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THE MATHEMATICAL THEORY OF A HIGHER-ORDER GEOMETRICALLY-EXACT BEAM
WITH A DEFORMING CROSS-SECTION
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Abstract. This paper investigates the variational formulation and numerical solution of a higher-order, geo-
metrically exact Cosserat type beam with a deforming cross-section, instigated from generalized kinematics
presented in earlier works. The generalizations include the effects of a fully-coupled Poisson’s and warping
deformations in addition to other deformation modes in Simo-Reissner beam kinematics.

The kinematics at hand renders the deformation map to be a function of not only the configuration of the
beam but also on the elements of the tangent space of the beam’s configuration (axial strain vector, curvature,
warping amplitude, and their derivatives). This complicates the process of deriving the balance laws and ex-
ploring the variational formulation of the beam, at the same time, make it worthwhile. The weak and strong
form is derived for the dynamic case considering a general boundary.

We restrict ourselves to linear small-strain elastic constitutive law and the static case for numerical im-
plementation. The finite element modeling of this beam has higher regularity requirements. The matrix (dis-
cretized) form of the equation of motion is derived. Finally, numerical simulations comparing various beam
models are presented.

1 Introduction
The development of the beam/rod theories idealized by a space curve goes back to two and half centuries

ago and was instrumental in accelerating the second industrial revolution [1]. Interestingly, further development
of beam theory continues to date. The advanced and versatile applications of beam theory to numerous areas
like deformation of bio-polymers [2, 2, 3], biological structures [4], shape-sensing [5, 6, 7, 8], robotics, multi-
body dynamics [9], composite structures [10], contact problems [11], thermal problems [12, 13], micro and
nanostructures used in MEMS and NEMS etc., necessitates further development and refinement of this theory.
We first perform a relevant literature review in the next few paragraphs.

Duhem [14] and Darboux [15] investigated a kinematic idea that provided a sense of rotation to any
material point, such that a point in the object not only has a position vector associated with it but also has an
attached triad that assigns the sense of rotation to these material points. It was Eugene and François Cosserat
[16] who conceived the idea of moving frames to capture geometrically exact non-linear deformation of the
beams (and shells) using framed space curve. Ericksen and Truesdell [17] generalized the Cosserat brother’s
work to develop a non-linear theory of rods and shells for finite strain. Some of the prominent investigations and
research on theory of rods include [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. The developments in the
beam theory in the last century is summarized in [17, 31, 32].

Among these seminal contributions, the work by Reissner was the first major leap forward towards the
geometrically-exact beam theory, when he extended Kirchhoff-Love beam theory [33] to also capture shear
deformation in addition to bending and torsion in 2D [28] and 3D [34]. The prominent work by Simo [30]
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extended Reissner’s beam to 3D (with geometric-exactness preserved) in the setting of differential geometry
(now called Simo-Reissner beam theory). Many papers were published in the same time period concerning finite
element formulation of geometrically-exact beams, the primary contributors being: Simo et al. [30, 35, 36, 37];
Iura et al. [38, 39]; Cardona et al. [40]; Ibrahimbegovic [41]. These papers considered linearly elastic material
and addressed both static and dynamic cases, but they presented different approaches to time-stepping schemes
and updating rotation vector: Eulerian [35, 36], updated Lagrangian [40], and total Lagrangian [41, 39]. Since
these papers got published, research tackling the theoretical and computational techniques gained momentum and
the advanced research in this field continues to occur till date, for examples: problems related to discretization
and interpolation approaches [42, 43, 44, 45, 46, 47, 48], mixed formulation [49], non-linear materials and
constitutive law [50, 51, 52, 53], space and time-integration schemes [54, 55, 56], initially curved configuration
[57, 32], higher-order Kirchhoff-love beam [58, 59, 60], and enhanced kinematics [35, 61, 62, 63]. Noteworthy
contributions to computational formulation of geometrically-exact beam including shear deformation and their
applications (e.g., multi-body dynamics of earth orbiting satellites) was made by Vu-Quoc in collaboration with
Simo [64, 65, 66]. Simo and Vu-Quoc [67] extended their previous work [30, 37] to incorporate warping using
a Saint-Venant warping function. McRobie et al. [68] presented an alternative derivation of Simo Vu-Quoc
beam by using Clifford or geometric algebra for both derivation and numerical implementation. A very recent
paper by Carrera [69] gives Carrera Unified Formulation (CUF) for the micropolar beams.

Our recent work [63] investigated and refined the kinematics of Cosserat beams. This development
incorporated a fully coupled Poisson’s and warping effect along with the classical deformation effects like
bending, torsion, shear, and axial deformation for the case of finite displacement and strain, thus, allowing us
to capture a three dimensional, multi-axial strain fields using single-manifold kinematics. Numerous works
on shear based deformation are founded on Timoshenko’s beam theory that assumes a uniform shear strain
distribution restricting the cross-section to remain planar. However, the kinematics developed in [63] also
considers non-uniform shear deformation due to bending-induced shear. For such beam kinematics, we first
focus our attention on performing a step-by-step analysis of the balance laws and the variational formulation of
the beam. Unlike the traditional geometrically-exact beam theory where the deformation map is a function of the
differential invariants (curvatures) of a framed curve, the work presented in [63] considers a deformation map
that also depends on the higher-order derivatives of the curvatures and mid-curve strains due to the inclusion of
fully coupled Poisson’s and warping effect. This makes the process of obtaining a variation of these quantities
challenging. We observe that the theory converges to the one presented in [67] if we ignore the Poisson’s effect
and bending induced non-uniform shear. To numerically solve the system, we restrict to static case and present
multiaxial linear material constitutive law valid for large deformation but limited to small strains relating the
reduced forces to their corresponding finite strain counterpart (in addition to the mid-curve axial strain, curvature,
and warping amplitude, we also have their derivatives). Linearization of weak form is detailed and is followed
by matrix formulation of the equation of motion. For simplicity, we assume displacement prescribed boundary
conditions. We update the rotation tensor in Eulerian sense using an incremental current rotation vector. We
obtain and update curvature and its derivatives using the results presented in our recent paper [70].

Section 2–5 details the first part of discussion- the variational formulation, whereas, the Sections 6–8
deals with the discussion of constitutive law and numerical formulation. In Section 2, we summarize the
kinematics detailed in [63]. In Section 3, we obtain the variation of quantities required for the derivation of field
equations. In Section 4 and 5, we derive the governing equations. Section 6 discusses the multi-axial linearly
elastic constitutive law considering large deformation but small strain. Section 7 describes the finite element
formulation for static case, and Section 8 illustrates numerical examples. Finally, Section 9 concludes the paper.
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2 Comprehensive kinematics and mathematical tools
We first present some preliminary definitions and notations: the dot product, ordinary vector product, and

tensor product of two Euclidean vectors v1 and v2 are defined as v1 ⋅v2 = vT1 v2, v1×v2, and v1⊗v2 respectively.
The Euclidean norm is represented by ‖.‖ or the un-bolded version of the symbol (for example, ‖v‖ ≡ v). The
nth order partial derivative with respect to a scalar, �1 for instance, is given by the operator )n�1 , with )

1
�1
≡ )�1 . A

vector, a tensor or a matrix is represented by bold symbol and their components are given by indexed un-bolded
symbols. The action of a tensor A onto the vector v is represented by Av ≡ A.v. The contraction between
two tensors A and B is given by A ∶ B = AijBij = trace(BT .A). We note that the centered dot “⋅” is meant
for dot product between two vectors, whereas the action of a tensor onto the vector, the matrix multiplication
or product of a scalar to a matrix (or a vector) is denoted by a lower dot “.”. Vectors when expressed in array
form are column in nature. Vertical concatenation of n vectors (for example, of dimension 3 × 1) v1, v2, ..., vn is
represented by the vector

[

v1; v2; ...; vn
]

(of dimension 3n×1). The n dimensional Euclidean space is represented
by ℝn, with ℝ1 = ℝ, with ℝ+ denoting the set of positive real numbers (including 0). The diagonal matrix, for
example, consisting of the diagonal elements (a, b, c) is denoted by diagonal[a, b, c]. Finally, 03, I3 represents
3 × 3 zero matrix and the identity matrix respectively. The zero vector is defined as 01 = [0; 0; 0].

In this Section, we shall briefly review the concepts and kinematics discussed in Chadha and Todd [63] to
establish continuity in the write-up.

2.1 Deformation map and configuration of the beam
Let an open set Ω0 ⊂ ℝ3 and Ω ⊂ ℝ3 with at least piecewise smooth boundaries S0 and S represent

the undeformed and deformed configuration of the beam respectively. The beam configuration is described
by the mid-curve and a family of cross-sections. To lay the kinematic description of a beam, we assume the
undeformed configuration Ω0 to be straight.

Let the fixed orthonormal reference basis be represented by {Ei} with origin at (0, 0, 0). The regular curve
'0 ∶ [0, L]⟶ ℝ3 represents the mid-curve associated withΩ0. It is parameterized by the arc-length �1 ∈ [0, L].
We assume that the undeformed configuration is made up of continuously varying plane family of cross-sections
ℬ0(�1), such that '0 = �1E1 is the locus of geometric centroid of the family of cross-sections ℬ0(�1). The
cross-sectionℬ0(�1) is spanned by the vectors E2 − E3 originating at '0(�1) such that (�2, �3) ∈ ℬ0(�1). Let
Γ0(�1) represent the peripheral boundary ofℬ0(�1), such thatS0 =ℬ0(0) ∪ℬ0(L) ∪∀�1 Γ0(�1). Any material
point in the beam is defined by its material coordinate (�1, �2, �3) with a position vector R0 = �iEi.

In order to proceed further, we first define the deformed configuration Ω1 of the beam restrained by rigid
cross-section constraint. The configuration Ω1 is defined by a regular mid-curve '(�1) and a family of plane
cross-sectionsℬ1(�1), parameterized by the undeformed arc-length �1. Equivalently, the mid-curve '(s(�1))
and a family of plane cross-sections ℬ1(s(�1)) are reparametrized by the deformed arc-length s, such that
�1 = �1(s) is at least C1 continuous and )s�1 ≠ 0. The director frame field {di(�1)} defines the orientation of the
cross-sectionℬ1(s(�1)). We have,ℬ1(�1) = {(�2, �3) ∈ ℝ2

�1
}, where ℝ2

�1
is 2D Euclidean space spanned by the

directors d2(�1) − d3(�1), with origin at '(�1). We define the deformation map �1 ∶ R0 ∈ Ω0 ⟼ R1 ∈ Ω1,
such that,

�1(R0) = R1 = '(�1) + r1; (1a)
r1 = �2d2 + �3d3. (1b)

The deformed configuration Ω2 is defined by the mid-curve '(�1) and non-planar family of warped cross-
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sectionℬ2(�1) ⊂ ℝ3
�1
, where ℝ3

�1
is the 3D Euclidean space spanned by the director triad {di(�1)} originating at

'(�1). The deformation map �2 ∶ R0 ∈ Ω0 ⟼ R2 ∈ Ω2 is then defined as,

�2(R0) = R2 = '(�1) + �2d2(�1) + �3d3(�1) +W (�1, �2, �3)d1(�1). (2)

In the equation above,W (�1, �2, �3) denotes the warping function. Simo and Vu-Quoc [67] investigated Cosserat
beam subjected to Saint-Venant’s warping such thatW (�1, �2, �3) = p(�1)Ψ(�2, �3), where p(�1) gives warping
amplitude and Ψ(�2, �3) is the warping function obtained by solving the corresponding Neumann boundary
value problem defined by Eq. [13] of Simo and Vu-Quoc [67]. Chadha and Todd [63] proposed a modified
warping function that includes warping due to bending induced shear and non-uniform torsion in asymmetric
cross-section (refer to Section 2.3, 2.4, and the appendix of [63]). It is discussed in Section 2.4.

The final deformed stateΩ defined by the mid-curve' and a family of cross-sectionℬ(�1) = (W , �̂2, �̂3) ∈
ℝ3
�1
. It incorporates a fully coupled Poisson’s and warping effect. The deformation map for Ω is given by

� ∶ R0 ∈ Ω0 ⟼ R ∈ Ω, such that,

�(R0) = R = '(�1) + r;
r = �̂2d2(�1) + �̂3d3(�1) +W d1(�1).

(3)

Here, the vector r gives the position vector of a material point (�2, �3) in the deformed cross-section ℬ(�1)
with respect to the point '(�1). Let Γ(�1) represent the boundary of cross-section ℬ(�1), such that S =
ℬ(0) ∪ℬ(L) ∪∀�1 Γ(�1). The coordinates (�̂2, �̂3) are obtained by Poisson’s transformation P�1 ∶ (�2, �3) ∈
ℬ1 ⟼ (�̂2, �̂3) ∈ℬ3, such that,

�̂i = (1 − �(�
2
1 ⋅ d1))�i for i = 2, 3. (4)

In the equation above, � represents Poisson’s ratio and is assumed to be a constant (homogeneous material). The
quantity �21 is the first strain vector of the deformed configuration Ω2 defined in Eq. (15). Therefore, �21 ⋅ d1
essentially gives the longitudinal strain along d1 at the material point (�1, �2, �3) in the deformed state Ω2. Figure
1 illustrates various configurations described so far.

Figure 1: Schematic diagram illustrating geometric description of various deformed configurations.
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2.2 Rotation and finite strain parameters
2.2.1 Axial strain vector

The midcurve axial strain e(�1), and the three shear angles 
11(�1),
�
2
− 
12(�1), and

�
2
− 
12(�1) subtended

by the directors d1, d2, and d3 with the tangent vector )s' to the deformed mid-curve ' are defined as,

e =
ds − d�1

d�1
⇒

d�1
ds

= 1
1 + e

;

)s'.di =
{

cos 
1i, for i = 1
sin 
1i, for i = 2, 3

}

.
(5)

This leads us to the definition of axial strain vector " as,

" = )�1' − d1 = "idi = "iEi. (6)

As in the equation above, the components of a vector v in {Ei} and {di} is denoted as v = viEi = vidi.
2.2.2 Finite rotation and curvature

The director triad {di} is related to the fixed reference triad {Ei} by means of an orthogonal tensor
Q ∈ SO(3), such that,

di = Q.Ei ⇒ Q = di ⊗ Ei. (7)

Finite rotations are represented by an element of a proper orthogonal rotation (Lie) group SO(3) with its Lie
algebra so(3) (refer to [70]). The rotation tensor can be parameterized by a rotation vector θ ∈ ℝ3 by means
of exponential map exp ∶ so(3) ⟶ SO(3). The local homeomorphism of exp map in the neighborhood of
identity I3 ∈ SO(3) for θ ∈ [0, �), guarantees the existence of a unique inverse of exponential map in the
neighborhood of I3 ∈ SO(3), called the logarithm map log ∶ SO(3)⟶ so(3), such that,

Q(θ) = exp(θ̂). (8a)
log (Q(θ)) = log(exp(θ̂)) = θ̂ ∈ so(3), with ‖log (Q(θ)) ‖ = θ. (8b)

From here on, any matrix quantity with a hat on it (.̂) represents an anti-symmetric matrix. The equation above
allows us to evaluates the deviation between two rotation tensors, say the approximated rotation tensor Qℎ and
the exact rotation tensor Q by measuring the length of geodesic between them, such that the error Qerror is
quantified as,

Q = Qerror.Q
ℎ;

eQ = ‖log
(

Qerror
)

‖ ∈ [0, �).
(9)

For any â, b̂ ∈ so(3), we define the Lie-bracket as [., .] ∶ so(3) × so(3)⟶ ℝ3, such that:
[

â, b̂
]

= (â.b̂ − b̂.â). (10)

It is important to understand the derivative of director triad as it defines local change of the triad. We have,

)�1di = )�1Q.Ei = )�1Q.Q
T .di = �̂.di. (11)

Here, �̂ = )�1Q.Q
T represents the curvature tensor. It is an anti-symmetric matrix with the corresponding

axial vector � = �idi, known as curvature vector. We define TQSO(3) as the tangent plane of non-linear
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SO(3) manifold, such that )�1Q = �̂.Q ∈ TQSO(3). We note that so(3) = TI3SO(3). We define the material
curvature �̂ = QT .�̂.Q = QT .)�1Q ∈ so(3) obtained by parallel transport of �̂.Q from TQSO(3) ⟶ so(3).
Let � and � represent the axial vector corresponding to the anti-symmetric matrix �̂ and �̂ respectively. It can
then be proved that � = QT .� such that if � = �idi, then � = �iEi. Refer to Section 2.2 of [70] for better
understanding of material and spatial curvature; and left-invariant and right-invariant tangent vector fields. We
call the quantities �̂ and � as material representation; and �̂ and � as spatial representation of the curvature
tensor and the curvature vector respectively. Like curvature tensor, we can have material form of other quantities
like deformation gradient tensor, angular velocity etc. For instance, the material form of axial strain vector and
cross-section position vectors (r1 and r) is given by " = QT .", r1 = Q

T .r1, and r = Q
T .r respectively. From

here on, we recognize any material vector or tensor with a bar (.̄) over it.
Finally, consider a spatial and material vector v = vidi = viEi and v = viEi respectively, such that

v = Q.v. The derivative of these vectors are obtained as:

)�1v = )�1vi.di + vi.)�1di = )̃�1v + � × v;

)�1v = )�1vi.Ei = Q
T .)̃�1v.

(12)

In the equation above, )̃�1v defines co-rotational derivative of spatial vector v. It essentially gives the change in
components of the vector v, provided the frame of reference is assumed to be fixed. Along similar lines, the the
co-rotational derivative of the tensor A is defined as )̃�1A = Q.)�1A.Q

T , more detail of which can be found in
Section 2.2.4 of [70]. From here on, )̃x(.) denotes the co-rotational derivative of quantity (.) with respect to x.

2.3 Deformation gradient tensor and strain vectors
The deformation gradient tensor F of the final deformed state Ω referenced to Ω0 can be defined (refer to

Eq. (30) of [63]) as,

F = )�iR⊗ Ei = (�i + di)⊗ Ei = (�i ⊗ Ei) +Q = H +Q. (13)

It consist of two parts: change in infinitesimal tangent vector by virtue of rotation (change in direction) and
straining (change in magnitude). Readers are referred to Section 3 of [63] for detailed interpretation of strain
vector �i. The expression of strain vector �i is obtained in Eq. (35) of [63]. The material form of strain vectors
�i and the deformation gradient tensor F are given by the following,

�i = Q
T .�i = Q

T .)�1R − Ei; (14a)

F = �i ⊗ Ei + I3 = H + I3 = Q.F .I3 = Q.F . (14b)

The quantitiesH = �i ⊗ Ei andH = �i ⊗ Ei gives spatial and material form of strain tensor respectively.

2.4 Revisiting the deformation map �
The strain vector �21 is crucial in defining the Poisson’s transformation as seen in Eq. (4). We recall that

the quantity �21 is the first strain vector of the deformed configuration Ω2, such that �21 ⋅ d1 essentially gives
the longitudinal strain along d1 at the material point (�1, �2, �3) in the deformed state Ω2. We can obtain the
expression of �2i from the expression of �i as,

�21 = �1|�̂j→�j =
(

" + �3.)�1d3 + �2.)�1d2 + )�1W .d1 +W .)�1d1
)

;

�21.d1 = ("1 + �3�2 − �2�3 + )�1W ).
(15)
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To maintain the single-manifold character of Cosserat beams, it is necessary to pre-define the cross-
sectional deformation dependences upon Poisson’s effect and the warping effect. We briefly discuss the warping
functionW . In [63], we arrived at the governing differential equation (Eq. (68a) and (68b) of [63]) for warping
for an asymmetrical beam cross-section subjected to the curvature and axial strains for the linear case the solution
of which yieldedW in a variable separable form as the following:

W (�1, �2, �3) =
∞
∑

n=0
)2n�1 �1.Ψ1(2n) + )

2n+1
�1

�2.Ψ2(2n+1) + )2n+1�1
�3.Ψ3(2n+1). (16)

Proposing this form of warping function was inspired by the work of Brown and Burgoyne [71, 72]. The
cross-section dependent warping functions in Eq. (16) (like Ψ10,Ψ12, ...; Ψ21,Ψ23, ...) can be obtained by solving
the set of governing differential equation discussed in appendix 6.1.4 of [63]. Higher-order derivatives of �1 take
care of non-uniform torsion (unlike Saint Venant’s warping) whereas higher-order derivatives of �j (j = 2, 3)
capture bending-induced non-uniform shear deformation (unlike Timoshenko’s uniform shear). We assume that
the contribution of higher-order derivative (> 1) of curvatures to warping is negligible. Thus, to facilitate the
computation of governing field equations, we consider a simplified warping function for this paper,

W (�1, �2, �3) = p(�1)Ψ1(�2, �3) + )�1�2.Ψ2(�2, �3) + )�1�3.Ψ3(�2, �3) = p(�1)Ψ1(�2, �3) + )�1� ⋅	23. (17)

In the equation above, 	23 = Ψ2(�2, �3)E2 +Ψ3(�2, �3)E3 and )�1� = )�1�i.Ei. For the sake of computation, the
cross-section dependent functions Ψ1(�2, �3), Ψ2(�2, �3), and Ψ3(�2, �3) are assumed to be known. Therefore, all
we require in this paper is to know the warping functions before-hand. In this case, we have obtained the warping
functions by solving the governing differential equation derived in [63] assuming that the deformation due to
warping is small with linear isotropic material. However, it is possible to solve for the warping functions in the
non-linear setting as the structure deforms by numerically solving for the warping function at every iteration
(refer to [52]).

2.5 Revisiting the material and spatial strain vector �i
In this Section, we elaborate the expressions of strain vectors �i and �i in a desirable form. Using the

definition of R in (3), and the definition of the strain vector as �i = )�iR − di, we obtain the expressions for
material and spatial form of strain vector �i expressed in matrix form as:

L = L.� andL = L.�. (18)

where,
L =

[

�1;�2;�3
]

; L =
[

�1;�2;�3
]

;

� =
[

"; )�1";�; )�1�; )
2
�1
�; )3�1�; p; )�1p; )

2
�1
p
]

,
(19)

such that,
L = Q3.L and � = �.�. (20)

Here, � = diagonal[Q,Q,Q,Q,Q,Q, I3] and Q3 = diagonal[Q,Q,Q] respectively. We carefully note that for
any n, Q.)n�1� = )̃

n
�1
� (refer to Proposition 1 and 3 in [70] that also defines the operator )̃n�1). Therefore,

� =
[

"; )̃�1";�; )̃�1�; )̃
2
�1
�; )̃3�1�; p; )�1p; )

2
�1
p
]

. (21)
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The matrices L can be expanded as:

L =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

L
�1
" L

�1
)�1"

L
�1
� L

�1
)�1�

L
�1
)2�1
� L

�1
)3�1
� L

�1
p L

�1
)�1p

L
�1
)2�1
p

L
�2
" L

�2
)�1"

L
�2
� L

�2
)�1�

L
�2
)2�1
� L

�2
)3�1
� L

�2
p L

�2
)�1p

L
�2
)2�1
p

L
�3
" L

�3
)�1"

L
�3
� L

�3
)�1�

L
�3
)2�1
� L

�3
)3�1
� L

�3
p L

�3
)�1p

L
�3
)2�1
p

⎤

⎥

⎥

⎥

⎥

⎥

⎦

; (22)

The corresponding spatial form L consisting of the component matrices L�ix , with x ∈ � is obtained as:

L = Q3.L.�
T . (23)

We call the quantities L
�i
x (given in Appendix 10.1) and L�ix as material and spatial L-terms respectively.

2.6 Configuration and the state space
Adapting the kinematics discussed above, we find that there are three primary quantities required to defined

the configuration Ω: ' ∈ ℝ3, Q ∈ SO(3) and p ∈ ℝ. For static case, the configuration, tangent, and state space
of the beam Ω is given as:

ℂ ∶=
{

� = (',Q, p) ∶ [0, L]⟶ ℝ3 × SO(3) ×ℝ
}

; (24a)
T�ℂ ∶=

{

�̃ = ()�1', )�1Q, )�1p) ∶ [0, L]⟶ ℝ3 × TQSO(3) ×ℝ
}

; (24b)

Tℂ ∶=
{

(�, �̃)|� ∈ ℂ, �̃ ∈ T�ℂ
}

. (24c)

It is interesting to interpret the curvature vector � and the derivative of rotation vector )�1θ with a physical

Figure 2: Physical interpretation of curvature � (left figure) and variation of rotation vector �� (right figure)
resulting in infinitesimal rotation

viewpoint. At an arc-length �1, the director triad {di(�1)} rotates about the vector �(�1).d�1 to yield the triad at
{di(�1 + d�1)}. Whereas, the triad {di(�1)} and {di(�1 + d�1)} are obtained by finite rotation of the frame {Ei}
about the rotation vector θ(�1) and θ(�1 + d�1) = θ(�1) + )�1θ(�1).d�1 respectively. Figure 2 (left) illustrates the
idea discussed here. In terms of the exponential map,

Q(�1 + d�1) = exp(�̂(�1).d�1).Q(�1) = exp(�̂(�1).d�1).exp(θ̂(�1)) = exp(θ̂(�1) + )�1θ̂(�1).d�1). (25)

The equation above can be used to obtain the relationship between �̂ and )�1θ̂ as shown in Eq. (7) of [70].
With slight abuse of notation, we can associate the tangent space with curvature tensor field �̂(�1) (instead of
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)�1Q = �̂.Q). The isomorphism between so(3) and ℝ3 permits one to identify the tensor field �̂(�1) with its
corresponding axial vector �(�1) ∈ ℝ3. Thus, the state space is defined by the set

(

', {di}, p; )�1',�, )�1p
)

.
Redefining the tangent space described in Eq. (24b) yields,

T�ℂ ∶=
{

�̃ = ()�1',�, )�1p) ∶ [0, L]⟶ ℝ3 ×ℝ3 ×ℝ
}

. (26)

For the dynamic case, we define the configuration space parameterized with arc-length and time (�1, t) as,

ℂ ∶=
{

� = (',Q, p) ∶ [0, L] ×ℝ+ ⟶ ℝ3 × SO(3) ×ℝ
}

(27)

However, it is important to look at the configuration of beam Ωt at a fixed time t ∈ ℝ+ to study curvature vector
� and consider a point with constant arc-length to understand the evolution of director field with time (given by
angular velocity tensor !̂ = )tQ.Q

T ). Hence,

Q(�1 + d�1, t) = exp(�̂(�1, t).d�1).Q(�1, t);
Q(�1, t + dt) = exp(!̂(�1, t + dt).dt).Q(�1, t).

(28)

Remark 1: We guide the readers on what is to come next by detailing the structure of the following writing.
Even though the beam is a 3D structure, we model it as a 1D single-manifold structure. As is clear from the
configuration space of the beam in Eq. 24a, this reduced 1D beam theory consist of 7 primary degrees of
freedom: 3 components of the position vector ' defining translation, 3 components of the rotation vector θ
parameterizing Q, and the warping amplitude p. Therefore, we expect a single equation describing the weak
form and a set of 7 governing differential equations as a strong form. Corresponding to each of these degree
of freedom, we have 7 strain terms: axial strain ", �, and )�1p that constitutes the tangent space T�ℂ. Unlike,
Simo Vu-Quoc beam [35], the kinematics of the beam in this paper depends on higher-order derivatives of these
strain terms, thus, making the derivation of the variation of these terms challenging. Therefore, Section 3 is
dedicated to obtaining the variation of these terms so that they can be used to obtain the weak form in Section 4.
The strong form of governing equation is then obtained from the weak form in Section 5. The reduced internal
forces and their respective strain conjugates are related by linear constitutive law in Section 6. Finally, Section 7
derives the matrix form of the equation that can be numerically solved.

3 Variation
To obtain the virtual work principle (a weak form of equilibrium equation), we need to obtain the admissible

variation of the deformed configuration. We also must linearize the weak form for numerically solving the
system. This shall be covered in the second part of this paper. However, since both variation and linearization
are geometrically similar procedures (that help us operate on the tangent space T�ℂ), we shall carefully describe
the variation of deformation map and associated strain quantities here.

3.1 Admissible variation of the deformed configuration Ω
To obtain the virtual deformed configuration of the system, we superimpose an admissible variation

or admissible infinitesimal (and instantaneous) displacement field �� = (�', �Q, �p) to the configuration
� = (',Q(θ), p). The varied configuration is then defined by�� = ('�,Q�, p�), such that for � > 0, we have,

'� = ' + ��', and �' = )�'�|�=0; (29a)
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Q� = Q(θ + ��θ) = Q(���).Q(θ), and �Q = )�Q�|�=0; (29b)
p� = p + ��p, and �p = )�p�|�=0. (29c)

Unlike the variation in the mid-curve axial vector, and the warping amplitude, understanding the variation in the
rotation tensor needs some detailed investigation. This is because ' ∈ ℝ3 and p ∈ ℝ belong to linear vector
spaces, where as SO(3) is a non-linear manifold. It is advantageous to express the virtual rotation tensor by
means of virtual rotation vector in current state �� contrary to the variation of total rotation vector �θ. Hence
the varied director field is then given by:

di� = Q�.Ei = Q(���).di. (30)

Refer to Fig. 2 (right image) for physical interpretation of the virtual current rotation vector ��. The rotation
tensorQ� = Q(θ+ ��θ) transforms the vector Ei to di� in a single step, whereas, the tensorQ� = Q(���).Q(θ)
performs the same transformation in two steps: Ei

Q(θ)
←←←←←←←←←←←←←←←←→ di

Q(���)
←←←←←←←←←←←←←←←←←←←←←←←→ di�. From Eq. (29b), we arrive at the

expression of virtual rotation tensor and director field:

�Q = )�
(

exp(���̂).exp(θ̂)
)

|�=0 =
(

��̂.exp(���̂).exp(θ̂)
)

|�=0 = ��̂.Q(θ); (31a)

�di = �Q.Ei = ��̂.di. (31b)

Here, ��̂ represents the anti-symmetric matrix associated with the vector ��. We define the material form of
incremental rotation ��̂ (with �� being the associated axial vector) as:

��̂ = QT .��̂ = QT .�Q; �� = QT .��. (32)

It follows from the discussion above that )�1Q, �Q ∈ TQSO(3), �� ∈ T�ℂ, ��̂ ∈ so(3) and (�, ��) ∈ Tℂ.
Like the relationship between � and )�1θ defined in Eq. (7) of [70], we can arrive at the relation between ��
and �θ. We redefine �� as,

�� = [�'; ��; �p] . (33)

Having understood the varied configuration space, the expressions derived in this Section can be directly used to
obtain variation of other quantities using straightforward chain rule.

3.2 Variation of the strain quantities and their derivatives
In this Section, we obtain the variation of finite strain quantities in terms of (�', ��, �p) and their derivatives.

The virtual material strain vectors ��i are strain conjugate to material form of first PK stress vectors (discussed
later in Section 4.2). Deriving the expression of ��i requires us to first find variation of L-terms and �� as a
function of (�', ��, �p) and their derivatives.
3.2.1 Variation of the finite strain terms

From the definition of axial strain vector ", we obtain:

�" = �)�1' − ��̂.d1; (34a)

�" = �(QT .") = QT (�)�1' + )�1'̂.��
)

= QT .�̃". (34b)

Similarly, the variation of spatial and material curvature tensor is given by:

��̂ = �()�1Q.Q
T ) = �)�1Q.Q

T + )�1Q.�Q
T = �)�1�̂ + [��̂, �̂] ; (35a)
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��̂ = �(QT .)�1Q) = �Q
T .)�1Q +Q

T .�)�1Q = QT .�)�1�̂.Q = QT .�̃�̂.Q. (35b)

The variation of the curvature vector are obtained as:

�� = �)�1� + ��̂.�; (36a)

�� = QT .�)�1� = Q
T .�̃�. (36b)

Like the co-rotated derivatives, �̃" =
(

�)�1' + )�1'̂.��
)

, �̃� = �)�1� and �̃�̂ = �)�1�̂ defines the co-rotated
variation of the curvature vector, axial strain vector and curvature tensor respectively.
3.2.2 Variation of the vector �

Since the derivative and variation can be used interchangeably, we obtain �)�1", �)
n
�1
� using Eq. (34b),

and (36b). These results can be used to express �� in the following form:

�� = �T .B1.�� = �
T .�̃�, (37)

where,
�� =

[

�'; �)�1'; �)
2
�1
'; ��; �)�1�; �)

2
�1
�; �)3�1�; �)

4
�1
�; �p; �)�1p; �)

2
�1
p
]

�� =
[

�"; �)�1"; ��; �)�1�; �)
2
�1
�; �)3�1�; �p; �)�1p; �)

2
�1
p
]

;

�̃� =
[

�̃"; �̃)̃�1"; �̃�; �̃)̃�1�; �̃)̃
2
�1
�; �̃)̃3�1�; �p; �)�1p; �)

2
�1
p
]

.

(38)

The virtual vector �� can be related to �� by means of a differential operator B2 (of size 27 × 7), such that,

�� = B2.��. (39)

The Eq. (37) can then be re-written as:
�� = �T .B1.B2.��;
�̃� = B1.B2.��.

(40)

The expanded description of the matrices B1 and B2 are given in appendices 10.2.1 and 10.2.2, respectively.
3.2.3 Variation of the strain vector �i and the concatenated strain vectorL

From Eq. 18, we have,
�L = �L.� +L.��. (41)

We realize that, except for �L�1� = �r̂
T
, the variation in all other L-terms are 03. Thus, we have

�L.� = [�L�1� .�; 01; 01] = [�r̂
T
.�; 01; 01] (42)

From the expression of r = QT .r = �̂2E2 + �̂3E3 +W E1, we can find �r̂
T
that can be substitutes in 42 to obtain:

�L.� =M .��, (43)

where,

M =

⎡

⎢

⎢

⎢

⎣

M
�1
" 03 M

�1
� M

�1
)�1�

M
�1
)2�1
� 03 M

�1
p M

�1
)�1p

01
03 03 03 03 03 03 01 01 01
03 03 03 03 03 03 01 01 01

⎤

⎥

⎥

⎥

⎦

. (44)
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Like L-terms, we callM
�i
(.) asM-terms. Appendix 10.1 gives the expression ofM-terms. Similar to Eq. (23),

we define the spatial form ofM matrix consisting ofM�i
(.), such that,

M = Q3.M .�T , (45)

Substituting Eq. (43) into Eq. (41), we get,

�L =
[

��1; ��2; ��3
]

=
(

L +M
)

.��. (46)

We define the co-rotoational variation of the concatenated strain vector L as

�̃L =
[

�̃�1; �̃�2; �̃�3
]

= Q3.�L = Q3.
(

L +M
)

.�� = (L +M).�̃�. (47)

The variation of deformation gradient tensor is obtained as:

�F = �̃F + �Q.F = �̃F + ��̂.F ;

�̃F = Q.�F = �̃�i ⊗ Ei;

�F = ��i ⊗ Ei.

(48)

3.3 Variation of displacement field
We need the variation of displacement field to evaluate the virtual work done by external load. We define

the displacement field u(�1, �2, �3) as u = R −R0. Since, �R0 = 01, we have �u = �R. Thus, Eq. (3) yields,

�R = �' + �r; (49a)
�r = �̃r + ��̂.r; (49b)

�̃r = ��̂2d2 + ��̂3d3 + �W d1, (49c)

4 Weak form of governing differential equation
4.1 General virtual work principle

We define the unsymmetric two-point first Piola Kirchoff stress tensor P = P i ⊗ Ei referenced to the
undeformed configuration Ω0 such that the associated P i gives the associated stress-vectors. We can write the
integral or residual form of equilibrium equation as:

∫Ω
�u ⋅

(

DivP + �0b − �0)2tR
)

dΩ = 0. (50)

Here, Div is divergence operator referenced to the configuration Ω0. The quantities �0(�1, �2, �3) = �0 and
b(�1, �2, �3) = b give the mass density field in the undeformed state and the body force per unit mass of the
body respectively. Since F = I3 + Grad(u), we have �F = Grad(�u). Here, Grad is the gradient operator with
respect to the configuration Ω0. Using this result and divergence theorem on Eq. (50), we get the general virtual
work principle:

G(�, ��) = �Ustrain + �Winertial − �Wext = 0, (51)
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where,

�Ustrain = ∫Ω0
P ∶ �F dΩ0 = ∫Ω0

trace
(

P T .�F
)

dΩ0; (52a)

�Winertial = ∫Ω0
�0�u ⋅ )2tR dΩ0; (52b)

�Wext = ∫S0

�u ⋅ (P .N) dS0 + ∫Ω0
�u ⋅ b dΩ0 = �Wst

ext + �W
b
ext. (52c)

The virtual work due to external forces is contributed by surface tractions (�Wst
ext) and body forces (�W

b
ext). In

the equation above,N represents the normal vector to the surfaceS0 of the beam.

4.2 Virtual strain energy
The expression of strain energy in Eq. (52a) can be further simplified by using Eq. (48)

�Ustrain = ∫Ω0
P ∶ �F dΩ0 = ∫Ω0

P ∶ �̃F dΩ0 + ∫Ω0
P ∶ (��̂.F ) dΩ0. (53)

We observe that P ∶ (��̂.F ) = PF T ∶ ��̂ = 0. This is because, PF T is symmetric and ��̂ is an anti-
symmetric matrix. We define the concatenated stress vector P =

[

P 1;P 2;P 3
]

and its material counterpart
P =

[

P 1;P 2;P 3

]

, such thatP = Q3.P. This further simplifies Eq. (53) to

�Ustrain = ∫Ω0
P ∶ �̃F dΩ0 = ∫Ω0

P i.�̃�i dΩ0 = ∫Ω0
P i.��i dΩ0;

�Ustrain = ∫Ω0
P ⋅ �̃L dΩ0 = ∫Ω0

P ⋅ �L dΩ0.
(54)

Using the results in Eq. (46) and (47) we have,

�Ustrain = ∫Ω0
�̃� ⋅

(

(L +M)T .P
)

dΩ0 = ∫

L

0
�̃� ⋅ int d�1; (55a)

�Ustrain = ∫Ω0
�� ⋅

(

(L +M)T .P
)

dΩ0 = ∫

L

0
�� ⋅ int d�1. (55b)

We define the spatial and material reduced section force vectors int(�1) and int(�1) (refer to Appendix 10.3.1)
as

 int = [ "; )�1"
; �; )�1�

; )2�1
�; )3�1

�;p;)�1p
;)2�1

p] = ∫ℬ0

(L +M)T .P dℬ0;

 int = [ "; )�1"
; �; )�1�

; )2�1
�; )3�1

�; p; )�1p
; )2�1

p] = ∫ℬ0

(L +M)T .P dℬ0,
(56)

Using Eq. (40), we arrive at the desired matrix form of virtual strain energy expression:

�Ustrain = ∫

L

0
��TBT

2B
T
1 int d�1. (57)
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4.3 Virtual work done due to external and inertial forces
4.3.1 Virtual work done due to external forces

The virtual work due to external forces is contributed by surface traction and body force. We first consider
the surface traction term:

�Wst
ext = ∫P0

�u.(P .N) dP0

= ∫

L

0

(

∫ℬ0(�1+d�1)
�u ⋅ P 1 dℬ0 − ∫ℬ0(�1)

�u ⋅ P 1 dℬ0 + ∫Γ0(�1)
�u ⋅ (P .N) dΓ0

)

d�1
(58)

Recall the expression of �u = �' + ��̂.r + �̃r as discussed in Section 3.3. We simplify the first two integrals to
obtain boundary terms. We note the following results:

∫ℬ0(�1+d�1)
�' ⋅ P 1 dℬ0 − ∫ℬ0(�1)

�' ⋅ P 1 dℬ0 = )�1
(

�' ⋅ B'
)

d�1

∫ℬ0(�1+d�1)
(��̂.r) ⋅ P 1 dℬ0 − ∫ℬ0(�1)

(��̂.r) ⋅ P 1 dℬ0 = )�1
(

�� ⋅ .B�
)

d�1

∫ℬ0(�1+d�1)
�̃r ⋅ P 1 dℬ0 − ∫ℬ0(�1)

�̃r ⋅ P 1 dℬ0 = )�1(�̃" ⋅ B" + �̃� ⋅ B� + (Q.�)�1�) ⋅ B)�1�

+ (Q.�)2�1�) ⋅ B)2�1
� + �p.Bp + �)�1p.B)�1p) d�1.

(59)

Here, the quantities B(.) and B(.) represents the reduced end boundary force terms, and are defined in appendix
10.3.2. Therefore, the virtual work due to end boundary terms associated with the traction �Wst

ext
|

|

|ℬ(0)∪ℬ(L)
is

given by:

�Wst
ext
|

|

|ℬ(0)∪ℬ(L)
= ∫

L

0

(

∫ℬ0(�1+d�1)
�u ⋅ P 1 dℬ0 − ∫ℬ0(�1)

�u ⋅ P 1 dℬ0

)

d�1

=
[

�' ⋅ B' + �� ⋅ B� + �̃" ⋅ B" + �̃� ⋅ B� + (Q ⋅ �)�1�) ⋅ B)�1�

+ (Q.�)2�1�) ⋅ B)2�1
� + �p.Bp + �)�1p.B)�1p

]L
0 .

(60)

Note that B', B� and Bp represents the reduced section force, moment and bi-shear as in Simo et al. [67].
We now consider the virtual work due to surface traction on the peripheral boundary ∪∀�1Γ0(�1), denoted

by �Wst
ext
|

|

|∪∀�1Γ0(�1)
, where,

�Wst
ext
|

|

|∪∀�1Γ0(�1)
= ∫

L

0

(

∫Γ0(�1)
�u ⋅ (P .N) dΓ0

)

d�1

= ∫

L

0
(�' ⋅N st

' + �� ⋅N
st
� + �̃" ⋅N

st
" + �̃� ⋅N

st
� + (Q.�)�1�) ⋅N

st
)�1�

+ (Q.�)2�1�) ⋅N
st
)2�1
� + �p.N

st
p + �)�1p.N

st
)�1p
) d�1.

(61)

In the equation above, the quantitiesN st
(.) andN

st
(.) represents the reduced external force due to surface traction

(represented by the super script st), and are defined in appendix 10.3.3. Similarly, the virtual work due to body
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force field b is obtained as:

�Wb
ext = ∫

L

0
(�' ⋅Nb

' + �� ⋅N
b
� + �̃" ⋅N

b
" + �̃� ⋅N

b
� + (Q.�)�1�) ⋅N

b
)�1�

+ (Q.�)2�1�) ⋅N
b
)2�1
�

+ �p.Nb
p + �)�1p.N

b
)�1p
) d�1.

(62)

The quantitiesNb
(.) andN

b
(.) represents the reduced external force due to body force (represented by the super

script b). Hence,

�Wext =
(

�Wst
ext
|

|

|∪∀�1Γ0(�1)
+ �Wb

ext

)

+ �Wst
ext
|

|

|ℬ(0)∪ℬ(L)
. (63)

Defining the (total) reduced external forces asN (.) = N
st
(.) +N

b
(.) andN(.) = N st

(.) +N
b
(.), we have,

(

�Wst
ext
|

|

|∪∀�1Γ0(�1)
+ �Wb

ext

)

= ∫

L

0
(�' ⋅N' + �� ⋅N� + �̃" ⋅N" + �̃� ⋅N� + (Q.�)�1�) ⋅N )�1�

+ (Q.�)2�1�) ⋅N )2�1
� + �p.Np + �)�1p.N)�1p

) d�1
(64)

To proceed further, we intend to obtain the virtual work in terms of the virtual quantities �', �� and �p and
their derivatives. Equations (60) and (64) can be further condensed in matrix form as

�Wst
ext
|

|

|ℬ(0)∪ℬ(L)
=
[

�� ⋅ (B3 boundary)
]L
0 =

[

��TB3 boundary
]L
0 =

[

��TBT
2B3 boundary

]L
0 ;

(

�Wst
ext
|

|

|∪∀�1Γ0(�1)
+ �Wb

ext

)

= ∫

L

0
�� ⋅ (B3 ext) d�1 = ∫

L

0
��TB3 ext d�1 = ∫

L

0
��TBT

2B3 ext d�1;

(65)
where,

 boundary = [B';B";B�;B�;B)�1�
;B)2�1

�;Bp;B)�1p];

 ext = [N';N";N�;N�;N )�1�
;N )2�1

�;Np;N)�1p
].

(66)

The vectors boundary and ext represent concatenated end boundary forces and reduced external forces respec-
tively. Refer to appendix 10.2.3 for the expression of matrix B3.
4.3.2 Virtual work done due to inertial forces

Realize that the body force b and the acceleration )2tR is defined over the volume Ω0. Therefore, like the
expression of virtual work contribution due to body force in Eq. (62), we arrive at the following

�Winertial = ∫

L

0
(�' ⋅ F ' + �� ⋅ F � + �̃" ⋅ F " + �̃� ⋅ F � + (Q.�)�1�) ⋅ F )�1�

+ (Q.�)2�1�) ⋅ F )2�1
�

+ �p.Fp + �)�1p.F)�1p) d�1.
(67)

The equation above can be written in a matrix form as:

�Winertial = ∫

L

0
��TBT

2B3 inertial d�1. (68)

The concatenated inertial force vector inertial with its components defined in appendix 10.3.2 is:

 inertial = [F ';F �;F ";F �;F )�1�
;F )2�1

�;Fp;F)�1p]. (69)
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4.4 Virtual work principle revisited
We restate the weak form of governing differential equation (51) for the beam kinematics at hand by using

the expression of virtual strain energy in Eq. (57), virtual work due to external forces in Eq. (63) and (65) and
the virtual work contribution due to inertial work obtained in Eq. (68) as:

G(�, ��) = ∫

L

0
��TBT

2 (B
T
1 int + B3 inertial − B3 ext) d�1 − �W

st
ext
|

|

|B(0)∪B(L)
= 0. (70)

5 Strong form of governing differential equation
We can obtain the strong form (governing differential equations) from the weak form using the equivalence

principle. The strong form essentially represents the local balance laws governing the deformation of the beam.
The analysis carried to obtain the strong form can be summarized in two steps. Firstly, we transform the weak
form in Eq. (70) using integration by parts to obtain an equation of the form:

G(�, ��) = ∫

L

0
(�' ⋅E' + �� ⋅E� + �p.ℰp) d�1 + G∗ = 0, (71)

where,
G∗ = �U∗

strain + �W
∗
inertial − �W

∗
ext − �W

st
ext
|

|

|ℬ(0)∪ℬ(L)
; (72)

The terms �U∗
strain + �W

∗
inertial − �W

∗
ext are the boundary terms arising as a result of carrying integration by part

on the integral in Eq. (70). Since the strong form equations are local in nature, the boundary terms arising due
to integration by part must be −�Wst

ext
|

|

|ℬ(0)∪ℬ(L)
such that no boundary term appears in the transformed equation

of the form presented below:

G(�, ��) = ∫

L

0
(�' ⋅E' + �� ⋅E� + �p.ℰp) d�1 = 0. (73)

It can be proved that G∗ = 0. The proof is skipped due to its length and irrelevance. This result should not come
as a surprise because the strong form describes local equilibrium of forces. The proof of G∗ = 0 also provides a
check for correctness of the work discussed so far.

In Eq. 73, we have,

E' = )�1n +N' − F '; (74a)

E� = )�1m + )�1'̂.n +N� − F �; (74b)

ℰp = )�1MΨ −p +Np − Fp. (74c)

In Eq. (74c),p represents the bi-shear. Here we define the reduced cross-section force, moment vector, and
the bi-moment as:

n =
(

(

 " − )̃�1 )�1"
)

+
(

F " −N"
)

)

; (75a)

m =
(

 � − )̃�1 )�1�
+ )̃2�1 )2�1

� − )̃3�1 )3�1
�

)

+
(

F � − )̃�1F )�1�
+ )̃2�1F )2�1

�

)

−
(

N� − )̃�1N )�1�
+ )̃2�1N )2�1

�

)

;
(75b)
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MΨ =
(

(

)�1p
− )�1)2�1

p
)

+
(

F)�1p −N)�1p
)

)

. (75c)

Since G∗ = 0, the arbitrary nature of the virtual displacement field �� leads us to conservation of linear
and angular momentum and the balance laws for bi-shear and bi-moment: E' = 01, E� = 01 and ℰp = 0,
respectively. The strong form of equation described in Eq. set (74) appears similar to the governing equations
discussed in Simo and Vu-Quoc [67], except for the definition of reduced section forces and bi-moment n, m and
MΨ. The fact that reduced forces in Eq. (75), contains inertial and external force terms is distracting. However,
the results obtained in the process of proving G∗ = 0, helps us to simplify n, m andMΨ defined above to a
desirable form independent of inertial and external force terms.

n = ∫ℬ0

(

L�1"
)T .P 1 dℬ0 = ∫ℬ0

P 1 dℬ0;

m = ∫ℬ0

(

L�1�
)T .P 1 dℬ0 = ∫ℬ0

r × P 1 dℬ0;

MΨ = ∫ℬ0

L�1)�1p
.P 1 dℬ0.

(76)

As expected, the expression of reduced section force, couple and bi-moment is independent of any external and
inertial force terms. The reduced forces obtained above are identical to the respective quantities discussed in
Simo and Vu-Quoc. [67].

6 Constitutive law
6.1 Saint-Venant/Kirchhoff constitutive law for small strains

In this Section, we define the multi-axial linearly elastic constitutive law considering large deformation but
small strain. Recall, the expression of material form of deformation gradient tensor in Eq. (14b): F = I3 +H .
The small strain assumption is imposed by assuming ‖H‖ = O(�) for a small parameter � > 0 such that
lim�→0

O(�)
�
= constant. Keeping this in mind, we can linearize the material deformation gradient tensor about

I3 such that:

F � = I3 +
)F
)�

|

|

|

|�=0
.� + O(�2) = I3 + �H + O(�2). (77)

The spatial form can be obtained by linearizing F about Q, or simply by left translation of F � as:

F � = Q + �H + O(�2). (78)

It is advantageous to postulate linear isotropic constitutive law (Saint-Venant/Kirchhoff material) by relating the
linear part of second PK stress tensor S = SijEi⊗Ej with the linear part of the corresponding strain conjugate:
Lagrangian strain tensor (symmetric) E = EijEi⊗Ej . This is because of the material nature of these quantities.
We have (refer to Marsden et al. [73]):

S = 2GE + �trace(E). (79)

Here, G and � = E�
(1+�)(1−2�)

are the Lamé’s constant. The quantities G and E represents shear and Young’s

modulus respectively. For small strain, up to orderO(�), it can be proved that: P = S andE = 1
2
(H+H

T
) = H

S
.
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This brings us to the definition of constitutive relation in terms of P andH
S
. Using Eq. (79), we have:

P = 2GH
S
+ �trace(H

S
). (80)

Using the constitutive law given by (80), we can express the material form of stress vector P i in terms of material
form of strain vectors �i as:

P =

⎡

⎢

⎢

⎢

⎣

P 1

P 2

P 3

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

�1
�2
�3

⎤

⎥

⎥

⎥

⎦

= C .L. (81)

The matrices C ij are constant material matrix that is defined in appendix 136. In spatial form, the stress vectors
can be related to the spatial strain vectors as follows:

P = C .L, where C = Q3.C .Q
T
3 . (82)

6.2 Reduced constitutive law
The goal is to obtain a linear relationship between the internal force vector  int with the vector �. We

ignore terms ofO(�2) in the expression of �i. To start with, we make use of following two observation to redefine
the internal force vector for first order strain:

First, we realize that except forL
�i
� , all the otherL

�i
(.) are independent of any strain measurements. Realizing

P 1 ⟶ O(�), we have,
(

∫ℬ0

L
�i
� .P 1 dℬ0

)

�

= �.∫ℬ0

r̂
T

1 .P 1 dℬ0 + O(�2). (83)

Therefore, from here on L
�i
� = r̂

T

1 . Secondly, we note that theM-matrix are of order O(�). Therefore,

∫ℬ0

M
�1
(.) .P 1 dℬ0 ⟶ O(�2). (84)

Using Eq. (83) and (84), we redefine the material form of reduced forces by ignoring higher-order terms as:
 int = ∫ℬ0

L
T
.P dℬ0, where L is defined in Eq. (22) with L

�i
� = r̂

T

1 . Using Eq. (81) and the relation given in
Eq. (18) we get:

 int = ∫ℬ0

L
T
.C .L dℬ0 = ∫ℬ0

L
T
.C .L.� dℬ0 =

(

∫ℬ0

L
T
.C .L dℬ0

)

.� = C.�. (85)

The elements of matrix C can be obtained from Eq. (85) by substituting the expressions of L-Matrix and C
defined in appendix 10.1 and 10.4. The symmetric matrix C relates the reduced force vectors with the finite
strains and their derivatives, the expanded form of which is given in appendix 10.4. The spatial form can be
written as C = �.C.�T .

7 Linearization and numerical formulation for static case
In this Section, we consider the numerical formulation of the beam discussed in this paper for static case

assuming a linear elastic small strain constitutive law discussed in Section 6. We assume displacement prescribed
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boundary condition. For these assumed conditions, the weak form obtained in Eq. (70) becomes:

G(�, ��) = �Ustrain − �Wext = ∫

L

0
��TBT

2B
T
1 int d�1 − ∫

L

0
��TBT

2B3 ext d�1 = 0. (86)

7.1 Consistent linearization
7.1.1 Linearization of weak form

The linearized part of the functional G(�, ��) at the configuration�# in the direction of Δ�, such that
�� = �

# + �Δ�, is given as

L[G(�, ��)](�#,Δ�) = G(�
#, ��) + DG(�#, ��).Δ�. (87)

In the equation above, DG(�#, ��).Δ� is the Frećhet differential defined by directional derivative formula as

DG(�#, ��).Δ� =
dG(��, ��)

d�
|

|

|

|�=0
. (88)

In Eq. (87), the term G(�#, ��) is responsible for the unbalanced forces, whereas the term DG(�#, ��).Δ�
(linear in Δ�) yields the tangent stiffness matrix. For simplicity, we assume that�# = � and define the linear
increment in the weak form ΔG as

DG(�#, ��).Δ� = ΔG(�#, ��) = ΔG(�, ��)||
|�=�#

= ΔG(�, ��) = Δ�Ustrain − Δ�Wext. (89)

7.1.2 Linearization of virtual strain energy
The expression of virtual strain energy can be written using Eq. (57) as

�Ustrain = ∫

L

0
��TBT

2B
T
1 int d�1 = ∫

L

0
��TBT

2B
T
1� int d�1. (90)

Thus, the linearized virtual strain energy is obtained as

Δ�Ustrain =

Δ�Ustrain1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫

L

0
��TBT

2B
T
1�Δ int d�1 +

Δ�Ustrain2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫

L

0
��TBT

2B
T
1Δ� int d�1 +

Δ�Ustrain3
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫

L

0
��TBT

2ΔB
T
1� int d�1 .

(91)

Since the process of linearization is similar to the variation, using Eq. (40), we get Δ� = �TB1B2Δ�. Using
the constitutive law given in Eq. (85), we can obtain the linear increment in the material internal force vector as

Δ int = CΔ� = C�TB1B2Δ�. (92)

Thus,

Δ�Ustrain1 = D�Ustrain1(�, ��).Δ� = ∫

L

0
��TBT

2B
T
1CB1B2Δ� d�1. (93)

Similarly, we have ΔQ = Δ�̂.Q, using which, we get,

Δ�. int = [Δ�̂. "; Δ�̂. )�1"
; Δ�̂. �; Δ�̂. )�1�

; Δ�̂. )2�1
�; Δ�̂. )3�1

�; 0; 0; 0] = B4Δ� = B4B2Δ�.
(94)
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Appendix 10.2.4 gives expression of the matrix B4. Thus,

Δ�Ustrain2 = D�Ustrain2(�, ��).Δ� = ∫

L

0
��TBT

2B
T
1B4B2Δ� d�1. (95)

To derive the expression of Δ�Ustrain3, we use the expression of B
T
1 in Eq. (122) and obtain

ΔBT
1 int = B5Δ� = B5B2Δ�. (96)

Appendix 10.2.5 defines the matrix B5. Therefore, we have,

Δ�Ustrain3 = D�Ustrain3(�, ��).Δ� = ∫

L

0
��TBT

2B5B2Δ� d�1. (97)

Finally, if B6 = B5 + B
T
1 .B4, we define:

Δ�Ustrain23 = Δ�Ustrain2 + Δ�Ustrain3 = D�Ustrain23(�, ��).Δ� = ∫

L

0
��TBT

2B6B2Δ� d�1. (98)

The termΔ�Ustrain1 leads to the symmetric material stiffness matrix whereas, the termΔ�Ustrain23 yields geometric
stiffness matrix (not necessarily symmetric).
7.1.3 Linearization of virtual external work done

From the expression of virtual external work, we have:

Δ�Wext =

Δ�Wext1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫

L

0
��TBT

2ΔB3 ext d�1 +

Δ�Wext2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫

L

0
��TBT

2B3Δ ext d�1 . (99)

The term Δ�Wext1 arises due to geometric dependence of Δ�Wext; whereas the term Δ�Wext2 is due to non-
conservative nature of the external forces. We can represent ΔB3 ext and B3Δ ext in a more desirable
form:

ΔB3 ext = B7Δ� = B7B2Δ�;
B3Δ ext = B8Δ� = B8B2Δ�.

(100)

Appendix 10.2.6 gives the matrix B7. The matrix B8 depends on the characteristic of external loading (for
example: follower load, pressure load, etc) and is determined on a case by case basis.

7.2 Discretization and Galerkin form of equilibrium equation
We discretize the domain using Ne elements. Any element e consist of Nen number of nodes and has

length Le = �e1b − �
e
1a, where, �

e
1b and �

e
1a are the arc-length of the first and last node of the element e, such that

�e1b > �e1a and �
e
1 ∈ [�

e
1a, �

e
1b]. We approximate the admissible incremental displacement field Δ� by a finite

dimensional subspace that is subset of the variationally admissible tangent space. The incremental displacement
field (Δ'e,Δ�e,Δpe) restricted to element e can then be interpolated by means of shape functions as:

Δ'e =
Nen
∑

I=1
NIΔ'eI ; Δ�e =

Nen
∑

I=1
NIΔ�eI ; Δpe =

Nen
∑

I=1
NIΔpeI . (101)
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Here, Δ'eI , Δ�
e
I and Δp

e
I represents the nodal incremental dispacement, vortivity and warping amplitude at

node I of element e respectively;NI is the shape-function associated with I th node.
7.2.1 Unbalanced force vector

We first obtain the nodal internal load vector f eintI . The approximated virtual strain energy can be written
as

�Uℎ
strain =

Ne
∑

e=1

Nen
∑

I=1
��eT

I

f eintI
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(

∫

�e1b

�e1a

BT
IB

eT
1 

e
int d�1

)

=
Ne
∑

e=1

Nen
∑

I=1
��eT

I f
e
intI . (102)

The matrix BI , defined in appendix 10.2.7, consists of the shape-functions and its derivatives. The superscript e
on any quantity represents the restriction of that quantity on element e.

In order to define incremental load steps necessary for numerical formulation, we first define the load
coefficient x ∈ [0, 1] with  ext(x) = x ext0, such that:

�Wext(x) = x�Wext0 = x∫

L

0
��TBT

2B3 ext0 d�1. (103)

The approximated virtual external work is obtained as:

�Wℎ
ext0 =

Ne
∑

e=1

Nen
∑

I=1
��eT

I

f eext0I
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(

∫

�e1b

�e1a

BT
IB3

e
ext0 d�1

)

=
Ne
∑

e=1

Nen
∑

I=1
��eT

I f
e
ext0I .

�Wext(x)ℎ =
Ne
∑

e=1

Nen
∑

I=1
��eT

I f
e
extI (x); where f

e
extI (x) = xf

e
ext0I .

(104)

Refer to appendix 10.3.4 and 10.3.5 for the expression of internal and external force vectors: f eintI and f
e
extI (x).

The unbalanced force vector associated with element e at node I is defined as:

F e
I (�

e,x) = f eextI (�
e,x) − f eintI (�

e). (105)

7.2.2 Element tangent stiffness
The approximated form of linearized virtual strain energy obtained in Section 7.1.2 is given by:

Δ�Uℎ
strain =

Ne
∑

e=1

Nen
∑

I=1

Nen
∑

J=1
��eT

I

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Ke
mIJ

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫

�e1b

�e1a

BT
IB

eT
1 CB

e
1BJ d�1 +

Ke
gIJ

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫

�e1b

�e1a

BT
IB

e
6BJ d�1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Ke

intIJ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Δ�e
J . (106)

Here, the element tangential stiffness matrix corresponding to internal loads Ke
intIJ = K

e
mIJ + K

e
gIJ consist

of a symmetric material part Ke
mIJ and a geometric part Ke

gIJ (not necessarily symmetric). Similarly, the
contribution to stiffness matrix due to external loads can be obtained by using results in Section 7.1.3, such that
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the approximated linearized virtual work is obtained as:

Δ�Wℎ
ext(x) = xΔ�W

ℎ
ext0 =

Ne
∑

e=1

Nen
∑

I=1

Nen
∑

J=1
��eT

I

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Ke
ext1IJ

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫

�e1b

�e1a

BT
IB

e
7BJ d�1 +

Ke
ext2IJ

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫

�e1b

�e1a

BT
IB

e
8BJ d�1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Ke

extIJ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Δ�e
J . (107)

Here, the element tangential stiffness matrix corresponding to internal loads Ke
extIJ = K

e
ext1IJ +K

e
ext2IJ consist

of two parts: the matrix Ke
ext1IJ gives contribution due to dependence of external work on the configuration of

the system, assuming the force vectors are conservative; whereas, the matrix Ke
ext2IJ is due to non-conservative

nature of the external forces. The element stiffness matrix is given as:

Ke
IJ (�

e,x) = Ke
intIJ (�

e) −Ke
extIJ (�

e,x)
= Ke

mIJ (�
e) +Ke

gIJ (�
e) −Ke

ext1IJ (�
e,x) −Ke

ext2IJ (�
e,x).

(108)

7.2.3 Matrix form of linearized equation of motion and iterative solution
The unbalanced force vector and the element tangent stiffness can be assembled using assembly operator

A such that the global stiffness and global unbalanced force is obtained as:

K = A(Ke
IJ );

F (�,x) = A(F e
I ) = xA(f

e
ext0I (�

e)) − A(f eintI (�
e)) = xf ext0(�) − f int(�).

(109)

We use standard Newton Raphson’s iterative procedure. We divide the external loading into n load steps.
Let�n represents the discretized form of degrees of freedom vector at load step n, such thatΔ�n = �n+1−�n. At
equilibrium state corresponding to load step n (converged state), the unbalanced force vanishes, i.e., F (�n,xn) =
0. Provided the nth load step has converged, we aim to find Δ�n, such that F (�n+1,xn+1) = 0. At ith iteration,
we can linearize the equation F (�n+1,xn+1) = 0 about F (�

i
n+1,x

i
n+1), such that �i+1

n+1 = �
i
n+1 + Δ�

i+1
n and

xi
n+1 = xn as:

F (�i+1
n+1,xn+1) = F (�

i
n+1,xn) +

)F
)�

|

|

|

|(�i
n+1,xn)

.Δ�i+1
n + )F

)x
|

|

|

|(�i
n+1,xn)

.(xn+1 −xn) = 0. (110)

We define the global tangent stiffness matrix (obtained in (109)) and obtain the following results from Eq. (109),

F (�i
n+1,xn) = xnf ext0(�

i
n+1) − f int(�

i
n+1);

K(�i
n+1,xn) = −

)F (�n+1,xn+1)
)�n+1

|

|

|

|(�i
n+1,xn)

;

f ext0(�
i
n+1) =

)F (�n+1,xn+1)
)xn+1

|

|

|

|(�i
n+1,xn)

.

(111)

Substituting the results obtained above into the equation (110), we get:

K(�i
n+1,xn).Δ�

i+1
n = xn+1f ext0(�

i
n+1) − f int(�

i
n+1) = F (�

i
n+1,xn+1). (112)



23

7.3 Updating the axial strain vector, curvature vector and their derivatives
7.3.1 Updating configuration

Solving equation (112), yields an incremental change in configuration space due to deformation, say
Δ� = {Δ�,Δ�,Δp}.The derivatives of these increments can be obtained by using the approximation in Eq.
101 such that )n�1Δ�

e(�e1) = )
n
�1
NI (�e1).Δ�

e, )n�1Δ�
e(�e1) = )

n
�1
NI (�e1).Δ�

e
I and )

n
�1
Δpe(�e1) = )

n
�1
NI (�e1).Δp

e
I . Let

the initial and final configuration be given as�i = {�i,Qi, pi} and�f = {�f,Qf, pf}, such that:

'f = 'i + Δ'; )n�1'f = )n�1'i + )n�1Δ' (113a)

pf = pi + Δp; )n�1pf = )
n
�1
pi + )n�1Δp (113b)

Qf = exp(Δ�̂).Qi = Q+.Qi where, Q+ = exp(Δ�̂). (113c)

From the expressions of Bi with i ∈ {1, 3, 4, 5, 6} in appendix 10.2, the following quantities other than the
configuration space itself need to be updated: )�1', )

2
�1
', �̂, )�1�̂, and )

2
�1
�̂ and the finite strain quantities

constituting �. Once we update �, we can obtain the material (and then spatial) form of internal force vector,
eventually getting the updates Bi with i ∈ {4, 5, 6}.

Remark 2: We note that in Eq. (113c), we use multiplicative updating rule for the rotation tensor. The incre-
mental rotationQ+ = exp(Δ�̂) becomes singular when ‖Δ�‖ = 2n� for n = 1, 2, 3,⋯. Refer to Ibrahimbegovic
[74] for a rescaling remedy to avoid this singularity. In this paper, we make sure that our load step size is small
enough such that the singularity does not arise.
7.3.2 Updating axial strain, curvature and its derivatives

Readers are recommended to refer to Chadha and Todd [70] and [75] (particularly the appendix) that
details method for obtaining and updating the higher order derivatives of curvature. So far, we have obtained
all the elements constituting � except for " and )�1". These can be obtained using the definition of axial strain
vector in Eq. (6), such that:

" = QT .)�1' − E1; (114a)

)�1" = Q
T .
(

)2�1' − �̂.)�1'
)

= QT .()̃�1)�1'). (114b)

Using the results in Proposition 3, presented in Chadha and Todd [70], we get )�1" = Q
T .)̃�1". From Eq. (114b),

)̃�1" = )̃�1()�1'). Using Proposition 1 (that also defines the operator )̂�1 used below) presented in [70], we have
the following,

)̃n�1" = )̃
n
�1
()�1') = ()�1 − )̂�1)

n()�1'); (115a)

)n�1" = Q
T .)̃n�1()�1') = Q

T .

(

n
∑

i=0
(−1)(n−i)

(

n!
i!(n − i)!

)

)n�1 )̂
(n−i)
�1

)

)�1'. (115b)

The following Section presents few numerical example concerning the formulation described so far.

8 Numerical examples
We consider three numerical examples based on the formulation described in this chapter using the

constitutive model defined in section 6. The set of problems chosen emphasizes on a large 3D deformation of
beam/framed structure.
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We consider the tolerance of 10−5 in the Euclidean norm of force residue ‖P (�)‖ = ‖xf ext0(�)−f int(�)‖
as a measure of convergence. The numerical results, including the deformation map and finite strains, obtained
by the current formulation (referred to as Chadha-Todd (CT) beam) are compared with the Simo-Reissener beam
model (SR) described in [30], Simo Vu-Quoc beam model (SV) discussed in [67], and Crisfield co-rotational
formulation detailed in [76]. As per the description of deformed configuration in figure 1, the SR beam is defined
by the configurationΩ1; the SV beam is defined by a special case of configurationΩ2 that considers non-uniform
St. Venant warping but ignores bending induced shear contribution to warping; the CT beam is described by
the state Ω ≡ Ω3, and the CF beam is a special case of SR (defined by Ω1) that ignores the shear deformation.
We also note that SV and CT beam becomes identical if we ignore Poisson’s deformation and warping due to
bending induced shear; SR and CF beam formulation becomes identical if shear deformation is ignored; all the
four beams are the same if the structure is infinitely slender.

In the following simulations, we consider rectangular cross-section with the edge dimensions b × d, such
that d ≥ b. The warping function Ψ1 pertaining to the torsion can be obtained using the St. Venant’s Neumann
boundary value problem. There exists a closed-form solution of this differential equation for rectangular
cross-section (refer to Sokolnikoff [77]) given by:

Ψ1(�2, �3) = �2�3 −
8d2

�3

∞
∑

n=0

(−1)n sin
(

kn�2
)

sinh
(

kn�3
)

(2n + 1)3 cosh
(

knb
)

;

kn =
(2n + 1)�

d
for n = 0, 1, 2, ....

(116)

(a) Warping function Ψ1a (b) Warping function Ψ1b (c) Error Ψ1a − Ψ1b
Figure 3: Saint Venant’s warping function for a square cross-section.

Figure 3a illustrates the warping function Ψ1a for a square cross-section with the edge dimension 0.5 units
obtained by solving the concerned Neumann boundary value problem. Similarly, Fig. 3b represents the warping
function Ψ1b obtained using Eq. (116) considering 0 ≤ n ≤ 3. We observe from Fig. 3c that Eq. (116) with
0 ≤ n ≤ 3 gives an excellent estimate of the warping function Ψ1.

The bending induced shear warping functions are obtained in the appendix A1.5 and A1.6 of Chadha and
Todd [63]. We consider the warping functions defined in Eq. (85) of [63] as Ψ2 and Ψ3. This warping function
includes the non-linear shear induced warping and it ignores the uniform shear deformation of the cross-section
as it is taken care of by the director triad. Therefore, we have:

Ψ3 = −
E
2G

(

�32
3

)

; Ψ2 = −
E
2G

(

�33
3

)

. (117)
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8.1 A discussion on convergence
The weak form requires obtaining updated curvature field )r�1� (see components of B1 matrix in Appendix

122) and Δ)s�1� (see Eq. 38, 40) at each iteration, such that r = 0, 1, 2 and s = 0, 1, 2, 3. This demands C3

continuity in Δ� as obtaining Δ)r�1� requires up to (r + 1) derivatives of Δ�. Secondly, the weak form has
up to the second-order derivative of the position vector, and the warping amplitude requiring a minimum C1

continuity in Δ' and Δp. Maintaining a global C3 continuity in the incremental rotation angle will impose
8 continuity conditions at element boundary that can be fulfilled by a seventh-order polynomial (e.g.: eight,
seventh-order Hermite polynomials obtained by imposing Kronecker-delta properties at the element junction; or
considering seventh-order Lagrangian-polynomials on an eight-noded element). We denote k as the order of the
approximating polynomial used, and m as the highest order of derivative in the weak form, which for our case is
m = 4. A fourth-order Lagrangian polynomial k = 4 satisfies the minimum requirement for the weak form to be
square-integrable, and a seventh-order polynomial k = 7 is required for the continuity at the element boundary.
Although k = 4 violates continuity requirements, it yields a converging solution (since k+ 1 > m) satisfying the
compatibility requirement and yields a continuous curvature and mid-curve axial-strain vector at the element
junctions (despite committing a variational crime). In this case, care must be taken to avoid using quadrature
rules that require element end nodes (like, Gauss-Lobatto). We use a full Newton-Raphson iterative solution
procedure with uniformly reduced Gauss-Legendre quadrature to avoid shear-locking.

The rate of convergence � in sth Sobolev normH s, with 0 ≥ s ≥ m andH0 ≡ L2, using Aubin-Nitsche’s
(refer to Chapter 4 of [78]) criterion is given by � = min(k + 1 − s, 2(k + 1 − m)). With these criteria, all seven
degrees of freedom exhibit a positive rate of convergence for both fourth and seventh order polynomial. For
instance, the convergence rate inL2-norm of rotational degree of freedom is � = 2 for k = 4, and � = 8 for k = 7.
Therefore, the seventh-order shape function not only enforces continuity requirements at the element boundary,
but it also increases the rate of convergence. On the other hand, the numerical solution with a seventh-order
shape function is computationally expensive as compared to a fourth-order polynomial (see Fig. 5), and might
lead to oscillatoric strain response at the Gauss-points depending on the shape functions used (see Fig. 9).

From Eq. (113), we note that the rotation quantified by a non-linear quantity Q ∈ SO(3) is updated by
the multiplicative rule that utilized the current incremental rotation vector Δ�. Unlike Δ�, it is meaningless to
define the quantity �, because the rotation is parameterized by the vector θ, not �. Therefore, the traditional
definition of the L2 norm does not exist for the current incremental rotation vector Δ�. It is a stand-alone
quantity and is not defined as a vector difference between two vectors, or Δ� ≠ �f − �i as the vector � is
undefined. However, we could have adapted a total Lagrangian updating scheme (as in [41]) and usedΔθ instead
of Δ� that would allow updating the rotation vector using additive rule, or θf = θi + Δθ, and Qf = exp(θf).
The traditional definition of L2-norm is then valid for the rotation vector θ.

8.2 Numerical example 1: Cantilever beam subjected to conservative concentrated
end load
For simulation 1, we consider a cantilever beam with a uniform square cross-section with edge length

0.5 units subjected to the conservative concentrated loadN' = [18; 5; 5] units andN� = [120; 500; 200] units
at end node. The beam has the material and geometric properties as: E = 150 × 103 units, L = 10 units,
G = 62.5 × 103 units and � = 0.2. The Vlasov warping constant for this case is significantly small: ℭ88 =
0.796. We report the displacement of the end node obtained using CT-beam for 100 elements as: '(L) =
(1.3030, 1.6435, 0.4488) units, p(L) = 0.2591 units, and θ(L) = log(Q(L)) = 1.2093 units.

The results discussed in the remaining part of this section is obtained by considering 15 elements, seventh-
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order Lagrangian polynomial and 30 load steps (implying xn+1 − xn =
1
30
). Table 4 gives the norm of force

residue for the selective load step. The convergence rates of the Newton method are observed.

Iter. Force residual norm
Load step 5 Load step 10 Load step 20 Load step 30

0 1.840 × 101 1.840 × 101 1.840 × 101 1.840 × 101
1 6.336 × 102 6.0931 × 102 1.781 × 103 6.750 × 102
2 1.996 × 100 2.210 × 100 1.079 × 101 1.547 × 100
3 2.599 × 10−2 1.081 × 10−1 3.987 × 100 2.222 × 10−1
4 1.309 × 10−5 6.785 × 10−5 1.022 × 10−3 2.489 × 10−5
5 3.068 × 10−7 3.128 × 10−7 1.099 × 10−5 3.066 × 10−7
6 - - 3.088 × 10−7 -

Table 1: Numerical example 1: Force residue for the load steps (5, 10, 20, 30) obtained using the CT beam

Figure 4 represents the mid-curve and director triad field of the considered beam for selective load steps
respectively. The plot compares the undeformed state Ω0 and the deformed state obtained using SR, SV, CT, and
CF beam models. Figure 5a demonstrates the convergence of the degrees of freedom for fourth (blue color) and
seventh (red color) order Lagrangian shape function. Figure 5b illustrates the run time of FEM code considering
fourth (blue color) and seventh (red color) order Lagrangian shape function. The finite element code can further
be optimized, therefore, the relevant quantity to look for in Fig. 5b is the ratio of the run time. The formulation
with k = 7 is around 4.6 times computationally more expensive than k = 4. The quantities e' and eQ (defined in
Eq. (9)) represent the error in the mid-curve position vector and the rotation tensor of SR and SV beam relative
to the CT beam for four different load steps are plotted in the figures 6 and 7.

Figure 4: Numerical example 1: Deformed configuration.
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(a) Convergence (b) Computational time
Figure 5: Numerical example 1: Convergence and computational time plot. The red and blue represents the
results for the 7th and the 4th order shape-function.

(a) Error in mid-curve position vector (b) Error in the rotation tensor field
Figure 6: Numerical example 1: Error in the Simo-Reissener beam relative to the Chadha-Todd beam.

(a) Error in mid-curve position vector (b) Error in the rotation tensor field
Figure 7: Numerical example 1: Error in the Simo Vu-Quoc beam relative to the Chadha-Todd beam.
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There is significant difference in the position vector of the mid-curve obtained using CT beam model
relative to SR, CF, and SV beams. This is primarily because the bending stiffness for CT beam is greater than
the bending section modulus for SR, SV, and CF beam by a factor of f =

(

3�2+2�−2
4�2+2�−2

+ �2

2(1+�)

(

I11
Ixx

))

≥ 1, such

that ℭ33xx = fEIxx, where the subscript xx is either 22 or 33 (refer to Fig. 8). Secondly, CT beam is flexible in
torsion relative to the other beam models. We also observe that the error e', increases with the arc-length �1, or
equivalently )�1e' > 0. This phenomenon is very similar to the problem of dead-reckoning (also called a coning
effect) in path-estimation.

Figure 8: Factor f as a function of Poisson’s ratio for a square cross-section.

(a) p for CT and SV beam (b) p and �1 for CT
Figure 9: Numerical example 1: Torsional curvature and warping amplitude.

In Fig. 9a, we observe that CT and SV predicts almost the same warping amplitude p. This is because the
parameters ℭ78, ℭ79, ℭ89, ℭ99, ℭ98, ℭ97 are small for the considered cross-section. We observe oscillations in
the warping amplitude p (a possible reason is discussed in next section). The beam is subjected to conservative
torsional moment, leading to constant warping amplitude away from the boundary. Since the aforementioned
material constants ℭij are negligible and the cross-section is symmetric (shear center and the centroid of the
cross-section coincides), the warping amplitude p(�1) converges with the torsional curvature field �1(�1) as
depicted in Fig. 9b. Figure 10 shows the curvatures (left column) and axial strain components (right column) for
load steps (5, 10, 20, 30) obtained using Simo-Reissener (SR), Simo Vu-Quoc (SV) and Chadha-Todd (CT)
beam models.
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(a) Torsional curvature �1 (b) Axial strain �1

(c) Bending curvature �2 (d) Axial strain �2

(e) Bending curvature �3 (f) Axial strain �3
Figure 10: Numerical example 1: Components of the material curvature vector (left column) and the axial strain
vector (right column).
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8.3 Numerical example 2: Cantilever beam subjected to pure torsion and elongation
We consider a beamwith the same geometry andmaterial property as for example 1 discussed in Section 8.2,

except for the cross-section. For current example, we consider a rectangular cross-section with the dimensions
b = 0.5 units and d = 4b = 2 = L

5
units. The Vlasov constant for the considered cross-section is ℭ88 = 1261.65.

The beam is subjected to torsion of 10000 units and an axial pull of 10000 units at the free end. This structure
can not be considered as a slender beam because the depth of the cross-section is 20% of its length. The goal of
this example is to demonstrate the performance of the CT beam relative to SV, SR, and CF beam when Poisson’s
and warping effects are dominant. We expect a significant deviation of CT and SV beam relative to the SR and
CF beam. We consider 30 load steps, 15 elements, and fourth-order Lagrangian polynomial.

(a) Deformed state for SR and CF beam (b) Deformed state for SV beam (c) Deformed state for CT beam
Figure 11: Numerical example 2: Deformed state.

Figure 11 represents the deformed state for SR (and CF), SV and CT beam models. We observe a few
expected results. The error in e' is negligible for SR (Fig. 12a) and SV (Fig. 13a) beams. This is because
the mid-cure of the beam is effected by pure elongation. However, as observed in figures 11 and 12b, there is
significant error in rotation triad obtained for SR and CF beam relative to CT beam (or even SV beam). We can
infer from figure 11a that the deviation of the director triad in the SR beam relative to the CT beam (obtained at
the Gauss points) increases linearly along the length of the beam. However, at first glimpse, the triangular shape
of the error plot eQ (Fig. 12b) depicts a linear increase followed by a decrease in the error. This observation
is misleading and contradicting to our previous inference. The wave nature of error plot eQ is due to a local
homeomorphism of exponential map discussed in Section 3.2.2 of Chadha and Todd [46]. In fact, the error plot
12b does show continuous increase of error since eQ ∈ [0, �).

(a) Error in mid-curve position vector (b) Error in the rotation tensor field
Figure 12: Numerical example 2: Error in the Simo-Reissener beam relative to the Chadha-Todd beam.
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(a) Error in mid-curve position vector (b) Error in the rotation tensor field
Figure 13: Numerical example 2: Error in the Simo Vu-Quoc beam relative to the Chadha-Todd beam.

We attribute large error in the deformation map predicted by SR beam to the fact that the considered
structure can no longer be considered slender and the deformation is significantly effected by fully coupled
Poisson’s and warping effect. The inclusion of all deformation effects in the CT beam makes it more flexible (or
less stiff).

(a) Mid-curve axial strain e (b) Axial-strain "1
Figure 14: Numerical example 2: Axial strains.

Figure 14 shows the first component of the axial strain vector "1 and the mid-curve axial strain e. Since
the beam is not subjected to bending and shear, "2 = "3 = 0, �2 = �3 = 0, and "1 = e. As expected, we observe
that all four beams have excellent agreement on the mid-curve deformation and the axial strains.

Figure 15a illustrates the torsional curvature field obtained using SR, CF, SV, and CT beam model; and
Fig. 15b illustrates the warping amplitude obtained using SV and CT for the load steps in the multiple of five.
We make the following observations. Firstly, we observe a significant underestimation of the torsional curvature
obtained by the SR or CF beam. This is because the beam is no longer slender. The CT and SV beams are more
flexible in torsion relative to SR and CF beam. In case of uniform torsion, we have p = �1. If T represents
torsion at the end node (here, T = 10000 units), the torsional curvature converges to a constant value for CT and
SV beam as �1(L) =

T
ℭ3311+ℭ3711

= 2.306 (note that ℭ3711 < 0), whereas, the curvature for SR and CF beam can

be obtained as �1(L) =
T

ℭ3311
= 0.456.
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(a) Curvature �1 (b) Warping constant p
Figure 15: Numerical example 2: Torsional curvature and warping amplitude.

Figure 16: Numerical example 2: Warping amplitude and torsional curvature for CT beam.

Secondly, for the given loading, we anticipate a constant torsion field (as in SR beam), but the torsional
curvature transitions from zero to constant value in SV and CT beam. Similar is the case with the warping
amplitude. We also know that for uniform torsion, the warping amplitude equals the torsional curvature, as
observed in Fig. 16. The fixed boundary on the left end implies p(0) = 0. Seemingly, the warping amplitude
guides the value of torsional curvature leading to an anomaly in the value of curvature near the boundary.
Thirdly, we observe oscillations in the torsional curvature and warping amplitude in plot 15. We suspect that the
oscillation in the warping amplitude is because of the dependence of bi-shear on )2�1p. Since the quantity )

2
�1
p is

highly oscillatory at Gauss points it leads to oscillations in the warping amplitude. As noted before, in the case
of uniform torsion, the torsional curvature is guided by the warping amplitude. Therefore, we observe the same
oscillations in �1(�1).

8.4 Numerical example 3: 3D frame subjected to concentrated conservative loads at
multiple nodes
We consider a structure with the geometry depicted in Fig. 17 subjected to two different cases of loading

and cross-section. The local element frames are defined by {ei}. The only global to local transformation that we
make here is for the material matrix C. We consider 150 load steps and fourth-order Lagrangian shape-function
for this example.
8.4.1 Case 1

For case 1, we consider a moderately slender structure with the cross-sectional dimension as b = 0.5
units and d = 5b units. We subject the structure to 3 times the load showed in figure 17. Figure 18 illustrates
the deformed shape for various load-steps using CT, SV, SR, and CF beam models. As is expected, SR and
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Figure 17: Numerical example 3: Geometry and load pattern.

CF formulation yields a very similar deformation field. Figure 18 and 19 shows the error in the mid-curve

Figure 18: Numerical example 3, case 1: Deformed configuration.

position vector and rotation triads predicted by SR and SV beams relative to CT beam respectively. CT beam
prediction is closer to SV beam as compared to SR beam. The figure 20 and 21 compares the curvature and
warping amplitude fields interpolated linearly from their values at the Gauss points obtained by CT, SV, and
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Figure 19: Numerical example 3, case 1: Error in the Simo-Reissener beam relative to the Chadha-Todd beam.

Figure 20: Numerical example 3, case 1: Error in the Simo Vu-Quoc beam relative to the Chadha-Todd beam.

SR beam models for various load steps. The yellow plane represents the positive plot. We note that the strain
fields are in global coordinate system, for example, in local element coordinate system, �1 represents bending
curvature about e2 for elements 1, 2, 3, and 4, whereas it represents torsional curvature for elements 5 and 6.
Similarly, the torsional curvature for elements 1 and 2 is given by �3, for elements 3 and 4 by �2 (the local and



35

Figure 21: Numerical example 3, case 1: The component of material curvatures �1, and �2 in global coordinates.

Figure 22: Numerical example 3, case 1: The component of material curvature �3 in global coordinates, and
warping amplitude p.

global system aligns for elements 4 and 5). A clear resemblance in the warping amplitude p can be observed
with �3 for elements 1 and 2; with �2 for elements 3 and 4; and with �1 for elements 5 and 6.
8.4.2 Case 2

For case 2, we consider a more slender structure with the cross-sectional dimension as b = 0.2 units and
d = 8b units. We subject the structure to 2 times the load showed in figure 17. Figure 23 illustrates the deformed
shape for various load-steps using CT, SV, SR, and CF beam models. As is expected, SR and CF formulation
yields a very close displacement field. The difference in the displacement fields obtained by various beam
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Figure 23: Numerical example 3, case 2: Deformed configuration.

models are very prominent in this example because the slenderness of the structure brings out the affect of fully
coupled Poisson’s and warping effect in the displacement and strain fields. We report the deformed position
vector ' (in consistent units) at the nodes A and B marked in Fig. 17 for both Case 1 and Case 2.

Node A Node B
'1 '2 '3 '1 '2 '3

Case 1

CT 14.150 -5.483 10.460 7.705 11.190 8.463
SV 14.380 -5.484 9.893 10.410 9.330 8.397
SR 13.930 -4.768 11.660 14.210 7.144 12.750
CF 13.960 -4.761 11.650 14.090 7.247 12.640

Case 2

CT 15.780 4.388 4.792 6.364 11.010 9.937
SV 15.770 5.353 3.738 6.702 10.790 9.738
SR 14.210 7.144 12.750 5.773 11.060 10.720
CF 14.090 7.247 12.640 5.766 11.040 10.670

Table 2: Numerical example 3: Position vector ' = 'iEi for different beam models at node A and B

9 Summary and conclusion
In this paper, we have detailed the variational formulation (considering dynamic case) and numerical

implementation (restricting to static case) of geometrically-exact Cosserat beams with deforming cross-section.
In this regard, the current investigation is a sequel to our previous work on generalizing the kinematics of beam to
encompass major deformation effects of beam in the setting of single-manifold characterized geometrically-exact
Cosserat beams.

On a broader level, this paper can be divided into five parts. In the first part, we briefly lay down the
foundation of kinematics used in this study. Since configuration of the system at hand is a product space
ℝ3 × SO(3) ×ℝ, we describe the important concepts related to finite rotation, curvature, material, and spatial
quantities. Finally, we define the tangent space and tangent bundle associated with the deformed configuration.



37

In order to arrive at virtual work principle, we evaluate the variation of necessary quantities. The attempt
to capture fully coupled Poisson’s and warping effect (including bending induced non-uniform shear) results
in the dependence of deformation map on derivatives of curvature fields (up to second order). This makes the
calculation of variations rather demanding. The second part of this paper is dedicated towards calculation of
variations of kinematic quantities required to obtain the weak form.

The third domain of this work deals with deriving the weak equilibrium equation in a form desirable to
computationally solve the problem. This beam model has higher regularity requirements as compared to the
conventional Simo-Reissner beam. We expected to obtain exactly similar balance of linear momentum, angular
momentum, and bi-moment as given in Simo and Vu-Quoc [67]. Despite using an advanced kinematic model,
the strong form, when expressed using the first PK stress tensor, does not change.

The last part of this paper deals with developing finite element model considering small strain linear
constitutive model for the static case. For the considered constitutive model, the material stiffness matrix
is symmetric, whereas, in general, the geometric stiffness is not symmetric. Finally, numerical simulations
comparing various beam models are presented.
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10 Appendix
10.1 Expressions of L andM-terms
10.1.1 Material form of L-terms associated with �1

L
�1
" = I3

L
�1
)�1"

= −�r1 ⊗ E1

L
�1
� = r̂

T

L
�1
)�1�
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�1
)2�1
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�1
)3�1
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10.1.2 Material form of L-terms associated with �3 andM-terms
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10.2 Expressions of matrices
10.2.1 Matrix B1

B1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

03 I3 03 )�1'̂ 03 03 03 03 03
03 −�̂ I3

(

)2�1'̂ − �̂.)�1'̂
)

)�1'̂ 03 03 03 03
03 03 03 03 I3 03 03 03 03
03 03 03 03 −�̂ I3 03 03 03
03 03 03 03

(

�̂.�̂ − )�1�̂
)

−2�̂ I3 03 03

03 03 03 03

(

)�1�̂.�̂ + 2�̂.)�1�̂
−)2�1�̂ − �̂.�̂.�̂

)

3
(

�̂.�̂ − )�1�̂
)

−3�̂ I3 03

03 03 03 03 03 03 03 03 I3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(122)

10.2.2 Matrix B2

BT
2 =

⎡

⎢

⎢

⎢

⎣

I3 )�1 .I3 )2�1 .I3 03 03 03 03 03 01 01 01
03 03 03 I3 )�1 .I3 )2�1 .I3 )3�1 .I3 )4�1 .I3 01 01 01
0T1 0T1 0T1 0T1 0T1 0T1 0T1 0T1 1 )�1 )2�1

⎤

⎥

⎥

⎥

⎦

(123)

Here, )n�1 .I3 = diagonal[)n�1 , )
n
�1
, )n�1]

10.2.3 Matrix B3

B3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

I3 03 03 03 03 03 01 01
03 I3 03 03 03 03 01 01
03 03 03 03 03 03 01 01
03 −)�1'̂ I3 03 03 03 01 01
03 03 03 I3 �̂ (�̂.�̂ + )�1�̂) 01 01
03 03 03 03 I3 2�̂ 01 01
03 03 03 03 03 I3 01 01
03 03 03 03 03 03 01 01
0T1 0T1 0T1 0T1 0T1 0T1 1 0
0T1 0T1 0T1 0T1 0T1 0T1 0 1
0T1 0T1 0T1 0T1 0T1 0T1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(124)

10.2.4 Matrix B4

B4 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

03 03 03 −̂ " 03 03 03 03 03
03 03 03 −̂ )�1"

03 03 03 03 03
03 03 03 −̂ � 03 03 03 03 03
03 03 03 −̂ )�1�

03 03 03 03 03
03 03 03 −̂ )2�1

� 03 03 03 03 03
03 03 03 −̂ )3�1

� 03 03 03 03 03
03 03 03 03 03 03 03 03 03

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(125)
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10.2.5 Matrix B5

B5 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

03 03 03 03 03 03 03 03 03
03 03 03 B524 B525 03 03 03 03
03 03 03 03 03 03 03 03 03
03 B542 B543 B544 B545 03 03 03 03
03 B552 03 B554 B555 B556 B557 03 03
03 03 03 B564 B565 B566 03 03 03
03 03 03 B574 B575 03 03 03 03
03 03 03 03 03 03 03 03 03
03 03 03 03 03 03 03 03 03

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(126)

where:

B524 = ̂ )�1"
.�̂; B525 = −̂ )�1"

; B542 = ̂ " +
[

�̂, ̂ )�1"

]

; B543 = ̂ )�1"
;

B544 = −)�1'̂.̂ )�1"
.�̂; B545 = )�1'̂.̂ )�1"

; B552 = ̂ )�1"
;

B554 =
(

̂ )�1�
+
[

�̂, ̂ )2�1
�

]

+ �̂.̂ )2�1
� + �̂.

[

�̂, ̂ )3�1
�

]

+
[

�̂, [�̂, ̂ )3�1
�]
]

+ �̂.�̂.̂ )3�1
�

+
[

)�1�̂, ̂ )3�1
�

]

+ 2)�1�̂.̂ )3�1
�

)

.�̂ +
(

̂ )2�1
� + �̂.̂ )3�1

� + 2
[

�̂, ̂ )3�1
�

] )

.)�1�̂

+ ̂ )3�1
� .)

2
�1
�̂;

B555 = −
(

̂ )�1�
+
[

�̂, ̂ )2�1
�

]

+ �̂.̂ )2�1
� + �̂.

[

�̂, ̂ )3�1
�

]

+
[

�̂, [�̂, ̂ )3�1
�]
]

+ �̂.�̂.̂ )3�1
�

+
[

)�1�̂, ̂ )3�1
�

]

+ 2)�1�̂.̂ )3�1
�

)

+
(

̂ )2�1
� + �̂.̂ )3�1

� + 2
[

�̂, ̂ )3�1
�

] )

.�̂

+ 2̂ )3�1
� .)�1�̂;

B556 = ̂ )3�1
�.�̂ −

(

̂ )2�1
� + �̂.̂ )3�1

� + 2
[

�̂, ̂ )3�1
�

] )

;

B557 = −̂ )3�1
�;

B564 = 3̂ )3�1
� .)�1�̂ +

(

2̂ )2�1
� + 3

[

�̂, ̂ )3�1
�

]

+ 3�̂.̂ )3�1
�

)

.�̂;

B565 = −
(

2̂ )2�1
� + 3

[

�̂, ̂ )3�1
�

]

+ 3�̂.̂ )3�1
�

)

+ 3̂ )3�1
� .�̂;

B566 = −3̂ )3�1
�; B574 = 3̂ )3�1

� .�̂; B575 = −3̂ )3�1
� .
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10.2.6 Matrix B7

B7 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

03 03 03 03 03 03 03 03 03
03 03 03 03 03 03 03 03 03
03 03 03 03 03 03 03 03 03
03 B742 03 03 03 03 03 03 03
03 03 03 B754 B755 B756 03 03 03
03 03 03 B764 B765 03 03 03 03
03 03 03 03 03 03 03 03 03
03 03 03 03 03 03 03 03 03
03 03 03 03 03 03 03 03 03

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (127)

where:

B742 = N̂";

B754 =
(

N̂ )�1�
+
[

�̂, N̂ )2�1
�

]

+ �̂.N̂ )2�1
�

)

.�̂ + N̂ )2�1
� .)�1�̂;

B755 = N̂ )2�1
� .�̂ −

(

N̂ )�1�
+
[

�̂, N̂ )2�1
�

]

+ �̂.N̂ )2�1
�

)

;

B756 = −N̂ )2�1
�;

B764 = 2N̂ )2�1
� .�̂;

B765 = −2N̂ )2�1
� .

10.2.7 Matrix BI

BT
I =

⎡

⎢

⎢

⎢

⎣

I3 )�1NI .I3 )2�1NI .I3 03 03 03 03 03 01 01 01
03 03 03 I3 )�1NI .I3 )2�1NI .I3 )3�1NI .I3 )4�1NI .I3 01 01 01
0T1 0T1 0T1 0T1 0T1 0T1 0T1 0T1 1 )�1NI )2�1NI

⎤

⎥

⎥

⎥

⎦

(128)
Here, )n�1NI .I3 = diagonal[)n�1NI , )n�1NI , )n�1NI ]
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10.3 Force vectors
10.3.1 Material form of reduced section forces

 " = ∫ℬ0

(L
�1
" +M

�1
" )

T .P 1 + (L
�2
" )

T .P 2 + (L
�3
" )

T .P 3 dℬ0

 )�1"
= ∫ℬ0

(L
�1
)�1"
)T .P 1 dℬ0

 � = ∫ℬ0

(L
�1
� +M

�1
� )

T .P 1 + (L
�2
� )

T .P 2 + (L
�3
� )

T .P 3 dℬ0

 )�1�
= ∫ℬ0

(L
�1
)�1�

+M
�1
)�1�
)T .P 1 + (L

�2
)�1�
)T .P 2 + (L

�3
)�1�
)T .P 3 dℬ0

 )2�1
� = ∫ℬ0

(L
�1
)2�1
� +M

�1
)2�1
�)
T .P 1 + (L

�2
)2�1
�)
T .P 2 + (L

�3
)2�1
�)
T .P 3 dℬ0

 )3�1
� = ∫ℬ0

(L
�1
)3�1
�)
T .P 1 dℬ0

 p = ∫ℬ0

M
�1
p .P 1 +L

�2
p .P 2 +L

�3
p .P 3 dℬ0

 )�1p
= ∫ℬ0

(L
�1
)�1p

+M
�1
)�1p
).P 1 +L

�2
)�1p
.P 2 +L

�3
)�1p
.P 3 dℬ0

 )2�1
p = ∫ℬ0

L
�1
)2�1
p.P 1 dℬ0.

(129)

10.3.2 End boundary forces, and reduced inertial forces

B' = ∫B0

(L�1" )
T .P 1 dℬ0

B� = ∫B0

(L�1� )
T .P 1 dℬ0

B" = ∫B0

(L�1)�1"
)T .P 1 dB0

B� = ∫B0

(L�1)�1�
)T .P 1 dB0

B)�1�
= ∫B0

(L�1
)2�1
�
)T .P 1 dB0

B)2�1
� = ∫B0

(L�1
)3�1
�
)T .P 1 dB0

Bp = ∫B0

L�1)�1p
.P 1 dB0

B)�1p = ∫B0

L�1
)2�1
p
.P 1 dB0

(130)

F ' = ∫Ω0
�0(L

�1
" )

T .)2tR dΩ0

F � = ∫Ω0
�0(L

�1
� )

T .)2tR dΩ0

F " = ∫Ω0
�0(L

�1
)�1"
)T .)2tR dΩ0

F � = ∫Ω0
�0(L

�1
)�1�
)T .)2tR dΩ0

F )�1�
= ∫Ω0

�0(L
�1
)2�1
�
)T .)2tR dΩ0

F )2�1
� = ∫Ω0

�0(L
�1
)3�1
�
)T .)2tR dΩ0

Fp = ∫Ω0
�0L

�1
)�1p
.)2tR dΩ0

F)�1p = ∫Ω0
�0L

�1
)2�1
p
.)2tR dΩ0

(131)
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10.3.3 Reduced external forces due to surface traction and body force

N st
' = ∫Γ0

(L�1" )
T .(P .N) dΓ0

N st
� = ∫Γ0

(L�1� )
T .(P .N) dΓ0

N st
" = ∫Γ0

(L�1)�1"
)T .(P .N) dΓ0

N st
� = ∫Γ0

(L�1)�1�
)T .(P .N) dΓ0

N st
)�1�

= ∫Γ0
(L�1

)2�1
�
)T .(P .N) dΓ0

N st
)2�1
� = ∫Γ0

(L�1
)3�1
�
)T .(P .N) dΓ0

N st
p = ∫Γ0

L�1)�1p
.(P .N) dΓ0

N st
)�1p

= ∫Γ0
L�1
)2�1
p
.(P .N) dΓ0

(132)

Nb
' = ∫ℬ0

�0(L
�1
" )

T .b dℬ0

Nb
� = ∫ℬ0

�0(L
�1
� )

T .b dℬ0

Nb
" = ∫ℬ0

�0(L
�1
)�1"
)T .b dℬ0

Nb
� = ∫ℬ0

�0(L
�1
)�1�
)T .b dℬ0

Nb
)�1�

= ∫ℬ0

�0(L
�1
)2�1
�
)T .b dℬ0

Nb
)2�1
� = ∫ℬ0

�0(L
�1
)3�1
�
)T .b dℬ0

Nb
p = ∫ℬ0

�0L
�1
)�1p
.b dℬ0

Nb
)�1p

= ∫ℬ0

�0L
�1
)2�1
p
.b dℬ0

(133)

10.3.4 Nodal internal force vector

f eintI = ∫

�e1b

�e1a

BT
IB

eT
1 

e
int d�1 =

[

f eintI1; f eintI2; f eintI3
]

. (134)

Here,

f eintI1 = ∫

�e1b

�e1a

(

)�1NI (
e
" + �̂.

e
)�1"
) + )2�1NI

e
)�1"

)

d�1;

f eintI2 =∫

�e1b

�e1a

(

NI

(

−)�1'̂.
e
" −

(

)2�1'̂ + )�1'̂.�̂
)

. e
)�1"

)

+ )�1NI .
(

 e
� − )�1'̂.

e
)�1"

+ �̂. e
)�1�

+
(

�̂.�̂ + )�1�̂
)

. e
)2�1
� +

(

�̂.)�1�̂ + 2)�1�̂.�̂ + )
2
�1
�̂ + �̂.�̂.�̂

)

. e
)3�1
�

)

+ )2�1NI
(

 e
)�1�

+ 2�̂. e
)2�1
� + 3

(

�̂.�̂ + )�1�̂
)

. e
)3�1
�

)

+ )3�1NI
(

 e
)2�1
� + 3�̂.

e
)3�1
�

)

+ )4�1NI .
e
)3�1
�

)

d�1.

f eintI3 = ∫

�e1b

�e1a

(

NI . e
p + )�1NI . e

)�1p
+ )2�1NI . e

)2�1
p

)

d�1.
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10.3.5 Nodal external force vector

f eextI (x) = ∫

�e1b

�e1a

BT
IB3

e
ext(x) d�1 =

[

f eextI1; f eextI2; f eextI3
]

= ∫

�e1b

�e1a

⎡

⎢

⎢

⎢

⎢

⎢

⎣

NI .N
e
'(x) + )�1NI .N

e
"(x)

⎛

⎜

⎜

⎝

NI .
(

N e
�(x) − )�1'̂.N

e
"(x)

)

+ )2�1NI .N
e
)2�1
�(x)

+)�1NI .(N
e
�(x) + �̂.N

e
)�1�
(x) + (�̂.�̂ + )�1�̂).N

e
)2�1
�(x)

⎞

⎟

⎟

⎠

NI .N e
p (x) + )�1NI .N e

)�1p
(x)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

d�1

(135)

10.4 Constitutive law
Define: �̃ = 2G + �.

C11 =
⎡

⎢

⎢

⎣

�̃ 0 0
0 G 0
0 0 G

⎤

⎥

⎥

⎦

;C12 =
⎡

⎢

⎢

⎣

0 � 0
G 0 0
0 0 0

⎤

⎥

⎥

⎦

;C13 =
⎡

⎢

⎢

⎣

0 0 �
0 0 0
G 0 0

⎤

⎥

⎥

⎦

;

C21 =
⎡

⎢

⎢

⎣

0 G 0
� 0 0
0 0 0

⎤

⎥

⎥

⎦

;C22 =
⎡

⎢

⎢

⎣

G 0 0
0 �̃ 0
0 0 G

⎤

⎥

⎥

⎦

;C23 =
⎡

⎢

⎢

⎣

0 0 0
0 0 �
0 G 0

⎤

⎥

⎥

⎦

;

C31 =
⎡

⎢

⎢

⎣

0 0 G
0 0 0
� 0 0

⎤

⎥

⎥

⎦

;C32 =
⎡

⎢

⎢

⎣

0 0 0
0 0 G
0 � 0

⎤

⎥

⎥

⎦

;C33 =
⎡

⎢

⎢

⎣

G 0 0
0 G 0
0 0 �̃

⎤

⎥

⎥

⎦

.

(136)

The reduced force vectors are related to the mid-curve strains as:

 " = C11." +C12.)�1" +C13.� +C14.)�1� +C15.)
2
�1
� +C16.)

3
�1
� + p.C17 + )�1p.C18 + )2�1p.C19;

 )�1"
= C21." +C22.)�1" +C23.� +C24.)�1� +C25.)

2
�1
� +C26.)

3
�1
� + p.C27 + )�1p.C28 + )2�1p.C29;

 � = C31." +C32.)�1" +C33.� +C34.)�1� +C35.)
2
�1
� +C36.)

3
�1
� + p.C37 + )�1p.C38 + )2�1p.C39;

 )�1�
= C41." +C42.)�1" +C43.� +C44.)�1� +C45.)

2
�1
� +C46.)

3
�1
� + p.C47 + )�1p.C48 + )2�1p.C49;

 )�1�
= C51." +C52.)�1" +C53.� +C54.)�1� +C55.)

2
�1
� +C56.)

3
�1
� + p.C57 + )�1p.C58 + )2�1p.C59;

 )3�1
� = C61." +C62.)�1" +C63.� +C64.)�1� +C65.)

2
�1
� +C66.)

3
�1
� + p.C67 + )�1p.C68 + )2�1p.C69;

 p = C71." +C72.)�1" +C73.� +C74.)�1� +C75.)
2
�1
� +C76.)

3
�1
� + p.ℭ77 + )�1p.ℭ78 + )2�1p.ℭ79;

 )�1p
= C81." +C82.)�1" +C83.� +C84.)�1� +C85.)

2
�1
� +C86.)

3
�1
� + p.ℭ87 + )�1p.ℭ88 + )2�1p.ℭ89;

 )2�1
p = C91." +C92.)�1" +C93.� +C94.)�1� +C95.)

2
�1
� +C96.)

3
�1
� + p.ℭ97 + )�1p.ℭ98 + )2�1p.ℭ99.

(137)
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