UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Empirical and Analytical Performance of Iterative Operators

Permalink
https://escholarship.org/uc/item/9s09792w|

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 13(0)

Authors

Shell, Peter
Carbonell, Jaime

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/9s09792w
https://escholarship.org
http://www.cdlib.org/

Empirical and Analytical Performance
of Iterative Operators

Peter Shell (pshell@cs.cmu.edu)
Jaime Carbonell (jgc@cs.cmu.edu)

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
412-268-7651

Abstract

Macro-operators and chunks have long been used to
model the acquisition and refinement of procedural
knowledge. However, it is clear that human learners use
more sophisticated techniques to encode more powerful
operators than
linear macro-operators

simple linear macro-operators:

specifically, cannot represent
arbitrary repetitions of operators. This paper presents a
process-model for the acquisition of iterative macro-
operators, which are an efficient representation of
repeating operators. We show that inducing iterative
macro-operators from empirical problem-solving traces
provides dramatically better efficiency results than simple
This
learning mechanism is integrated into the FERMI problem-

linear macro-operators. domain-independent
solver, giving more evidence that humans have a similar
learning capability.

1. Introducing Iterative Macro-operators

One of the main goals of knowledge compilation is to
reformulate or recycle problem solving knowledge in
order to reduce the amount of search necessary to solve
problems. A number of different methods for reducing
search have evolved. For example, if the derivational
analogy algorithm (Carbonell, 1986, Hickmanetal90,
1990) can retrieve the solution to a problem similar to the
current problem, then it will adapt the previous solution
to the new problem. Explanation-based learning (DeJong
& Mooney, 1986), on the other hand, reformulates
axioms which were used to solve a problem, into
operators which can more efficiently solve the problem
the next time it is encountered. Another reformulation
method is chunking in Soar (Laird et al, 1986) and
macro-operators (Anderson, 1983, Fikes, 1971). By
summarizing the behavior of a sequence of forward-
chaining operators, macro-operators also reduce the
amount of operator-space search required by the
problem-solver.

There are a number of problems with both linear
macro-operators and chunks, which iterative macro-
operators address. Simple linear macro-operators can

never generalize to an arbitrary number of applications of
atomic operators. For example, different macro-ops must
be learned to solve the 2-disk tower of Hanoi, the 3-disk
one, etc. It’s clear that people have a more flexible
learning method than linear macro-operators, and that
they can somehow generalize to an arbitrary number of
applications of an operator. Furthermore, both linear
macro-ops and Soar chunks which encode multiple
applications of a rule turn polynomial-time matches into
exponential ones (Tambe, 1988). Iterative macro-
operators, as depicted in figure 1-1, would solve the
"expensive chunk" problem in SOAR if adapted to that
paradigm. They also address the increased match-time
search problem which occurs when large numbers of
macro-operators are learned (Minton et al, 1988).

__..* "
A

A =i
R \

W B B — B
i’ '
C C b—_-’D

Figure 1-1: Formation of iterative macro-operators

In principle, there are two different ways in which
macro-operators (iterative or otherwise) can reduce
search. First, they can reduce the amount of search
necessary in the operator state-space. Secondly, they can
compile away temporary computation in the matching
process itself. Thus match-level optimizations can reduce
"fine-grain search” while operator-level aggregations can
reduce "coarse-grain search".

Although previous approaches to itcrative operators
such as (Cheng & Carbonell, 1986, Riddle, 1988,
Shavlik, 1990) address the coarse-granularity search
reduction problem, they do not address the equally
important issue of optimizing the macro-op itself. If one
knows that a set of operators will be applied in a fixed

898

mailto:pshell@cs.cmu.edu
mailto:jgc@cs.cmu.edu

iterative sequence, then the operators themselves can be
transformed into more efficient iterative macro-operators.

The transformation algorithm has been generalized
since (Shell & Carbonell, 1989) to cover more domains,
and is summarized in section 2. Section 4 presents
empirical results in these new domains, showing
speedups as high as 14-fold. This is significant given that
the operators are implemented in a RETE-based system
called FRulekit (Shell & Carbonell, 1986), which is
already fairly efficient. Furthermore, new theoretical
results in section 3 show that iterative operators
significantly improve over linear operators in both the
coarse-granularity operator search space and in the
operator match space. These theoretical and empirical
results of the process model give more credence to the
idea that people have a similar technique for leaming
general iterative macro-operators.

2. Iterative-Operator Composition

To explain how iterative operators are faster than linear
operators, this section will summarize the iterative-
operator composition algorithm, and will show a sample
iterative operator. A more detailed description of the
algorithm is presented in (Shell and Carbonell, 1991).

Generating iterative-operators involves:

1. Detecting the Repeated Operator. When a linear
operator or macro-operator repeats, it is eligible
for transformation into an iterative macro-
operator.

.Encapsulation of the Invariant Structure.
Variables matched in the preconditions that bind
identically each cycle need not be rematched each
iteration.

. Solution of Recurrence Relations. Local data
updates between each cycle (such as
decrementing an array index) are extracted into a
single step external to the loop. More complex or
open-form updates remain inside the iteration
loop.

. Composition of the Total Iterative
Macro-operator. The preconditions, iterative
body and exit conditions are deduced from the
source atomic operator sequence and compiled
into production rules.

Iterative operators are efficient because conditions and
actions in the source rule that are unnecessary are
eliminated. Unnecessary conditions and actions are
defined as:

¢ Conditions that match objects that never change
while the iterative operator runs,

« Conditions that match objects that are modified
by the operator,

899

e Actions that modify objects that are matched by
the operator,

¢ And repeated actions which can be induced to a
single step as a function of N,

All other conditions and actions are retained.

The iterative operator is always equivalent to the
original. The outline of an iterative macro-operator is
shown in figure 2-1. This operator is used in the FERMI
system for solving systems of simultaneous algebraic
equations.

RULE Pre-Iterative-solve
CONDITIONS:
If all conditions of solve-unknown exist,
And we are not currently iterating
ACTIONS:
Add the goal to iterate solve-unknown

RULE Iterative-solve
CONDITIONS:
The goal is to iterate solve-unknown
And all of the retained tests of
solve-unknown are still satisfied
ACTIONS:
Perform the actions which were retained
from the original operator.

RULE Post-Iterative-solve
CONDITIONS:
The goal is to iterate solve-unknown
And the retained tests of solve-unknown
are no longer satisfied
ACTIONS:

Remove the goal to iterate solve-unknown

And update working memory with the actions

Figure 2-1: Iterative operator to find the next equation
to eliminate, generated by FERMI.

3. Analytical Results

This section mathematically describes how much
iterative operators can reduce search over linear
operators. We derive complexity analyses of both the
time for searching through a set of operators, and the time
to match and execute individual operators. This analysis
must be approximate, as there is not sufficient room to
look in detail at each test and action of every operator.

3.1. Search Speed-up

This section presents an average-case complexity
analysis of how much iterative operators reduce search in
the operator space. Assume a breadth-first search
discipline with b operators and a solution at depth n. The
exponential complexity of search is:)b, which is
dominated by the last term: b” for values of b> 2. If we
introduce ¢ linear macro-operators we can estimate the
dominant term as:

(b + c)n!(1+pm(m—l)}

In the formula, m is the average length of a macro-
operator (i.e., the number of base operators) and P iS the
ratio of macro-operators to the total (base and macro)
operators in the solution sequence. Adding many useless
macro-operators increases the base b + ¢ considerably but
does not reduce the exponent, whereas adding a few very
useful operators reduces the exponent without
significantly increasing the base.

An iterative macro-operator consists of repeated
applications of a base operator or a linear macro-operator.
An iterative macro-operator is operationally equivalent 1o
K linear macro-operators, where M is the maximal
number of iterations reasonable in the given domain. The
search reduction, if all macro-operators could be reduced
to iterative ones would be calculated by dividing the
macro-operator branching factor by the average K:

(b + dK)m’Uﬂ?m(m-l))
The idea is to reduce search depth while minimally

increasing search breadth. This translates into generating
the most powerful possible macro-operators.

3.2. Match Speed-up

In addition to speeding up the operator search time,
iterative operators match and execute faster than their
linear counterparts. This section will mathematically
analyze the amount of match speed-up realized by
individual iterative macro-operators.

3.2.1. Sources of Speed-up

There are three different ways that iterative operators
optimize the matching of linear operators:

1. They eliminate condition elements;

2. They eliminate actions;

3. They move tests to earlier parts of the rule.

The first two are the most common and will be the
focus of this analysis. Eliminating unnecessary condition
elements makes the rule faster by decreasing the number
of tests which the rule must perform. Eliminating actions
also speeds up the process since the actions cause the
system to re-match.

3.2.2. The Cost of Performing an Action

The cost of performing an operator is the sum of the
costs of the actions in that rule. The costs of those
actions in turn depend on how much matching the rules
perform. The cost Act-cost, of performing any action a
in a RETE-based operator is derived in the report (Shell
and Carbonell, 1991). Itis:

Act-cost, =B, ,C+ACB,_, ',:n (AD)"!
Where:

900

A is the average size of the input;

B, is the number of tuples of objects which have
successfully combined at condition element #;

C is the average cost of testing a condition clement;

D tells us how discriminating the conditions are. If D is
small then few objects pass the tests in the conditions.
If D is big then there are more partial matches. lLe., D
times [B,] times A equals [B,,,;

and L is the number of conditions in the rule.

3.2.3. Speed-up of the Iterative-Operator

As can be seen from the last equation, the speed of a
rule 1s determined by the (AD) product - the rate at which
the size of the partial match grows. In expensive rules,
the number of partial matches grows as the RETE net is
traversed. Thus, (AD) is greater than 1 and the cost
increases exponentially.

In this case, the second half of the above equation
dominates. Suppose that in the iterative operator, one
condition element has been removed. Then the cost of an
action in this operator would be approximately:

ACB, 3. (ADY!

Thus the speed-up of the iterative operator over the
linear operator, is the quotient:

L—n L
ACBR—IEE:I (AD)I :

L-n—1
ACB, 2=

(A.D}irl

< (ADy!
C T wor
which, as L increases, approaches AD.
When ¢ conditions are removed from the iterative
operator, the speed-up is:
Z:f—: (AD)~!

L-n—t =
o (a0

which, as L increases, approaches (AD)".

In efficient rules such as the ones which were profiled
for this paper, the product AD is 1 for some conditions
and greater than 1 for others. Le., the partial match does
not always grow. Thus, the speed-up will be polynomial
or linear instead of exponential, depending on how many
expensive tests there are.

4. Empirical Results

Timings of the iterative-operator learning method on
three different domains is shown here. We first present a
summary of the efficiency gains in each domain, and then
show graphs of the performance improvement of an
iterative-operator in two of the domains.

4.1. Speed-up of Iterative Operators

The domains for which iterative operators werc tested
range from a nine-rule circuits problem solver to a more
realistic ninety-rule expert system. The sccond column
shows the total run-time speed-up (time required to run
the linear operator divided by the time required to run the
iterative operator). The next column shows the speed-up
in match time, which is the amount of time spent
matching in the RETE net.

Speed-up of Iterative Operators

Run-time | Match-time
Domain Speed-up Speed-up # Rules
Circuits 1.69 x 1.88 x 9
Algebra 4.66 x 4.72 x 23
Machining 113 x 143 x 90

As the table shows, the larger the domain, the better
the speed-up.

4.2. Detailed Timings

For two of the above domains, the match times will be
graphed for the iterative macro-operator, the linear
macro-operator, and the set of base operators without any
macro-operators. The input-size is plotted on the X-axis
and the match time is on the Y-axis. As we shall see, the
iterative operator was always faster than the original
ones.

The Algebra Domain. The algebra system is a set of
productions which solve simultaneous systems of N
equations in N unknowns. It is a module of the FERMI
general scientific problem-solver (Larkin, Reif &
Carbonell, 1986). The X-axis plots the number of
equations and unknowns given to the system (figure 4-1).

As the graphs show, the "expensive macro-operator"
(Minton et al, 1988) problem rears its head again. The
linear macro-operator is initially faster than the original
rules, but as the size of the input increases, it becomes
more expensive. However, the iterative macro-op
eliminates the expensive part of the linear macro-op and
is much faster than both the linear macro-op and the
original rules.

The Machining Domain. The machining domain is
an expert system for process planning. The task is to
produce machine parts that have specified characteristics,
such as a rectangular block of given dimensions made
with a certain material and containing a centered hole.
This domain is the largest production set that the
iterative-operator algorithm has been tested on yet, and it
shows the best improvement over linear operators. The

901

50.00 -
+——+ Original operators
#— — % Linear macro-op

45.00 | &------O lterative macro-op /

40.00

35.00 }

30.00

25.00 |

20.00 ¢

Total Match Time (CPU seconds)

15.00

10.00 |

o - 1 J
40 50 60
Number of Equations

0.00

Figure 4-1: Time to Solve Systems of Equations

X-axis displays the number of holes it drills (figure 4-2).

- +—+ Original operators
% 2500.00 H— — W Lingar macro-op
e Grannnen © Iterative macro-op f-
&
]
>
% 2000.00
N—
L]
£
=
£
S 150000t
]
=
3
[

1000.00

500.00 |

0.00
0

Number of Holes

Figure 4-2: Time to Drill N Holes

As in the algebra domain, the linear macro-op is more
expensive than the original operators, but the iterative
operator is faster than both.

5. Conclusions

Iterative operators generalize to N by efficiently
composing recursive subsequences. They have been
shown to improve on linear operators by as much as 14-
fold. As we have seen through complexity analysis and
detailed empirical results, iterative operators effectively

address some fundamental shortcomings of the standard
macro-operator and chunking knowledge compilation
methods. They do this by requiring a smaller number of
total macro-operators, avoiding the "expensive-chunk”
and “expensive-macro-operator” problems, and by
making the macro-operators more efficient.

Although this paper makes no claims about how people
form iterative macro-operators, this production-system
model for iterative macro-operators may be a startng
point for a cognitive model. Key questions to ask would
be:

e Under what conditions do people form iterative

rather than linear macro-operators?

¢ How do people form iterative macro-operators?

6. Acknowledgments

We would like to thank Patty Cheng for opening the
door to a much more powerful class of macro-operators;
and Angela Hickman, Dan Kahn and Ben MacLaren for
helpful comments on earlier drafts of this paper.

References

Anderson, J. A. (1983). Acquisition of Proof Skills in
Geometry. In R. S. Michalski, J. G. Carbonell and
T. M. Mitchell (Eds.), Machine Learning, An
Artificial Intelligence Approach. Palo Alto, CA:
Tioga Press.

Carbonell, J. G. (1986). Derivational Analogy: A
Theory of Reconstructive Problem Solving and
Expertise Acquisition. In Michalski, R. §.,
Carbonell, J. G. and Mitchell, T. M. (Eds.),
Machine Learning, An Artificial Intelligence
Approach, Volume Il. Morgan Kaufmann,

Cheng, P. W. and Carbonell, J. G. (1986). Inducing
Iterative Rules from Experience: The FERMI
Experiment. Proceedings of AAAI-86. .

DeJong, G. F. and Mooney, R. (1986). Explanation-
Based Leaming: An Alternative View. Machine
Learning Journal, Vol. 1(2).

Fikes, R. E. and Nilsson, N. J. (1971). STRIPS: A New
Approach to the Application of Theorem Proving
to Problem Solving. Artificial Intelligence, 2,
189-208.

Hickman, A. Kennedy, Shell P. and Carbonell, J. G.
(1990). Internal Analogy: Reducing Search during
Problem Solving. Catherine Copetas (Ed.), The
Computer Science Research Review 1990. , The
School of Computer Science, Carnegie Mellon
University.

Laird, J. E., Rosenbloom, P. S. and Newell, A, (1986).
Chunking in SOAR: The Anatomy of a General

902

Learning Mechanism. Machine Learning, 1(1),
11-46.

Larkin, J., Reif, F. and Carbonell, J. G. (1986). FERMI:
A Flexible Expert Reasoner with Multi-Domain
Inference. Cognitive Science, Vol. 9.

Minton, S. N., Carbonell, J. G., Knoblock, C. A. and

Kuokka, D. R. (1988). Explanation-Based
Learning: Improving Problem Solving
Performance through Experience. In Carbonell,

J. (Ed.), Paradigms for Machine Learning. (10
appear).

Riddle, Patricia J. (1988). An Approach for Learning
Problem Reduction Schemas and Iterative Macro-
operators. Proceedings of the First International
Workshop in Change of Representation and
Inductive Bias. .

Shavlik, Jude W. (1990). Acquiring Recursive and
Iterative Concepts with Explanation-Based
Learning. Machine Learning, 5(1), 39-70.

Shell, P. and Carbonell, J. G. (1986). The FRuleKit
Reference Manual. CMU Computer Science
Department internal paper.

Shell, P. and Carbonell, J. G. (1989). Towards a General
Framework for Composing Disjunctive and
Iterative Macro-operators. Proceedings of
LICAI-89. .

Shell, P. and Carbonell, J. (1991). A General Framework
Jor Composing Iterative Macro-Operators. (Tech.
Rep.). Camegie Mellon University School of
Computer Science. Forthcoming.

Tambe, M. and Newell, A. (1988). Some Chunks are
Expensive. Proceedings of the Fourth
International Workshop on Machine Learning. .

	cogsci_1991_898-902

