and ideally have an automatic dispatching mech-

anism so that only one implementation of each function is required. In contrast to numerical

integration of the joint system (Eq 1), the complex perturbation method is much more simply

parallelizable across parameters.

The following straightforward Julia routine for computing sensitivities
function differential(f::F, p, Δ) where F

fvalue = real(f(p)) # function value
df = zeros(length(fvalue), length(p)) # states x parameters
pworker = [map(complex, p) for _ in 1:Threads.nthreads()]
Threads.@threads for j = 1:length(p)

_p = pworker[Threads.threadid()] # thread worker array
_p[j] = _p[j] + Δ � im # perturb parameter
fj = f(_p) # compute perturbed function value
_p[j] = complex(real(_p[j]), 0.0) # reset parameter
df[:,j]. = imag(fj)./ Δ # fill in jth partial

end
return (fvalue, df)

end
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takes advantage of the simplicity of multithreading the complex perturbation method by

parameter. This function requires a function f(p): Rn7!Rm of a real vector p declared as com-

plex. The perturbation scalar Δ should be small and real, say 10−10 to 10−12 in double precision.

If the parameters pj vary widely in magnitude, then a good heuristic is to perturb pj by pjdi
instead of di. The returned value df is an m×n real matrix. The Julia commands real and com-

plex effect conversions between real and complex numbers, and Julia substitutes im for

i ¼
ffiffiffiffiffiffiffi
� 1
p

. We will employ these functions later in some case studies.

A recent extension [18] of the complex perturbation method facilitates accurate approxima-

tion of second derivatives. The relevant formula is

@2

@b
2

j

gðβÞ ¼
Imag½gðβþ epi=4DejÞ þ gðβ � epi=4DejÞ�

D
2

þ OðD4
Þ; ð2Þ

where epi=4 ¼ ð1þ iÞ=
ffiffiffi
2
p

. Roundoff errors can now occur but are usually manageable. Here

we present a novel result for how to extend the complex perturbation method to approximate

mixed partials. Our derivation is condensed into the following equations

Dg½x þ epi=4ðej þ ekÞ� � gðxÞ þ epi=4dgðxÞDðej þ ekÞ

þ
i
2
Dðej þ ekÞ

>d2g xð ÞD ej þ ek

� �

þ
ep3=4

6
d3g x;D

3
ðej þ ekÞ

3
h i

g½x � epi=4Dðej þ ekÞ� � gðxÞ � epi=4dgðxÞDðej þ ekÞ

þ
i
2
Dðej þ ekÞ

>d2g xð ÞD ej þ ek

� �

�
ep3=4

6
d3g x;D

3
ðej þ ekÞ

3
h i

:

This approximation is accurate to order O(Δ6) and allows us to infer that

Imagg½xþ epi=4Dðej þ ekÞ� þ g½x � epi=4Dðej þ ekÞ�
D

2
¼

ðej þ ekÞ
>d2gðxÞðej þ ekÞ þ OðD4

Þ ¼

@2

@b
2

j

gðβÞ þ
@2

@b
2

k

gðβÞ þ 2
@2

@bj@bk
gðβÞ þ OðD4

Þ

ð3Þ

Since we can approximate @2

@b2
j
g βð Þ and @2

@b2
k
g βð Þ, we can now approximate @2

@bj@bk
g βð Þ to order

O(Δ4). These approximations are derived in S1 Appendix.

The Julia code for computing second derivatives
function hessian(f::F, p, Δ) where F

d2f = zeros(length(p), length(p)) # hessian
dp = Δ � (1.0 + 1.0 � im) / sqrt(2)
for j = 1:length(p) # compute diagonal entries of d2f

p[j] = p[j] + dp
fplus = f(p)
p[j] = p[j] - 2 � dp
fminus = f(p)
p[j] = complex(real(p[j]), 0.0) # reset parameter
d2f[j, j] = imag(fplus + fminus) / Δ^2

end
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for j = 2:length(p) # compute off diagonal entries
for k = 1:(j—1)

(p[j], p[k]) = (p[j] + dp, p[k] + dp)
fplus = f(p)
(p[j], p[k]) = (p[j] - 2 � dp, p[k] - 2 � dp)
fminus = f(p)
(p[j], p[k]) = (complex(real(p[j]), 0.0), complex(real(p

[k]), 0.0))
d2f[j, k] = imag(fplus + fminus) / Δ^2
d2f[j, k] = (d2f[j, k]—d2f[j, j]—d2f[k, k]) / 2
d2f[k, j] = d2f[j, k]

end
end
return d2f

end

operates on a scalar-valued function f(u) of a real vector p declared as complex. The sec-

ond-order complex perturbation method can also be multithreaded by parameter, provided

the unmixed second partials are computed prior to the mixed ones. Because roundoff error is

now a concern, the perturbation scalar Δ should be in the range 10−3 to 10−6 in double preci-

sion. The returned value d2f is a symmetric matrix.

2.4 Automatic differentiation

Another technique one can use to calculate the derivatives of model solutions is to differentiate

the numerical algorithm that calculates the solution. This can be done with computational

tools collectively known as automatic differentiation [19]. Forward mode automatic differenti-

ation is performed by carrying forward Jacobian-vector products at each successive calcula-

tion. This is accomplished by defining higher-dimensional numbers, known as dual numbers

[20], coupled to primitive functions f(x) through the action

f ðaþ b�Þ ¼ f ðaÞ þ �df ðaÞb:

Here � is a dimensional marker, similar to the complex i, which is a two-dimensional number.

For a composite function f = f2 � f1, the chain rule is df ðaÞb ¼ df2½f1ðaÞ�df1ðaÞb. The ith column

of the Jacobian appears in the expression f ðx þ ei�Þ ¼ f ðxÞ þ �rif ðxÞ. Since computational algo-

rithms can be interpreted as the composition of simpler functions, one need only define automatic

differentiation on a small set of base cases (such as +, �, sin, and so forth, known as the primitives)

and then apply the accepted rules in sequence to differentiate more elaborate functions. The For-

wardDiff.jl package [20] in Julia accomplishes this by defining dispatches for such primitives on a

dual number type and provides convenience functions for easily extracting common objects like

gradients, Jacobians, and Hessians. Hessians are calculated by layering automatic differentiation

twice on the same algorithm to effectively take the derivative of a derivative.

In this form, forward mode automatic differentiation shares many similarities to the com-

plex perturbation methods described above without the requirement that the extension of f(x)

be complex analytic. At every stage of the calculation f(x) must be differentiable, a weaker yet

still restrictive assumption. Conveniently, automatic differentiation allows for arbitrarily many

derivatives to be calculated simultaneously. By defining higher-dimensional dual numbers that

act independently via

f ðaþ
X

i

bi �iÞ ¼ f ðaÞ þ
X

�idf ðaÞbi

one can calculate entire Jacobians in a single function call f ðaþ
P

iei �iÞ. This use of higher-
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dimensional dual numbers is a practice known as chunking. Chunking reduces the number of

primal (non-derivative) calculations required for computing the Jacobian. Because the For-

wardDiff.jl package uses chunking by default, we will investigate the extent to which this detail

is applicable in biological models.

3 Case studies

We now explore applications of differential sensitivity to a few core models in oncology and

epidemiology.

3.1 CARRGO model

The CARRGO model [21] was designed to capture the tumor-immune dynamics of CAR T-

cell therapy in glioma. The CARRGO model generalizes to other tumor cell-immune cell inter-

actions. Its governing system of ODEs

dx
dt
¼ rx 1 �

y
g

� �

� k1xy

dy
dt
¼ k2xy � yy

follows cancer cells x as prey and CAR T-Cells y as predators. This model captures Lotka-Vol-

terra dynamics with logistic growth of the cancer cells. Our numerical experiments assume the

parameter values and initial conditions

k1 ¼ 6� 10� 9=ðday� cellÞ; k2 ¼ 3� 10� 11=ðday � cellÞ;

y ¼ 1� 10� 6=day; r ¼ 6� 10� 2=day; g ¼ 1� 109cells;

x0 ¼ 1:25� 104cells; y0 ¼ 6:25� 102cells

suggested by Sahoo et al. [21].

A traditional sensitivity analysis hinges on solving the system of ODEs and displaying the

solutions at a chosen future time across an interval or rectangle of parameter values. Fig 1

shows how x(t) and y(t) vary at t = 1000 days under joint changes of κ1 and κ2, where κ1 is the

rate at which cancer cells are destroyed in an interaction with an immune cell, and κ2 is the

rate at which immune cells are recruited after such an interaction. This type of analysis directly

portrays how a change in one or two parameters impacts the outcome of the system. Surpris-

ingly, the number of cancer cells x(t) depends strongly on κ2 but only weakly on κ1. In con-

trast, the number of immune cells y(t) depends comparably on both parameters, perhaps

because the initial population of immune cells is much smaller than the initial population of

cancer cells.

There are limitations to this type of sensitivity analysis. How many solution curves should

be examined? What time is most informative in displaying system changes? Is it necessary to

compute sensitivity over such a large range of parameters when the trends are so clear? These

ambiguities cloud our understanding and require far more computing than is necessary. Dif-

ferential sensitivity successfully addresses these concerns. Gradients of solutions immediately

yield approximate solutions in a neighborhood of postulated parameter values. The relative

importance of different parameters in determining species levels can be determined from

inspection of the gradient. Furthermore, modern software easily delivers the gradient along

entire solution trajectories. There is no need to solve for an entire bundle of neighboring

solutions.
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Differential assessment is far more efficient. The required calculations involve solving an

expanded system of ordinary differential equations just once under the automatic differentia-

tion method or solving the system once for each parameter under the complex perturbation

method. Either way, the differential method is much less computationally intensive than the

traditional method of solving the ODE system over an interval for each parameter or over a

rectangle for each pair of parameters. Here is our brief Julia code for computing sensitivity via

the complex perturbation method.
using DifferentialEquations, Plots
function sensitivity(x0, p, d, tspan)

problem = ODEProblem{true}(ODE, x0, tspan, p)
sol = solve(problem, saveat = 1.0) # solve ODE
(lp, ls, lx) = (length(p), length(sol), length(x0))
solution = Dict{Int, Any}(i = > zeros(ls, lp + 1) for i in 1:lx)
for j = 1:lx # record solution for each species

@views solution[j][:, 1] = sol[j,:]
end
for j = 1:lp

p[j] = p[j] + d � im # perturb parameter
problem = ODEProblem{true}(ODE, x0, tspan, p)
sol = solve(problem, saveat = 1.0) # resolve ODE
p[j] = complex(real(p[j]), 0.0) # reset parameter
@views sol. = imag(sol) / d # compute partial
for k = 1:lx # record partial for each species

@views solution[k][:,j + 1] = sol[k,:]
end

end
return solution

end
function ODE(dx, x, p, t) # CARRGO model

dx[1] = p[4] � x[1] � (1—x[1] / p[5])—p[1] � x[1] � x[2]
dx[2] = p[2]� x[1] � x[2]—p[3] � x[2]

end

Fig 1. Sensitivity of Cancer and Immune Cells in the CARRGO Model. A heatmap representing the number of

cancer cells, or x(t) (left) and the number of immune cells, or y(t) (right) as the parameters κ1 (horizontal axis) and κ2

(vertical axis) are varied. Results displayed summarize simulations of the CARRGO model with parameter values and

initial conditions indicated in this section at time t = 1000 days.

https://doi.org/10.1371/journal.pcbi.1009598.g001
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p = complex([6.0e-9, 3.0e-11, 1.0e-6, 6.0e-2, 1.0e9]); # parameters
x0 = complex([1.25e4, 6.25e2]); # initial values
(d, tspan) = (1.0e-13, (0.0,1000.0)); # step size and time interval in
days
solution = sensitivity(x0, p, d, tspan); # find solution and partials
CARRGO1 = plot(solution[1][:, 1], label = "x1", xlabel = "days",
ylabel = "cancer cells x1", xlims = (tspan[1],tspan[2]))
CARRGO2 = plot(solution[1][:, 2], label = "d1x1", xlabel = "days",
ylabel = "p1 sensitivity", xlims = (tspan[1],tspan[2]))

In the Julia code the parameters κ1, κ2, θ, ρ, and γ and the variables x and y exist as compo-

nents of the vector p and x, respectively. The two plot commands construct solution curves for

cancer and its sensitivity to perturbations of κ1.

Fig 2 reinforces the conclusions drawn from the heatmaps, but more clearly and quantita-

tively. Additionally, differential sensitivity allows for the assessment of the sensitivity over the

course of time, rather than just at a single time or small set of times. For example, the sensitiv-

ity of x with respect to γ in this model exhibits both large positive and large negative values

over the course of time. Measured as the difference in x caused by a difference in γ at our end-

time t = 1000, these effects tend to cancel each other out and fail to communicate the impact of

the parameter γ on x at intermediate times. In brief, the scaled sensitivity of cancer cells x is

much more dependent on carrying capacity γ later in the simulation, while the model sensitiv-

ity to birth rate ρ is most pronounced around the earlier time t = 200.

3.2 Deterministic SIR model

The deterministic SIR model follows the number of infectives I(t), the number of susceptibles

S(t), and the number of recovereds R(t) during an epidemic. These three subpopulations satisfy

the ODE system

d
dt

S ¼ � ZI
S
N

d
dt

I ¼ ZI
S
N
� dI

d
dt

R ¼ dI;

where η is the daily infection rate per encounter and δ is the daily rate of progression to immunity

per person. For SARS-CoV-2, current estimates [22] of η range from 0.0012 to 0.48, and estimates

of δ range from 0.0417 to 0.0588 [23]. As an alternative to solving the extended set of differential

equations, we again use the complex perturbation method to evaluate parameter sensitivities.

The following Julia code for the complex perturbation method reuses the generic sensitivity

function from the CARRGO model example.
function ODE(dx, x, p, t) # Covid model

N = 3.4e8 # US population size
dx[1] = —p[1] � x[2] � x[1] / N
dx[2] = p[1] � x[2] � x[1] / N—p[2] � x[2]
dx[3] = p[2] � x[2]

end
p = complex([0.2, (0.0417 + 0.0588) / 2]); # parameters
x0 = complex([3.4e8, 100.0, 0.0]); # initial values
(d, tspan) = (1.0e-10, (0.0, 365.0)) # 365 days
solution = sensitivity(x0, p, d, tspan);
Covid = plot(solution[1][:,:], label = ["x1" "d1x1" "d2x1"],
xlabel = "days", xlims = (tspan[1],tspan[2]))
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Our parameter choices roughly capture measurements for the COVID-19 virus from early

in the pandemic [22,23]. Fig 3 plots the susceptible curve and its sensitivities. In this case all

three curves conveniently occur on comparable scales. Fig 3 captures not only the pronounced

parameter sensitivity early in the pandemic but also the symmetry between the δ and η
parameters.

Fig 2. Sensitivity of Cancer Cells in the CARRGO Model. Time series plots of cancer cells (x(t)) and the derivatives

of x(t) with respect to the CARRGO parameters κ1, κ2, θ, ρ, γ. Results shown are for the initial conditions and

parameter values defined in Fig 1 and simulated over the course of t = 1000 days. The complex perturbation method of

sensitivity analysis is used to compute derivatives.

https://doi.org/10.1371/journal.pcbi.1009598.g002
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3.3 Second-order expansions of solution trajectories

In predicting nearby solution trajectories, the second-order Taylor expansion

f ðx þ vÞ � f ðxÞ þ df ðxÞv þ
1

2
vtd2f ðxÞv ð4Þ

improves accuracy over the first-order expansion

f ðx þ vÞ � f ðxÞ þ df ðxÞv: ð5Þ

The improved accuracy achieved by including second-order terms often justifies their com-

putation. The complex perturbation method permits straightforward computation of second

derivatives via approximations (Eq 2) and (Eq 3). The DiffEqSensitivity.jl and ForwardDiff.jl

packages implement both adjoint and forward difference methods for computing the second

derivatives of differential equation systems. Fig 4 displays predicted trajectories for the SIR

model using the complex perturbation method when all parameters pi are replaced by pi(1

+Ui), where each Ui is chosen uniformly from (−0.25,0.25). Fig 4 vividly confirms the improve-

ment in accuracy in passing from a first-order to a second-order approximation. More

improvement becomes evident as the non-linearity of the solution trajectory increases.

For example, the top right panel of Fig 4 shows that the solution trajectory of infected indi-

viduals bends dramatically with a change in parameters. This behavior is much better reflected

in the second-order prediction compared to the first-order prediction, which over-corrects at

the peak. The Euclidean distance between the actual and predicted trajectories at the sampled

time points is about 25.4 in the first-order case and only about 9.06 in the second-order case, a

Fig 3. Sensitivities of Susceptibles in the Covid Model. Time series of the susceptible population (S(t)) and its

sensitivities to the two parameters (η and δ) of the classic SIR model. Results shown are for the SIR model simulated

for one year with initial conditions S0 = 3.4×108, I0 = 100, R0 = 0, and the parameter values η = 0.7194, δ = 0.5025.

Derivatives are calculated using the complex perturbation method.

https://doi.org/10.1371/journal.pcbi.1009598.g003
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reduction of over 60% in prediction error. By contrast, the trajectory of the recovered individ-

uals steadily increases in a much more linear fashion. The bottom left panel of Fig 4 shows that

the first-order prediction now remains reasonably accurate over a substantial period. Even so,

the discrepancy between the predicted solutions grows so that by day 100 the Euclidean dis-

tance between the first-order prediction and the actual trajectory exceeds 154, compared to

about 34.0 for the second-order prediction. Thus, calculating second-order sensitivity is help-

ful in both highly non-linear systems and systems with long time scales.

3.4 Stochastic SIR model

We now illustrate sensitivity calculations in the stochastic SIR model. This model postulates

an original population of size n with i infectives and s susceptibles. The parameters δ and η again

capture the rate of progression to immunity and the infection rate per encounter. Since extinction

of the infectives is certain, we focus on the time to elimination of the infectives. It is also conve-

nient to follow the vector (i, n), where n = i+s is the sum of the number of infectives i plus the

number of susceptibles s. The mean time tin to elimination of all infectives satisfies the recurrence

tin ¼
1

idþ i
n � i
N

� �

Z

þ
id

idþ i
n � i
N

� �

Z

ti� 1;n� 1

þ

i
n � i
N

� �

Z

idþ i
n � i
N

� �

Z

tiþ1;n

ð6Þ

Fig 4. Model Trajectories for SIR Model Calculated Using First and Second Differentials. Time series plot of the

SIR model simulated over t = 100 days with initial conditions S0 = 1000 and I0 = 10. Results depend on the SIR model

with the original parameters from Fig 3 (original trajectory), re-simulating the SIR trajectory after perturbing the

parameters by a random amount around 25% (trajectory with perturbed parameters), approximating the trajectory

based on the linear expansion (Eq 5) and the first derivative calculated with the complex perturbation method (first-

order prediction), and approximating the trajectory based on the quadratic expansion (Eq 4) and the first and second

derivatives calculated with the complex perturbation method (second-order prediction).

https://doi.org/10.1371/journal.pcbi.1009598.g004
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for 0<i<n together with the boundary conditions

tii ¼
Xi

j¼1

1

jd
and t0n ¼ 0:

The expression for tii stems from adding the expected time for the i!i−1 transition, plus

the expected time i−1!i−2, and so forth. This system of equations can be solved recursively

for i = n, n−1,. . .0 starting with n = 1. Once the values for a given n are available, n can be

incremented, and a new round is initiated. Ultimately the target size n = N is reached. Taking

partial derivatives of the recurrence (Eq 6) yields a new system of recurrences that can also be

solved recursively in tandem with the original recurrence. The complex perturbation method

is easier to implement and comparable in accuracy to the partial derivative method.

Another important index of the SIR process is the mean number of infectives min ever gen-

erated starting with i initial infectives and n total people. These expectations can be calculated

via the recurrences

min ¼
id

idþ i n� i
N

� �
Z
ðmi� 1;n� 1 þ 1Þ þ

i n� i
N

� �
Z

idþ i n� i
N

� �
Z
miþ1;n ð7Þ

for 0<i<n together with the boundary conditions

mii ¼ i and m0n ¼ 0:

One can compute the sensitivities of the min to parameter perturbations in the same way as

the tin. Here is the Julia code for the two means and their sensitivities via the complex perturba-

tion method. Note how our earlier differential function plays a key role.
function SIRMeans(p)

(delta, eta) = (p[1], p[2])
M = zeros(typeof(p[1]),(N+1, N+1)) # mean matrix
T = similar(M) # time to extinction matrix
for n = 1:N # recurrence relations loop

for j = 0:(n-1)
i = n—j
a = i � delta # immunity rate
if i = = n # initial conditions

M[i+1, n+1] = i
T[i+1, n+1] = T[i, i] + 1 / a

else
b = i � (n—i) � eta / N # infection rate
c = 1 / (a + b)
M[i+1, n+1] = a � c � (M[i, n] + 1) + b � c � M[i+2, n+1]
T[i+1, n+1] = c � (1 + a � T[i, n] + b � T[i+2, n+1])

end
end

end
return [M[:, N+1]; T[:, N+1]]

end
p = complex([0.2, (0.0417 + 0.0588) / 2]); # delta and beta
(N, d) = (100, 1.0e-10);
@time (f, df) = differential(SIRMeans, p, d);

The left column of Fig 5 displays a heatmap of the expected total number of individuals

infected and the right column displays a heatmap of the expected days to extinction of the

infection process. Rows 2 and 3 show the sensitivites of these quantities to the η and δ parame-

ters in the stochastic SIR model.
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It is interesting to compare results from differential sensitivity to estimates from stochastic

simulations. To see the difference in accuracy, we calculated the average number of individuals

infected and the average time to extinction by stochastic simulation using the software package

BioSimulator.jl [24]. Table 1 records the analytic and simulated means of these outcomes in

the SIR model. As Table 1 indicates, the simulated means over r = 100 runs are roughly compa-

rable to the analytic means, but the standard errors of the simulated means are large. Because

Fig 5. Sensitivity of Stochastic SIR Model. Heatmaps showing the mean number of infected individuals (M) at

extinction, the mean time to extinction (T), and their sensitivities to the parameters η and δ for the stochastic SIR

process. Sensitivities rely on the complex perturbation method to calculate derivatives and assume initial conditions S0

= 100 and I0 = 1.

https://doi.org/10.1371/journal.pcbi.1009598.g005

Table 1. Comparison between the calculated and simulated means of SIR model outcomes in the stochastic SIR model simulated under the initial conditions S0 =

3.4×104, I0 = 1 and parameter values η = 0.7194, δ = .5025. Results for the simulated means were obtained using the BioSimulator package in Julia and averaging

results over r = 100 runs.

Calculated Mean Simulated Mean Simulated Standard Error

Time to Extinction 2.792×10 days 3.074×10 days 4.153 days

Number Infected 5.484×103 people 5.838×103 people 8.551×102 people

https://doi.org/10.1371/journal.pcbi.1009598.t001
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the standard errors decrease as 1ffiffi
r
p , it is difficult to achieve much accuracy by simulation alone.

In more complicated models, simulation is so computationally intensive and time consuming

that it is nearly impossible to achieve accurate results. Of course, the analytic method is predi-

cated on the existence of an exact solution or an algorithm for computing the same.

Parameter sensitivities inform our judgment in interesting and helpful ways. For example,

derivatives of both the total number of infecteds and the time to extinction with respect to η
are very small except in a narrow window of the η parameter. This suggests that we focus fur-

ther simulations, sensitivity analysis, and possible interventions on the region of parameter

space where η falls in these windows. Derivatives with respect to δ also depend mostly on η
except at very small values of δ. These conclusions are harder to draw from noisy simulations

alone.

3.5 Branching processes

Branching process models offer another opportunity for checking the accuracy of sensitivity

calculations. For simplicity we focus on birth-death-migration processes [25]. These are multi-

type continuous-time processes [26,17] that can be used to model the early stages of an epi-

demic over a finite graph with n nodes, where nodes represent cities or countries. On node i
we initiate a branching process with birth rate βi>0 and death rate δi>0. The migration rate

from node i to node j is λij�0. All rates are per person, and each person is labeled by a node.

Let λi = ∑j6¼iλij be the sum of the migration rates emanating from node i. Given this notation,

the mean infinitesimal generator of the process is the matrix

Ω ¼

b1 � d1 � l1 l12 � � � l1;n� 1 l1n

..

. ..
. . .

. ..
. ..

.

ln1 ln2 � � � ln;n� 1 bn � dn � ln

0

B
B
B
@

1

C
C
C
A

The entries of the matrix etΩ ¼ ½mijðtÞ� represent the expected number of people at node j
at time t starting from a single person of type i at time 0. The process is irreducible when the

pure migration process corresponding to the choice βi = δi = 0 for all i is irreducible. Equiva-

lently, the process is irreducible when the graph representing transition probabilities is

strongly connected. Henceforth, we assume the process is irreducible and let Γ denote the

mean infinitesimal generator of the pure migration process. The process is subcritical, criti-

cal, or supercritical depending on whether the dominant eigenvalue ρ of O is negative, zero,

or positive.

To determine the local sensitivity of ρ to a parameter θ [26, 27], suppose its left and right

eigenvectors v and w are normalized so that vw = 1. Differentiating the identity Ow = ρw with

respect to θ yields

@

@y
Ω

� �

wþΩ
@

@y
w ¼

@

@y
r

� �

wþ r
@

@y
w:

If we multiply this by v on the left and invoke the identities vO = ρv and vw = 1 we find that

@

@y
r ¼ v

@

@y
Ω

� �

w:

Because @

@di
Ω ¼ � @

@bi
Ω, it follows that an increase in δi has the same impact on ρ as the

same decrease in βi. The sensitivity of v and w can be determined by an extension of this rea-

soning [28]. The extinction probabilities ei of the birth-death-migration satisfy the system of
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algebraic equations

ei ¼
di

bi þ di þ li
þ

bi

bi þ di þ li
e2

i þ
X

j6¼i

lij

bi þ di þ li
ej ð8Þ

for all i. This is a special case of the vector extinction equation

e ¼ PðeÞ ¼

P1ðeÞ

..

.

PnðeÞ

0

B
B
@

1

C
C
A

for a general branching process with offspring generating function Pi(x) for a type i person

[29]. For a subcritical or critical process, e = 1. For a supercritical process all ei2(0,1). Itera-

tion is the simplest way to find e. Starting from e0 = 0, the vector sequence en = P(en−1) satis-

fies

0 � en � enþ1 � e

and converges to a solution of the extinction equations. Here all inequalities apply compo-

nent-wise.

To find the differential [28] of the extinction vector e with respect to a vector θ of parame-

ters, we assume that the branching process is supercritical and resort to implicit differentiation

of the equation e(θ) = P[e(θ), θ]. The chain rule gives

dθe ¼ dePðe; θÞdθeþ dθPðe; θÞ:

This equation has the solution

dθe ¼ ½In � dePðe; θÞ�
� 1dθPðe; θÞ: ð9Þ

The indicated inverse does, in fact, exist. Alternatively, one can compute an entire extinc-

tion curve e(t) whose component ei(t) supplies the probability of extinction before time t start-

ing from a single person of type. This task reduces to solving the ODE for d
dt e tð Þ by the

methods previously discussed.

The following Julia code computes the sensitivities of the extinction probability for a two-

node process by the complex perturbation method.
using LinearAlgebra
function extinction(p)

types = Int(sqrt(1 + length(p)) - 1) # length(p) = 2 � types + types^2
(x, y) = (zeros(Complex, types), zeros(Complex, types))
for i = 1:500 # functional iteration

y = P(x, p)
if norm(x—y) < 1.0e-16 break end

x = copy(y)
end
return y

end
function P(x, p) # progeny generating function

types = Int(sqrt(1 + length(p)) - 1) # length(p) = 2 � types
+ types^2

delta = p[1: types]
beta = p[types + 1: 2 � types]
lambda = reshape(p[2 � types + 1:end], (types, types))
y = similar(x)

PLOS COMPUTATIONAL BIOLOGY Differential methods for assessing sensitivity in biological models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009598 June 13, 2022 17 / 30

https://doi.org/10.1371/journal.pcbi.1009598


t = delta[1] + beta[1] + lambda[1, 2]
y[1] = (delta[1] + beta[1] � x[1]^2 + lambda[1, 2] � x[2]) / t
t = delta[2] + beta[2] + lambda[2, 1]
y[2] = (delta[2] + beta[2] � x[2]^2 + lambda[2, 1] � x[1]) / t
return y

end
delta = complex([1.0, 1.75]); # death rates
beta = complex([1.5, 1.5]); # birth rates
lambda = complex([0.0 0.5; 1.0 0.0]); # migration rates
p = [delta; beta; vec(lambda)]; # package parameter vector
(types, d) = (2, 1.0e-10)
@time (e, de) = differential(extinction, p, d)

To adapt the code to a different branching process model, one simply supplies the appropri-

ate progeny generating function and necessary parameters.

The average number aij of infected individuals of type j ultimately generated by a single ini-

tial infected individual of type i is also of interest. The matrix A = (aij) of these expectations

can be calculated via the matrix equation

A ¼ ðIn � FÞ� 1
; ð10Þ

where F is the offspring matrix

F ¼

2b1

b1 þ d1 þ l1

l12

b1 þ d1 þ l1

� � �
l1;n� 1

b1 þ d1 þ l1

l1n

b1 þ d1 þ l1

..

. ..
. . .

. ..
. ..

.

ln1

bn þ dn þ ln

ln2

bn þ dn þ ln
� � �

ln;n� 1

bn þ dn þ ln

2bn

bn þ dn þ ln

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

:

One can determine the local sensitivity of the expected numbers of total descendants by dif-

ferentiating the equation A = (In−F)−1. The result

dθA ¼ ðIn � FÞ� 1dθFðI � FÞ� 1
; ð11Þ

depends on the sensitivity of the expected offspring matrix F. Julia code for the complex per-

turbation method with two nodes follows.
function particles(p) # mean infected individuals generated

types = Int(sqrt(1 + length(p)) - 1) # length(p) = 2 � types + types^2
delta = p[1: types]
beta = p[types + 1: 2 � types]
lambda = reshape(p[2 � types + 1:end], (types, types))
F = complex(zeros(types, types))
t = delta[1] + beta[1] + lambda[1, 2]
(F[1, 1], F[1, 2]) = (2 � beta[1] / t, lambda[1, 2] / t)
t = delta[2] + beta[2] + lambda[2, 1]
(F[2, 1], F[2, 2]) = (lambda[2, 1] / t, 2 � beta[2] / t)
A = vec(inv(I—F)) # return as vector

end
delta = complex([1.0, 1.75]); # death rates
beta = complex([1.5, 1.5]); # birth rates
lambda = complex([0.0 0.5; 1.0 0.0]); # migration rates
p = [delta; beta; vec(lambda)]; # package parameter vector
(types, d) = (2, 1.0e-10)
@time (A, dA) = differential(particles, p, d)
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4 Results

We now measure the accuracy, computational speed, and prediction error for adjoint, forward

mode, and complex perturbation methods. To account for the variety of settings encountered

by biologists, we include two additional ODE models in our comparisons. The ROBER model

describes chemical reactions typical of enzymatic behavior [30] and furnishes an example of a

stiff ODE system. More information on the ROBER model can be found in S2 Appendix. To

compare the three methods in a high-dimensional ODE model, we turn to the mammalian cell

cycle (MCC) model. Our MCC model is a simplified version of the original MCC model con-

structed by Gerard and Goldbetor [31], as explained in more detail in S2 Appendix. The model

comprises 11 equations and 15 parameters and captures aspects of cell reproduction and cycling

mediated by chemical signaling via cell-state dependent proteins such as tumor repressors, tran-

scription factors, and other DNA replication checkpoints. The model relies on cell state as

opposed to cell mass and nicely replicates sequential progression along the cell cycle.

4.1 Accuracy

It is important to understand how close computed differential sensitivities are to true differential

sensitivities. Unfortunately, the latter are almost always unavailable for ODE models. For the sto-

chastic SIR and branching process models, true sensitivities are well matched by the approximate

sensitivities delivered by the complex perturbation methods, provided the complex perturbation

is small enough [32]. As a proxy for comparison to true values in ODE models, one can compute

the Euclidean distance between sensitivities delivered by the complex perturbation method and

the methods relying on the chain rule. In general, we find that these distances are very small.

For the forward and adjoint sensitivities of non-stiff ODEs such as the SIR and CARRGO

models, it is known that as one decreases the tolerance of the underlying ODE solver, the solu-

tion and its sensitivities converge to their true values [33]. To demonstrate that the same

behavior occurs in our cases, we compute the sensitivities @

@Z
S of the SIR model and @

@p1
x1 of the

ROBER model at t = 1000 using the adjoint, forward, and complex perturbation methods at a

variety of tolerances ranging from 1×10−2 to 1×10−8.

Fig 6 shows that all three method types (adjoint, forward, and complex perturbation) ulti-

mately converge. In the non-stiff case (the SIR model), the adjoint method requires a step size

of 1.0 to converge, while the stiff case (the ROBER model) requires a much smaller step size of

0.1 to converge. Each method converges at a different rate and potentially from a different

direction. In the case of a relatively small, non-stiff model, the complex perturbation method

converges more quickly (and at a higher tolerance) than the other methods. Notably, when the

tolerance for the adjoint method is too weak the error rate increases more dramatically than

for the forward method. This behavior becomes even more pronounced if we consider a stiff

ODE model such as ROBER. In this case it is worth noting that the forward and complex per-

turbation methods converge, albeit under a more stringent tolerance. The adjoint method

however struggles to converge for the ROBER model unless the step size is decreased to 0.1 (as

shown in the Fig 6). While the smaller step size does allow the adjoint method to converge

even in the stiff case, this smaller step size is much more computationally intensive and, in

many cases, may be infeasible.

4.2 The speed versus accuracy trade-off

The trade-off between computational speed and accuracy is relevant to solving ODE systems

whether they are stiff or not. Fig 7 displays the time versus error trade-off for both the SIR

(non-stiff) and ROBER (stiff) models. In this case, error is calculated as the Euclidean distance
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between the derivatives calculated at various error tolerances and the derivatives calculated at

a strict tolerance of 1×10−8 (for the SIR model) and 1×10−5 (for the ROBER model). We chose

these tolerances as the strictest possible that are numerically realistic for each model. Fig 6

demonstrates that our choices are strict enough for the methods to reach convergence. We dis-

play errors versus time in a log-log plot averaged over compartments and parameters and nor-

malized by length of time. We do not include the adjoint method in this comparison due to its

difficulties in convergence and large computational cost.

Fig 6. Convergence of Adjoint, Forward, and Complex Perturbation Methods for Numerical Sensitivities.

Convergence plot of the SIR model (left) and ROBER model (right) simulated over t = 1000 days. For SIR the initial

conditions are S0 = 3.4×108, and I0 = 100, and the parameters are η = 0.7194 and δ = 0.5025. For ROBER the initial

conditions are x1 = 1.0, x2 = 0.0, and x3 = 0.0, and the parameters are p1 = 4×10−2, p2 = 3×107, and p3 = 1×104. First-

order sensitivities are computed via code from this manuscript (complex perturbation method), the ForwardDiff.jl

package (forward method), and the Rodas4(autodiff = false) solver under the QuadratureAdjoint

(autojacvec = EnzymeVJP()) sensealg protocol in the DiffEqSensitivities.jl package (adjoint method). The adjoint

method requires a step size of 1.0 for the SIR model and a step size of 0.1 in the ROBER model to converge. All results

are normalized by the number of time steps included in the simulation.

https://doi.org/10.1371/journal.pcbi.1009598.g006

Fig 7. Time vs Error of Forward and Complex Perturbation Methods for Numerical Sensitivities. Time versus

error log-log plot of the SIR model (left) and ROBER model (right) simulated over t = 1000 days. For SIR the initial

conditions are S0 = 3.4×108, and I0 = 100, and the parameters are η = 0.7194 and δ = 0.5025. For ROBER the initial

conditions are x1 = 1.0, x2 = 0.0, and x3 = 0.0, and the parameters are p1 = 4×10−2, p2 = 3×107, and p3 = 1×104. First-

order sensitivities are computed via code from this manuscript (complex perturbation method) and the ForwardDiff.jl

package (forward method). Times reported are the median times computed using the Benchmark.jl package, and

errors are the Euclidean distance between the solution at the strictest tolerance (10−8 for SIR and 10−5 for ROBER) and

the solution at a variety of tolerances with a maximum of 10−2. All errors are normalized by the number of time steps.

https://doi.org/10.1371/journal.pcbi.1009598.g007

PLOS COMPUTATIONAL BIOLOGY Differential methods for assessing sensitivity in biological models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009598 June 13, 2022 20 / 30

https://doi.org/10.1371/journal.pcbi.1009598.g006
https://doi.org/10.1371/journal.pcbi.1009598.g007
https://doi.org/10.1371/journal.pcbi.1009598


Fig 7 demonstrates the clear trade-off between speed and accuracy in both the stiff

(ROBER) and non-stiff (SIR) cases. In both cases, the forward method can be computed more

quickly for equal errors than the complex perturbation method. As expected, the ROBER

model has a less steep slope compared to the SIR model, indicating that the returns in accuracy

grow more slowly per time invested for a stiff ODE system.

4.3 Computational speed

Speed is an important attribute of any computational method, especially when it is performed

without the benefit of computational clusters or distributed computing resources. Our speed

comparisons offer a first look at the efficiency gains possible with multithreading. In imple-

menting multithreading for both the complex perturbation and forward mode methods, we

call the Polyester.jl package to compute each partial derivative in a separate thread. All compu-

tations were done in Julia version 1.7.1 on a Windows operating system with an Intel Core i7-

8565U CPU.

In addition to multithreading, the forward method as implemented in ForwardDiff.jl pack-

age provides the capability of multichunking. This involves splitting the equations in each sys-

tem into different chunks to be solved separately. While forward methods do benefit from

chunking, this tactic is unavailable in many packages outside of ForwardDiff.jl or outside of

the Julia language. For biologists who depend on other packages and computer languages, it

may be more pertinent to focus on the non-chunked results for the forward method.

Tables 2, 3, 4 and 5 record the computational speed of the complex perturbation, forward,

and adjoint methods (and their multithreaded and multi-chunked versions, as applicable) for

four ODE systems models (SIR, CARRGO, ROBER, and MCC). Our comparisons of the first-

order methods show that the forward and complex perturbation methods perform compara-

bly, while the adjoint method performs orders of magnitude slower than the other two. The

fastest method is the multichunked forward method, with the complex perturbation method a

close second for the simpler ODE systems such as SIR and CARRGO. For the stiff (ROBER)

and large (MCC) models however, the complex perturbation method falls further behind the

multichunk forward mode method. This could be expected from the larger gap between the

time versus accuracy curves in the ROBER model as compared with the SIR model and illus-

trated in Fig 7. However, it is noteworthy that naive implementations of forward mode differ-

entiation lack the advantage of chunking and are consequently slower than the complex

perturbation method.

The adjoint method also has the worst time performance of the second-order methods by

orders of magnitude. Both the forward and complex perturbation methods performed well in

all four ODE systems models, with the complex perturbation method performing particularly

well in models where the number of parameters is not large compared to the number of

equations.

While multi-threading usually decreases computational time for both first-order and sec-

ond-order methods, it does not decrease computational time by as wide of a margin as

expected. Many of the solver methods for stiff ODEs rely on BLAS operations that are already

internally optimized by running on multiple threads. Explicitly multi-threading sensitivity

methods therefore restricts the number of threads available for BLAS operations, adversely

affecting their performance. In addition to the reduced efficiency of BLAS operations, multi-

threading incurs a start-up cost for each thread. These start-up costs may overshadow the ben-

efits of multi-threading if the amount of computation per thread is not high enough. Multi-

threaded methods require more allocations than other methods, and thus require more gar-

bage collection. While time spent on garbage collection varies, we find that garbage collection
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can take over twice as much computational time in multi-threaded methods than in their sin-

gle-threaded counterparts. Thus, multi-threading can only really start to improve computa-

tional efficiency when these additional costs are small compared to the cost of each

computation. Multi-threading may even be less efficient in some cases.

Table 2. Computational time (μs) for the SIR ODE model. Parameters match those previously introduced in this manuscript. Multithread refers to parallelism

across parameters. Multichunk refers to parallelism across compartments. We invoke the Julia solver AutoVern9(Rodas5(autodiff = false)) with a tolerance of

1×10−5, reflecting the convergence tolerance. For the second-order adjoint method, the ForwardDiffOverAdjoint(QuadratureAdjoint(autodiff = false) solver option

was used.

First-order Methods tend = 10 tend = 100 tend = 1000

Complex Perturbation 2:252� 102 1:688� 103 1:377� 104

Complex Perturbation Multithread 1:913� 102 1:401� 103 1:062� 104

Forward 3:272� 102 2:036� 103 1:460� 104

Forward Multithread 2:218� 102 1:480� 103 1:117� 104

Forward Multichunk 1:567� 102 9:564� 102 7:247� 103

Forward Multichunk Multithread 1:499� 102 9:526� 102 7:236� 103

Adjoint 8:901� 104 7:707� 106 6:950� 108

Second-order Methods tend ¼ 10 tend ¼ 100 tend ¼ 1000

Complex Perturbation 7:885� 102 5:712� 103 5:806� 104

Complex Perturbation Multithread 6:732� 102 4:528� 103 3:724� 104

Forward 9:325� 102 5:280� 103 4:530� 104

Forward Multithread 7:546� 102 3:504� 103 2:640� 104

Forward Multichunk 1:742� 102 7:601� 102 4:541� 103

Forward Multichunk Multithread 1:714� 102 7:270� 102 4:631� 103

Adjoint 2:976� 104 6:240� 105 1:626� 107

https://doi.org/10.1371/journal.pcbi.1009598.t002

Table 3. Computational time (μs) for the CARRGO ODE model. Parameters match those previously introduced in this manuscript. Multithread refers to parallel-

ism across parameters. Multichunk refers to parallelism across compartments. We invoke the Julia solver AutoVern9(Rodas5(autodiff = false)) with a tolerance of

1×10−5, reflecting the convergence tolerance. For the second-order adjoint method, the ForwardDiffOverAdjoint(QuadratureAdjoint(autodiff = false) solver option

was used.

First-order Methods tend = 10 tend = 100 tend = 1000

Complex Perturbation 3:977� 102 2:195� 103 2:332� 104

Complex Perturbation Multithread 3:661� 102 2:480� 103 2:330� 104

Forward 5:404� 102 2:597� 103 2:505� 104

Forward Multithread 4:527� 102 2:601� 103 2:336� 104

Forward Multichunk 3:759� 102 1:661� 103 1:417� 104

Forward Multichunk Multithread 2:699� 102 1:352� 103 1:215� 104

Adjoint 6:118� 104 5:097� 106 7:825� 108

Second-order Methods tend ¼ 10 tend ¼ 100 tend ¼ 1000

Complex Perturbation 2:039� 103 1:245� 104 1:469� 105

Complex Perturbation Multithread 2:123� 103 1:206� 104 1:573� 105

Forward 2:749� 103 1:239� 104 1:376� 105

Forward Multithread 1:737� 103 1:011� 104 1:735� 105

Forward Multichunk 1:097� 103 4:475� 103 5:382� 104

Forward Multichunk Multithread 7:135� 102 3:181� 103 3:967� 104

Adjoint 2:048� 104 2:795� 105 7:536� 106

https://doi.org/10.1371/journal.pcbi.1009598.t003
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Tables 6 and 7 compare the computational speeds of the different methods for the stochastic

SIR and branching process models. As expected for the stochastic SIR model, computational

speed varies roughly quadratically with the number N of individuals in the system. In the sto-

chastic SIR model, the complex perturbation method proves to be twice as fast as the manual

differentiation of (Eq 10) and (Eq 8) because the latter requires a larger number of individual

computations. For the branching process model however, this trend reverses since manual

Table 4. Computational time (μs) for the ROBER ODE model. Parameters match those previously introduced in this manuscript. Multithread refers to parallelism

across parameters. Multichunk refers to parallelism across compartments. We invoke the Julia solver Rodas4(autodiff = false) with a tolerance of 1×10−7, reflecting

the convergence tolerance. Second-order adjoint method not included at t = 1000 due to time constraints. For the second-order adjoint method, the ForwardDiffO-

verAdjoint(QuadratureAdjoint(autodiff = false) solver option was used.

First-order Methods tend = 10 tend = 100 tend = 1000

Complex Perturbation 2:475� 103 4:111� 103 4:117� 103

Complex Perturbation Multithread 1:549� 103 2:600� 103 5:016� 103

Forward 3:029� 103 4:544� 103 8:271� 103

Forward Multithread 1:726� 103 2:905� 103 4:766� 103

Forward Multichunk 1:471� 103 2:422� 103 4:113� 103

Forward Multichunk Multithread 1:343� 103 2:442� 103 3:902� 103

Adjoint 1:456� 108 2:656� 109 2:069� 1010

Second-order Methods tend ¼ 10 tend ¼ 100 tend ¼ 1000

Complex Perturbation 7:985� 103 1:250� 104 2:306� 104

Complex Perturbation Multithread 5:157� 103 8:868� 103 1:763� 104

Forward 7:422� 103 1:101� 104 2:291� 104

Forward Multithread 4:062� 103 6:131� 103 1:403� 104

Forward Multichunk 1:420� 103 2:157� 103 3:655� 103

Forward Multichunk Multithread 1:439� 103 2:159� 103 3:552� 103

Adjoint 3:669� 107 7:388� 108 –

https://doi.org/10.1371/journal.pcbi.1009598.t004

Table 5. Computational time (μs) for the MCC ODE model. Parameters match those previously introduced in this manuscript. Multithread refers to parallelism

across parameters. Multichunk refers to parallelism across compartments. We invoke the Julia solver AutoVern9(Rodas5(autodiff = false)) with a tolerance of

1×10−5, reflecting the convergence tolerance. For the second-order adjoint method, the ForwardDiffOverAdjoint(QuadratureAdjoint(autodiff = false) solver option

was used.

First-order Methods tend = 10 tend = 100 tend = 1000

Complex Perturbation 2:952� 103 2:588� 104 8:50� 104

Complex Perturbation Multithread 1:806� 103 1:521� 104 4:612� 104

Forward 2:758� 103 1:527� 104 7:741� 104

Forward Multithread 2:147� 103 1:524� 104 4:646� 104

Forward Multichunk 1:071� 103 6:806� 104 1:709� 104

Forward Multichunk Multithread 8:038� 102 5:494� 103 1:325� 104

Adjoint 3:601� 105 3:029� 107 3:332� 109

Second-order Methods tend ¼ 10 tend ¼ 100 tend ¼ 1000

Complex Perturbation 3:336� 104 4:457� 105 1:262� 106

Complex Perturbation Multithread 3:969� 104 2:969� 104 1:198� 106

Forward 6:331� 104 5:213� 105 1:383� 106

Forward Multithread 3:465� 104 3:445� 105 1:116� 106

Forward Multichunk 2:257� 104 1:392� 105 2:886� 105

Forward Multichunk Multithread 1:544� 104 8:824� 104 2:007� 105

Adjoint 6:589� 105 2:041� 107 7:388� 108

https://doi.org/10.1371/journal.pcbi.1009598.t005
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Table 6. Computational time (μs) in the stochastic SIR model. Model parameters match those previously described in this manuscript. Manual differentiation relies

on differentiating Eq 7 and Eq 6 for the stochastic SIR model.

@M/@δ N = 10 N = 100 N = 1000

Complex Perturbation 1:90� 101 1:634� 103 1:975� 105

Manual Differentiation 3:80� 101 3:879� 103 4:925� 105

@T/@δ N = 10 N = 100 N = 1000

Complex Perturbation 1:86� 101 1:620� 103 2:006� 105

Manual Differentiation 3:45� 101 4:213� 103 4:875� 105

https://doi.org/10.1371/journal.pcbi.1009598.t006

Table 7. Computational time (μs) for the branching process model. Model parameters are generated randomly on the range β2[0.05,0.16], δ2[0.05,0.19], and λ2
[0.0003,0.00046]. Manual differentiation relies on differentiating Eq 11 and Eq 9 for the branching process model.

@A/@δ1 N = 10 N = 100 N = 1000

Complex Perturbation 2:43� 103 2:33� 105 1:36� 108

Manual Differentiation 1:08� 101 3:75� 104 4:97� 105

Forward 1:79� 102 2:96� 105 –

Forward Multichunk 2:85� 101 1:32� 105 1:39� 109

@e/@δ1 N = 10 N = 100 N = 1000

Complex Perturbation 1:04� 103 3:44� 104 4:25� 106

Manual Differentiation 4:26� 102 4:90� 104 3:19� 106

Forward 1:03� 104 1:33� 106 –

Forward Multichunk 1:23� 103 1:12� 106 2:27� 109

https://doi.org/10.1371/journal.pcbi.1009598.t007

Table 8. Prediction error results for ODE models. Derivatives are calculated with the forward method. All predictions are for a 10% change in parameter. Parameters

match those previously introduced in this manuscript.

ODE Models tend = 10 tend = 100 tend = 1000

SIR First Order 3:370� 101 2:444� 106 2:524� 105

SIR Second Order 8:208� 100 2:299� 106 2:303� 105

CARRGO First Order 6:195� 10� 1 2:801� 103 1:465� 105

CARRGO Second Order 1:116� 10� 2 4:956� 102 4:217� 104

ROBER First Order 3:205� 10� 5 3:588� 10� 5 1:837� 10� 5

ROBER Second Order 1:753� 10� 6 2:201� 10� 6 1:039� 10� 6

MCC First Order 3:467� 10� 4 7:556� 10� 5 1:542� 10� 4

MCC Second Order 1:268� 10� 4 1:922� 10� 5 3:918� 10� 5

https://doi.org/10.1371/journal.pcbi.1009598.t008

Table 9. Prediction error results for the stochastic SIR model. Derivatives are calculated with the complex perturba-

tion. All predictions are for a 10% change in parameter. Parameters match those previously introduced in this

manuscript.

Stochastic SIR Model N = 10 N = 100 N = 1000

Total Number Infected (M) from η 2:322� 10� 3 2:009� 10� 2 1:241� 101

Total Number Infected (M) from δ 4:456� 10� 3 2:586� 10� 2 3:670� 10� 2

Time to Extinction (T) from η 1:601� 10� 3 6:715� 10� 3 4:046� 10� 3

Time to Extinction (T) from δ 2:074� 10� 1 1:599� 10� 1 4:811� 10� 2

https://doi.org/10.1371/journal.pcbi.1009598.t009
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differentiation relies on fast linear algebra rather than iteration and avoids the overhead of com-

plex arithmetic. The derivatives of A are matrix equations, and in this case forward mode differ-

entiation even without chunking performs as well as the complex perturbation method,

although it does not scale as well to larger systems (N = 1000). However, in the case of the deriv-

atives of e, which are calculated using recursion, neither implementation of forward mode dif-

ferentiation can be computed as quickly as the complex perturbation method, and this

difference increases with the size of the system. Other evidence not shown suggests that the

complex perturbation method can reliably evaluate sensitivities where solutions depend on lin-

ear algebra and/or recurrence relations. In summary, unless derivatives are quite complicated,

manual differentiation is generally more computationally efficient than either the complex per-

turbation method or the forward method. In computing second derivatives, we expect the tables

will be turned. To their credit, the forward and complex perturbation methods do not require

formulating derivatives analytically in advance and are consequentially easier to implement.

4.4 Prediction error

In general, prediction error measures how well the first and second-order sensitivities capture

the change in behavior of a model. Since we have previously shown that the various methods

for computing differential sensitivity yield nearly the same results, prediction error is a good

metric for determining the value of differential sensitivity in a particular model. We measure

prediction error by the Euclidean norms

err1 ¼ kf ðx þ vÞ � f ðxÞ � df ðxÞvk

err2 ¼ kf x þ vð Þ � f xð Þ � df xð Þv �
1

2
vtd2f xð Þvk:

Other norms, such as the ℓ1 and ℓ1 norms, yield similar results. In the ODE models, f(x)

denotes a matrix trajectory so the Frobenius norm applies. To capture proportional prediction

errors, we normalize all vector outputs by their length and all matrix outputs by the square of

their length.

Prediction accuracy varies widely between models and even between parameters. As we

expect however, second-order approximations are more accurate in prediction. Tables 8, 9

and 10 record prediction errors for each model. For the ODE systems, we see that stiffness

highlights the added value of the second-order approximations. In the ROBER and CARRGO

models, the second-order approximations have an order of magnitude less prediction error

than the first-order approximations. However, stiffness does not appear to impact how the pre-

diction errors grow over time. The ROBER and MCC models do not suffer from increased

errors per time point after longer prediction intervals.

Table 10. Prediction error results for the branching process model. Derivatives are calculated with the complex per-

turbation method. Parameters are generated randomly on the range β in [0.05,0.16], λ in [0.0003,0.00046], and δ = β
+.03 for calculation of a sub-critical system (A) and δ = β−.03 for calculation of a super-critical system (e).

Branching Process Model N = 10 N = 100 N = 1000

Total Number Infected (A) from β1 3:025� 10� 2 7:020� 10� 6 7:234� 10� 9

Total Number Infected (A) from δ1 5:036� 10� 2 8:734� 10� 5 1:348� 10� 7

Total Number Infected (A) from λ1,1 2:402� 10� 4 4:229� 10� 6 4:152� 10� 8

Extinction Probability (e) from β1 1:119� 10� 4 3:476� 10� 7 7:257� 10� 10

Extinction Probability (e) from δ1 7:682� 10� 4 3:776� 10� 6 9:424� 10� 9

Extinction Probability (e) from λ1,1 5:123� 10� 5 3:044� 10� 6 5:800� 10� 8

https://doi.org/10.1371/journal.pcbi.1009598.t010
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In the stochastic SIR model, prediction error does not seem to be compounded at all; in

fact, the error per value calculated decreases in the case of @M
@Z

. In the case of branching pro-

cesses with many types N and large parameter sets, it is inadvisable to compare prediction

accuracy across system sizes. However, we can conclude from these results that at least the pre-

diction error does not compound as N increases. Furthermore, prediction accuracy for the

branching process models appears to vary dramatically depending on the parameter in

question.

5 Discussion

Our purpose throughout has been to demonstrate the ease and utility of incorporating differ-

ential sensitivity analysis in dynamical modeling. Because models are always approximate, and

parameters are measured imprecisely, uncertainty plagues virtually all dynamical models.

While improving models is incremental and domain specific, sensitivity analysis provides a

handle on local parameter uncertainty across models.

Of the methods mentioned in this text, the adjoint method, forward method, and complex

perturbation methods all require that the functions defining a model be differentiable in the

underlying parameters. While the complex perturbation method has the additional require-

ment that these functions be complex analytic, it is the only method explored in this manu-

script that can be extended to discrete stochastic models in addition to ODE systems. For the

modeler who prefers a one size fits all approach, or who prefers to prioritize ease of implemen-

tation, we argue that the complex perturbation method should be the method of choice. In

addition to its wide range of applicability, the complex perturbation method can be easily

multi-threaded and requires only implementation of the component functions of the model.

In contrast to the second-order complex perturbation method, forward differentiation slows

dramatically in calculating a Hessian directly. It becomes competitive if one calculates the gra-

dient of the gradient. The gradient of the gradient method is not always available natively and

usually must be implemented separately as we have done in the current manuscript. Crucially,

implementing a specialized forward mode method was possible due to the underlying auto-

matic differentiation software’s flexibility and support for composition.

In situations demanding computational speed, our results suggest that choosing a method

tailored to a model may be pertinent. In the case of stochastic models, manually differentiating

and applying the chain rule must be balanced against the complex perturbation method,

which requires less effort up front but longer processing after the derivatives have been deter-

mined. For ODE systems models, forward mode is the most computationally efficient when

multichunking is available. If multichunking is not available, then the complex perturbation

method has comparable speed to the forward method when run with the same tolerance. In

maximizing computational efficiency, it is important to note that the use of automatic differ-

entiation tools may require more user input for algorithm selection or multi-threading imple-

mentation. Choice of software is critical as well; not all software packages with automatic

forward differentiation support chunking as implemented in the ForwardDiff.jl package and

that so dramatically improves the computational efficiency of this method.

There are additional challenges to computing model sensitivity that we do not address. For

example, not all models use functions that are differentiable in their parameters. Additionally,

models may be differentiable yet extremely stiff, in which case the computational time for each

sensitivity method discussed here will suffer disproportionally as the number of parameters

grows. Furthermore, assessing global parameter sensitivity is more challenging. It can be

attacked by techniques such as Latin square hypercube sampling or Sobel quasi-random sam-

pling, but these become infeasible in high dimensions [34]. Given the availability of
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appropriate software, differential sensitivity is computationally feasible, even for high-dimen-

sional systems.

In the case of stochastic models, traditional methods require costly and inaccurate simula-

tion over a bundle of parameter values. Differential sensitivity is often out of the question. Cur-

rent automatic differentiation systems, such as PyTorch, Zygote and ForwardDiff, treat

generated random numbers as constants, and thus are not reliable methods for use in calculat-

ing differential sensitivity of model outcomes that depend on these random variables. This lim-

its the ability of researchers to understand a biological system and how it responds to

parameter changes. If a system index such as a mean, variance, extinction probability, or

extinction time can be computed by a reasonable algorithm, then differential parameter sensi-

tivity analysis can be undertaken. We have indicated in a handful of examples how this can be

accomplished.

In summary, across many models representative of computational biology, we have reached

the following conclusions:

a. Forward mode, adjoint, and complex perturbation sensitivity methods all converge to the

same differential sensitivity values in non-stiff models, thus offering the same level of accu-

racy for all methods. For stiff models, forward mode and complex perturbation methods

converge but adjoint sensitivity struggles and does not achieve convergence for realistic tol-

erance parameters.

b. Chunked forward mode automatic differentiation and forward mode sensitivity analysis

tend to be the most computationally efficient on the tested models.

c. The complex perturbation methods described in this manuscript are competitive and often

outperform the unchunked version of forward mode automatic differentiation, while being

less sensitive to stiffness than the adjoint methods.

d. Shared memory multi-threading of the complex perturbation and forward mode automatic

differentiation methods provides a performance gain but only in high-dimensional

systems.

e. Forward mode automatic differentiation method requires that each step of a calculation is

differentiable. This renders it unusable for calculating the derivative of ensemble means of

discrete state models, such as birth-death processes. For these cases, the complex perturba-

tion method outperforms manual differentiation.

f. The complex perturbation method is competitive with automatic differentiation methods in

accuracy, is more straightforward to implement, and can be applied to a wider variety of

methods.

These conclusions are tentative but supported by our limited number of biological case

studies.

We note that the performance differences may change depending on the efficiency of the

implementations. The Julia DifferentialEquations.jl library and its DiffEqSensitivity.jl package

have been shown to be highly efficient, outperforming other libraries in both equation solving

and derivative calculations in Python, MATLAB, C, and Fortran [19,33]. Details on the current

state of performance can be found at https://github.com/SciML/SciMLBenchmarks.jl.

The automatic differentiation implementations in machine learning libraries optimize

array operations much more than scalar operations. This can work to the detriment of forward

mode AD. MATLAB or Python style vectorization improves the performance of forward

mode AD sensitivity analysis by reducing interpreter overhead. Therefore, our conclusions
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serve as guidelines for the case where all implementations are well-optimized. For program-

ming languages with high overheads or without compile-time optimization of the automatic

differentiation passes, the balance in efficiency shifts more favorably towards the complex per-

turbation method.

One last point worth making is on the coding effort required by the various methods. Both

automatic differentiation and the complex perturbation method have comparable accuracy

when applied to systems of ODEs, with automatic differentiation having the advantage in

speed when it is implemented with the additional level of parallelization provided by chunking.

However, the complex perturbation method can easily be generalized to other kinds of objec-

tive functions and may be more straightforward to implement for those less sophisticated in

computer science. While automatic differentiation is the basis of many large scientific pack-

ages, the code required for the complex perturbation methods is fully contained within this

manuscript and is easily transferable to other programming languages with similar dispatching

on complex numbers. This hard to measure benefit should not be ignored by practicing biolo-

gists who simply wish to quickly arrive at reasonably fast code.
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