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Isolating Personal Knowledge Spillovers:  Coinventor 
Deaths and Spatial Citation Differentials†

By Benjamin Balsmeier, Lee Fleming, and Sonja Lück*

We propose a new method to estimate and isolate the localization 
of knowledge spillovers due to the physical presence of a person, 
using after-application but  pre-grant deaths of differently located 
 coinventors of the same patent. The approach estimates the differ-
ences in local citations between the deceased and  still-living inven-
tors at increasingly distant radii. Patents receive 26 percent fewer 
citations from within a radius of 20 miles around the deceased, 
relative to  still-living  coinventors. Differences attenuate with time 
and distance, are stronger when  still-living  coinventors live farther 
from the deceased, and hold for a subsample of possibly premature 
deaths. (JEL O31, O33, O34, R32)

Marshall (1890) offered three (now canonical) explanations for the geographical 
agglomeration of economic activity: thicker labor markets, scale economies from 
collocation of production, and localized knowledge spillovers. These theories unfor-
tunately imply similar observable outcomes (Ellison, Glaeser, and Kerr 2010), and 
empirical work has struggled to disentangle the mechanisms. Krugman (1991, 53) 
made the classic argument that the last mechanism in particular cannot be estimated 
as “knowledge flows … are invisible; they leave no paper trail by which they may 
be measured and tracked.” In response, Jaffe, Trajtenberg, and Henderson (1993)— 
hereafter, JTH—offered a method which matched citing patents, the metric of patent 
citations as the paper trail, and the result that knowledge flows appear to be very 
localized.

The critiques of JTH (clearly acknowledged within the original paper) mainly 
focus on whether geographically localized citations indicate a real knowledge spill-
over or simply one correlate of the colocation of industrial and technological activ-
ity. To address this, JTH took an original sample, matched patents which cited the 
original sample with similar patents in date of application and technology area, and 
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estimated differences in the two citing populations’ geographic locations. The main 
concern with matching, laid out most sharply in Thompson and  Fox-Kean (2005)—
hereafter, TF-K—is that any result can still be attributed to unobserved differences 
in technology. A variety of analyses have demonstrated weaker (though often still 
significant) effects with more sophisticated matching (TF-K; Murata et al. 2014; 
Arora, Belenzon, and Lee 2018; for a review of the large literature, please see Jaffe 
and de Rassenfosse 2017).

Here we bypass matching altogether and instead use the death of a collaborative 
inventor to identify localized knowledge spillovers. Our approach uses a collabo-
rative patent and identifies the difference in citations between the different regions 
that host the deceased versus still-living  coauthors of the same patent. Though we 
still use patent citations as a measure of knowledge flows, the approach should avoid 
many of the criticisms of the citing patent matching method and the confounding 
of other influences with agglomeration (Duranton and Puga 2020). The approach 
builds upon recent literature that relies on death to identify the mechanisms of inven-
tion and scientific discovery (Azoulay, Zivin, and Wang 2010; Jaravel, Petkova, and 
Bell 2018).

The method complements prior work because it isolates the impact of the physical 
presence of a single inventor. Most approaches fail to identify the specific individual 
who is assumedly the actual source of the diffused knowledge. They typically assign 
one location to an entire patent, either based on one of the inventors’ hometowns or 
a summary location based on multiple inventor locations. This makes inference dif-
ficult, as it inhibits controlling for unobservable characteristics of the patented tech-
nology. Comparing two or more inventors on the same patent, exactly one of whom 
has died, solves this issue. Assuming that inventor death remains exogenous to local 
factors of production and locally pooled labor, it enables cleaner estimation of the 
third Marshallian mechanism of knowledge flows, and, in particular, it enables us to 
establish the importance of physical presence for knowledge flows, both locally and 
at farther distances, and over time.

Findings of lower local citation rates for deceased versus  still-living inventors 
point to the existence of local knowledge spillovers. For example, citations within 
20 miles of an inventor are 25.8 percent lower for the deceased inventor, relative to 
 still-living  coinventors. The effects attenuate over distance and time, are stronger 
for more geographically distant  coinventors, and hold for a variety of robustness 
checks, including a sample of possibly premature inventor deaths, examiner-only 
citations, and linear probability models (baseline estimations are robust Poisson 
models that exclude  self-citations).

I. Data

The approach relies most crucially upon data for the geographical location of the 
following: an inventor who dies after applying for a patent but before that patent is 
granted, the still-living  coinventors of that same patent, and inventors of the patents 
that cite that same patent.

Data collection starts with the population of all US patent inventors who appear 
on at least one patent issued by the US Patent and Trademark Office (USPTO), 
with application dates between 1976 and 2005, during which time inventor deaths 
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appeared on the front page of the patent grant document. US inventors who died 
after application but before grant are often missing in secondary patent data sources 
but appear as originally published in the USPTO HTML files. The front page also 
provides the city and state for each inventor. As the original location data suffers 
from inconsistencies in location names and misspellings, we disambiguated all 
 city-state combinations and used the Google Maps algorithm to identify remain-
ing cases (e.g., some inventors list a neighborhood or unincorporated township). 
SimpleMaps (2020) provides latitude and longitude data for towns and locations.

We scraped all HTML data as described in Balsmeier et al. (2018) and kept only 
patents with (1) exactly one deceased inventor, (2) at least one living  coinventor, 
(3) all living  coinventors residing in a different city than the deceased inventor, (4) 
all inventors (deceased and  coinventors) living in the United States, (5) an inventor 
identification number for all living and deceased inventors from the disambiguated 
USPTO PatentsView (2021) database, (6) calculable latitude and longitude loca-
tions, and (7) an application date that falls between January 1, 1976, and December 
31, 2005. This created the full analysis sample of 5,491 (3,870 living and 1,621 
deceased) inventors from a total of 1,621 patents with exactly one deceased inventor.

The number of inventors per patent (including the deceased) is skewed with most 
patents having two (41 percent), three (26 percent), or four inventors (14 percent)
and the maximum of one patent with 18 inventors.  Coinventors tend to live relatively 
close to the deceased inventor at a median distance of 25 miles and an average of 
284 miles, though some inventors (13.2 percent) live more than 500 miles apart 
from the deceased. The number of patents applied for and granted per year ranges 
between 1 and 100, with higher numbers in the 1990s.

We then identified all citations from future granted US patents to each analysis 
sample patent up through 2020, as provided by the USPTO’s PatentsView database. 
We identified a total of 34,749 citations to all patents in the analysis sample, imply-
ing 21.4 cites on average. Thirty-one percent of citations arise within 5 years, 59 
percent within 10 years, and 80 percent within 15 years since patent grant. Since the 
last observed year of patent grant in the analysis sample is 2008, we observe at least 
a  ten-year citation window for every patent (while the last application date in the 
analysis sample is 2005, there is typically a delay or “pendency” for applications to 
be granted as patents by the USPTO; hence, the last observed patent in the analysis 
sample was granted in 2008).

The econometric analyses rely on the geographic distances between the citing 
inventors and each of the deceased and  still-living inventors of the deceased patent. 
Locations of all inventors on the citing patents were again disambiguated and lon-
gitude/latitude information added from SimpleMaps. For each inventor on a patent 
in the analysis sample, we take the distance to the closest inventor on the citing 
patent as the relevant distance of knowledge flow. From this we observe 15 percent 
of citations occurring within 10 miles, 19 percent within 20 miles, and 28 percent 
within 150 miles.

As detailed in Table 1, the dependent variable is the number of future cites to an 
analysis sample patent that occur from within a given distance radius around each 
inventor, for all available citing data. The unit of observation is an  inventor-patent 
pair. We consider cumulative radii starting from r = 10 miles, as data remain 
too sparse within shorter radii, and stop at r = 150 miles, as we did not find any 
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 significant effect beyond. This implies increasing concentric rings of the distance 
centered on the hometowns of the inventors in the analysis sample (both deceased 
and still living). The average number of cites that occur within 10 miles of a sampled 
inventor is 2.17 and increases to 5.55 within 150 miles. The number of cites is right 
skewed, with a median of zero or one, a maximum of 273, and a high share of zeros 
ranging between 43 percent and 72 percent for the full analysis sample, over the 
entire available citation data.

Perhaps the most concerning issue in using death for identification is the possi-
bility of correlation between age, mortality, and outcomes. The  USPTO-reported 
inventor deaths do not provide the reason or precise date of death or other personal 
characteristics; however, based on recently released data (Kaltenberg, Jaffe, and 
Lachman 2021), we will illustrate statistically indistinguishable estimates for more 
likely “premature” deaths (those under 60) as compared to the full analysis sample. 
As expected, descriptive statistics show a higher average age of deceased inventors 
of 52 years versus 45 years for still-living  coinventors.

We follow Jaravel, Petkova, and Bell (2018) and create the alternative sample of 
possibly premature deaths by keeping only the sample analysis patents where the 
deceased inventor died at or before the age of 60. The remaining age-adjusted sam-
ple consists of 2,247 (1,525 living and 722 deceased) inventors and a total of 722 
patents with exactly one deceased inventor. The average age at patent application 
drops to 43.7 years for the deceased and 44.0 years for the living  coinventors. The 
difference in ages between both groups is small in magnitude and statistically insig-
nificant ( p-value: 0.57,  two-sided  t-test) in this adjusted sample. Similarly, the aver-
age number of patents each individual inventor applied for over the last five years 
before the year of application of the patent on which death is observed is also insig-
nificant (avg. 3.3 versus avg. 3.1,  p-value: 0.41,  two-sided  t-test). Neither inventor 
age nor the number of prior patent applications predicts death in the  premature age 

Table 1—Full Sample Descriptive Statistics of Geographic Distances of Citations

Variable Obs. Median Mean SD Min. Max.
Share of 
zero cites

Share of patents 
with zero cites

No. cites within 10 miles 5,491 0 2.17 9.61 0 182 71.74 61.38
No. cites within 20 miles 5,491 0 3.41 14.18 0 246 62.56 54.60
No. cites within 30 miles 5,491 0 4.02 15.64 0 265 57.75 51.02
No. cites within 40 miles 5,491 0 4.34 16.76 0 273 55.22 49.23
No. cites within 50 miles 5,491 0 4.49 17.06 0 273 53.49 47.56
No. cites within 60 miles 5,491 0 4.59 17.20 0 273 52.19 46.33
No. cites within 70 miles 5,491 0 4.70 17.27 0 273 50.57 45.03
No. cites within 80 miles 5,491 1 4.80 17.35 0 273 49.12 43.62
No. cites within 90 miles 5,491 1 4.91 17.45 0 273 48.24 43.06
No. cites within 100 miles 5,491 1 5.04 17.65 0 273 46.97 41.89
No. cites within 110 miles 5,491 1 5.17 17.84 0 273 45.66 40.65
No. cites within 120 miles 5,491 1 5.24 17.90 0 273 44.95 40.04
No. cites within 130 miles 5,491 1 5.38 18.08 0 273 44.11 39.36
No. cites within 140 miles 5,491 1 5.47 18.17 0 273 43.23 38.43
No. cites within 150 miles 5,491 1 5.55 18.26 0 273 42.54 37.63

Notes: Unit of observation is an  inventor-patent pair. N = 5,491 from a total of 1,621 patents with exactly one 
deceased inventor and 3,870 living  coinventors. Application dates fall between January 1, 1976, and December 31, 
2005. Distance is defined as the minimal distance between the city center of the deceased or still-living inventor of 
the cited patent and the city center of the closest inventor of the citing patent, measured in miles. All citations are 
from US patents granted through 2020.
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sample. Finally, deceased and  still-living  coinventors do not appear to live in dif-
ferent areas; in particular, the US geographic centroid is 18 miles apart for the two 
groups (please see online Appendices  A1–A10 for further descriptive statistics and 
details on data sources).

II. Empirical Strategy

Our identification strategy relies on the differences in citations that occur from 
within a given radius to the deceased as compared to citations that occur within a 
 same-sized radius to the  still-living  coinventors of the same patent. Since we hold the 
cited (deceased) patent constant, any measurable difference should only arise from 
differences in the geographic distance of citations to the deceased versus  still-living 
inventors—and not from any characteristic of the deceased patent. In other words, 
we identify the effect from the relative difference in citations within the immediate 
vicinities of the deceased inventor, relative to the citations within the immediate 
vicinities of the still-living  coinventors.

As an example, consider two  coinventors on the same patent who live in Berkeley, 
California, and Stanford, California. If the Stanford inventor dies and the Berkeley 
inventor does not, then future prior art citations to the patent from Silicon Valley 
(which is closer to Stanford than to Berkeley) will decrease more, relative to cita-
tions from San Francisco (which is closer to Berkeley than to Stanford).

Since the invention itself remains the same, we can attribute these changes to 
the death of the Stanford inventor. Not needing to compare two different inventions 
or relying on similar but differently codified, prosecuted, or assigned versions of a 
certain type of invention is the key strength of this approach. By estimating effects 
within patents, our approach effectively rules out any observable or unobservable 
patent characteristic that might influence the results. The other strength is that we 
can attribute a decrease in knowledge spillovers to individual inventors, not needing 
to worry about other sources of knowledge flows that might contribute to the local-
ization of knowledge flows—for example,  colocation of companies that work in 
the same industry, local labor market conditions,  colocation of universities, general 
clustering of inventive activity, and so forth.

The unit of observation is a  patent-inventor pair. The dependent variable is the 
number of cites arising within a certain radius and time window. As the number of 
cites is a  nonnegative integer variable, we estimate a Poisson model (with standard 
errors clustered at the patent level):

(1)    E [  Cites prit    |    X prit   ]   =  e     (  α 0  +  β 1   Deceased ip  +  π p   )     , 

where   Cites prit    is the number of cites that occur within a radius r of the location of 
inventor i for the same  multiauthored patent p within a time window of t since grant 
of p.   Deceased ip    indicates the inventor who died after application but before the 
grant of patent p, and   π p    is an indicator for patent fixed effects.

We run separate and assumedly independent regressions for cumulative radii 
ranging from r = 10 miles to r = 150 miles, at  ten-mile increments. This implies 
increasing concentric rings of the distances centered on the hometowns of the 



26 AER: INSIGHTS MARCH 2023

deceased and still-living inventors. The baseline specification uses all citations to a 
given patent that we can observe (excluding  self-citations).

The approach makes three identifying assumptions. First, inventor death remains 
orthogonal to any location characteristic that may lead to the localization of knowl-
edge flows; for example, inventors are not more or less likely to die where companies 
of the same industry  colocate, local labor market conditions are particularly good 
or bad, or universities are in close proximity. To stay in the example, we assume 
that, all else equal, dying in Stanford is equally likely as dying in Berkeley; even 
if there would be differences in the specific example, we have enough cases in the 
larger sample such that the average place of death in the sample is not correlated 
with regional characteristics that would influence knowledge spillovers (facilitating 
factors would technically also violate our identification assumption but should work 
against us—i.e., lead to an underestimation of the true effect).

The second assumption is that inventor death has no direct effect on  coinventors’ 
likelihood of citation within a certain radius, as might arise, for example, if inventor 
death impacted the future productivity of proximal  coinventors (Jaravel, Petkova, 
and Bell 2018; Azoulay, Zivin, and Wang 2010). For example, death could decrease 
productivity of  coinventors through loss of knowledge or management exper-
tise, or increase productivity if  coinventors were freed from constraints (Azoulay, 
 Fons-Rosen, and Graff Zivin 2019). Inventors might also continue to work on related 
ideas after the deceased patent is granted, and this related activity might generate 
spillovers (though by law every inventor who contributes to a patent must be listed, 
even if deceased1). To eliminate either possibility, all analyses exclude  self-citations 
(results remain robust to inclusion), as this is the most plausible path through which 
the death of a  coinventor might influence the estimations.2 That means that even 
if inventors might file fewer, more, or different patents once their  coinventor dies, 
those differences should not influence the estimates, as any  self-citations would be 
discarded.

The third assumption is that inventor death is not correlated with some unob-
served personal inventor characteristic that is itself correlated with the number of 
citations that come from within a certain radius. As an example and as discussed 
earlier, inventor age correlates with death in the full sample. This opens the possi-
bility that deaths might have been anticipated and potential recipients of knowledge 
flows may have changed their inventive and citing behavior. Older inventors may 
also generate fewer or more numerous spillovers than younger inventors; for exam-
ple, they may have weaker influences on the inventors around them (if they were 
less aware of newer technologies) or stronger influences (if their social networks 
were larger and they were experienced and respected contributors). Another related 
concern could be that old inventors have assembled larger research teams and bud-
gets, which may lead to smaller drop in citations after their death, as there are more 

1 From USPTO Statue 2109 Inventorship [ R-10.2019] (https://www.uspto.gov/web/offices/pac/mpep/s2109.
html): II.  AN INVENTOR MUST CONTRIBUTE TO THE CONCEPTION OF THE INVENTION. See also 
USPTO Statute 409 Death, Legal Incapacity, or Unavailability of Inventor [ R-11.2013] (https://www.uspto.gov/
web/offices/pac/mpep/s409.html):  Pre-AIA 37 CFR 1.47(a) and  pre-AIA 35 USC. 116, second paragraph, requires 
all available joint inventors to file an application “on behalf of” themselves and on behalf of a joint inventor who 
“cannot be found or reached after diligent effort” or who refuses to “join in an application.”

2 This requires removing all citations where any of the cited patent’s inventors also appear as an inventor on the 
citing patent. 

https://www.uspto.gov/web/offices/pac/mpep/s2109.html
https://www.uspto.gov/web/offices/pac/mpep/s2109.html
https://www.uspto.gov/web/offices/pac/mpep/s409.html
https://www.uspto.gov/web/offices/pac/mpep/s409.html
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people around who would still work on  follow-on projects (though if any of those 
people were  coauthors of the deceased, their  self-cites would be dropped).

It is worth noting two things though. First, under the null hypothesis of no local 
knowledge spillovers, any differential influence of deceased and living inventors 
(be it due to death per se or age which is correlated with death) should be con-
stant with respect to distance. Second, any bias could go both ways, depending on 
whether older inventors have a stronger or weaker impact on their peers; that is, the 
coefficient of death might be larger or smaller than the baseline. To lessen these 
concerns, we look for significantly different coefficients in the possibly premature 
death  subsample.

III. Results

Figure 1, panel A illustrates the results based on the analysis sample for each 
separate estimation of equation (1), where the dependent variable is all observable 
cites that occurred within the specified radii around an inventor’s home  city center. 
Patents receive 25.8 percent fewer cites (  1 − e    (  −0.299 )    ) from within a radius of 20 
miles around the deceased, relative to a radius of 20 miles around the  still-living 
 coinventors (Table 2, panel A). As can be seen, and confirming a large number of 
results around agglomeration economies (Duranton and Puga 2020), the impact of 
physical inventor presence on knowledge flows attenuates quickly; the (negative) 
effect is strongest within small radii and weakens almost monotonically as the con-
centric rings grow larger, becoming insignificant after 60 miles.

Figure 1, panel B illustrates both the full and premature death sample; though 
less precise (not surprisingly, given the smaller sample size), the premature death 
sample differs little in magnitude as compared to the full sample. Table 2, panel B 
shows tabular estimates. These results suggest that the correlation between age and 
death in the full sample is not biasing the results. It also implies that older inven-
tors might be similarly important for the diffusion of knowledge, relative to their 
younger counterparts. Note that since identification relies on deaths that occurred 
between patent application and grant, the observed deaths in our sample will by 
construction oversample active inventors (more “typical” inventor deaths probably 
occur after a retirement from patenting and are less likely to occur during the appli-
cation process).

Figure  2 illustrates how the lower local citation rate for the deceased relative 
to  still-living  coinventors is even more pronounced for geographically dispersed 
inventor teams, where the nearest  still-living  coinventor is at least 500 miles 
away from the deceased. For these more distant inventor teams, local citations 
within 20 miles around the deceased inventor drop by 70.6 percent (   1 − e    (  −1.225 )   ;  
Table 2, panel C )    , rather than the 25.8 percent for the baseline result. It indicates 
that the importance of personal knowledge spillovers intensifies when collabora-
tive inventors live in distant parts of the country, arguably because the alternate 
source of information is much farther away. In other words, a nearby and still-living 
 coinventor can more easily “substitute” for the deceased inventor, relative to a dis-
tant and still-living  coinventor.

Figure 3 illustrates how the magnitude of the effect for within 20 miles tends 
to attenuate with time. Results come from separate estimations of equation (1), 
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with the radius fixed at 20 miles (where the data provide the strongest support) 
but count the citations that occur within this radius separately for each year since 
patent grant. Online Appendices  A11–A13 support these findings by showing full 
estimates for varying radii with varying time windows t over which citations since 
grant of patent p are observed, ranging from all to 15, 10, and 5 years. The  strongest 

Figure 1. Citation Penalty for Deceased Relative to Living Coinventors by Distance

Notes: Panel A plots results (  β 1   ) of separate Poisson models as specified in equation (1), where the dependent vari-
able is the number of cites to a patent p that occur within a radius of X miles of inventor i for the same  multiauthored 
patent p. Panel B compares analysis sample estimates of Panel A (blue) with estimates of the same models based 
on the premature death sample (death at age ≤60, colored red). All models are estimated with patent fixed effects. 
Distance is defined as the minimal distance between the city center of the deceased or still-living inventor of the 
cited patent and the city center of the closest inventor of the citing patent, measured in miles, considering all cita-
tions from US patents granted through 2020. Panel A (blue): 3,870 living and 1,621 deceased inventors; panel B 
(red): 1,525 living and 722 deceased inventors. Confidence bands are computed based on standard errors clustered 
at the patent level and assume independence of regressions.
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Figure 2. Estimates for Patents Where Next Living  Coinventor Lives at Least  
500 Miles Away from Hometown of Deceased Inventor

Notes: This figure plots results (  β 1   ) of separate Poisson models as specified in equation (1), where the depen-
dent variable is the number of cites to a patent p that occur within a radius of X miles of inventor i for the same 
 multiauthored patent p. All models are estimated with patent fixed effects. Distance is defined as the minimal dis-
tance between the city center of the deceased or still-living inventor of the cited patent and the city center of the clos-
est inventor of the citing patent, measured in miles, considering all citations from US patents granted through 2020.  
N = 749, including 214 deceased inventors and 535 living inventors who live at least 500 miles away from the 
deceased inventor on the same patent. Confidence bands are computed based on standard errors clustered at the pat-
ent level and assume independence of regressions.
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Table 2—Localization of Knowledge Flows for Baseline Poisson Model

Cites from within X miles

10 20 30 40 50 100 150

Panel A. Analysis sample (N = 5,491)
  Deceased ip   −0.246 −0.299 −0.190 −0.101 −0.072 −0.016 −0.031

(0.080) (0.065) (0.045) (0.031) (0.030) (0.028) (0.025)

Panel B. Premature death sample (N = 2,247, age at death ≤60) 
  Deceased ip   −0.298 −0.295 −0.262 −0.120 −0.084 −0.045 −0.074

(0.150) (0.109) (0.091) (0.062) (0.050) (0.045) (0.039)

Panel C. Large distance sample (N = 749, distance to all  coinventors at least 500 miles) 
  Deceased ip   −1.391 −1.225 −0.997 −0.954 −0.804 −0.604 −0.512

(0.287) (0.257) (0.234) (0.234) (0.218) (0.210) (0.208)

Notes: This table presents results of separate Poisson models as specified in equation (1), where the dependent vari-
able is the number of cites to a patent p that occur within a radius of X miles of inventor i for the same  multiauthored 
patent p. All models are estimated with patent fixed effects. Distance is defined as the minimal distance between the 
city center of the deceased or still-living inventor of the cited patent and the city center of the closest inventor of the 
citing patent, measured in miles, considering all citations from US patents granted through 2020. The unit of obser-
vation is an  inventor-patent pair.   Deceased ip    is a dummy that indicates the inventor who died after application but 
before grant of patent p. Panel A: 3,870 living and 1,621 deceased inventors; panel B: 1,525 living and 722 deceased 
inventors; panel C: 535 living and 214 deceased inventors. N includes patents with zero future cites as reported in 
Table 1. Standard errors clustered at the patent level are reported in parentheses.
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 relative  difference in citations consistently occurs within five years following inven-
tor death, both temporally and geographically. It indicates that effects from inventor 
death appear to wane as time progresses (similar to findings of JTH and TF-K), 
though estimates remain too noisy for establishing significantly different effects 
across time.

Robustness Checks and Extensions.—Results proved robust to including more 
granular distances and a variety of citation  time windows (the pattern of weakening 
effects over time and distance emerges through all the robustness checks), inverse 
frequency weighting by the number of inventors on a patent, and CEM matching 
(Iacus, King, and Porro 2012) for an age-balanced sample (age also does not pre-
dict death in the balanced sample). Although the baseline Poisson model is pre-
ferred, results remain robust to alternatively estimating Poisson models without 
the top 1 percent most highly cited patents in the analysis sample, a LPM with 
   Pr (  Cites pri   > 0 )     as the dependent variable, and a log(Y+1) equation using OLS, 
with Y the number of citations within a given radius. Results also remain robust to 
using the subsample of citations that were added by examiners (which consistently 
measure distances between the deceased and still-living inventors, and future cit-
ing inventors), which should lessen concerns of social or strategic bias in citation 
patterns (please see online Appendices  A11–A26 for tabular results and graphical 
illustrations).

Comparison to Prior Results.—One way to benchmark our estimates is to con-
sider what proportion of knowledge spillovers are lost when an inventor dies. Our 

Figure 3. Citation Penalty for Deceased Relative to Living  Coinventors  
within 20 Miles in Years 1 to 10 Since Grant

Notes: This figure plots results (  β 1   ) of separate Poisson models as specified in equation (1), where the dependent 
variable is the number of cites to a patent p that occur within a radius of 20 miles of inventor i in year X after grant 
of p for the same  multiauthored patent p. All models are estimated with patent fixed effects. Distance is defined 
as the minimal distance between the city center of the deceased or still-living inventor of the cited patent and the 
city center of the closest inventor of the citing patent, measured in miles, considering all citations from US patents 
granted through 2020. N = 5,491 from 3,870 living and 1,621 deceased inventors. Confidence bands are computed 
based on standard errors clustered at the patent level and assume independence of regressions.
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data indicate that 19 percent of all patent cites occur from within 20 miles of a 
given inventor location. If we apply the baseline estimate of a 25.8 percent reduction 
in local cites within 20 miles, we can calculate that an inventor death reduces all 
knowledge spillovers by 0.258 × 19 = 4.9%. This would be slightly higher if one 
added the significant effects at radii of 30 to 60 miles, but given that our baseline 
models indicate rapidly decreasing and no significant effects beyond 60 miles, 4.9 
percent provides a conservative estimate.

Panel C of Table 2 indicates that the loss of local spillovers is sensitive to the 
distance between a deceased inventor and his or her  still-living  coinventors; the 
estimate increases when a deceased inventor’s  coinventors live at least 500 miles 
away. From panel C, the 70.6 percent reduction in local knowledge spillovers within 
20 miles implies a reduction in knowledge flows of 0.706 × 19 = 13.4%. This 
might provide an  upper-bound estimate for a world where all inventors lived apart 
from one another—that is, there were no local spillovers generated by physical pres-
ence. These estimates might also inform assessments of the impact from a less than 
fatal event—for example, if an inventor simply moved out of the local region or a 
pandemic forced inventors to work remotely. In that case, she or he would still be 
accessible via email, phone, or video and the loss of local spillovers would probably 
be less.

Rough comparisons to prior research can be made (all comparisons exclude 
 self-citations). JTH took an originating sample, found citing patents to that orig-
inating sample, and matched each citing patent with a patent from the same tech-
nology class and application date. They then compared the proportions of the two 
citing patent populations that were invented in the same region as the originating 
patents. The approach found that “citations are five to ten times as likely to come 
from the same SMSA [standard metropolitan statistical area] as control patents; 
two to six times as likely excluding  self-citations.” (JTH, 591). The critique of 
TF-K recreated the original JTH case matching method; however, it matched 
at a much finer granularity of technology classifications and found no localized 
spillovers.

JTH and TF-K observe whether a citing or control patent is located within a 
SMSA; given the typical size of SMSAs, the closest analog in our estimations is 
the 10 or 20 mile radius citation models (we use the 20 mile coefficient for consis-
tency in discussion). Keeping the differences in approaches in mind, JTH observe 
a  100–500 percent greater fraction of locally generated citations, TF-K observe no 
difference in the fraction of locally generated citations, and we observe decreases 
between 25.8 percent and 70.6 percent of locally generated citations, for a deceased 
inventor versus  still-living  coinventors of the same patent. While the magnitude of 
our estimates are far less than the  100–500 percent implied by the original JTH 
estimate, they remain highly significant, unlike the insignificant results estimated 
by TF-K.

All these estimates can be justly criticized for a number of reasons, including 
knowledge spillovers that are not captured by a citation, personal versus  nonpersonal 
knowledge spillovers, and fundamental differences in methods. Of primary impor-
tance, our method focuses on the interpersonal and local impact of one inventor, as 
opposed to JTH and most of the literature that seeks to measure all localized spill-
overs from one patent.
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IV. Conclusion

This work contributed a novel approach to empirical estimations of the localiza-
tion of knowledge spillovers, based on the relative difference in local citations to the 
same patent, between deceased versus  still-living  coinventors. It used inventor death 
between the application and grant of a  coauthored patent to estimate the personal 
impact of an inventor upon the diffusion of knowledge from their unique geographic 
location, providing an arguably causal method that isolates knowledge spillovers that 
can be attributed to the physical presence of one inventor. It estimated decreases of 
between 25.8 percent and 70.6 percent in local citations within 20 miles, following 
the death of an inventor, relative to his or her  coinventors living in other locations. The 
work added to the aggregation of evidence that personal spillovers are mostly local 
(JTH) and a growing number of empirical innovations (TF-K; Murata et al. 2014; 
Ganguli, Lin, and Reynolds 2020) that support the use of citations as a measure of 
knowledge flow. The localization appeared to attenuate with time, was stronger when 
 still-living  coinventors lived farther away from the deceased, and provided an ironic 
illustration of how personal interaction matters, even for a canonical and legally stip-
ulated example of codified knowledge—that is, a published patent (Williams 2017). 
The approach should hopefully improve our ability to empirically disentangle knowl-
edge spillovers from the other two Marshallian agglomeration mechanisms of colo-
cation and pooled labor.

Perhaps the biggest drawback of the approach taken here are the demands made 
on the data; many patents are not highly cited to begin with and this makes it difficult 
to identify differences in precisely defined distances (i.e., within radii, there often 
exists no citation, let alone a sharp geographic difference in the distance from citing 
inventors to collaborative inventors living in different locations). Recent efforts to 
link mortality and inventor databases offer much promise, though as described in 
Kaltenberg, Jaffe, and Lachman (2021), the effort is difficult and few links can be 
as certain as those indicated on the front page of patents. Nonetheless, if the data 
can be linked, the approach taken here offers a  quasi-experimental and arguably 
causal method to investigating spillovers in a variety of contexts, including geogra-
phy, time, organizational boundaries, social networks, and technology or knowledge 
space. The approach might be extended to any bibliometric and citation database 
where the careers of collaborative creators can be located across a space, thus allow-
ing the investigation of knowledge spillovers generated by a collaborative author, be 
they an inventor, humanist, or any type of publishing scientist.
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