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ARTICLE

Spectroscopic analysis reveals that soil phosphorus
availability and plant allocation strategies impact
feedstock quality of nutrient-limited switchgrass
Zhao Hao 1✉, Yuan Wang2, Na Ding2, Malay C. Saha2, Wolf-Rüdiger Scheible2, Kelly Craven2,

Michael Udvardi 2, Peter S. Nico1, Mary K. Firestone3 & Eoin L. Brodie 1,3✉

The perennial native switchgrass adapts better than other plant species do to marginal soils

with low plant-available nutrients, including those with low phosphorus (P) content.

Switchgrass roots and their associated microorganisms can alter the pools of available P

throughout the whole soil profile making predictions of P availability in situ challenging. Plant

P homeostasis makes monitoring of P limitation via measurements of plant P content alone

difficult to interpret. To address these challenges, we developed a machine-learning model

trained with high accuracy using the leaf tissue chemical profile, rather than P content. By

applying this learned model in field trials across two sites with contrasting extractable soil P,

we observed that actual plant available P in soil was more similar than expected, suggesting

that adaptations occurred to alleviate the apparent P constraint. These adaptations come at a

metabolic cost to the plant that have consequences for feedstock chemical components and

quality. We observed that other biochemical signatures of P limitation, such as decreased

cellulose-to-lignin ratios, were apparent, indicating re-allocation of carbon resources may

have contributed to increased P acquisition. Plant P allocation strategies also differed across

sites, and these differences were correlated with the subsequent year’s biomass yields.
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B iofuel crops have been developed as an alternative, carbon-
neutral energy source, among which the perennial C4 grass,
Panicum virgatum L. (switchgrass), native to North

America, can adapt to a wide range of environments1, including
those with marginal soils and low water input. However, in order
to better manage and optimize this crop for biofuel production, it
is important to understand the mechanisms that enable its
adaptivity, and how nutrient-poor environments impact chemical
composition, biomass yield and feedstock quality.

A long-standing barrier to this mechanistic understanding lies
in the difficulty in characterizing plant chemical composition and
quantifying plant-available nutrients at the rhizosphere. Phos-
phorus (P) is a critical nutrient2, and poor P management poses a
global risk for environmental sustainability and food security3–5.
P limitation severely restricts photosynthesis and reduces CO2

fixation6, but upregulates pathways associated with organic acid/
carboxylate exudation7. P limitation can also be associated with
increasing biosynthesis of defense metabolites, such as increased
lignification of cell walls8, suggesting that changes in plant carbon
allocation in response to P limitation may alter both the yield and
the chemical composition of biofuel feedstocks, and therefore
productivity9. In this light, it may be beneficial to monitor plant-
available P concentration and plant chemical composition during
the growth season, with the goal of improving biomass
production10 and optimizing the chemical composition for
improving feedstock quality11 through active land management,
especially when growing in marginal soils12.

Quantifying soil P available to plants is challenging, especially
if attempting to do this dynamically during a growing season.
Typical chemical extraction methods (e.g., Bray, Olsen, or Meh-
lich III) quantify only a fraction of the inorganic P pool and are
typically measured in top soils prior to planting13,14. Although
the P concentration data obtained with these methods have been
widely used in the literature to represent total P availability, they
are not an accurate measure of P available for plant growth.
Perennial grasses such as switchgrass produce deep roots that
explore and obtain nutrients and water from distinct locations
deep into the soil, and these locations vary across the growing
season and lifetime of a plant. Further, plants have developed a
number of strategies12,15–17 to access P from different types of
soil, including the adaptive secretion of compounds such as
organic acids, enzymes and siderophores which either mobilize
soil P directly, or indirectly through their stimulation of the
rhizosphere microbiome and symbiotic fungi18–20. Combined,
dynamic growth of roots through a soil profile with distinct
concentrations and chemical forms of P, an adaptive allocation of
photosynthate belowground, and a microbiome with typically
unknown capacity for P mobilization, makes predicting plant-
available P a highly complex task.

Meanwhile, there has been renewed interest and some success
in predicting plant nutrient levels using spectroscopic methods
for remote sensing with the help of machine intelligence21. A
variety of machine learning tools have been utilized to achieve
satisfactory results with independent variables obtained, for
example, by visible to near-infrared spectroscopy, to predict
nutrient levels in shoots in agricultural crops22–25, total nitrogen
content of soils26 and plant adaptive responses to stress27. Most
of these tools are linear models such as partial least squares
regression, principal component analysis, or support vector
machines often with a nonlinear kernel, likely due to their
inherent robustness and reduced chance of overfitting. Intuitively
shoot nutrients should be somewhat correlated to soil nutrient
availability. Thus, it is conceivable that a machine learning
approach could predict nutrient availability by monitoring the
biochemical signatures of plant shoots. However, to our knowl-
edge, this aspect has not been well explored.

In this paper, we use a molecular spectroscopic method to
determine and quantify the organic P (Po) and inorganic P (Pi) in
leaf tissue. This approach also provides important information on
overall plant tissue biochemistry that can be used as multiplex-
signatures of a plant’s response to environmental conditions. P
speciation (inorganic versus organic) can be quantified dynami-
cally and feedstock quality for biofuel production can be inferred.
We then use this tissue biochemical information to infer and
evaluate plant-available P using a machine-learning model
trained using a dataset from a controlled laboratory experiment.
Building off this approach, we used the model to interpret plant
spectral data from two field locations where contrasting available
P was expected.

Results and discussion
Controlled sand-based laboratory experiment to evaluate plant
biochemical responses to nutrient availability. A series of
experiments in sand cultures were performed to evaluate the
dose-response of plant tissue chemistry to varying N and P. The
chemical signatures in plant leaves varied substantially with P and
N availability in the growth media, as shown in Fig. 1. Note that
the absorbance data were normalized to the maximum to show
the relative concentration changes on the same scale. We
observed higher cellulose, lower lignin, lower lipids, and higher
organic and inorganic phosphate concentrations in the leaves of
plants grown in solution with closer to optimal (higher) P con-
centration, and increased lipid and amide concentrations in
solution with closer to optimal N concentration. The cellulose/
lignin (C/L) ratio was very sensitive to P concentration, showing a
3-fold increase from <150 μM to 500 μMP, but was not con-
sistently sensitive to N concentration. Note that the P/N con-
centration likely fluctuated during plant growth and between the
fluid replenishment, thus the values here refer to the average
concentration through the growth. Since the C/L ratio is an
important metric for biofuel production, we suggest that higher P
concentrations would produce a higher C/L ratio for potentially
increased biofuel yield. The higher relative amide concentration
in plants grown in the lowest concentration of P (1 μM) com-
pared to those in intermediate P concentrations (10-30 μM) likely
reflected severe P-stress in these plants, as soluble nitrogenous
compounds including amino-acids and amides accumulate in
other species under P-deficiency28,29, and consistent with our
other observations7.

P deficiency was also associated with higher lipid content, as
indicated by the increased signal from carbonyl bonds, possibly
related to the production of triacylglycerides as storage
compounds under P limitation7,9. Note that while lignin
concentrations increased gradually with decreasing P (there was
no dose-response for N), cellulose concentrations showed a
threshold effect with a large increase between 30 and 150 μMP,
and these opposing responses manifested in a cellulose/lignin
ratio that is highly sensitive to P deficiency, but not to N
deficiency. The increase in lignin concentration under P
deficiency was possibly related to induction of defense genes
and defense metabolites and the overall shift to lower cellulose
and more lignin may represent a more pathogen-resistant, rigid
cell wall30–33.

Field experiment to evaluate the relationship between plant-
available P concentration and switchgrass biochemistry.
Because of the strong dependence of feedstock chemical com-
position on soil phosphorus concentration in the controlled-
growth experiments, we evaluated switchgrass growth at two field
locations contrasting in soil P availability. The soil texture of these
locations differs with the RR site being a sandy loam and 3rd St
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being a silt loam. Chemical characterization of bulk soil samples
indicated a significantly (p= 2.2 × 10−16) higher Mehlich-III
extractable P concentration in RR soils (80 ppm) relative to 3rd St
(~25 ppm) (Fig. 2a), with no significant seasonality observed
(p= 0.892). In general, plants grew taller in the RR plot than at
3rd St, reaching maximum heights at T4.

Our leaf-tissue measurements showed that leaf Pi concentra-
tion increased over the course of the growing season in both field
experiments. The Pi concentration of leaf tissue collected at RR
was higher than that at 3rd St (Fig. 3a), consistent with the bulk
soil characterization, although the plant Pi as determined by FTIR
was more similar than the extractable soil P data might have
suggested. This may be expected due to P homeostasis and overall
biomass difference. Pi concentration showed an earlier increase in
plants at Red River (T2), presumably reflecting greater uptake

early on due to higher concentrations of plant-available
phosphate in the soil. Further increase in the concentration of
Pi, especially in the late season along with the decrease of Po at RR
may reflect mobilization of Pi for translocation elsewhere in the
plant, including storage tissues that support regrow in the next
growing season34.

The trend of organic phosphates in the lower panel of Fig. 3
shows that, contrary to that of Pi, the concentration of Po
plateaued in the later stages of growth at around T4, when the
plant reached maximal biomass as indicated by the maximal plant
heights (Fig. 2b). Po concentration decreased significantly during
senescence (T5) in plants grown on the higher P soils at Red
River. This explains the transient sharp increase in Pi described
above and the large decrease of Po and total P (Fig. S1). Seasonal
increase of total P content in the shoots of switchgrass has been

Fig. 1 Biochemical components of leaf tissue. Relationships between the normalized concentration (presented here as normalized absorbance at
corresponding infrared frequencies) of biochemical components (cellulose, lignin, lipids, amides and inorganic/organic phosphates) in the leaf tissue
samples of switchgrass plants and the concentration of a P- and b N- in the growth media of laboratory hydroponic experiments. “CL.Ratio” stands for the
cellulose:lignin ratio.
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observed before35, but our spectroscopic method enabled us to
dissect P speciation during the growth season. Meanwhile, we
observed a similar trend in concentration of lipid signature in the
late growth stage (Fig. S2). Since the leaves we collected tended to
be younger leaves to be consistent with our sand-based
experiments, the maximum P concentration at T4 may reflect a
combination of P uptake over the growth period, plus reallocation
from old to younger leaves, resulting in higher concentrations of
major P-containing molecular classes like phospholipids and/or
ribosomal RNA.

Machine learning model prediction of plant-available P.
Because of the critical role of P in the growth of switchgrass and
its strong correlation with biochemical composition for this
biofuel species, we believe the seasonal characterization of plant-
available P in the rhizosphere and P speciation may be beneficial
for crop management and improved environmental outcomes.
We demonstrate here that a machine-learning (ML) model can be
used to quantify P availability using the plant leaves themselves as
sensors.

Since the nutrient concentration in the rhizosphere in a
hydroponic substrate is relatively well controlled, this experiment
allowed us to develop training data for an ML model. We
achieved a principal component regression (PCoR) model with a
high R2 of ~1 (with 41 principal components, see the learning

curves in Fig. S3), which allows us to predict plant-available P
concentrations based on the spectral data collected on the leaf
tissue from field-grown plants. The predicted P concentrations
are shown in Fig. 4a. Note that in a more traditional approach,
the model prediction would be further validated by another
independent method to evaluate the model’s accuracy. However,
such a method for accurate estimation of bioavailable P
concentration through the soil profile over time does not yet
exist in practice. We believe that our model contains an accurate
statistical description of the correlation between the P concentra-
tions in the growth media and all the spectral features in younger
leaf samples, given the high accuracy achieved with large
concentration range and the high affinity of P uptake; thus this
model can be used for prediction of the P concentration available
to each plant within the rhizosphere.

The predicted P concentration available to the plants shows a
gradual increase and then a sharp dip in T4 when the plant
reached maximal biomass, reflecting an increase in P uptake at T4
and a quick decrease in P uptake at T5, when the shoot senesces.
As a perennial plant, switchgrass remobilizes and stores P in roots
to support the subsequent year’s growth, consistent with previous
observations34 with P remobilization efficiency ranging from 31%
to 65% in different ecotypes. The increase in Pi in the tissue at the
later stage of growth, the strong correlation of cellulose content
with total P concentration, and the large reduction of plant-

Fig. 2 Water-soluble P concentration and seasonal change in plant height. a The water-soluble P concentration in the soils at the two field experiments at
3rd Street (silt loam soil) and Red River (sandy loam soil), respectively, with the boxes color-coded by the harvest times here and in subsequent figures.
There was no significant difference in P concentration over the growing season at either location (p= 0.892). Soil P concentrations are significantly higher
at Red River (p= 2.2 × 10−16). b The seasonal change of plant heights at the two field plots.
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available P in the rhizosphere provided us with a clear picture of
the interaction of P availability and tissue composition during the
life cycle of switchgrass. This may be a consideration in the
timing of harvest to achieve optimal biofuel yield and reserve P in
the root for the optimal growth in the next year.

The total P concentration in the roots followed a similar
seasonal trend, showing a reduction of total P concentration near
the period of maximal growth and at least a partial recovery in
T5. The P concentrations measured in roots by ICP-MS at T5, a
point at which plants had begun senescing, were similar across
the two field locations (p= 0.6626), with a mean value of
729 ppm at 3rd St and 703 ppm at RR, respectively. The similar
root P concentrations at T5 may be reflective of reduced plant P
demand during senescence as well as plant P re-allocation
(Fig. S4) and is described further below. Note also that the root
samples we collected are a small fraction of the whole root
system, and switchgrass is known to develop large root crowns for
nutrient storage.

As mentioned, the inferred plant-available P concentrations (and
the measured root P) across these two field locations, with distinctly
different extractable soil P, were surprisingly similar throughout the
growing season. This disconnect, suggests that extractable P from
soils, though sampled near the roots, do not reflect true P
availability to roots, or that plant adaptation to P limitation (direct
or through associated microorganisms) changes the fraction of P
that is in fact plant-available as the plant develops. This latter

possibility could be explored by assessing the ratio between the
predicted plant-available P concentrations and the extractable soil P
concentrations, as shown in Fig. S5b. This shows that plants at 3rd
St. “experienced” a comparatively higher concentration of P than
would be expected based on soil chemical extractions and the plant
growth rates correlated better with the plant-based estimates of P
availability, pointing to important biological, e.g., plant and
microbial, processes that liberate P associated with soil minerals
or organic matter in this higher clay content soil.

Given the greater availability of P at RR, one might expect less
need for plants to deploy adaptive strategies to obtain P, and
possibly a tighter connection between seasonal availability of P
and plant height at RR compared to those at 3rd St, which was
indeed the case (Fig. S5a). Reduced energy costs associated with
P-acquisition, in addition to higher P availability and other
factors, may explain the greater biomass of plants grown at RR
compared to those at 3rd St (with average mass of 333 g and 208 g
per plant, respectively; p= 2.2 × 10−16).

The increase in P concentration in the late season in roots and
the speciation of Po and Pi in leaves indicate that switchgrass
plants increase P mobilization and storage during shoot
senescence, as discussed above. We further explored this point
and observed a clear association between second-year biomass
production and the ratio of Pi/Po in the shoots at senescence
(Fig. S6). This suggested that effective reallocation of P (i.e., a
higher Pi/Po ratio in the late season) during senescence may

Fig. 3 Seasonal dynamics of P from leaf-tissue samples. a Inorganic and b organic P in leaf-tissue samples taken over the growing season from the two
field experiments at 3rd Street and Red River. P-values derived from pairwise comparisons are shown on the horizontal lines.
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contribute to the increased total biomass observed in second-year
growth (p= 4.4 × 10−16).

Switchgrass plants grown at the RR had a higher cellulose/
lignin ratio than those of 3rd St (p= 0.0023), coincident with
higher extractable soil P concentrations at RR. Furthermore the
cellulose/lignin ratio decreased over time as plants matured in
both plots (Fig. 4b). These observations are consistent with the
observations in the hydroponic experiment, and with the
development of harder tissues later during development of
perennial plants2. Taken together, these results show that
limitation of P availability and the resulting imbalance between
supply and demand of P for growth contribute to reduction of
total biomass and the feedstock quality.

Conclusions. In conclusion, we designed two sets of experiments,
one in a controlled laboratory hydroponic setting and the other as
a field experiment across locations with contrasting soil proper-
ties that influence nutrient availability. This allowed the estima-
tion of integrated plant-available P through the root zone based
on a ML model trained using the laboratory data, with a pre-
diction further supported by chemical analysis of roots. We
observed a series of consistent biochemical changes in shoot tis-
sue biochemistry when the plants were grown in a low-P envir-
onment, including a large decrease in cellulose/lignin ratio,

decreased lipids, and correlated changes in amide concentrations.
We observed a similar biochemical shift in shoot tissue from
plants grown in the field sites with lower extractable soil P, which
leads to our conclusion that P availability during plant growth
strongly impacts cellulose/lignin ratio, an important metric for
feedstock quality.

The ML methods we developed allowed us to observe the
seasonal dynamics of P availability in the rhizosphere. In parallel
we show evidence for differential P reallocation within leaf tissue,
as well as differential recovery of total P in root tissue late in the
growing season. A positive correlation between the successful
translocation of P and the total dry-mass production in the
second year, highlights the critical role of P in the sustainability of
feedstock growth as well as chemical quality. Furthermore,
despite the two field sites showing significant differences (almost
3x) in extractable soil P near the roots, plant height was
surprisingly similar; further our plant-based sensing of plant-
available P concentration suggested that plants at 3rd St accessed
pools of P not accurately represented by typical soil extracts. By
accessing alternate pools of P (not represented by chemical
extractions) the plant incurs several costs including decreased
carbohydrate production7, and as we have shown, other changes
in tissue biochemistry. This adaptive capacity for nutrient
acquisition has consequences for not just feedstock yield but also

Fig. 4 Machine learning predictions of seasonal P concentration and cellulose/lignin ratio of leaf-tissue samples. a The seasonal dynamics of P
concentration available to plants based on a machine learning analysis of leaf tissue spectral properties from the two field experiments at 3rd Street and
Red River, with the p-values from two-sample tests labeled above the boxes. P-values derived from pairwise comparisons are shown on the horizontal lines.
b Cellulose/lignin (C/L) ratio of leaf-tissue samples collected from the two field experiments at 3rd Street and Red River. Overall, the ratios are significantly
higher (p= 0.0023) in Red River than those in 3rd Street. P-values derived from pairwise comparisons are shown on the horizontal lines.
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feedstock quality that will influence the yield of cellulosic-derived
bioproducts. The mechanisms underlying this adaptive capacity
are not well understood and could be a target for enhancement.
Overall, we believe that the characterization method developed
here is amenable to high throughput assessment of bioenergy
feedstock biochemistry and may prove useful in guiding
customized nutrient amendment regimes to improve feedstock
yield and quality.

Methods
Switchgrass plants. Switchgrass cultivar Alamo seeds used in this study were
produced at the Noble Research Institute (NRI, Ardmore, Oklahoma, USA). They
were surface-sterilized by a 2-min treatment with 70% ethanol, de-husked in 60%
H2SO4 for 30 min, followed by a 30-min treatment with 50% Clorox® (8.25%
sodium hypochlorite, Clorox, Oakland, CA, United States) containing 0.1%
TWEEN 20 (AMRESCO, Solon, OH, United States) and five rinses between each
step with sterile water. They were germinated at 28 °C for 5 d on sterile, wet filter
paper in a dark environment.

Laboratory-based nutrient limitation experiments and sample preparation.
A series of sand-based hydroponic experiments were performed to establish the
ground-truthing correlation between the tissue chemistry and the available P, N
concentration. The details of these experiments have been reported by us
previously7. In short, we transplanted seedlings of comparable size into growth
cones which were filled with acid-washed all-purpose sand mix. A total of 78 plants
were watered daily to field capacity during a 4-week growth period, half of which
with a nutrient solution containing 1, 10, 30, 150, or 500 µM of Pi (with optimal
6 mM of N), supplied as KH2PO4, and the other half with 0.01, 0.1, 0.3, 1.5, or
6 mM of N (with 500 µM of P), supplied as KNO3. There were 9 replicates for each
condition, except that three of the plants grown with Pi= 1 µM had died before the
harvest, which were not included in the analyses. The plant samples for chemical
analyses were rinsed in Milli-Q water, blotted dry, immediately frozen by liquid
nitrogen and stored at −80 °C before freeze-drying and grinding. The samples for
biomass measurement were dried at 65 °C in pre-weighed paper bags until a
constant weight was achieved.

Field experiments and sample preparation. Field experiments were conducted at
two locations managed by the Noble Research Institute in Ardmore, Oklahoma.
These locations are referred to as “Third Street” (3rd St, latitude: 34.172100N and
longitude: −97.07953W) with a silt loam textured soil and “Red River” (RR) near the
Oklahoma-Texas border (latitude: 33.8820278N and longitude: −97.2755056W)
with a sandy loam textured soil (Figure S7). In May 2016, we planted Alamo seedlings
across both fields. Previous studies have shown the Alamo population has a large
biomass yield variation resulting from different genetic backgrounds. We randomly
selected 30 plants per plot for continuous sampling and growth data collection over 1
year, roughly every month for a total of five time points, corresponding to early
vegetative growth in June (T1), late vegetative growth in July (T2), reproductive
growth between August and September (T3), maximal biomass in October (T4), and
the senescence period in November (T5), respectively.

For each switchgrass plant, soil cores (15.24 cm or 6 inch deep and 6.35 cm or
2.5 inch in diameter) were taken adjacent to the plants. Roots collected from the
soil cores were rinsed with PBS buffer, freeze-dried, and powdered for elemental
analysis (P and N) with inductively coupled plasma-mass spectrometry (ICP-MS).
Soil samples taken near the roots of the plants were analyzed by the Mehlich III
method36 to quantify the concentration of phosphate and nitrate. This extracting
solution consists of multiple chemical solutions, including acetic acid, ammonium
nitrate, ammonium fluoride, nitric acid, and the chelator, EDTA. ICP-MS was then
used to determine water-soluble P in the soil.

All leaf samples were freeze-dried and ground for the aforementioned chemical
analyses. Samples for total-dry-mass measurement were dried at 65 °C until a
constant weight was achieved.

Attenuated total reflection—Fourier transform infrared (ATR-FTIR) spec-
troscopy. The ground leaf samples were measured directly by an ATR-FTIR
spectrometer (Nexus iS50 spectrometer with Smart iTR ATR accessory, Thermo
Fisher Scientific)37, with 32 averaging scans and a spectral range from 4000 to
600 cm−1 with a resolution of 4 cm−1. Each sample was pressed down to
contact the surface of a Ge crystal. A portion of evanescent infrared waves was
absorbed at the interface, and the internally reflected photons were then col-
lected by a deuterated triglycine sulfate (DTGS) detector to acquire an FTIR
spectrum. The penetration depth at the Ge/sample interface is on the order of
tens of micrometers, which makes it possible to obtain leaf chemistry in a
confined nanoliter volume.

Infrared signatures used in this study. The phosphate group absorbs light
strongly at ~1000 cm−1, which includes three degenerate symmetric and

asymmetric vibrations. When it forms a bond with the other species, such as
with inorganic polyphosphate and organic phosphorus compounds38,39, the
peaks are separated into frequencies covering from ~1400 cm−1 to ~800 cm−1,
two of which are of particular interest in this context, because of their dis-
tinctive locations from the C–O–C vibrations, mostly from polysaccharides,
which are marked by a broadband absorption around 1000 cm−1. Here, we
focus on a sharp peak related to phosphoryl group (P=O stretch) at ~1200 cm
−1 and another sharp feature, albeit being weaker in strength, related to P–O–H
and P–O–C deformation at ~980 cm−1. Our quantum chemistry simulation of
two model phosphorus compounds (a phosphoryl chloride molecule for Pi and
a glucose-6-phosphate molecule for Po, Fig. S8) confirmed our assignments as
referenced in the literature40–44. Additionally, we assigned the signature peaks
at ~1510 cm−1 (aromatic C=C) for lignin, ~1550 cm−1 (Amide II) for amides,
~1160 cm−1 (C–O–C, ether linkage) for cellulose and ~1710 cm−1 (carbonyl)
for lipids45–47, respectively. The individual peaks were analyzed with a model
consisting of a number of oscillators with the least squares regression. The
absorbance, or the derived peak area, follows Beer’s law as proportional to the
molar concentration of the corresponding chemicals41. In this context, we used
Pi to represent the inorganic polyphosphates derived from the phosphoryl
group, and Po to represent the organic phosphates (or organophosphorus) from
the P–O–H/P–O–C deformation (Fig. S9).

Ion-exchange chromatography (IC). We cut a fresh leaf into two small pieces
across the vein and dried them in an oven at 65 °C, resulting in about 30 mg in dry
weight. The sample was homogenized into fine powder with 1 mm glass beads at 30
revolutions/second for 2 min in TissueLyser II (QIAGEN). We then weighed out 5
to 6 mg of the powder sample, and mixed it well in 1.5 mL Milli-Q water. The
mixture was then incubated for 1 h, sonicated for 20 min, filtered with a 0.2 μm
filter tip, and submitted for IC analysis (Dionex ICS-5000 plus, Thermo Fisher
Scientific) to quantify total phosphates. An AG11HC guard column was used along
with chromatographic separation using a Dionex CS12A, Ion Pac (2 × 250 mm)
analytical column at 20.5 °C, and an injection volume of 25 μL. The elution of
anions was achieved with a concentration gradient of 6 mM to 21.5 mM in
16.5 min, 21.5 to 60 mM in 6.5 min, and at 60 mM for 3 min, then re-equilibrated
at 6 mM for 8 min at a flow rate of 0.33 ml/min. Standard anions (Dionex, Thermo
Fisher Scientific) were used, with ion quantification using commercial software
(Chromeleon 7.2 SR4, Thermo Fisher Scientific).

Statistical model and reproducibility. We built a PCoR model48 with 41
principal components (PCs) for P and 44 PCs for N, respectively, based on
training spectra with bootstrapping (a total of 6000 random samples with
replacement) obtained from the 78 plants in the laboratory-based experiment,
to predict the N, P concentration values in the growth media from the baseline-
corrected spectral data. Each plant sample was split for three separate FTIR
measurements for quality control purposes; the standard deviations of these
spectra at each nutrient condition were shown in Fig. S9a. We believe that the
number of independent plants in the laboratory-based experiment is adequate
for proper training of this linear model, although a larger number of inde-
pendent plants with additional nutrient-limit conditions would improve the
prediction accuracy in the field and its reproducibility in large scale applications
because of the law of large numbers. The optimal number of components for the
PCoR model was selected by iterating through extracted PCs to obtain the
lowest cross-validation error from a 10-fold cross-validation (mean squared
error of prediction, MSEP < 0.01). A k-fold cross-validation starts with a ran-
dom partition of data in k (k= 10 in our case) parts or folds. We train the
model on the k-1 folds and then validate with the one-fold. This process is then
repeated k times until each fold has been used for testing once to prevent
overfitting49. A similarly high accuracy was achieved on the N prediction as
well, although the N availability is not our main focus in this research given it’s
not solely dependent on the uptake from soil. We used statistical functions
included in base package of R for the two-sample student t-tests and the
multivariable analysis of variance tests50, and add-on packages for spectral data
processing (hyperSpec)51, PCoR (pls)52 and plotting (ggplot2 and ggpubr)53.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated and analyzed in this study are included in the paper, Supplementary
information, and Source data file (Supplementary Data 1).

Code availability
The code used for the PCoR model training and validation can be found at ref. 54.
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