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THE HIGH-FREQUENCY STARK EFFECT AND ITS APPLICATION 

TO PLASMA DIAGNOSTICS 

William W. Hicks 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

December 1973 

ABSTRACT 

This work presents a theoretical and experimental study of 

the high-frequency Stark effect of hydrogen and helium spectral 

lines. The theory starts from Schr~dinger's equation for an atom 

in a monochromatic high-frequency electric field and a static 

magnetic field, and following a method due to Autler and Townes, 

reduces the problem to an equivalent probleiU of diagonalizing a 

matrix equation. The general solution of this matrix equation is 

discussed in some detail, the photon emission spectrum is calcu-

lated for the general case and for typical cases of hydrogen-like 

and helium-like spectral lines, and a physical interpretation of 

this solution in terms of multi-quantum transitions is developed. 

In general, the matrix problem must be solved numerically; however, 

for weak electric fields, the matrix equation can be expanded in 

terms of the electric field strength and an analytiC solution 

found. This weak electric field solution reduces to the normal 

perturbation expression first calculated by Mozer 'and Barranger 

using second-order time-dependent perturbation theory, and 

furthermore yields in a natural way the extension of the Mozer-

Barranger theorJ to include (1) the case of a magnetic field and 
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(2) the Stark shifts of the atomic levels due to the presence of 

the high-frequency electric field. 

The theory is general, being applicable to any general atomic 

system for ~hich the energy levels and the dipole coupling coeffi­

cients are kno~n. For plasma diagnostics, ho~ever, the two most 

important cases are hydrogen and helium spectral lines. After a 

discussion of the actual setup of a typical problem, i.e., what 

energy levels have to be retained, the calculation of the dipole 

matrix elements and the energy levels, etc., calculated profiles 

of several spectral lines of both hydrogen and helium for a 

variety of electric field parameters are presented. For simplicity, . 

all calculations are performed for a magnetic field equal to zero; 

hO'wever, the effect of (1) a de electric field perpendlcul8.r to 

the high-frequency electric field, and (2) fine-structure split­

ting on the calculated profiles is considered for the first two 

hydrogen Balmer lines Ha andH~. 

Finally, calculated profiles for hydrogen and helium are 

compared to experimental profiles for which the frequency and 

electric field strength are known. For this purpose a capillary 

glow discharge is used in conjunction with a calibrated resonant 

microwave cavity. Over the range of electric field strengths in­

vestigated, which included cases for which perturbation theory 

~as totally inadequate, good agreement is found bet~een measured 

profiles and profiles calculated using the theory described above 

for the·helium spectral lines 4922, 4388, and 4144. It is further 

found for the experimental parameters of this experiment that the 
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Blochinzew-type calculation of the hydrogen line profiles is ade­

quate and the fine-structure shift and the dcelectric field Stark 

shift can be included as anomalous broadening of the' 'instrumental 

profile'. Even with this broadening the individual components 

predicted by Blochinzew are observed for Ho and H~; for Hy and Ho 

only the envelope could be observed. The electri~ field fre~uency 

and electric field strength determined spectroscopically from the 

hydrogen and helium spectral lines agreed to within 4% with the 

corresponding values measured using the standard microwave theory. 
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I. INTRODUCTION 

In 1961 Baranger and Mozer proposed using the high-frequency 

stark effect of neutral helium spectral lines as a diagnostic tool 

to study oscillating electric fields in Plasmas. l They proposed 

that "satellites" which were produced by two-quantuni transitions 

induced by a high-frequency electric field could be used to measure 

the frequency and the field strength of that. electric field. They 

further presented calculations based on second-order time-dependent 

perturbation theory which related the intensity of these satellites 

to the electric field frequency and electric field strength. The 

perturbation calculations were then extended by Reinheimer,2 and 

by Cooper and Ringler,3 who also demonstrated agreement with ex-

perimental results for low electric field strengths. 

In the years from 1968 to 1973, numerous authors applied the 

4-14 stark effect to the study of plasmas. In two of these experi-

ments 7,9 the electric fields were so high that the validity of cal-

culatioris based on perturbation theory were questionable. Recog-

nizing this, Kunze et ale modified the perturbation theory by 

4 
adding a phenomenological damping constant and by extending the 

calculation of the intensities of the lowest-order satellites to 

fourth order. 7 However, there were important disadvantages of any 

perturbation approach to the problem of calculating satellite 
, 

intensities and positions. First, it was difficult to extend them 

to include higher-order satellites (higher-order multiple quantum 

transitions) and second, Stark shifts of the levels (which had not 

been included in the Mozer'-Earranger theor'J) \Jhich changed the 

f if 
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positions of the satellites and which became increasingly important 

for strong electric fields had to be included in the perturbation 

theory in an ad hoc, and not entirely satisfactory manner. Recog­

nizing these limitations, Hicks, Hess, and Cooper15 extended a 

theory of Autler and Townes,16 which avoided the usual perturbation 

treatment, to include more than two upper levels and the interac-

tion'of a magnetic field. In two preliminary papers, Cooper and 

17 Hicks estimated the range of validity of the perturbation calcu-

lations and pointed out possible pitfalls in using the high-fre-

8 quency stark effect in plasma diagnostics, and Cooper and Hess 

pointed out a simplification introduced in the interpretations of 

the Stark effect data by a magnetic fiel~: By simply inspecting 

the Zeeman pattern of the satellites it was possible to determine 

the relative directions of the electric and magnetic field and, 

if the electric field was circularly polarized, the polarization. 

This latter technique was also applied by Scott et al. 9 

In recent years there has been a growing interest in the use 

of the high-frequency Stark effect of neutral hydrogen spectral 

lines to do plasma diagnostics. The effect of a monochromatic 

high-frequency electric field on a hydrogen-like atom was first 

theoretically investigated by Blochinzew18 in 1933. He found that 

in a monochromatic high-frequency electric field the hydrogen spec-

tral lines broke up into a symmetric pattern of individual lines 

separated from each other by the electric field frequency. The 

intensity of these lines was given by a simple expression involv- • 
. 

ing Bessel functions. His findings were not exploited until 1959 
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when MitSukl9 measured the effect of a microwave electric field 

(frequency 9.4 GHz) on the H~ spectral line. Mitsuk could not 

resolve the individual components of the pattern but was able to 

confirm the predicted dependence of, the line width on the electric 

field strength over a range of from one to IOkilovolts per centi-

meter. The results of Blochinzew and Mitsuk were applied by 

Lifshits et al. 20 to measure the electric field in a plasma-filled 

waveguide. The application of the high-freCluency Stark effect to 

a plasma with both low-frequency and high-frequency electric fields 

was theoretically investigated by Lifshits,21 who derived an ex-

pression relating the spectral line width of hydrogen lines to the 

plasma parameters. Several authors have used Stark broadening of 

spectral lines to study high-freCluency electric fields i~ 

22-25 plasmas. 

Recently, Gallagher and Levine reported plasma satellites 

lying at one and two times the plasma frequency from the position 

of H~.26,27 They interpret their findings as due to the existence 
. 

of turbulent high-frequency electric fields at the plasma frequency 

produced during plasma heating in the Tormac plasma containment 

experiment. Their results do not exactly follow the normal 

Blochinzew pattern, a discrepancy they feel is due to the presence 

of the hi~h-dc electric field in their plasma. Calculations by 

28 Cohn et al. on Ha appear to confirm this ~vpothesis) indicating 

that the presence of a dc electric field can significantly change 

the Blochinzew pattern. 

In this paper we consider loth the cases of hydrogen and 
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helium Stark effects. In Chapter II we review and extend the dis-

cussionofthe multilevel theory presented in Ref. 15. In Chapter 

III we review the specific problem of applying the multilevel " 

theory to hydrogen and helium and present numerical calculations 

for both lines for a variety of cases, including the effect of a 

dc electric field perpendicular to a high-frequency field on the 

first two Balmer lines of hydrogen. Chapter IV briefly describes 

the experiment which was used to test the multilevel theory (a more 

thorough discussion of this experiment is contained in Appendices 

C to F). Finally, in Chapter V the predictions of the multilevel 

theory (as well as other theories) are compared to experimental 
I 

measurements of hydrogen and helium spectral line profiles. 
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II. MULTILEVEL THEORY 

A. Equivalence of Schr5dinger's Equation to an 

Infinite set of Linear Equations 

We start from the time-dependent SchrBdinger equation for an 

atom in external magnetic and electric fields, and split the 

Hamiltonian into three parts: 

(2.1) 

InEq. (2.1) and in the rest of this paper all energies are ex-

pressed in angular frequency units. HO is the time-independent 

Hamiltonian for the unperturbed atom (no external fields) and is 

assumed to have a known orthonormal set of eigenfunctions (U
j

) 

and corresponding eigenvalues (ill.): 
J 

j = 1, 2, •... (2.2) 

In general, HO will have an infinite number of eigenfunctions, 

but for any single calculation only a finite number N will be 

physically important (their choice will be discussed in Chapter 

III). HI represents the interaction energy between the atom and 

any externally applied static magnetic or electric field and is 

time-independent. It will often be possible to pick the (U j) to 

be eigenf.unctions not only of HO but also HI" In this case we 

define 

(2.3) 

r· 
For instance, if there is a static magnetic field, Bz, and the 
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(U
J

) arebydrogenic eigenfunctions, then 

(2.4) 

where ~ is the Larmor frequency 

_ 1 leB I 
~=2mc' 

e 

and m
J 

is the magnetic quantum number of eigenstate j. H2 repre­

sents the interaction energy between the atom and the externally 

applied electric field. The electric field is assumed to vary 

harmonically in time with frequency ill, thus allowing separation 

of the time and space dependence of H2: 

(2.5) 

We next expand the wave function 

N 

1Jr(;Jt) = L T J ( t ) U J (;) , (2.6) 

j=l 

where the T's are time-dependent coefficients to be determined. 

Substituting this expansion into Eq. (2.1) we obtain 

N N 

)' . )" (ill
j + HI + H2 )Uj Tj • (2.7) i U.T. = 

L-> J J ' , 

j=l J=l 

* We multiply on the left by U." integrate over all space, and use 
J 

the orthonormality of the U's to bet (we interchav~e j and j' for 

convenience) 

i> 

ill.T. + 
J J 

N ,-. 
) 

L_> 

J '=1 

( 
+ ~t - -iillt, 

a . . , + P .. ,e + t3 •• ,e I T
J
. , , 

JJ JJ JJ 
(2.8) 

"""; 
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where we have defined the following quantities: 

and 

Using Floquet's theorem of differential equations,29 we can expand 
"-

the time-dependent coefficient T
j 

as 

co 

T. -iAt L C. -ismt 
= e e , 

J JS 
(2.10) 

s=-oo 

where A and the C's are time-independent unknowns; the C's are in 

general complex, and A is real. Substitution of this expression 

for T. into Eq. (2.8) yiJlds J . 

00 

L 
s=-oo 

N 00 

+ r L 
j '=1 s=-oo 

..., 

A- -i(s+l)mt l,: -iAt + 1-' •• ,e e 
JJ J 

00 

)' 
L., 

s=-oo 

(2.11) 

Since this equation must be valid for all times, we may equate 

-imt coefficients of equal powers of e to give 

N 
'\" 

(m. - em - A)C. + L J JS. 
j '=1 

0; (2.12) 
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j = 1, 2, ... , N, 

s = -OJ, ••• , +CO. 

This set of equations was solved by Autler and Townes16 in 

terms of an infinitely continued fraction for the special case 

N = 2, 0: = 0 (no magnetic field), and 13+ = 13- (linearly polarized 

electric field). As pointed out by Autler and Townes, once any 

single solution has been found to the set of equations (2.12), the 

new variables 

')I.' - ')I. + m:.D, 

C~ 
JS - Cj,s+m' j = 1, • •• , N, s = -OJ, ••• , +OJ, (2.13) 

where m is any positive or negative integer, will also comprise a 

solution. We will refer to solutions related by Eqs. (2.13) as 

a "set ~" . There are an infinite number of solut ions within each 
, 

set but every solution in a set contains the same physical infor-

mation, i.e., corresponds to the same wave function W, as can be 

seen by noting that the expression for T. r Eq. (2.10)1 is invari-
J L. J 

ant under the substitution given by Eqs. (2.13). 

B. Discussion of the Exact Solution 

We have shown above that solving SchrBdinger's equation 

[Eq. (2.1)J is equivalent to solving the infinite set of equa­

tions (2.12) for ')I. and the C's. Given a solution of Eqs. (2.12), 

substitution of ')I. and C. , j = 1, 
JS 

, N, and s = - OJ, ••• , 00, 

into the expression for W gives a solution to Eq. (2.1). Since 

the Hamiltonian H has been defined over an N dimensional space 
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made up of the eigenstates .of R
O

' the complete solution of Eq. 

(2.1) must consist of N linearly independent WIS. We have seen 

above that the solutions ofEq. (2.12) within a single set give 

the same wave function W, thus there must be N different sets of 

solutions to Eq. (2.12). We denote the different sets with the 

index "i": 
" 

-iA..t 
J. 

N 

L 
j=l 

C
i -is(J)tu 
j 

e ., 
s J 

i = 1, , N. (2.14) 

Before discussing the interpretation of the wave function W., 
J. 

we will examine its mathematical properties and from them prove 

two relations between the CIS which will be useful in the follow-

ing two sections. We start from Schr5dinger l s equation 

* * HWi = ieN' ./dt and its Hermitian conjugate 1~. IE = -few. Jet which 
J. J. 1 

together imply 

We can use Eq. (2.14) to evaluate W.: 
1 

-i(A.. -A.. I )t 
(i'li) : ell 

u == s - s'. 

00 
~-, 

\ 
L 

u=-oo 

N 
-iUillt ') 

e L., 

j=l 

(2.15) . 

00 

(2.16) 
s=-oo 

From the above expression we can get a useful relationship between 

the CIS by noting that condition (2.15) requires that the right­

hand side of Eq. (2.16) be independent of time. This will be 

true if and only if 
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N 00 

LL i'* i C C 
j,5-U j S == X.B .. ,8 0 == 01' ,5 o· 

~ ~~ u ~ u 
,j=l 5=-00 

The constants {X.J are arb1trary and we have chosen them to be 1 
~ 

(this choice determines the normalization of the CIS) • 

. Using (2.17) we can rewrite (2.16) as 

(2.18) 

and thus show that at any time t the {~.} form an orthonormal set 
~ 

of solutions to the time-dependent SchrBdinger equation. Further-

more the {~i} form a set of stationary wave functions (the proba­

* bi11ty density ~.~. is independent of time when integrated over 
~ ~ 

all space) and hence represent the stationary states of an atom 

in the presence of a static magnetic field and an oscillati~~ 

electric field; by stationary we mean that an atom in state ~i 

at time.t = to will remain in that state indefinitely. 

To derive a second relation similar to (2.17) we start by 

rewriting Eq. (2.14) as 

N -i,,-.t 00 

'" 
~ \' i -is(J)t 

(2.19) ~i = i T .. U.; T •• - e L._, C. e 
--, ~J J ~J JS 

j=l s=-oo 

Since both sets of wave functions, {~.} and {U. J, form an ortho-
~ J 

normal basis for the N-dimensional vector space at any time t, 
~ ~ 

~ ~ 

the matrix T must be unitary for all t. For a unitary matrix T 

t we must have T T = 1. Evaluating this condition in terms of the 

matrix elements T .• : 
lJ 
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-
00 N 00 

" 

\ -iU(Dt \'" L c~* c~ e 2 __ 5 .. , (2.20) 
L..... J ' ,s-u J s JJ 

u=-oo i=l s=-oo 

for all t. Since the right-hand side is independent of t, the 

left-hand side must be also. This will be true if and only if 

the C's satisry the condition 

N 
\' 
L 
i=l 

00 

'" L~ 
s=-oo 

i* . 
C C

1 = j , ,s-u j s (2.21) 

As is shown by Eq. (2.19) above, the set of wave functions 

(1jr) which solves the time-dependent Schr8dinger equations repre-

sents the rearrangement of the eigenfunctions (U
j
] into a new set 

o~ functions which span the same N-dimensional space as the (U
j

) • 
.... .... 

The nature of this rearrangement char~es in tiille since T is a 

function of time,but at all times the new set of functions form 

an orthonormal set. We shall assume that the (1jr.) have been 
1 . t -uu

i chosen such that in the limit Hl , H2 .... OJ 1jri .... Uie This choice 

is not necessary but will lead to simplifications in the follow-

ing sections. When no external fields are present an atom can be 

characterized by the set of stationary states represented by the 
-io..l t 

wave functions (U.e j J. Each such state has a well-defined J . 

energy OJ.; an allowed dipole transition between two such states . J 

produces a single spectral line. In the presence of an external 

oscillating electric field the stationary states of the atom are 

represented by the (w.) or linear combinations (with time-inde-
1 

pendent coefficients) of the (1Jr.). As can be seen from the form 
1 

of the (~(.) and expression (2.19) there is no set of states whose 
1 
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nfembers are both stationa.ry and can be characterized by a unique 

energy (Le., have a simple exponential time dependence). As a 

result spectra produced in the presence of an oscillating elec-

tric field are more complicated than in the field-free case: a 

single line (allowed or forbidden) which would exist in the field-

free case is replaced in the field-present case by an infinite 

series of spectral lines. 

c. 'Transition Rate of an Atom in the Presence of 

an Oscillating Electric Field 

In order to calculate the theoretical radiation pattern 

emitted by an atom in an oscillating electric field we 'solve the 

equation: 

Cl<l> ,-
i dt = L R(t) 

1 
+ R'l<l>, 

..J 
(2.22) 

where R(t) is a~ defined in Eq. (2.1) and H' is the particle-

radiation field interact'ion operator: 

R I = _e_ A. (p + ~ ~x) . 
func c' e 

P is the momentum of the optical electron, A is the vector poten­

tial of the radiation field, and ~x is the vector potential of 

any external magnetic field. At any time t, the solutions of the 

equation i(Cl~/Clt) = H(t)~ form a complete orthonormal set. Hence 

we may eX:p:l.nd <l>(t) as <l>(t) = 5-. rd(t)~d(t), where the sum is over 
, d 

the complete set of the ~d's. The ~d's explicitly cohtain both 

atomic and radiation field quantum numbers and hence differ from 

the solutions of Eq. (2.1) (1I:'s). Substitution for OCt) in 

, .. 
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(2.23) 

* Multiplication of Eq. (2.23) on the left by CPk and integration 

over all space yields an equation governing the time development 

of the coefficient r k : 

(2.24) 

the mat'rix element (IH' I) involves integration over both atomic 

and radiation field variables. 

We assume that at t = T the system (atom + radiation field) 

is in a state ~ = <"Pi[rd(T) 0di]; then !rk(t)/2 is the proba­

bility that the system, initially in state i att = T, will by 

time t have undergone a transition to state k by emitting or ab~ 

sorbing photons from the radiation field. If we consider a time 

interval, t - T, small compared with the lifetime of state i, then 

we can solve Eq. (2.24) by iteration: 

r = k 
r(O) 

k 
+ r~l) + ••• J 

r(O) 
k = °ki' 

~t 

r(l) ! 
(k/H'li) etc. (2.25) = - i ! dt k .) 

'T 

We now specialize to the protlem of spontaneous emission of 

a single photon in the atomic transition Wi 4 ~k~ . In the pres-
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ence of an oscillating electric field, the state of an atom, both 

before <*'i) and after (*'k) a transition, will be descri.bed by a 

wave function of the fonn (2.14). Then 

-iA,t N 00 
l L )' i ~ -i-WJt 

CPi AOe C',a.U,(r)e , 
L_, J J 

j=l s=-oo 

where A is the radiation field state function; A denotes the 
7 

presence of photon 7,11.
0 

denotes that no such photon is present. 

BY substituting CPk and CPi into Eq.(2.25) and perfonning the time 

integration (Aik == Ai - ~, s == 4- a), 

00 

L 
-21 i( s-s' )W(t+1-) .. Kik e 

ss' 
s,s'=-oo 

N N 00 

Kik '\-' 
~ 

\' 
- / ) ss' , I. ..• 

j,j'=l 1-,£'=1 a,a'=-oo 

'k 'k* Kl Kl 
s '·s ss I 

(2.26) 
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where the matrix element <IH'I) now denotes integration only over 

atomic variables. 

As a function of m.,' Ir~l) 12 consists of a series of "peaks" 

with centers m., = ~ik+an and widths ~ l/(t - T). For 

m(t -1') » I the peaks are narrow relative to the interpeak 

spacing m and we can approximate 

r- oo 

Idm ~-. o (m ) ., L-, ., 
u=-co 

where I~u is the number of photons emitted in transitions from 

state i to state k into solid angle dQ with m ~ ~.k + U(JJ during ., ~ 

the time interval (T,t): 

m 

I!U == j + dm., I r~l) i 2p(m)dQ 

m 

00 
~-- .. , , , 

/ 
! " 
s=-co 

i( s-u)mt i( s-u)m1"", e e ' : 
Re ; Kik . __________ i : 

i us ( ; i L \ i (s - u)m / J 

p(m ) is the density of photon states/radian-solid angle and ., 
m = ~.k + U1) .± D., where D. is chosen to satsify l/(t - T) « 

± ~ 

D.« m. In performing the integrations above we have used the 

sharply peaked nature of the integrands by evaluating p(m ) and ., 
the matrix elements at the peak center and then letting D. -+ co 

(see Appendix A). Of more physical interest than I r( 1) 12 is its 
k 

time derivative, the differential transition rate: 
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00 

L 
u, s=-oo 

o(W - 'A.. - Uill) 
)' . l.k 

The differential transition rate given by Eq. (2.27) is a 

rapidly varying function of time for frequencies for which the 

approximations above hold [W» (t - -r)-l » (lifetime of 

state k)-l]) and hence of more experimental interest is the time­

averaged differential transition rate dA~. Evaluation of the 
l. 

matrix elements in Eq. (2.27) (using the dipole approximation) 

and p(w)') yields 

and p( W ) 
'Y 

where v is the system volume, and where we have defined the 

following quantities 

,,,' - "" , UJj.£ = UJj - w!,' etc., and 

-•. r U .• 
J 

Then 

I~ 
00 

2 

I ' P, k* . 
x w.£~. e el. 

I / . J J £0 js+o , ,.-, 
(2.28) 

i j, £=1 0=-00 
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We now consider two special cases of Eq. (2.28) which will 

be applicable to the spectra discussed in the next chapter. 

Case (1). In many instances we can assume that the final 

state k is negligibly affected by the electric field. As can be 

seen from the perturbation solution for A and the C's, Eq. (2.48), 

this condition will occur if all states k' coupled to the state 

k by a nonzero electric dipole matrix element ~, also satisfy 

I~ - ~II » I~,I and m. In addition, if we assume that a 

representation of the unperturbed eigenstates has been chosen 

such that both HO and Hl are diagonal operators, then the final 

state k can be described by the wave function 

(2.29) 

In terms of our general wave function Eq. (2.14), we have 

Then the time-averaged differential transition rate takes on the 

form 

dA
k 
i 

2 co 

= r dill 
e dQ 

") oCm 
j 'Y 2"rrtic3 I 'Y 

s=-oo 

I N 12 
i 

xl I k k I" 

m·k~·C . J. J J s j 

- A. +~ - 00)) 
~ 
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Case (2). Hydrogen-like spectra in a sinusoidally-oscil­

lating linearly polarized electric field (E = EO co~t ~) with no· 

external static fields present (Hl = 0). For this case the zero­

order energy le~els are degenerate (ro
j 

= roO' j = 1, •.. , N) and 

for a proper choice of the eigenfunctions (U.} Schr5dinger' s equa-
, J 

tion (2.1) can be solved directly.18 One chooses the {U.} to be 
J 

eigenfunctions of both HO and H2 • Then Schr5dinger's equation for 

Wj reduces to 
\ 

. lelE 

~Wj = (roo + ~j cosrut)wj , 6 j = hru° (jlzlj) (2.32) 

which has the solution (J s is the Bessel function of the first kind 

of order s) 

s=-oo 

J (6 )e -isrut 
s j . 

or in terms of the general solution (2.14) 

C~s = oijJ s (6i )· 

k 
For this case dA

i 
has the form 

2 I' k 12 2 00 e d,Q ~. t:in ," 
= ~ 1 \ 

'Y 27rtlc3 L 
ro B(ro - t:in - sru)J 2(6. ) 7 7 .' s· lk· 

s=-oo 

(2.33) 

where we have defined t:in = roo (for the initial set of· levels) 

-roO (for the final set of levelS), 6 ik = 6
i 

- ~,-and where we 
r ., 

have used the fact that i see Ref. 30, Eq. (9.1.75) i 
~ J 

'> 

. , 
, ;. 
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00 

Js(Lli - L\) = L J (,t... )J (Ll
i
). a K s+a . (2.36) 

0'=-00 

D. Photon Emission Spectrum for an Ensemble of Atoms 

in an Oscillating Electric Field 

We define S(ru )am dQ to be the number of photons emitted into 
y y 

solid angle dQ/sec with polarization e and with frequencies in 
y 

the range ru to ru + am. In the following we shall ignore the 
y y y 

effect of Doppler shifts in the frequencies of the ph~tons due to 

motion of the emitting atoms. Such effects are easily included 

in the usual way by performing a folding integral of S(ru ) with y 

the neutral velocity distribution function. 31 S~(~y)' the photon 

emission spectrum for the transition Wi ... W
k

' is then given by the 

integrand of expression (2.28): 

2 e 
= 

27rf'lc3 

00 
'\' 

/J 
S=-<D 

ru B(ru 
Y Y - Aik - sru) 

00 2 
\"'. I .2 cf.*ci 
~ ruj.2~j .2a js+a 

(J=-CO 

The total photon emission spectrum S from an ensemble of Na 

atoms populating the N states (W.} will be expression (2.37) 
1 

summed over final states, averaged over initial states, and 

summed over photon polarization: 

L, 
e 

y 

N Nt 

/ 

i=l 
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Here Ni is the number of atoms in the state i, N' is the number 

of final states} and Ki represents the probability that the state 

i is occupied by atoms in the ensemble and has the normalization 

N 

L Ki = 1-

i=l 

The value given to K. in any particular problem will be 
~ 

governed by physical considerations. In the calculations pre-

sented in the following sections we have assumed that 

Ki = liN, i = 1, ••• , N; (2.40) 

i.e., that each of the states 1jr. is equally populated by atoms in 
~ 

the ensemble. In the limit of no external fields where W. ~ U., 
~ 1 

Eq. (2.40) is just the assumption'that the N eigenstates (U.} are 
1 

in thermal equilibrium at a high temperature. Such a situation 

occurs in most laborato~ plasmas when random collisions (and not 

radiative transitions) are the dominant mechanism inducing transi-

tions among states with different values of i and when the aver-

age kinetic energy of the colliding particles i.s large compared 

with theinterlevel energy spacing of the N states. Then the 

energy levels are "degenerate" with respect to collisional exci-

tation and deexcitation, and the effect of collisions will be 

to maintain equal populations. In the presence of external fields, 

energy levels of the N states are shifted relative to each other, 

by energies of the order of ill and ~. - m., but we still expect 
~ ~ 

collisional processes to maintain equal populations if the mean 

\I 
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kinetic energy of the colliding particles is much greater than 

these energy shifts. We can make the analogy of assumption (2.40) 

and high-temperature thermal equilibrium more explicit by con-

sidering a consequence of Eq. (2.40). From Eq. (2.19) J the prob-

ability that an atom in the state i is also in the eigenstate 

U. is 
J 

00 

L 
N 

e-
iumt L 

u=-oo i=l 

c~* c~ 
J,s-u JS 

(2.41) 

and is time dependent. Then W
j

, the probability that the eigen­

state j is populat.ed by the atoms in the ensemble, is given by 

Eq. (2.41) averaged over the states i: 

00 N 00 

L -itla)t L L ;* C~ 1 (2.42) W. ::: e K. C: == N ; 
J ~ J, s-u JS 

u=-oo i=l s=-oo 

the latter equality follows from Eqs. (2.40) and (2.21). Thus 

Eq. (2.40) implies that the probability that the spatial eigen-

state j is populated by atoms in the entire ensemble is time-

independent and the same for all j even though the probability 

that a single particle in the stationary state i is in the 

spatial eigenstate j is time-dependent. 

E. Physical Model 

We now construct a physical model cf the time-averaged be-

havior of an ensemble of atoms in the presence of a time-varying 

electric field. Such a model is useful in describing the solu-

tion to the Schr8dinger equation, Eq. (2.14), in terms of simple 

physical processes between the atom and the oscillating electric 
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field,and leads to correct theoretical predictions of atomic 

spectra when the variation of the differential transition rate, 

-1 Eq. (2.27), over times of the order of m can be ignored. We 

first note that from Eq. (2.16) (setting i' = i), 

N co 

(i I i) = [ )~ Ici 12 = 1, 
L.-. js 

j=l s=-co 

where we have used Eq. (2.17) to simplify the result. 

also calculate the energy of a particle in state V.: 
1 

N 

(iIRli) - d
3

r V~i %t Vi = L 
co 

~ ( I· i 12 L "'i CjS 

00 

+ sm L 
u=-co 

j=l s=-co 

-iU(J)t i* i) e C
J 

C
j

• ,s-u s 

(2.43) 

We can 

(2.44) 

The particle energy oscillates in time due to the interaction of 

the atom and the external electric field. If we average Eq. 

(2.44) over the period of the electric field, T = 2rr/m, we get 

! r 
Tj 

o 

T N 
\' 
L 
J=l 

co 

L (2.45) 
s=-()) 

We could equally well obtain the above equation by using the 

following model. We consider an ensemble of atoms populating the 

state i. We assume that each atom in the ensemble has "eigen-

states" characterized by the "quantum numbers" (i,j,s); such a 

state has a spatial dependence U. and "'. The an energy + sm. 
J 1 

probability that the state (i,j,s) is populated by atoms in the 

ensemble is asslliJled to toe 1 C~ 12. In this model Eq. (2.43) 
JS. 

represents the normalization for the protability and Eq. (2.45) 

.. 
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represents the ensemble-averaged energy. If we extend our ensemble 

to include atoms in the states (1jr., i = 1, "', N), then the proba­
~ 

bility of the state (i,j,s) in the enlarged ensemble will be 

IC~sl2multiPlied by the probability that the state i is popu­

lated, i.e., K., and the average energy of an atom in the enlarged 
~ 

ensemble will be 

N N 00 

E L \ 
= L~ av (2.46) 

i=l j=l s=-oo 

Atoms in the ensemble undergo transitions between the states 

( ( i, j, s), i = 1, "', N, j = 1, "', Nand s = -00 • • • +00 } ., , 

owing to the interactions with quanta of the external electric 

field. An interaction consists of the emission (absorption) of 

a quantum; the new state (i', j' ,s') after the interaction will 

have i' = i (each state i is stationary) and s' = s - 1 (s' = s· + 1); 

i.e., its energy after the interaction will have been decreased 

(increased) by the quantum energy. Since the field quanta carry 

angular momentum of 1 (in units of h), the state after an inter-

action will differ in the index j from the state before the 

interaction. For instance, in the particularly simple case 

where the (U.} are also eigenfunctions of the orbital angular 
J. . 

momentum L, the change in j will follow the selection rule: 

In this model the energy of the state (i,j,s), A.. + 8(1.), 
1 

has the following interpretation: the energy difference between 

Wi (the energy of state i in the limit, HI' H2 .... 0) and A. i + sru 
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. 
is the result of the Stark shift of the energy levels, the Zeeman 

splitting, and the exchange of quanta with the electric field. 

We assume that a representation of the (U.) can be found such 
J 

that both HO and HI are diagonalj then the Zeeman shift of state 

i is mi~. We must now decide which member of each set of solu­

tions to choose for each W~. From Eqs. (2.13) it is clear that 
~ 

each number of the set will have a different value of A .• Ifwe 
l 

choose that solution in each set for which 6E == ~i - m{DL - mi 

goes to zero when the electric field goes to zero, then we can 

interpret ~ as the Stark shift, and s as the net number of elec-

tric field quanta absorbed or emitted by the atom in the state 

(i,j,s). Under this assumption as the electric field goes to zero 

ci 
--+ 5 5 

j ij sO' 

We can now see the significance of this particular choice. 

Another member of the set would have the property that a differ­

ent coefficientc~ (0' -1 0) would remain finite in the weak-field 
JCf 

limit. Such a situation would not change the physics, since 

~i + aD is invariant for all members of a set, but would not 

yield such a simple interpretation; s - 0' would be the net number 

of quanta absorbed or emitted in state (i,j,s). 

Finally, we note that an atom in the state (i,j,s) can under-

go a spontaneous radiative transition to a state with lower energy 

with which it has a nonzero dipole moment. In such a transition, 

the energy of the resultant photon will be ~i + sm minus the 

energy of· the final statej hence, the optical spectra. of atoms in 
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an oscillating electric field will consis~ of "satellites," a 

given satellite being determined by fixed values of i, j, and s. 

The intensity of such a satellite would be given by Kilc~sl2 

times the transition rate from U
j 

to the lower state. However, 

as can be seen from the correct expression for the total photon 

emission spectrum (2.37), this simplified model only works in the 

special case that we can ignore cross terms (those of form 

~j~j',jhJ etc.) in Eq. (2.28). Circumstances under which cross 

terms can be ignored often occur and are discussed in sect. F. 

F. Weak-Field Limit 

If the electric field is weak, then we can get an explicit 

expression for the solution of Eq. (2.12). We assume C. = 0 
JS 

(s > 1) (higher values of s correspond to multiple quantum transi-

tions which we expect to be rare forweakelectric fields) and 

diagonalize the matrix X (see Appendix B). The resulting expres-

sion for ~ and the CIS are power series in the small parameters 

(2.48) 

S :') lf3ji l2 / f3: ./2 
Jl ill. + ; 

1 ! -" 
(illij + (1)) (W1j - ill) j 

(1)~ is the Stark shift of level i due to the electric field and is 

quadratic in the electric field amplitude. , In deriving,the above 
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expressions we had to assume: I ~j I « I(.I)~.I J and also that 
l. l.J 

1 (.I)ij .± wi » C'i 1131); these assumptions will be discussed below. 

First,however, it is of interest to substitute Eq. (2.48) 

into the expression for the photon emission rate S given by Eq. 

(2.31). The resulting expression for S«(.I) ) will contain cross . .., 
k k* + +*. 

terms of the form ~j~j,t3jit3jli. In many cases of physical interest 

k k* + +* 
(discussed below) I;j~j'~ji~'i ex: 0jj'. In this case Eq. (2.31) 

reduces to 

2 r k . e 3 
Si «(.I) ) = 3 (.I) 0«(.1) 

.., 2rrhc .., .., 
L 

L 
j 

L 
j 

4 
+ S(lt3l ). 

The spectrum given by fxpression (2.49) consists of three spectral 

lines: a line resulting from a dipole transition from i to k with 

resulting photon energy (.I) = (.I)!k + (.I)~, and two weaker "satellites" . 
.., l. l. 

with energies (.I).., = (.I)ik + (.I)~ .± (.I) which result from two-quantum 

transitions (one quantum absorbed from or emitted to the electric 

field) • k If a dipole transition from i to k is forbidden (/;. = 0), 
1 

but the dipole matrix elements ~. and /;~ are nonzero, then the 
Jl. J 

spectrum is composed of just the two satellites. .k 1 If t;. r 0, then, 
. 1 

to lowest order, sC(.I)..,) is just the usual spectrum for an "allowed" 

.' 
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dipole transition from i to k. 

Expression (2.49) represents the usual perturbation solution 

to the high-frequency Stark effect. It was first calculated using 

standard time-dependent perturbation theory by Mozer and Barrangerl 

for the case of zero magnetic field and extended to include a 

static magnetic field by Cooper and Hess. 8 Extensive discussion 

giving explicit expressions for the matrix elements for neutral 

helium lines useful in plasma diagnostics for the case of a 

linearly polarized electric field or a circularly polarized elec­

tric field are given in Hicks, Hess, and cooper. 15 The latter 

·also give profiles for various electric field polarizations rela-

tive to a static magnetic field. 

We now discl..l.SS the assumptions made in deriving Eq. (2.49). 

(1) The fonn of Eq. (2.1+9) depends on the assumption that 

the cross terms of the form 

, j f: j', 

can be ignored in the final expression for the spectrum SCm). 

Before discussing situations in which this assumption holds, we 

note that due to the form of the denominators in Eq. (2.49), the 

leading c.ontribution to the satellite intensities and positions 

will come from terms in the sums involving intermediate states 

whose energies lie close to the energy of state i. More distant 

states will have less effect and states for which the energy 

separation ill!. is much greater than the energy separation of the 
lJ 
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nearest states can be ignored in computing the satellite intensi-

ties and positions. Similarly, cross terms for which j and j' do 

not both represent states near to the state i can be' ignored, 

since they will not significantly modify the result give in Eq. 

(2.49) for the frequency spectrum. 

We can identify two cases in which the assumption that the 

cross terms are negligible is valid. 

(a) First, if for a given initial state i and final state 

there exists only a single inte"rmedia te state j which is "near" 

to the state i and for which the matrix elements k ~ ~. and .. are 
J lJ 

both nonzero, then the assumption is valid. This situation 

occurs for the singlet helium lines 4388 (51D _2lp) and 4922 

(41D - 2lp) for a linearly polarized electric field with either 

no magnetic field or polarized along the magnetic field, or an 

k 

electric field circularly polarized perpendicular to the magnetic 

field. In the above cases, for a proper choice of coordinate 

system, each initial state (n, £ = 3, m = -3, "', 3) is coupled 

to only a single one of the nearby intermediate states (n, £ = 2," 

+ m = -2, .•• " 2) by the matrix element ~., 
lJ 

(b) Second, cross terms can be ignored when "the time-aver-

aged electric field is axially symmetric with respect to the 

magnetic field. Then, in the coordinate system with z-axis along 

tpe magnetic field, the cross terms vanish when an average is 

taken over the azimuthal angles of the electric field and of the 

emitted photon. 

(2) lt3fj l« !'J)fji, Le., the weak-electric field approxi-

.. 
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mation. If the electric field is not weak then the problem must 

be solved numerically by the methods of sect. A and C. The 

validity of the perturbation theory as the electric field in-

creases is further discussed in Chapter III. This condition re-

quires that the zero-order energy levels not be degenerate. 

(3) lro!. + rol » I~.I· If this condition is violated then 
1.J - 1.J 

the perturbation expansion (2.48) is no longer valid, since one 

of the "smali" tenns (a: ~) becomes compuable to the leading 

term. Since resonant denominators of the fonn ro! . .± m also 
1.J 

appear in the perturbation expressions for higher.,.order terms 

<lsi> 1), we can no longer be sure that the higher-order terms 

which were ignored in calculating Eq. (2.48) will be weaker than 

the terms kept. 

1,6 
As noted by Autler and Townes, perturbation theory also 

breaks down if a higher-order resonance condition is satisfied. 

If we consider the case most often used in plasma diagnostics 

where a dipole transition from i ~ kis forbidden and a dipole 

transition from j - k is allowed, then in the weak-electric-field 

limit for which perturbation theory is valid the condition for an 

nth-order resonance can be written as 

I 
S 

il~ I\TI 
ImkJ S n:J)1 <: ij ': n 

3, 5, + roo - roo + - € , n = 
1roijl 

1. J '" \ I ' I' \ roo j' \ 1. I 

As can be seen from the above resonance condition, an nth-order 

resonan~occurs when the Stark-shifted position of the nth 

satellite of the forbidden transition i - k (the forbidden transi-
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tion has only odd-numbered satellites) is separated from the 

stark-shifted position of the allowed line j - k by a distance 

of the order of lill~ .IEn. Then the intensity of this satellite 
:l.J 

(which would normally be much less than the intensity 9f the 

allowed line) can be comparable to the intensity of the allowed 

line. Numerical calculations show that when a resonance occurs 

two spectral lines separated by a distance of the order of lill! .IEn 
:l.J 

appear at approximately the position of the allowed line ~redicted 

by the perturbation theory. A similar situation occurs at the 

predicted positions of the satellites of the forbidden transition 

i - k, where a higher-order satellite of the allowed line (which 

has only even-number satellites) can be comparable in intensity 

to the generally much more intense first-order satellites. For 

weak electric fields the separation between the two lines in each 

pair is very small and will not be seen in a real experiment with 

finite resolving power and broadened spectral lines. For stronger 

electric fields, the separation will be observable only for the 

lowest-order resonances. If the separation cannot be resolved, 

then each pair will be observed as a single "satellite" with an 

intensity equal to the sum of the individual intensities and an 

average position given by the average of the position of each 

component weighted by its intensity; numerical calculations using 

the multi-level theory developed above indicate that the sum in-

tensity and average position are given correctly by Eq. (2.49). 

G. Hydrogen-Like Limit 

In Chapter II.C We exhibited an exact solution of Eq. (2.12) 
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which applies in the limit of degenerate energy levels. This 

solution has the following properties: 

(1) The satellite positions are at ±nm, relative to the 

unperturbed spectral line position (n an integer); 

(2) the satellite intensities are functions of the fre-

quency m and the electric field strength EO only through the 

ratio Eo/m; and 

(3) the satellite intensity pattern is symmetric with 

respect to the unperturbed spectral line position. 

The condition necessary to attain this limit can best be 

determined by referring to Eq. (2.12) and noting that one may 

write (remember that C¥JJ' was assumed to equal C¥JOjj' and 

illj =- mj + CtJ) 

J = 1, , N, 

where mO is some suitably chos:n 'average' energy of the system 

of N levels. If 

j, j' = 1, , N (2.50) 

then each E
j 

will be a small number and we may solve Eq. (2.12) 

by standard perturbation-theory techniques. The 'zero '-order 

problem i.s just the hydrogen problem whose solution is given by 

Eq. (2.34 ). The next higher-order correction will be of order 

E and hence will be small if condition (2.50) is satisfied. The 

mechanism of the hydrogen-like limit can be observed in Eq. (2.49) 

for the weak-field case. In the limit (2.50),Eq. (2.49) predicts 
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that both the far and near satellites are of equal intensity pro­

portional to (EO/W)2, and are equally spaced about the common 

position of the two levels rthis latter since the stark shift 
~ , 

goes to zero in the limit (2.50)1. 
-
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III. NUMERICAL CALCULATIONS 

A. General Description 

In this section we present results of numerical calculations 

using the theory given in Chapter II. 

We do not have an analytical solution to the infinite set 

of Eqs. (2.12). Instead, we use a numerical meth0d of solution 

suggested by the physical interpretation. 

For weak electric fields, the multiple absorption of s 
.~ 

photons becomes less likely as lsi increases (negative values of 

s correspond to emission) since the larger values of lsi corre-
I 

spond to higher-order terms in the perturbation series. The 

probability of the absorption of one photon is given by second-

order perturbation theory, two photons by third-order theory, etc. 

As the strength of the electric field increases, the probability 

of multiple absorption also increases, and higher-order satellites 

will become observable. However, it is reasonable to assume that 

even for strong fields the probability of absorbing s photons 

becomes negligible for /sl sufficiently large. Since this proba­

bility is proportional tolc. 1
2

, we assume that 
JS 

c· = 0 for js Is/ > S, j = 1, 2, , N. 

Then the infinite set of equations (2.12) is reduced to a finite 

set: 
N 

L: (ajj,cj,s + ~;j,Cj"S+l + ~jj,Cj"S_l) 
j'=l 
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j = 1, 2, ... , N, 

s= -8, ' .. , +8. 

Equations (3.2) can be viewed as an eigenvalue equation: 

- -XD = ~D, 

-where D is an N(28 + I)-dimensional column vector whose elements 

are in a one-to-one correspondence with the coefficients C. , 
JS 

j = 1, 2, __ •. , Nand s = -8, '.', +8; 2f is an N(28 + 1) x N(28 + 1) 

matrix whose elements are chosen so that the set of equations 

represented by (3.3) is the same set given in (3.2). An example 

for the case 8 = 1 and N = 3 is given in Fig. ~-l in Appendix B. 

One can easily show that X is Hermitian when H .is Hermitian. 

Let Z represent the unitary matrix which diagonaHzesX; we have 

2f I , (3.4 ) 

where Xl is the diagonal matrix whose nonzero elements are the 

eigenvalues of X and hence the solutions for A.The columns of Z 

-are the eigenvectors of 2f; they are solutions for D and hence for 

the CIS. We can construct a solution for Eq. (2.1) from each of 
~ 

the N(28 + 1) eigenvalues and eigenvectors of X. As discussed 

in Chapter II.A, only N of these solutions are to be used in the 

complete wave function and, as before, the solutions may be 

divided into N sets, each set now containing 28 + 1 members. For 

the infinite set of equations (2.12) all of the solutions within 

a set can be found from any one member of the set by using the 

.. 

-. 



-35-

transformation (2.13); this will only be approximately true in the 

case of the finite set of equations (3.2) because of the approxi-

mation made in truncating the matrices. We must be careful in 

selecting which eigenvalues and eigenvectors to use. As one 

method we could choose the solution in each set most accurately 

fulfilling condition (3.l) above, or we could choose the solution 

described in the previous section where s has the physical meaning 

of the net number of photons absorbed or emitted and ~i - illLmi - illi 

is the Stark shift. For low electric fields these two choices will 

be the same. 

The solution of Eq. (3.2) generally involves several steps. 

First those eigeristates which must be included in the expansion 

of the wave function must be determined. To do this it is help-

ful to consider the perturbation solution, Eq. (2.48). Because 

of the resonant denominators, for a given initial state i, the 

most important intermediate states j to consider are those for 

which lillfjl - ill is smallest and 13ij is nonzero. However, for 

strong electric fields, all nearby intermediate states should be 

included even if ~ij is zero, since multiple quantum transitions 

may be important and two states i and j can be coupled through 

other intermediate states. For instance, for the 4388-R He I 

( 5L _. .2lp) ll' ne the 5G level must ~ also be includ~dJ since it 

introduces satellites and strongly affects the position and in-

tensities of the satellites originating from the 5D and 5Flevels. 

If there are intermediate states for which lill~.1 < ill and 13 •• is , lJ ~ lJ 

nonzero J then state s for which r ill ~./ ;» ill can be neglected J unle s s 
lJ 
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very strong fields are present or great accuracy is desired. The 

best method to determine whether a particular state need be in-

cluded is to perform the calculations with and without the state 

and compare results. It should be noted that if.there are no 

'nearby' states which are coupled to the state i by dipole matrix 

elements then that stat~ is unaffected by the electric field. 

Fortunately, for spectral lines considered for plasma diag-

nostics and at electric field strengths found in the laboratory 

the choice of eigenstates is usually straightforward. For hydro-

gen, it is sufficient and in general necessary to retain all 

states with the same principal quantum number in calculating both 

the upper level and the lower level of an optical transition. 

For helium it is usually suffiCient to consider singlet and tri-

plet states 'independently, the states with principal quantum 

numbers ~ 3 to be unaffected by the electric field and to retain 

only the high angular momentum states (p, D, F, etc.) for prin­

ciJaI quantum numbers> 4.' For other elements the problem is 

not determining which states to r~tain but in finding two states 

which are both coupled by dipole matrix elements and nearly de-

generate enough to give observable satellites. For instance; 

Ya'akobi and Bekefi~ave observed plasma satellites of the for-

bidden lithium transition 3P - 2p near the allowed lithium 

spectral line at 6l03.6~ (3D - 2P) due to high-frequency elec-

tric fieldsproduced by an exploding lithium wire. 

Having determined the appropriate states to use, the next 

. step is to calculate the matrix elements a and~. To do this 
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we need the unperturbed wave functions (U.}.Since, except for 
J 

hydrogen, these wave functions are not known exactly, some approxi-

mation must be made. For the calculations in the following section 

for helium we have assumed that bydrogenic wave functions are good 

approximations to the actual wave functions in calculating the a 

and the ~ matrix elements. 

For hydrogenic wave functions the HI term is diagonal if 

. the external magnetic field is chosen along the z axis. If the 

total electron spin of the atom is zero, then HI = ~Lz' where 

Lz is the z component of the orbital angular momentum of the 

excited electron. H2' the interaction energy of the high-fre­

quency electric field, is 

..... 
where ~ is the electric dipole moment. For linear polarization 

of the electric fie7d, E(t) = EO co~t and 

(3.6) 

For circular polarization perpendicular to the magnetic field, 

..... " A E(t) = Erms(x co~t Z y sinmt) and 

(3.7) 

The upper sign corresponds to right-hand circular polarization 

and the lower sign corresponds to left-hand circular polariza-
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tion relative to the magnetic field. 

The final quantity to be determined in Eq. (3.2) is the 

unperturbed energy of each state. For hydrogen the energy can 

be exactly calculated. For non-hydrogenic atoms some other method 

must be used. For the helium calculations in the next section we 

have used experimentally determined values for the unperturbed 

energy levels. 

B. Helium Calculations 

We have used our theory to investigate extensively two 

optical transitions of parahelium} the 4922-~ (4~ - 2lp) and 

4388-~ (5~ - 2lp) He I lines. For the upper levels in these 

two cases} the only states which need be included in calcula-

tions for electric fields E < 20 kV/cm and frequencies 
rms 

'm} ~ < 75 GHz are the 4p} D} and F} and the 5P}D} F} and G}' 

respectively. The lower states (n = 2) are negligibly affected 

~ the electric field because the 2P} m = o} ± 1 states are not 

coupled by the ~ matrix elements and the 2P levels are widely 

separated from any other levels. However} the 2P levels are 

split by a static magnetic field. 

For our calculations} we have used Martin's values32}33 

for the eigenvalues of HO and hydrogen-like eigenfunctions for the 

(u. }. 
J 

In the calculations which are presented below} we have not 

included a magnetic field. A thorough treatment of the effects 

of a magnetic field is given in Ref. 15, and the new phenomena 

which arise when the perturbation treatment is not valid are 
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similar to those which are shown below for the case of electric 

field alone. That is, higher-order satellites and Stark shifts 

become important. 

Figures 3-1 and 3-2 show calculated Stark profiles of He 

4922 R and He 4388 R for an electric field frequency of 35.1 

GHz (1.17 cm -1) for various field strengths. This frequency was 

chosen because it is the one used in the experiment described in • 

Chapter IV. In the calculations we have set S= 10 for E 
rIDS 

:::: 6 kV/cmand S = 15 for stronger fields. These values were 

detennined by" perfonning the calculations for varying S until· 

an increase did not significantly change the satellite intensi-

ties and positions. The resulting matrix ~ has then been numeri­

cally diagonalized using a CDC 6600 computer. Since for strong 

electric fields there are a great many satellites which contri-

bute significantly to the spectrum, the main features of the 

spectrum are more easily seen if the multitude of theoretical 

lines predicted by our calculations are "smoothed" by folding 

with an "instrument" function. To obtain the profiles shown in 

the figures we have used the function 

2 2 2 
I = 10-4x /(x ~ ), (3.8) 

where x is the distance in angstroms from a line center and a 

has been set to give a full width at half-maximum of 0.2 R. 
This instrument function produces a line shape which is often 

observed experimentally for nonhydrogenic lines: Gaussian at 

the center and Lorentzia.:1 in the wings, .-lith a wea~ continuum 
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Fig. 3-1. For legend, see page 40a. . . 
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Fig. 3-1. Calculated Stark profiles in the vicinity of the 4922-R 

spectral line of He I for the case of no magnetic field and a 
, .-1 

linearly polarized electric field of frequency 1.17 cm and 

for various electric field strengths, all for direction of 
-+ 

observation perpendicular to E. Each profile is the result of 

folding the theoretical line spectrum with an instrument func­

tion of FWHM of 0.2 R and is shown plotted logarithmically; a 

single decade is shown in the figure by a double-ended arrow. 

ty.. = 0 is the unperturbed position of the allowed line 

4~ -+ 21p; Ii. denotes the unperturbed position of the forbidden 

transition 4~ -+ 2~. 
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Fig. 3-2. For legend, see page 41a. 
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Fig. 3-2. Calculated Stark profiles in the vicinity of the 4388-R 

spectral line of He I for the case of no magnetic field and a 

linearly polarized electric field of frequency 1.17 cro-l and 

for various electric field strengths, all for direction of 
... 

observation perpendicular to E. Each profile is the result of 

folding the theoretical line spectrum with an instrument func­

tion of FWHM of 0.2 R and is shown plotted logarithmically; a 

single decade is shown in the figure by a double-ended arrow. 

~ = 0 is the unperturbed position of the allowed line 

5~ -+ 2~; ~ and AG denote the unperturbed positions of the 

forbidden transitions, 5l
F'" 2lp and 5l G ... 2~, respectively. 

" 
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background. The half-width and background chosen are approxi-

mately those of the experiment described in Chapter IV. In each 

figure the profiles are plotted lined up behind each other and 

the intensity of each profile is plotted logarithmically. The 

first profile in each figure is the instrument function,i. e., 

the profile for zero electric field. 

For weak field strengths the profiles calculated by using 

the multilevel theory of Chapter II agree with those predicted 

by perturbation theory (see Chapter II.F). For He 4922 and 

He 4388, the pattern consists of an intense allowed line arising 

from the nlD - 2lp transition and two weak satellites centered 

about the position of the forbidden transition nlF - 2lp and 

separated by twice the field frequency. In the following dis-

cussion we will follow standard notation, referring to either 

the r far' ('weak') satellite or the 'near' (' strong') satellite, 

the former designation for each satellite coming from its proxi-

mity to the allowed line (and the latter from its relative 

intensi ty ) • 
) 

For higher electric field strengths other satellites appear 

and grow until they dominate the spectral pattern. The additional 

satellites are due to multiple photon transitions from the upper 

set of states to the 2P level. In Fig. 3-1 the allowed line 

(4~ 2lp) has satellites associated with it which are due to an 

even number of photons being absorbed or emitted from the exter­

nal field, while the forbidden transition (4lF - 2lp) has associ-

ated with it satellites due to an odd number of photons being 
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emitted or absorbed; these additional satellites are separated 

from the positions of the corresponding transitions by even and 

odd multiples of the field frequency, respectively. Figure 3-1 

also shows the effect of the Stark shift of the 4D and 4F levels: 

The satellites of the allowed line shifted towards longer wave-

lengths and the satellites of the forbidden line are shifted 

towards shorter wavelengths. 

The spectra shown in Fig. 3-2 for the 4388-R line are more 

complex than those of Fig. 3-1 due to coupling of the 5~ and 

5~ levels to the nearby 5l G level. This coupling not only modi-

fies the positions and intensities of satellites arising from the 

5~ and 5~ levels but also produces an additional group of 

satellites associated with the forbidden transition (51G - 2~) 

and separated from it by even multiples of the field frequency. 

The Stark shift of the 5l Glevel and its associated satellites 

is in the same sense as that of the 5~ level,i. e., toward 

shorter wavelengths and "away" from the red-shifted allowed line. 

In the limit of very strong electric fields (t3 .. »w. - w.), 
J.J J. J 

the usual characterization of a spectral transition as "forbidden" 

or "allowed" ceases to be valid. For such a field the levels are 

strongly coupled and the spectral patterns arising from transi-

tions involving such levels can differ markedly in general 

structure from the weak field case. Such a situation can be seen 

in Fig. 3-1, where the very asymmetric weak-field spectral pattern 

becomes nearly symmetric as the 4 ~ and 4 ~ levels become more. 

strongly coupled by an increasing electric field. 
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Figures 3-3 and 3-4 and Table III-l show the results of 

further calculations on the 4922-lt He I line, again with a line-

arly polarized electric field and no magnetic field. The calcu-

lation of the data used to produce Table III-l and Figs. 3-3 and 

3-4 requires some discussion. Because we have chbsen the electric 

field polarized parallel to the z axis, each satellite and the 

allowed line have five uncoupled components, one component aris-

ing from a transition from each magnetic quantum level of the 4D 

state: 0, ±l, ±2, to the 2P state. In general, the spectral 

intensity and position of each component will be different. 

Although, in principle, these components might be resolved, their 

separation is such that at moderate field strengths ~ 10 kV/cm 

they would appear as a sip.gle line ,·rhen vie~,ed by most optical 

instruments. Therefore, in calculating entries for the table we 

have summed the amplitudes of the five components of the appro-

priate satellite or of the allowed line. Figures 3-3 and 3-4 

were plotted from the data of Table III-l with the following 

exception. For the case of electric field frequency equal to 

-1 3 cm a resonance occurred for the higher values of the rms 

electric field strength. The effect of this resonance is to 
, . 

decrease the intensities of the satellites and the allowed lines 

at the expense of other satellites (see the end of Chapter II.F). 

This effect can be most clearly seen from Fig. 3-4 where the ratio 

of the near satellite to the allowed line decreases rapidly with 

increasing field strength for the higher field strengths shown. 

In fact, for 10 kV/cm, the resonant lines are comparable to or 

• 
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Fig. 3-3. Calculated intensity ratio S of the far satellite of the 
+ 

forbidden transition 4~ -+ 2~ to the allowed line 4~ -+ 2lp 

in He I as a function of rms electric field strength for several 

electric field frequencies, for a linearly polarized electric 

-+ -+ 
field E, and for direction of ocservation perpendicular to E. 
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Fig. 3-4. Calculated intensity ratio S of the far satellite of 

1 1 
the forbidden transition 4 F ~ 2 P to the allowed line 

4~ ~ 2lp in He I as a function of rms electric field strength 

for several electric field frequencies, for a linearly polarized 
... 

electric field E, and for direction of observation perpendicular 
~ 

to E. 
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Table III-I. Sand S for helium 4922 for various electric field 
+ 

-1 
frequencies (in cm ) and strengths (in kV/cm). 

f 

Erms 

1.0 

S 

2.0 4.0 

1.0 1.78xlO-3 2.20xlO-3 3.58xlO-3 6.77xlO-3 1.72xlO-2 9.43xlO-2 

2.0 6.55xlO-3 8.29xlO-3 1.34xlO-2 2.50xlO-2 5.93xlO-2 2.37xlO-l 

3.0 1.29x10-2 1.70xlO-2 2.87xlO-2 4.98xlO-2 1.09x10-l 3.38x10-1 

4.0 1. 93xlO-2, 2.68xlO-2 4.65xlO-2 7.6lx10-2 1.56x10-l 3.98xlO-l 

5.0 2.45xlO-2 3.64x10-2 6.52xlO-2 1.00xlO-l lo93xlO- l 4.32x10-l 

6.0 2.77xlO-2 4.50xlO-2 8.l7xlO-2 1.l9xlO-1 2.20xlO-l 4.4.8xlO-1 

7.0 2.86xlO-2 5.22xio-2 9.63xlO-2 1.30xlO-l 2.39xlO-l 4. 52x10-l 

8.0 2.72xlO-2 5.75x10-2 1.08xlO-l 1.29x10-l 2.48xlO- l 4.47x10- l 

9.0 2.33xlO-2 6.12xlO-2 1.17xlO-l 1.15xlO-l 2.50xlO-1 4.37xlO- l 

10.0 

f 
E 

rms 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

7·0 

8.0 

10.0 

-2 -2·-1 1. 75xlO 6. 22xlO 1. 22xlO 46 -1 -1 
2. xlO 4. 23xlO nr 

1.0 4.0 

- 3 - 3 4' -4 6 4 -4 .;.4 -4 1. 29xlO 1.10xlO 8.2 xlO • 3x10 5.l5xlO 4.17xlO 

5.3lxlO-3 4.39xlO-3 3.26x10-3 2. 53xlO-3 2.0lx10-3 1. 6ox10-3 

1.24xlO-2 9.88xlO-3 7.20xlO-3 5.54xlO- 3 4.36x10-3 3.45xlO-3 

2.33xlO-2 1.76x10-2 1.25xlO-2 9.55x10-3 7.46x10-3 5.85xlO-3 

3.89xl0-2 2.76x10-2 1.90x10-2 1.44xlO-2 1.12xlO-2 8.75xlO-3 

6.08xlO-2 3.99xlO-2 2.66xlO-2 2.0lx10~2 1. 55x10-2 1.2lx10-2 

9.15x10-2 5.49xlO-2 3.52xlO-2 2.65x10-2 2.03x10-2 1.58x10-2 

6 -1 -2 4 4 -2 -2 -2 -2 1.3 x10 7.28xlO . 8x10 3.38xlO 2.55xlO 1. 98x10 

2.00xlO-1 9.38xlO-2 5.53x10-2 4.2lxlO-2 3.13x10-2 2.4lxlO-2 

2.98x10-l 1.18x10-1 6.68x10- 2 nr 3.75x10-2 2.88x10-2 
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even more intense than the original satellites and the spectral 

pattern is unrecognizable (i.e., so complicated than an experi-

menter who measured such a p3.ttern could not possibly identify 

the weak satellite and near satellite by visual inspection), and 

so the entry for this case has been denoted InrI in the table. 

However, from the calculations it is possible to identify the 

weak and far satellites and also the satellites of the allowed 

level in resonance with them. For the figures we have calculated 

s+ and S for the resonant cases by summing the contributions to 

the satellite intensities and allowed lines of all nearby reso-

nant components in order to illustrate the discussion given at 

the end of Chapter II.F, even though in an actual experiment the 

difference components would be resolvable. T1:1is proced'_'.rE' l~ads 

to a set of curves of S vs E which appear to change smoothly ± rms -

as a function of frequency . 

. In Figs. 3-3 and 3-4 the nos electric field is plotted 

against S+ (S~), the ratio of the far (near) satellite to the 

allowed line, for various frequencies (labeled in inverse. centi­

me~ers). Perturbation theory predicts straight lines on a log­

log plot (S and S are each proportional tOE2 ) which are 
+ - rIDS . 

tangent to the curves of Figs. 3-3 and 3-4 at low electric fields. 

For stro~er fields there are increasing deviations from the 

results of perturbation theory. Figures 3-3 and 3-4, and also 

Fig. 3-1} show that the intensity of the far satellite is growing 

faster than the intensity of the near satellite) until at about 

8 kV/cm the far satellite is actually stronger. As is noted in 
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Refs. 8 and 4, and as is clear from Figs. 3-3 and 3-4, the near 

satellite deviates much more than the far satellite from the pre-

dictions of perturbation theory, and the effects of the higher-

order terms are to decrease the· amplitude of the near satellite 

relative to the perturbatlon theory results. 

From Figs. 3-3 and 3-4 and from Table III-I, it is, in 

principle, possible to determine the frequency and amplitude of 

an electric field from an experimentally measured spectrum. How-

ever, the appearance of additional satellites may confuse the 

spectral pattern even for relatively low field strengths. 

For. instance, consider Fig. 3-5, which shows a set of pro-

o -1 
files of the 4922-A line of He I for a frequency of 4.0 em 

It is not clear from the fieure which are the far and the near 

satellites, even for weak electric fields. The line marked with 

an arrow is actually a satellite of the allowed line. Another 

situation where confusion could result is at very low frequen-

cies, since the two satellites will then merge into a single line 

at the position of the forbidden line. Furthermore, in a plasma 

the forbidden line is always present due to the quasi static 

Coulomb fields of the ions and it may be confused with the satel-

lites if its intensity is comparable to satellite intensities . 

One might also see only a single satellite if the field frequency 

is close to the energy separation of the 4D and 4F levels; then 

the near satellite will be buried in the "wings" of the allowed 

line. For these reasons we emphasize that unless the features 

of the spectrum arE: clearly identifiable, extreme caution must 
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Fig. 3-5. Calculated (instrument~broadened) Stark profiles in 

the vicinity of the 4922-R spectral line of He I for the 

case of no magnetic field and a linearly polarized electric 

field of frequency 4.0 cm- l and for 'ffirious electric field 

strengths, all for direction of observation perpendicular -to E. Each profile is plotted logarithmically; a single 

decade is shown by the double-ended arrow. ~ = 0 is the 

unperturbed position of the allowed line 4~ - 2lp and the 

single-ended arrow denotes one of its satellites. 



-51-

be observed in using the perturbation calculations or Figs. 3-3 

and 3-4. 

The amplitude of the electric field can also be determined 

14 f 

by measuring the stark shift of the lines. It is usually most 

convenient to measure the total stark shift, which we define as 

the change in the separation of the forbidden and allowed lines 

(compared with their separation with no external fields). The 

stark shift of the allowed line can also be used if one can de-

termine its unshifted position. For low fields Eq. (2.48) can 

be used to find the Stark shifts; for high fields the theory of 

Chapter II must be used. From Eq. (2.48) we can see that for 

linear polarization the Stark shift is proportional to 

. ? 2 
1/ (illiJ - ill ), 

and therefore for ill < lill.'.1 it is a rather weak function of the 
~J 

frequency. In this case, a preCise knowledge of the fre-

quency is unnecessary; for other polarizations, however, the 

dependence of the Stark shift on the frequency is stronger. 

C. Hydrogen Calculations 

One can approach the calculation of hydrogen spectral pro-

files in the presence of a high~frequency electric field on 

either of two levels of sophistication. The first and simplest 

approach is to assume· that the energy levels corresponding to 

the same pri~cipal quant~~ number tn' are degenerate. Then, 

following the discussion of Chapte::- II.C i E'l' (2.32) and follow­

ing], one chooses for the unperturbed eigensta tes used to 
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calculate the matrix elements for Eq. (2.12), the particular set 

which satisfies 

(iIE'rli') = ~.5 .. " 
l. l.l. 

-+ -+ 
where r

E 
is the component of r parallel to E, and where i and i' 

correspond to different eigenstates of the same principal quantum 

level. The profile of a spectral line arising from an optical 

transition between the eigenstates of two different prinCipal 

quantum levels can then.be found by summing Eq. (2.35) over the 

final states (k) and averaging over the initial states (i): 

dA =L dA
ik 

a: 

i,k 

--) 
I __ ..J 

i,k 

I ~k12 
i 

s=-oo 

(3.10) 

where we have assumed, following the discussion of Chapter II.D, 

that the initial states are equally populated. Equation (3.10) im­

plies the usual Blochinzew type spectral pattern18 composed of 

satellites spaced at integral values (denoted by s) of the elec-

tric field frequency from the unperturbed spectral line position 

(00 = ~), and with intensities given in terms of Bessel functions. 
r 

Each term in the sum of Eq. (3.10) corresponding to a gi~en 

initial state i and a given final state k implies an entire spec-

trum of satellites with a 'characteristic width' which increases 

proportionally to the electric field strength EO. We can see 

this by noting that J (~'k) as a function of s has the property 
s 1 

that it is relatively constant for s < ~'1 and falls off rapidly 
l.K 
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18 to zero for s > 6 ik . Defining the width wik to be two times the 

separation of the unperturbed line position and the position of 

the satellite (with corresponding s = s) where this rapid decrease 

occurs for a particular i and k yields: 

= 2"&:n 

and hence the width is proportional to EO with the proportionality 

constant a function of the particular initial and final state. 

For the entire profile we can define the averag~ width w by aver-

aging w
ik 

over the entire set of initial and final states. The 

result 

~ 
w = ) 

i,k 
I k·0 
~ ., .... w·

k ~ ~ 
(3.12) 

will also be proportional to EO and hence, even if one cannot 

resolve the individual satellites of the spectral pattern, one 

can still use the width of the spectral profile to measure tile 

electric field strength. This method has been exploited by 

several authors. 22
- 25 The determination of the electric field 

frequency, however, does require the observation of the various 

satellites of the spectral pattern. It should be noted that the 

proportio~~lity constant in Eq. (3.11) can be zero, in which case 

that particular component of the spectral profile does not con-

tribute to an increase in broadening of the total profile with 

an increase in the electric field strength. In using the width 
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of spectral profiles for which this is the case (Ra , H)"H€, etc.) 

to measure the electric field strength, one must be careful to 

correct for such unshifted components. One further property of 

the spectral profile implied by Eq. (3.10) should be noted: if 

the'electric field strength and frequency are scaled together, 

1. e ., if we set 

and 

(1)' = €(1) 

E' o (3.13) 

then the satellite intensities are unchanged, but the width of 

the satellite pattern is increased or decreased, depending on 

whether € > 1 or € < 1. This scaling property implies that a 

calculation performed for a particular frequency 1.S really more 

general since it also applies to other frequencies and electric 

field strengths as given by Eq. (3.13). 

Profiles calculated from Eq. (3.10) for an electric field 

-1 frequency of 1.17 cm and for several electric field strengths 

are shown in Figs. 3-6 and 3-7 (Ra and R~, respectively). As in 

the previous section, we have assumed that (1) there is no mag-

netic field present, (2) the high-frequency electric field is 

1\ 
linearly polarized in the z direction, and (3) the spectral pro-

file is viewed in the direction perpendicular to the high-fre-

quency field. The profiles have been calculated by folding at 

the expected satellite positions an appropriately normalized 

instrument function of the type of Eq. (3.8). The profiles have 

been plotted, as in Ch~pter III.B, lined up behind each other 
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Fig. 3-6. Calculated Blochinzew Stark profiles in the vicinity of Ha 

,for the case of no magnetic field and a linearly polarized elec-

t i f ld f 1 17 cm-l and f i 1 t' f" ld r C ie of requency . or var ous e ec rlC le 

-+ 
strengths, all for direction of observation perpendicular to E. 

Profiles are plotted similarly to those in Fig. 3-2. 
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Fig. 3-7· Calculated Blochinzew Stark profiles in the vicinity of H~ 

for the case of no magnetic field and a linearly polarized elec­

tric field of frequency 1.17 cm- l and for various electric field 

-+ 
strengthsJ all for direction of observation perpendicular to E. 

Profiles are plotted similarly to those in Fig. 3-2. 
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with the intensity of each profile plotted logarithmically. Both 

sets of profiles show a broadening proportional to the electric 

field strength.' For H~ the satellite intensities between the 

'falloff' points remain reasonably constant in relative intensity 

with that intensity decreasing for increasing electric field 

strength (all profiles calculated in a single figure have the 

same area). However, for Ha the central component of the profile 

does not show a decrease as the electric field increases, showing 

that a significant contribution to its intensity is due to transi-

tions for which 6ik = O. The other components of Ha do follow an 

intensity pattern similar to H~. It should be noted that if the 

satellite pattern of H could not, be resolved due to a wider in­
a 

strument function then a measure of the half-width of the result-

ing profile would very likely given an erroneous v-a.lue for the 

electric field strength since one would be measuring the width 

of the central unbroadened component of the spectral profile. 

This indicates that care must be taken in observing the entire 

profile before deducing the width used in calculating the elec-

tric field. 

So far,we have discussed only the degenerate case. In a more 

complete calculation, consideration must be given to shifts of the 

unperturbed energy levels which destroy the degeneracy. There are 

three primary sources of such energy shifts: a magnetic field, a 

dc electric field, and fine structure shifts of the energy levels 

due to spin-orbit coupling and a relativistic mass correction of 

the electron. We consider these in turn: 
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.(1) 
-+ 

For a finite magnetic field B the energy levels of hydro-

gen are·· shifted by an amount which depends on the magnetic quantum 

number m of the jnrticular level: 

shift m e/BI 
m c 

e 
~ .~ ~ 

One can distinguish two cases: E parallel to B, A.nd E not paral-

-+ 
leI to B. In the first case the extension of the Blochinzew 

solutJon is trivial, since the eigenfunctions of LE (the component 

of the angular momentum in the electric field direction) are also 

the eigenfunctions which satisf'y Eq. (3.9). Hence the magnetic 

field just shifts the various patterns calculated for a particu-

lar i and k relative to the others but leaves the satellite 

intensities unchanged. The total rattern becomes more com:pljcated 

but still simple to calculate. For the second case a coupling 

occurs between the different eigenfunctions satisf'ying Eq. (3.9) 

and the more general methods outlined in Chapter II must be used 

to calculate the satellite intensities and positions. We shall 

not consider this case further but instead the similar case pre-

sented by a dc electric field. 

(2) 
-+ 

For a finite dc electric field Edc ' the energy levels 

of hydrogen are shifted from their unperturbed positions by an 

amount proportional to the dc electric field strength. We can 

-+ -+-+ 
again distinguish two cases: Edc parallel to E, and EdC not 

-+ 
parallel to E. The first case is again trivial as the presence 

of a parallel dc electric field merely leads to a shift of the 

satellite pattern calculated for a particular i.nitial and final 
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state but leads to no change in the intensity of the pattern. 

For the second case eigenstates which have different energies 

due to the dc Stark effect are coupled by the high-frequency 

electric field and we must use the general methods outlined in 

Chapter II to calculate satellite positions and intensities (in 

Ref. 28 the problem of the Lyman alpha spectral profile in the 

presence of a high-frequency electric field and a perpendicular 

dc electric field is solved using an entirely different method) • 
... 

We will consider the special problem of Edc perpendicular 

~ ~ A 
to E: We choose Edc to lie in the x direction, and then choose 

for the eigenstates [WhiCh will be used to evaluate the matrix 

elements f3
Jj

, inEq. (2.12)J those for which, the operator 'X' 

(corresponding to the spatial x coordinate) will be diagonal. 

·The appropriate energy levels roo to use in Eq. (2.12) are then 
J 

the dc Stark shifted energy levels: 

where roo is the unperturbed energy level, n is the principal 

quantum number,fj is an integer which depe~ds on the perticular 

eigenstate, and ros is given by 

'%= 

where a
O 

is the Bohr radius. With the matrix elements and energy 

levels determined, Eq. (2.12) can be solved numerically for the 

satellite ir.tensities and positions in the manner outlined in 
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Chapter III.A. Before presenting the results of such calculations 

it is interesting to note that this case satisfies a scaling law 
r , 

similar to that for the simple Blochinzew case l i.e., Eq. (3.13):. 
L J 

Namely, if we set 

(J.)' = E(J.), 

E' 

° 
= EEO' 

Eac = EEdc ' 

then Eq. (2.12) has the solution 

(J.)' = E(J.), 

C~ C JS = js' 

i.e., the spectral pattern is unchanged except for a change in 

scale,., 

In Figs. 3-8a to 3-8d we present numerically calculated pro-

files for H , and in Figs. 3-9a to 3-9d we present simila::-ly cal­
a 

culated profiles for H~. In both cases the high-frequency elec-

-1 / . tric field (frequency 1.17 cm and field strength 5.0 kV cm, 

3.54 kV/cm rms) was assumed to be in the ~ direction. The dif-

ferent figures correspond to different assumed values of the dc 

electric field strength: Edc = 0.0, 1.0, 2.5, 5.0 kV/cm; the 

direction of the dc electric field was assumed random but con-

fined to the plane perpendicular to the high-frequency electric 

field. The direction of observation was perpendicular' to the 

high-frequency electric field. The instrument function used to 

-1 produce the figures had a full-width at half-maximlli~ of 0.2 em 
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(d ) 

Ede=S.O 

Fig. 3-8. For legend, see page 61a. 
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Fig. 3-8. Calculated Stark profiles in the vicinity of H forthe • . ex 

case of nb magnetic field, a linearly polarized high-frequency 

-1 
electric field of frequency 1.17 cm and field strength 3.54 

kV/cm rms, and for various dc electric fields (as noted, in 

kV/cm). Along the horizontal axis in each figure, one large 

division (= 5 small divisions) equals 0.5 R. 
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Fig. 3-9. For legend) see page 62a. 
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Fig. 3-9. Calculated Stark profiles in the vicinity of H~ for the 

case of no magnetic field, a linearly polarized high-frequency 

-1 . 4 elect.ric field of frequency 1.11 cm and field strength 3.5 

kV/cm rms, and for various dc electric fields (as noted, in 

kV/cm). Along the horizontal axis in each figure, one large 

division (= 5 small divisions) equals 0.5 R . 

• 

• i 
; 
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and was then 'Doppler broadened' for a temperature of 0.4 eV 

In discussing these figures it is useful to refer to Table 

1II-2 which contains calculated values of illS for the various 

energy levels involved in the transitions leading to Ha and H~. 

For weak electric field strengths the separation of the energy 

levels will be small and we expect the calculated profiles to 

nearly approximate the Blochinzew profiles shown in Figs. 3-8a 

and 3-9a. The meaning of 'small' in this context was discussed 

in Chapter II.G where the condition for a nearly hydrogen-like 

(i.e., degenerate energy level) solution was found to be 

Eq. (2.50) : 

(3.16) 

Referring to Table 1II-2, we see that this condition should be 

satisfied for both the initial and final energy levels for the 

case shown in Fig. 3-8b (H ,Ed = 1.0) and toa lesser extent a c 

for the case 'shown in Fig. 3-9b (H~J Edc = 1.0). These two 

figures bear out this assertion: The Blochinzew pattern is 

essentially maintained with the presence of the dc electric field 

leading to a broadening of the individual satellites due to a 

relative shift of the energy levels. The effect of increasingly . . 
higher electric fields can be observed by comparing successive 

figures. As can be seen by comparing Figs. 3-8a to 3-8c J the' 

primary effect of a moderate dc electric field (i.e.) one for 

which ill
j 

- ill
j 

I < ill) appears to be a shift of the components which 
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Table III-2. DC Stark shift (illS) in inverse centimeters for n = 1 
\ 

to 4 and for various electric field strengths in kV/cm. 

n illS "ill . S illS illS 
(Edc = 0.0) (E =.1.0) dc (Edc = 2.5) (E = dc 5.0) 

1 0.0 0.0 0.0 0.0 

2 0.0 0.13 0·32 0.64 

3 0.0 0.19 0.48 0.96 

4 0.0 0.26 0.64 1.28 

- , 
i 



, . 

-65-

make up a Blochinzew satellite. This can best be seen by observ-

ing the effect of the increasing electric field on the satellites 

which in Fig. 3-8a lie on either side of the main peak. In 

Fig. 3-8b these satellites have become broadened into two nearly 

resolvable peaks, and for the electric field represented by Fig. 

3-8c (2.5 kv/cm) the two compo~ents of each satellite have become 

widely separated, one of which is nearly unresolvable from the 

main peak. The sum intensity of the two components, however, can 

be seen to remain relatively constant. For the highest field 

case represented by Fig. 3-8d the profile has ceased to reflect 

the Blochinzew pattern. These figures indicate that measurement 

of the frequency of a high-frequency electric field using the 

satellite separations is made nearly impossible by a dc electric 

field which does not satisfy Eq. (3.16). The situation for the 

H~ profiles shown in Figs. 3-9b to 3-9d is even worse, as can be 

seen by referring to the values of ros for the appropriate upper 

levels and lower levels of the transition. For the weak electric 

field case shown in Fig. 3-9b the profile still remains essentially 

the Blochinzew pattern with the main change being the splitting of 

the central peak into two components of approximately half the 
, 

intensity of the original peak. For the higher dc electric field 

cases shown in Figs. 3-9c and 3-9d the profiles haVe become very 

complicated and, in fact, have become dominated by the dc electric 

field, as can be seen by the prominent dip in the center of the 

profile, characteristic of the dc Stark profile of H~. 

It should be noted that the complicated appearance of these 
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profiles is in some extent due to the narrow instrument width 

chosen to display the profiles. A broader instrument function 

would tend to smooth out the profiles, which in some cases could 

facilitate the interpretation of the profiles. For instance, 

with a wider instrument function, the profile corresponding to 

that shown in Fig. 3-9b would clo~ely approximate the Elochinzew 

pattern of Fig. 3-9a. 

(3 ) Finally, we consider the effect of fine structure on 

high-frequency stark spectral profiles. This problem is ver,y 

similar to that of case 2. The hydrogen energy levels are shifted 

due to spin-orbit coupling and a relativistic mass correction to 

the electron. The fine structure shift in a given energy level 

is given by the expression: 

4 2 '3 '\ z ex! n = ~ j - - -------i x Rydberg, 
2n ~ 4 j + 1/2/ 

where ex is the fine structure constant, j is the total angular 

momentum of the electron (including electron spin), and Z is the 

atomic number (for hydrogen Z = 1). The value of ~ for the 

first four principal quantum levels of hydrogen is given in 

Table 1II-3. The ~elevant parameter for this discussion is not 

the absolute shift, but instead the relative shift between the 

different levels of a given principal quantum number (noted in 

the table as the 'maximum relative shift'). 

As can be seen by referrip~ to Eq. (3.17) or the table, 

fine structure energy shifts decrease rapidly with increasing 
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Table III-3. Fine-structure shiftS·(~) in inverse centimeters 

for n = 1 to 4. 

n j ~ Maximum relative shift 

(cm- I ) (cm-1 ) 

1 1/2 -1. 5 o. 

2 1/2 -0.46 

3/2 -0.09 0·37 

3 1/2 -0.16 

3/2 -0.054 

5/2 -0.018 0.14 

4 1/2 -0.073 

3/2 -0.028 

5/2 -0.013 

7/2 -0.006 0.08 
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-1 For the particular frequency 1.17 cm 

for which we have performed the calculations presented in this 

section, reference to Eq. (3.16) shows that the only energy level 

for which fine structure shifts are important in calculating the 

Stark profiles is n = 2, i.e., the lower level of the transitions 

Ret and H
13

•. Furthermore, a compari son of Table III -2 and Table 

1II-3 shows that if a dc electric field of intensity greater than 

~ 3 kV/cm is present, then its effect on the n = 2 energy levels 

is greater than that of fine structure. In the limit of a high 

electric field> 3 kV/cm one can, to a good approximation, ignore 

the effect of fine structure. 

In Figs. 3-10a to 3-10d and 3-11a to 3-11d we show calculated 

profiles for which the fine structure has been included as well as 

an increasing electric field. To simplify the numerical calcula­

tions, we have assumed that the lower level is split only by the 

fine structure, and the upper level is only split by the dc elec­

tric field. The four figures in each set correspond to the 

assumed electric field values: Edc = 0.0, 0.5, 1.0, and 2.5. 

For higher electric field strengths the dc electric field G.omi­

nates the energy splitting of the lower level and the spectral 

pattern should more closely approximate those shown in previous 

figures. The first figure in each set shows the effect of fine· 

structure alone on the spectral profiles: The different satel­

lites are split into two components corresponding to the two dif­

ferent fine structure shifts. Finally, it should be noted that 

the effect of fine structtlre splitting is to produce asymmetric 

Stark profiles. 

. ; 
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( b) 

Edc= 0.5 

( d ) 

E = 2.5 de 

X B L7 310 - 4 3 7 I 

Fig. 3-10. For legend, see page 69a. 

I 
i 



Fig. 3-10. Calculated Stark profiles, including fine structure 

splitting of the lower level, in the vicinity of Ra' for 

the case of no magnetic field, a linearly polarized high­

-1 frequency electric field of frequency 1.17 cm and field 

strenth 3.54 kV{cm rms, and for various dc electric fields 

(as noted, in kV/cm). Along the horizontal axis in each 

figure, one large dhrision (= 5 small divisions) equals 

0.5 R. 

: .' 
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(al 
Edc= 0.0 

· .; 

(d) 

XBl7310- 4370 

Fig. 3-11. For legend, see page 70a. 
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Fig. 3-11. Calculated Stark profiles, including fine structure 

splitting of the lower level, in the vicinity of H~, for 

the case of no magnetic field, a linearly polarized high­

-1 frequency electric·field of frequency 1.17 em and field 

strength 3.54 kV/em rrns, and for various ;dc electric fields 

(as noted, in kV/cm). Along the horizontal axis in each 

figure, one large division (= 5 small divisions) equals 

0.5 5{. 
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IV. EXPERIMENTAL APPARATUS 

Figure 4-1 shows the apparatus used in the experiment. We 

generate the high-frequency electric field in a cylindrical 

microwave cavity and apply it to a. plasma produced by a dc dis-

charge in a quartz capillary which threads the axis of the cavity. 

The cavity (0.609 cm in diameter and 0.S65 cm in length) is ex~ 

cited by a 10 W cw Elliott-Litton Model STFK9 Klystron and 

oscillates in the TMOIO mode with the electric field parallel to 

the axis of symmetry and electric-field strength maximum along 

the axis of the cavity. Mode identification was verified by cal-

culating the resonant frequency of cavity plus quartz capillary, 

which agreed to within li with the measured frequency of 35.2 

GHz', and also by measuring the relative electric field intensity 

as a function of position along the axis of the cavity. This 

latter measurement was done by measuring the change in resonant 

frequency of the cavity-quartz capillary system as a small quartz 

plUg was pushed into the cavity down the inside of the quartz 

capillary. The calculated electric field intensity variation 

over the inside cross section of the capillary (o.d., 0.S5 rom; 

i.d., 0.40 mm) is < 5% of the value on the axis. 

In operation with a plasma, gas flow is maintained continu-

ously through the capillary: Typically, the pressure.at the 

high-pressure end of the capillary is3 Torr,and the pressure 

at the low-pressure end is 1 Torr. Other typical dicharge param­

eters are current, ."5.5 rnA, Le., current density, 2.7 A/cm2; and 

1 t - . '=> lOll - 3 h 1 d e ec ron denslty, ~ x cm Tee ectrOD. ensity is 
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Fig. 4-1. Schematic diagram of the experiment. 
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determined by measuring the change of resonant frequency of the 

microwave cavity due to the presence of the plasma. The field 

frequency is much greater than either the plasma frequency or the 

electron collision frequency, so that the microwave field has no 

noticeable effect on the plasma other than stimulating otherwise 

forbidden multi-quantum transitions. 

Light emitted by the discharge in a direction pe,rpendicular 

to the electric field direction is viewed through a small slit 

in the microwave-cavity wall, spectrally resolved using a Jarrel­

Ash Co. Model 82-000 0.5-meter monochromator,and photoelectrically 

detected,using an uncooled EMI 6256-8 photomultiplier. Forfine 

spectral line measurements the observed wavelength can be set 

to an accuracy of < 0.01 ~ (maximum tuning range ~ 10 ~) by 
'" . 

tilting a micrometer-adjusted quartz plate placed on the grating 

side of the exit slit of the monochromator. Light intensity at 

a given wavelength is measured by use of standard photon count-

ing techniques. Peak intensities for the strongest lines 

4 5 measured represent 10 to 10 counts/sec. 
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V. EXPERIMENTAL RESULTS 

A. Compari son of Theory and Experiment 

for Neutral Helium Lines 

We have experimentally studied the effect of a linearly 

polarized high-frequency electric field on eigenstates of He I 

by observing optical transitions in the vicinity af three allowed 

lines, which we will refer to as 

case I: 4922 R (4~, etc. __ 21p)j 

case II: 4388 R (51D, etc. _ 21p), 

4144 R (6~, 1 case III: etc. - 2 F), 

and b,y comparing the observed spectrum with the spectrum calcu-

lated by using the methods of Chapters II and!!!. In all cases 

there is no magnetic field. Figures 3-1 and 3-2 show the theo-

retical profiles predicted by the multilevel theory of Chapter 

II for cases I and II for the experimentally measured electric 

field frequency and for various field strengths. 

For a direct comparison of the theoretical calculations with 

our measured line profiles, we have folded the theoretical results, 

which consist of a discrete line spectrum, with a realistic "iIl-

strument function" obtained from measurements taken on the same 

apparatus but with microwave power turned off. Discussion of the 

instrument function is given in Appendices D and E. Figures 5-1 

and 5-2 show comparisons of experimental results with various 

theories, all calculated for observation at right angles to the 

direction of the electric fi.eld and for a peak field strength 
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Fig. 5-1. Comparison of experiment and various theories for case I 

(4~, etc. -+ 2~), 4922-R He I for the case of no magnetic field 

-1 and a linearly polarized electric field of frequency 1.17 cm 

and for direction of observation perpendicular to the electric 

field. 
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Fig. 5-2. Comparison of experiment and various theories for case II 

(5~, etc. -. 2lp) , 4388-R He I for the case of no magnetic field 

-1 and a linearly polarized electric field of frequency 1.17 em 

and rms electric field strength of 3.54 kV/cm, and for direction 

of observation perpendicular to the electric field. The sets 

of vertical lines labeled 5~, 5~, and 51G indicate the posi-

tions and relative intensities of spectral components originat-

ing from those levels. 

,. 

... . , 



-77-

of 5.0 kV/cm (3.54 kV/cm rms). In all cases ~ = 0 is the 

position of the aIlowed line in the absence of the perturbing 

, electric field. All "bumps' on the theoretical profiles are pro-

duced Qy one or more satellites and not by irregularities in the 

instrument function. All satellites stronger than 10-5 of the 

total intensity of the pattern were retained in the calculations 

(the number of satellites so kept is noted in the discussion of 

each figure). 

Figure 5-1 shows a comparison between experimental and theo-

retical results for case I. The multilevel theory outlined above, 

the Autler-Townes theory, and the perturbation theory of Barranger 

and Mozer all give nearly the same results for the predicted 

spectrum; the major discrepancy between them cemes frem the 
I 

neglect of'the Sta,rk shift in the perturbation calculation. The 

slight difference between the Autler-Townes and the multilevel 

theories is due to the retention of the 4p energy level in the 

latter. For both the multilevel and the Autler-Townes calcula-

tions we have included 18 satellites. Agreement of multilevel 

theory with experiment is excellent, and even the other two 

theories agree quite well with experiment for this field strength 

and frequency (note that agreement between experiment andpertur-

bation th~ory would be substantially improved by including the 

lowest order correction to the Stark shift, Eq. (B9) in Appendix 

B, in calcula-cir,g the relative position of the far and near satel-

lites and the allowed line). 

Case II, shown in Fig. 5-2, is a much more severe test of 
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the various theories owing to the following: (a) The matrix 

elements ~ increase with n (principal quantum number), hence the 

effect of a given electric field is greater on the 4388-)( line 

than on the 4922-)( line. (b) The energy levels of n = 5 are 

closer together, so that more satellites (Le., higher-order 

transitions) become important. (c) For n = 5 there is a G 

energy level very near the F energy level, and the two interact 

strongly. 

In Fig. 5-2, we compare the measured line profile for the 

4388-~ line with theoretical ones calculated from our multilevel 

theory and from the Autler-Townes theory, again using a field 

strength of 5.0 kV/cm. Agreement between the multilevel calcu-

lations and the measured data is very good, whereas experiment 

and the Autler-Townes calculations sharply disagree, not only in 

satellite positions and intensities but also in the Stark shift 

of the allowed line. This disagreement graphically illustrates 

the need to include additional upper levels, since this is the 

only significant different in the two theories. Perturbation 

calculations, not shown, disagree even more strongly with measure-

ments.In the Autler-Townes calculation we have included 42 . 

satellites; 58 were used in the multilevel calculations. 

In Fig. 5-2 we have also indicated the major satellites . 
L 1· 1 originating from the three upper levels, 51), 5 F, 5 G. Each 

vertical line in the figure corresponds to a "satellite" and 

denotes the average position and the sum intensity of the five 

components (one component arising from each magnetic quantum 

-.. ~ 
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level of the 4D states: 0, ±l, z2) comprising that satellite. 

CasellI, shown in Fig. 5-3, is an even stronger test of the 

multilevel theory than the first two cases. This arises for the 

same reasons given above in discussing He 4388 and because of the 

added presence of a new-high-angular momentum energy level not 

present in the prior case. For n = 6 the three highest-angular 

momentum energy levels, F, G, and H, have a total energy separa­

tion of 0.3 cm- l (if the 6D level is included the total energy 

separation is 2 cm -1) compared to the experimental frequency of 

1.17 em -1 and the electric field coupling constant ~ ~ 2 cm- l 

(for EO = 5 kV/cm). Thus these levels are strongly coupled to 

each other by the electric field and, following the discussion of 

Chapter II.G, could be described as hydrogen-like. Because of 

this strong. coupling any theory which does not explicitly con­

sider these levels (SUCh as perturbation or Autler-Townes) would 

give results which were grossly in error. 

Several features distinguish Fig. 5-3 from the previous 

figures. Firstly, this is the first example shown of measured 

data which has been fit using the least-squares fitting program 

PlSA. The two previous figures for He 4922 and He 4388 were fit 

by band by comparing 'the measured data with a set of calculated 

profiles at various field strengths and at the measured frequency. 

For this particular case, the frequency was fixed at the measured 

value and the program adjusted the electric field to give a best 

fit. The field strength so determined was 5.15 kV/cm. A second 

case in which PlSA was allowed to fit the frequency as well as 
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Fig. 5-3. Comparison of experiment and the multilevel theory for 

case III (6~, etc. ~ 2~), 4144-R He I for the case of no 

magnetic field and a linearly polarized electric field of fre-

-1 / quency 1.11 em and rms-electric-field strength of 3.65 kV em, 

and for direction of observation perpendicular to the electric 

field • 
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the electric field did not give significantly different results, 

and has not be.en shown. 

The second feature unique to this figure is the presence of 

satellites of the 6p - 2P transition. These two satellites which 

greatly resemble the 'usual' perturbation-type profile (i.e., 

two satellites separated by twice the field frequency) lie at 

the left of the figure and arise because of the coupling of the 

6p energy level to the 6n energy level by the electric field. 

One deviation from the perturbation picture should be noted: For 

this particular field strength and frequency the far satellite 

is more intense than the near satellite and this reversal of the 

perturbation picture occurs in both the measured and the calcu­

lated results. Calculations show that this reversal in intensity 

ratio is an effect of the increasing electric field and at. some­

what weaker field strengths the two satellites are given by the 

perturbation result, Eq. (2.49). 

Finally, we note that if one ignores the two satellites 

arising from the 6p - 2P transition in Fig. 5-3 the remainder of 

the profile is remarkably symmetric, which is consistent with 

the discussion given in Chapter II.G and Chapter III.B. 

In Fig. 5-4 (and Table V-I) we summarize the results of many 

measurements of neutral helium spectral profiles taken on the 

experimental apparatus of Fig. 4-1. The data are presented as a 

log-log plot of EO (the electric field in the discharge me~sured 

using the methods of Chapters II, III, and IV) vs the input 
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Fig. 5-4. A comparison of the electric field strength measured spec-

troscopically} with the calculated microwave-electric field i~ 

. the cavity. .The different symbols correspond to electric field 

data obtained from the spectral lines: t } 'He 4922; ~} He 4388; 

and~} 4i1+4. Spectroscopic electric-field data is shown for a 

range of greater than ten in microwave power. 
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Table V-I. A comparison of electric field parameters measured 

spectroscopically versus electric field parameters measured using 

standard microwave techniques. 

Calculated Measured 

Line 
a 

~ 
b Frequency Power Frequency Method 

(mW) (kV/cm) -1 -1 
{em 2 (cm ) 

He 4922 1.03 5.65±.15 1.17±·01 8 1.163 

He 4922 0·78 5.10±.20 1.18±.01 8 1.173 

He 4922 0·50 4.30±.20 1.15+·01 8 1.166 

He 4922 0.28 3·10±.15 1.15±.01 8 1.166 

He 4922 0.13 2.00±.10 1.16±.01 8 1.166 

He 4388 1.04 5.62±.10 1.18±.01 P 1.163 

He 4388 0.51 4.04±.10 1.19±·01 P 1.163 

He 4388 0.25 2·78±.05 1.14±.01 P 1.163 

He 4388 0.17 2.37±'.05 1.13±.01 P 1.163 

He 4388 0.16 2.23±.05 1.14±.01 P 1.163 

He 4388' 0.08 1.45±.06 1.15±.01 P 1.163 

He 4144 0.76 5.15±.10 1.17±·01 C 1.166 

a Power measured at the Hewlett-Packard power meter--power at 

cavity is found by multiplyir~ value shown by 6604. 

bMethods: '8' ,EO found from measured intensity of far and near 

satellites relative to that of the allowed line using Table 

III-I, and frequency from the separation of the far and near 

satellites; 'P' ,both EO and frequency found from least-square 

c 
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of measured profile using PISA; 'C' ,EO found by PISA (setting 

frequency equal to measured frequency), frequency found from 

separation of far and near satellites of the 6p - 2P transition. 

cMeasured using cavity wavemeter; values varied due to use of 

different Geissler tubes. 
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microwave power into the cavity. This latter was measured on a 

Hewlett-Packard 43lC power meter by using a directional coupler 

to monitor a small portion of the forward microwave power. This 

reading was then adjusted to give the value at the cavity by 

correcting for microwave losses in the waveguide and the attenua­

tion of the directional coupler. 

Before discussing the figure itself, we will briefly review 

how EO was obtained: 

(1) A scan of the profile on one of the spectral lines: 

He 4922, He 4388} or He 4144 was taken using the 'tiltable' quartz 

plate method described in Appendix D. 

(2) Before and after the scan the following reference data 

were taken: the dark current of the photomultiplier tube and a 

short scan (about 5-6 points) of some reference peak--usually the 

peak of the profile itself. 

(3) The reference data were then used to correct for posi­

tion drifts and for systematic intensity variations that occurred 

during the scan, and to subtract out the dark current contribution 

of the measured intensity. 

(4) The intensity data were also corrected for systematic 

variations due to t4e quartz plate, and for 'dead time' losses 

of the scalars and the discriminator. 

(5) The position scale which was measured using a microm­

eter was converted to a wavelength scale by referring to Fig.D-4 

for the appropriate conversion factor. 

(6) This corrected experimental profile was then compared 
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to a theoretical profile and EO (and also the frequency) extracted 

using one of the following methods: 

(a) For helium 4922, the intensities of the far and near 

satellites of the forbidden line were calculated by subtracting 

the wing intensity of the allowed line at each satellite peak 

position from the measured peak intensity. The ~tios, Sand S , 
+ -

were then determined, and EO calculated from data similar to 

Table III-I. The frequency was determined from the separation of 

the two satellites. 

(b) For He 4388 and He 4144, PlSA (see Appendix G) was used 

to vary the electric field strength and frequency until a best 

fit in the least-squares sense was obtained. In each case the 

calculated profile used by PIS..II. consisted of folding I'm appropri-

ate instrument function with a satellite spectrum calculated 

using the methods of Chapters II and III. 

The results calculated using either method (a) or (b) are 

displayed in Table V-I and in Fig. 5":4. Each point represents 

a measurement of EO as described above. The figure includes 

measurements using three helium lines, 4922, 4388, and 4144, and 

over a range of input microwave power of 10 (or range of3 in 

electric field strength). The upper limit represents the maxi-

mum power available from the present Klystron. The lower limit 

represents the lowest electric field at which electric field data . 

could be reliably extracted from the optical data in this experi-

ment. This limit arose from hJO factors. For the He 4922 line 

this limit represents the point at which the satellite's become 
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'lost' in the wing of the allowed line and the continuum back-

ground. For He 4388 a?d He 4144 the satellite intensities should 

be relatively greater and should provide a method of measuring 

weaker electric fields. However, in this particular experimental 

setup the high dc ambipolar electric field in the discharge tube 

produces spectral lines at the positions of the normally for­

bidden transitions, n~ - 2~, nlG - 21p, which interfered with 

the satellites. These lines were particularly evidelltin profiles 

taken with the microwave power off and had to be numerically 

removed from the instrument profile before doing curve fitting. 

The effect of these normally forbidden lines on profiles taken 

at a high electric field strength (~ 5 kV/cm) can be seen in 

Figs. 5-1 and 5-2, where the slight dip in the calculated pro­

file (relative to the measured profile) at V ~ -1.4 R for He 

4922 and at ~ -0.8 R for He 4388 almost certainly arise from the 

neglect of the forbidden line intensity in the calculations. 

The data presented in Fig. 5-4 show the expected linear 

dependence of EO on the square root of the microwave power, i.e., 

all data points fall near a line of slope 1/2. (The solid line 

shown on the graph is the best such line in the least-squares 

sense. We can compare the optically derived value of EO with the 

electric field calculated using standard microwave techniques by 

referring to Eq. (C12). The microwave data are represe:r:ted on 

the graph by the dashed line and lie 3.5% lower than the optical 

data. 
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B. Comparison of Theory and Experiment 

for Hydrogen Spectral Lines 

We have also studied the effect of a high-frequency electric 

field on the hydrogen spectral lines: Ha, H~, Hr' and Ho' The 

method used is similar to that described in the previous section 

for helium spectral lines: i.e., we'compare spectral profiles 

measured as described in the previous section with profiles calcu­

lated as discussed in Chapter III. In all cases shown the calcu­

lated profiles have been fit to the measured profiles using PISA 

(Appendix G). Befo+e presenting these comparisons as figures, two 

aspects of the hydrogen problem require further discussion. 

In Chapter III.C we have presented two methods of calculating 

the high-frequency Stark effect of hydrogen profiles. The f1r~t 

was applicable i~ the energy levels of hydrogen could be considered 

degenerate,where the condition of degeneracy was given by Eq. 

(3.16). The second, and more complicated, method explicitly in­

cluded non-degeneracy of the hydrogen energy levels due to a dc 

electric field and fine-structure splitting. For the purpose of 

the comparison shown in Figs. 5-5 to 5-8, we have chosen to use 

the simple Blochinzew theory to calculate the profiles. This 

choice requires some discussion. As noted in the discussion of 

Chapter III.C and also in Table 1II-3, fine-structure splitting 

can be ignored for the frequency of this experiment, 1.17 cm- l , 

for all hydrogen energy levels except for the n == 2 energy level 

whichfonns the final state for the transitions corresponding to 

the Ealmer lines studied in this section. The relative energy 
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-1 shift produced by fine-structure splitting was 0.37 cm ,which was 

less than or comrarable to the instrumental width of the spectrom-

eter at the wavelengths of these lines. There was also a dc 

electric field, as discussed in Appendix E, due to ambipolar dif-

fusion of the electrons and ions to the walls of the quartz capil-

lary. This field had an average intensity of 0.6 kV/cm as 

measured from the Stark broadening of the lines HI' and Ha with the 

high-frequency electric field turned off. As can be seen by 

reference to Table III-2, for this electric field the splitting of 

the hydrogen energy levels is less than the corresponding splitting 

due to fine structure and hence is less than the instrumental width. 

We have used the above considerations to simplify the calculations 

in the following way. In producing profiles for comparison to the 

measured profiles, we have impliCitly incorporated fine structure 

and a dc electric field (as well as Doppler broadening) not into 

the theory but, instead, into the instrument function as an addi- . 

tional broadening beyond the true instrumental broadening. We have 

done this by using the measured profile of each hydrogen spectral 

line taken with the high-frequency electric field turned off, as 

the 'instrumental' profile which is folded with the line spectrum 

calculated by the Blochinzew theory. Since the high-frequency 

electric :field could influence the width of the instrument function 

determined in this way r for instance, it could affect (1) the ambi-. ... 
polar electric field or (2) the neutral temperature of the dis-

charge and hence the Doppler broadening., we have allowed PISA to 

fit not only the usual electric field parameters (frequency, field 

strength) but also a parameter which varies the instrument width. 
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The results of using PISA to produce a least-square fit of 

hydrogen profiles calculated using the method above. to measured 

profiles are shown in Table V-2 and in Figs. 5-5 to 5-8 (Ha, H~, 

Hy' and Ho' respectively). As can be seen from the figures there 

is good agreement between the calculated and measured spectral 

profiles. In each case the calculated 'quality of fit' was nearly 

optimum, i.e., the value of X-square as defined for Table V-2 was 

nearly one. The experimental error used in calculating X-square 

(and also in performing the least-square optimization) mainly came 

from 

counting error (square root of the number. of counts) + 

a li error due to line intensity fluctuation from the 

discharge + 

an error in the profile intensity due to the error in the 

wavelength measurement. 

The poorest fit ciccurs for the last case, Ha' shown in Fig. 

5-8 where the major discrepancy occurs at the center of the pro-

file where the measured data lie below the calculated profile. 

In Chapter III.C we noted a similar effect in the calculation for 

H~ for a high-de electric field (EdC.~ 2.5 kV/cm), i.e., the cal­

culatedprofile showed a strong dip at the center which was not 

present in the profile calculated using the simple Blochinzew 

theor,y. For the much weaker dc electric field in this experiment 

one does not see this effect for H(3' but for Ho' where the effect 

of a dc electric field is greater (the dc Stark splitting is pro­

portional to the principal quantum number), thee:ffect might be 

.. 
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Table V-2. Electric field data derived from fits of hydrogen 

profiles calculated using Blochinzew theory to corresponding 

experimentally measured profiles. 

Line Fig. Eo(kV/cm) 
a Ab X-Square c Frequency Power 

{cm-l) 

He: 5-5 L156±.002 5·96±.03 LO.±.Ol L03±.00 L41 

Ht3 5-6 1.164±.004 5·76±.04 0.95±.01 L04±.01 0.B5 

H 5-7 L16l±.o04 5.94±.03 LOl±.Ol L09±.01 0·73 r 

~ 5-B L15B±.00B 5·95±.05 LOl±.Ol L24±.03 2.B7 

apower in milliwatts measured at the Hewlett-Packard power meter. 

For conversion to power at the cavity ~ee Table V-I. 

bN · t arrowlng parame er: Instrument width used by PISA for a best 

fit was 'measured width'/A, Le., A = L03 means PISA used a.n 

instrument width 3% narrower than that meGsured with the micro-

wave field off. 

CX-square is defined by 

where the sum is over the Npoints at which the profile is 
p 

measured', 6I represents the deviation at the point 'i' 9f the 

calculated intensity from the measured intensity, and oI is the 

expe.rimental error at the point 1. An optimum fit corresponds 

to X-Square ::= L 
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Fig. 5-5. Comparison of experiment and the Blochinzew theory for 

~ for the case of no magnetic field, a linearly polarized high­

frequency electric field, and direction of observation perpendic-

ular to the electric field. The parameters determining the 

theoretical profile have been varied for a best least-square 

fit to the experimental data (see Table V-2). 
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Fig. 5-6. Comparison of experiment and the Blochinzew theory for 

H~ for the case of no magnetic field, a linearly polarized high­

frequency electric field, and direction of observation perpendic-

ular to the electric field. The parameters determining the 

theoretical profile have been varied for a best least-square 

fit to the experimental data (see Table V-2) . 



-93-

Hy 

xxx Experiment 

- Theory 

-2.5 0.0 
o 

fl'A(A) 
2.5 

XBL7310-4366 

Fig. 5-7. For legend, see page 93a. 



-93a-

Fig. 5-7. Comparison of experiment and the Blochiniew theory for 

H for the case of no magnetic field, a linearly polarized high­., 
frequency electric field, and direction of observation perpendic-
, 
ular"to the electric field. The parameters determining the 

theoretical profile pave been varied for a best least-square 

fit to the experimental data (see Table V-2). 
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Fig. 5-8. Comparison of experiment and the Blochinz/ew theory for 

Ha for the case of no magnetic field} a linearly polarized high­

frequency electric field} and direction of observation perpendic-
, 

ular to the electric field. The parameters determining the 

theoretical profile have been varied for a best least-square 

fit to the experimental data (see Table V-2). 
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visible. Unfortunately, calculating ~ correctly, using the more 

complete theory of Chapter III.C, was prohibitively expensive and 

could not be done to check this assertion. 

Table V-2 reviews the best-fit parameters as found by PISA 

for the four Balmer lines considered in this section. As can be 

determined from the table, the best-fit values for the frequency 

agree very well with each other (except for H to within the cal­a 

culated experimental error) and with the value of the electric-

field frequency measured using a cavity wavemeter, 1.162 cm- l 

The values of the electric-field strength all lie within experi-

mental error (note that one must correct for the different micro-
, 

wave power used for H~) and agree very well with the values of the 

electric field at the corresponding power as determined from the 

helium data in the previous section (Fig. 5-4). An interesting 

aspect of the best fit solution is the 'narrowing' of each line 

required in each case for a best fit. The pattern of the 

systematic change in the instrument width with principal quantum 

number seems to indicate that the presence of the microwave elec-

tric field· reduces the mean ambipolar electric field and hence the 

dc stark broadening. 
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VI. CONCLUSION AND FINAL REMARKS 

In the body of this paper we have investigated the effect of 

a monochromatic high-frequency electric fieldon the spectral pro-

files of hydrogen and helium. We have shown that using a numerical 

solution of a very general theory we could get very good agreement 

between calculated and measured profiles for both hydrogen and 

helium spectral lines. However, the general problem of the appli-

cation of the high-frequency Stark effect to plasma diagnostics 

involves many further considerations. In this final section we 

will discuss some of them. 

1. Finite Frequency Spread 

In general, the electric fields in a plasma will not be ffiono-

chromatic; they will have some characteristic f:rfe que ncy spread t::ffi, 

and some characteristic ce;}tral frequency mO. For this case, the 

methods used to solve SchrBdinger's equation must be considerably 

different. Instead of expanding the time dependence of the wave 

function, Tj(t), in terms of a Fourier series as we have done, it 

must be expressed in terms of a Fourier transform T.(m'),.which 
J . 

will be a continuous function of frequency. The fundamental 

equation (2.12) will then take on the form of an integral equation: 

relating T. (m') to the folding integral of Tj(m - m') and the 
J 

Fourier tra~sform of the electric field E(m'). Such an equation 

cannot be solved in the manner described in Chapter II, although 

it should be noted that in the limit that the frequency spread 

becomes very small relative to the central frequency, i.e., when 

E(w) ..... 5(w - wo)' the i;}tegral equation reduces to Eq. (2.12) if 
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we define CjS = Tj(~O). Hence we expect for ~ <~ rnO that the 

solutions of Eq. (2.12) will give good approximations, to the 

actual solutions. We can consider some aspects of the more. com-

plex case of a finite frequency spread which is comparable to the 

I central frequency by referring to the model developed in Chapter 

II.E, which described the high-frequency Stark effect in terms of / 

i 

multi-quantum transitions. The presence of a spectrum with a 

finite frequency spread leads to two new effects not seen in the 

monochromatic electric field case: a broadening of the individual 

satellites due to the finite spread, and a modification in the 

satellite pattern due to coupling of the electric field at dif-

ferentfrequencies. The first case involves transitions in which 

the qnantum which is emitted or absor'bed is alw"tys of the S8.!!!e 

frequency. For this case there is no coupling between the electric 

field at different frequencies and we may treat each frequency com-

ponent of the spectrum independently: solving Eq. (2.12) for each 

frequency, and then performing a superposition of the different 

solutions to get the complete solution. The resultant satellite 

spectrum will then consist of satellites which lie at different 

positions and a consequent broadening of the individual satellites 

will result. For a very broad frequency spectrum (~ "" rnO) J the 

satellites will overlap and the satellite pattern will be smeared 

out and not useful for plasm~ diagnostics. It should be noted 

that for the p9.rticular cases of helium considered in Chapter V.A, 

the profiles of the far and near satellites of the forbidden line 

in the r€rturl~ation limit directly reflect the electric energy 
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spectrum since the intensity of each of these satellites is pro­

·2 
portional to E rms 

I 

In the above, we considered the case in which the same fre-

quencyquantum is emitted or absorbed at each (virtual) exchange 

of a quantum between the electric field and the atom. One can 

also consider the case that the quantum emitted or absorbed at each 

step is of a different frequency than at a previous step. Since, in 

our model, the energy of the optical photon, which results when the 

atom undergoes an eventual real decay to a lower state, is the un-

perturbed energy difference of the two states plus the net energy 

retained from the electric field, we see that this type of transi-

tion produces new satellites in the high-frequency spectrum at the 

beat frequencies of the various frequency components of the elec-

tric field spectrum, and hence also leads to a new source of 

broadening as well as a change in the calculated intensities of 

the normal satellites. The actual calculation of such effects 

must await a more general theory than that presented above. How-

ever, from this model one conclusion can be drawn: Since the 

second type of effect 1s of higher-order in the electric field 

strength, i.e., it involves at least two different quanta from the 

electric fi~ld, one can ignore its effect for weak elec'tric fields. 

Considering as a special case the helium profiles examined in 

Chapter V.A, this means that, as long as the satellite spectrum 

is compo:3ed only of the allowed line and the lO1,..;est order 'far' 

and 'near' satellites of the forbidden transition, one can ignore 

the complications introduced by coupling within the electric field 
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spectrum and can treat the satellite spectrum as though each fre­

quency component was independent. 

2. Effect of the Plasma 

In order to make the best use of the high-frequency effect 

for plasma diagnostics, one must be able to identify the individual 

satellites. Unfortunately, spectral lines produced within a plasma 

tend to be broadened by the plasma. The various methods of broad­

ening have been much discussed33 and will not be described further. 

However, it should be noted that these broadening mechanisms pro­

duce limitat"ions to the applicability of the high-frequency Stark 

effect to plasma diagnostics in plasmas with too great a density 

(due to pressure broadening) and with too great a temperature (due 

to Doppler broadening). The use of the method could also be 

limited by a strong gradient in the density of the plasma if it 

led to different regions of the plasma emitting at different fre­

quencies (for instance, if the emission was at the respective 

plasma frequencies). An optical method useful for making local 

measurements within the plasma has been discussed in Ref. 34. As 

a final note to this section we will remark that the problem of 

plasma broadening of helium spectral lines will always be less 

critical than the corresponding problem for hydrogen, and hence 

the use of helium for plasma diagnostics is to be preferred. 

Furthermore, the wide variety of potential helium lines suitable 

for the application of the high-frequency Stark effect, makes the 

method suitable for a wide variety of electric field frequencies 

and electric field 8trengt:ts. 
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3. Background 

One of the problems of the use of the high-frequency Stark 

effect in helium for plasma diagnostics is the necessity of ob-

serving relatively weak satellites which are near .to a strong 

allowed line. The satellites are often buried in the line wing 

and difficult to observe. This puts an effective lower limit 

which differs with particular spectral line and frequency of the 

electric field, but which generally is of the order of 1 kV/cm 

electric field strength. Use of phase-sensitive techniques, when 

applicable, can lower this minimum value to 200" V/cm{lowest value 

of electric field so far measured using the technique3). Two 

interesting methods which appear to increase sensitivity have been 

reported by Burrell and Kw~ze, both usir~ a tw-~ble dye laser to 

illuminate the Plasma. 35,36 

.. 
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APPENDICES 

A. EvalUation of Transition Rate Integral for an Atom in an 

Oscillating Electric Field 

We wish to evaluate 

ill 

I iu == ( + dill I r(l) 12p(ill )dU (AI) 
kJ /' k /' 

ill 

where ill± = Aik + Uill±.6and where l/(t - T), . .6, cosatisf'y 

l/(t- T) « .6 « w, Aik" The integrand of expression (Al) is a 

product of rapidly varying terms [lr~l)12 varies on the l/(t - T) 

frequency scale] and a slowly varying term [p(w/') varies on the 

Aik frequency scale]. Over the range of integration 

p(w ) = 
i' 

Hence in evaluating the integral we set p(ill ) =p(A Ok +'um) and 
/' 1. 

take it outside the integral. The resulting expression for r!u 

is a sum of terms with resonant type denominators: 

00 

s=-oo 
5t-U 

+ 

en 1 
'\"' Kik A J L~ 55 '2 ' 

5,s'=-en 
s, s't-u 

(A2) 

- 1 ] where AO' Al , and A2 are given by l~ == 2' U(J)(t- T) 
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t:.(t-T) . 2~ 
,~ sJ.n 
I 

Ao = i d~ 
~2 

, 
j 

-t:.( t- T) 

t:.(t-T) 
sin~ . 11 ( - u)m( t - T) l 

A = r d~ 
sJ.n' - s + SJ L2 
'"1 -, 1 J 

-t:.(t- T) ~ i - (s - u)m(t - T) + gj 
L2 

t:.(t-T) 

A2 = f d~ 
.) -t:.( t-T ) 

Sin!-2
1 

(s - u)m(t - T) + ~l L . J 

[~ (s - u)m(t - T) + gJ 

x 
Sin[~ (s' - u)m(t - T) 

-1 
L~ (s' - u)m(t - T) 

We now consider the evaluation of AO' AI' A2 0 The inte-

grand of Ao is a sharply peaked function,of ~; since m(t - .) » 

1, the integrand is already small at the integral limits and 

hence only a small error [~l/t:.(t - T)] is made in letting the 

limits of integration go to +CO. AO is then a standard integral, 

In evaluating Al we first note that g is at most t:.(t - T). .Hence 
, 

over the entire interval of integration we may make the expansion 

1 1 

I 
(s - u)m(t - T) + g I u )m( t T) ~ - (s 2 

I ~ 

x \ I - I 
+ ••• 

~ (s - u)m(t - T) 
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Next, expanding sin[~ (s - u)rn(t - T~ + S ~nd eliminating termB from 

the resulting expression which are odd in s(and hence integrate 

to 0) yields: 

A 0 
1 

sins'coss 

A 1 
1 

.2 
Sln, s. 

Now All can be directly integrated and is of order 6/rn relative 

o to Al and hence can be ignored. As in the evaluation of AO 

above, the sharply-peaked nature of the integrand of A
l
o allows 

the limits of integration to be extended to ±co . the error so in-
is 0 is ~ 

. curred,,'" 1/6(t - T) times Al and hence"ignomblej. Th • 0 . en.Mol ~s 

a standard integral 

rl J 7r sinL2 (s - u)rn(t - T) 

Al =; [~(s - u)rn(t - T)J 
(A4 ) 

An evaluation of A2 similar to that of Al shows that 

1".f 2' 21 A2 = ql/rn (t - T) _ and hence can be ignored relative to AO and 

Al which are of order 1 and l/rn(t - T), respectively. Thus to 

the order retained in the calculation 

(A5) 

Substituting Eqs. (A3)-(A5) into Eq. (A2) yields for r!U 
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Sin[~ (s - u)ro( t - T)] l 
x 1 . ~ J 

[2 (s - u)ro(t - 'T)i 
J . 

00 

( "\ )rlr'\(t) '\' (Kik + Kik.) = ~p ~ik + urn~, - 'T I us su 
I~ 

s=-oo 

r1 ' 
sinl'2 (s - u)ro(t 'T)J 

[~ (s - u)ro(t - 'T)] 

Since (Kik + Kik) = 2 Re(Kik ) I
k
iU is a real quantity. 

us su us ' 
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B. Perturbation Solution of Equation (2.12) 

We consider the case: 

(1) a jj , == a j 5jj " then mj = mj + a j [see Eq. (2.3)], 

(2) ~ small, th~n followil~ the discussion of Chapter 

III.A. we can ignore all coefficients except those with s = 0, 

±l, i.e., S = 1. With these assumptions Eq. (2.12) can be re-

presented by the eigenvalue matrix equation (shown explicitly 

for the special case N = 3 in Fig. B-1): 

(M - A.)C 0. (El) 

By expanding in the usual way about column and row elements we 

can get an analytic expression for the determinant of M - A. (=D) 

accurate to order f2. If we define 

then 

D(A.) = 

N 

IT (mk + m - A.)(mk - A.)(mk - m - A.), 

k=l 

r 
I N 

.t1 Lm!, 
+ -

T(A.)~ 1 -
'); ~jj,l3jj' 
L-.. A.)( m ~ +ffi - A.) 

L j=l J = J J 

I 
" + - l i 

~jj rl3jj t I \ 
+ -( (J.)-J-~ -, ---->::.A.""'") -( m"":::"::: '---m---A.-) ( 

J~j 

(a) Solution of Eq. (El) to °zero-order in the parameter 13. 

(B2) 

In zero-order the eigenvalue condition, D = 0, reduces to 

Thus the zero-order eigenvalues are given by 

.. 
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Fig. B-1. An explicit example of Eq. (Bl) for the special 

case N = 3· 
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+(J.) 

A.[O] , i = 1, ••• J N. (B3) 

- (J.) 

" 

Following the discussion of Chapter II.E we choose as our solu-

tion the case 

The components of the zero-order eigenvector can then be found 

from Eq. (Bl) (with ~ = 0)' and are given by 

(b) Solution of Eq. (Bl) to first order 

Setting A. (J.)! + A. ~ 1] r A. ~ 1] = 6( ~) 1 the eigenvalue condition 
1 1 L.l. 'J' 

D = 0 becomes 

N 

A.i l ] (-a:?) IT 

k=l 
k~i 

(B4) 

If the energy levels are nondegenerate, i.e., if m'. ~ 0 and if 
.In 

Imki ± (J.)I » '~~) for all k ~ i, then 

(B5) 

and A.. di.ffers from A.~O] by at most ten:lS quadratic in ~. On 
1 1 

the other hand, if ~ik = o for some value of k, then A.~l] can be 
1 

finite and the two levels i and k will exhibit a linear Stark 

shift. If Imki ± ill/ ~ '~':(~), perturtation theory does not hold 

(see discussion at end of Chapter II.F). Continuing with the 

.. ' 
I 
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nondegenerate case, we calculate the first-order correction to 

the eigenfunctions. Substituting A. = m~ intoEq. (B1) yields 
l. 

. Ci [1] = {~( (:)..2 ) 
+i-l./ fJ - ,+ . 

\ 

--± (' )C i [lJ '-{"(A2) Pj i + m j i ± m j ,~l = i.T fJ • 

> 
i 
) 

, Ci L1J IV A2) mjijO = V\f-' 

j -I i 

Equations (B6) plus the normalization condition 

yield to order 13: 

(c) Solution of Eq. (Bl) to second-order 

(B6) . 

(B7) 

[21 r [21 <. 2-J Setting A. = m~ + A..~" LA.. - =J (13 ) , the eigenvalue con-
l. l. l. 

dition D = 0 becomes to second order in 13: 

N N N 

_m2A. .[2J 2 2 '\"' 2 ,---, 2 2 
(~i 

\ 

(~i o = IT - m )~i - ) m .) - m )~i l. I 
~_-J .' •. oJ 

k=l j=l k=l 
k-ll j-ll k-ll,j 

(BS) 

+ * -Finally, noting that ~ij) = BijJ we get for the second-order 
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correction to the eigenvalue 

(B9) 

•• I 

• 

. .. 
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C. The Microwave System--Calculations and Measurements 

Figure C-l shows a cutaway view of the microwave cavity and 

the quartz Geissler tube. The cavity is machined in a split 

block of brass and is gold-plated on the inside to enhance con-

ductivity and to retard oxidation. The viewing slit has been 

constructed parallel to the direction of current flow so as to 

least disturb the·operation of the cavity. The round holes 

through which the Geissler tube enters and leaves the cavity are 

below cutoff so as to be nonradiating. The various field and 

current directions for the-TM010 cavity mode are noted on the 

figure. During operation dry nitrogen flows through the cavity 

and serves to cool the Geissler tube and cavity as well as fur-

ther diminish any oxidation which might otherwise occur. 

The presence of the quartz tube and its contained plasma 

will change the normal modes of the cavity. Irigeneral, for a 

cylindrical system with interfaces between two dielectrics, 

the boundary conditions 

EEn continuous, Et continuous 

Bt/~ continuous, Bn continuous (Cl) 

across the interface do not allow the usual transverse magnetic 

and electric type modes; i.e., in general, the normal modes of 

a compound system of several dielectrics, even if it is a cylin-

drically symmetric system, will have both a component of Ez and 

B. However, for those modes which in the simple cavity case have z 

azimuthal symmetry, i.e., m = 0 in the usual notation TM or mnp 

TErnnpJ there are co:::,:::,es~cnding TE and 'I'M modes which simultane-
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Fig. C-l. Schematic view of the microwave cavity and the quartz 

Geissler tube. 
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ously satisf'y all the boundary conditions. 54 

These modes can be calculated by arguments similar to those 

used for the simple cavity (the notation used in the following 

is the same as Jackson, chapter 8). Consider modes of type TMO . . np 

.(azimuthally symmetric) for a compound system of nonpermeable 

dielectrics (~ = 0). Within each dielectric region characterized 

by a permittivity E. the fields can be derived from the longi­
~ 

tudinal electric field E , where E is given by z z 

where EO(P) satisfies the Bessel equation 

1 dEO / 2 
+ - -- +;)'i 

p dp \ 

2-, m \ 
- _I E 

2; 0 
p i 

with m = 0, and where )'i
2 

is given by 

0, 

ill 

k=­
c 

and n. = .~ is the index of refraction of region 
~ l 

I.' , 
~ . The z 

dependence has been chosen to explicitly satis~J the boundary 

conditions at the ends of the cavity and must be the same in 

(C2) 

(c4 ) 

each dielectric region to satisfy the boundary conditions at all 

pOints along the interfaces. Similarly the frequency ill (or the 

wavenumber k) must be the same in each dielectric region to 

satisfy the boundary conditions at all times. It is easy to show 

that with the above expre3sion for E the bouncary conditions 
z 
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given in Eq. (Cl) are equivalent to the two conditions: 

EO(P) continuous across a boundary, and 

dEo €i 
--- -:2 continuous across a boundary. 

dp "i 
(C5) 

Note that for the case, p = 0 (no variation of the fields in the 

z direction), the second boundary condition becomes simply 

dEO/dp continuous. 

The solutions of Eq.(C3) are Bessel functions of order m = O. 

Specializing to the specific case shown in Fig. C-l, the solution 

for EO( p) in each of the three regions will be given by: 

Region I: EO(P) = EO JO(nlkp) 0 < P:: PI 

Region II: EO( p) = EoL AIJ O(n2kp) + BI No(n2k P)] Pl :: P < P2 

Region III: EO( p) = EolA2JO(n3kP) + B2NO( n3kP) J P2 S P S a, (c6) 

where J and N are, respectively, Bessel functions of order -m m m 

of the first and second kind. Use of the requirement of a finite 

valued solution at the origin has eliminated a term proportional 

to NO in region I. EO represents the value of the electric field 

on the axi s, 1. e., for P = O. There are five. unknowns in Eqs. 

(c6), Al , Bl , A2 , B2, and k, whose values are to be determined 

by the five boundary conditions: 

JO(nlkPl ) ;:: AIJO(u2kPl) + 131No(n2kp1 ) 

-n1kJ1 (n1kP1 ) = -n2
K L A1J1 (n2KP1) + B1Nl (n2

KP1)] 
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r . " J -n2kLAlJl(n2kP2) + BlNl(n2kP2) 

A
2

J O(n
3
ka) + B2No(n

3
ka) = O. (C7) 

We have numerically solved Eqs. (C7) for the case: 

n = 1.0, n2 = 1. 94 (index of refraction of fused quartz35 ) , 
1 

n ~ 3 - 1.0, PI = 0.0203 cm, P2 = 0.0425 cm, and P3 = 0.305 cm, and 

for the TMOIO mode. The resulting calculated mode frequency is 

34.81 GHzj this is less than the resonant frequency of a simple 

cavity with the same outer dimensions, 37.62 GHz, and within 1% 

of the ~easured frequency 35.17 GHz. Figure C-2 shows the axial 

electric field dependence with radius and compares it to the case 

of a simple cavity. Both curves are normalized to the same stored 

( c8) 

where V is the cavity volume and T} is a factor of order 1 f.for 
L 

2 "1 
the simple TMOIO mode T} = J l (2.405) = 0. 2695_" As can be seen 

from the figure the effect of the quartz is to flatten the pro-

file near the axis of the cavity, to steepen the profile near 

the edge, and to increase the peak electric field on the axis by 

3.4%. The calculated electric field variation over the inside of 

the Geissler tube is 0.5%. Similar calculations for the case of 

a plasma in the Geissler tube for which El = 1 - (l)p 2/(j} have been 

carried out, but for densities of interest for this experiment 

the solution is essentially that given in Fig. 3-2 and the fre-
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Fig. C-2. Axial electric field dependence on radius for the microwave 

cavity shown in Fig. C-l in the TM010 mode. 
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quency is essentially unchanged from the no-plasma case (although 

the frequency difference can be used to measure the electron 

density of the plasma discharge; see below). 

We have verified the z dependence of the axial electric field 

expected of the TMOIO mode by passing a small qUartz plug down 

the inside of the Geissler tube and measuring the frequency shift 

with pOsition of the quartz plug. The results are shown in Fig. 

C-3. The theoretical profile expected for a z-independent electric 

field can be calculated from the perturbation expression for the 

frequency shift: 36 

J EOEO 2(1 -
2 

n )dv 
(1 - n2)VObj M V 

-= = , 
f 16 Uo 2VT) 

where n is the index of refraction of the plug and V b. its 
. 0 J 

volume. This expression predicts that the frequency shift will 

be proportional to the length of the plug if the area is held 

constant. This d~pendence was checked by using plugs of differ-

ent lengths and the expected result was seen. If the field was 

truly independent of z, then the expected frequency shift would 

be zero for the plug located outside the cavity, would decrease 

linearly with position to the value given by Eq. (C9) as the 

plug entered the cavity, and remain constant thereafter. Figure 

C-3 shows small deviations from th~s ideal picture. The finite 

M, even when the plug is outside the geometric boundary of the 

cavity, indicates that some microwave field escapes out of 
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Fig. C-3. Measured resonant frequency of the microwave cavity as a 

function of the position of e perturbing quartz plug inserted 

into the cavity. 
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the cavity through the end holes. The unexpected behavior inside 

the cavity could have several causes: perturbations of the field 

distribution caused by the presence of the plug, a non-uniform 

cross section of the Geissler tube, or the specific way the cavity 

is excited; the coupling iris is on the midplane of the cavity 

(see Fig. C-l). The predicted maximum frequency shift can be 

calculated from Eq. (C9) and is 9.8 x 107 Hz for the plug used 

in the experiment. This compares to the measured value of 

8.1 x 107 Hz in Fig. C-3. 

To conclude this section on the microwave system we will 

calculate the electric field which exists in the discharge region 

inside the Geissler tube (region I in Fig. C-l) during steady 

state operation of the cavity witp an input power PO. As dis­

cussed above, this electric field is essentially EO' which is 

related to the stored energy in the cavity by Eq. (C8). In 

steady-state operation the stored energy is related to the input 

'power by the unloaded 'Q', QO' of the cavity:37 

(C10) 

Using standard microwave techniques, Q
O 

can be determined by 

measuring, near resonance, the VSWR (voltage standing-wave ratiO) 

of the cavity as a function of frequency.38 Equivalently, since 

1 + .jp Ip. 
VSWR = :-_-;;:r:::;;;;::1.:-

1 - ~P Ip. r 1. 

, (Cll) 
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where Pi is the power incident on the cavity and Pr is the power 

reflected by the cavity, one can measure P Ip.. FigUre c-4 shows 
. r ~ 

such a measurement for the cavity used in this experiment and for 

the case of no discharge. The data was obtained by using a direc-

tional coupler to monitor the power reflected from the cavity. 

At each frequency the incident power was measured by detuning 

the cavityw1th a piece of copper foil injected through the view-

ing slit: This procedure 'shorts out' the cavity and the incident 

power is totally reflected. From the data of Fig. c-4, the cavity 

coupling constant .t) (equal to the VSWR at re sonance) and the loaded 

Q, ~ (equal to the resonant frequency divided by the frequency 

separation between the half-power points) can be determined. QO 

is then given by (1 + (3)Qt: 

t) = 1.27 

~ = 1250 

% = 2830. 

For comparison, in Fig. C-5, we also present a second measurement 

of the loaded Q, performed by observing the power radiated out 

the viewing slit as a function of frequency. Figure C-5 contains 

two curves, one with the discharge on and one with the discharge 

off. The observed frequency separation of the two curves arises 

mainly because of heating of the quartz tube and cavity walls by 

the discharge. The loaded Q calculated from the separation of 

the half-power points is ~ 1400 for both curves and indicates 

that the plasma discharge has little effect on the Q (at least 
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Fig. C-5. Microwave power radiated from the viewing slit (Fig. C-l) 

of the microwave cavity versus frequency for two cases: 
I 

0, discharge on; and oJ discharge off. 
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for this set of discharge parameters). Therefore we may use QO 

calculated above for the case of no plasma discharge'to calculate 

EO is a function of the input power. The result is 

EO (kV/cm) = 2.14 I'·..jpo {watts}. (C12) 
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D. Discussion of the Optical System 

. Figure D-l shows a detailed schematic of the optical system 

used in this experiment. An initial 3.9 cm diameter achromatic 

lens is used to focus light coming from the viewing sl,it of the 

microwave cavity onto the entrance slit ofa half-meterJACO Ebert 

monochromator. The light is diffracted by a 1200-lines ruling per 

rom grating, and a narrow wavelength band is selected by the exit 

slit for detection by an EMI 62568 photomultiplier tube located 

just beyond the exit slit. The spherical mirror serves to image 

the entrance slit onto the exit slit and to transform the diver­

ging rays coming from the entrace slit into a parallel beam suit­

able for Fraunhofer diffraction. The slit height (both entrance 

and exit) can be continuously set at any value up to 1.35 em. 

The wavelength selected for detection can be varied either by 

rotating the grating (coarse adjustment) or by rotating a quartz 

plate mounted just on the monochromator side of the exit slit 

(fine adjustment). A more detailed description of the operation 

of this latter method of tuning is given below. 

A system such as shown in Fig. D-l has several sources of 

'instrumental' broadening which must be considered in calculating 

the 'best possible 'resolution obtainable USing the apparatus. 

Those being discussed below are: (1) the natural grating resolu­

tion, (2) finite slit width broadening, (3) diffraction due to a 

finite numerical aperture, (4) astigmatism, (5) curvature of the 

image' of the entrance slit at the exit slit, and (6) an offset of 

the focal point due to the quartz plate used to do the fine wave-
, .. 
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Fig. D-l. Schematic view of the optical system. 
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length tuning. other sources of broadening due to the light source 

are discussed in Appendix E. 

We begin by considering the apparatus of Fig. B-1 for the 

case of monochromatic light of wavelength ~ incident on the 

entrance slit. We assume the the grating angle e is such that 

light of wavelength ~ which passes through the center (which we 

will designate as z = 0) of the entrance slit and is incident on 

the grating at the corresponding angle e and is diffracted into s 

an angle e , also passes through the center (which we will desig­
p --

nate as x = 0) of the exit slit. e, e , and e must then satisfy s p 

the usUal grating equation: 

~ (sine. + sine) = ~d sine cos80/2 = m 
~ ~ p ~ 

(Dl) 

where d is the spacing between rulings on the· grating, m is the 

order of the grating maxima" 80 is the 'included angle', and 

e .. 
s 

The dispersion D giving the displacement at the exit slit cor-

responding to a unit change in the wavelength ~ is then given by 

dx de mF 
D = -= FJ= , 

~ dA d cose p 

(D2) 

where F is the focal length of the spherical mirror. The intensity 

I(x,z) at a position x (or for the diffracted angle 8 ) of the exit 
p 

slit due to unit intensity of light of wavelength ~ incident on 

the entrance slit at a position z (and corresponding incident 



angle e is given by:3l 
s 
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I(x,z) 
1 sin

2
(N1TO ') 

= ,5' = ~ (sine + sine) - ~ (sine + sine) 
N (m; 1)2 "". s p "" s p 

= ~ (cose 6e + cose 6e ) 
"" ssp p 

d - - _ d 
= XF (z coses + x coxep ) = >-'F (Zl + x') 

(D3) 

where 6e = e - e ,6e = e - e , N is the total number of s ssp p P 

rulings on the grating, and where we have used the property of 

a spherical mirror that for a small displacement IZI the change in 

reflected angle ~e is given by 
s 

z 
F 

and similarry for x and t8. In the last expression we have 
p 

written I(x,z) in terms of Zl = X cose and Zl = Z cose , which 
p s 

are the slit positions as seen from the grating. Equation (D3) 

implies a width W (full-width at half-maximum intensity) given g 

by 

o.88>-.n 
mN 

which places a limit on the resolution obtainable using the 

spectrometer. 

(D4) 

The total intensity of light of wavelength >-. received by the 

photomultiplier will be given by multiplying I(x,z) by the inten-

sity distributi0n at the entrance slit J(z) and integrating the 

resulting expression over the entrance and exit slits, Le., 

ove r x arid Z: . 
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(D5) 

The above expression for the intensity holds when 'geometric 

optics' holds, i.e., for the cases when we may calculate the path 

of a photon through the spectrometer by ray-tracing techniques. 

We may put Eq. (D5) into a more general form by defining the two 

quantities: IE(Z'), the 'effective' transmission of the entrance 

slit, and Ix(x'), the 'effective' transmission of the exit slit. 

Then, using Eq. ·(D3) to write I(x,z) in terms of the single vari-

able ~ = x' + z', Eq. (D5) can be written as 

I(>..) = J <lx' rx(x') J 00 dz' ~(Z')I(X' + z') 

-00 -00 

where we have now written I(~) as the integral of a grating func-· 

tion I(~) containing the properties of the grating and a slit 

function S(~), 

sw _ JOO Ix(x')\:« - x')<lx" (D6) 

-00 

containing the properties of the other elements of the spectrometer, 

i.e., the slits, mirrors, lenses, and masks. For the simple geo-

metric optics case of Eq. (D5), ~(z,) is. the intensity distribu­

tion at the entrance slit, and :sc(x') is equal to unity over the 

exit slit and zero elsewhere. 

" 
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The general problem of the form of the slit function has been 

extensively discussed in the literature. 39,40 The problem of an 

optical system illuminated through a slit was studied theoretically 

by von cittert
41 

who concluded that the image of the entrance slit 

when viewed through the optical system depended on two factors: 

(1) the type of illumination of the slit, coheren~ or noncoherent, 

and (2) the width W of the slit relative to WD, the distance from 

the peak to the first diffraction minimum of the optical system. 

For the case of noncoherent illumination of a narrow slit, i.e., 

one satisfying 

(D7) 

(written in terms of the If I number of the optical systerr: = focal 

length/smallest limitirtg aperture), the image of the slit is the 

single slit diffraction pattern of width W
D

• In this limit an 

increase of the slit width increases the peak intensity of the 

pattern but does not change the width of the pattern. In the 

wide-slit limit, 

(D8) 

the image of the slit is the geometric image of the slit ·found by 

ray tracing through the optical system. In this limit an in-

crease in width of the slit produces a correspondip~ increase in 

the width of the image of the slit; the peak intensity remains 

nearly constant, oscillating slightly about its average value as 

the slit width is increased. The case of coherent illumination 
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follows essentially the same pattern but with the following varia-

tions: (1) the diffraction limit occurs for wider slits, the 

corresponding condition to (D7) is W < W, (2) for the geometric 
'" 

limit the image width is somewhat less for the same slit width and 

the oscillations in the peak intensity are significantly greater. 

The conditions for noncoherent versus coherent illumination are 
. 42 

discussed by Stockbarger and Burns. 

The discussion above has been general,pertaining to either 

a general optical system or to spectrometers. We now consider 

the type of spectrometer used in this experiment. Von Planta43 

bas measured the slit function of an Ebert-type spectrometer for 

both infrared and optical spectral lines by replacing the grating 

by a mir.ror. His results showed agreement with the calculations 

of von Cittert. For thin slits the 'slit function was diffraction 

limited to width W
D 

and for wide slits the slit function width in­

creased in proportion to the slit width. The slit function shape 

changed from the expected diffraction pattern :for u == W/W == 0.5 c 

to a nearly Gaussian type function for u == 1-2 and finally to 

the triangular function expected in the geometric limit for u == 3. 

These results did not depend on the wavelength of the line used in 

the experiment. Fastie
44 ,45 has extensively studied Ebert-type 

spectrometers and has noted two effects which lead to an additional 

broadening of the instrumental profile. The first is astigmatism, 

which produces an hourglass shaped image of the entrance slit at 

the exit slit. This image has zero width at the center (length-

Wise) of the exit slit and reaches its maxiInum width at the ends 
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oftbe slit, where the image width is given by 

0.1 L 
W = a . f2 

, (D9) 

vbere L is the slit length. The second broadening effect is due 

to a curved image of the entrance slit at the exit slit due to 

the use of a plane grating with spherical mirrors. The sagitta 

of this curve is given by 

(D10) 

We are now in a position to discuss the resolution of the 

spectrometer used in this experiment. The relevant experimental 

parameters are: 

(1) m grating order = 1 

(2) n number of ruled lines/mm = 1200/mm 

(3) w grating width = 5.2 em 

(4) F focal length ~ 50 em 

( 5) L slit length ~ 1 mm 

(6) f f number ~ 10 

(1) N= nw total number of rulings = 62 400 

(8) W slit width .=::! 8 micronG 

(9) ~ = l/D reciprocal dispersion =::! 16 ~/mm. 

We consider a wavelength of 5000~. From Eqs. (D4), (D7), 

(D9), and (D10): 
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w = 4.4 microns or ~G = 0.071 R 
G 

W - 8 microns ~ = 0.13 R 

w = D 5 microns ~ = 0.08 R 

WA = 1 micron ~. = 0.016 R A 

We = 0.16 micron ~e = 0.0025 R. 

From the above values for the widths, we can see that astig-

matism and curvature effects can be ignored in calculating the 

instrument function of this spectrometer. Furthermore, since 

W/Wd = 1.6, geometric optics gives a reasonable approximation to 

the exact slit function width (although the shape of the function 

itself is more Gaussian). In Fig. D-2 we show an attempt to try 

to fit an instrument function calculated using Eq. (D3) and the 

assumption of geometric optics for the slit function to a meas­

ured profile of the neon spectral line at 5852.49 R. The fit was 

performed using PISA (Appendix G) with the average slit width and, 

the total number of rulings N used as parameters and the area and 

peak amplitude used as constraints. The resultant best fit value 

for the average slit width was 4.1 microns compared to the meas-

ured values, 4.4 microns for the entrance slit and 4.0 for the 

exit slit. These latter values were obtained by using a helium-

neon laser to illuminate the slits and then measuring the minima 

of the resultant diffraction pattern. The best fit value for N 

was 64 400 compared to the calculated value of 62 400. 

In the spectrometer shown in Fig. D-l the selection of a 

spectral line for study.was accomplished by adjusting the grating 
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Fig. D-2. For legend, see page 133a. 
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Fig. D-2. Comparison of a measured neon spectral profile with the 

spectral profile calculated assuming a monochormator with an 

. entrance- and exit-slit width of 4.1 microns and diffraction 

due to a plane grating with 64 400 ruled lines. 

( 
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angle e until the line was detected ~ the photomultiplier, i.e., 

until Eq. (Dl) was satisfied. However, for the study of the line 

shape of a particular spectral line a second tuning mechanism was 

employed which provided an accurate and reproducible measurement 

of the line profile. This mechanism, shown'in Fig. D-3, consisted 

of a quartz plate of thickness t which 'was mounted. on the mono-

chromator side of the exit slit and which was spring-loaded 

against the shaft of a micrometer. Movement of the shaft changed 

the tilt of the plate (the angle ~) which in turn changed the wave-

length detected at the photomultiplier. 

Before discussing the figure we will make the following defi-

nitions: We will consider a narrow bundle of converging rays 

incident on the quartz plate from a spherical mirror which, if 

there were no plate, would be focused at PO' In the presence of 

the plate there are two effects: The primary effect is a shift 

of the focus from Po to a new point Pl' Secondly, because of 

spherical aberration caused by the flat plate the fopus will no 

longer be perfect, i.e., not all the rays in the bundle will 

• 
intersect at the same point, hence the focus will be character-

ized by some finite width. However, if the bundle is sufficiently 

narrow, then this width will be much less than the exit slit width 

and can be ignored. We define a 'central ray' in the bundle to 

be the ray which originally came from the center of the grating; 

other rays will be referred to as 'lateral rays'. The angle 
i 

between the central ray and the perpendicular to the quartz plate 

will bet, and ~' will denote the angle to a typical lateral ray. 
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Fig. D-3. Schematic view of the quartz plate used for 'fine 

tUning' the monochromator. 
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BY definition ~V = V' - V will be the angle between the lateral 

ray and the central ray. D.x will be the shift of the focus in the 

direction of the slit width and ~ will be the shift of the focus 

perpendicular to the plane of the slit. The angle ¢'will be the 

angle of refraction in the quartz (index of refraction n) corre-

sponding to an angle of incidence V'. The two angles are related 

by 

sinv' = n sin¢'. 

'For a lateral ray at an angle V', D.x and ~ are given by 

A~ -_ t . ,I, l"" 1 cosv 1 
UA. s~n'l' - ~J n cos)" 

(s' - s) cosv - s' sinv 
~ = taM1jr 

[ 
cos1jr ( 2 2¢)"1 

~ t cosv 1 - n cos¢ 1 - tan 1jr + tan I 
J 

where the latter expression for ~ holds in the limit ~1jr « 1 • 

. Of more experimental interest than D.x versus 1jr is an equation 

(Dll) 

(D12) 

relating the change in the micrometer setting M to the shift in 

wavelength detected at the exit slit. From Fig .. D-3 we can see 

that M is related to V by (X is defined in Fig. D-3) 

tan1jr = Mix. 

Thus 

-= 1 
dM 

cos1jr 

n cos¢ 
+ sin1jr tan1jr 

3 cosv \ 
__ I (n2 

n cos¢.' 

(Dl3) 



-137-

where we have used the reciprocal dispersion ~ = l/dispersion 

to relate tsx. to &. The quartz plate serves as a useful wave-

length tuning device when operated for * «1. In this limit 

Eqs. (D12) and (D13) have the limiting forms: 

[ 
2 2 '21 

~ = tel - lin) 1 + V (4 + 4n - n )/2n J 

2 
where we have kept terms to order * . 

(D14a) 

(D14b) 

(D14c) 

The wavelength tuning properties of the quartz plate can be 

summarized as follows: We assume that the angular divergence of 

the lateral ray~ from the central ray is so small that spherical 

aberration does not lead to a significant broadening of the focus 

and consequent loss of resolution. We also assume that for the 

purposes of this discussion the optical system has been. adjusted 

so that for * = 0, light of wavelength ~ is focused at the center 

of the exit slit. Then a displacement of the micrometer by ~ 

will lead to a displacement of the focus in the direction of the 

slit width and a consequent shift of the wavelength & measured 

by the photomultiplier. The calibration constant of the quartz 

plate (d~/dM) is essentially constant with only a very weak de-

pendence on 1.Ir and the wavelength. The error introduced into the 

measurement of the wavelength due to the dependence of ~/dM on * 
can be estimated from Eq. (D14c). For typical line profiles the 

maximum change in the micrometer setting was less than or eq~l 
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to ~.l inch. Using t = 7/16 in., ED = 16 R/mm, and X = 2 in. 

yields a maximum value of '" = 0.05, and a maximum error in dA/dM 

of 0.06% of the value at '" = O. 

In Fig. D-4 we present experimentally determined values of 

~/dM versus wavelength for the equipment of Fig. D-l. These data 

were taken by determining the shift in the micrometer necessary 

to just tune between two closely separated lines whose wavelength 

sep:l.ration was known. The figure includes values of cD../dM found 

from neon, argon, and krypton spectral lines. Using Eq. (D14) 

a.nd knowledge of the index of refraction of quartz as a function 

of ~46 we can determine the value of the reciprocal dispersion at 

any wavelength. From Eq. (D2) we see that the reciprocal disper-

sian is a function of waveleneth and the pa~eters d (gratir..g 

sp:l.cing), F (focal length), and 80 (included angle). We have used 

PISA (Appendix G) to fit the theoretical expression (D14) to the 

measured curve of Fig. D-4. For the purpose of the fit, 'd' was 

aSsumed to be equal to 8.333 x 10-5 cm (1200 rulings/mm). The 

resulting best fit values of 80 and F were 50 16' ~nd 50.4 cm, 

respectively, which agreed favorably with the measured value of 

a eO = 5 9', and the expected focal length of ~ 50 cm. 

Finally, in the discussion of the quartz tuning plate, we 

note that the plate is a further source of spectral line broaden-

ing. This occurs for two reasons: (1) the previously mentioned 

spherical aberration which arises because the different converg-

ing rays have different path lengths in the quartz, and (2) the 

movement of the focus in the direction perpendicular to the exit 
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Fig. D-4. For legend, see page 139a. 
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Fig. D-4. Measured quartz plate calibration curves: dA is the 

change in wavelength observed at the exit slit for a change 

in micrometer position of dM. 

, . 
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slit as the micrometer adjustment of the plate is changed. We can 

estimate the magnitude of the first effect by considering the next 

higher-order.corrections to the last expression in Eq. (D12). 
, 2 . 

These can be shown to be of the order t(~) where, as above, ~ 

is the angle between the central ray and a given lateral ray. 

Defining ~' equal to the maximum-such ~, the focus has a char-

acteristic depth of , 

t(M,)2 = 2.5 x 10-3 cm = 25 microns, 

where we have set De' equal to its measured value, 0.05 radians. 

This focal depth corresponds to a spectral line width Ws at the 

exit slit of 

·2 
Ws = t(68') 2tan(~e) ~ 2.5 microns, (D15) 

a value which does not significantly increase the broadening 

already produced by previously discussed methods. 

We can estimate the magnitude of the second effect by noting 

that if the monochromator is set so that light of one wavelength 
. . 

is focused in the plane of the exit slit, then turning the quartz 

plate to another position (to measure the intensity at 'another 

wavelength) moves the focus out of the plane of the exit slit and 

hence broadens (or equivalently, decreases in amplitude) a spec-

tral line which happens to be centered at the new position. The 

focal depth and an associated spectral line width W
Q 

correspond­

ing to a maximum change in micrometer of 0.1 in. can be calculated 

from Eq. (D14b). The results are 
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r 
\ 3 
depth = 1.6 x 10- cm = 16 microns, 

w 
Q 

1.6 microns. (D16) 

This value, though small, does lead to an observable effect, pri-

marily because the effect changes with quartz plate orientation. 

In Fig. D-5 we show a measurement of the peak intensity of the 

same neon spectral line as a function of micrometer position. 

For each quartz plate position, the monochromator was tuned to 

the neon line by rotating the grating. As can be seen, the 

measured intensity was peaked for a micrometer position ~ 350, 

and fell off symmetrically on both sides. The solid line repre-

sents a line fitted to the data for use in data reduction. 

As the final topic in this section on the optical system, 

we present a measurement of the relative attenuation of the two 

orthogonal polarizations of light (perpendicular and parallel to 

the slit). In Fig. D-6 we present a plot of the attenuation, 

factor 

(D17) 

vs. wavelength. These data were obtained by illuminating the 

entrance slit of the monochromator with an linpolarized source 

(in this case a neon Geissler tube) and measuring· the intensity 

of the two polarizations at the exit slit. The relative attenua-

tion data were used to calculate the spectral profiles which were 

compared to the experimentally measured profile s. 
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Fig. D-5. For legend, see page142a. 
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Fig. D-5. Change in the measured peak intensity of a spectral line 

profile as a function of quartz plate angle relative to the 

central-ray path within the monochromator. For each plate angle 

(or equivalently, micrometer position) the grating was adjusted 

to keep the peak of the line at the center of the exit slit, 

eliminating any intensity variation due to line shifts. 
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Fig. D-6. Measured relative transparency of the optical system 

Fig. D-l) to the two orthogonal polarizations of light as a 

function of frequency. 
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E. The Plasma Discharge and-a Further Discussion of Line Broadening 

In this section we will discuss the plasma discharge. For 

simplicity we will discuss the case of a helium discharge. 

We start by assuming that the neutrals in the plasma are in 

thermal equilibrium at the temperature of the inside surface of· 

the quartz Geissler tube. We can estimate this temperature from 

the measured temperature on the outside surface (150-l60oc) and 

by assuming that all the electric power supplied to the discharge 

in the capillary region is dissipated due to heat conduction 

through the quartz capillary walls. The dissipated heat (dQ/dt) 

is related to the temperature difference t:.T between the inside and 

the outside surfaces of the quartz tube by 

dQ 
dt = K,A6T 

t 

where K is the thermal conductivity of quartz (1.7 watt/m~deg C at 

2000 C),47 A is the conducting area (A = 2nT£, where r is the tube 

radius and £ is the tube length)} and t is the thickness of the 

quartz capillary wall. Setting dQ/dt = IV = IE £} where E is the z z 

longitudinal electric field (V = E £)} yields (we set t ~ r ~ 0.2 z 

mm) 

IE ~ 
Z 0 

t:.T == - == 10 C} 
2:rK 

where we have used for E the value of 270 V/cm (see below)} and z 

for I the measured value of 3.5 mAo The neutral temperature Tn 

is then 

.. -

.: 

! 
(. 
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This value will,be an upper estimate to the neutral temperature 

since the electric power will be dissipated by radiation as well as 

by conduction out the ends of the tube. However, since these 

effects would only affect ~, which is much less than the outside 

temperature of the Geissler tube, the calculated neutral tempera-

ture would not be significantly affected. 

We can now calculate the neutral density from the gas pressure 

(p ~ 2 torr) and the above calculated neutral gas temperature: 

n n 
p 4 16, 3 = kT ~ .3 x 10 em. 

n 

We can measure the electron density (ne) of the plasma by 

measuring the shift in resonant frequency (6f) of the microwave 

cavity due to the presence of the plasma. Measurements show that 

6f = 0.003 GHz, for a cavity resonant frequency (f) of 35.2 GHz. 

The plasma frequency (and hence n ) can then by calculated either 
e 

from Eq. (C9) or by using the numerical method outlined in Appendix 

C (Eq. C7, etc.) to calculate the index of refraction (nl ) of the 

plasma necessary to account for a frequency shift of 5f. In either 

case the index of refration is assumed to be given in terms of the 

plasma frequency (Wp ) by 

2 
n = 1 -

2 
W 
..L 

2 
W 

Both methods yield an electron density of 
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Using the measured current density (j ~ 2.7 A/cm2
) we can cal­

culate the longitudinal drift velocity of the electroris (u ): e 

u = --j-- ~ 8.5 x 107 cm/sec. 
e ene 

This velocity corresponds to a translational energy of 

1 2 
- m u ~ 2 eV. 
2 e e' 

For an electron traveling at a velocity u we can calculate the e 

electron-neutral collision rate (ven) using standard expression 

(see Ref. 48, p. 50): 

9 I 07-..:°K' v = 2.3 x 10 I '- ..I \. \ ~ 
en p \ Tn J 

We can estimate the longitudinal electric field in the follow-

ing way: We assume that an electron has on the average no longi-

tudinal velocity after a collision with a neutral; the electron 

then accelerates for a time t due to the longitudinal electric 

field (E ) until its velocity is equal to two times u (average 
z e 

velocity equal to u ) at which"time it suffers another collision 
e 

with a neutral. Since the mean time between electron-neutral col­

lisions is (v )-1, E , u , and v must satisfy 
en z e en 

2mu = eE (v )-1 
e z en 

or 
2muv 

e en / Ez :: ----::::: 270 V cm. 
e 

i'-· 

I] 
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We next note that the mean path length between electron-neutral 

collisions for electrons traveling at a velocity of u is given by e 

u 
== ~ ~ 0.3 mm 

v en 

and hence is greater than the inside diameter of the Geissler tube. 

As a result, electrons which are drifting with a mean velocity ue 

along the Geissler tube and which undergo collisions in which a 

significant fraction of their longitudinal energy is transformed 

into :perpendicular energ.fwill strike the inner surface of the 

Geissler tube and be lost to the plasma. This will 'leave the 

plasma positively charged with respect to the Geissler tube wall 

(since the ions are less mobile than the lighter electrons) setting 

up an (ambipolar) elect-ric field which will te!!d to retain the 

electrons and to accelerate the ions toward the tub~ wall. The 

properties of this type of physical situation have been theoreti-

cally studied and discussed in Ref. 49. It is shown there that 

the mean value of Er is of the order of kTe/er.ThiS is consistent 

with the observed dc electric field of about 500 V/cm.because 

"kT " must be several times larger than -2
1 m u 2 (::::: 2 eV), and e e e 

-2 r = 2 x 10 cm. Of course, under the existing conditions of 

large nonuniform fields and small tube diameter) where the energy 

gained between collisions is comparable to the mean energy) the 

distribution cannot be assumed to be nearly Maxwellian, and the 

analysis becomes exceedingly complicated. Thus no attempt is made 

here to understand the ionization balance and other properties of 
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the discharge column in detail. 

We now consider the ions. Charge neutrality requires that 

The temperature of the ions will be nearly that of the neutrals, 

i.e. 

kT. ~ kT ~ 0.04 eVe 
1. n 

This latter relation follows since the massive ions can gain only 

very little energy before colliding with a neutral, and because 

the similarity between the mass of the neutral and the ion makes 

energy exchange between the two particles in a collision very 

efficient. 

Finally, in this section we will discuss t,vo broadening mech-

anisms which affect the width of the line profiles observed in this 

experiment. The first, thermal or Dopper broadening, arises due 

to the motion of the neutral atoms parallel to the direction of 

observation. The full-width at half-maximum (FWHM) of a line 

which is only Doppler broadened can be expressed by 

~ = 2(ln 2)1/2 ~ 
~ c ' 

where v is the particle velocity parallel to the direction of 

observation, and where c is the speed of light. In the following 

table we show the expected Doppler FWHM's for the spectral lines 

observed in this experiment for thermal velocities (v) correspond-

ing to T = 0.04 and 0.10 eVe 
n 

~ I 

• 



Line T = 0.04 eV T = 0.10 eV n n 

He 4922 0.037 .It 0.056 R. 

He 4388 0.034 ~ 0.053 .It 

He 4144 0.032 .It 0.050 .It 

Ho; 0.101 .It 0.159 R 

Hf3 0.075 ~ 0.118 .It 

HI' 0.067 .It 0.105R 

% 0.063 R 0.100 R 

The second broadening mechanism is the Stark effect due to 

the dc electric fields calculated above. For helium, the Starl~ 

effect is of second-order and the calculated line widths are much 

less thah those due to instrument broadening, and hence can be 

ignored. For hydrogen, the line widths due to St~rk broadening 

can become comparable to instrument widths, and are listed below 

for the cases of Edc = 0.5 kV/cm and 1.0 kV/cm The former value of 

electric field is the measured value for this experiment, and was 

determined from the measured Stark broadening of HI' and He with no 

applied microwave electric field. 

Line Edc = 0.5 kV/cm Edc = 1.0 kV/cm 

Ho; 0.025 .It 0.05 .It 

Ht3 0.05 R 0.1 R 

H 0.067 .It 0.135 R 
I' 

He 0.095 .It 0.190 .It 
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F. Electronics--Correction of Data for Dead Time Losses 

As was mentioned in Chapter IV, the data taken in this experi-

ment used counting techniques to measure the number of photons 

detected by the photomultiplier. Such techniques employ elec-

tronic component s with a finite frequency re sponse due to the 

phenomenon of 'dead time', i.e., the time after a component has 

been triggered by an input pulse and before it has reset and can 

accept another pulse. For high pulse counting rates the number 

of pulses which enter the system during this dead time and are 

lost can be measurable and must be accounted for in interpreting 

the data. 

Assuming that .the distribution of pulses in time follows a 

Poisson distribution, the losses due to dead time can be easily 

calculated. If we assume that the pulse counting system is 

characterized by a single dead time T, then the real counting 

rate N is given in tenus of the measured counting rate by50 

N =N-NN'T, m m 
or 

N N = __ m __ 

1 - N T m 

(Fl) 

The above expression has a very simple interpretation. The number 

of measured counts is equal to the number of actual counts minus 

the number of lost counts. The number of lost counts will be just 

the total time lost (N T) times the average number of counts per 
m 

unit time, which for a Poisson distribution is N. 

For a system characterized by more than o~e dead time the 

correction for the dead time losses must be modified. We will 
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specifically consider a two-element system composed of a discrimi-

nator with a dead time Tl and a set of scalers with a dead time 

T2 > Tlo For such a system the relation equivalent to Eq. (Fl) 

is given by 

[ 
~N(T -T )j 

= N NT2 ,- N NT 1 _ e 2 min 
m . m 

where Tmin and T are given by 

T . mln T = Tl /2 

(F2) 

for Tl ~ T2J 

and T = (3Ti - T2 )/2 f > l or Tl _ 2 1"2· 

The above equation has the following interpretation. The first 

two terms on the right are equivalent to Eqo (Fl): the loss term 

N NT2 represents the counts lost while the scalers have not reset. m . 

For each measured pulse there is a further counting rate loss 

mechanism which we will refer to as discriminator 'retrigger'. 

Since the dead time of the discriminator is less than that of the 

scalers it resets before the scalers are prep3.red to accept a new 

pulse. Thus, there is the possibility that the discriminator 

will be triggered again before the scalers have reset. If the 

discriminator is triggered at a time tl (relative to the initial 

pulse at to = 0) which satisfies 

(F3) 

then the subsequent dead time of the discriminator will extend 

beyond the time when the scalers would normally reset. Before 

the discriminator resets the second time the counting system 
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cannot accept new pulses, hence the effective dead time of the 

system will be increased beyond that of a single element system 

with a dead time T2 • 

Again assuming Poisson statistics, the contribution of dis-

criminator ret rigger to the counting rate losses can be easily 

e~luated. We define T. to be the maximum of: mln 

(1) the time (after to) that the discriminator has reset 

and is ready to 'receive a new pulse, and 

(2) the retriggering time of the discriminator which would 

lead to a resulting reset time just equal to the nonnal reset 

time of the scalers, i.e., a discriminator triggered at tl > T. mln 

would extend the dead time of the counting system beyond T2 • 

We must distirlguiE'h two cases: if Tl 2 -1;2/2 then Tmin is 

determined by Eq. (F3 ) : 

Tmin := T2 - Tl , 

and if Tl ~ T2/2 then Tmin is determined by the reset time of the 

discriminator: 

Tmin = Tl • 

The additional counting rate loss due to discriminator retrigger 

is then given by 

times times NT. CF4 ) 

The various terms in Eq. CF4) can be identified as follows: Nm 

is the measured counting rate, (1 - PO) is the probability that 

one or more pulses (only the first is important) occur in the 

time period -r. to T2 (or equivalently, one minus the probability mln ' 

I 

~ ! 

I , ' 

i. 
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that there are no pulses in that time period) and hence retrigger 

the discriminator, and NT is the average number of additional 

pulses lost due to discriminator retrigger and is given by: 

N T2 
( 

= T - T J 
2 min T. 

m~n 

Po is given by Poisson statistics to ~e 

-N(T2-Tmin) 
Po = e 

(F5) 

(F6) 

Substituting Eqs. (F6) and (F5) into Eq. (F4) leads to the. final 

term in Eq. (F2). 

Normal experimental practice is to keep NT2 small so that the 

measured counting rate is given by the first two terms on the 

right of Eq. (F2). The dead time T2 can then be measured through 

the following strategy. One measures the apparent transmission of 

a filter which is placed so as to attenuate the light reachir~ the 

photomultiplier as a function of the number of measured counts. 
l 

The resulting curve can then be used to obtain T2 and the actual 

transmission of the filter as follows: Let 

N represent the actual number of counts with no filter) 

Nm represent the number of measured counts with no filter, 

N' represent the actual number of counts w.ith the filter, 

N' represent the number of measured counts with the filter, 
m 

and define . 
T = N~/Nm' the apparent transmission of the filter, and 

Ta = N'/N, the actual transmission of the filter. 
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Then usingEq. (Fl) with T = T2 it is easy to show that 

T = T + N'T2 (1 - T ). a m a (F7) 

Thus the slope of the measured curve of T vs. N~ gives T2 and the 

intercept of the curve with the line N' = 0 gives the actual m 

filter transmission. 

Fig. F-l shows such a plot for the counting system used in 

this experiment. The data shown come from a measurement of 

T vs. N' for' several helium and hydrogen spectral lines. All m . 

points are consistent with a dead time T2 of 2.2 x 10-7 sec 

(4.5 MHz). As can be seen from the intercepts of the curves for 

each spectral line, the actual filter transmission shows a mono-

tonic change vtth the vaveleneth of the line. 

Finally, we should see that for the data on Fig. F-l, Eq. 

(Fl) is an adequate approximation for the exact expression Eq. (F2). 

We define R to be the ratio of the third term on the right of 

Eq. (F2) to the second term •. R is then given by (expanding the 

exponential and keeping only the leading two terms) 

R = 

using th~ values of T2 and T found from Fig. F-l: 

(FS) 

-7 T2 = 2.2 x 10 

sec and T = 0.11, and the rated dead time of the discriminator: 

Tl = 1.0 x 10-7 sec, yields for the peak value of N~' shown on the 

figure the values: 

.' : ... 

, , - ' 
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Fig. F-l. The apparent transmission of a neutral density filter 

measured using counting techniques. The experimental data 

shown for several spectral lines, can be used to determine 

the opacity of the filter as well as the dead time Of the 

counting system (see text). 
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N' = 2.0 x 105, m 

Nm = L8 x 106 , 
N N /(1 - N T2 ="3.0 6 = x 10 , and m m -

R = NTI
2

/(2T2 ) = 0.07. 

Hence the approximation is justified. 

. .' 

- ; 
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G. PlSA: Derivation and Discussion 

of Application to Spectral Profile Fitting 

In comparing measured line profiles and those calculated 

using the methods of Chapters II and III we have made extensive 

use of a computer program written and developed by Klaus Halbach 

to do least s~uares fitting. 51 Although this program wlll be dis-

cussed within the framework of fitting spectral profiles, it is 

very flexible: essentially the same program has been used to 

design magnets for accelerators and to design extractor geome-

tries for ion sources. The program, usually referred to by the 

acronym PlSA, can be described as follows: combined with an 

analysis program that can evaluate a system performance given a 

set of parameters (for instance] a program which can calculate a 

spectral profile given the temperature, electric field strength 

and fre~uency, energy levels, etc.) PlSA will vary those param-

eters until a 'best fit' in the least-s~uare sense is reached. 

The system may have constraints (for instance, the area of a pro-

file, or the peak amplitude, or the half-width) which must fit 

exactly. Before discussing the application of PI SA to the fitting 

of spectral line profiles, we shall give an appreviated discussion 

of the method; a more extensive discussion is contained in Ref. 51. 

For simplicity, in the following discussion we will use matrix 

notation with the exception that all explicit matrix indications 

will be suppressed. The character of each variable (scalar, 

column vector, square matriX) will be described when it is intro-

~ 

duced. For instance, in the text, the column vector 'p' is 
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denoted as 'p'j the ith element of which is denoted by 'po '. 
~ 

We define: 

p = m-dimensional column vector formed from the parameters which 

will be varied by PlSA. 

x = n-dimensional column vector formed from the set of wave-

lengths at which the spectral profile is to be defined. 

s = n-dimensional column vector formed from the values of the 

measured spectral profile intensity at the wavelengths x, 

i.e., s. = measured intensity a Xi. 
-1. 

s(p) = n-dimensional column vector formed from the values of the 

calculated spectral profile intensity for the parameter 

set p at the wavelengths x. 

r - nt-dimensional column vector formed from the desired values 

of the exactly fitted quantities. 

rep) = nt-dimensional column vector formed from the exactly 

fitted quantities. 

To approximate ~ in the least-square sense subject to con-

straints, one has to find the parameter vector p. that mini­ml.n 

mizes 

n 

S = '\-' [ s . ( p) - s i1 ~ . , /.J]. - J ]. 

i=l 

subject to the condition 

. r
k

( p) - r = 0, 
-k k = 1, , n'. 

(Gl) 

(G2) 

The Wi are weight factors which may be used to fit some components 

,< 

I 

I 
".- ! 

, .. 
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of s more closely to the measured value than others; they can 

usually be chosen to be 

. / 2 
Wi = 1 oSi ' 

where os. is the experimental error in the measurement of the 
-. -1 

intensity at the 1th wavelength x .• 
1 

S can be minimized subject 

to the constraints given by Eq. (G2) by using Lagrange's method: 

(1) We define the scalar quantity L by 

n' 

L = S +.L~ £k[rk(p) - !kJ ' (G3) 

k=l 

where £k is the Lagrange multiplier corresponding to the kth con­

straint equation. 

(2) S is then minimized by solving the equations 

dL I dP
j 

Pmin = 0 j = I, ••• J m 

rk(Pmin) = !k k = I, , n' • (G4) 

Since, in general, sand r are complicated functions of p and 

Eq. (G4) cannot be solved analytically, we will seek to solve it 

in an iterative manner suitable for use on a computer. 

We assume that we have found a solution p = PO' which is not 

the optimum solution, Le., does not satisfy Eq. (G4). This may 

be the 'initial guess' at a solution or it may be the result of 

a previous iteration. We seek 6p such that the new solution 

P = Po + 6p yields a calculated profile s(p) which better fits !, 
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i.e., one for which L is less. Repeated iterations of this form 

will usually lead to a minimum value of L and an optimum value 

of p = Pmin' We begin by writing L in matrix form and in terms 

of the vectors: L'l.s:: s(p) - sCPo), L'l.s :: ~ - sCPo), L'l.r :: rep) -

r(PO),L'l.r:: r - r(PO)' 

(G5) 

In the above expression the weight factors have been written in 

the form of a diagonal square-matrix Wand the Lagrange multi-

pliers in the form of an nl-dimensional column vector,£. Equation 

(04), the condition for an optimum solution, is given by 

~I = 0 
CXJPj Pmin 

j 1, "', m 

r( p . ) = L'l.r, ('G6) 
mln -

where we have changed variables from p to L'l.p. We proceed by 

expanding L'l.s and L'l.r in Taylor series and retaining only the 

linear terms 

6s = ML'l.p Mij = Os./oP. 
l. J 

L'l.r = NL'l. P Nkj = ork/opo' (G7) 
. J 

Such an approximation will be valid in one ,of two case s : (1) r 

and s are linear functions of p, or (2) the calculated 6p is small 

enough that the higher order terms are negligible. Substituting 

the above expression into Eq. (G5), defining a
j 

:: 06P/~Pj' 

setting £ == 2;>.., and transposing some terms yields the following 

.' -it 

. ~ 
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conditions for an optimum solution of the linear problem: 

oL --= t t t t 
2a. (M WM6p + N A - M W6S) 

J 
o j 1, , .m. (G8) 

Equation (G8) can only hold if the vector (Mt WM6P + NtA - Mt W6S) 

is equal to zero. Hence we can solve for 6p by solving the par-

titioned matix equation: 

t \' ' N ,! 6pi I t \ 'M W6s 
-I 

, 6r j 
\ - . 

(G9) 

If the system is nonlinear then the 6p calculated from Eq. (G9) 

will, in general, not satisfy the approximation of Eq. (G7). In 

this case, however, the solution of ~p, where E is some appropr~-

ately chosen number less than one, will satisfy the approximationj 

for this change in the parameters the problem will appear nearly 

linear and hence the 'new' spectral profile s(po+ ~p) will be 

a better approximation to ~ than the old one. This process can 

now be repeated until a suitable solution is reached. 

We are now in a position to outline the operation of PIS A: 

(1) The user gives PISA 

(a) a 'system' subroutine which calculates, for instance, at 

each wavelength x., the spectral intensity s.(p), and the partial 
11' 

deri\~tives os./op. for each parameter 'j' (if constraints are to 
1 J 

be used then the system must also calculate rk(p) and crk/CPj)' 

(b) the measured spectral profile and the weight associated 

with each point, 
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(c) an initial guess as to the parameter values. 

(2) PISA then iteratively solves the least-squares problem. Each 

PISA i'teration consists of the following steps: 

(a) starting from the last .( or initial) solution, PO' the 

matrices MtWM, N, 6r, Mt W6S are calculated, 

(b) Eq. (G9) is then solved for 6p, 

(c) a new solution for which the parameters are incremented 

by 66p is calculated and compared to sand E, 

(d) if convergence criteria supplied by the user are satis-

fied, PISA ends; otherwise 

(e) the solution is tested for linearity and depending on 

the result, E is either increased to a maximwn of one, kept the 

same, or decreased fer the ~ iteration, or the present ::;olution 

is rejected and a new solution is constructed using the ~ 6p 

but a decreased E. 

Finally, we will briefly describe the application of PISA to 

the problem of fitting spectral profiles. We have written three 

system subroutines for calculating the high-frequency Stark effect 

suitable for use with PISA. We refer to these as helium, hydrogen, 

and hydrogen (modified). 

1. Helium 

This subroutine folds a spectrum calculated using the methods 

of Chapter II with an instrument function supplied by the user. 

It assumes a linearly polarized electric field and calculates the 

profile for arbitrary electric field frequency, electric field 

strength, and angle of observation relative to the electric field 

• 

.... 

, ~ • 
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(azimuthal angle is averaged). It can also vary the energy of the 

nlF level as well as the nIG level (if present). As discussed in 

the next section) the measured helium profiles had a significant 

contribution to the intensity due to normally forbidden· transitions 

I 1 from the n F and n G energy levels. These unwanted lines were 

removed numerically when calculating the instrument function} but 

had to be replaced when comparing measured profiles with calcu-

lated profiles) especially for weak field strengths. For this 

reason the helium subroutine was given the ability to add to the 

high-frequency Stark profile a maximum of two simple line profiles 

of arbitrary position} intensity} and width. 

2. Hydrogen 

This subroutine folds a spectrum calculated using the 

Blochinzew solution to the high-frequency Stark effect Eq. (2.33) 

with an instrument function supplied by the user. It assumes a 

linearly polarized electric field and calculates the profile for 

arbitrary electric field frequency} electric field strength} and 

angle of observation (azimuthal angle is averaged). It also can 

vary the width of the instrument function used in the folding} 

thus allowing for a possible change in the instrument function 

width due to the effect of the microwave field on the dc electric 

field or temperature. 

3. HYdrogen (Modified) 

This subroutlne calculates hydrogen EalJner-line spectral pro-

files in a high-frequency electric field for arbitrary electric 

field·strength and electric field frequency. The effect of an 
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additional dc electric field in the plane perpendicular to the 

high-frequency field is included as well as the fine-structure 

splitting of the n = 2 energy levels. The profile is calculated 

using the methods of Chapter II. The instrument function is cal­

culatedfrom an instrument function supplied by the user, which is 

then Doppler broadened. The program allows an aroitrary angle of 

observation relative to both the high-frequency electric ·field and 

the dc electric field. The dc electric field may be assumea to be 

random in azimuth. 

.~ 

• 

• • 
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