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THE_HIGH-FREQUENCY STARK EFFECT AND ITS APPLICATION
TO PLASMA DIAGNOSTICS
’\ William W. Hicks
- lawrence Berkeley Iaboratory
i o University of California
‘ Berkeley, California 94720
December 1973
ABSTRACT
This work presents a thedretical and exﬁerimental study of

the high-frequency Stark effect of hydrogen and helium spectral
| lines. The theory starts from Schrédinger's'equation for an atom
iﬁ a monoéhromatic high-frequency electric fiéld and a static
magnetié field, and follovwing é method due to Autler and Townés,
reduces the problem to an equiGalent probiem of diagonalizing a
f : matrix eqﬁation. The general solution of this matrix equation is

discussed in some detail, the photon emission spectrum is calcu-

lated for the general case and for typical cases of hydrogen-like

énd helium-like spectral»lines, and a physicai ihterpretation of

this solution in terms of multi-quantum transitionsxis developed.

In general, the matrix problem must be solved nﬁmerically; however,

for weak electric fields, the matrix equation can be expanded in
o~ terms of the electric field strength and an analytic solution
found. This weak electric field solution reduces.to the normal
pertufbatién expression first calculated by Mozer and Barranger
using second—order time-dependent perturbatioﬁ_tﬁeory, and
furthermore yields in & natural waysthe eXtension.of the Mozer-

| Barranger theory to include (1) the case of a magnetic field and
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(2) the Stark shifts of the atomic levels due to the presence of
thé high-frequency electric field.

The theory is general, being applicable to any general atomic
system for which the energy_levels and the dipbie‘coupling coeffi-
cienﬁs are known. Fér plasma diagnostics, hoﬁever, the two most
important cases are hydrogen and helium spectral lines. Affer a
discussion of thé actual setup of a typical problem, i.e., what
energy levels have fo be retained,,thé calculatioﬁ of the dipole
matrix elements and the energy levels, etc., calculated profiles

of several spectral lines of both hydrogen and helium for a

'

variety of electric field parameters are presented. For simplicity,

all calculations are performed for a magnetic field equal to zero;

however, the effect of {1) a dc electric field perpendicular to

the high-frequency electric field, and (2) fine-structure split-

ting on the calculated profiles is considered for the first two
hydrogen Balmer lines Hdvand'HB.
Finally, calculated profiles for hydrogen and helium are
compared to exferimental profiles for which the frequency and
electric field strength are known. For this purpose a capillary
glow discharge is used in conjunction with a calibrated fesonant
microwave cavity. .Over the range of electric field strengths in-
vestigated, which included cases for which perturbation theory
was totally inadequate, good agreement is found between measured
profiles and profiles calculated using the theory described above

for the helium spectral lines 4922, 4388, and 41Lkk. Tt is further

found for the experimental parameters of this experiment that the



Blochinzew-type calcuiation of the hydrogen liné profiles is ade-
quate and'the fine-structure shift and the dc electric field Stark
shift can be included as anomalous broadeningbdfvthe"instrumental
profile'Q Even with this broadening the_individual components

'

predicted by Blochinzew are observed for Ez and H_; for H7 and H

B S}

ohly the envelope could be observed. The electric field frequency
and eléCtric field strength determined spectroséépically from the
hydrogen and helium spectral lines agreed to within 4% with the

corresponding values measured using the standard microwave theory.



~I. INTRODUCTION

In 1961 Baranger and Mozer proposed using“tﬁe high-~frequency
Stark effect of neutral helium spectral lines.as a diagnostic tool
to stuay éscillating,electric fields in plasmas.l They proposed
that'"satellités" which were produced by two-gquantur transitions
induced by a high-frequency electric field could be used.to measure
thevfrequency and the field strength.of that electfiC‘field. They
further presented célculations based on second-order time-dependent
perturbation theory which related the intensity of these satellites
to the electric field frequency and electric field strength. The

perturbation calculations were then extended by Reinheimer,2 and

. by Cooper and Ringler,5 who also demonstrated agreement with ex- _

perimentai results for low electric field strengths.

In the years from 1968 to 1973, numerous authdrs applied the -
Stark effeét to the sfudy of plésmas.u-lh In two of these experi-
me'm:s']’.9 the electric fields were so high that the validity of cal-
culations based on perturbation theory were questibnable. Recog-
nizing this, Kunze et al. modified the perturbation theory by
adding a‘phenomenclogical damping constantJ+ and by extending_the
calculation of the intensities of the lowesﬁ-order,éatellites to
fourth order.7 However, there were important disadvantages_of any
perturbation approach to the problem of calculating satellite
intensities and positions. First, it was difficult to extend them
to include higher-order satellites (higher-order multiple quantum

transitions) and second, Stark shifts of the levels (which had not

been included in the Mozer-Rarranger theory) which changed the



positions of the satellites and which became increasingly important
for strong electric fields had to be included in the perturbation
theory in an ad hoc, and not entirely satisfactory manner. Recog-

15

nizing these limitations, Hicks, Hess, and Coopér extended a
theoxonf Autler and Townes,16 which avoided the usual perturbation
treatmenﬁ, to include more than two upper levels and the interac-
tion of a magnetic field. 1In two preliminary papers, Cooper and
'Hicksl7 estimated the range of validity of the pérturbation calcu-
lations and pointed out possible pitfalls in using the high-fre-
quency Stark effect in plasma diagnostics, and Cooper and Hess
pointod_out a simplification introduced in the interpretatioﬁé of
the Stark effect data by a magnetic field: By simply inspectiné
the Zeeman pattern of the satellites it was possible to determine
the relative directions of the electric and magnetic fiold and,

if the elécfricvfield was circularly polarized, the polarization.
This latter technique was also applied oy Scott ét al.9

In recent years there has been a growing interest in the use

- of the high-frequency Stark effect of neutral hydrogén spectral
lines to do plasma diagnostics. The effect of a monochromatic
high-freqﬁency‘electric field on a hydrogen-like atom was first
theoretically investigated by Blochinzew18 in'l933. He found that
in a monochromatic high-frequency electric field ﬁhe hydrogen spec-
tral lines broke up into a symmetric pattern of individual lines
separated from each other by the electric field frequency. The

intensity of these lines was given by a simple expression involv- |

ing Bessel functions. Hié findings were not exploited until 1959
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19

when Mitsuk™~ measured the effect of a microwéye electric field

(frequency 9.4 GHz) on the H, spectral line. Mitsuk could not

B

resolvé the individual components of the pattefn'but was able to
confirm the predicted dependénce of the line width on the electric
field strength over a fange of from one to 10 kilovolts per centi-
meter. The results of Blochinzew and Mitsuk were applied by
Lifshits et al.eo to measure the electric fieid in a plasma-filled
waveguide. The application of the high-frequencyastark effect to
a plasma with both low-frequency and high-frequency electric fields
was theorétically investigated by Lifshits,21 who derived an éx-
pression felati£g the spectral line width of ﬁydrégen lines to the
plasmé parameters. Several authors'ha;e used Stark broadening of
spectral lines to study high-frequency electric fields in '
plasmas.eg.e5
Recently, Gallagher and Levine reported'plasma satellites
lying at one and two times the plasma ffequency from the position
26,27

of H. .
B

of turbulent high-frequency electric fields at the plasma'frequency

They interpret their findings as due to the existence

produced during plasma heating in the Tormac plasma contaimment

experiment. Their results do not exactly follow the normal

‘Blochinzew pattern, a discrepancy they feel is due to the presence

of the high-dc électric field in their plasma.. Caléulations by
Cohn et al.28 on Ea appear to confirm this hy?othesis; indicating
that the presence of a dc electric field can significantly change
the Blochinzew pattern.

In this paper we consider-toth the cases of hydrogen and



.

he;ium Stark effects. In Chapter II we review and extend the dis-
cussionklfthe multilevel theory presented in Ref. 15. In Chapter
IIT we review.the specific problem of applying the multilevel
theory to hydrogen and helium and present numerical calculations
for both lines for a variety of cases, including the effect of a
de electric field perpendicular to a high-frequenéy field on the
first two Balmer lines of hydrogen. Chapter IV briefly describes
the experiment which was used to test the multilevel theory (a more
thorough discussion of this experiment is contained in Appendices
C to F). Finally, in Chapter V the predictions bf the multilevel
theory (as well as other theories) are compared to experimental

' ,
measurements of hydrogen and helium spectral line profiles.



II. MULTILEVEL THEORY

A. Equivalence of Schr8dinger's Equation to an

Infinite set of Linear Equations

We start from the time-dependent Schr8dinger equation for an
atom in external magnetic and electric fields, and split the

Hamiltonian into three parts:

iy = H(F,t)v = (8, +H

LHEV : | (2.1)

In Eq. (2.1) and in the rest of this paper all energies are ex-
pressed in angular frequency units. Hj is the time-independent
Hamiltonian for the unpefturbed atom (no external fields) and is

assumed to have a known orthonormal set of eigenfunctions {Uj]

and correspouding eigenvalues {wj]:
HU. =00,  §=1,2, . (2.2)

In general, H. will have an infinite number of eigenfunctions,

0
but for any single calculation only a finite number N will be

physically important (their choice will be discussed in Chapter

III). H, represents the interaction energy between the atom and

1
any externally applied static magnetic or electrié field and is
time-independent. It will often be possible té pick the {Uj} to

be eigenfunctions not only of HO but also H In this case we

1

define
YU, = 0'U.. _ (2.3)

For instance, if there 1s a static magnetic field; BE, and the
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{U,} are hydrogenic eigenfunctions, then

J

| = oy + m e, | i | (2.4)

where wp is the ILarmor frequency

eB

m C
e

L
]

2

and m‘j is»the magnetic quantum number of eigenstate j. H,. repre-

2
sénts the interaction energy between the atom and the externally

applied electric field. The electric field is assumed to vary

harmonically in time with frequency w, thus alldwing separation

4

of the time and space dependence of H2:
By(F,) = B (@)™’ 41, (He N (2.5)

We next expand the wave function

N : .
— . -
WEY =Y @, N (2.6)
where the T's are time-dependent coefficients to be determined.

Substituting this expansion into Eq. (2.1) we obtain

N
12 Uty =

N, .

.+ H + H)U.T.. o,
), (&g + H + H)UT.. (2.7)
j:l _ j:l '

% .
We multiply on the left by Uj” integrate over all space, and use

the orthonormality of the U's to get (we interchange j and j' for

convenience)

it - -iwt
(a.., + ng,elw + BJJ'e )ij) (2.8)



where we have defined the'following quantities:

(3l l3) = [& r U H

U,y

%5 173

+
and P
o

o=, e a6l (2.9)

Jd' Jtd
. ' . . . .29
Using Floquet's theorem of differential equations, ~ we can expand

) ~
the time-dependent coefficient T, as

J
©
p, = e AT j;ﬁ_ C, e-iswt, .- (2.10)
J s Js -
S=~Q0 '

where A and the C's are time-independent unknowns; the C's are in
general complex, and A is real. Substitution of this expression

for T, into Eq. (2.8) yiélds

(o8] ‘ QO

' -i(A+sw)t i;j . ~i(A+sw)t
Z (r + s0)Cy e =L 90t
S=-Q0 S==00
o-iswt o+ -i(é-l)mt
X y [ %pr® Pyt
=1 s=-00

-1(s+1)wt | it

| (2.11)

+ B..,e
B350

Since this equation must be valid for all times, we may equate

coefficients of equal powers of e-Lwt to give

N
. . r’ +
(w, f,aw - N)C._ + 24 (ajj’cj's + Bjj'cj',s+l
1

1) =0; - (2.12)
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J=1, 2, co, N,

S = =00, **°, +0O.

This set of equations.was solved by Autlér and Townes16 in
terms of én infinitely continued fraction for.the special case
N=2,a=0 (ho magnetic‘field), and gt = B~ (iinearly polarized
electric field). As pointed out by Autler and Townes, once any
singlé sblution has been found to the set of equaﬁions (2.12), the

new variables

K'

i}

A+ mw,

c!

1= 0 g d= 1 v Ny 5= m@, en, v@, (2.13)

where m is any positive or qegative integer,‘will alsé compriée a
solutioh} Qe will refer to solufions related by‘Eqs. (2:13) as
& "set:" There are an infinite number of solutions within each
set but évery solution in a set contains the same phyéical infor-
mation, i.e.,‘cofresponds to the same wave functiQn W; as cah be
seen by noting that the expressioh for T,

J
ant under the substitution given by Eqs. (2.13).

{Eq. (2.10)1 is invari-
L J

B. Discussion of the Exact Solution

We have shown’ébove that solving Schrddinger's equétion
{Eq. (2;1)} is equivalent to solving the infinite set of equa-
tions (2;12) for A and the C's. Given a solufidn,of Eqs; (2.12),
substitution of A and st, j‘= 1, «++, N, and - -0, e+, 00,
into the expression for w gives a solution to Eq. (2.1). Since

the Hamiltonian H has been defined over an N dimensional space



made up df the eigenstates of HO’ the complete solution of Eg.
(2.1) must consist of N linearly independent y's. We have seen
above that the éolutions of Eq. (2.12) within é single sét give
the same.wave fuﬁction Y, thus there must be N different sefs of
solutioﬁs'to Eq. (2.12). Ve denote the diffefent sets with the

P

index "i"f

SIME SN L o |
Il[i = e chse UJ., i= l) °'A', N. (2-11‘)
J=1

Before discussing the interpretation of the wave function wi,

we will examine its mathematical properties and from them prove

two relations between the C's which will be useful in the follow-

ing twovsections. We start from Schr&dinger's equation
: * *
HY, = 13¥,/dt and its Hermitian conjugate ¥ K = -1dy.,/dt which -

together imply .

!

%E(i'li)zg-%-fd5r Vb =0 | (2.15) -

We can use Eq. (2.14) to evaluate ¥

00 N 0o
-i(x.')‘..')t '\—"1 . ey —— : N
irl4) = 171 \ -iuwt , ot * i 5.16
(i'|1) = e ) e : p 3,508 ( )
u=-00 j=1 s=-00 - : _

]

From the above expréssion we can get a useful relationship between
the C's by noting that condition (2.15) requires that the right-
hand side of Eg. (2.16) be independent of time. This will be

true if and only if
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- v il* i_X6 5 _8 5
Ej §:, CJ,s+uCJs T MTiiTu0 T T4ituwo” (2.17)

The constants {Xi} are arbitrary and we have chosen them to be 1
(this choice determines the normalization of the C's).

Using (2.17) we can rewrite (2.16) as

(it]1) = Biq07 (2.18)

and thus show that at any time t the (Wi} form an orthonormél set
of solutions to th¢ time-dependent Schr8dinger equation} Further-
more the‘{wi} form a set of stationary wave funépidns (the ﬁroba-
bility.density W;wi is indépendent of time wheniihtégrated évef
all space) and hence represent the stationary_states of an atom
in the;presence of a static magnetic field and ag.oscillating
electric field; by stationary we mean that an.atom in state wi

at time. t = t, will remain in that state indefinitely.

0

To dérive a second relation similar to (2.17) we start by

rewriting Eq. (2.14) as

N . 00
' - -in.t ,
= N . - Ny <7 i -iswt :
Vi = /_:.TijUj, ‘ Tij =€ é;, ste . (2.19)
J=1 S==00

Since both sets of wave functions, (wi] and {Uj}, form an ortho-
normal basis for the N-dimensioral vector space at any time t,
the matrix T must be unitary for all t. For a unitary matrix T

we must have TTT = 1l. Evaluating this condition in terms of the

matrix elements Tij:



chosen such that in the limit H
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. 00 ' N

o0 R . . ) .
- N * .
N eriuat c?, ot -5, ., (2.20)
L [ J'ys-u’js JJ
U==00 i=1 S=

for all t. Since the right-hand side is independent of t, the
left-hand side must be also. This will be true if and only if

the C's satisfy the condition

N oo

< ix* i :
/. /. Cyr,sCis T By5tu (2.21)
i=1l s=-®

As is shown by Eq. (2.19) above, the set of wave functions
[W}'whiCh solves the time-dependent Schr8dinger equations repre-
sents the reafrangement of the eigenfunctionS'[U ] into a new set

of functions whlch span the same N-dimensional space as the {Uj}
Y

add

The nature of this rearrangement charges in time since is a

function of time, but at all times the new set of functions form

an orthonormal set. We shall assume that the [w } have been

-iw,t
i

H, - O, Wi - Uie ‘ . This choice

1’ T2
is not necessary but will lead to simplificatiqns in the follow-
ing sections. When no external fields are present an atom can be
characterlzed by the set of stationary states represented by the
wave functions {Uje‘let} Each such state has a well-defined
energy mj; an allowed dipole transition between two such states
produces a single spectral line. In the presence of an external
oscillating electric field the stationary states_of the atom are
represented by.the {wi} or linear combinations (with time-inde-
pendent coefficients) of the {Wi]. As can be seen frdm‘the form

\

of the {wi} and expression (2.19) there is no set of states whose
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members are both stationary and can be charaéﬁerized by & unique
energy (i.e., have a simple exponential time.dependénce). As a
result spectra produced in thé presence of aﬁvosQillating élec-
tric field are more complicated than in the field;free case: a-
single line (allowed or forbidden) which wouldvexist in the fiéld—
free case is replaced in the fiéld-present case by an infinite
series of spectral lines.

C.'?Transitidh Rate of an Atom in the Présenée of

an Oscillating Electric Field

In order to calculate the theoretical radiation pattern
emitted by an atom in an oscillating electric field we ‘solve the

equation:
. . od — v ' | '-! -
‘1 g{ = LH(t) + H j(pr . .(2'22)
vhere H(t) is as defined in Eq.h(e.l) and H' is the particle-
radiation field interaction operator: |

e

im ¢
e

H' = E(D + 2 E%9

.
3

olo

5 is the momentum of the optical electron, R is the vector poten-
tial of thé radiation field, and Kex is the vector potential of
any external magnetic field. At any time t, the solutions of the

equation i(dp/dt) = H(t)e form a complete orthonormal set. Hence

ve may expand ®(t) as o(t) = jﬁ,Pd(t)@d(t), where the sum is over
' : : d ’

the complete set of the @d's. The @d's explicitly contain both

atomic gnd radiation field quantum numbers and hence differ from

the solutions of Eq. (2.1) (¢'s). Substitution for @(t) in
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Eq. (2.22) yields:

— ar :
N4 o 2 S Yo, .
d d - -

N
Multiplication of Eg. (2.23) on the left by q& and integration
over all space yields an equation governing the time development
of the coefficient Fk:
ar

k -i -
] — = t : . .)4_
i ” (x| lq)rd,v . (2.24)
d

the matrix element‘(lH'l> involves integration over both atomic
and radiation field variables.

We assume that at t = 1 the system (atom + radiation field)

- ’ S
is in e state © =,@1£Pd(T) =_Sai]; then ka(t)l is the prota-

bility that the system, initially in state i at t = 1, will by
timé t have undergone a transitién_to state k byvemitting or ab=
sorbing photons from the radiation field. ' If we consider a time
interval, t - 1, small éompared with the lifetime of state i, then

we can solve Eq. (2.24) by iteration:

R R

k
(0) _
Ty © = Byys
t
i ,
A Pﬁl) = - i dt (x|H'[1) etc. - ~ (2.25)
T

We now specialize to the protlem.of spontaneous emission of

a single photon in the atomic tranéition v, — wk. In the pres-
1 Koo
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ence of an oscillating electric field, the state of an atom, both
before.(-\]fi) and after (wlrk) a transition, will ‘be described by a

wave function of the form (2.14). Then

“1( 4 )t i ?2 . _ioét
| ? = Aye Z ) Uz(r)e .
' £2=1 og=-0
' —1%. t
% = o Ej Sj CJAU (F)e”

Jj=1 s=-m
where A is the radiation field state function; A7 denotes the

presence of photon ¥, A, denotes that no such photon is present.

0
.By substituting @ and 9, into Eq. (2.25) and performing the time

integratlon (x E_)"i - N, 8= d- o),

1 e
ll"(l)|2 . 5 -5 1(s-s")w{t+1).

s,s'=

_sin% [(w = Ny - sw)(t - T)]

x T A -
5 (@, = Ay - =)
sin% E-(cn‘y - Ny - s'w)(t - 'r)] .
x T L — (2.26)
- - oal T
2 (w7 Mg TS ®) :

ik N
ss'

)
ek

A /
J»J3'=1 2,2's1 o,0'=-00

k* i%

- .
x (3l L CelB [3)C 1 CpCivi iCigrg
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where the matrix element (’H'l) now denotes integration only over
atomic variables.
. (1) 2 + l s " "
As a function of wy, lPk l consists of a series of "peaks
with centers @, = Ay tew and widths ~ 1/(t - 1). For
ot - T) >> 1 the peaks are narrow relative to the interpeak

spacing o and we can approximate II‘}({l)l2 by

. lo'e}
()2 . - ) iu
.lrk < = JEN >“4 5(0)7 Ny - WL
U=-@

where I;u is the number of photons emitted in transitions from
state i to state k into solid angle dg with wy = kik + uw during

the time interval (1,t):

r %+
iu = ! (l)'g
=) W, B TP Lt
w-
© - ,ei(s-u)wt 3 ei(s-u)wf\j
. — e - € .
2vp(kik + uww)dQ ReIi Kusa }

i

i - i

\ i(s g)w. /]
p(w5) is the density of photon states/radian-solid angle and

w, = Ajj + W0 + A, where A is chosen to satsify /(t - 1) <

A <K . In performing-the integrations above we.have used the

sharply peaked nature of the integrands by evaluating p(m») and
X .

the matrix elements at the peak center and then letting A -

(see Appendix A). Of more physical interest than ]Fél)lg is its

time derivative, the differential transition rate:



=-16-

00
%€‘|r£1)|2 - zwjfdwy p(wy)dn j{: 8(&5 - My - w)
U, 5=-m |
- X Re.[Kitei(s-u)wt] . .; | | . (2.27)

The differential transition rate given by Eq. (2.27) is a
rapialy-varying functién of time for frequenéiés for which the
approiimations above hold [@ >> (t - T)-l >>'(1ifétime'of
state k)-l], and hence of more experimental inferest.is the time-
averaged differential transition rate dA?. Evaluation of the .
matrix eélements in Eq. (2.27) (using the dipole approximation)
and p(m3)_yie1ds |
\1/2 -2
\ / w!zgj éﬁd (w ) Vw

| ﬂﬁc

Galals) - <

where v is the system volume, and where we have defined the‘

following quantities

3

wsz = wj -'wk, @} = [d7r U (H + H )U ,, ~ ete., and
. I * ¥ -
Ef %]ABr U, e, * T Uj'
Then '

. - e2dQ @ .
an® = j«mn S wsle - A, - o) .

i. Yy 2th5 Fa v ik

. : = D :
N o0 '2 _ : o v_
< A< % S : ‘
XL P58 Caclysao - (2:28)
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We now consider two special cases of Eq..(2.28) which will
be applicable to the spectra discussed in the next chapter.

>Case (1). In many'instances we can assume that the final
statebk is négligibly affected by the electric field. As can be
‘seen from the perturbation solution for A and the C's,'Eq. (é.h8),
this condition will occur if all stafes k! coupied to the state
k by & nonzero electric dipole matrix element Bik' also satisfy .
Iwi - wiyl >> l kk', and w. In addition, if we assume that a
representation of the unperturbed eigenstatesvhas been -chosen
and H

such that both H are diagonal operators, then the final

(0] 1

state k can be described by the wave function
¥ = Ue . o L o (2.29)
In terms of our general wave function Eq. (2.14), we have

SRS

k .
Cpy = 5B oo (2.30)

Then the time-averaged differential transition rate takes on the

form
[ eQdQ
T"
dw B(w - A+ sm)
i 2rrhc3 : mk
S=-00
| N 12
N kK i
. g kgg js ! (2.31)
i )
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Case (2). Hydrogen-like spectra in a sinﬁéoidally-oséil-
lating linearly‘polarized'electric field (E ='EO coswt ?) with no.
externalrstatic fields present (Hl =‘O).' For this case the zero-
order ehergy levels are degenerate (wj = 0y j=1, ++-, N) and
er aqpropez;choice df the eigenfunctions {Uj}'Schr5dinger's-equa-
tion (2.1) can be solved directly.l8 One chooses the {Uj} to be
eigeﬁfuhétions»of both HO énd H2.  Then Schrbdinger's equatidn for-.
¥ '

reduces to

J .
le]Eo

Glaly) (2e32)

|
|

iy, = (o + A, éoscnt)\lt., A, =
which has the solution (Js is the Bessel function of the. first kind
of order s) N |
_i(wan, sinot) it 2

0 0o” 7

¥y = Uge e SUe T (a)eTHF (2.33)

or in terms of the general solution (2.1%4)

BTl
Cis = 8547(8) S _"_'_(2-54)

For this case dAi has the form

dAkf :" eQGngi ,2Am2 {;{- | L | :
i T dw, s L w-ys(cn, - o - )T :(Aik)- ‘(,2-35)
S==~Q0 ' :

where we have defined /w = w, (for the initial set of levels)

n

-y (fqr the final set of levels), Aik . Ai - Ak,\and where we
S : r 1
have used the fact that | see Ref. 30, Eq. (9.1.75)j

| 8
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0

T8y - 8 = >~ I (AT, (B). | . (2.36)

o=-00 ’

D. Photon Emission Spectrum for an Ensemble of Atoms

in an Oscillating Electric Field

We.define S(my)dwydg to be the number ofvphptons emitted into
solid angle dg/sec with polarization ey‘and with frequencieé in
the range w7 to wy + dm&. In the following we shall ignore the
effect of Doppler shiftsin the frequencies of the phetons due to
nmotion of the emitting atoms. Such effeéts are easily included
in the usual way by performing a folding integral of S(wy) with
the neutral velocity distribution function.B;v s?@by), fhe photon.

emission spectrum for the transition Wi - Wk’ is then given by the

integrand of expression (2.28):

2 (o)
ke, <UL 3 ﬁ
s;(w) = w. 8w, -~ A, - so)
1 b4 21Thc5 Z.J 7 7 ik
S==@®
N @ : 42
- ‘_ﬁ ) t ,Z * i
* [ Z VARG VAR Clzccjsw ) - (2.37)
(Jsd=l o=-m

The total photon emission spectrum S from an ensemble of Né
atoms populating the N states (v,) will be expression (2.37)
summed over final states, averaged over initial states, and

summed over photon polarization:

N ‘N'
( )_‘T- \_—ﬁK’\—_‘ k _Nl .
Sleg =, 20 %, S KEF . (2.38)
e i=1 =1 a
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Here Ni is the number of atoms in the state i, N' is the number

of final states, and K, represents the probability that the state

i

i is occupied by atoms in the ensemble and has the normalization

N | - .
>_‘ K; = 1. | - : | o (2.39)
i=1 o

The value given to»K‘i in any particular problem will be
govefﬁed by physical considerations. In the calculations pre-

sented in the following sections we have assumed that

[4

Ky = 1/N, 1 =1, «-+, N; ' | , (2.40)

i;ef, that eaéh of thé states wi is equally pbpulated by atoms in
the ensemble. In the limit.of no external fields where ¥, - U, 5
Eq. (2.40) is just the assumption'thét the N eiéenstates [Ui] are
in thermal equilibrium at & high temperature.  Such a situation
occurs in most léboratory plasmas when réndom'collisions (and not
.radiativé'transitions) are the dominantvmechanism inducing transi-
tions.améng states with different values'of i and when the aver-
age kinetic energy of the colliding particles i§ large»comﬁared
with fhé:interlevel energy spacing of the}N_statés. Then the
energy,levels'are "degenerate'" with respect to éollisional éxci-
tation and deexcitation, and the effect of collisions will be

to maintain equal populations. In the presence of external fields,
energy lévels of the N states are shifted relative to each_other,
by ehergies.of the 6rder of w and ki -vwi, but we still expect

collisional processes to maintain equal populations if the mean
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kinetic eﬁergy of the colliding particles is much greater than
these energy shifts. We can make the analogy_of_assuhption (2.&0)
and high-temperature thermal equilibrium more explicit by con-
sidering a consequence of Eq. (2.40). lFrom Eq. (2.19), the prob-

ability that an atom in the state i is also in the eigenstate

-

U, 1is
dJ

o) N

: 2 < -iuwwt T i i . .
[Tijl = Zg e’ }EJ Cj,s-ucjs ‘ (2.41)

U=~ i=1

and is time dependent. Then W the probability that the eigen-

j)
state j is populatgd by the atoms in tbe ensemble, is given by
Eq. (2.41) averaged over the states 1i:

00

_' -1uL+ i '; 1 .
WJ‘Z Z Z CreiCys = F 5 - (2:42)

u=~-00 $=-00
the latter equality follows from Egs. (2.40) and (2.21). Thus
Eq._(Q;MO) implies that the probability that the spatial eigen-
state j is populated by atoms in the entire ensemble is time-
independent and the same for all j even though the probability
that a single particle in the stétionary state 1 is in the
spatial eigenstate J is time-dependent.

E. Physical Model

We now construct a rhysical model cf the timé-averaged be-
havior of an ensemble of atoms in the presencé of a time-varying
electrié field. Such a model is useful in describing the solu-
tion to the Schrddin er equation, Eq. (2.14), in terms of simple

physical processes between the atom and the oscillating electric
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field, and leads to correct theoretical prédictions of atomic
spectra when the variation of the differential transition rate,
(2.27), over times of the order of w-l can be ignored. We

first note that from Eq. (2.16) (setting i' = i),

(1]1) = }W Y |ch -, (2

J=1 s—-oo
where'ye have used Eq. (2.17) to simplify the-résult. We can

also calculate the energy of a particle in state wi:

N oo
. . 2
(1|H|1> E_djr W;i %{ vy = E: /., (K ICl ’
j=1 s=-00
00 : S
~iuwt 1% i
+ s ), e ” CJ,S-U js). (2-’4‘)4)
u=-m .

The particle energy oscillates in time due.to:the interaction of
the atom and the external electric field. If we average Eq.

(2.44) over the period of the electric field, T = 2m/w, we get

N
1 f dt (1IHI) = Z_ Z lcl |2(x + sw) (2.45)
O J= 1 s=-0 ' .

We gould equall&'well obtain the abovexequation by using the
following model. We conéider én'ensemble of atoms populating the
state i. - We assume that each atom in the ensemble has '"eigen-
states" characterized by the "quantum numbers”_(i,j,s); suchia
state hgs avspatiél dependence Uj and an energy Xi'+-&m. The
probability that the state (i,j,s) is populated by atoms in the
1’2

ensemble is asspmed to te |C In this model Eq. (2.43)

répresents the normalization for the protability and Eq. (2.45)
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represents the‘ensemble-averaged energy. .If we extend our ensemble
to include atoms in the states (Wi, i=1, -+, N}, then the proba-
bility Qf the state (i,j,s) in the enlarged ensemble will be
,C;Sle.multiplied_by the probability that the state i is popu-
lated, i.e., Ki’ and the average energy of an atom in the enlarged

ensemble will be
N N " | -
< b ig2 ’
B = Z D I AL O + ).  (2.46)

‘Atoms in the ensemble undergo transitions between the states
((i,d,8), i =1, «++, N, j=1, ++-, N and s'=:4bo, cee, 400}
owing to the interactions with quanta of the external electric
field. An interaction consists of the emissioﬁv(absorption) of
a quantum; the new state (i',j',s') after the interaction will
have i' = i (each state i is stationary) and s' = s - 1 (s' = s + 1);
i.e., ite energy after the interaction will have been decreased
(increased) by the guantum energy. Since the field quanta carry
angular momentum of 1 (in units of #), the state after an inter-
action.will differ in the index j frem the state befere the
interaction. For instance, in the particularly simple case
where the {Uj} are also eigenfunctions of the orbital angular
momentum I, the change in\j wili follow the seiection rule:

(3lu] 5)n.

AL = L' - L= 41, where £
In this model the energy of the state (i,J,s), At sﬁ,
has the following interpretation: the energy difference between

w, (the energy of state i in the limit, H, H, - 0) and N+ s
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is the result of the Stark shift of the eneréy levéls, ﬁhe Zeeman

splitting, and the'exchange of quanta with the electric field.

‘We aséume that a representation of the {Uj} éan be found such ' K
that both H

and H, are diagonal; then the Zeeman shift of state

0] 1
iis miwL. We must now decide which member of each set of solu;

tions to choose for each wi. From Egs. (2.13) it is clear that

each number of the set will have a different value of Ny» If we

cpooée'that solution in each set for which AE = xi - m - wi'

goes to zero when the electric field goés to zero, then we can

inferpret AF as thé,Stark shift, and s as the.hétihumber of elec-

tric field quanta absorbed or emitted by the atom in the state

(i,j,s). Under thié assumption as the electric field goes to zero | ‘

i
Cy = Bijaso’

Ay o+ Dy | (2.47)
We can now see the significance of this partiéular choice.
-Anpther member of the sét would have the property that a differ-
ent cdefficientC?o (c £ 0) would remain finite ip~the weak-field
limit. Such a situation would not change the physicé, since |
<Xi + dn isﬁinvériant for all member; of a set, but would not
.yiéld such a simple‘interpretafion; s - o would be the net number
of quanta aﬁsorbed or emitted in state (i,J,s).

Finélly, wé note that an atom in the state (i,3,s) can under-
g0 a spontaneous radiative transition to a state with lower energy -
with which it has a.nonZero dipole moment. In such a transition,

the energy of the resultant photon will bevxi + s minus the

energy of the final state; hence, the optical spectra of atoms in



wié

an oscillating electric field will consist of "satellites," a
given satellite being determined by fixed values of i, j, and s.
The intensity of such a satellite would be given by Kilcéslg

times the transition rate from U, to the lower state. However,

J

as can be seen from the correct expression for the total photon

emission spectrum (2.37), this simplified model only works in the
special case that we can ignore cross terms (those of form

.., ./.s €tc.) in Eq. (2.28). Circumstances under which cross
3°31, 543 _

terms can be ignored often occur and are discussed in Sect. F.

F. Weak-Field Limit

If the electric field is weak, then we can get an explicit

expression for the solution of Eq. (2.12). We assume st =0

(s > 1) (higher values of s correspond to multiple quantum transi-
tions which we expect to be rare forweakelecfric fields) and
diagonalize>the matrix §‘(see Appendix B). The resulting expres-
sion for A and the C's are power series in the small parameters

ij’

¥

A = ol +ay + S(]8]7),

1

1 851851 By -1531 112
Cys = Bgodyy * + =22 + 81819, (2.48)

(!, +®) (0!, - »
i ij

‘ -2 + 12

. — 87, |87, ]
@ =) —P— e =

g

3 ((L)]!.'j + o) (o

w? is the Stark shift of level i due to the electfic field and is

quadratic in the electric field amplitude. , In deriving.the above
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expressions we had to assume: 15%3’ << ]wij!’ and also that
Iwij + m’ >> @(IB!); these assumptions will be discussed below.
First,however, it is of interest to substitute Eq. (2.48)

into the expression for the photon emission rate S given by Eq.

(2.31). The resulting expression for S(m3) will contain cross

terms of" the form gkgk,lesf,l In many cases of physical interest
* .
(discussed below) gk k,5+ Bi, jj" In this case Eq. (2.31)

reduces to -

’ 2
e
3 - NI
S (m ) = E;%Zs [w& 8(&3 - wik .wi)lgil
k|2 2
Iy I.Jl
, 2
m + )

» le;
- ' - -
+ w78(w> w5y w - w) }:

. k2 +,2 -
| les1<leT. [“w!,

+ 08w - mik - mg + ) }q J JZ ijf
(A4 7 (!, - ) ’

J - R

+ s(lelty. | | (2.49)

The spectrum given by expression (2.49) consists of three spectral
lines: a line resulting from a dipole transition from i to k with

resulting photon energy wy = i, + ws, and two weaker 'satellites"’

ik
with enérgies w7 = wik + ag + o which result from two-quantum
transitions (one quantum absorbea from or emitted to thé electric
field). If a‘dipdle transition from i to k is forbidden (g? = 0),
but the dipole matrix elements B?iiand g? are nonéero, then the

spectrum is composed of just the two satellites. If g? ¥ 0, then,

to lowest drder, S(uy) is just the usual spectrum for an "allowed"
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dipole transition from i to k.

Expression (2.49) represents’the usuél perturbation solution
to the high-frequency Stark effect. ‘It was first calculated using'
standard time-dependent perturbation theory by Mozer and Barrangerl
for thé case of zero magneﬁic field and extended to include a
static magnetic field by Cooper and Hess.8 Extensive discﬁssion
giving explicit expressions for the matrix eléménts fdr_neutral
helium lines useful ih plasma diagnostics for_the case of a
linearly bolarized electric field or a circularly polarized elec-

15

tric field are given in Hicks, Hess, and Cooper. The latter

-also give profiles for various electric field pdlariiations rela-

tive to a static magnetic field.
We now discuss the assumptions made in deriving Eq. (2.L49).
(1) The form of Eq. (2.49) depends on the assumption that

the cross terms of the form

+% Kk _k* » -

+.
o't w! 1 ijlgjgj' j # J'
05 T . ’ ’
(@], 2 @0}, 2 o)

can be:ignored in the final expression for the spectrum S(w).
Before.discussing situafions in whieh this assumption holds,'we
noﬁe that due to the form of the denominators in'Eq. (2;h9), the‘
ieading contribution to the satellite intensities_and positions
will come from térms in the sums involving intermediate stétes
whbse éﬁergies lie closé to the energy of state 1i. Morg distant
states will have less effect and states for which the energy .

separation @ij is much greater than thé energy separation of the
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nearest states can be ignored in.computing the satellité intensi-
ties ahd positions. Similarly, cross terms for which j and j' do
not both represent states near to the state i can be'ignorea, .
since they will not significantly modify the result give in Eq.
(2.49) fof the frequency spectrum. |

We can identify two cases in which the aésumptidn that the
cross‘termé are negligible is valid.

(a) First, if for a given initial state i and final state k
there:éxists only a'single intermediate state j‘which is '"near"
~to the state 1 and fdr which the matrix element;.gg and B%j are

both nonzero, then the aésﬁmption is valid. This situation

occurs for the singlet helium lines 4388 (5'D -'2¥P)‘and‘¥922
(th.-_QlP) for a linearly polarized electric field with either
no magnétic field or polarized along the magﬁeﬁic field, or an
electric fiéld circuiarly polérized perpendicular to the magnetic
field. In the above cases, for a proper choice of coordinate
sySteﬁ? eéchvinitial state (n, £ =3, m= -3, ---, 55»13 cdubled
to only a single one of the nearby intérmediate states (n,.l =2,
m = -2;tt-;, 2) by the matrix element ij- |

;(b) Second,'créSs terms can be ignofed whén'the time-aver-
aged electric field is axially symmetric with respect to the
magnetic field. Then, in the cqordinate system"ﬁith_z;akis along
the magnetic field, the cross terms vanish when an average is ‘
| taken over‘the azimuthal angles of the electric field and Of.the
emitted photon.

(2) lﬁfjl << !ﬁij}’ i.e., the weak-electric field épproxi-
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mation. If the electric field is not weak then the problem muét
be soived numgrically by the methods of Sect. A énd C. The
validity of the perturbation theory>és the eléctric field in-
creases is fﬁrther discussed in Chapter III. This condition re-
quires tﬁét the'iéro—order energy lévéls not be degeneraﬁe.

(3) | "”ij + o >> IB%jl.A If this condition is violated then
the perturbation expansion (2.48) is no longer valid, since one
of the "smali” terms (<« Bi)'becomes comparablé_to‘the leading
term.v Since resonant dehomiﬁators of the form wij + o also
appear in the perfufbation expressions for higher-order terms
(Isl > 1), we can no longer be sure that the higher;drder terms
which were ignored in calculating Eq. (2.48) will be weaker than
the tefms-kepta |

As noted ty Aﬁtler and Townes,l6 perturbétién theory also
breaks down if a higher-order resonancé conditién is satisfied.
If we consider thé case most often used in plésma diagnosticé
where a dipole transition from i - k is forbidden and a dipole
tfansition from j - k is allowed, then in the weak-electric-field
limiﬁ»for which perturtation theory is valid the condition for an

nth-order resonance can be written as

1 | il I\
Y S ; L '
lw' , lwklj‘_-lrwi -a)?im), s’wj'.a" =€n, n='.5) 2
gt RN

As can be seen from the above resonance condition, an nth-order

‘resonance occurs when the Stark-shifted position of the nth

satellite of the forbidden transition i - k (the forbidden transi-
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tion has only odd-numbered satellites) is separatéd from the
Stark—éhifted'position of the allowed line j -~ k by & distance

of the order of fwijlen. Then the intensity'bf_this satellite ' -
(which would normally be much less than the intensity of the
allowed line) can be cqmparable to the intensity of the allowed
line.‘ Numerical calcﬁlations show that when a resonancevoccurs
two spectral lines separated by a distance of the order of lwijfen
appear at approximately the position of the allowed line‘predicfed
bybthe perturbation theory. A similar situation occurs_at the
predictéd positioné of the satellites of the forbidden transition
i - k, where a higher-order satellite of the allowed line (which
has ohly even-number satellites) can be comparable in intensity

to the generally much more intense first-order satellites. For
weak eleétric fields the separation between the two lines in each
pair is ver& small and will not be seen in a real éxperiment with
finite resolving power and broadened spectral lines. ' For stronger
electric fieldé, the separation will be obsefvable bnly for the
lowest-order resonances. If the separation cannot be resolved,
then each pair will be observed as a single "sgtellite" with an
intensity equal to the sum of the individuai intensities and an
average position given by the average of the ﬁosition of each
component weighted by its intensity; numefical calculations using
the multi-level theory developgd above indicate that the sum in- .
tensity and average positioﬁ are given correctly by Eq. (2.&9).

G. Hydrogen-Like Limit

In Chapter II.C We exhibited an exact solution of Egq. (2.12)
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which applies ih the limit 6fvdegenerate energy levels. This
solution has the following properties: B

(1) The satellite positions are at +nw, relative to the
unperturbed spectral line poéition (n an‘integer);

(2) the satellite intensities are functions of the fre-
quency o and the electric field strength E, only through the
ratio 'Eo/mﬁ and | ‘

(3) the satellite intensity ﬁattern is symﬁetric_with
respect toAthe unperturbed spectral line position;

The condition necessary to attain this limit can best be

determined by referring to Eq. (2.12) and noting that one may

write (remember that Ay was assumed to equal ajajj' and
o' =, +a ) |
J . d J
.0_.‘ LI, = = e 6o .
wﬁ = Wy + (wj ab) =@y + €j’ o J 1, S N,

where'wb is some suitably chosen.'average' energy of the system

of N levels. If

o, e, < i, 3' = TR (2.

then each will be a small number and we may solve Eq. (2.12)

€3
by standard perturbation-theory techniques. The Yiero'-order
problem_is just the hydrogen problem whose solution is given by
Eq. (2.3&). The next higher-order correétion will be of ofder

€ and hence will be small if condition (2.50) is satisfied. The

mechanism of the hydrogen-like limit can be observed in Eq. (2.&9)

for the weak-field case. In the limit (2.50), Eq. (2.49) predicts
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that both the far and near satellites are of equal intensity pro-
portional to_(Eo/w)a, and are equally spaced about the common
position of the two levels [this latter since the Stark shift

: )
goes to zero in the limit (2.50)].



-33-

III. NUMERICAL CALCULATIONS

A. GCeneral Description

In this section we pfesent results of'numerical calculations
using the.theory given in Chapter II.

We do not have an analytical solution to the infinite set
of Eqs..(2.12)§ Instead, we use a numerical methnd of solution
suggésﬁea.by the physical intgrpretation.

" For wesk electric fields, the multiple ébsorﬁtion of s
photons becomes less likely as [sl increasesr(négative values of
s correspond to emission) since the larger vélues,ofvlsl corre-

\ ’ .
spond to higher-order terms in the perturbationvseries. The
probébility of the absorption of one photon is'given by second;
ordér perturbation theory, two éhotons by third-order theory, etc.
As the strength of the electric field increasés, the probability
of multiple absorption élso increases, and higher-order‘satellites
will become observable. However, it is reasonable to assume that
even for strong fields the probability of absdrbiﬁg s photons
becomes negligible for lsl sufficiently-large; Sinée this proba-

bility is proportional to chsfg, we assume that

Cjo=0for [s|>s, y=1,2, -, W (3.1)

Then the infinite set of equations (2.12) is reduced to-a finite

set: .
. N

: a..,C.

( Jd'g!
J'=1

+ - N
s ¥ P35Cir,sa  PyyiCyr se1)

o+ ((DJ - 8w _K)st = 0, .' . . (5‘2)
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Equations (3.2) can be viewed as an eigenvalue equation:
D = D, - . (3.3)

where D is an N(2s + l)-dimensional column vector’wﬁose elémenﬁs'
are in a one-to-one correspondence with the coefficients st,
j=1,2, -+, Nand s = -8, +++, +S; X is an N(2S + 1) x N(25 + 1)
matrix whose elements are chosen so that the set of equations
represented by (3.3) is the same set given in (3.2). An example .
for the case S =1 and N= 3 is given in Fig. B-1 in Appendix B.
One can eésily show that X is Hermiﬁian when H is Hermitian.

Let Z represent the unitary matrix which diagonalizes X; we have

2'xz =1, | (3.4)

where Z' is the diagonal matrix whose ponzero'eléments are the
eigenvalues of X and hence the solutions for é...The columns of Z
are the eigenvectors of X; they are solutions for D and hence for
the C's. We can construct a solution for Eq. (2.1) from each of
the N(2S + 1) eigenvalueé and eigenvectors of X. As discussed

in Chapter II.A, only N of these solutions ére_ﬁo be used in the
complete ﬁave function and, as before, the solutiops may be
divided into N sets, each set now containing 25 + 1 members. For
the infinite set of equations (2.12) all of the solutions within

a set can be found from any one member of the set by using the
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transfofmation-(Q.l}); this will only be approximately truevin the
case of the finite set of equations (5.2)»becéuse of the approxi-
mation made in truncating'the matrices. We mgst'be careful‘in
selecting which eigenvalues and eigenvectors to ﬁse. As one
method we could choose the solution in each set most accurately
fulfiiling condition (3.1) above, or we could choose the solution
desceribed in the previous section where s has fhe physical meaning v
of the net number of photons absorbed or emitted”and Ny oopm - ay
is the Stark shift. For low electric fields theése two choices will
be the same. | .
, The solution of Eq. (3.2) generally involves several steps.
First those eigenstates whichbmust be included-in the expansion
of the wave function must be determined.. To do.this it is help-
ful to coﬁsider the perturbation solution, Eq; (2;h8). Because
of the resonant denominators, for a given initial state i, the
most impbrtant intermediate states j té consider are those for
which'lwijl - w is smallest and Bij is nonzero. However, for
strong eleétric fields, all nearby intermediate states should be
included evén if Bij is zero, since multiple quantum transitions
may be:important and two states i and J can Be coﬁpled through
other intermediate states. Fof instance, for-thé 4388-% He T
(SlD - 21P) line the 5G level must also be includéd, since it
introduces satellites and strongly affects the position and in-
tensities of the satellites originating from the 5D and‘SF_levels.
If there are intgrmediate states for which (wij! S w andIBij is

con oy
nonzero, then states for which ;w;jl o> @ can be neglected, unless
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very strong fields are present or great accﬁracyiis desired; The
best method to deterﬁine whether a particular sfate need be_in-
cluded is to perform the calculations with and without.the state
and compare results. It should be noted that.if.there are no
'nearby':states which afevcoupled to the state.i by dipole matrix
elements then that state.is unaffected by the electrié field.

Fortunately,_for spectral 1ines considered for plasma diag-
nostics and at electric field'strehgths found in the laboratory
the choice of eigenstates is usually straighfforward. For hydro-
gen, it is sufficient and in general necessary to.retain all
stétes ﬁith the same principal quantum numberviﬁ caiculating both
the ﬁpper level and the lower level of an‘optical"transition.
For helium it is usually sufficient to considér singlet and tri-
rlet stateS'ihdependently, the states with priﬁcipal guantum -
numbers < 3 to be unaffected by the electric field and to retain
only the high angular momentum states (P, D, F, etc;) for prin-
cipal quantum numbers 2 4. For other elements the problem is
not determining which states to retain but in finding two states
which ére both coupled by dipole matrix elemenﬁsvand nearly de-
generafe»enough to give'obserQable éatellites. Fér insfance,
Ya'akobi’and Bekefi6héve observed plasma sateliites of the for-
bidden lithium transition 3P - 2P near the allowed lithium
spectral line at 6103.6-8 (3D - 2pP) due to higvh—"frequency elec-
tric fieldsproduced by an expibding lithium wire." A

Having determined the appropriate states to use, thé next

"step is to calculate the matfix elements & and B;w To do this
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we-ﬁeed the unperturbed wave functions [Uj}' :Sihce, except for
hydrcgen, these wave functions are not known exactly, some approxi-
matioﬁ must be made. For the calculations in fhe following section
for helium we have assumed that‘hydrogenic wave functions are good
approxiﬁations to the actual wave functions in calculating the «
and the Bi matrix elements. |

For hydrogenic wave functions the Hl term is diagonal if

" the external magnetic field is chosen along the z axis. If thg

total electron spin of the atom is zero, then Hl = wLLz’ where
L, is the z component of the orbital angular momentum of the
excited electron. Hé, the interaction energy of the high-fre-

quency electric field, is

Hy = - (R-B/n) = + lel(F-E/n), - -   ' (3.5)

’where H is the electric dipole moment. For linear polarization

of the electric field, E(t) = EO coswt and

+ - - = s 1 .
Bygr = Byye = (lel/28)GIEE L3 . (3.6)

For circular polarization perpendiculaf to the.magnetic field,

-, ~ A,
E(t) = Erms(x coswt + ¥ sinwt) and

;%f=(“mmJ%ﬂﬂx¢whﬁ,‘ G
ng: = (’e{ErmS/eﬁ)(jlx + iy]j’}. .v ' (3.7)

The upper sign corresponds to right-hand circular polarization

and the lower sign cOrrespdnds to left-hand circular polariza-
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tion relative to the magnetic field.

'The4final quantity to be determined in Eq;.(3;2) is the
unperturbgd energy of each state. For hydrogeﬁ the energy can
be exactly calculated. For non-hydrogenic atoms some other method
must be used. TFor the helium calculations in the next section we
have used experimentally determined values for the unperturbed
energy levels.

'B. Helium Calculations

We have used our theory to inyestigate éxtensively two
opticai'transitions of parahelium, the 4oeo-R (41D - 2lP) and
4388-§ (SlD - 21P) He I lines. Fdr the upper levels in these
two cases, thé only states which need be included in calcula-
tions for electric fields E_ <20 kV/cm ana‘frequencies
w, wL_< 75 GHz are the hP,:D,_and F, and the SP, D,,F, and G,
respectively. The lower states (n = 2) are negligibly‘affected
by the electric field because fhe 2P, m = 0, i-states are-not
coupled-by the Bi matrix elements and ﬁhe 2P.leﬁels are widely
separated from any other 1évels._ However;rthe 2P levels gfe
split by.a static magnetic field.

For our calculations, we have used Martin's valuesjgf33

for the eigenvalues of HO and hydrogen-like eigenfunctions for the
{u.}. |
J} . .
In the calculations which are presented telow, we have not
included a magnetic field. A thorough treatment of the effects

of a magnetic field is given in Ref. 15, and the new phenomena

which arise when the perturtation treatment iS'hot'valid are
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similar to those which are shown below for thé;case of'electric
field alone. That is, higher—ordef satellites and Stark shifts
become important.

Figures 3-1 and 3-2 show calculated Stark profiles Qf He
4922 B and He 4388 & for an electric field freqﬁency of 35.1
GHz (1;17 cm-l) for various field strengths. _Thié frequency was
chosen because it is the one used in the experiment described in,
Chapter IV. In the calculétions we have set S = 10 for Erﬁs
< 6 kV/cmiand S = 15 for stronger fields. These valﬁes were
determined by performing the calculations for vanying S until

an increase did not significantly change the séfellite intensi-

ties and positions. The resulting matrix X has-then been numeri-

cally diagonalized using a CDC 6600 computer. Since for strong
eléétric fields there are a great many satelliﬁés which contri;
bute significantly to the spectrum, the main features of the
spectrum are more easily seen if the.multitude of theoretical
lines bredicted by our calculations are "smoothed# by folding
with an "instrument" function. To obtain the pfofiles shown in

the figﬁres we have used the function
' 2, 2 2 '
-4 _ : . v
1= 207 /(A N (3.8)

where;x is the distance in angstroms from.a line center and q
has been set to give a full width at half-maximum of 0.2 X.
This instrument function produces a line shape which is often

observed experimentally for nonhydrogenic lines: Gaussian at

"the center and Lorentzian in the wings, with a weak continuum
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Fig. 3-1. For legend, see payge 40a.
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Fig. 3-l;> Calculated Stark profiles in the vicinity of the hozo-f
spectral line of He I for the case of no magnetic field and a
1inearly polarized electrlc field of frequency 1. 17 cm -1 and
for various electric field strengths, all for dlrectlon of
observation perpendicular to E. Each prefile is the result of
folding the theoretical line spectrum with’au_iustrument func-
tion.of FWHM of 0.2 £ and is shown plotted logarithmically; a
’single'decade is shown in the figure by a douule-ended affew;
M\ = 0 is the unperturbed position of the allowed line |
th -2 P, A denotes the unperturbed positlon of the forbidden

transition th - 21P.v
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Fig. 3-2. Calculated Starkbprofiles in the vicinity ofvthe h588-g
spectral line of He I for the case of no magnetic field and a
linearly poiarized electric field of frequehcy ‘l.'l7'cm-l ahd
for various electric field strengths, all fortdirection of
observation perpendicular to E. Each profile is the result of
folding the theoretical line spectrum with aﬁ instrument func-
tion of FWHM of 0.2 K and is shoﬁn plotted légéfithmically; a
single decade is shown in the figure by a double~ended arrow.
M = 0 is the unperturbed position of the allowed line
51D *IélP; AF and &, denote the unperturbed positions of the

G
- : , 1 1 1 1p N
forbidden transitions, 5F = 2°P and 5°G - 2P, respectively.



p-

backgréund. The half-width énd backgroundlchoéen-are appfoxi—
mately those of the experiment described in Chapter IV. 1In each
figure thé profiles are plotted lined up behind each othervand.
the intensity of each profile is plotted logarithmically. The
first profile in each figure is the instrument function, i.e.,
“the profile for zero electric field.

For weak fileld strengthé the profiles calculated by using
the multilevel theory of Chapter II agree with ihose predicted
b& perturtation theory (see Chapter II.F). For He 4922 and:

He 4388, the pattern consists of an intense allowed line arising
ffbm the nlD - 21P transition and two weak satellites centered

| about the position of the forbidden transition an - 21P and
separated by twice the field frequency. In the‘folloﬁing dis-
cussion we will follow standard notation, referriﬁé to eiﬁher
the 'far' ('weak') satellite or the 'near' ('strong') satellite,
the formef designation for each satellite coming from its proxi-
mity to the allowed line (and»the lattef from its relati&e
intensity). , |

For higher electrié field strengths other satéllites appear
and grow ﬁntil they dominate the sﬁectral pattef51 The additional
.satelliteévare due to multiple photon tranSitiops from the.upper.
set of stétes to the 2P level. 1In Fig. 3-1 the éllowed line-
(ﬁlD - 21P) has satellites associated with it which are due to an
even number of photons being absorted or emitted_ffom the exter-
nal field, while the férbidden transition (hlf-j QlP) has associ-

ated with it satellites due to an odd numbter of photons being
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emitted or absorbed; these additional satellifes are separated
from the positions of the corresponding transitions by even and
odd multiples of the field frequency; respectiveiy.' Figure 3-1
also shows the effect of the Stark shift of thé LD and 4F levels:
The satellites 6f the allowed line shifted towafds longer wave-
lengths and the satellites of the forbidden line are sﬁifted
towards shorter wavelengths.

‘The épectra shown in Fig. 3-2 for the 4388-8 line are more
complex than those of Fig. 3-1 due to couplingfofbthe SlD and
SlF levels to the nearby SlG level. This coupiiﬁg not only modi-
fies the positions and intensities of satellites arising from the
SlD and 51F levelsvbut also produces an additional group of
sétellites associéted with the forbidden transition (SlG'- elP)
‘and sepérated from it by even multiples of the field frequency.
Thé Stark éhift of the 5lG‘1evel and its‘associatéd satellites:
is in the same sense as that of the SlF level, i.e., tbward
: shortér wavelengths and "away" from the red-shifted allowed line.

In the limit.of.very strong electric fields (6ij >> w; - wj),
the usual characterization of a spectral transition as "forbidden"
or "allowed" ceases to be valid. For such a fieid the levels are
strongly coupled and the spectral patterns arising from transi-
tions involVing such levels can differkmarkedly.in general
structﬁre from the weak field case. Such a situation can be seen
in Fig. 3-1, where the very asymmetric weak-field spectral pattern

becomes nearly symmetric as the &lD and th levels become more .

strongly coupled by an increasing electric fieldf
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Figures 3-3 and 3-4 and Table ITI-1 show the results of
further calculations on the h922-8 He I line, again with a line-
arly polarized electric field and no magnetic field. The calcu-
lation of the data used to produce Table ITI-1 and Figs. 3-3 and
3-4 requires some discussion. Because we have chosen the electric
field polarized parallel to the z axis, each satellite and the
-allowed line have five uncoupled components, one component aris—
ing from a transition from each magnetic quantum level of the 4D
state: O;~i;, +2, to the 2P state. In generai, the spectral
intensity and position of each component will be different.
Althouéh, in brinciple, these components might be resolved, their
separation is such that at moderate field strengths < 10 kV/cm
tﬁey would appeear as a single line when vieved by most optical
instruments. Therefore, in calculating entries for the table we
have summed the amplitudes of the five components of the appro-
priate satellite or of the allowed line. Figures 3-3 and 3-4
were plotted from the data of Tab¥e III-1 with the‘following
éxception. For the case of electric field frequency equal to
3 cm-l'a resonance occurred for the higher valﬁes of the‘rms
electric field strength. The effect of this fésonance is to
decrease the intensities Bf the satellites and the allowed lines
at the expeﬁse of other satellites (see the end 6f Chapter II.F).
This effect can bé ﬁost cle;rly seen from Fig. 3-4 where the ratio
of the near satellite to the allowed line decreases rapidly with
increasing field strength for the higher field strengths shown.

In fact, for 10 kV/cm, the resonant lines are éomparable to or
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forbidden transition th d 2lP to the allowed 1line MlD - 2¥P
in He I as a function of rs electric field strength for several

electric field frequencies, for a linearly poiarized electric
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field E, and for direction of observation perpendicular to E.
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Table III-1. S+ and S_ for helium 4922 for various electric field

frequencies (in cm-l) and strengths (in kV/cm).

s-
£ 0.5 1.0 2.0 3.0 . ko 5.0
Ems . | | . | . .
1.0 1.78x10'5 2.20x10™° 3.58x10'5 6.77xlo'5 1.72x10‘2 9.45xlo'2 »
2.0 6.55x10'3 8.29x10'3 1.34x1072 2.50x10™% 5.93x10’2_2.37x10'1
3,0 1.29x10'2 1.70xlo'2 2.87x10-2 h.98x10'2,1.o9x10'1 3 38x1o‘l
4.0 1.95x1072 2.68x107% 4.65x1072 7.61x10™° 1.56x20"T 3.98x107F
5.0 2.45x1072 3.64x107° 6.50x10"° 1.00x10™T 1.93x107+ k.32x1071
6.0 2.77x10°° 4.50x1072 8.17x10°° 1.19x10™* 2.2Qx10'1 .u8x107t
7.0  2.86x1072 5.20x107° 9.63x10"2 1.30x10™ % 2.39x10™T 4.52x107t
8.0 2.72x107% 5.75x10™% 1.08x10™" 1.29x10™" 2.48x107" k.h7x107
9.0 2.33x10'2 6.12x10% 1.17x10'l 1.15x10'l 2.50x10-1 N 37x10’l
10.0  1.75x1072 6.22x1072 1.02:10°Y  ar  2.46x107t h.o3xact
s, .
£ 0.5 1.0 2.0 3.0 koo 5.0
Enms : 1
1.0 J..29x10“3 1.10x10”5 8.2hxlb—h 6.h3x10-g 5.15x10‘h h.l?xlo-u
2.0  5.31x107° 4.39x107° 3.26x107° 2.53x10™° 2.01x10™- 1.60310'3
3.0 1.2ux10'2 9.88x10'5 7.20xlo“3 5.5)+xlo‘3 u.36x10'5 5.u5xlo'5
4.0 '2;35x10'2 1.76xlo'2 1,25x10'2 9.55x10'3 7.u6xlo'5'5.85x10‘5
5.0 5.89x10'2 2.76xlo‘2 1.90x10'2 1.44x107° 1.12x107° 8.75x10'5
6.0 6,08x10’2 3.99x10'2 2.66x10™2 2.01x1072 l.55x10f2,l.21x10-2
7.0 9‘.15x10'2'5.1+9x10'2 3.50x10° 2 2.65x10°° 2.05310'2 1.58x10°2
8.0  1.36x107% 7.28x1072 L.48x10™2 3.38x10"2 2.55x10™2 1.98x10"2
9.0 2.00x10°T 9.38x1072 5.55x1072 4.21x1072 3.13x10°2 2.41x10"2
10.0 2.98x10'l 1.18x107" 6.68x10%  nr 3.75%107% 2.88x107°
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even more intense than the original satellites and the speétral

»

pattern is unrecognizable (i.e., so complicated than an experi-
menter who measured such a_pattern could not poséibly identify
the weak satellite and near satellite by visual inspection), and
so the gﬁtry for this case has been denoted 'nr':in the table.
However, from the caiculations it is.possible to identify the
weak and far satellites and also the satellites of the allowed
leyel in resonance with them. For the figures we have calculafed
S+ and S_.for the resonant cases by summing the contributions té
the satellite intensities and allowed lines of all nearty reso-
nant components in order to illustiaté the discuééion given at
the end of Chapter II.F, even though in an actugl‘experimenf the
difference components would be resolvable. This rrocedure leads
to a set of curves of Si vs Erms which appear to changé smoothly
as a functioﬁ of frequency.

'In Figs. 3-3 and 3-4 the rms electric field is plotted
against S _ (s:), the ratio of the far (near)‘sateliite to the
allowed line, for various fréquencies (labeled in inverse centi-
meﬁérs); 'Perturbation theory prediets straightvlines on a log—“
log plot (S+ and S_ are each proportionalItO’Eimé)Awhich are ‘
tangent to the curves of Figs. 3-3 and 3-4 at low electric fields.
For stronger fields there.aré increasiﬁg deviapioﬁé from the
results of perturbation theory. Figures 3-3 and 3-&,’aﬁd also
Fig. 3~1, show that the intensity of the far satellite is growing
faster than the inténsity of the near satellite, until at about

8 kV/cm the far satellite is actually stronger. As is noted in
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Refs. 8 and 4, and as is ciear from Figs. 3-3 and 3-4, the near
satellite deviates much more than the far satellite from the prei
‘dictions of perturbation theory, and the effects of the higher-
order terms are to decrease the'émplitudé of the near satellite
‘relative to the perturbation theory results.

From Figs. 3-3 and 3-4 and from Teble TTI-1, it is, in
principlé,'possible to determine the frequency and amplitude of
an eléctric field from an experimentally measured spectrum. How-
ever, the appearance of additional satellites may confuse the
spectral pattern even for relatively low field strengths.

For instance, consider Fig. 3-5, which shows a set of prb-
files of the 4922-§ line of He I fof a frequency of 4.0 em™ L.

It is nbt clear from thé figure which are the far and tbe near
satellites,'evén for weak eleétric fields. The line marked with
an arrow is actually a satellite of the allowéd line. Another
situation where cOnfusian couldrrésult is at very low frequen-
cies, since the two satellites will then merge into a single line
at the position of the forhidden line. Furthermbre, in a plasma
the forbidden line is always present due to the quasistatic.
Coulomb fields of the ions and it may be confused with the satel-
lites if its intensity is comparable to satelliteiintensities.
One might also see only a single satellite if the fleld frequency
is close to the energy separation of the 4D and 4F levels; then
the near satellite will be buried in the "wings'" of the allpwed
.line. For these reasons we emphasize that unless the features

of the spectrum are clearly identifiable, extreme caution must
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Fig. 3-5. For legend, see page 50a:
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Fig. 3-5. Calculated (instrument-broadened) Stark profiles in

the vicinity of the 4922-% spectral line of He I for the
case of no magnetic field and a linearly polarized electric
field of frequency 4.0 cm-l_and for various electric field
strengths, all for direction of observdtion perpendicular
to E. :Each profile is plotted logarithmicaily; a single
decade 1s shown by the double-ended arrow. M = 0O is the
unperturbed position of the allowed line th i 21P and the

éingle-ended arrow derotes one of its satellites.
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be observed in using the perturbation calculatidns or Figs. 3-3
and 3-4. | |

The amplitude of the electric field can also be detérmined
by méaSuring the Stark shift}of the lines.lh It is usuall& most
convenient to measure the total Stark shift, which we define as
the change in thé separation of the fofbidden_and allowed lines
(compared with their separation wifh no external fields). The
Stark shift of the allowed line can also be used if‘one can de-
termine its unshifted position. For low fields Eq. (2.48) can
be used to find the Stark shifts; for high fields the theory of
Chapter II must be uéed. From Eq. (2.48) we can see that for

linear polarization the Stark shift is proportional to

; 2 2

and therefore for w < Iw'

lJf it is a rather weak function of the

frequency. ' In this case, a precise knowledge of the fre-
quency is unnecessary; for other polarizations, however, the
dependence of the Stark shift on the frequency is stronger.

C. Hydrogen Calculations

Ohe can approach the calculation of hydrbgen spectral pro-
files in the presence of a high-frequency electric field on

either of two levels of sophistication. The first and simplest

approach is to assume-that the energy levels corresponding to

the same principal gquantum number 'n' are degenerate. Then,

'Eg. (2.32) and follow-

following the discussion of Chapter IT.C

. | - . . . :
1ngj, one chooses Tor the unperturbed eigenstates used to
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calculate the matrix elements for Eq. (2.12), the particular set

which satisfies

(1|B-r[i') = 88,05 - (3.9)

eEO
Ai = ;;;-(1|TEII>,

\

where e is thevcomponent of T parallel to E, and where i and i
correspond to different eigenstates of the same principal quantum
level.v The profile of a spectral line arising from an optical
transition between the eigenstates of two different principal
quantum levels can then.be found by suming Eq. (2.35) over the
final states (k) and averaging over the initial étates (i):

a

k,2 7 2
[gif ) my&(wy - fw - sw)T (4

| ) ) 2)r  (3:10)
ik i,k s==00

[ ——

where we have assumed, following the diécussion of Chapter II.D,
that the initial states are equally populated. Equation (3.10) im-
plies the usual Blochinzew type spectfal patternlS'composed of
satellites spaced at integral values (denoted by é) of the elec-
tric field frequency from the unperturbed spectralvline position
(w = Anﬁ, and with intensities given in terms of Bessel functions.
Each term in‘the sum of Eq. (3.10) corresponding to a given
initial state i and a given final state k implies‘an entire spec-
trum of satellites with a 'characterisfic width' wﬁich increases
proportionally to the electric field strength EO- We can see

this by noting that JS(Aik) as a function of s has the property

that it is relatively constant for s < Aik and falls off rapidly
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to zero for s > Ai#.l8. Defining the width w,, to be two times the
separation of the unperturbed line position ahd'the position of
the satéllite (with corresponding s = s) where this rapid decrease
oceurs for a_pérficular-i and k yields: = |

2eEO
W, = 28w = 2A,, ® = -

(<ilr [1) - (k|r 'Iic>), (3.11)
o B E |

and hence the width is proportional to EO with the proportionality

constant a function of the particular initial and final state.

For the entire profile we can define the average width w by aver-

-

aging wik over the entire set of initial and final states. The

result
-
- < K2 C :
vi=) el L (3.12)
i,k

-will glso be proportional to Eo and hence, evén’if one cannot
resolve the individual satellites of the spectral paﬁtern, one
can still~use the width of the spectfal prdfiie‘to measure fhe
electric field strength. This method has been exploited by

2-25 The determination of the electric field

severalrauthors.g
frequency, however, does require thé observatidp of the various
satellites of the spectral pattern. It éhould be noted that the
‘ proportiénality constant in Eq. (3.11) can te zero,vin which case
that particular component of the spectral profile-does not con-

tribute to an increase in broadening of the total profile with

an increase in the electric field strength. In using the width
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of spé'c'tral profiles for which this is the case (Ha, Hy, H, etc.)
to measure the electric field strength, one mustvbe careful to
correct for such unéhifted components. One further property of
the specfrél profile implied by Eq. (3.10)'should be noted: if
the'eléctric field strength and frequency are scaled together,

i.e., if we set

o' = ew

and Eé = €E,, : o (3.13)

then fhe'satellite intensities are unchanged, but the width of
the satellite patternvis increased or decreased, depending on
whether ¢ > 1 or ¢ < 1. This 5caling property implies thét a
calculafibn performed for a particular frequency'is really more
general:since it also apflies to other frequencies and electric
field strengths as given by Eq. (3.13).

Profiles calculated from Eq. (3.10) for an electric field
frequency of 1.17 em ! and for several electric field strengths

are shown in Figs. 3-6 and 3-T (Hd and H_, respectively). As in

B’
the previous sedtion, we have assumed that (1) there is no mag-"
netic.fieid present, k2).the‘high-frequency electric field is
‘linearly polarized in the 2 direétion, and (3) thé spectral pro-
file is viewed in the direction perpendicular to tﬁe high-fre- -
qﬁency field. The profiles have been calculated by folding at
the exﬁected satellite positions an appropriately normalized

instrument function of the type of Eq. (3.8). Thé profiles have

been plotted, as in Chapter IIT.B, lined up behind each other
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Fig. 3-6. Calculated Blochinzew Stark profiles in the viéinity of Hd
- : "for.the case of no magnetic fieid and a linearly polarized elec-
tric field of frequency 1.17 c:m.l and for various electric field
strengths, all for direction of observation pérpendicular to E.

Profiles are plotted similarly to those in Fig. 3-2.
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_ B
for the case of no magnetic field and a linearly polarized elec-
tric fieldvof frequency 1.17 cm“l and for various electric field

strengths; all for direction of observation perpendicular to E.

Profiles are plotted éimilarly to those in Fig. 3-2.
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with the intensity of each profile plotted logarithmically. Both
sets of profiles show a broadening proportional to the electric

field strength. For H, the satellite intensities between the

B
'fall off! polnts remain reasdnably constant in relative intensity
with that infensity decreasing for increasing electric field
strengtﬁ (all profiles calculated in a singlé.fiéure have the

same area). However, for H, the ceptral component of the profile
does notbshow a decrease as the electric field inéreases, showing
that a significant contribution to its intensity is due to transi-
tions for which Alk = 0. The other components of'Ha do follow an

intensity pattern similar to H.. It should be néted that if the

B
satellite.pattern of Ez could not=be.resolved due to a wider in-
strument function then a measure of the half-width of the result-
ing profile would very likely given an efroneous-value for the
electric field strength since one would be measuring the width
of the central unbroadened component of the specfral profile.
This indicates that care must be taken in observing the entire
profile before deducing the width used in calcﬁlating the elec-
tric field. | o
So far,we have discussed only the degeneréte case; In a more
complete calculation, consideration must be given to shifts of the
unpertﬁrbéa epergy-levels which destroy the degeneracy. There are
threevpriﬁafy sources of such energy shifts: .a ﬁagnetic field, a
de electric field, and fine structure shifts of the energy levels
due fo'spin-orbit poupling and a relativistic maSS correction of

the electron. We consider these in turn:



-58-

.

(1) For a finite magnetic field B the energy levels of hydro-

gen are=éhifted by an amount which depends on the magnetic quantum

number m of the particular level: ' .
shift = m el ' ' o

m_c
One caﬁ;distihguish two cases: E parallel té"i, and E not paral-
lel to B. In the first case the extension of the Blochinzew
solution is tfivial, sinqe thg eigenfunctions Of'LE (thg component
of the anéular momentum in the électric:field diréction) are also
the eigenfunctions which satisfy Fq. (3.9). Hence the magnetic
field just shif'ts the various patterns calculated for a particu-
lar i and k relative to the others but leaves the satellite
-intensities unchanged. The total pattern'becomés more complicated
but Still~simple to calculate. For the second case a.c0upling
occurs between the different eigenfuncfions satisfying Eq. (3.9)
and thé more generai_methods outlined in Chapfer iI mgst be used
to calculaté the satellite intensitigs and posiﬁions. We shall
not coﬁsider thié'case further but instead the siﬁilar case pre-
sented by’a dc electric field.

(2) For a finite de electric field Edc’ fhé energy levels
of hydrogén'are shifted from their unperturbted positions by an
amount‘proportional to the dc electric field strength. We can
again distinguish two cases: Edc prarallel to E, aﬁd Eéc_not v _ T -
paraliel to E. The firsﬁ case 1s again trivial as the presence
of a parallel de electric field @erely leads té aIShift of the

satellite pattern calculated for a particular initial and final
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state but leads to no change in the intensity of the pattern.

For. the second case eigenstates which have different energies

due to the dc Stark effect are coupled by the high-frequency

electric field and we must use the general méthods'éutlined in
Chapter_II to calculate satellite positions and intensities (in
Ref. 28 the“problem of the Lyman alpha spectral:profile in the
preéencé of a high-frequency electric field and a perpendicqlar
dc electric field is solved using an entirely different method).

We,will'consider'the special problem of Edc perpendicular

to E: We choose Edé to lie in the Q\direction,‘and then choose
for the_eigens%ates rwhich will be used to evaluate the matrix

L

elements B in Eq. (2.12)] those for which the operator 'X'’

Jd'

(corresponding to the smtial x coordinate) will'be diagonal.

‘The appropriate energy levels @, to use in Eq. (2.12) are then

the dc Stark shifted energy levels:

wj = wo + fjnmg,

where wb

quantum number,fj,is an integer which depends on the perticular

is the unperturbed energy level, n is the principal

eigenstate, and o, is given by

S
3eE. a -
0
o = —22 - (3.14)
2h
where ao'is the Bohr radius. With the maﬁrix elements andbenergy

levels determined, Eq. (2.12) can be solved numerically for the

satellite intensities and positions in the manner outlined in
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Chaptef IIT.A. Before presenting the results of such calculations

it is interesting to note that this case satisfies a scaling law

similar to that for the simple Blochinzew case Ei.e., Eq. (3.13) .
LS . : ]

Namely, if we set

' = ew,

. -
E} - €Ey, |
! - . -

then Eq. (2.12) has the solution

w' = ew,

bcés - stf
ri.e.; the spectral pattern is unchanged except for a change in
scale. |

‘In Figs: 3-8a to 3-8d we present numerically calculated pro-
files for @a, and in Figs. 3-9a‘to 3-94 we prééent similariy cal-.
culated profiles fdr HB. In both cases the hiéh-frequency elec-
"tric field (frequency 1.17 cm-l.and field strengfh,S.O kV/cm,
3.54 kV/cm rms) was assumed.to-be in the z direction. ‘The dif-
ferent figures correépond to different assumed-values of the dé

electric field strength: E, = 0.0, 1.0, 2.5, 5.0 kV/cm; the -

de
direction of the dc electric field was‘assumed random but con-
fined to the plane perpendicular to the high-frequency electric’
field. The direction of observation was ?erpendicular’to the

high-frequency electric field. The instrument function used to

- produce the figures had arfull-width at half-maximum of 0.2 cm-l
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(a) f\ (b)
E_dc=O°O Ed-c=|.0

b

Fig. 3-8. TFor legend,

see page 6la.

 XBL7310-4373
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Fig. 3-8. Calculated Stark pfofiles in the vicini£y of Ha for the
cése of no magnetic'field, ; linearly polariied high-frequency
’eiectrié field of frequency 1.17 cm-l and fiéld strength 3.54
kV/cm_rms, and for various éc electric fieldé (as noted, in

kV/em). Along the horizontal axis in each figure, one large -

division (= 5 small divisions) equals 0.5 8.
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Fig. 3=-9. Calculated Stark p;ofiles in the vicinity of HB for the
case‘of no magnetic field, a linearly polarized high-frequency
electric field of frequency 1.17 em™t and field strength 3.54
kV/cm rms, and for various dc electric fields:(aé noted, in
kV/ém);‘ Along thé horizontal axis in each figure, one large

division (= 5 small divisions) equals 0.5 £.
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and was‘then 'Doppler broadened' for a tempefature of 0.4 ev
(440%).

In discussing these figures it is useful to refer to Table
IIT-2 which contains calculated values of ®g for the various
engrgy leﬁels involved in the transitions leading to Hd and HB.
For weak electric field strengths the separation of the energy
levels will be small.and we expect the calculated profiles ﬁo
nearly approximate the Blochinzew profiles shown in Figs; 3-8a
and 3-9a. The meéning of 'small' in this context was discussed
in Chaﬁter ITI.G where the condition for a neafiy'hydrogen-like

(i.e., degenerate energy level) solution was found to be

Eg. (2.50) :

-

Jl

.

; << We | - (3.16)

Referring to Table III-2, we see that this condition should be
satisfied Tfor both the initial and final energy levels for the

case shown in Fig. 3-8b (Hd’ Eje = 1.0) and to‘a lesser extent

d
for the case shown in Fig. 3-9b (HB, Ejo = 1.0). -These two
_figures bear out this assertion: The Blochinzéw pattern is
éssentially maintained with the presence of the dc electric field
leading to a broadehing of the individual satellites due to a
‘relative shift of the enmergy levels. The effegt'of increasingly
higher electric fields can bg observed by comfaring successive
figures. As can be seen by comparing Figs. 3-8a to 3-8c, the’
primary effect of a moderate dc electric field (i.ef, one for

which w, - w., < w) appears to be a shift of the components which

J



Table III-2. DC Stark shift (a%) in inverse centimeters for n = 1

A

to b and for various electric field strengths in kV/cm.
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make up & Blochinzew satellite. This can best be seen by observ-
ing the éffect of the increasing electric field oﬁ the satellites
which in Fig. 3-8a lie on eithér side of the main peak. In

Fig. 3-8b these satellites have become broadened into two nearly
resolvable peaks,-and for tﬁe electric field repfesented by Fig.
3-8c (2.5 kV/cm) the two compoﬁents of each satellite have become
widély separated, one of which is nearly unresolvable from the
main peak. The'sﬁm iﬁtensity of the two components; however, can
be seen:to remain relafively constant. For the highest field
case'réprésented by Fig. 5-8d_the profilg has ééased to reflect
ﬁhe Blochinzew pattern. These figures indicate tﬁat measﬁrement
of ﬁhe freQuency of a high-frequency electric_field using the
satellite separations 1s made nearly impossible.ﬁy a dec electric
field which does not satisfy Eq. (3.16). The situation for the
HB profiles shown in Figs. 3-9b to 3-94 is even worse, as can be
seen'by referring to the values of ms for the appropriate ﬁpper

levels and'lower levels of the transition. For the weak electric

fiela'case,shown in Fig. 3-9b the profile stili rgmains essentially
the ﬁlochinzew prattern with the main change be§ng the splitting of
the central peak into two components of approXiﬁately half'the
infeﬁéiﬁy of the original peak. For the highér dc electric field
cases shown in Figs. 3-9c and 3-9d the profiles have become &ery
complicated énd, in fact, have become dominated by the dc electric

field, as can be seen by the prominent dip in the center of the

profile, characteristic of the de Stark profile of HB

It should bte noted that the complicated éppearance of these
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profiles is in some extent due to the narrow instrument width
chosen fo display the profiles. A broader instrﬁment function
would tend to smooth out the profiles, which in some cases could -
facilitate the interpretaéion of the profiles. For instance,
with a'wider instrument function, the profile corresponding to
that shown in Fig. 3-9b would closely approximate the Blochinzew
pattern ofIFig. 3-Qa,.

(3) Finally, we consider the effect of finé structure on
high-frequency Stark spectral profiles. This problem is very
similar té that of case 2. The hydrogen energy levels ére shifted
due to spin-brbit coupling and a relativistic mass correction to
the electron. The fine structure shift in a given energy level

is given by the expression:

4:

LDF = i— ——n-———\ X Rydberg, (3'17) ’

i i

|\ 3 +1/2]

where o is the fine structure constant, j is the total angular
momentum of the electron (including electron spin), and Z is the
atomic number (for hydrogen 7 = 1). The value éf W for the
first four principal quantum levels of hydrogen is given in
Table IIT-3.  The relevant parameter for this diséussion is not
the absolute shift, but instead the relative sﬁift between the
'différent levels of a given principal gquantum number (noted in
the table as the 'maximug relative shift'). |

As can be seen by referring to Eq. (3.17) or the table,

fine structure energy shifts decrease rapidly with increasing
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Table III-3. Fine-structure shifts‘(mF) in inverse centimeters

for n = 1 to k.

- 3 o Maximum rel?iive shift ‘
_ . (em ™) . (cm .)
: R ' 1/ 1.5 0.
> 1/2  -0.46
3/2 -0.09 0.37
3 1/2 -0.16 |
3/2 -0.05k4
5/2  -0.018 0.14
4 1/2 -0.073
3/2 -0.028
5/2  -0.013

7/2 -0.006 0.08



principal quantum number. For the particular frequency 1.17 cm"l
for which'we have performed the calculations presented in this
section, reference to Eq. (3.16) shows that thé‘bﬁly energy level
for wnich fine structure shifts ere important‘in calculating the
Stark profiles is n = 2’,1'6" the lowver level of the transitions
H, and Hge Furthermore, a comparison of TabletIII-E and Table
III-3 shows that if a dc electric field of intensity greater than
~ 3 kV/cm.ls present, then its effect on the n ¥f2 energy levels
is greater than that of fine structure. In the limit of a high
electric»field >3 kV/cm one can, to a good approximatlon, ignore
the effect of fine structure. |

In Figs. 3-10a to 3-10d and 3-1la to 3-11d we show calculated
profiles for which the fine structure has been included as well as
an increasing electric field. To simplify the numerical calcula-
tions, we have assumed that the lower level 1s split only by the
fine structure, and the upper level is only split by the dc elec-
tric field. The four flgures in each set correspond to the
assumed electric field values: Edc = 0.0, O. 5,‘l O and 2.5.
For higher electric field strengths the dc electrlc field doml-
nates the energy splltting of the lower level and the spectral
pattern should more closely approximate thosevshown in previous
figures;i The first figure in each set shows the effect of fine -
structnre alone on the spectral profiles: The different satel-'
lites ere_split into two components corresponding to the two dif-
ferent fine structure shifts. Finally, it should be noted that

the effect of fine structure splitting is to produce asymmetrlc

Stark profiles.
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Fig. 3.10. For legend, see page 6%a.
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Fig. 3-104 Calculated Stark profiles, including fine structure
splitting of the lower level, in the vicinify of Ea, for
-the case of no magnetic field, a linearly.polarized high-
frequency electric field of frequency l.l7_ém-l and field
strénth.B.Sh kVZcm rms, and for various dcvelectrié fields
(as noted, in kV/cm). Along the horizontal axis in each
figure, one large division (= 5 small di&isidns) equals

o.s k.
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Fig. 3-11. Calculated Stark profiles, inclAudi'ng finé structure
splitting of the lower level, in the vicinity of H,, for
the case of no magnetic field, a linearly polarized high-
’f'z:'equency electric-field of frequency 117 cxn'l and field
_.strength 3.5% kV/cm rms, and for various dc electric fields
(as vnoted, in kV/cm). Along the horizontal axis in each
figure, one large division (= 5 small divﬁ.sions) equals

0.5 £.
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IV. EXPERIMENTAL APPARATUS

Figure 4-1 shows the apparatus used in the experiment. We
generafé the high-frequency electric field in a’cylindrical
micréwave cavity and apply it to & plasma produced by a dc dis;
charge in a quartz capillary which threads the axis of the cavity.
The cavity (0.609 cm in diemeter and 0.865 cm 'in length) is ex-
cifed'by a 10 W cw Elliott-Litton Model 8TFK9 Klystron and
oscillates in the TMOld mode with the electrié figld parallel to
the axis of symmetry and electric-field strength maximum along
the axis of thé cavity. Mbde identification was verified by cal-
culating the resonant frequency of cavity plus*quartz capiiiary,'
which agreed tb within 1% with the measured frequency of 35.2
GHz, ahd’also by measuring the relative electfic.field intensity
as & function of position along the axis of the cavity. This
latter measurement was done by measuring the change in fesohént
freguency of the cavity-quértz capillary system.és a small quartz
plug was pushed into the cavity down the insidé of . the quartz
capillary. The calculated electric field intensity variation
over the inside cross section of the cépillaxy_(oéd.;vo.85 mm;
1.d., 0.40 mm) is < 5% of the value on the ax»i'sﬁ.b |

Invoperation with a plasma, gas flow is maiﬁtéined Qontinﬁ-
ously through the capillary: Typigally, the pressure.at fhe
high-pressure end of the capillary is 3 Torr,vaﬁd the pressﬁre
at the low-pressure end is 1 Tofr. Other typical dicharge param-
eters are current, 3.5 mA, i.e., current density,'é.7 A/cmg; and

11 -3

electron density, 2 x 10 e 7. The electron. density is
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Fig. 4-1. Schematic diagram of the experiment.
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determined by measuring the change of resbnant frequency of the '
microwave cavity due to the presence of the pldsma. The field
ffequency is much greater than either the plasma frequency or the |
electfon collision frequency, so that the ﬁicfowave field has no
noticeable effect on the plasma other than stlmulatlng otherwise
forbidden multi- quantum transitions.

Light emitted by the discharge in a directioh perpendicular
to tﬁe'electric fieldvdirection is viewed through a small slit
in the microwave-cavity wall, spectraliy resolved using a Jarrel-
Ash Co. Model 82-000 O.5-meter monochromator,fand,photoelectrically
detéctéd,using an uncooled EMI 6256-S photomultiplier. For fine
spectral»line measurements the observed wavelengfh can be set_
to an accuracy of < 0.01 R (maximum tuning range ~ 10 R) vy
tilting a microméter—adjﬁsted quartz plate placed on the grating
side of the exit slit of the monochromator. Lighﬁ ihtensity at
a given wavelength is measured by use of standard.photon count-
ing fechniques. Peak intensities for the stroﬁgest lines

. s ' .

in
measured represent 10 to 10 counts/sec.
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V. EXPERIMENTAL RESULTS

- A. Comparison of Theory and Experiment

for Neutral Helium Lines

We have experimentally studied the effect of a linearly
polarized high-frequency electric field on eigenstates of He I
by dbserving optical transitions ih the vicinity of three allowed

lines, which we will refer to as.

case I: hooo K (th, ete. = 21P);
case II: 4388 R (SlD, etc. - 21P),
case TIT: L1kl R (61D, etc. -'21P),:

and by‘cdmparing the observed spectrum with thé spectrum.calcué
1atedxby using the methods of Chapters II and-IIif In all cacses
there is nofmagnetic field. Figures 3-1 and 3-2 show the theo-
retical profiles predicted by the multilevel theory of Chapter
Ii for cases T and IT for the experimentally measured electric
field frequency and for various field strengthsi‘

For a direct compérison of the theoretical célcﬁlations with‘
our measured line profiles, we have folded the theoretical reéults,
which consist of a discrete line spectrum, with;é realistic "in-
- strument function" obtained from measurements taken on the same
appafatus_but with microwave power turned offAI Discussion of the
instruﬁent fungtion isvéiven in Appendices D éhd‘E. Eigureé 5-1
and 5-2 show comparisons of experiméntal results with various

" theories, all calculated for observation at right angles to the

direction of the electric field and for a peak field strength
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Fig. 5-1. | Comparison of experiment and various theories for case I
(h]‘D, ete. 2LP), ‘4922-8 He I for the case of no magnetic field
a.nd a linearly polarized electric f_ield of frequency i.l"{ cm-l,
and for direction of observation perpendicular to the electric

field.
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Fig. 5-2. Comparison of experiment and various theories for case II
(SlD, etc. - 21P), 4388-8 He I for the case of no magnetic field
and a linearly polarized electric.field of freqﬁency 1.17 cm-l

and rms electric field strength of 3.54 kV/cm,‘and for direction

of observation perpendicular to the electric field. The sets
of ve ca nes labeled R , an G indicate the posi-
f vertical 1i labeled 5°D SlF d 51 indicate th i

tions and relative intensities of spectral components originat-

ing from'those levels.

-



of 5.0 kV/cm (3.54% kV/cm rms). 1In all cases A\ = O is the

position of the allowed line in the absence of the perturblng

"electric field. All "bumps' on the theoretical profiles are pro-

duced by.ene or more satellites and not by irregularities in the
instrument function. All satellites strongen than 10;5.of the
total intensity of the pattern were retained‘in the calculations
(the number of satellites so kept is noted in‘the_discussion of
each figure).

Flgnre 5-1 shows a comparison between expefimental and theo-
retical results for case I. The multilevel theory outlined above,
the Autler-TOWnes theory, and'the perturbation theory of Barranger
and Mozer all give neafly the same results fof the predicted
spectrum;.the major discrepancy between them ccmes from the
neglect of'the Sta;k shift in the perturbation calculation. The
slight ddfference between the Autler-Townes and the multilevel

theories is due to the retention of the LP energy level in the

latter. For both the multilevel and the Autler-Townes calcula-

tions we have included 18 satellites. Agreement of multilevel

theory with experiment is excellent and even. the other two

theories agree guite well with experiment for thls fleld strength
and frequency (note that agreement between experiment and pertur-
betion theory would be substantially improved by including the
lowest'order correction to the Stark shift, Eg. (B9) in Appendix
B, in calculating the relative position of the far and near satel-
lites and the allowed line). |

Case II, shown in Fig. 5-2, 1is & much more severe test of
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the various theories owing to the following: ~(é) The matrix
elements Bi increase with n (principal quantum.humber), hence the
effect of a given electric field is greater on the 4388-8 1ine
than on the 4922-% line. (b) The energy 1eye1§ of n =5 are
cldser together, so that more satellites (i.e.,_higher-order
transitions) become important. (c) For n = S‘thére is a G
energy level very near the F energy level, and the two interact
strongly. -

In Fig. 5-2, we compare the measured line profile fof the
4388-% 1ine with theoretical ones calculated from our multilevel
theory and from the Autler-Townes theory, again ﬁsing a field
strength of 5.0 kV/cm. Agreement between thevhultilevel calcu- -
lations and the measured data is very good, whereés experiment
and thé Autler-TOwnes calculations sharply'disééree, not Qniy in
satellite positions énd intensities but also ithhe Stark shift
of the allowed liné. This'disagreement graphically illustrétes
the need to include additional upper levels,’sihée,this is the
only»siénificant different in the two theories. ~Perturbation
célcuiétibns, not shown, disagree even more stfongly wifh meésure-
ments. -“In the Autler-Townes calculation we have included 42
safeliifes; 58 were used in ﬁhe_multilevel calculations.

| In Fig. 5-2 we have also indicated the majof,satellites
originating from the three upper levels, SID,‘51F; SlG. Each
vertical line in the figure corresponds to a "satellite" and
denotes the average pbsition and the sum intenéity of the five

componernts (one component arising from each magnetic quantum
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level of the 4D states: 0, 41, +2) comprising that satellite.

Case III, shown in Fig. 5-3, is an even stronger test of the
multilevél theory than the first two cases. This arises for the
same reasons given above in diécussing He 4388 and because of the

added presence of a new-high-angular momentum enefgy level not

V present in the prior case. For n = 6 the three highest-angular

momentum_energy levels, F; G, and H, have a total energy separa-
tion of 0.3 cm ™t (if the 6D levél_is included the total energy
separation is 2 cm-l) compared to the experimental frequency of

| 1
(for E0_¥ 5 kV/cm). Thus these levels are strongly coupled to
eéchvother by the electric field and, following the discuséion éf
ChaptériiI.G, could be described as hydrogen-like. Because of
ﬁﬁis strong.coﬁpling any theory which does not expliecitly con-
sider these levels (such as perturbation or Aufler—Townes) would
give results which were grossly in error.

Several features distiﬁguish Fig. 5-3 from the pre&ious
figureé. Firstly, this is the first example'shown:of measured
data which has been it using the least-squares Titting progran
PISA. The two previous figures for He 4922 and He 4388 were fit
by hand by comparing the measured data with a.éet of calculated
profiles at various field strengths and-at the measured_frequency;
For this pérticular case, the frequency was fixed at the méasured
value and the progran adjusted the electric field to give a best
fit. Tﬁe field strength so determined was 5.15 kV/em. A second

case in which PISA was allowed to fit the frequency as well as



-80-

4144 He I
xxx Experiment

— Multi—level

45 . 00 25
| - AN(A)

‘  XBL7310-4369

Fig. 5-3. For legend, see page 80a.
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Fig. 5=3.- Compérison of experiment and the multilevel thébry for
case III (61D, ete. - elP), bikh-§ me I for'the case of no
magnetic field and a linearly polarized eleétrié‘field.of fre-
quency 1.17 em™! and rms-electric-field strength of 3.65‘kV/cm,
and fof direction of observation perpendicular to the electric

field.
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the electric field did not give signifiéantiy different results,
and has not been shown.

The second feaﬁure unique to this figure is the presence of
satellites of the 6P - 2P transition. These two satellites which
greatly'resemble.the 'usual' perturbation-typ’e"?'prbfile (i._.e.,

two satellites separated by twice the field frequency) lie at = -

the left of the figure and arise because of the coupling of the

€P energy level to the 6D energy level by the electric field.

One deviation from the perturbation picture Shouldvbe hoted: For
this particular field strength and frequency the far satellite

is more intense than the near satellite and this reversal of the
perturbation picture occurs in EQEB the measufEd'and the calcu-
lated results. Calculations show that this reVefsal in'intensity
réﬁio 1s an effect of the increasing electric'fiéld and at some-
what weaker field strengths the two satellites[aré given by the
?erturbatibn result, Eq. (2.49). '

Finally, we note that if one ignores the twd'satellites

4arising from the 6P - 2P transition in Fig. 5-3 the femainder of

thé profile is remarkably symmetric, which is;éonsistent with
the'discussion given in Chapter II.G and Chapfer III.B. |

In Fig. 5-4 (énd Table V-1) we summarizg-the results of many
measurements of neutral helium spectral profiies_taken on the
experimental apparatus of Fig. 4-1. The data are presented as a
log-logbblot of EO (the électric field in fhe diséharge méasured

using the methods of Chapters II, III, and IV) vs the input
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Fig. 5-4. A comparison of the electric field strength measured spec-
troscopically, with the calculated microwave-éleéfric field in
~the éaviﬁy. The different symbols correspond to‘electric field
data obtained from the spectral lines: i , ‘He Lkoo2; § , He 4388;
andgg, Y14k, Spectroscopic electric-field data>is shown for a

range of greater than ten in microwave powver.
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Table V-1. A comparison of electric field parameters measured
spéctroséopically versus electric field parameters measured using

standard microwave techniques.

Calculated : Measured
Line vPowera E, Freéuency Methodb Frequency"

(W) (kV/cm) (en™) (e
He hor2  1.03 5.65£.15  1.17+.01 1.163
He'4922. 0.78 5.10+.20 1.18%.01 1.173

He hoo2  0.50 k.30+.20 1.15+.01 "1,166 |
He 4922  0.28 3.10+.15 1.15%,01 1.166
He 4922  0.13 2.00%,10  1.16%.01 1.166
He 4388 1.0k 5.62¢.10 1.18+.01 1;163
He 4388  0.51 b,0k+.10  1.19%.01 1.163
He 4388 0.25 2.78+.05 1.14+.01 1.163
He.h588' 0.17 2.37£.05 1.13+.01 1.163
He 4388 0.16 2.23+,05 1.14+.01 1.163
He 4388 0.08 1.45%.06  1.15%.01 1.163
He 41kk  0.76 5.15+.10  1.17+.01 1.166

®pover measured at the Hewlett-Packard power meter--pover at

cavitj is found by multiplying value shown by 660k,

b

Me

thods: 'S',E, found from measured intensity of far and near

satellites relative to that of the allowed line using Table

III-1, and frequency from the separation of the far and near

satellites;’Pi,both EO and frequency found from least-square

o9 g
v
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of measured profile using PISA;'C',EO found by PISA (setting
frequency equal to measured frequency), frequenéy found from
’ separation»of far and near satellites of the 6P - 2P transition.
cM’easured‘using cavity wavemeter; values varied dﬁe to use of

different Geissler tubes.
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microwave power into the cavity. This latter'wés meaéured‘on a
Hewlett-Packard 431C power meter py using a directional coupler .
. to monitor a small portidnvof the forward microwave powér. This
reaéing was then adjusted to give the value atvthe cé&ity by
correctiné for microwave losses in the waveguide and‘the attenua-
tion of the directional coupler.

Before discussing the figure itself, we will briefly review
hoﬁ EO was,obtainéd: -
(l)‘ A scan of the profile on one of the spectral lines:

He 4922, He 4388, or He L1kl was taken using the 'tiltable? quartz
plate method described in Appendix D.

' (2) Before and after the scan the following reference data
were taken: the dark current of the photomultifiier.tube énd a
short scan (about 5-6 points) of some referenée.peak—~uéually the.
peak of tﬁe profile itself. | |

(3) The reference data were then used té correct for posi-
tion'drifts éhd for systematic intensity variatiohs that occurred
during the scan, and to subtract out the dark current contribution
,Of the measured intensity.

(4) The intensity data were also correctea for Syétematic
variatioﬁs due to the quartz plate, and for ’dead time'vlosses
of_thé scalars and the discriminator.

(5) The position scale which was measured using a microm-
eter was converted to a wavelength scale by referring to Fig.D-4
for the apﬁropriate conversion Ffactor. |

- (6) This corrected experimental profile was then compared
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to a theoretical profile and Eo (and also th§ freQuency) extracted
using onevof the following methods:

(a)' For helium 4922, the intensities of the far and near
satellités of the forbidden line were calculated by subtracting‘
the ﬁing intensity of the allowed line at each satellite peakv
posiﬁion from the measured peak intensity. Th¢ ratios, S+ and S,
were then determined, and EO calculated from data similar to
Table ITI-1. The frequeﬁcy was determinea from £he separation'cf
the two satellites. |

(b) For He 4388 and He L1k, PISA (see Appendix G) was used
fo vary the electric field strength and frequenéy until a best
fit in the least-squares sense was obtained.‘>in each case the
cedlculated profile used by PISA consisted of folding ankappropri-
ate instrumgnt function with a satellite spectrum calculated '
using the methods of Chapters IT and III.

The results calculated using either method (a) or (b) are
displayed in Table V-1 and iﬂ Fig. 5-4. Each point represénts
a measurement of EO as described above. The figufe includés
measurements using three helium lines, h922,;h388, and 4144, and
over a range of input microwave power of 10 (6r range of 3 in
electriéyfield strength). The upper limit re?resents the méxi-
mum pOWér‘available from the present Klystron.. The lower limit
repreéents the lowest electric field at which electric field data
could be reliably extracted from the optical data in this experi-

ment. This limit arose from two factors. For the He 4922 1ine

this limit represents the point at which the satellites become
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‘lost' in the wing of the allowed line and the continuum back-
ground. For He 4388 and He 41Lk the satellite intensities should
be relatively greater and should provide a method of measuring

weaker electric fields# However, in this particular experimental

setup the high dc ambipolar electric field in the discharge tube

prqduées spectral lines at the positions of the normally'for—
bidden transitions, an - 21P, an - 21P, which interfered with
the.satellites. These lines were particularly_e#identin pfofiles
taken:with the microwave power off and had to be'numericaily
removed from the instrument profile before doing cur&e fitting.
The effect of these normally forbidden lines on'pfofiies taken
at a high electric field.strength (= 5 kV/cm) can be seenbin

Figs. 5-1 and 5-2, where the slight dip in the calculated pro-

file (relative to the measured profile) at V =~ -1.4 £ for He

4922 and at = -0.8 £ for He 4388 almost'certainly_arise from the
neglect of the forbidden line intensity in the caléulationé. |
The data presented in Fig. 5-4 show the expected linear.
dépendeﬁce of Eo on the square root of the microwave poﬁer, i.e.,
all data points fall near a line of slope 1/2. (The solid line
shown on the graph is the best such line in theiieast—squares
senge. We can compare the optically derived valdg of EO with the
électric field calculated using étandard microwave techniques by
referrihg to Eq. (C1l2). The microwave data are représented on
the graph by the dashed line and lie 3.5% lower than the optical

data.
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B; Comparison of Theory and Experiment

forvadrogen Spectral Lines

We have also studied the effect of a high-frequency'electric

field on the hydrogen spectral lines: Hd, HB

method used is similar to that described in the ?revious section

’.H7f and HS. The

for helium spectral lines: 1i.e., we’ compare spectral profiles
méasured as described in the previous section with profilés calcu-
lated as discussed in Chapter III. In éll cases shown the calcu-
lated pfofiles have been fit to the measured profiles using PISA
(Appendix G). Before presenting these comparisons as figures, two
aspects of the'hydrogen problem require further:discussion.'

In Chapter III.C we have presented two methods of calculating
the high-frequency Stark effect of hydrogen profiles. The first
was applicable if the energy levels of hydrogen could.be considefed
degenerate, where the condition of degeneracy Qas given.by Eq.
(3.16). The second, and more complicated, method explicitly in-
cluded non-degeneracy of the hydrogén energy levels due to a de
electric field and fine-structure splitting. _fbf the purpose of
the comﬁarison shown in Figs. 5-5 to 5-8, we haﬁe'éhosen to use
the siﬁple Elbchinzew theory to calculate the‘profiles; This
choice requires some discussion.> As noted in the discussion of
Chapter IiI.C and also in Table III-3, fine-structure sblitting.
can be ignored for the frequency of this experiﬁent, 1.17 cm_l,
for all hydrogeh energy levels except for the n ¥v2 energy level
-which.foﬁns the final state for the_transitions-;orresponding to

the Palmer lines studied in this section. The relative energy
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shift produced by fine-structure splitting was 0.37 cm'l;.which was
1ess-than'or comparable to the instrumental widph of the spectrom-
eter at the wavelengths of these lines. There was also a.dc
electric field, as discussed in Appendix'E, due to ambipolar dif-
fusion of the electrons and ions to the walls of the quartz capil-
lary. This field had an average intensity of ~ 0.6 kV/cm as
measured from the Stark.broadening of the lines H? and H8 with‘the
high- frequency electric field turned off. As can be seen by
reference to Table III-2, for this_ electric field the splitting of
the hydrogen energy levels is less than the corresponding splitting
due fo fine structure and hence is less than the instrumental width.
We have used the above considerations to simplify the calculations
in the following way. In producing profiles for comparison to the
measured profiles, we have impliciply incorporated fine structure.
and & dc electric field (as well as Doppler broadening) not into
the theory Eut, instead, into the instrument function as an addi- *
_tional broadening beyond the true instrumental.broadening. We have
done this py using the measured profile of each nydrogen spectral
line taken with the hiéh-frequency electric field turned off, as
the ‘'instrumental' profile which is folded with the line spectrum
calculated by the Blochinzew theory. Since the high-frequency
electric field could influence the width of the instrument function
determinea in this way'{for instance, it could affect (l)’the ambi-
polar eiectric field or (2) the neutral temperature of the dis-
charge and hence the Doppler broadening!, we haye allowed PISA to

fit not only the usual electric field parameters (frequency, field

_ strength) but also a parameter which varies the 1nstrument Width
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The results of using PISA to produce a least-square fit of
hydrogen prbfiles calculated using the method above. to measured

profiles are shown in Table V-2 and in Figs. 5-5 to 5-8° (Ej, HB’
5 respectively). As can be seen from the figures there

is good agreement between the calculated and méasured spectral

E, and H
7)

profiles. 1In each case the calculated 'qualityvof fit! was nearly
optimum, i.e., the value of X-square as defined for Table V-2 was

nearly one. The experimental error used in calculating X-square

(and also in performing the least-square optimization) mainly came

from

counting error (square'root of the numﬁer:of counts) +

é 1% error due to line intensity fluctuatioﬁ from the
discharge + o

| an error in the profile intensity due‘to thé error in the

waveléngth meaéurement. |

The poorest fit occurs for the last case, HB’ shown in Fig.
5-8 vhere the major discrepancy occurs at the,center of the §r64
file where the measured data lié below the céléulated profile.
In Chapter III.C we noted a similar effect in the caiéulation for
HB for a high-dc electric field (}s:dc >2.5 kV/cm), i,.e.',' the cal-
gulated-profile showed a strong dip at the center which wés.not
present in the profile calculated using the simrle Blochinzéw
theony;» For the mﬁch weaker dc electric field in ?pis exﬁériment

one does not see this effect for H,, but for HS’ where the effect

B}
of a dc electric field is greater (the dc Stark‘splitting'is pro-

pQrtional to the principal quantum number), the effect might be
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Table V-2. Electric field data derived from fits of hydrogen
profiles calculated using Blochinzew theory to corresponding

experimentally measured profiles.

Line Fig. Frequency EO(kV/cm) Power" A X-sSquare®
-1 B
) : —

5-5 1.156*.002 5.96%.03 1.0.*.01 1.03%.00 1.4

(cm

5-6  1.164%.004 5.76+.04 0.95+.01 1.04%.01  0.85

’5-7 1.161+.00% 5.94%,03 1.01+.01 1.09#.01 0.73

R A

5-8 1.158%.008 5.95+,05 1.01%*.01 1.2u¢.03 2.87

aPower in milliwatts measured at the HEWlettfPackard:power metef;
For conversipn to power at the cavity see Taﬁlelv-l.
bNarrowing parameter: Instrument width used by PISA for a best
fit was 'measured width'/A, i.e., A = 1.03 meaﬁs PISA used an
instrument width 3% narrower than that measured with thé micro-
waﬁe field off.
cX-square is defined by

]
L/ (a1)/(51) J./Np,

| )

i=1
where the sum is over the Np'points at which the frqfile is
measured, Al represents the deviation at the poinf 'i' of fhe
calculatéd'intensity from the measured intensity, and 8T is Fhe
experiﬁental‘error at the poinf 1. An optimum fit corfesponds

to X-Square = 1.



-91-

Hd
xxx Experiment
—— Theory
* l
57 1
-2.5 - 0.0 25
ANR) o |
| XBL7310- 4368 -

Fig. 5-5.

For legend, see page Gla.
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Fig. 5-5. Comparison of experiment and the Blochinzew theorybfor
E@ for the case of no magnetic field, a lipearly polarized high-
frequency electric field, and direction of o@servation perpenaic—
‘ular to the electric field. The parameters determining the
theoretical profile have been varied for a best least-square

fit to the experimental data (see Table V-2).
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Fig. 5-6. For legend, see page 92a.
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Fig. 5-6. vComparison of experiment and the Blochinzew theory for
HB for the case of no magnetic field, a linéafly polarized'high-
frequency electric field, and direction of observation perpendic-b
" ular to the electric field. The parameters defermining the
theoretical profile have been varied for a best least-square

fit to the experimental data (see Table V-2).v
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Fié, 5«7 >Comparison of experiment and the BlochinZew'theory for
H& for the case of no magnetic field, a linearly polarized high-
frequency electric field, and direction of observation perpendic-
ﬁlar'tovthe electric field. The parameters determining the
theorétiéal profile have been varied for a beét least~-square

fit to the experimental data (see Table V-2)..
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Fig. 5-8. For legend, see page 9ha.
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Fig. 5-8. Compa.ris_on of experiment and the Bloch.iinz,ew theory for
H‘é for the case of no magr.1efic field, a lineafly'polé.rized high-
frequeﬁcy electric field, and direction of observation perpendic-

ular to the electric field. The parameters detemining the

| theoretical profile have been varied for a bést least=-square

fit to the experimental data (see Table V-2).
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visible. Unfortunately, calculating H6 correctly, using the more

»complete theory of Chapter ITI.C, was prohibitively expensive and

could not be doneito Cheék this assertion.

Table V-2 reviews the best-fit parameters as found by PISA
for the four Balmer lines considéred in this section. As can be
detérmined from the tabtle, the best-fit valﬁeé for the frequency
agree very well with each othér (except for ql'to within the cal-
culated experimental error) and with the value of the electric-
field frequency measured using a cavity waveméter,vl.l62 cm-l
The values of the electric-field strength all lie_within experi-
mental error (note that one must correct for the different micro-
wave ;ower used. for HB) and agree very well with the values of the

electric field at the corresponding power'as determined from the

‘helium data in the previous section (Fig. 5-4). An interesting

aspect of the best fit solution is the 'narrowing' of each line
required»ih each case for a best fit. The pattern of the
systematic change in the instrument width withipfincipal quahtum
number séems to indicate that the presence of the microwave elec-’
tric field reduces the mean ambipolar electric field and hence the

de Stark broadening.
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VI. CONCLUSION AND FINAL REMARKS
In the body of this paper we have investigated the effect of

a monochromatic high-frequency electric field on the spectral pro-

files of hydrogen and helium. We have shown that using a numerical

sblution of a very géneral theory we could getIVery good agreement
between calculated and measured profiles for‘both hydrégennand
helium épectral lines. However, the general prdblem of the appli-
cation of the high-frequency Stark effect to plasma diagnostics
involves many further consider;tions. In this final secfioh we
will discuss some of them.

1. Finite Frequency Spread

Tn general, the electric fields in a plaéma ﬁill_not‘be mono-
chromatic, they will have some characteristic fﬁéquencyFSpread Lw,
and some characteristic central frequency Wy :Fdr this case; the
methods»uéed to solve Schrddinger's equation mﬁst.be cdnsiderébly
differént;, Instead of expanding the time dependence of the wave
function, Tj(t), in terms of a Fourier seriés‘éé we have done, it

must- be expressed in terms of a Fourier.transform'Tj(w’),,which

will be a continuous function of frequency. The‘fundaméntal

eQuation (2.12) will then take on the form of an integral eQuation:

relating Tj(m') tovthe folding integral of Tj(w:-.w') and,fhe
Foyiriér tiansfom of the electric field E(w')._:' Such an equation
cannot be solved in the manner described in Cﬂa?ter iI;.although
it should;be noted that in the limit that thé frequency spféad
becémes Very small relative to the central frequency, i.e., when

E(w) - 8(w —vwb)’ the integral equation reduces to Eg. (2.12) if
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ve define st = TJ(SQb). Hence we expect for Aw << w, that‘the
solutions of Eq. (2.12) will give good approximations to the
actual solutions. We can consider some aspecté of the more com-
plex case of a finite frequehcy spread which ié COmparable to the
‘central ffequency by referring to the model developed in Cha?ter
II.E, which described the high-frequency Stark effect in terms of -
multi-quaﬁtum transitions. The presence of a spectrum with a
finitevfrequency spread leads to two new effecis not seen in the
monochromatic.electric field case: a broadeninglbf the individual
satellites due to fhe finite spread, and a modification in the
satellite pattern due to coupling of theielectric_fiéld at dif-
ferent frequencies. The first case involves transitions iﬁ which
the quéntuh which is emitted or absorbed is alwajs of the same
frequehcy. Fér this case there is no coupling between the electric
field at different frequenciés and we may treat each frequency com-
ﬁonent of the spectrum independently: solving Eq. (2.12) for each.
ffequeﬂcy, and then performing a superposition of the different
solutions to get the complete solution. The resuitantvsatellite
spectrﬁm will then conéist of satellites which lie at different
pééitibns and a consequent broadening of the individu@l satellites
will reéult. For a very broad frequency spectrum (lLw = wo); the
satellites,wiil overlap énd the satellite pafternrwill be smeared
out and not uséfulvfor plasma diagnostics. It éhouldvbe noted
tﬁat for the particular cases of helium considered in Chapter V.A,
the profiles of the far and near satellites ofbthe forbidden line

in the perturtation limit directly reflect the electric energy
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spectrum since the intensity of each of these satellites is pro-

-2
portiqngl to Erms'

. { '
In the above, we considered the case in which the same fre-

quency quantum is emitted or absorbed at each. (virtual) exchange

of abquantum between the electric field and the atom. One ¢an
also cénsider the case that the quantum emitted or absqrﬁed at each
step is Qf'a.different frequenéy than at a pfévious step. Since,in
our model, the energy of the optical photon, Whicﬁ results when the
atom unde;goes an eventual real decay to a lower state;'is the un-
pefturbed'energy diffefence of the two states plus the net energy
retained from the electric field, we see that this t&pe of transi-
tion pfodﬁces new.safellites‘in the high-frequenéy spectrum at the
beat fréquencies of the various frequency componénts of'the:elec-
tric fiéld spectrum, and hence also leads to‘a new éource:of
broadening as wéll as a change in the calculated intensities of
the normal satellites. The actual calculation of such effects
must await>a more genéral theory than that presented above. How-
ever,_from this model one conclusion can be dféﬁn; Since the
second type of effect is of higher-order in tﬁe électric:field
strength, i.e., it involves at least two different quanta from the
electric field, one can ignore its effect for wéak electric fields.
Considering as a special case the helium profiles examined in
Chapter V.A,_this means that, as long as the éatellite(spectrum

is compeosed only of the allowed line and the lees't order 'far'
and 'near' satellites of the forbidden transition, one can ignore

the complications introduced ty coupling within the electric field
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spectrum and can treat the satellite spectrum as though each fre-
quency component was independent.

2. Effect of the Plasma

In order to.make the best use of the high-frequency effect
fof plasma diagnostics, one must be able to identiﬁy the individual
satellites. Unfortunately, spectral lines produced within a plasma
tend to be broadened by the plasma. The various methods of broad-

33

ening have been much discussed”” and will not be described further.
However, it should be noted that these broadening mechanisms pro-

duce limitations to the applicability of the high-frequency Stark

effect to plasma diagnostics in plasmas with too great a density

(due to pressure broadening) and with too great a temperature (due
to Doppler broadening).' The use of the method could also be
limited by a strong gradieht in the density of the plasma if it
led to different regions of the plasma emitting at different fre-
quencies (for instance, if the emission was at the respective
plasma frequencies). An optical method useful for making local
measurements within the plasma has been discussed in Ref. 3h, As
a final note to this section we will remark that ﬁhe problem of
plasma broadening of helium spectral lines will aiways be less
ceritical than the corresponding problem for hydfogen, and hence
the use of helium fér plasma diegnostics is to be preferred.
Furtherﬁore, the wide variety of potential helium lines suitable
for the application of the high-frequency Stark effect, makes the
method suitable for a wide variety of electric field frequencies

and electric tield strengths.
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3. Background

Oné of the problems of the use of the highffrequency Stark
‘effect inihelium for plasma diagnostics is thé'ﬁecessity of ob-
serving relafively weak sateliites which are neaf,to a strong
allowed iine. The satellites are often buried in the line wing
and difficult to observe. This puts an effective lower limit
which differs with rarticular spgctral line ané frequency of‘the
electric field, but which generally is of the 6rder of 1 kV/cm.
electric’field strength.. Use of phase-sensitive techniques, when
applicable, can lower this minimum value to 200;V/cm](lbyest value
ofvéléctric field so far measured using the techniqﬁeB); Two
interésting methods which appear to'increase-sensitivity have bteen
reportéd by Burrell and Kunze, both using a tunable dye laser to

illuminate the plasma.35’56
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APPENDICES

A. Evaluation of Transition Rate Integral for an Atom in an

Oscillating Electric Field

We wish to evaluate

1 fw”'
u =
T —_J‘

(1) 2
dzbylfk I plw g | (A_l)
0. . .
where ®, = Mgy F U0 £ D and where 1/(t - T), A, o satisfy

1/(t - 1) << A << w, A, ¢+ The integrand of expression (Al) -is a

ik
product of rapidly varying terms [IFil)le varies on the 1/(t - 1)

freguency scale] and a slowly varying term [p(@y) varies on the

xik frequency scale]. Over the range of intégration 
’ ’( A ) ‘\ .
plw,) = p(ng, + w) + & L= p(h,, + ww).

4 ik ik

' \xik + u/ :

Hence in evaluating the integral we set p(a») =7p(xik + uw) and
take it Outéide the integral. The resulting_éxpression for I;u

is a sum of terms with resonant type denominators:

. . Q0
iu ' ik N ik ik
I, = 2p(kik + uwp)dQ(t - 1) KuuAO + 2d (Kus.+ Ksu)Al
: §==00
s#u
7
© 1 ,
N7 ik '
+ ) Kss'A2J s : ‘ : (A2)
S,s'=- :
s,s'#u

ot -

where AO, A, and A, are given by Lg =

un(t ;'T)]
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i,A(t'T) sin2§
A = | - deg ’
0 2
J-A(t-r) g
: at-1) Tl e
- sing sin 3 (s - wWo(t - 1) + £
Al = [ dg " Ar‘lL ‘ 1 g
7 a(T) ¢ Lg (s - wo(t - T) + gj
A= g —= J

5 U ey B (s - walt - T 4]

. sin[é (s' - vt - 1) + §]  .
[% (s' - wo(t - 1) +-§]

We now consider the eyaluation of Ab, Al’ A2' vThe inte-
gfand of_AO is a shérply peaked function of ¢; sinée m(t - T) >§
1, the integrand is already small at the integral limits and
hence only a small error {~ 1/a(t - T)} is made in letting the

limifs of integration go to +m. AO is then a standard integral,

| Ay =T | , R | (A3)

In evaluating A

, we first note that ¢ is at most A(t -.1). Hence

over the entire interval of integration we may make the expansion

1 o 1

Fle-welt -1 +e & (s walt - )
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- , 1 | N ‘
Next, expanding sini§ (s - Wu(t -.Tﬂ + & and eliminating terms from

the resulting expression which are odd in ¢ (and hence integrate

C o] 1
to 0) yields: Al = AT+ AT

v 1 Nt-1) ..'
o sin[§ (s - wWol(t - T)Tj' sing'cost

A = T o
b [F et - 0] g :
| L s A(t-7)
A1 COSLQ (s - u)a( Tﬂ f de Sin?g.

N P T P TRV

Now All can be directly integrated and is of order A/w relative

to Alq and hence can be ignored. As in the evaluation of Ao
above, the sharply-peaked nature of the integrand ofiAlo allows

the limits of integration to be extended to +@ - the error so in-
e el

is is
0 2
.curred&~ lﬁ&(t - T) times Al and henceAignorablej. Then Alo is

a standard integral

T sin[% (s - Ww(t - Ti

2 [g (s - wolt - T)J

. L -~ (Ab)

A

An evaluation of A, similar to that of A, shovs that
A, =(S{lﬁ»2(t - 1)2] and hence can be ignored relative to Ao_and
Al which are of order 1 and 1/w(t - t), respectively. Thus to

the order retained in the calculation

4, - o. | | (A5)

i

|

i

‘Substituting Eqs. (A3)-(AS5) into Eq. (A2) yields for I;u
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® .
iu ' ik 1 ik ik
I, = erp(%.ik + wn)d(t - T) K * 3 Z’ (Kus + Ksu)
: S=-00 a
sfu

sin[-é- (s - Wt - T)].l

5 (s - walt - 7)) J
[2 jo-

oo

o ik ik
= wo(xik + w)da(t - 1) >: (I{Llls + K;u.)

s=-@®

sin[i (s - Wo(t - 'r)]

[% (s - ﬁ)w(t - T)]

is a real quantity.

ik ik ik, _iu
Since (Kus + Ksu) =2 Re(Kus), I
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B. Perturbation Solution of Equation (2.12)
We consider the case: _:
‘(l)_ ajj' = ajsjj" then w3‘= w; + aj [éee Eé..(éfB)],
(2) B small, then following the discussion of Chapter
ITI.A. we can ignore all coefficients except those with s.=k0,
+1, i.e., 8 = 1. With these assumptions Eq. (2.12) can be re-

presented by the eigenvalue matrix equation (shown explicifly

for the special case N = 3 in Fig. B-1):
- (M - A)c = 0. ‘ o (B1)

By expanding in the usual way about column and row elements_we
can get an analytic expression for the determinant of M - A (=D)

accurate to order B2. If we define B : 3

N . |
o(A) = I (wi + o -.K)(wi - X)(wi - -A), %
then k=1 s | i
r

| N N + - : - . i
I; — B..'B..' ) i
D(A) = T(k)ﬂ 1 - } E: 3493 | _ é
l =1 j'-1 (mj, - x)(wjr+ ® - \) i

) | !

+ - i

B..tB. s KR

. 33t ? (82)
| .

(wj. - K)(wj‘4 w’r )

{

(a) Solution of Eq. (Bl) to zero-order in.the.parameter B.

In zero-order the eigenvalue condition, D = O, reduces to

| r(n-07) = o.

Thus the zero-order eigenvalues are given by i
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Fig. B-1. An explicit example of Eq. (Bl) for:thé special

case N = 3.



-108-

_ wi + W
IK[O] = “’i , 1=1, «+-, N. (B3)
wi -

Following the discussion of Chapter II.E we choose as our solu-

tiQn ﬁhe case

.xgol - .

The componénts of the zero-order eigenvector can then be found
from Eq. (Bl) (with pt = 0) ‘and are given ty

A1[0] '
Cjs = P1s%s0°

() solution of Eg. (BL) to first order )

Setting A = wi + xgl] {xgl] =fC9(B)], the eigenvalue condition

D=0 beédmes

| . |
M) 10 B ooy v 06 < 0. (3
. k=1 ki o

k#i

If the energy levels are.nondegenerate, i.e., if wii £ 0 and if

Icul'{i + ol >> (B) for all k # i, then

P - (BS)
' s (0] - o 4
and xi differs from xi by at most terms quadratic in Bi._ On
the other hand, if wik = O for some value of k,rthen xgl] can be

finite and the two levels i and k will exhibit a linear Stark
shift. - If lwii + ol < Z(B), perturtation theof& does not hold

(see discussion at end of Chapter II.F). Continuing with the
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nondegenerate case, we calculate the first-order correction to

the eigenfunctions. Substituting A = ®! into Eq. (BL) yields

: i (1] Q1 Al
20y 5 = 7 (F)
. \ :
i (1] | ; , ,
BE 4 (wgy x)oy 3y = ST 4 (56)
> .
y A0 2 ;
JicJo = 0(8%) | }l

Equations (B6) plus the normalization condition

N =
NDICH

J=1 s=-00

yield to order B:

A = !
i i
- +
. 5 .B.. s} B.. . '
¢t =85 5  4+tdi , 5,011 (B7)
Js T Us001y T T L.
1j i3

(¢) Solution of Eqg. (Bl) to second-order

) ] Re 3 ’
Setting A = wl + X[e {.xié‘ = ;J(BE)J, the eigenvalue con-

dition D = O becomes to second order in B:

N ’ N N
2 (2 \‘—- 2 < 2 2
0=-o "[ To(a” - o )wkl Lo (o - e)ey
- k=1 =1 k=1 ,
kf1 1 kAL
X Lle 31 - w)BlJBJl ‘ ji(wj' + x)BlJﬁal . (B8)

) ¥* -
Finally, noting that @Zj) ='8ij, we get for the second-order
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correction to the eigenvalue

- N + 12
| }\5'2 ) L m'Jl~ @ W, +w
3=1 1 1]

E

[ U]

G
4 91 R (B9)
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C. The Microwave System--Calculations and Measurements

'Figure Cc-1 shoﬁs a cutaway view of the microwave cavity and
the quartz Geissler tube. The cavity is machined in a split
biock'of brass and is gold-plated on the inside to enhance con-
ductivity and to retard oxidation. The viewing slit has been
‘conStructéd parallel to the direction of éurreﬁt flow so as to
least disturb the operation of the cavi£y. The ?éund holes
: through which the Geissler tube enters and leaves the cavity are
below cutoff so as to be nonradiating. The various field and
éﬁrrent directions for the‘TMOlO cévity mode are noted on the
figure. During operation dry nitrogen flows fhrough the cavity
:and serves to cool the Geisslér.tube and cavity as well as fur;
ther diminish ahy oxidétion whicﬁ might othefwise occur.

The éresence of the quartz tube and its contained plasma
will change‘the norﬁal ﬁodes of the cavity. In general, fof a
cylindrical system with interfaces between two dielectrics,
the boundary conditions

eEn continuous, Et continuous

Bt/u continuous, B, continuous o (c1)
across ﬁhé interface do not aliow the usual ﬁﬁansVerse magnefic
and electric type modes; i.é., in general, the normal modes of
a compound system of éeveral dielectrics, even if it ié’a éylin-
drically symmetric system, will have both a component of‘Ezfggg
Bz. However, er thqge modes which in thé simple cavity case have

P

TEmnp’ there are corresrcnding TE and TM modes which simultane-

azimuthal symmetry, i.e., m = O in the uswal notation ™, p OF

.
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Geissler tube.
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ously satisfy all the boundary conditions.jh

These modes can be calculated by argumenfs_similar tc those
used for the simple qavity (the notation used in the following
is the samé as Jackson, chapter 8). Consider"mo@es of type TMOnp
(azimuthally symmetric) for a compound system of nonpbrmeable
dielectrics (b = 0). Within each dielectric région charactérized
by a permittivity € the fields can be derived from thé longi-

tudinal electric field Ez’ where Ez-is given by
B, = Eo(p) cos(pme/n)e™ ™, S (e
vhere Eo(p)bsatisfies‘the Bessel equation

2

a EO 1 dEO / s I \ -
ot 47 -3 By =0, o (e3)
dp p dp S U <l

with m = O, and where 712 is given by -

2 2

5 . .
2 . w prv—'22 I w
7i=€i_§_i/_\=n'k’_!’ k=- (ck)
/ : c \h ) ' h } c
and ni_z A/ei is the index of refraction of region 'i'. The z

dependencé has been chosen to explicitly satisfy the‘boundary
conditioﬁs at fhe ends of the cavity and mﬁst e the same in

' gach dieléctfic region tc satisfy.the boundary éoﬁditions at all
points along the interfaces. Similarly the ffééuency w (or the
'wavenuﬁber k) muét be the same in each dielectric region to
satiSfy the boundary conditions at all times. It is easy to:show

" that with the above expressicn for Ez the bouncary conditions
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given in Eq. (Cl) are equivalent to the two conditions:

Eo(p) continuous acroes a boundary, and

dE, € . -
—— —— continuous across a boundary. (c5)
de 74 . _

Note that for the case, p = O (no variation of the fields in the
z directien), the second boundary condition becomes simply
dEO/dp;coﬁtinuous.

) ‘The solutions of Eq.(C3) are Bessel functieﬁe of order m = O.

Specializing to the specific case shown in Fig. C-1, the solution

for Eo(p) in each of the three regions will be given by:

Region I: Eo(p) = E, Jo(plkp) 0 S p.f Py

| . |
Region II: EO(D) = EOLAlJO(ngkp) +'B1N0(n2k9)] _Pl <p 5_92
Region III: Eo(p) = EOtAEJO(njkp) + BeNo(anp)J o, < p<a, (c6)

where Jm and Nﬁ are, respectively, Bessel functions of order m

of the first and second kind. Use of the requirement_of-a finite
valued solution at the origin has eliminated a term propoftional
to Nb in region T. EO

on the axis, i.e., for p = O. There are five_unknowns in Egs.

(c6), A

represents the value of_the.electric field

i; Bl, A2, Eg,land k, whose values are to be determined

By the five_bouhdary conditions:

Jd(nlkpl) = AlJO(ngﬂpl) + BlNO(nekpl)

-~
|

-nkTy (mkpy ) = mnpkiaydy (ngkoy) + By (ngke, ),
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AlJo(nekpe) + BlNO(nekpz) = AgJo(anpg) + BeNo(n5kpe)

_nak[AiJl(nekpe) + BlNl(nERQQ)] %.-n5k[A2Jl(n3kp2) +.32Nl(n5kp2)J

Ado(ngka) + BN, (ngka) = O. .‘ R (1)

wé have'numerically solved Egqs. (C7) for the case:

ny =‘1'.O,‘n2 = 1.94% (index of refraction of fused;quartZBS),
ng = 1.0, o = 0.0203 cm, p, = 0.0425 cm, and p, = 0.305 cm, and
for the TMOlO mode.” The resulting. calculated mode frequency is

34.81 GHz; this is less than the resonant freQuengy of a simple

cavity with the same outer dimensions, 37.62 GHz; and within 1%
~of the measured frequency 35.17 GHz. Figure C-2 shows the axial
electric field dependence with radius andvcompares it to the case

of a simple cavity. Both curves are normalized to the ‘same stored

energy UO:

_ 1 2, 1 =2 o
Uy = 8%-/’€EO dv = g VE§ N, - (c8)

where V is the cavity volume and n is a factor of order l'ffor

L)

010 v
‘ from the figure the effect of the quartz is to flatten the pro-

the simple T mode 7 = J12(2.M05) = 0.2695 . - As can be seen
file near the axis of the cavity, to steepen the profile near

the edge, and to increase the peak electric field on the axis Ty
'2.4%,  The calculated electric field variation over the inside of
the'GeiSSIer tube is 0.5%. Similar calculations for the case of

1

carried out, but for densities of interest for this experiment

a plaéma‘in the Geissler tube for which €, = 1 - mpg/w? have been

the solution is essentially that given in Fig. 552.and the fre-
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guency 1s essentially unchanged from the no-plasma‘case (although
the freQuency difference can be used to measure the electron
density of the plasma discharge; see below).

We have verified the 2z dependence of the axial electric field
h10 mode by passing a small quartz plug down
the inside of the Geissler tube and measuring fhe frequency shift
with pos1tion of the quartz plug The results are shown in Fig.
C-3. The theoretical profile expected for a z- independent electric
field can be calculated from the perturbation expression for the

frequency shift:36

€ (1 - )dv
Af ,[ * | (1 - nz)vob(j

160, 2vn

. (@
where n is the index of refraction of £he plug and Vobj its
volume. This expression predicts that the'frequency shift will
be propoftional to the length of the plug if'fhenanea,is held
constant. - This dependence was cnecked by using_?lugs»Of'differ-
entvlengthe and thevexpected result was seen. If the field was
truly independentvof z, then the expected frequency shift would
bevzero for the plug located outside the cavity, would decrease
linearly uith pceition to the value given by Eq. (C9) as thed
plug én£éféd the cavity, and remain constant thereafter. Figure
C-3'shows small deviations from this ideal picture. The flnite

Af, even when the plug is outside the geometric boundary of the

cavity, indicates that scme microwave field escapes out of
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Fig. C-3. Measured resonant frequency of the microwave cavity as a.

function of the pbsition of a perturting quartz plug inserted

into the cavity.
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the ca&ity through the end holes.- The unexpected behavior inside
thé ca?ity could have several causes: perturbations of the field
distribution caused by the presence of the plug,pa non-uniform
cross_sec;ion of the Geissler tube, or the sﬁecific way the cavity
is excited; the coupling iris is on the midplane.of the cavity
(see Fig. C-1). The predicted maximum frequenéy shift can be

7

calculated from Eq. (C9) and is 9.8 x 10' Hz for the plug used

in the exﬁerimeht. This compares to the measured value of

8.1 x lO7

Hz in Fig. C-3.

Io conclude this section on the microwave system we. will
calculate the electric field which exists in the discharge region
inside the Geissler tube (region I iﬁ Fig. C-1) during steady
state operation of the cavity with an input power PO. As dis-
cussed above, this electric field is essenfially EO’ which is

related to the stored energy in the cavity by Eq. (C8). 1In

steady¥state operation the stored energy is related to the input

“power by the_unloaded R, Q> of the cavity:37
mUO . o
Q=— - B (c10)
P .
0

Using standard microwave techniques, QO can be determined by
measuring, near resonance, the VSWR (voltage étanding-wave ratio)

of the cavity as a function of frequency.38 Equi?alently, since

VSWR = s (c11)
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where.Pi is the power incident on the cavify,and Pr is the'power
refleéfed by the cavity, one can measufe Pr/Pif Figure'c-h'shows
such a measurement for the cavity used in this experiment and for
the:case,of no discharge. The data was obtaihéd'by using a direc-
tioﬁal ¢oupler to monitor the power reflectéd from the cavity.

At each frequency the incident power was measurédvby detuning -
the'ca?ity-with a piece of copper foil injected through the view-
ing slit:- This procedure 'shorts out' the cavity and the incident
pover is totally reflected. From the data of_Fng-c-u, the cavity
coupling constant B (equal to the VSWR at resonance) and the loaded
Q, QL (eéual to the fesonant frequency divided-by»the frequency

separation between the half-power points) can,be determined. Qo

is then given by (1 + B)QB:

B = 1027
Q = 1250

For'comparison, in Fig. C-5, we also present é second measurement
of the loaded Q, performed by obsérving the-powef'fadiated 6ut
the viewing slit as a functibn of frequency. Figure C-S contains
two curves, one with the discharge on aﬁd one with the'discharge
off. The observed frequency separation of thebtwo_cufvés‘arises
mainly because of heating of the quartz tube and cavity walls by
the discharge. The loaded Q calculated from the.separation of
the half-power points is ~ 1400 for both curves and indicates

that the plasma discharge has littlé‘effect on the Q (at least



»

Reflected 'power / incident power

-121-

1.0

0.9

Q.8+

AF=0.028 GHz.

o
)

e
(6
]

ol ysweeter || T

0.0 | {1 [ L 1 u ! . ]
34, 80 .84 .86 .88 .90 .92 .94 .96 .98 35 o0
Frequency (GHz)

XBL742 - 2344
Fig. C-4. Measured ratio of microwave power ref lected from the
cavity to the incident microwave power as a function of

the frequency.
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?ig. C-5. Microwave power radiated from the viewing slit (Fig. C-1)
of the microwave cavity versus frequency for two céses:

0, dlscharge on; and e, discharge off.
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for this set of discharge parameters). Therefore we may use Qo
calculated above for the case of no plasma discharge to calculate

S : Eb is a function of the input power. The result is

| B (kV/em) = 2.14 A P, (vatts). , (c12)
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D. Discussion of the Optical Systém

"Fig.ure.D-l shows a detailed schematic of the optical system
used iﬁ thisvexperiment. An initial 3.9 com diameter achromatic
‘ lens 1is used to focus light éoming from the viewing slit of .the
microwave cavity onto the entraﬁce slit offé hélf-meter JACO Ebert
monochrdmé%or. The light is diffracted by a lQOO-lines ruling per
ﬁm grating, and a nafrow waveleﬁgth Bénd is seleéted‘by the . exit
s;if for @etectidn by an EMT 62568 photomultiplier tube iocated |
Just béyénd the exit slit. The spherical mirfof S¢rves to image
the entfance slit onto the exit.slit and to transform'the di&er—.
ging fayS'COming from.the'entrace slit iﬁto a péréllél beam suit-
able fdr Fraunhofer diffraction. The slit height (both entrance
‘and exit)_can be continuously set at any value up to 1.35 cm.

The wavelength selectgd for detection can be varied eithér by
rotating the grating (coarse adjustment) or b& rdtating a quartz
plate:mounted Just on the monochromator side of the éxit'slit_
(fine adjustment). _A’more detaiied deécfiftion_of the bperation
,of this latter method of tuning is given below.4 | -

‘A system such as shown in Fig.vD-l has sevefal sources of
finstrumental’ bréadening which must be considered in ca1culating-
the 'begt possible’ résélution obtaiﬁab1¢ 'uSing the apparatus.
Thosevbéing diééussed_below are: (1) the naturai:grating resolﬁé
tion, (2) finite slit width broadening, (3) diffraction due to a;
finité numerical‘aberture, (4) astigmatism, (5)'éurvature.qf the
imége’of the entrance slit at the exit slit, and (6) an offset of

the focal point due to the quartz plate used to do the fine wave-

RO
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Filg. D-1. Schematic view of the optical system..



-]_26

length tuning. Other sources of broadening dué-fo the light source
are discussed in Appendik E.

We begin by considefing the apparafus of Fig; B-1 for the
case of monochromatic light of wavelength A incideAt 6n the
entrance slit. We assume the the grating angle 6 is such that
light of wavelength X which passes through the center (which we
will designate as z = 0) of the entrance.sliﬁ énd is inqident on
the grating at the‘corresponding angle 55 and is aiffraqted'into
ah.angle 5p, also passes through the center (which we wili desig}_
nate as x'= 0) of the exit slit. o, 58, and gblmust £henvsafisfy
the ushal grating equation}‘

d, = =y 2d .
T (smeS + sinep) =+ sind coseo/2 =m o (p1)

where d is the spacing between rulings on the grating, m is the
order of the grating maxima, 60 is the 'included angle', and

_ 1 - v
6,=6-58, B, =0+56

The dispersion D giving thé displacement at the exit slit cor-
responding to a unit change in the wavelength A is then given by
ae mF

D=—=F E- — b_ (D2)
an an a cosep ' : v

where F is the focal length of the spherical mirror. ,The»ihteﬁsity
I(x,z) at a position x (or for the diffracted angle Gp) of the exit
slit due to unit intensity of light of wavelength X incident on

the entrance slit at a position z (and correspoqding incident
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angle 6, is given by:al
‘ 2
1 sin (NWS') q :
z) = — 8' = = (sind in_) - = (sinb ind
I(x,z) N.——z;%zsg——, X ( 10 + sin p) x (si ¢ * sin p)
- d (cos@ AB  + cosb AB )
A s s PP
_d Y2} y2) =d_ ' '
= % (z cosB_ + x qpxep) N (z' + x'")

(D3)
where A9 =60 -6, A6 =6 -6, Nis the total numbér of
s s s P P P » .
rulings on the grating, and where we have used the property of
a sphefiéal mirror that for a small displacement 'z' the éhange in
reflected angle Aes is given by

Ae ~
]

=l N

and similarly for x and ABP. In the last expression we havev
written I(x,z) in terms of z' = x cosé-p and z' = 2z cos@s, which

are the slit positions as seen from the grating. Egquation (D3)

~implies a width wg (full-width at half—maximﬁﬁ intenSity) given

_ 0.88\D o .
T | ' (D4)

which places a limit on the resolution obtainable using the
sﬁectrometer.

The total intensity of light of wavelength k?receiiéd by the
photomultiplier will be given by multiplying I(x,z) by the inten-
siﬁy distri%ution at the entrance slit J(z) and integratiﬁg the -

resulting expression over the entrance and exit slits, i.e.,

over x and z: -
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XO' ZO : :
I(\) = j[ dx']ﬂ &z I(x,z)J(z).-_ ' (D5)
) 20 e

ihé above expression for the intensity holds.when 'geometric
_optics' holds, i.e., for the cases when we may éalculate the path
of a photoh through the spectrometer by ray-trQCihg teéﬁniques.
We may puf Eq. (DS) into a more general form by defining the two
quantities: IE(z'), the 'effective!' transmission_of the entrance
slit, aﬁd:IX(x'), the 'effective' transmission of the exit slit.
Then, using Eq. (D3) to write I(x;z) in terms of;the'single vari-
able ¢ = x; + z', Eq. (D5) can be written as |

R

loo) : o
ax! 1, (x") f dz' Io(2')I(x' +2')
-Q0 .

I(\) =
- .
= f I(e)s(e)ae
Y« ») .

where we have now written I(A) as the integral of a grating func-
tion I(t) containing the properties of the grating and a slit

function S(g),
s = [ neonle-wee  @8)
-00 o :

contaiﬁing the properties éf the ofher elementé df thé spectrometer,
i.e., fhe slits, mirrors, lenses, and maské.' For the simple géo;:
metric optics case of Eq. (D5), IE(Z') is. the intensity distribu-
tion af the entrance slit, and Ix(x') is equai to.unity over the

exit slit and zero elsevhere.
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The general problem of the form of the slit function has been

39,40 The problem of an

extenéively discussed in the literature.
opticai system illuminated through a slit ﬁas studied theoretically
by von Ci'ttertul who concluded that the image of_the entrance slit
when viewed through thé optical system depended on two factors:

(1) the type of illumination of the slit, coheren’ or noncoherent,
and (2) the width W of the slit relative to WD,.the distance from
the peak to the first diffraction minimum of the dptical system.

v For the case of noncoherent illumination of a narrow slit, i.e.,

one Saﬁisfying

W < 0.5 Wy, W = Af | (o

(wfittén in terms of the 'f' number of the optical system = focal
length/smallest limitiﬁg aperture), the image of the slit is the
single slit diffraction pattern of width Wb."In this iimit an
increase of the slit width increases the peak intensity of the

pattern but does not change the width of the pattern. In the

wide-slit limit,

Wy o o (08)

the image of the slit is the geometric image of the slit found by

ray tracing through the optical system. In this limit an in-
crease in‘ﬁidth of the slit produces a corresponding increase in
the width of the image of the slit; the peak intensity remains
nearly constant, oscillating slightly about ité average value as

the slit width is increased. The case of coherent illumiﬂation
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follows essentially the same pattern but with the following varia-
tipns:_' (1) the diffraction limit occurs for _widei‘ slits, the
corresponding condition to (D7) is W <W, (2’ for the geometric
limit the image width is somewhat less for the'same slitvwidth and
the oscillations in the peak intenéity are significantly'greater.
The condifions for noncohefent versus coherent iiluminaﬁion are
discussed by StoEkbarger and Burns.uQ

The discussion ébove has been general,pertaining to either
a general optical system or to spectrémeters. ‘ﬁe now consider
the typebof spectrometef used in this experimeﬁt;. Von Planta45
has measured the s1lit function of an Ebert-type'sﬁectrometer for
bothlipfrared and optical spectral lines by replécing the grating
by a mirror. His results showed agreement'with.thg caléulations
'of von Cittert. For thin slits the slit fuhci;iori was diffrﬁction‘
}limited to width WD gnd for wide slits the slit funcfion‘width in-
creased in proportion to'thé slit width. Thé'slit function shape
changed from the expected diffraction.pattern.fof'u =ﬁW/WC-= 0.5
to a néafly Gaussian type function for u = 1-2 and-fihally to
the triangﬁlar function expected in the geometric limit for u = 3.
These'résults-did not depend on theﬂwavelength 6f.the line.usediin

Lh b5

the experiment. Fastie has extensively studied Ebért-type
spectrometers and has noted two effects which>lééd to an additional
broadening of the instrumental profile. The first is aéfigmatism,
ﬁhich'produces an hourglass shaped image of the entrance slit_at

the exit slit. This image bas zero width at the center (1ength-

‘wise) of the exit slit and reaches its maximum width at the ends
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of the slit, where the image width is given by
0.1 L
Wa = s | ' ‘ (D9)

where I, is the slit length. The second broadening effect is due
to a curved image of the entrance slit at the ekit slit due to

the use of a plane grating with spherical'mirfors.' The sagitta

| of this curve is given by

W=D, M= —5. o © (p10)

We are now invabposition to discuss the resolution of the
spectrometer used in this experiment. The relevant experimental

parameters are:

() m grating order . =1
(2) n mumber of ruled lines/mm | = 1200,/mm
(3)w  grating width = 5.2 cm
() F focal length =~ 50 cm
(55 L slit length o =lm
(6) £ £ number | ~ 10
(7) N=nv  total number of rulings S = 62 400
(8) W - slit width ~ 8 microns
(9) Rﬁ.= i/D' reciprocal dispersion = 16 £ /mm.

We consider a wavelength of 5000 R. From Egqs. (DY), (D7),

(D9), and (D10O):
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Wy = 4.4 microns or M, = 0.071 g
W =8 microns M = 0.13
WD = 5 microns AAD = 0.08 & -
WA =1 micron AAA = 0.016 &
W, = 0.16 micron M, = 0.0025 .

From the above values for the widths, we cén see that astig-
matism and curvature effects can be ignored in calculating the
instrument function of this spect?ometer. Fﬁrtﬁermore, since
W/Wa = 1.6, geometric optics gives a reasonable épproximation to
the exact slit function width (alfhough the shape of the function
itself is more Gaussian). In Fig. D-2 we show an attempt‘to try
to fit an instrument function calculated using‘Eq. (D3) and the
assumption of geometric optics for the slit functionfto a meas-
uredrprofilé 6f the neon spectral line at 5852;h9 R. ‘The fit was
performed using PISA (Appendix G) with the averagé slit width and,
the total number of rulings N used as parameters and the area and
peak amplifude used as constraints. The resultant best fit value
fér the average slit width was.h.l microns compared to the meas-
ured values, h.hvmicrons for the entrance slit and 4.0 for the
exit slit.. These latter values were obtained by using a helium-
neon laser to illﬁminate the slits gnd then meaéﬁfing thé minima
of the resultant diffraction pattern. The beét:fit value for N
was 64 40O compared to the calculated value of 62 L0O.

In thé spectrometer shown in Fig. D-1 the selection of a

spectral line for study was accomplished by adjusting the grating
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Fig. D-2. Comparison of a measured neon spectral_profile with the
spectral profile calculated assuming a monochormator with an
'entrance- and exit-slif width of 4.1 microns and diffraction

due to a plane grating with 64 400 ruled lines.
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angle Q until the line was detected by the photomultiplier, i.e.,
until Eq. (D1) was satisfied. However, for the study of the line
shape of a particular spectral line a second tuning mechanism was
employed ﬁhich provided an accurate and reproducible measurement
of the line profile. This mechanism, shown'iﬁ Fié, D-3, consisted
of & quartz plate of thickness t which was moupfed on the mono-
chrémator side of the exit slit and which wasbsffing—loaded
against the shaft of a micrometer. Mbvement_of the shaft changed
the tilttdf the plate (the angle V) which in tﬁrn changed the wave-
length detected at thé photomultiplier-

Before discussing the figure we will make the following defi-
nitions: We will consider a narrow bundle of converging rays
incident oh the quartz plate from a spherical mirror'which, if
there were no plate, would.be focused at PO'
the platé there are two effects: The primary efféct is a shift

- In the presence of

of the focus from PO to a new point Pl' Secondly; because of
spherical aberration caused by the flat plate the focus will no
longér be perfect, i.e., not all the rays in the bundle will
intersect at the same point, hence the focds ﬁill be character-
ized by some finite width. However, if the bundie is sufficiently
narrow, then this width will be much less than the exit slit width
and can be ignored. We define a 'central ray' in the bundle to

be the ray which originally came from the center of the grating;
other rays will be referred to asi'lateral rays'. The angle

between the central ray and the perpendicular to the gquartz plate

will be ¥, and ¥' will denote the angle to a typical lateral ray.
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Fig. D-3.  Schematic view of the quartz plate used for 'fine

tuning' the monochromator.
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By definition Ay = ¥' - ¥ will be the angle betwéen the lateral
ray and the central ray. Ax will be the shift of the focus in the
direction of the slit width and Ay will be the shift of the focus
pérpendiéular to the plane of the slit. The angle ¢'.wii1 be the
angle of refraétion in the quartz (index of refraction n’ corre-
sponding to an angle of incidence V'. The two angles are related

by
siny' = n sing'. o - (p11)

‘For a lateral ray at an angle V', Ax and Ay are given by

-~

cosy |

t sinwi-l - E—Eagaj

X

, _ (s' - s) cosy - s' siny
= tanAy

1

cosy (1 - tanew + tan2¢)§ : (D12)
J

"7 cosP

R

t»cosW'[l

where the latter expression for Ay holds in the limit Ay << 1.

.0f more experimental interest than Ax versus ¥ is an equation

- relating the change in the micrometer setting M to the shift in

vavelength detected at the exit slit. From Fig. D-3 we can see

that M is related to ¥ by (X is defined in Fig. D-3)

tany = M/X.
Thus .
da t 5 cosy 1 cosy | 5
_— [cos v 1 - | + siny tany ——————@ (n” - 1)
dM X L i n cosf | {n cospd.

(p13)
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where we have used the reciprocal dispersion RD = 1/dispersion
to relate Ax to A\. The quartz plate serves as a useful wave-
length tuning device when operated for ¥y << 1. In this limit

Egs. (D12) and (D13) have the limiting forms: .

ox = ty(1 - 1/n)[1 + w2(5 + 3n - ne)/sne]'-l o (D1ka) .
&y = t(1 - l/n)[l + we(h + bn - ne)/zﬁz} | ~ (D1kv) é
an/am = (RDt/x)(l - 1/n)[1 + 3¢2(1 +n - n?)/anj " (Dlke)

where we have kept terms to order vz.
The ﬁavelength tuning properties of the quartz plat¢ cén be

summarized as follows: vWe assume that the angular divergence of

the lateral roys from the central ray is so small that spheriéal i
aberration does not lead to a significant broadening of'the focus l
and consequent loss of résolution. We also assume that for the

ﬁurposes of this discussion the optical systeﬁ haé been adjusted

so that for ¥ = O, light of wavelength A is focused at the center

of the exiﬁ slit. Then a displacement of the miérométer by &AM
: will_lead to a displacement of the focus in the direction:of the

slit width and a consequent shift of the wavelength O\ meésured

by the pﬁotomultiplier. The calibration constgnt of tﬁé quartz | ‘.
'piate (dx/dM) is essentially constanf with only a very weak de-
pendence on ¥ and the wavelength. The error ihtroduced into the
measurement of the wavelength due to the dependence of dA/dM on V¥
can be estimated from Eq. (Dlkc). For typical line profiles the

maximum change in the micrometer setting was less than or equal
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to 40.1 inch. Using t = 7/16 in., R = 16 X/mm, and X = 2 in.
yields a maximum value of ¥ = 0.05, and a maximum error in an/am
of 0.06%‘of_the value at ¥ = O.

In Fig. D-4 we present experimentally determined values of
an/am ve;Sus wavelehgth for the equipment of Fig. D-1. These data
were taken by determining the shift in the micrometer necessary
tdljust tune between two closely separatéd linés-whose wavelength
separation was known. The figure iﬁcludes values of dx/dM found
from neén, argon, and krypton spectral lines. Using Eq. (Dlh)
and knowledge of the index of refraction of quartz_és a function
of kh6 we can determine the value of the reciprocal dispefsion at
any wavélength. From Eq. (D2) we see that the reciprocal disper-
sién is é function of wavelgngth and the ;aramétérs d_(grating'
spacing), f_(focal length), and % (included anglej. We have used
PISA (Appendix G) to fit the theoretical expression (D14) to the
measured curve of Fig. D-4. TFor the purpose éf the fit, 'd' was

5

assumed to be equal to 8.333 x 10~ cm (1200 rulings/mm). The

resulting best fit values of 6. and F were 5°16' and 50.k cm,

0]
respectively, which agreed favorably with the measured value of
60 = 509', and the expected foéal length of ~ 50 ém.

Finally, in the discussion of the quartz tuning_plate, we
ndte that the plate is & further source of speétfal line broaden-

ing. This occurs for two reasons: (1) the previously mentioned

spherical aberration which arises because the different éonverg-

" ing rays have different path lengths in the quartz, and (2) the

novement of the focus in the direction perpendicular to the exit
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Fig. D-4. Measured quartz plate calibration curves: dA is the
| change in wavelength observed at the exit slit for a change

in micrometer position of dM.
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slit»as the micrometer adjustment of the plate is changed. We can
estiméte the magnitude of the first effect by considering the next
higher;ofder.corrections to the last expfession.in Eq. (DlE).
These can be shown to be of the order t(A.é)2 where, ;s above, NS
is the angle between the central ray and a givenbiateral ray.
Defining A8' equal to the maximum-such A9, the focus has a char-

acteristic depth of

2 -
t(06') = 2.5 x 10 3 em = 25 microns,

where we have set A9' equal to its measured value, 0.05 radians.
This focal depth corresponds to a spectral line width WS at the
exit slit of |

WS = t(AB'jz 2tan(A8) = 2.5 micrens, ',” : v(DlS)

a value which aoes not significantly increase the broadening
alrgady produced by previously discussed methods. - -

" We can estimate the magnitude of the second.éffect by noting
that if the monochromator. is set so thﬁt light-bf éné waveiength
1s focused in the plane of the exit slit, then tur'nvvihg'thé quartz
platé to.anothér position (to measure the intensityvatfanother
wavelength)-moves the focus out of the plane of.the exit_slit énd
hence broadens (or equivalently, decreases in amplitude) a spec-
tral line wﬁich happens to be centered at the new position. The

focal depth and an associated spectral line widfh W. correspond-

Q

ing to & maximum change in micrometer of 0.1 in. can be calculated

from Eq. (Dl4b). The results are
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-
1
N

_depth = 1.6 x 1o'3 c

m = 16 microns,

and ' :WQ = 1.6 microns. , ‘ (D16)

This vaiue, though small, does lead to an observablé effect, pri-
marily because the effect changes with quartz plafe orientation.
In Fig. D-5 we show a measurement of the peak intensity of the
same neon specfral line as a function of micrometer. position.
For each-quartz plate position, the monochromator was tuned to
the neon line by rotating the grating. As can:Ee seén, the
measured intensity was peaked for a micrometer ﬁositioﬁ = 350,
and fellroff'symmetrically on both sides. The solid line répre-
sents a line fitfed to the data for use in data‘feduction.

Aé the final topic in this section on the optical system,
e present a measurement of the relative attenuation of thejtﬁb
orthogonal polarizations of light (perpendiculaf and parallel to
the slit). In Fig. D-6 we present a plot of the attenuation

factor

O -

= . (D17)
(I_L+.I“)

Tie
vs. wavelength. These data were obtained by illuminating the
entrance slit of the monochromator with an unpolarized source

(in this case a neon Geissler tube) and measuring. the intensity
of the two polarizations at the exit slit. The relative attenua-

tion data were used to calculate the spectral profiles which were

comparéd to the experimentally measured profiles,
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Fig. D=5. Change in the measured peak intensity of a speétral line
profile as a function of quartz plate angle relative to the
;- central-ray path within the monochromator. For eéch;plate angle
(of equi&élently, micrometer position) the grating was adjusted
- to keep'the peak of the line at the center of the exit slit,

eliminating any intensity variation due to line shifts.
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Fig. D-6. Measured relative transparency of the optical system

Fig. D-1) to the two orthogonal polarizations of light as a

function of frequency.
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E. The Plasma Discharge and-a Further Discussion of Line Broadening

In this section we will discuss the plasma discharge. For
simplicity we will discuss the case of a helium discharge.

We start by assuming that the neutrals in the plasma are in }
thermal equilibrium at the temperature of the inside surface of:
the quartz Geissler tube. We can estimate thié temperature from
the measured temperature on the outside surface (150-16OOC) and
by assuming that all the electric power supplied to fhe discharge
in the capillary region is dissipated due to heat éonduction i
through the quartz capillary walls. The dissipated heat (dQ/dt)
is related tovfhe temperature difference AT between the inside and

.

the outside surfaces of the gquartz tube by

aQ _ AT
3t - A

J
where K is the thermal conductivity of quartz (1.7 watt/médeg C at i
L7 ' : .
2OOOC), 7 A is the conducting area (A = 2mr4, where r is the tube - i

radius and £ is the tube length), and t is the thickness of the

quartz capillary wall. Setting dQ/dt = IV = IE 4, where E_ is the

longitudinal electric field (V = EZZ), yields (we éet t @ r=0.2

mm)

where we have used for EZ the value of 270 V/cm (see below), and

l
i
”4

for I the measuréd value of 3.5 mA. The neutral temperature Tn

is then
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T = 160°¢-170%C =~ 0.0k ev.

This value will be an upper estimate to the neutral temperature
since the electric power will be dissipated by radiation as well as

by conduction out the ends of the tube. However, since these

effects would only affect AT, which is much less than the outside

temperature of the Geissler tube, the calcuiatedsnéutral tempera-

ture would not be significantly affected.
We can now calculate the neutral density from the gas pressure

(p = 2 torr) and the above calculated neutral gds_temperature:

16

n = —2- =~ 4.3 x 10 cm5.

n kT
n

We can measure the electronbdensity (ne) of the plésmawﬁy
measuring the shift in resonant frequency (&f) of the microwave
cavity due,tb the presence of the plasma. Measqremepts shownthat
5f = 0.003 GHZ,.fOT a cavity resonant frequenéy (f) of_55.2 GHz .
The plasﬁa frequency (and hence ne) can then Eyvcalculated\either
from Eq. (C9) or by using the numerical method outlined in Appendix

¢ (Eq. CT, etc.)_to calculate the index of refraction (nl) of the

- plasma necessary to accpunf for a frequency shift of 8f. 1In either

- case the index of refration is assumed to be given in terms of the

plasma frequency (wp) by

2

mP
n =l--—é—.
w

Both methods yield an electron density of
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n, =2 x lOll/cm5.

Using the measured current density (J = 2.7 A/cme) we can cal-

culate the longitudinal drift velocity of the electrons (ue):

7

w =4 = 8.5 x 10' cm/sec.

This velocity corresponds to a translational energy of

l mu 2 ~ 2 eV,
2 e e

For an electron traveling at a velocity Uy we éanfcalculate the
electron-neutral collision rate (ven)-using standdrd expression

(see Ref. 48, p. 50):

"V = 2.3 x lO9 P!

~ 2.8 x 109/sec.
en e

-3

We:cén estimate the longitudinal electric field in the follow-
ing way: We assume that an electron has on the a&efage no longi-
tudinal velocity after a collision with a neutral; the electron
then accelerates for a time t due to the longitudinal electfic
field (Ez) until its velocity is é%ual to two times u (avérage
velocity equal to ue) at which time it suffers another collision
with a neutral. Since fhe mean tiée between electron—neutral col-

. -1 » -
lisions is (ven) » E,» u,, and v_ must satisfy
2mu_ = eE (v )"l
e z'‘en

or
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We next note that the mean path length bétween electron-neutral

collisions for electrons traveling at a velocity of u, is given by

and hence is greater than the inside diameter of the Geissler tube.
As a result, electrons which are drifting with a mean velocity Ug
along the Geissler tube and which undergo collisioﬁs in which a
gsignificant fraction of their longitudinal energy is transformed
into perpendicular energy will strike the inner sﬁrface of the
Geissler tube and be lost to the plasma. This will leave the
plasme positively charged with respect to the Geissler tube wall
(since the>ions are less mobile than the lighter}electrons)’setting

up -an (ambipolar) electric field which will tend tQ retain the

'electrohs and to accelerate the ions toward the tube wall. The

properties of this type of physical situation have been theoreti-
cally studied and discussed in Ref. 49. It is shown there that

the mean value of Er is of the order of kTe/er; 'This is consistenﬁ
with the observed dc electric field of about 500_V/cm‘because

"kTe" must be several times larger than % meuegi(z 2 eV), and
r=2Xx ].O"2 cm. Of course, under the existing conaitions of
large nonuniform fields and smallvtube diameter, where the energy
gained betﬁeen collisions is comparable tq_the‘mean enexrgy, the
disfribﬁtion cannot be assumed to be nearly Maxwellian, and the

analysis becomes exceedingly complicated. Thus no attempt is made

here to understand the ionization balance and other properties of
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the discharge column in detail.

We now consider the ions. Charge neutrality requires that

- - 11, 3
n, ®n = 2 x 107 /em”.

The temperature of the ions will be nearly that of the neutrals,

i.e.

kT, = an = 0.04 ev.

This latter relation follows since the massive ions can gain only
- very iittlé energy before colliding with a neutral, and because
.the simila}ity between the mass of the neutrallahd the ion ﬁakes
energy exchange between the two particles in a>COllision very
effigient;'

Fihally, in this section we will discuss two broadening mech-
anisms.which affect the width of the line profiles obserﬁed in this
experimenf. The first, thermal or Dopper broaaening, arises due
to the motion of the heutral atoms parallel to the.direction of
'observatioﬁf The full-width at half-maximum (FWHM) of a line
which ié'énly Doppler broadened can be expressed by |

1/2 v

= 2(1n 2) .

O\
N ’
where v is the particle velocity parallel to the direction of
observation, and where ¢ is the speed of light. In the following
table we show the expected Doppler FWHM's for the spectral lines

- observed in this experiment for thermal velocities (v) correspond-

ing to Tn'= 0.04 and 0.10 eV.
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Line T - 0.04 ev T, = 0.10 eV
He 4o22 0.037 R' 0.056 g
He 4388 0.034 & 0.053 &

He Lilh 0.0%2 & 0.050 &

H, o0.101 8 0.159 R -
Hy | 0.075 & 0.118 £
H, 0.06T 8 0.105 &

Hé 0.063 & 0.100 &

The second broadening mechanism is the Stark effect due to
the dc electric.fields calculated above. For helium, the Stafk
effect is of second-order and the calculated linekwidfhs are much
1e§s than those due to instrument broadening, and ﬁence can bé
ignored. For hydrogen, the line widths due to Stdrk brecadening
can become comparable to instrument widths, andvare listed below

for the cases of E, = 0.5 kV/cm and 1.0 kV/cm The former value of

de
electric field is the measured value for this experiment, and was
determined from the measured Stark broadening of Hyvand H5 with no

applied microwave electric field.

. Line E;, = 0.5 kV/em Ey, = 1.0 kV/cm
B, 0.025 8 0.05
Hy 0.05 £ 0.1 R
H, 0.067 § 0.135 &
H 0.095 R 0.190 &
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F. Electronics--Correction of Data for Dead Time Losses

As waslmenfioned in Chapter IV, the data taken in this experi-
ment used gounting techniques to measure the number of photons
detected by the photomultiplier. Such techniquesvemploy elec-
tronic components with a finite frequency resﬁcnse due to the
phenomenon of 'dead time', i.e., the time aftef a-component has
been triggered by én input pulse and before if ha§ reset and can
accept another pulse. For high pulse counting.ratés the number
of-pulses which enter the system during this dead time aﬁd a}e
lost can be measurable and must be accounted fdr in interpreting
the data. | »

Assuning that the distribution of pulses in time_follows a
Poisson distribution, the losses due to dead time can be easily
calculated. If we assume that the pulse counting system is
characterized by a single dead time T, then the real counting

rate N is given in terms of-the measured counting rate byso

N .
— . - (F)

N=N'NNI£T,, or N = ———— .
1 - NﬁT

m
The abové expression has a very simple interpretafion. The number
of measured counts is equal to the number of actual counts minus
the mumber of lost counts. The number of lost counts will be just
the total time lost (NﬁT) times the average numbter of counts per
unit time,‘which Tor a Poisson distribution is N.

For a,system characterized by more than oné dead time the

correction for the dead time losses must be modified. We will
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specifically consider a two-element system composed ofva discrimi-

nator with a dead time 7, and a set of scalers with a dead time

T, > T For such a system the relation equivalent to Eq. (F1)

is given by

N, = NN - N_NT [1 - e-'N(TQ-Tmin)} (F2)
where T . and T are given by

Tyin = To = T2 T = 11/2 _ for‘jl : Tos
and Toin = 17 T = (31 - 12)/2 for 1, > % Ty

The above equation has ﬁhe following interpfetatiop. The first
two terms on the right are equivalent to Eq. (Fl): the loss term
NmNTE'repfesents the counts lost while the scalersvhave not reset.
For eéch measured pulse there is a further counting rate loss
mechanism which we will refer to as discriminator 'retrigger’'.
Sincé ﬁhe dead time of the discriminator is less than‘fhat of the
scalers it resets before the scalers are pfepgred to accept a new’
pulse. Thus, there is fhe possibility that thé;discriminator'.
will be triggered aéain before the scaiers havelreset. If the

discriminafor is triggered at a time tl (relative to the initial

pulse at to = O) which satisfies

Tt T <8 ST : (¥3)

then the subsequent dead time of the discriminatof will extend
beyond the time when the scalers would normally reset.' Before

the discriminator resets the second time the counting syétem
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éannot accept new pulses, hence the effective dead time of the
system wiil be increased beyond that of a single element system
with a dead time Tye

Again assuming Péisson statistics, the contribution of dis-
criminator retrigger to the counting rate‘lossgs can be easily
evaluéted.v We define 7 ., to be the maximum dfﬁ |

(1) _fhe time (after to) thaf tﬁe discriminator has reset
and is réady to receive A new pulse, and |

(2) the retriggering time of the discriminator which would

lead to a resulting reset time just equal to the normal reset

time of the scalers, i.e., a discriminator triggered at ) > T

would extend the dead time of the counting syStém'beyond Tye
' We must distinguish two cases: if 1, < 7./2 then 1___ is
v : 1 - 27 min
‘determined by Eq. (F3):

T =T, = 7T

min 2 1’
and if 7, > T2/2 then 7, 1is determined by the reset time of the
discriminator: |

Tmin = T1°

The additional counting ratée loss due to discriminator retrigger

is then given by

N, times (1 - PO) times  Nt. - (F4)

The various terms in Eq. (F4) can be identified as. follows: N
is the measured counting rate, (1 - Po) is the probability that
one or more pulses (only the first is important) occur in the

time period T . to T (or equivalently, one minus the probability
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that there are no pulses in that time period) and hence retrigger
the discriminator, and NT is the average number of additional

pulses lost due to discriminator retrigger and is éiven by:

_ N -T2 |
Nt = ——-——-—-‘j (tl + Ty Tg)dtl.i (F5)
T, - T . .
2 nin” 1,
min
Py is given by Poisson statistics to be
_ ~“N(t.-T_..) _ :
P. = e 2 ‘min . . (F6)

0
Substituting Eqs. (F6) and (F5) into Eq. (F4) leads to the final

term in Eq. (F2).

2.sma.ll so that the

Normal experimental practice is to keep_NT
measured éounting rate is given by the first two terms on. the
, can then be measured through
the folibwiﬁg étrategy. One measures the appafent transmission of
a filter'ﬁhich is placed so as to attenuate théslight reaching the
photémgltiblier as a functioq of the number off@éasﬁred counts.
The reéulfing curve can then be used to obtainvré and. the actual
transmission of the filter as follows: TIet |

- N represent the actual number of counts witﬁ no filter,

-Nh.represent the number of measured counts with no filter,

N"represent the actual number of counts with the filter,

N; represent the number of measured counts with the filter,
and define

T N&/Nﬁ, the apparent transmission of the filter, and

#

Ta

]

'N'/N, the actual transmission of the filter.
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it is easy to show that

Then using Eq. (Fl) with 1 = T,

T=T, + N;rg(l - Ta)- ' C : (F7)

Tﬁus thé'siope of the measured curve of T vs. N  gives Tevand the
intercept of the curve with the line N; = 0 gives the actual
filter transmission. ‘

Fig. F-1 shows such a plot for the counting:system used in
this éxpéfiment. The data shown come from a méaéurement of
T vs.”N;'fofVSeQeral helium and hydrogen spectral lines. All
points.are consistent with a dead time T, of 2.2 x 1077 sec
(4.5 MHZ). As can be se;n from the intercepts of the curves for
each spectral line, the actual.filter trénsmission shows a mono-
tonic change with the wavelength of the line.

Finally, ﬁe should see that for the data on Fig. ?pl, Eq.
(F1) is an adequate approximation for the exaét e#pression Eq. (F2).
We define R to be the ratio of the third term'oﬁ tﬁe right of
Eq. (F2) to the second term.' R is then given by (expanding the
exponential'and keeping only the leading two terms)

™ - T, .
R = T (T2 Tmln) . S _ (F8)

T

using the values of Ty and T found from Fig. F-1l: .12 = 2.2 x lO"7

'sec and T = 0.11, and the rated dead time of the discriminator:

1

figure the values:

T, = 1.0 x 1077 sec, yields for the peak value of N':shown on the
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0.7 T T T | - T
olef o N
0.15F *-
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o Hg 6563 4%
° Hg 4861 A i
& Hy - 4341 §
0.10 ] ' 1 1 ] | {
2 4 6 8 10 12 14 - 16 18 20 .
Nr/n (x |04./ sec) | o ' XBL742-2343

Fig. 'F-‘l. | The apparent transmission of a neufral density filte:r
measﬁred using counting techniques. The experimental data
shown for several spectral lines, can be ﬁsed to determine
the opacity of the filter as well as the dead time @f the

counting system (see text). | o ' ‘



-156-

N' = 2.0 X los,

N =1.8 x 106,

=
]

Nﬁ/(l'- N7 = 3.0 x 106, and
2
R = Nty /(212) = 0.07.

Hence the approximation is justified.
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G. PISA: Derivation and Discussion

of Application to Spectral Profile Fittihg

In comparing measured line profiles andvfhose calculated
using the methods of Chapters II and III we havé made extensive
use of a computer program written and developed.by Klaus Halbach
to do least sguares fitting.5l Although tﬂis program will be dis-
cussed within the framework of fitting spectrai piofiles, it is |
very flexible: essentially the same program has been used to
designxmaghets for accelerators and to design éxﬁractor geome -
tries for ion sources. The program, usuallyvreferred to by the
acronym PISA, can be described as follows: combined with an
analysisvprogram that can evaluate a system performénce given a
set of parameters (fbr instance, a program whiéﬁ can calculate a
spectral profile giﬁen the temperature, electric field strength
and frequency, eﬁergy levels, etc.) PISA will vérybthose raram-
eters until a 'best fit' in the least-square sénse is reacheq.

The system may have constraints (for instance, the area of a pro-
file, or .the peak amplitude, or the half-width) which must fit
?xactly.' Before discussing the application of-PISA to the fitting
of spectral line profiles, we shall give an appreviated discussion
of the method; a more extensive discussion is conﬁained in Ref. 51.
For simplicity, in the following discussion we wiil use métrix
notation with the exception that all explicit matrix indications
will be. suppressed. Thé character of each variable (scalar,

cdlumn vector, square matrix) will be described when it is. intro-

duced. For instance, in the text, the column vector '5' is
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s(p)
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r(p)
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denoted as 'p'; the ith element of which is denoted by 'pi'.

We define:

m-dimensional column vector formed from:thé parameters which
wiil be varied by PISA.

n-dimensional column vector formed from the set of wave-
lengths at which the spectral profile islto be defined.

n-dimensional column vector formed from the values of the

.meésured spectral profile intensity at the wavelengths x,

i.e.,'si = measured intensity a Xx,.

n-dimensional column vector formed from the values'of the

calculated spectral profile intensity for the parameter

set p at the wavelengths x.

~n'-dimensional column vector formed from the desired values

of the exactly fitted gquantities.

n'-dimensional column vector formed frd@ the exactly

.fitted quantities.

To approximate s in the least-square sense subject to con-

L3

straints, one has to find the parameter vectortpmin that mini-

mizes

5= ), [su09 - & ]%, - Gy

1=1

‘subject to the condition

'rk(P) - I = 0, k=1, ««-, n'. '(G2)

The wi are weight factors which may be used to fit some components
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of s more closely to the measured value than others; they can

usually be chosen tb be

~ 2
W, = 1/5—5’-1 ’

where §Ei is the experimental error in the measurement of the
intensity at the ith wavelength x;. S can be minimized subject

to the constraints given by Eq. (G2) by using lagrange's method:

(1) We define the scalar quantity L by

L=s+y gn®-x], . (c3)

where Ek is the Iagrange multiplier corresponding to the kth con-
straint equation. '

(2) S is then minimized by solving the equations

oL _ . '
3 1Pmin = 0 J=1, > m
J
vrk(pmin) =Ix k=1, ¢+, n". ’ (ch)

Sincé, in general, s and r are complicated functions of p and .
Eq. (Gh) cannot be solved amalytically, we will seek to solve it
in an iterative manner suitable fér use on a cdmputer. |

We assume that we have found a solution p = pd,'which is not
the optimum solution, i.e., does not satisfy Eq. (G4). This may
be the 'initial guess' at a solution or it may be fhe result of
a previouskiteration. We seek Ap such that the new solution

P =Py + AP yields a calculated profile s(p) which better fits s,



-160-

i.e., one for which L is less. Repeated iterations of this form
will usually lead toia ninimum value df L and an optimum value
of p = pmin' We begin by writing L in matrix férm and in terms-
of theyﬁectors{ As = s(p) - s(po), As = s - s(p&), Ar = r(p) -

r(PO): éIi =

IR

- r( PO) ’

L= (as® - as*Wilas - as) + %o - ax). (65)

In the above expressioh the weight factors have been written in
the form of a diagonal square-matrix W and the lagrange multi-
plieré in the form of an n'-dimensional column vector 4. Equation

(Gk), the condition for an optimum solution, is given by

= 0 j = l} cece, m
pJ Pnin
r(p . ) = Ar, | (a6)

where we have changed variables from p to Ap. We proceed by
expanding As and Ar in Taylor series and retaining dnly the

linear terms

As = MAp asi/apj

MiJ

Oor

Such an.approximation will bé'valid in onévof two cases: (l) r
and s are linear functions of p, or (2) the calculated Ap is small
enough that the higher order terms are negligitle. ‘Substituting
the above expression into Eg. (G5), defining 2 %_aAp/aApj,

v seﬁting £ = 2\, and transposing some terms yields the following

NAP M5 oy /dps - | (G7)
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conditions for an optimum solution of the linear problem:

oL _ 2a,t(MtWMAp + Ntk - Mtw_g_s_,) =0 =1, +-+, m. (Gg8)
AP J

J.

Equation (G8) can only hold if the vector (MtWMAp + Ntx - MtWQE)

is equal to zero. Hence we can solve for Ap by solving the par-

titioned matix equation:

/ t | t
/MtWM N\ apt IMuas
| ¢ _—

3

Coe (e
\N 'o;\w,’ | ar /

if ghe systém is nonlinear then tﬁe Ap calcuiatea from Eq. (GQ)
will, iﬁ‘general, not satisfy the approximation.of Eq. (GT).' In
this casé, however, the solution of €Ap, where € 1s some appropq;-
ately Chésen number less than one, will satisfy the appfoximation;
fé% this Change in the parameters the problem willﬁappear neérly

linear and hence the 'new' spectral profile s(pb,# eAp) will be

_a'bétter approximation to s than the old one. This procéss can

now be repeated until a suitable solution is reached.

We are now in a position to outline the dpefation of PISA:
(1) The user gives PISA
| (a2) a 'system' subroutine which calculates, for instance, at
each ﬁavelength Xs5 the spectral intensity si(p); and the partial
derivativés asi/apj for each parameter 'j' (if constrainté are to
be uséd then the system must also calculate rk(p) and ark/apj),v
(b) the measured spectral pfofile and the weight associated

with each point,



-162-

(c¢) an initial guess as to the parameter values.
(2) PIsA then iterétively solves the least-squares problem. Each
’PISA iteration consists of the following steps:

_(a) ‘starting from the last (or initial) solution, Py, the
matricés MtWM, N, Ar, Mtwég are calculated, |

(b) Eq. (G9) is then solved for Ap,

(¢) a new solution for which the parameters are incremented
by eAp is calculated and compared to s and r,

(d) if convergence criteria supplied'by fhe user are satis-
fied, ?ISA ends; otherwise o

- (e) the solution is tested for linearity and :depending on

the result, € is either increased to a maximum of one, kept the

same,IOr decreased fcr the next iteration, or the present solution
'is rejected and a new solution is coﬁstructed using the same Ap
but a decreééed €.

Finally, we will bfieﬂy describe the application of PISA to
the problem of fitting spectral profiles. We h@vé}written three
system subfoutines for'calculating‘the high-freéﬁéncy_stark effect
suitable for use with PISA. wé refer to thesebas helium, hydrogen,
and hydrogeh (modified). |
1. Helium

This subroutine folds a spectrum calculated using the méthods
of Chapter IT with an instrument function suppiied'by the user.

Tt assumes a linéarly polarized electric field and'éalculates the
profile for artitrary electric field frequenéy,.electric-field

strength, and angle of observation relative to the electric field
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(azimﬁthél angle 1s averaged). It can also vary the energy of the
‘ an level as well as the an level (if present), As discussed in
the next section, thé measured helium profiles had a significant
contribution to the intensity due to normglly fofbiddenvtransitions
from the an and nlc energy levels. These unwanted lineé were
remoﬁed'numerically when calculating the instrument function; but
had to be replaced when comparing measured profiles with caicu-
lated profiles, especially for weak field strengths. For this
reason the helium subroutine was given the ability to add to the
high-frequency Stark profile a maximum of two:simple line profiles
of érbitrary position, intensity, and width. o
2. Hydrogen

This 5ubroutine folds a spectrum calculated using the
Blochinzew solution to the high-frequency Stark.effect "Eq. (2.33)
with an instrument function supplied by the user. It assumes a
linearly polarized electric field and calculatés the profile for
arbitrafy electric field freguency, electric field strength, and
angle of observation (azimuthal angle‘is averaged). It also can
vary the width of the instrument function used in the fdlding,
thus allowing for a possible change in the instrument function
width due to the effect of the microwave field‘én the dc electric.
fieldvgr ﬁemperature.

3. Hydrogen (Modified)

This subroutine calculates hydrogen Balmer-line spectral pro-
files in a high-frequency electric field for arbitrary electric

field strength and electric field frequency. The effect of an
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additioﬁal dc electric field in the plane perpendicular to the
high-frequency field is included as well as thevfine—structure
splittiﬁg of the n = 2 energy levels. Thé prbfilé.is calculated
using the methods of Chapter II. The instfument funqtion is cal-
culated from an instrument function supplied by £he user, which is
then Doppler broadened. The program allows an arvitrary angle of
observation relative to both the high-frequency electric field and
the de electric field. The dc electric field may be assumed to be

random in azimuth.

4
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