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ABSTRACT
Non-Volatile Random Access Memory (NVRAM) technologies are
closing the performance gap between traditional storage and mem-
ory. However, the integrity of persistent data structures after an
unclean shutdown remains a major concern. Logging is commonly
used to ensure consistency of NVRAM systems, but it imposes
significant performance overhead and causes additional wear out
by writing extra data into NVRAM. Our goal is to eliminate the
extra writes that are needed to achieve consistency. SSP (i) ex-
ploits a novel cache-line-level remapping mechanism to eliminate
redundant data copies in NVRAM, (ii) minimizes the storage over-
heads using page consolidation and (iii) removes failure-atomicity
overheads from the critical path, significantly improving the per-
formance of NVRAM systems. Our evaluation results demonstrate
that SSP reduces overall write traffic by up to 1.8×, reduces extra
NVRAMwrites in the critical path by up to 10× and improves trans-
action throughput by up to 1.6×, compared to a state-of-the-art
logging design.

CCS CONCEPTS
• Information systems → Phase change memory; • Computer
systems organization → Reliability.
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1 INTRODUCTION
Non-Volatile Random Access Memory (NVRAM) is becoming a
reality, as technologies such as STT-RAM [20], PCM [39] (Phase-
Change Memory) and memristors [45] show DRAM-like perfor-
mance and disk-like persistence. Recently, Intel has announced its
Optane DC persistent memory [17], further facilitating the accep-
tance of NVRAM as a new storage tier. NVRAM on the memory
bus (“persistent memory”) introduces a new storage interface: ap-
plications use CPU load/store instructions to directly operate on
the storage medium. This model removes the need to maintain sep-
arate data formats for memory and storage. The resulting programs
are streamlined and reduce overheads, for instance, by avoiding
serialization and deserialization of the in-memory data structures.

Since data in persistent memory survives a power cycle, this
model requires mechanisms to ensure that persisted data is reusable
by preserving application consistency in the presence of failures.
Durable transactions provide a straightforward abstraction to sup-
port consistency—programmers only need to specify the code that
should be part of a failure-atomic section. The updates within the
failure-atomic section are guaranteed to be executed indivisibly (all
or nothing).

Prior work on providing failure-atomicity for persistent mem-
ory [4, 5, 14, 18, 19, 44, 49] has focused on the following challenges:
First, the limited write endurance [23] of NVRAM compared to
DRAM, second, the latency overheads introduced for guaranteeing
failure-atomicity, by memory fences, flushes and logging and third,
the inability to amortize overheads when operating on byte address-
able NVRAM. Prior work has approached the above challenges with
three techniques: write-ahead logging, log-structuring and shadow
paging.

Write-ahead logging [4, 9, 16, 49] ensures storage consistency
with explicit data copying. Several previous works [4, 9, 16, 49] em-
ploy fine-grained logging to avoid unnecessary memory bandwidth
consumption. Unfortunately, logging, even at finest granularity, still
causes redundant writes that introduce bandwidth overheads [54]
and cause additional wear out. Log-structured stores only maintain
a single copy of a data element, but they must adjust a mapping
table on each write that references the new element. Furthermore,
the log-structured approach usually maintains mappings to data el-
ements of large size to reduce the capacity overhead of the mapping
table in comparison to the actual data. Unfortunately, this intro-
duces fragmentation, requires large page writes and introduces
garbage collection overheads, similar to those incurred by NAND
Flash [24]. It is required to use a more flexible, and hence complex,
mapping scheme [14] to reduce the otherwise prohibitive metadata
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overhead for persistent memory systems. The third approach that
has been studied relies on shadow paging and its optimizations [5]
leveraging Copy-on-Write (CoW) [13]. In CoW, modified data is
only written once, however unmodified data has to be copied first,
rendering this approach inefficient for small updates.

In this work, we introduce a hardware-friendly remapping mech-
anism, based on shadow paging, that can i) reduce the number of
extra NVRAM writes over logging, and ii) avoid extra data copy-
ing within the critical path. We propose Shadow Sub-Paging (SSP),
that supports cache-line-level remapping with low metadata over-
head: our approach requires only three bits for each cache line
in pages that are being actively updated. The process of atomic
updates and transaction commit only involves updating the per-
page metadata using simple bitwise operations and no extra data
movement is required in the critical path. We extend the translation
lookaside buffer (TLB) hardware to support SSP semantics, mini-
mizing changes to the processor core while avoiding most address
remapping overheads.

SSP leverages the following key observation to provide failure-
atomicity: Instead of duplicating writes as in logging based ap-
proaches, SSP only consistently update a small amount of meta
data in NVRAM. As the metadata is small compared to the actual
data, redundant write traffic, which is a major concern in exist-
ing NVRAM systems, is almost completely avoided. However, SSP
raises two new challenges. First, metadata needs to be written in
an atomically consistent way, which we address with lightweight
metadata journaling. And second, SSP introduces memory capacity
overheads, which we address via page consolidation.

In a nutshell, our approach works as follows: For each virtual
NVRAMmemory page in the TLB, SSP maintains two physical page
mappings. Persistent writes are applied to the two pages alterna-
tively and SSP switches the page mapping on each failure-atomic
transaction. Instead of performing CoW on a per page granularity,
SSP maintains additional meta information that tracks state on a
cache line basis within each page. Finally, when a page is evicted
from the TLB, SSP performs page consolidation to merge the two
physical pages into one. Page consolidation is the only point where
SSP introduces redundant writes. Our key observation, however, is
that the number of transactions is much higher than the number
of TLB evictions for most applications. This allows SSP to batch
redundant writes to NVRAM resulting in a significant decrease
of overall writes. As page consolidation can be performed in the
background, SSP removes overheads required for failure-atomicity
from the performance critical path.

In summary, this paper makes the following contributions:
• We propose an efficient remapping technique which avoids the in-

efficiency of shadow paging by allowing it to track modifications
at cache line granularity.

• We propose metadata journaling to preserve consistency.
• We propose page consolidation to save storage cost.
• We evaluate SSP and show that it can improve performance by

64% for micro-benchmarks and by up to 35% for real workloads
over a state-of-the-art logging design.
The remainder of the paper is organized as follows. Section 2

provides background on persistent memory systems, durable trans-
actions, and existing atomicity techniques. Section 3 highlights
the design of SSP. Section 4 describes the architecture of SSP in

detail. Section 5 evaluates our design and presents our key findings.
Section 6 discusses related work. Section 7 concludes.

2 BACKGROUND AND MOTIVATION
In this section, we motivate our design by discussing the back-
ground on persistent memory and review the state of the art of
existing failure-atomicity mechanisms.

2.1 Persistent Memory Systems
In the legacy model, system calls such as read() or write() have
been used to operate on data stored in application buffers. System
calls such as fsync() are used to write data back to the storage
mediums. Our work focuses on a new NVRAM-style programming
model [2, 4, 14, 16, 49] in which applications directly access the
storage media (e.g. persistent memory) using processor load and
store instructions while ensuring durability with instructions such
as cache-line-write-back. The emerging memory technology
and NVM-style programming model offers a number of unique op-
portunities to reduce the cost of persisting data. First, it enables us
to leverage the byte-addressable representation to make data persis-
tence fast. Second, we can leverage the virtual memory indirection
to build an efficient address remapping scheme.

2.2 Requirement of Persistent Memory
Transactions

The database community has defined four transaction properties:
Atomicity, Consistency, Isolation, Durability (ACID). We use these
properties to define the requirements for a system enabling failure-
atomic transactions. Failure-atomic transactions may consist of
multiple persistent writes. Partially completed transactions caused
by abnormal termination need to be rolled back as they may lead
to the violation of application semantics. Persistent writes within a
transaction should be performed in an “all or nothing” fashion. This
is referred to as atomicity. Consistency is application-specific
and requires that updates performed by transactions (user-defined)
always advance the system from one consistent state to another. In
a multi-core environment, concurrent threads should never expose
updates from incomplete transactions to each other. This is referred
to as isolation. Finally, durability requires that all updates reach
the non-volatile storage (e.g. NVRAM) before a transaction is ac-
knowledged. This is a non-trivial requirement as persistent memory
systems are likely to continue to support volatile caches (and pos-
sibly DRAM) for performance reasons. Flush operations can be
utilized to force write back of dirty data from caches to persistent
memory.

This work focuses on enforcing ACD properties. Programmers
need to use locking or transactional memory [12, 43] to ensure the
isolation of concurrent threads. While transactional memory might
be combined with failure-atomic transactions, we leave this out for
future work.

2.3 Drawbacks of Existing Crash-Atomicity
Techniques

Storage systems traditionally ensure crash-consistency by using one
of three techniques: write-ahead logging [32], shadow paging [13],
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Name Low Extra
Writes

Low
Persistence
Overhead

Low
Instruction
Overhead

Software redo/undo
logging ✕ ✕ ✕

ATOM, Proteus ✕ ✕ ✔

DHTM ✕ ✔ ✔

LSNVMM ✔ ✔ ✕

SCSP ✕ ✕ ✕

SSP ✔ ✔ ✔

Table 1: Summary of existing failure-atomicity mecha-
nisms.

or log-structuring [40].We now examine the use of these techniques
in persistent memory transactions. Table 1 presents a summary
of existing failure-atomicity mechanisms which we will discuss in
more detail in the following.
Write-Ahead Logging. Whenever data is overwritten, either the
original data or the new data must first be written to a logging
area in NVRAM. Only after persisting the log to NVRAM, data
can be updated in-place which guarantees that on a failure the
original data can always be recovered. Different variants of logging
implementations [4, 16, 18, 19, 44, 49] have been investigated by
both academia and industry. All of these implementations share
a common “write twice” problem, as NVM writes need to be per-
formed twice: once to the log and once to the actual data. Prior
approaches differ in terms of the techniques being used to minimize
the software overhead as well as in how they reduce the impact
of logging on overall performance. Logging in software [4, 16, 49]
entails significant instruction overhead: software-based undo log-
ging has to use excessive ordering and flushing instructions to
ensure the ordering between the log update and the data update;
software-based redo logging requires all memory reads to be in-
tercepted and redirected to the redo log to obtain the latest values.
Hardware support [18, 19, 44], therefore, has been introduced to
provide high-performance logging. ATOM [19] and Proteus [44]
(hardware undo logging) move the log update out of the critical
path of the atomic update by tracking the dependency of the log up-
date and the data updated in hardware. DHTM [18] (hardware redo
logging) improves upon previous solutions by decoupling the data
update from the transaction commit: the process of writing back
the modified cache lines to persistent memory can overlap with the
execution of the non-transactional code following the transaction.
However, even under DHTM, committing the redundant writes to
NVRAM remains on the critical path and as a results may delay
subsequent transactions reducing overall performance.
Shadow Paging. When shadow paging performs a write, it cre-
ates a new copy of a memory page, updates the new copy, and
then atomically updates the persistent virtual-to-physical address
mapping to complete a failure atomic write sequence. BPFS [5]
presents a redesign of traditional shadow paging for the NVRAM-
aware filesystem, called Short-Circuit Shadow Paging (SCSP). SCSP
includes two optimizations: i) it only copies the portions of the
data in a page that will not be changed and ii) it applies 8-byte
atomic updates as soon as possible to avoid propagating the CoW

to the root of tree. While SCSP might be suitable for file system
workloads where the file data updates tend to be large, persistent
memory accesses are performed on the byte-granularity, rendering
the method unsuitable for persistent memory systems.
Log-Structuring. Log-structured stores [40] do not update data
in-place, but instead, append newly written data to the end of a
log. A continuously updated mapping table is used to map logical
addresses to physical storage. The unique challenge in using log-
structuring for persistent memory systems is that, to limit the over-
head of the mapping table, mappings need to refer to large, fixed-
size blocks of data. Persistent memory systems, however, operate
on fine grained byte-sized granularity, which introduces fragmen-
tation and garbage collection overheads when utilizing large block
sizes. Log-Structured Non-volatile Main Memory (LSNVMM) [14]
proposes a sophisticated tree-based remapping mechanism which
allows the out-of-place update to be performed at varied granulari-
ties. The mapping of LSNVMM is implemented as a partitioned tree
(e.g. an array of skip lists); a node cache (e.g. hashtable) is employed
to reduce tree traversal. Despite all its optimizations, the capacity
overheads for storing the mapping tables as well as the instruction
overhead are still significant in a system that offers data accesses
at sub-microsecond latencies.

3 SSP DESIGN
In this section we introduce the design of SSP. First, we introduce
the programming model and then we discuss the basic concept
of SSP. We then introduce two key techniques: i) metadata jour-
naling and i) page consolidation. We conclude this section with a
discussion.

3.1 Programming Model and ISA Extension
We adopt a programming model proposed by Mnemosyne [49], in
which programmers use the language construct atomic{...} to
define a failure atomic section (e.g. updates inside are persist in a all
or nothing fashion), and use the persistent keyword to annotate
pointers to persistent data. Furthermore, we extend the ISA with
a pair of new instructions—ATOMIC_BEGIN and ATOMIC_END—to
define the begin and the end of a failure-atomic section and a new
instruction called ATOMIC_STORE to hint a store must be conducted
in an atomic fashion. ATOMIC_BEGIN and ATOMIC_END act as a full
memory barriers. The ATOMIC_STORE instruction adds the store
address to the transaction’s write set so that it can be flushed to
NVRAM during commit. The compiler can be modified to translate
these software interfaces (e.g. the atomic block and the persistent
pointers) to the ISA instructions.

Note that our interface resembles the interface of Intel TSX [15,
50] where XBEGIN and XEND are used to indicate the beginning and
the end of a transaction. Intel TSX is designed to replace locking as
a new way to ensure thread synchronization, and provides no guar-
antee on durability. In future work, we will investigate integrating
SSP with hardware transactional memory through which we can
provide an unified interface for supporting ACID transactions. In
this work, we assume the isolation of threads are guaranteed using
locks: by grabbing locks before the operation is performed, other
threads are prevented from observing intermediate states.
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3.2 Shadow Sub-Paging
Conventional shadow paging suffers from the problem that it op-
erates on full pages which means a cache line write requires CoW
of an entire page. To address this challenge, we propose Shadow
Sub-Paging, a technique that can track updates on a much finer
granularity: cache lines. Shadow Sub-Paging draws inspirations
from the PTM-select technique [3], with major extensions to sup-
port failure-atomicity for persistent memory.
SSPAbstraction. Shadow Sub-Paging (SSP) is a persistent-memory-
optimized version of shadow paging. When SSP is used to perform
atomic updates, each active virtual page is associated with a second
physical page. A page is active as long as it is in the TLB; for inactive
pages the two physical pages are consolidated into one for space ef-
ficiency. We refer to the original physical page as “P0” and the extra
physical page as “P1”. Besides a second physical page, SSP requires
three bitmaps for pages that are being actively updated. Specifically,
the state of each cache line in the virtual page is represented by
a single current bit, single updated bit and a single committed bit;
each bit in these bitmaps refers to the cache line of the same offset.
As bitmap access is performed on the critical path, they are cached
in the TLB as we will explain in the metadata section. The current
bit defines whether the most recent version of some data referred
to by a virtual address is currently mapped to physical page P0 or
P1. The updated bit is set to one whenever the cache line is written,
and is reset as part of the commit process. The updated bitmap
represents the write set of a transaction. The Committed bit defines
whether P0 or P1 currently contains the committed (old) version of
the cache line.

As a transaction is being processed, reads are directed to the page
determined by the current bit. When the cache line is written to for
the first time in a transaction SSP performs three tasks atomically.
First, the corresponding updated bit is set to track the line as part
of the transaction’s write set. Second, the write is applied to the
cache line that resides on the “other” page, for instance, to P1 if the
committed cache line is part contained in P0. Third, the current bit
is inverted such that the most recent (but still transient) version
of the cache line now points to the new page. Note that in SSP
it is possible that for a specific virtual page, some cache lines are
currently stored on P0 and some on P1. Whenever a write targets
a cache line that is already in the write set, it simply updates the
current cache line. To commit a failure-atomic transaction, SSP
persists all cache lines in the write set by flushing them to NVRAM.
Note that cache lines might have already been persisted during
the transaction in case they were evicted from the cache. This is
not a problem in SSP, even in the case of a power failure, as writes
never overwrite committed data in place. Furthermore, as part of
the commit sequence, the updated bitmap is cleared to atomically
commit the speculative updates; Lastly, the committed bitmap is
persisted so that in case of a system failure, the current bitmaps can
be recovered.

The approach explained above suffers from the following prob-
lem. Consider a cache line for a virtual address that is currently
mapped to P0. If the cache line is transactionally written, the update
needs to be applied to P1, requiring a copy-on-write of P0 into P1
which is costly. The other option would be to cache both the P0
and the P1 cache line. However, this would virtually reduce the
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might consist of updatingmultiple committed bitmap in the
NVRAM; power failure in between will leave the system in
an inconsistent state.

cache size by 2×. We address this issue by the following technique.
Instead of performing CoW, we directly apply the write to the cache
line, however, we atomically change the tag so that the line now
maps to the “other” page. As the “old” line has already been flushed
to NVRAM as part of a previous commit, this approach is safe.
Metadata Storage. The per-page bitmaps need to be checked (and
updated) in the critical path. As in prior work [42], we extend the
TLB hardware to cache extra metadata required by SSP. Specifically,
we store the second physical page number, the updated bitmap,
and the current bitmap in the TLB hardware. As shown in Figure 1,
threads (cores) are required to use their own set of updated bitmaps
to track the write-set of the on-going transaction so that they can
commit (or abort) their modifications in isolation. To ensure a single
view of shared memory, all threads share a current bitmap for a
given virtual page. We will discuss how to ensure the coherence
of current bitmap among cores in section 4.1.2. Our system must
guarantee that data from previously committed transactions can
always be retrieved after a power cycle. The per-page committed
bitmap is durably stored in the NVRAM and is updated as part of
the commit process.
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3.3 Metadata Journaling
To preserve the atomicity of data updates in the case of transactions
spanning multiple pages, we must update all committed bitmaps
atomically during transaction commit. An example describing
this scenario is shown in Figure 2 where a code section specifies
four cache lines need to be updated atomically. The commit pro-
cess involves updating the committed bitmap of VA (from “0000” to
“1100”) and that of VB (from “0000” to “0011”). However, it might
take two separate steps to update these committed bitmaps from
the perspective of the memory controller. If the system crashes in
between, only updates on VA (e.g. A0 and A1) will be visible after
recovery, which violates atomicity. We use metadata journaling
to ensure the atomicity of updates on the metadata of SSP. Our
metadata journaling approach can be considered as a redo logging,
however, only for the SSP metadata and not for the data itself as in
conventional redo logging. It works as follows: every update to the
per-page metadata, appends an entry (operation) to the log where
an entry contains the page ID and the committed bitmap. Only after
persisting the meta log for a transaction to NVRAM, SSP updates
the per page committed bitmaps in the metadata area. More details
on the implementation of metadata journaling are provided in sec-
tion 4.1. As compared to data journaling (e.g. redo/undo logging),
which requires to log every modified data block (e.g. typically 64
Byte), SSP journaling is lightweight as it only needs to record 128
bits of metadata for each modified page.

3.4 Page Consolidation
Associating each virtual page in the system with two physical pages
represents a 2× capacity overhead. To address this problem, SSP
consolidates physical pages into a single page whenever a virtual
page is not actively used, and thus not contained in the TLB. As SSP
requires pages to be resident in the TLB if they are written as part
of a transaction, it is safe to consolidate a page even if some lines
are still cached because a line without TLB mapping must either be
committed or invalid.

At the time of consolidation, the valid data of a virtual page is
likely to be distributed across the two associated physical pages. To
minimize the data copying overhead, we identify the physical page
(e.g. P0 or P1) which contains fewer valid cache lines and copy its
valid data to the other physical page (e.g. P1 or P0). Note that we
can easily compute the number of valid cache lines in P0 or P1 by
counting the number of ‘0” or “1” in the corresponding committed
bitmap. Finally, we update the virtual-to-physical mapping table so
that the virtual page refers to the physical page with all the valid
data.

Another issue that needs to be addressed is the accurate iden-
tification of inactive virtual pages. It is important, as premature
consolidations of pages that are still being actively updated will
result in unnecessary data copying overhead. We reuse the TLB
hotness tracking: when a virtual page is not referenced by any
TLB entry, we consider it as inactive. These inactive pages could
be consolidated eagerly (e.g. immediately after being detected) or
lazily (e.g. when the demands on the memory resources are high).
Our current implementation consolidate inactive pages eagerly and
we plan to investigate lazy consolidation in the future.

3.5 Discussion
Virtually-Indexed cache: SSP can work seamlessly with physical,
or virtually-indexed physically-tagged caches. To support SSP on
a virtually-indexed cache, we extend the tag with one TX bit to
indicate whether a cache line has been modified by the current
transaction. When a modified cache line is written back to memory,
the TX bit allows Shadow Sub-Paging to distinguish transactional
cache lines from regular cache lines. For a transactional cache line,
we leverage SSP remapping to prevent overwriting the committed
data. A read miss will also require to access the extended TLB. In
this case, SSP locates the current mapping (P0 or P1) of a cache line.
Superpages: Superpages [7, 22, 34, 46] are commonly used to in-
crease the coverage of the TLB. Supporting superpages in SSP is
challenging due to the large per-page metadata overhead. For in-
stance, a 2 MiB page has 32,768 cache lines and thus, the required
bitmap size is 262,144 bytes. It is unpractical to scale TLB entries to
support such large bitmaps. SSP currently only supports 4 KiB base
pages. However, techniques such as transparent superpages and
page clustering as supported by Linux can be extended to support
SSP. In particular, coexistence of small and superpages is possible
by automatically demoting superpages when they are updated and
promoting pages to superpages when they become “inactive”. With
this approach, superpages can be used for read-only data. As for
the design of TLB hardware, support for superpages and that for
SSP can coexist because most processor vendors use split TLBs [7].
SSP only requires TLB extensions for the 4 KiB base pages.
Limitation and Fall-back path. The SSP design has limitations
in terms of the size of a transaction it can support. If a transaction
updates more pages than the TLB can hold, SSP needs to abort the
transaction and revert to a fall-back path. The fall-back path trans-
fers control to a programmer-defined handler which can implement
any kind of unbounded software redo or undo logging to ensure
atomicity. SSP is designed to handle small and medium sized trans-
actions efficiently, similar to existing commercial HTMs [15, 50].

4 SSP ARCHITECTURE
Figure 3 depicts the architectural details of SSP. The per-page meta-
data of SSP, which contains persistent fields such as the committed
bitmap and volatile fields such as the current bitmap, is managed by
the memory controller in the form of the SSP cache. We extend the
TLB hardware to cache the current bitmap, the updated bitmap and
the second physical page number. The core is extended to handle
atomic updates of cache lines so that on each write the cache tag,
the updated bit and the current bit is updated atomically. To support
transaction commit, the core needs to i) write back the cache lines
that have been modified and ii) issue a metadata update instruction
for each modified page to the memory controller. The memory
controller performs metadata journaling to ensure the atomicity of
metadata updates. Furthermore, the memory controller tracks the
status of each page using the SSP cache and it also conducts page
consolidation.

4.1 Architectural Extensions
4.1.1 Extensions on CPU hardware. We propose a set of architec-
tural extensions to facilitate SSP. In particular, we adopt a wider
TLB entry in which we can cache the second physical page number,
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the current bitmap and the updated bitmap of a page that is being
modified. In the event of TLB miss, the core will conduct a page
table walk as usual to obtain the original physical page number (e.g.
P0) for the missing page. Afterwards, it interacts with the memory
controller to fetch the SSP-specific metadata (using P0 as index),
that is the second physical page number (e.g. P1) and the current
bitmap; the updated bitmap is initialized with all zeros.
Memory Read andWrite. During address translation, the virtual
address is translated into either P0 or P1, depending on the corre-
sponding current bit for the accessed cache line. The remainder of
the memory access path remains unmodified.
Atomic Update. Figure 4 shows how SSP handles atomic updates.
We assume a write-back cache with a write allocate policy. An
atomic update process is described as follows: i) Shadow Sub-Paging
checks the current bit to determine which page to write; ii) a copy
of the data is loaded into the cache if it is not present; iii) the cache
line is remapped by changing the tag, so the “other” cache line can
be updated; iv) the new cache is updated with the written data; v)
the current bit is flipped. Note that iii) and v) are only necessary if
the line was written for the first time during the transaction. Since
this modified cache line now is associated with another page, it
is safe to evict it from the cache anytime without worrying about
overwriting the committed state in NVRAM.

To conduct the remapping, the current bitmap for a page needs
to be changed. To keep the current state of shared pages coherent
across cores (and the memory controller), the most straightforward

solution is to perform a TLB shootdown. However, TLB shootdowns
incur significant overheads [1, 48]. We instead adopt the approach
proposed by page-overlays [42] which exploits the cache coherence
network to guarantee coherency of the TLB entries, including the
current bitmap. The cache coherence network is extended with a
new message called flip-current-bit. When a cache line is updated
for the first time in a transaction (current bit is zero), a flip-current-
bit message is broadcast via the cache coherence network to notify
other cores as well as memory controllers to flip the current bit
for the corresponding cache line. Note that we may piggy back
the flip-current-bit on the invalidation message. The approach can
be trivially extended to support directory based cache coherency
protocols. We believe the broadcasting will only impose minimal
overhead on the system overall. As shown in previous work [33], in
typical PM workloads, only a small portion (< 4%) of accesses are
to PM; the majority to DRAM. Moreover, our design only requires
a broadcast operation for a fraction of stores to PM (e.g. modifying
a cacheline for the first time in a transaction).
Transaction Commit. Durable transactions must guarantee data
persistence after commit requests are acknowledged. The commit
process of SSP involves two steps i) data persistence and ii) metadata
update. Atomic updates themselves do not ensure data persistence—
some updates might still be in the cache at the transaction commit.
Here we use a write-back instruction such as clwb to write back the
cache lines modified by the committing transaction. The write-set
of the committing transaction is tracked by the updated bitmaps
stored in the extended TLB. The commit process also needs to
update the committed bitmaps stored in NVRAM. We extend the
write interface of the memory controller with a special metadata
update instruction. For each updated page (identified by the update
buffer), we pass information such as the page ID (e.g. P0) and the
updated bitmap to the memory controller using the metadata up-
date instruction. The memory controller will perform journaling
to ensure the atomicity of the metadata updates. The metadata
update instructions are passed to the memory controller without
caching. Note that we must ensure the ordering between the data
persistence and the metadata update. If the system crashes before
the atomic metadata update is complete, all speculative updates
will be discarded, recovering into an consistent state.

4.1.2 Memory Controller Extensions. In the SSP architecture, the
memory controller provides centralized storage for metadata and it
performs page consolidation and metadata journaling. Furthermore,
it is responsible for managing a set of pages from which the second
physical pages can be allocated. Note that the number of pages is
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bounded by the number of TLB entries and that page consolidation
ensures that pages will be freed after they become inactive.
Metadata Storage. SSP associates each virtual pagewith additional
metadata. Since we only need these additional fields when pages
are active, we do not require extension of the page table entries.
Instead, the memory controller maintains a SSP cache separately
to store the SSP-related metadata. An SSP cache entry contains the
following details regarding a page that is being actively updated: the
original/second physical page number (PPN0/PPN1); the consistent
state (committed bitmap); the current state (current bitmap); the
number of TLBs that have cached the translation for this page
(TLB reference count); the number of cores that are updating this
page (core reference count). Among this information, the physical
page numbers and the committed bitmap must be stored durably.
Fields such as the current bitmap, the core/TLB reference count are
transient and are not necessary for the recovery.

Whenever a SSP cache entry is accessed (e.g. after a TLB miss),
the SSP cache is consulted with the original physical page number
(P0). In case of a miss, the memory controller inserts a new entry
into the SSP cache. The replacement algorithm of the SSP cache
is straightforward. The memory controller may evict any entry
that contains a page that is i) already consolidated (e.g. committed
bitmap is zero) and ii) not referenced by any TLB (e.g. TLB reference
count is zero). The SSP cache can be sized according to the TLB and
the number of cores. For instance, in a system with N cores and
T -entry TLBs, the size of the SSP cache is set to N ×T +O . HereO
is the overprovisioning factor used to accommodate pages that are
being consolidated. The rationale behind this is that i) the maximum
number of concurrent transactions is N , ii) each transaction can
touch no more than T pages, and iii) O entries are overprovisioned
so that we do not have to wait for pages to be consolidated in order
to make room for new TLB-fill requests. If under rare conditions,
we find that the cache entries we reserve are not enough, we can
resize the SSP cache and request more pages from the OS.
Free Space Management. At system initialization, the OS will
reserve a small mount of continuous NVRAM physical pages and
pass the base address to the memory controller by setting one of its
registers. The memory controller will associate each entry of the
SSP cache with an extra physical page up front. The extra physical
page is utilized by the virtual page assigned to an entry and can
be reused when the entry is assigned to a new virtual page as all
data stored in the extra page is persisted during consolidation. To
overcome uneven wear out, the memory controller may exchange
the per-slot extra physical pages with fresh pages from time to time.
Page Consolidation. SSP decides whether a page is eligible for
consolidation according to the following information: is there any
TLB that has cached the SSP cache entry for this page? Specifically,
the TLB reference count is used to decidewhen to consolidate a page.
The TLB reference count is increased by one if a core fetches the SSP
cache entry from the memory controller and is decreased by one if
a core evicts the SSP cache entry from its TLB. When the memory
controller detects that the reference counter for a page drops to
zero, an entry, which includes the two physical page numbers and
the committed bitmap, is inserted into a consolidation queue. An
OS thread conducts page consolidation in the background, allowing
the new TLB entry to be inserted with minimal delay. When a page
has been consolidated, the consolidation thread inserts an entry

into a finish queue to notify the controller. We reserve several bits
in the SSP cache entry to track the status of a page (e.g. whether it
is being consolidated). In the rare case a page is requested by the
TLB during consolidation, the response is delayed until after the
consolidation for that page has been completed.
Metadata Journaling. A multi-page transaction requires multi-
ple updates to the metadata area that stores the pages’ committed
bitmaps. As shown in Figure 3, each metadata journaling record,
which represents the intention to update the SSP cache, has four
fields—the Transaction ID (TID), the ID of the cache slot that that is
being modified (SID), the new value of original physical page num-
ber and the new value of the committed bitmap. The TID is assigned
by the memory controller to uniquely identify the metadata updates
from the same transaction. The SID is used to compute the physical
address of the slot given the base address of the SSP cache. Upon
receiving a metadata update instruction, the memory controller
generates a record and appends it to the metadata journal. Note
that journaling records are written back to NVRAM, at cache level
granularity, only when the log buffer is full or an explicit request is
made to flush the buffer.
Checkpointing. To limit the growth of the journaling space and
also to bound the recovery time, the memory controller needs to
perform checkpointing, which updates the state of the persistent
SSP cache to the most recent consistent snapshot and then needs
to clear the journaling space. A background OS thread is used for
checkpointing and takes three steps: i) it records the current head
pointer—where appends happen—of the journal, ii) it applies the
log records to the persistent SSP cache and iii) it advances the tail
pointer of the journal. Note that the checkpointing thread will
capture the final state of a modified cache entry and only write it
back to the persistent cache.

4.2 Architecture Details
We here discuss several optional details that improve the efficiency
of the implementation of SSP.
Write-set Buffer. Storing the updated bitmap in the TLB entry
along with the physical page numbers and the current bitmap, albeit
straightforward, entails a problem—the burst of non-transactional
accesses may cause an in-transaction TLB entry (e.g. updated bitmap
is non-zero) to be evicted, making it impossible to track the write-set
of the transaction. To address this issue, a separate write-set buffer
can be added to store the updated bitmaps. The write-set buffer is
cleared once the ongoing transaction is committed. By decoupling
the updated bitmap from the TLB, a page might be evicted from the
TLB while it is written as part of a ongoing transaction. We deal
with this corner case with a per-page core reference count. The
per-page reference count is increased upon receiving a flip-current-
bit from a specific core, and is cleared upon receiving a metadata
update instruction. A page with non-zero core reference count will
not be considered for consolidation or cache eviction.
SSP Cache Organization. Transient runtime information such as
the reference count is updated frequently. Placing the SSP cache in
NVRAM will cause unnecessary wear out. The SSP cache is orga-
nized as a transient SSP cache (stored in DRAM) and a persistent
SSP cache (stored in NVRAM): the transient cache is employed to
serve the requests from the cores; the persistent cache serves as a
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backup and is used only during recovery. We only store persistent
metadata such as the physical page numbers and the committed
bitmap in the persistent cache.

To leverage faster memory in the hierarchy, we use a small
portion of the L3 to as a “cache” for the SSP cache [6]. Only 1% of a
12-megabyte L3 cache could be used to cache about 4K SSP cache
entries. We will study the sensitivity of the access latency of the
SSP cache in the evaluation.

4.3 Hardware Cost and Complexity Trade-off
There are twomain hardware overheads in our design: the extended
TLB entries and the write-set buffer. For a typical 4 KiB page and
64 byte cache line, there are 64 cache lines per page, so each bitmap
has 64 bits, adding 64 bits and a second physical page number (e.g.
40 bits) to each TLB entry. Across the 64-entry L1 TLB, the overall
cost to expand the TLB is 832 bytes. If we take the L2 TLB into
consideration, a 1024-entry L2 TLB will add another 13 kilobytes.
Each write-set buffer entry includes a 36-bit tag and a 64-bit bitmap.
The size of a 64-entry write-set buffer is therefore 800 bytes. Thus,
the overall hardware cost is 14.6 kilobytes.

We now identify opportunities to address the hardware over-
head. In our original design, we conservatively assume the ideal
granularity for ensuring persistence is 64 bytes (e.g. cache line gran-
ularity). However, as disclosed by a recent work [17], the preferable
granularity for persisting data to the Intel’s Optane DC Persistent
Memory is 256 bytes. Utilizing 4× larger sub-pages, the size of the
bitmap could be reduced to 16 bits, significantly reducing state
overhead of the TLB entries. Furthermore, recent Intel, IBM and
ARMprocessors provide HTM support. HTM uses one transactional
bit per cache line to track the speculative updates. By reusing the
transactional bit, we might be able to eliminate the need for using
the updated bitmaps.

Our current design trades-off complexity for higher performance.
To reduce hardware complexity, we may drop the modifications on
TLB hardware by implementing SSP mappings in userspace. How-
ever, this imposes significant instruction overheads as now every
load/store must be intercepted similarly to software transactional
memory systems. Second, we can avoid the changes on the TLB
coherence network by using TLB shootdowns instead. However,
the TLB shootdown procedure involves trapping into the OS, issu-
ing inter-process interrupts, imposing a significant performance
overhead. Note that our current implementation only serves as a
baseline for exploring the viability of SSP. Other alternatives might
be considered in practice. Prior work [17] also discloses that Op-
tane Persistent Memory embeds an address indirection table to
achieve wear leveling and bad-block management. Such an indi-
rection layer offers opportunities to incorporate the functionalities
of SSP entirely inside the PM controller, significantly reducing the
complexity without sacrificing much performance.

4.4 Recovery
Upon restart from an unclean shutdown, SSP performs the following
two steps for recovery. First, it rebuilds the transient SSP cache with
the persistent metadata stored in the persistent cache. Specifically,
fields such as the two physical page numbers and the committed
bitmap are reloaded directly from the persistent cache. Then the

Processor 4 OoO Cores, 3.7 GHz, 5-wide issue, 4-wide re-
tire, 128 ROB entries, Load/Store Queue: 48/32,
64 DTLB entries

L1I and L1D 32 KiB, 64-byte lines, 8-way, 4 cycles
L2 256 KiB, 64-byte lines, 8-way, 6 cycles
L3 12 MiB, 64-byte lines, 16-way, 27 cycles

DRAM 8 GiB, 1 channel, 64 banks per rank, 1 KiB row-
buffer, read/write 50 ns

NVRAM 8 GiB, 1 channel, 32 banks per rank, 2 KiB row-
buffer, read/write 50/200 ns

Table 2: System Parameters

Name Write
Set Description

RBTree-Rand 12/3/13 Insert/delete nodes in a red-black tree; Ran-
dom workloads

BTree-Rand 10/6/21 Insert/delete nodes in a B+-Tree; Random
workloads

Hash-Rand 3/3/4 Insert/delete nodes in a hashtable; Random
workloads

SPS 2/2/2 Swap elements in an array
RBTree-Zipf 5/2/6 Insert/delete nodes in a red-black tree; Zip-

fian workloads.
BTree-Zipf 6/4/15 Insert/delete nodes in a B+-Tree; Zipfian

workloads.
Hash-Zipf 3/3/4 Insert/delete nodes in a hashtable; Zipfian

workloads
Memcached 3/2/35 Memslap as workload generator; Four

clients; 90% SET
Vacation 4/3/9 Four clients; 16 million tuples

Table 3: A list of evaluated microbenchmarks showing the
write set size (average number of cache linesmodified / aver-
age number of pages modified / maximum number of pages
modified). The write set consists of atomic updates within a
transaction.

current bitmap is initialized with the value of the committed bitmap
all other transient fields (e.g. reference counters) are initialized
as zeros. Furthermore, the state of the transient cache needs to
be updated to the most recent consistent snapshot, replaying the
records in the metadata journal whereas the entries of aborted
transactions are skipped.

5 EVALUATION
5.1 Experimental Setup
We implemented SSP on MarssX86 [37], which is a cycle-accurate
full system simulator for the x86-64 architecture. We integrated
DRAMSim2 [41] into MarssX86 for a more detailed memory simula-
tion. The DRAMSim2 is extended to model a hybrid memory system
with both DRAM and NVRAM connected to the same memory-bus.
Table 2 shows the main parameters of the system. Our simulated
machine supports out-of-order execution, and includes a 64-entry
L1 DTLB, 3 levels of cache, and an NVDIMM.
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Figure 5: Performance of micro-benchmarks (higher is better).
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Figure 6: Comparison of logging writes (lower is better).

Simulation Methodology. We simulate the impact of logging,
page consolidation as well as data persistence using the MarssX86
and DRAMSIM2. To model the impact of SSP on the TLB and on cache
coherency, we measure the number of TLB misses and the number
of flip-current-bit messages. Note that we only count the TLBmisses
caused by accessing the persistent heap. The latency of accessing
SSP cache is modeled for a given workload according to the L3 SSP
cache miss ratio, L3 latency (e.g. 27 cycles) and DRAM latency (e.g.
185 cycles). The extra cycles are then added to the total cycles. To
better understand the impact of the latency of SSP cache access, we
conduct a sensitivity study in Section 5.3. In our experiment, we
reserve 0.3% of the L3 cache to be used to store the SSP cache (e.g.
about 1K SSP cache entries).
Benchmarks. We evaluate both microbenchmarks and real work-
loads in our experiments. The microbenchmarks cover commonly
used data structures such as the B+-Tree (BTree), as described in
Table 3. The elements, keys or values used in these workloads are
all 8-byte integers. Each data structure update (e.g. insert, delete, or
swap) is wrapped inside a durable transaction. Benchmarks BTree,
RBTree and Hash first search for a key and then either delete (key
found) or insert (key absent) a key/value pair. We vary the access
patterns for these workloads by changing the key distribution. We
use suffix “-Rand” and “-Zipf” to denote random workloads and
zipfian workloads. For zipfian workloads, 80% of the updates are
applied to 15% of the keys. The key/value pairs are generated prior
to each run. We evaluate two real applications: Memcached [10]
is a well-known in-memory Key/Value cache and Vacation [31]
which emulates an OLTP system. Prior work [33] has published the

persistent-memory-aware version of these applications; we merely
replace their durable interfaces with ours. The characterization of
the benchmarks is shown in Figure 3. As none of the evaluated
applications writes to more than 64 pages during a transaction, a
64-entry write-set buffer is sufficient to accommodate all of the
workloads. As a result, none of our evaluated applications requires
the unbounded fall-back path.
Evaluated Designs. We compare SSP with two other designs for
which we use tuned, optimal parameters (e.g. size of the log buffer).
We do not compare with conventional shadow paging. As shown
in Table 3, transactions only touch 2-6 cache lines on average. Con-
ventional shadow paging degrades performance by writing up to
64× more cache lines.
• UNDO-LOG represents a naive hardware undo logging mecha-

nism. Each atomic store will generate a log entry. The store then
will be blocked until the log entry reaches persistent memory.
Under undo logging, if a value is repeatedly updated multiple
times, we only need to generate a log entry for the first update.
We employ a log buffer to avoid writing redundant log entries.

• REDO-LOG [18] is a state-of-the-art hardware redo logging. It
allows overlapping data persistence with the non-transactional
code following the transaction commit. Besides, it also employs a
log buffer to predict the final state of a cache line and thus avoids
redundant log entries.

5.2 Mirobenchmark Results
Transactional throughput. We show performance results of the
four designs running the microbenchmarks. From Figure 5a, we
observe that SSP outperforms UNDO-LOG and REDO-LOG by 1.9×
and 1.3× on average under single threaded workloads. The improve-
ment mainly comes from the ability of SSP to reduce the logging
overhead. As shown in Figure 6, SSP can decrease the write traf-
fic caused by logging by 7.6× and respectively 4.7× compared to
UNDO-LOG and UNDO-LOG. In particular, under the BTree-Rand
workload, SSP nearly eliminates the logging writes, which results
in a 1.5× improvement in transactional throughput. As we can see
in Table 3, the BTree benchmark exhibits great spatial locality (e.g.
several cache lines modified in a single page), which minimizes the
writes introduced by metadata journaling. Figure 5a shows the per-
formance under four threads. We can see SSP scales well. SSP can
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Figure 8: Sensitivity to the Latency of NVRAM: the x-axis shows the NVRAM latency in multiple of DRAM latency.
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improve the performance by 2.4× and 1.4× over the UNDO-LOG
and REDO-LOG on average, respectively.
NVRAMWrites. Figure 7a compares SSP to the baseline designs
in terms of the number of NVRAM writes. We make two observa-
tions. First, SSP can save 45% and 28% write traffic as compared
to UNDO-LOG and REDO-LOG on average, as the Undo/Redo log-
ging designs essentially require data to be written twice. Although
page consolidation also causes extra writes in SSP, it is not a per-
transaction operation: modified data does not require an immediate

copy operation during the transaction commit but instead addi-
tional writes are only required when an active page turns inactive.
As the transaction frequency is much higher than the frequency
of pages becoming inactive, SSP can effectively “batch” the addi-
tional writes required for failure-atomicity. Figure 7b shows the
breakdown of NVRAM writes in our SSP design. As we can see, the
number of writes caused by page consolidation is less than the data
writes under most of the workloads except for SPS. Second, the lo-
cality of the workloads affects the number of NVRAMwrites. Under
benchmarks with zipfian access pattern (e.g. BTree-Zipf, RBTree-Zipf
and Hash-Zipf ), SSP on average can reduce the write traffic by 56%
and 42% over UNDO-LOG and REDO-LOG. In contrast, for random
workloads using a unified distribution SSP can only save 43% and
23% write traffic over UNDO-LOG and REDO-LOG. As shown in
Figure 7b, under workloads with locality, extra writes caused by
page consolidation are negligible. It demonstrates the SSP design
can efficiently prevent the premature consolidation of hot pages and
thus minimize page consolidation overhead for zipfian workloads.

5.3 Sensitivity Study
Latency of NVRAM. Figure 8 shows the transaction throughput
with varying memory latency. For brevity, we only show the results
of two representative workloads here. Overall, it can be seen that
the performance of SSP and the baseline designs degrade when
the NVRAM latency increases. However, the gap between SSP
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UNDO-LOG REDO-LOG
Memcached 75% 35%
Vacation 27% 13%

Table 4: The performance improvement over other designs
for Benchmarks Memcached and Vacation.

UNDO-LOG REDO-LOG
Memcached 49% 46%
Vacation 38% 17%

Table 5: The saving of write traffic over other designs for
Benchmarks Memcached and Vacation.

and other designs is increasing as well. In particular, the speedup
over REDO-LOG increases from 1.1× to 1.8× under the benchmark
BTree (Figure 8b). SSP minimizes the logging writes and thus is less
sensitive to the change of the NVRAM latency. We observe that
when the NVRAM is as fast as DRAM, REDO-LOG outperforms
SSP by 8% under the benchmark RBTree (Figure 8a). The reason
behind this is that when the persistency overhead is low (e.g.DRAM
latency), REDO-LOG can hide the most of the delay caused by
persisting data.
Latency of the SSP Cache. Figure 9 shows the impact of the la-
tency of the SSP cache on the performance of our SSP design. For
all workloads besides SPS, the cache latency has limited impact on
SSP performance, showing only a moderate linear performance
decrease with increased latency. However, the latency of SSP cache
is still critical for benchmarks such as SPS and Hash-Rand. This is
because their poor locality leads to frequent TLB misses, which in
turn increase the frequency of accessing the SSP cache. We observe
that the zipfian workloads are less sensitive to the latency of the
SSP cache than these random ones. This can also be explained by
the difference in locality exposed by these workloads.

5.4 Performance of Real Workloads
Table 4 shows the performance improvement of SSP over other
designs for theMemcached and Vacation benchmarks. For theMem-
cached benchmark, SSP provides a 74% throughput improvement
over UNDO-LOG and a 35% higher throughput compared to REDO-
LOG. For the Vacation Benchmark, SSP provides a 27% improvement
over UNDO-LOG and 13% higher throughput over REDO-LOG. The
improvement comes from the reduction in logging overhead. Specif-
ically, SSP saves 86% and 82% logging writes over UNDO-LOG and
REDO-LOG under the real workloads on average. In the Vacation
benchmark, SSP generates less improvement over REDO-LOG. This
is because the volatile execution contributes to most of the overhead
of the Vacation benchmark.

Table 5 shows the reduction of NVRAM writes. As we can see,
SSP continues to save write traffic to NVRAM: 49% and 46% re-
duction over UNDO-LOG and REDO-LOG under the Memcached
Workload and 38% and 17% reduction over UNDO-LOG and REDO-
LOG under theMemcached Workload. The extra write traffic caused
by page consolidation is only 15% and 31% of the total write traffic
for the Memcached and Vacation workloads.

6 RELATEDWORK
NVRAM-aware data structures [25, 47, 53] focus on reducing persis-
tence costs for particular data structures. In contrast, SSP support
atomic and durable updates of any data structure. Existing NVM-
support libraries [4, 16, 49] and NVRAM-aware file systems [5, 9,
51, 52] use either undo/undo logging or shadow paging to build
durable transactions. SSP can increase the efficiency of these exist-
ing approaches.

Prior work [14, 30] has proposed optimizations for software-
based failure-atomicity mechanisms. Both Kamino-TX [30] and
LSNVMM [14] attempt to reduce the persistency overheads by
eliminating the extra writes in the critical path. Kamino-TX main-
tains a separate backup when modifying data, and LSNVMM uses a
log-structured approach. However, both of the techniques have in-
efficiencies. LSNVMM introduces significant instruction overhead
by maintaining an additional level of indirection in userspace, while
Tamino-TX may delay dependent transactions (e.g. read/write set
overlap with prior transaction). DudeTM [28] enjoys the benefits
of a redo-log (fewer CPU flushes/barriers) while avoiding the draw-
backs of an address remapping approach. However, DudeTM still
must log the actual data modifications and apply updates to per-
sistent storage afterwards. In comparison, SSP requires no costly
software mapping, imposes no delay on the dependent transactions
and minimizes extra writes on the critical path.

Several recent studies [8, 18, 19, 36, 44] propose hardware sup-
port to reduce the overheads of logging. However, none of these
designs address the “write twice” problem introduced by logging
and, thus, still suffer from the performance degradation caused by
extra write traffic in the critical path. Recent studies [11, 21, 29, 38]
also propose hardware/language-support for relaxing the ordering
of NVM writes. LOC [29] proposes architectural modifications to
relax the intra-transaction and inter-transaction ordering. Kolli et
al. [21] propose optimizations to implement durable transactions
based on relaxing memory persistency [38]. These proposals are
orthogonal to our study and could be applied to further improve
our design. Several designs [44, 54] propose leveraging non-volatile
caches and write protected queues in memory controller to reduce
logging-introduced persistency overhead. Our design can trivially
be extended to take advantage of these advanced hardware features.
Our previous work [35] introduces the basic concepts of Shadow
Sub-Paging with preliminary design, and early-stage performance
evaluation. In this paper, we go beyond it in terms of techniques
and evaluations.

Page overlays [42] aim to provide fine-grained memory manage-
ment with a per-page bitmap. It proposes a wider TLB entry to track
the updates at the cache line level. However, page overlay seman-
tics don’t allow us to build durable transactions efficiently, since
page consolidations are required for every transaction commit on
the critical path. SSP is designed to provide transactional NVRAM
updates efficiently. In particular, SSP only needs to perform page
consolidation upon TLB evictions and performs consolidations out
of the critical path. SSP preserves the consistency of metadata that
is required for recovery leveraging lightweight metadata journaling.
SI-TM [27] and EXCITE-VM [26] leverages the indirection of vir-
tual memory to build more efficient snapshot isolation transactions.
However, it does not address the durability issues for persistent
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memory transactions. PTM [3] leverages virtual memory to sup-
port unbounded transactional memory and presents a similar cache
line level mapping semantic to reduce page level copying. How-
ever, our work goes beyond this work by addressing two additional
challenges: First, we enable failure-atomicity including metadata
updates and second we introduce page consolidation to address the
2× space overhead of PTM.

7 CONCLUSION
In this paper we proposed SSP, a novel shadow paging scheme that
leverages fine grain cache line level remapping, to enable efficient,
failure-atomic transactions. In particular, SSP eliminates most of
the redundant writes introduced by prior log-based techniques. Our
key idea is that we can delay the application of redundant writes via
address remapping, enabling write batching to reduce the overall
number of writes to NVRAM. By introducing cache line remapping,
our technique successfully eliminates the copy-on-write overhead
that made prior shadow mapping schemes unfeasible, while only
requiring moderate changes to the TLB hardware. In addition to
improving endurance, SSP removes redundant writes from the
critical path improving transactional performance. In particular,
our experimental results show that SSP can reduce overall NVRAM
writes by up to 1.8×, and improve performance by up to 1.6×, as
compared to a state-of-the-art hardware logging.
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