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Translator: A Transfer Learning Approach

to Facilitate Single-Cell ATAC-Seq Data Analysis

from Reference Dataset

SIWEI XU,1 MARIO SKARICA,2 AHYEON HWANG,4 YI DAI,1 CHEYU LEE,1

MATTHEW J. GIRGENTI,3,5 and JING ZHANG1

ABSTRACT

Recent advances in single-cell sequencing assay for transposase-accessible chromatin (scATAC-
seq) have allowed simultaneous epigenetic profiling over thousands of individual cells to dissect
the cellular heterogeneity and elucidate regulatory mechanisms at the finest possible resolution.
However, scATAC-seq is challenging to model computationally due to the ultra-high dimen-
sionality, low signal-to-noise ratio, complex feature interactions, and high vulnerability to
various confounding factors. In this study, we present Translator, an efficient transfer learning
approach to capture generalizable chromatin interactions from high-quality (HQ) reference
scATAC-seq data to obtain robust cell representations in low-to-moderate quality target
scATAC-seq data. We applied Translator on various simulated and real scATAC-seq datasets
and demonstrated that Translator could learn more biologically meaningful cell representations
than other methods by incorporating information learned from the reference data, thus facil-
itating various downstream analyses such as clustering and motif enrichment measurements.

Moreover, Translator’s block-wise deep learning framework can handle nonlinear rela-
tionships with restricted connections using fewer parameters to boost computational effici-
ency through Graphics Processing Unit (GPU) parallelism. Finally, we have implemented
Translator as a free software package available for the community to leverage large-scale,
HQ reference data to study target scATAC-seq data.
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1. INTRODUCTION

Recent advances in single-cell epigenetic sequencing technologies, especially assay for transposase-

accessible chromatin using sequencing (ATAC-seq), have allowed scientists to probe accessible

genome-wide chromatin in individual cells (Buenrostro et al., 2015; Cusanovich et al., 2015; Chen et al.,

2018; Chen et al., 2019; Satpathy et al., 2019; Yan et al., 2020). Due to its high-throughput capacities, single-

cell sequencing assay for transposase-accessible chromatin (scATAC-seq) has been widely used in many

laboratories and pioneering consortia to characterize epigenetic heterogeneity and decipher cell type-specific

regulatory grammar, especially because these open chromatin regions often host complex genomic interplay

among numerous cis-regulatory elements (CREs), transcription factors (TFs), cofactors, and chromatin

remodelers in the three-dimensional (3D) genome for precise spatiotemporal gene expression control (Boyle

et al., 2008; Tsompana and Buck, 2014; Klemm et al., 2019; Zhou et al., 2021).

It is essential to develop robust, accurate, and scalable computational methods for scATAC-seq data

analysis. However, scATAC-seq computational modeling is still in its infancy due to five major challenges:

(1) ultra-high dimensionality and sparsity (i.e., zero entries in the data matrix); (2) complex feature

interactions; (3) vulnerability to confounding factors (e.g., age, gender, condition, depth, batch); (4)

scalability to millions of cells; and (5) low signal-to-noise ratio (SNR), especially in low-to-moderate

quality datasets reflected by their higher fraction of background genomic reads. Researchers have devel-

oped numerous computational methods to address these challenges, each with their own advantages and

disadvantages. For instance, ChromVAR (Schep et al., 2017) groups all peaks within a cell to calculate

known motif enrichments, effectively handling data sparsity. However, it relies on incomplete motif

patterns and ignores the impact of individual peaks, resulting in suboptimal clustering results. Later on,

latent semantic indexing (LSI) was developed and used to project cells onto a lower dimensional space with

improved clustering performance (Cusanovich et al., 2015).

However, its inherent linear peak interaction assumption might not be able to handle complex chromatin

interactions in the 3D genome. SnapATAC uses Jaccard distance to measure robust cell similarities, but a

hidden assumption is that peaks independently and equally contribute to the cell-to-cell similarities

(Buenrostro et al., 2015; Fang et al., 2021). RA3 utilizes probabilistic Principal Component Analysis (PCA)

(Tipping and Bishop, 1999) to compute a robust cell representation with the help of a reference data, but it

was inherently a statistical model (Chen et al., 2021a,b). Recently, several deep learning-based models,

such as SCALE (Xiong et al., 2019) and SAILER (Cao et al., 2021), have been developed using variational

autoencoders (VAEs) to learn robust cell representations for various downstream analyses. However, their

fully connected neural network architecture can contain up to a million parameters, resulting in tremendous

difficulties when training low-to-moderate-quality scATAC-seq datasets with only a few cells. Moreover,

some more recent approaches (Bravo Gonzalez-Blas et al., 2019; Chen et al., 2022; Huang et al., 2018; Ji

et al., 2020; Liu et al., 2021) utilized deep generative model and statistical modeling for scATAC-seq data,

but there was little discussion on the effect of confounding factors.

In this study, we developed an efficient scATAC-seq analysis method, Translator, with a straightforward

intuition: cell type-specific feature interactions (e.g., peak-to-peak) are highly stable across different sam-

ples within the same cell type and can be learned in a generalizable fashion from a high-quality (HQ)

reference dataset to facilitate cell representation learning in a different low-to-moderate-quality target

dataset. Specifically, Translator uses a VAE to model nonlinear feature interactions in scATAC-seq, with

restrictions and modifications to the fully connected neural networks for improved computational effi-

ciency. Furthermore, using a reference dataset with clear signals and good read depths, we conducted joint

training with the VAE deep neural network to create a better embedding for the target dataset using the

information obtained from the reference dataset.

We tested Translator with various datasets, including simulated data from the SCAN-ATAC-sim sim-

ulator (Chen et al., 2021c) and real datasets from the peripheral blood mononuclear cells (PBMC) and

prefrontal cortex (PFC) cells. We demonstrated that Translator outperformed methods without transfer

learning in clustering performance, qualitatively by Uniform Manifold Approximation and Projection

(UMAP) visualization and quantitatively by silhouette score and adjusted rand index (ARI). In addition, we

showed its ability to capture important biological information by conducting cell type annotation using

marker genes and cell type-specific motif enrichment analysis.
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2. METHODS

2.1. Datasets

We evaluated the performance of our method Translator on (1) simulated data with ground-truth labels;

(2) public PBMC scATAC-seq data from 10x Genomics; (3) prefrontal cortex scATAC-seq data from

postmortem human brains; and (iv) mice skin tissue scATAC-seq data from the Share-seq dataset. We

discuss more on data simulation and preprocessing in the following sections.

2.1.1. scATAC-seq data simulation with ground truth labels. Due to the challenge in obtaining

gold-standard datasets, we first used a public software SCAN-ATAC-sim to generate labeled scATAC-seq

data by efficiently down sampling bulk ATAC-seq profiles from ENCODE cell lines (Chen et al., 2021c).

By tuning two key parameters: SNR and average fragment number per cell (l), as suggested by the SCAN-

ATAC-sim website, we simulated two kinds of scATAC-seq data to mimic the HQ reference and the low-

quality (LQ) target data scenarios. We repeated this procedure for five different cell types, MONO, NEU,

CMP, MEGA, and ERY, from the ENCODE data portal (Consortium, 2012; Davis et al., 2018) and

generated the signal tracks using the SCAN-ATAC-sim preprocessor.

To test Translator’s robustness, we evaluated four possibilities: fixed depth, varying depth, mismatched

cells with new cell types, and mismatched cells with missing cell types (Table 1). In addition, to evaluate

the performance of eliminating confounding factors of Translator’s invariant learning, we applied two

experiments: one using one sample (l = 5000‚ r = 1:5‚ q = 0:4) to test the effectiveness of removing se-

quencing depths; another using two samples (l1 = 2500‚ r1 = 1:5‚ q1 = 0:4‚l2 = 5000‚ r2 = 1:5‚ q2 = 0:5) to

test the performance under two samples.

2.1.2. PBMC scATAC-seq data preprocessing. To test Translator’s performance on real single-

cell datasets, we downloaded the fragment files of the PBMC multiome dataset publicly available from 10x

Genomics. We used the ATAC modality for performance benchmarking and the RNA modality for more

accurate labeling due to its higher quality. To mimic the scenario of datasets with different qualities, we

took the PBMC multiome 10k dataset as the reference and the down-sampled PBMC multiome 3k data-

set as the target dataset. The sequencing depth and other quality control (QC) parameters are provided in

Supplementary Figure S1 and S2.

Specifically, we down-sampled the target dataset using the following algorithm. Given the sequencing

depth of the raw target dataset dr and the desired sequencing depth d < dr, we calculated r = (dr - d)
dr

, which is

the proportion of the peaks needed to be deactivated. To avoid samples with extremely low sequencing

depth, we set 1000 fragments as the lower bound depth. For each cell i, where ni is the number of open

chromatin peaks, we randomly sampled min (rni‚ ni - 1000) peaks to be deactivated by setting their cor-

responding positions in the peak matrix as zero. Further iterations were conducted until the sequencing

depth reached the desired sequencing depth dr � 50.

We then used ArchR (Cao et al., 2021; Granja et al., 2021) (version 1.0.1) to preprocess the fragment file

of the reference data using the default parameters. Specifically, we created an ArchR object and removed

barcodes with a transcription starting site (TSS) enrichment score less than 4 or whose number of fragments

Table 1. Detailed Parameters Setting to Simulate Single-Cell Sequencing Assay

for Transposase-Accessible Chromatin Data

Scenario Data Depth SNR No. of cells Cell proportion

Fixed depth HD 3k 0.8 20k 4k · 5

LD 3k 0.2, 0.25, 0.3, 0.35 500 100 · 5

Varying depth HD l = 10k‚ r = 1:5 0.8 20k 4k · 5

LD l = 1:5k‚ 2k‚ 2:5k‚ r = 1:5 0.3, 0.45, 0.6 500 100 · 5

New cell type HD 3k 0.8 20k 7k‚ 6k‚ 4k‚ 3k‚ 0

LD 3k 0.3 500 100 · 5

Missing cell type HD 3k 0.8 20k 4k · 5

LD 3k 0.3 525 250, 100, 100, 75, 0

SNR, signal-to-noise ratio.
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was less than 1000 (as suggested by ArchR Tutorial). We further removed doublets using ArchR’s default

filters, kept peaks within the autosome chromosomes, and then generated the reference data cell-by-peak

matrix. Finally, we binarized the reference cell-by-peak matrix to set any value greater than 1 as 1. For the

target data, Translator imported the reference peak files to create the target cell-by-peak matrix for the

training process. To create benchmarking metrics for the target dataset, we used the latent semantic

indexing (LSI) commonly utilized in natural language processing models as well as in scATAC-seq

analyses (Cao et al., 2021; Stuart et al., 2021). Given the binarized target data, we utilized the RunLSI

function from the R package Signac (Hao et al., 2021) (version 4.0.4) with default parameters and n = 20 to

keep its latent dimension the same as Translator’s.

2.1.3. Preprocessing scATAC-seq data in the human prefrontal cortex. In addition to blood

cells, we also looked at the prefrontal cortex (PFC) to further evaluate our model (post-mortem tissues were

used; no IRB applicable). Previously, we deeply sequenced scATAC-seq data from three frozen PFC

tissues MS0169WW, MS0177EE, and MS0181II. We conducted the following protocol to generate

scATAC-seq data from the prefrontal cortex tissues: single-nucleus suspensions were isolated from 25 mg

of frozen human dorsolateral prefrontal cortex (Brodmann Area 9/46). Tissue was initially lysed and nuclei

released by using a sucrose-based solution and NP-40 detergent (Sigma) in Dounce homogenizer followed

by centrifugation at 1000 g for 10 minutes.

The nuclear pellet was resuspended and further purified using an Iodixanol (Optiprep, AxisShield)

solution gradient by an additional centrifugation (3000 g for 30 minutes) and collection of nuclei in the

interphase (30%/40%). Nuclei were washed and resuspended before running on the 10X Chromium Single

Cell ATAC platform (#PN-1000110; 10x Genomics). Library quantification, quality checking, and sequ-

encing (250 million reads) were done according to the manufacturer’s recommendations by using the

Illumina NovaSeq6000 (Illumina) flow cell S4 (Illumina) at the Yale Center for Genome Analysis.

Following the data generation, we used cell-ranger ATAC (version 2.0.0) to preprocess the raw reads

with default parameters (Satpathy et al., 2019). Then, for quality control, cells with TSS enrichment score

less than 4 or number of fragments less than 1000 were filtered out using ArchR. In addition, Harmony was

used to integrate samples (Korsunsky et al., 2019). The sequencing depth and other QC parameters are

provided in Supplementary Figures S3–S5. We performed dimensionality reduction, clustering, and cell

type identification using default parameters in ArchR. Cells from these three samples were clearly clustered

into biologically relevant cell types that matched known markers for neuronal and non-neuronal cell types,

validating their high sequencing quality.

Additionally, a lower-quality PFC scATAC data was also collected in the same cohort, with moderate sequ-

encing depth (2743:5), lower cell number (6285), and lower TSS enrichment than that of the reference dataset

(4:35). Supplementary Figure S6 indicates the sample’s moderate quality. Similar to the reference dataset,

default parameters were used in cell-ranger (version 6.0.1) and ArchR to preprocess the lower-quality data.

For all PFC data, after the QC step, we added the reference peak set, which was the union of all three

references’ cell type-specific peak sets sorted by chromosomes. We generated the count matrix using the

addPeakMatrix function from ArchR. Finally, we saved the matrix using getMatrixFromProject with useMatrix

set to PeakMatrix and binarize set to True so that the exported matrix was binarized. Using the writeMM function

in R allowed us to save the exported sparse matrix as a mtx file and then exported as a npz file usable in Python.

2.1.4. Data preprocessing of the Share-seq mouse skin scATAC-seq data. In addition, we

further applied Translator on the mouse skin dataset from Share-seq dataset (Ma et al., 2020). We extracted

the count matrix from its raw data using the default peak set provided with Signac. To construct the

reference and the target data, we randomly sampled 1000 cells as the target data. The rest of them would be

the reference data. We then conducted a feature selection workflow similar to SCALE (Xiong et al., 2019)

by filtering out all peaks with a total signal less than 500 across the entire dataset. Then, we chose the top

80,000 peaks as inputs with the TF-IDF algorithm.

2.2. Model architecture and training

Translator uses a deep VAE to capture the complex and usually nonlinear feature interactions within the

3D genome. To better align multiple samples, it utilizes an invariant representation learning scheme for

simultaneous bias removal by requiring the latent cell representations (z) to be independent of various
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confounding factors (c), such as age, gender, batch, and sequencing depth. To overcome computational

challenges of training fully connected VAEs with extremely large number of parameters, Translator uses a

block-wise neural network architecture by only allowing interchromosome interactions in the first layer and

then concatenates neurons in later layers with much smaller size, as shown in Figure 1. It is worth noting

that due to the design of the Translator model, we require a consensus peak set across the reference and

target data. We assume that the reference dataset has better quality than the target dataset, so we only used

the reference data’s peaks in the following analysis.

2.2.1. Deep VAE with invariant representation learning. To capture complex feature interactions

and remove various confounding factors (e.g., age, gender, sequencing platforms, and batch), Translator

first used a deep VAE with an invariant representation learning scheme to learn robust cell embeddings free

from bias (Kingma and Welling, 2013). Specifically, we encouraged cell representations z 2 Rd to only

reflect intrinsic biological states but be independent of confounding factors c. Specifically, a penalty term

was added in the VAE to minimize the mutual information I(z‚ c). Given a peak profile x 2 0‚ 1n‚ we used a

VAE to handle complex peak interactions and maximize evidence lower bound of the log-likelihood

LVAE = Ex‚ c*q(x‚ c)[ - Ez*qh(zjx)[ log p/(xjz‚ c)] + DKL(qh(zjx) k p(z))] (1)

In Equation (1), the encoder probability, denoted by qh(zjx), is the probability of the latent embedding

z after the reparameterization trick given the input data x and the encoder parameter h. The decoder

probability p/(xjz‚ c) is the likelihood of the reconstructed input data x given the latent embedding z and

other confounding factors c (see Table 3 for detailed parameterizations). Since z could potentially depend

on c, we added an upper bounded penalty I(z‚ c) to encourage the independence of z and c, where

I(z‚ c) � Ex‚ c*q(x‚ c)[DKL(qh(zjx) k q/(z)) - Ez*q/(zjx)[ log ph(xjz‚ c)]] - H(xjc) (2)

where the H(xjc) is a constant and can be removed from Equation (2). Additionally, in VAE training, a

common challenge was Kullback-Leibler (KL) annealing, lowering DKL( � ) with respect to training epochs.

Therefore, we applied the cyclic annealing schedule (Fu et al., 2019) by adding a term

w = min (1‚ 2(n mod N)
N

), where n is the current epoch and N is the number of epochs in a cycle. Therefore,

the final loss function we aimed to minimize was

LVAE + kI(z‚ c) = wEx*q(x)[DKL(qh(zjx) k p(z)) + kDKL(qh(zjx) k qh(z))]

- (1 + k)Ex‚ c*q(x‚ c)[Ez*qh (zjx)[ log p/(xjz‚ c)]]

(3)

FIG. 1. Translator flowchart. scATAC-seq analysis is extremely challenging when sequencing depth, SNR, and cell

number are limited. Different from traditional approaches of peak calling followed by dimension reduction from

scratch, Translator uses peak features from a reference dataset and uses a jointed trained deep VAE to transfer complex

feature interactions learnt from the high-quality data to facilitate robust cell embeddings. scATAC-seq, single-cell

sequencing assay for transposase-accessible chromatin; SNR, signal-to-noise ratio; VAE, variational autoencoder.
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2.2.2. Neural network architecture. A typical scATAC-seq data will generate at least 20k peaks

as the input, so the first fully connected layer in the VAE model contributes the largest to the number of

parameters used and usually requires a large number of cells for a stable training process. To reduce over-

parameterization on data with a moderate cell number, we only allowed intrachromosomal peak-neuron

connections in the first layer of the VAE with a straightforward intuition: CRE interactions usually happen

within a single chromosome instead of across different chromosomes. As shown in Figure 1, each chromosome

had its own fully connected network with 64–32 units. This way, the number of parameters in the first two

neural network layers could be dramatically reduced to less than 10% of those in the fully connected layer,

improving training efficiency and reducing the number of parameters trained to avoid potential overfitting. The

32-unit layers across all chromosomes were then concatenated, followed by a fully connected layer of 20 units,

indicating the multivariate Gaussian mean and variance. The decoder was symmetric to the encoder.

2.2.3. Training procedure. Given a set of single-cell ATAC-seq data, we first sorted and grouped

the peaks by their chromosome. Then, we fed the vertically stacked reference and target data into the

encoder together in batches to obtain the learned mean and variance. The reparameterization step took

the multivariate mean and variance from the encoder, generated a random sample, and fed them into the

decoder. After the loss was computed, we conducted back propagation to update the parameters. Adam

optimizer was used throughout the process. The main hyperparameters included learning rate lr, weight

decay a, and the k term in the loss function. To tune these parameters, for each training task, only the

warmup procedure was done using parameters lr 2 f1E - 4‚ 5E -4‚ 1E -3‚ 2E -3g‚ a2 f1E -5‚ 1E -4‚

5E -4g‚ k 2 f0:1‚ 0:2‚ 0:5‚ 1‚ 2‚ 5‚ 10g: The set of hyperparameters that led to the best loss after the

warmup was chosen to train the final model. All trainings were conducted using NVIDIA Tesla K80 GPUs.

2.2.4. Training from scratch using VAE. To evaluate the performance of Translator with and

without the reference dataset, we adopted a baseline training scheme without the reference data, namely

VAE-SCRATCH. In this protocol, only the target data were used in the training process. The training

procedure was identical to the Translator training procedure. After training, we directly generated the latent

embedding using the trained encoder with the target data.

2.3. Evaluation metric

To evaluate model performance, we employed qualitative and quantitative measurements. Qualitative

analysis included visualizations of Translator-generated latent embeddings and comparisons with their

counterparts, particularly in subsets of cells where traditional matrix decomposition methods were not

possible. To extensively test our model, we compare Translator with: Signac (LSI), ArchR, and SCALE

(Xiong et al., 2019; Cao et al., 2021; Stuart et al., 2021). From the learned cell representations, we

generated the UMAP using the RunUMAP function from the Seurat package (version 4.0.4) with default

parameters. Then, we visualized the UMAP projection with a scatterplot. On the other hand, quantitative

metrics such as the ARI and the silhouette score were obtained to measure the clustering performance. The

LEIDEN algorithm in Seurat was used to perform clustering, leading to the ARI. We use the default

parameters for LEIDEN as described in the FindClusters function in Seurat package across all experiments.

Also, the annotated clustering assignments were used to calculate the silhouette score. Finally, downstream

analysis was conducted using the learned embeddings with biological annotations.

2.3.1. Motif analysis for PBMC dataset. To better understand the cells and different clusters of the

PBMC dataset, we generated the motifs for all cell types using Translator’s transferred latent embeddings.

Since we borrowed the cell type labels from the RNA modality, we could compare and contrast generated

motifs and potentially find new subtypes that enables further downstream analysis. Using the R package

Signac (Stuart et al., 2020) (version 1.3.0), we first created a ChromatinAssay object, and then used the

getMatrixSet function to get a set of motifs from the JASPAR2020 dataset (Fornes et al., 2020) with

collection being CORE and tax group being vertebrates. Then, we used the AddMotifs function to add

both the reference genome, UCSC hg38 (Schneider et al., 2017), and the motif to the object. Using the

function runChromVAR in signac, we received a matrix of motif enrichment scores for each motif in the set

and for each cell (Schep et al., 2017). Using the LEIDEN clusters calculated based on latent embeddings,

we plotted and generated statistical metrics of the distribution of certain cell type-specific motifs for each

cluster, allowing qualitative and quantitative comparisons.
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2.3.2. Gene enrichment analysis and cell type annotation for the postmortem brain dataset. We

also conducted gene enrichment analysis for the PFC scATAC-seq dataset to evaluate the clustering

accuracy of our model. In the analysis, we clustered Translator’s latent embedding with LEIDEN. Then,

using the list of cell-type marker genes identified in previous work (Lake et al., 2016; Zonouski et al.,

2019), we curated a gene score matrix with a score for each cell and each gene. More specifically, we used

the following marker genes to determine the cell-type annotations—astrocytes: GLUL, SOX9, AQP4, GJA1,

NDRG2, and GFAP; microglia: MRC1, TMEM119, and CX3CR1; endothelial: CLDN5; OPCs: PDGFRA,

PCDH15, and OLIG2; oligodendrocytes: PLP1, MAG, and MOG; excitatory: SATB2 and SLC17A7; and

inhibitory: GAD1 and SLC32A1. Finally, for each gene in every cluster, we inspected the gene enrichment

score distribution to assign cell types. As a result, qualitative evaluation was done using overlapped UMAP

visualization between the reference and target datasets. In addition, to evaluate the performance of

Translator under similar or distinct data, we train the PFC target data with PBMC reference and conduct a

UMAP and ARI analysis as well as comparison.

2.3.3. Reference and target analysis of the Share-seq dataset. We conducted multiple experi-

ments to evaluate our model on Share-seq. First, we train Translator, Signac, ArchR, and SCALE (Xiong

et al., 2019; Cao et al., 2021; Stuart et al., 2021) on the same preprocessed data as aforementioned, all with

20 dimensions. Note that because we have done feature selection, we disabled the feature selection function

on SCALE. As a quantitative measurement, UMAP was generated using the same methods for both

reference and target data. Quantitative measurements include silhouette scores and ARI, calculated con-

sistent with the other datasets.

3. RESULTS

Recent advances in single-cell epigenetic sequencing, especially the scATAC-seq technology

(Buenrostro et al., 2015; Pott and Lieb, 2015; Chen et al., 2018; Xu et al., 2021), has allowed for parallel

epigenetic profiling over thousands to millions of cells, providing an unprecedented opportunity to dissect

the cellular heterogeneity of complex tissues at a single-cell resolution. Similar to scRNA-seq data,

scATAC-seq data analysis suffers from ultra-high dimensionality, extremely high missingness, and com-

plex feature interactions. Additionally, its computational modeling usually first involves the peak calling

(or bin selection) process to select open chromatin candidates to generate the peak-by-cell matrix for

downstream analyses such as dimension reduction and clustering, which usually require a sufficient number

of cells for accurate region selection. This unique characteristic is distinct from the RNA analysis starting

from gene sets with fixed genomic coordinates, introducing additional computational challenges in moder-

ately sized scATAC-seq datasets.

Finally, the quality of the scATAC-seq experiments varies dramatically in terms of average sequencing

depth, TSS enrichment, and SNR. As a result, accurate dimension reduction and clustering is sometimes

difficult on moderate-quality scATAC-seq data (e.g., low sequencing depth or low TSS enrichment with

limited cell numbers).

In this study, we propose a robust transfer-learning scheme, named Translator, to facilitate moderate-

quality scATAC-seq data analyses using deeply sequenced, HQ reference dataset (Fig. 1). The motivation

of our Translator framework is straightforward and widely accepted—open chromatin regions are faithfully

conserved within the same or similar tissues and our VAE model will learn robust peak interactions in the

3D genome that are transferrable to similar datasets.

3.1. Translator significantly improves clustering performance on simulated datasets

Due to the lack of gold-standard datasets for performance benchmarking, we first simulated scATAC-seq

data with ground truth labels by efficiently down-sampling bulk ATAC-seq data using the SCAN-ATAC-

seq simulator (Chen et al., 2021c). First, we simulated cells from five different cell types with equal

proportions and an average fragment number of 3k per cell. We used SNR at 0.8 for the HQ reference

dataset and 0.2 as well as 0.35 for the LQ target datasets (scenario 1 in Table 1).

We found that although VAE slightly outperformed linear methods, such as LSI, neither of these models,

when trained from scratch using the Translator VAE architecture, worked well on the target dataset, as

reflected by the low ARI ranging from 0.134 to 0.219 (Fig. 2A, B). This was mainly due to the relatively

TRANSLATOR: LEARNING SCATAC-SEQ REPRESENTATIONS 625



low SNR (0.2 0.35) and the relatively small cell number (500) with limited mappable reads. To combat

these problems, Translator first directly adopted the peaks from the reference scATAC-seq of the same

tissue for more robust feature selection. Then, it combined both datasets for joint training in the VAE so

that the reference-learned cell type-specific peak interaction could be directly used in the target data for

robust cell embeddings. As a result, Translator clearly separated all five cell types into distinct groups

(Fig. 2C) and demonstrated significantly higher ARIs using ground truth labels (0.571 0.781 vs. 0.990 1.0;

Fig. 2D). In addition to these quantitative metrics, visualization results from other SNR simulations also

show consistent improvement with Translator versus LSI or Signac (Supplementary Fig. S7).

It is well known that sequencing depth varies considerably across different studies and even within cells

from the same experiment, producing artifacts in dimension reduction and clustering steps (Cao et al.,

2021). Therefore, we mimicked this situation by simulating both deeply and shallowly sequenced scATAC-

seq datasets (see details in Table 2). We then tested Translator’s performance on various target scATAC-

seq simulation settings, with average sequencing depth from 1500 to 3000 and SNR from 0.3 to 0.6 (see

details in methods). In all scenarios, Translator’s joint training scheme that incorporated the HQ reference

dataset significantly improved the clustering results, as compared with the training from scratch scheme

using Signac (ARI 0.930 1.0 in Translator vs. 0.548 0.742 in Signac, Table 2). We saw a larger impro-

vement in extremely low sequencing depth cases. For instance, with extremely low SNR (0.3), Signac

barely separated the different cell types, and even if the sequencing depth was improved (3000), Signac

separated only one cluster (Supplementary Fig. S8). On the other hand, for all low SNR cases, Translator

separated almost all cell types well (Supplementary Fig. S9).

3.2. Translator can robustly handle missing and novel cell types in the transfer learning process

We further tested the robustness of Translator’s joint training scheme to learn biologically relevant cell

representation on similar tissues with slightly unmatched cell types. Specifically, we simulated the refer-

ence and target dataset with unmatched cell population by removing existing or introducing novel cell types

FIG. 2. Translator improves clustering results on simulation data with fixed depth. Top: UMAP visualizations using

embeddings from: (A) latent semantic indexing (LSI), (B) training from scratch with VAE, and (C) Translator. (D)

Bottom: Clustering performance (ARI) of simulated data with fixed depth for LSI and Translator. ARI, adjusted rand

index; UMAP, Uniform Manifold Approximation and Projection.

Table 2. Adjusted Rand Indices of the Simulated Varying Depth Dataset

SNR Depth LSI Translator SNR Depth LSI Translator SNR Depth LSI Translator

0.3 1500 0.090 0.975 0.45 1500 0.548 0.930 0.6 1500 0.742 0.991

2000 0.250 0.970 2000 0.656 0.985 2000 0.735 0.978

2500 0.406 0.802 2500 0.714 0.822 2500 0.768 0.981

LSI, representation learned using latent semantic indexing (LSI).
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(Fig. 3). In the first case, the reference scATAC-seq data were simulated with five cell types with an

average sequencing depth of 10,000, standard deviation of 1.5, and SNR of 0.8 (Table 1). To mimic the

missing cell-type scenario, we only included four cell types in the target dataset (depth at 3000 and SNR

at 0.3). We found that Translator clearly separated the remaining four cell types even when the fifth miss-

ing cell type-specific peaks were included to construct the cell-by-peak matrix (ARI = 1.000, Fig. 3A).

Moreover, we also tested the novel cell type situation where there were only four cell types in the reference

dataset and a new fifth cell type that was unique to the target data. Optimistically, Translator also accurately

detected the novel cell type and clearly separated it from the others (ARI at 0.945; Fig. 3B).

3.3. Translator improves PBMC scATAC-seq data analysis

In addition to the simulated dataset, we applied Translator to public PBMC scATAC-seq data for

performance evaluation. Due to the lack of gold standard cell labeling, we first downloaded the PBMC 10K

sc-multiome data as the reference dataset, which has both RNA and ATAC profiling in the same cells. We

used the PBMC 3k multiome dataset as the target data, but down-sampled the ATAC-seq modality to

Table 3. Parameterization in Translator

Parameter Definition

x 2 0‚ 1n Input scATAC-seq binarized peak profile

d Dimension for latent cell embedding

N Number of epochs in a cyclic annealing cycle

w Cyclic annealing term

z 2 Rd Cell representation for biological states

c Observed confounding factor

I(z‚ c) Mutual information

qh(zjx) Encoder probability with parameter h
p/(xjz‚ c) Decoder probability with parameter /

scATAC-seq, single-cell sequencing assay for transposase-accessible chromatin.

FIG. 3. Clustering results of the two special cases of the simulated data: (A–D) the missing type case and (E–H) the

new type case. (A, E) UMAP of reference dataset (depth = 3k, cell_number = 4k · 5 for missing type and depth = 3k,

cell_number = 7k:6k:4k:3k:0); (B, F) distribution of cell type ratios between reference and target datasets; (C, G)

UMAP of Translator embedding of the target dataset (depth = 3k, cell_number = 250:100:100:75:0 for missing type and

depth = 3k, cell_number = 100:100:100:100:100 for new type); and (D, H) UMAP of LSI embedding of the target

dataset.
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mimic the moderate-quality data (see Section 2.1.2). On both datasets, Translator was applied to the

scATAC-seq modality and inferred the ground truth labels from the higher-quality scRNA-seq modality for

performance benchmarking.

We found that Translator demonstrated improved UMAP with better clustering for all scenarios with

sequencing depths 1000 3500 (Fig. 4A and Supplementary Figs. S10 and S11). For example, at a sequ-

encing depth of 2500, Translator’s ARI was 0.706 using cell labels from RNA, compared with the trained-

from-scratch Signac’s ARI of 0.502. Specifically, Translator was able to better distinguish CD4 groups,

CD14/16 groups, and the B cell groups (Fig. 4C), while Signac generated mixed clusters for these main cell

groups. Also, ArchR and SCALE failed the competition, with an ARI of 0.225 and 0.505, respectively

(Table 4).

To test how different clustering results can impact further downstream analysis, we conducted motif

enrichment analysis for different cell types based on the clustering results from Translator and Signac.

Specifically, we first used the LEIDEN algorithm to cluster cells using embeddings generated from Signac

and Translator, and then calculated a motif enrichment score for all cells in each cluster using ChromVar

(Schep et al., 2017). Then, we compared the distribution of motif enrichment scores for cells within the

clusters. In CD8 cell clusters, we selected the GRHL2 gene, encoding for grainyhead like TFs 2 and FOXP3

encoding for Forkhead box P3 (Fig. 5). Lines of literatures have shown that both TFs are significantly

enriched in T cells, especially in CD8 cells (Uhlen et al., 2019; Bai et al., 2021). We found that the

clustering from Translator reported significantly higher GRHL2 and FOXP3 motif enrichments ( p values at

8.47E-5 and 9.79E-5, two-side t-test), validating its ability to produce more biologically relevant cell

clustering.

3.4. Translator allows better clustering on PFC scATAC-seq data from human postmortem
brains

We further tested Translator’s performance on scATAC-seq data with more discrete cell types from

postmortem brains. Specifically, we first combined three deeply sequenced scATAC-seq PFC samples as

the reference dataset. The three reference samples have around 21k cells with an average sequencing depth

around 6198 and average TSS enrichment around 6.5 (Fig. 6A). We ran ArchR using the default settings

and annotated different clusters using marker genes from Lake et al. (2016). Nine distinct groups were

discovered with clear marker gene patterns (Supplementary Fig. S12). On the other hand, the target dataset

showed fewer cells that had passed QC (6285) and had a substantially lower sequencing depth (2473).

FIG. 4. Clustering results of the PBMC dataset: (left) the distribution of ARI with Translator and LSI with respect to

sequencing depth, (middle) UMAP of full PBMC dataset at sequencing depth of 2500 using (A) LSI and (B) Translator,

and (right) enlarged portion from the full UMAPs showing B cells. PBMC, peripheral blood mononuclear cells.
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The trained-from-scratch Signac resulted in more mixed cell types and long shared clusters confounded

by fragment counts (Fig. 6B), and the gene enrichment visualizations showed less-than-ideal separations

(Supplementary Fig. S13). In contrast, using the three HQ samples as the reference dataset and Translator

for joint training led to noticeably improved clustering results by generating more separatable cell groups,

as reflected by the higher Silhouette scores (0.060 vs. 0.143) and ARI (0.539 vs. 0.417). Interestingly,

clusters concentrating in the middle area, including VIP, microglia, OPC, and oligodendrocyte cells, were

separated by Translator (Fig. 6C), demonstrating the effectiveness of Translator’s joint training scheme to

learn robust feature interactions and facilitate target data analysis. Plus, Translator also outperformed

ArchR and Signac in similar tasks (Table 4, ARI = 0.539 vs. 0.256 and 0.497).

Plus, Translator also outperformed ArchR and Signac in similar tasks (Table 4, ARI = 0.539 vs. 0.256

and 0.497). We further tested the impact of different reference data selections to the final clustering result.

We showed that Translator with cross-training using the PBMC reference has a worse clustering perfor-

mance on PFC target dataset, especially in excitatory and inhibitory neurons than the original Translator

results (Supplementary Fig. S16D–F, ARI = 0.539 with matched reference vs. 0.441 with unmatched ref-

erence). Hence, it is important to select HQ reference data from similar tissues.

3.5. Translator outperforms existing models in the Share-seq mouse skin tissue dataset

We further tested our model on the Share-seq dataset by separating the ATAC modality into reference

and target dataset, while keeping labels obtained from the RNA modality for performance benchmarking.

We demonstrated that on the reference dataset, Translator outperformed Signac and SCALE, especially on

Table 4. Quantitative Evaluations of Real Datasets with Models

Silhouette score ARI (calculated with LEIDEN)

Signac ArchR SCALE Translator Signac ArchR SCALE Translator

PBMC

1500 -0.163 -0.565 -0.397 0.032 0.46 0.242 0.459 0.598

2000 -0.139 -0.587 -0.424 0.06 0.502 0.212 0.478 0.773

2500 -0.114 -0.567 -0.369 0.074 0.582 0.225 0.505 0.706

3000 -0.105 -0.584 -0.329 0.075 0.586 0.243 0.509 0.694

PFC 0.060 0.063 -0.074 0.143 0.417 0.256 0.497 0.539

Share-seq -0.300 -0.379 -0.484 -0.028 0.064 0.000 0.128 0.272

ARI, adjusted rand index; PBMC, peripheral blood mononuclear cells; PFC, prefrontal cortex.

FIG. 5. Distribution of motif enrichment scores using LSI and Translator LEIDEN clusters for CD8 cell type-specific

genes. **p-value = less than 0.01.
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certain cell types (e.g., Dermal Papilla vs. Dermal Fibroblast, Supplementary Fig. S14). We also found that

melanocyte cells stand out as their own cluster on the top. Moreover, Translator also outperforms existing

methods on the target data with transfer learning, as reflected by its improved ARI (0.211 for Translator vs.

0.064 for Signac and 0.128 for SCALE, Supplementary Fig. S15)

4. DISCUSSION

In this study, we present Translator, a VAE-based transfer learning model to facilitate single-cell ATAC-

seq data analysis using a HQ reference dataset. Translator can learn robust feature interaction patterns from

reference data and facilitate the analysis of scATAC-seq data of moderate quality. Moreover, Translator has

several characteristics that boost its performance: (1) it increases model efficiency by reducing the number

of chromosomes in the fully connected network, utilizing the biological assumption that intrachromosomal

interactions are much more frequent than interchromosomal interactions; and (2) it is easily scalable using

Graphics Processing Unit (GPU) parallelism. We applied Translator to various datasets to test its perfor-

mance, including simulated datasets with various scenarios, a PBMC scATAC-seq dataset, and a PFC

single-nuclei ATAC-seq dataset. In addition, we benchmarked our model with other methods, including the

commonly used LSI and the VAE models trained from scratch. We showed that Translator can facilitate

downstream analyses, such as clustering and motif enrichment, by learning transferrable feature interac-

tions from the HQ reference dataset.

In addition, it simultaneously removes bias by penalizing dependencies between cell embeddings and

known confounding factors, such as age, gender, and sequencing depth. Plus, our utilization of the block-

wise neural network provided a fast and efficient way to conduct cell representation learning (Supple-

mentary Fig. S17). In terms of running time, with regard to both number of cells and number of peaks,

Translator achieved a linear increase. Also, Translator used 15 times less number of parameters on average

than its fully connected counterparts, resulting in significantly reduced GPU memory usage during the

training process.

One important note about our transfer learning approach is that chromatin interaction patterns should be

highly conserved between the reference and target dataset so that features learned from our deep generative

learning model can be directly applied to the target datasets. In other words, Translator will achieve its best

FIG. 6. QC and clustering results of the PFC data. (A) QC results of the reference dataset; (B) UMAP of LSI

embeddings of the reference dataset; (C) UMAP of translator embeddings of the reference dataset; (D) QC results of the

target dataset; (E) UMAP of the LSI embeddings of the target dataset; and (F) UMAP of the translator embeddings of

the target dataset. QC, quality control.
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performance when the reference and target datasets are from similar tissues. On the other hand, strongly

mismatched peak set might even negatively impact the training process. We also demonstrated that as long

as the major cell populations are consistent, Translator can robustly handle different cell abundances or

even slightly mismatched cases with new or missing cell types.

5. CONCLUSION

In summary, we developed an efficient deep generative model, Translator, to improve cell representation

learning in moderate-quality single-cell ATAC-seq data by incorporating reference-learned information.

With recent initiatives from the scientific community and funding agencies to encourage transparent data

sharing, we anticipate that the number of HQ reference datasets will exponentially increase across various

tissues and conditions. Therefore, our transfer learning approach will play a pivotal role in facilitating

scATAC-seq data analysis.
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