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Abstract

Gaussian graphical models are commonly used to characterize conditional independence

structures (i.e., networks) of psychological constructs. Recently attention has shifted from

estimating single networks to those from various sub-populations. The focus is primarily to detect

differences or demonstrate replicability. We introduce two novel Bayesian methods for comparing

networks that explicitly address these aims. The first is based on the posterior predictive

distribution, with a symmetric version of Kullback-Leibler divergence as the discrepancy measure,

that tests differences between two multivariate normal distributions. The second approach makes

use of Bayesian model comparison, with the Bayes factor, and allows for gaining evidence for

invariant network structures. This overcomes limitations of current approaches in the literature that

use classical hypothesis testing, where it is only possible to determine whether groups are

significantly different from each other. With simulation we show the posterior predictive method is

approximately calibrated under the null hypothesis (α = 0.05) and has more power to detect

differences than alternative approaches. We then examine the necessary sample sizes for detecting

invariant network structures with Bayesian hypothesis testing, in addition to how this is influenced

by the choice of prior distribution. The methods are applied to post-traumatic stress disorder

symptoms that were measured in four groups. We end by summarizing our major contribution, that

is proposing two novel methods for comparing GGMs, which extends beyond the social-

behavioral sciences. The methods have been implemented in the R package BGGM.

Keywords

Gaussian graphical model; posterior predictive distribution; Bayes factor; partial correlation

HHS Public Access
Author manuscript
Psychol Methods. Author manuscript; available in PMC 2021 November 07.

Published in final edited form as:
Psychol Methods. 2020 October ; 25(5): 653–672. doi:10.1037/met0000254.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/donaldRwilliams/BGGM
https://github.com/donaldRwilliams/BGGM


Introduction

The Gaussian graphical model (GGM) has become increasingly popular in the social-

behavioral sciences (Epskamp & Fried, 2016; Williams, Rhemtulla, Wysocki, & Rast, 2018).

Traditional statistical approaches, for example the structural equation model (SEM)

framework, conceptualize psychological constructs as arising from a common cause (i.e.,

latent variable; Cramer & Borsboom, 2015). Conversely, the primary motivation for GGMs

is that observed variables are a dynamic, interacting system of relations (Epskamp, Waldorp,

Mottus, & Borsboom, 2018). These effects are encoded in the inverse of the covariance

matrix, in particular the off-diagonal elements, and correspond to the conditional

(in)dependence structure of random variables (Dempster, 1972). When they are standardized

and the sign reversed, this results in partial correlations that are pairwise relationships in

which all other variables have been controlled for (Fisher, 1915; Yule, 1907). That is, when

there is evidence for a non-zero effect, this indicates a direct association between two

variables. The central objective, when estimating GGMs, is then to uncover the underlying

psychological network that typically includes effects determined to be different than zero

(but see: Williams & Mulder, 2019a). Note that “network” is a generic term, that can apply

to a variety of models (i.e., friendship; Marathe, Pan, & Apolloni, 2013), but here we are

referring specifically to partial correlation networks. For the remainder of this work GGM

and network are used interchangeably.

Not only are network models relatively new in the social-behavioral sciences, but there are

few extensions that go beyond identifying the conditional (in)dependence structure. For

example, only recently was an approach for confirmatory (Bayesian) hypothesis testing

introduced in Williams and Mulder (2019a). While the improvement or development of

novel estimation methods (e.g., penalized likelihood) is still an active area of research in the

statistical literature (Fan, Liao, & Liu, 2016; Kuismin & Sillanpää, 2017), the focus is

typically on increasing accuracy of point estimates or detection of non-zero partial

correlations. This stands in contrast to SEM, where extensions are often introduced

specifically for psychological applications (Preacher & Merkle, 2012). For example, a

question of high interest is whether the same construct is being measured in different

groups– that is, whether it is measurement invariant (Van De Schoot, Schmidt, De

Beuckelaer, Lek, & Zondervan-Zwijnenburg, 2015). This has resulted in a large body of

literature (Muthén & Asparouhov, 2018), where establishing invariance is required for group

comparisons (e.g., of factor scores; van de Schoot, Lugtig, & Hox, 2012), or testing the null

hypothesis is the primary research question of interest (Verhagen & Fox, 2013; Verhagen,

Levy, Millsap, & Fox, 2016).

Recently, the focus has shifted from estimating a network from one group, to comparing

those estimated from different sub-populations (Fried et al., 2018). For example, group

differences have been examined in depression networks (e.g., good vs. poor depression

prognosis; Beard et al., 2016), as well as gender differences in hyper-sexuality networks

(Werner, Štulhofer, Waldorp, & Jurin, 2018). These comparisons have sometimes been

speculative, for example based visual inspection, or with a re-sampling approach that was

recently introduced to psychology (van Borkulo et al., 2016). On the other hand, there has
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been an ongoing debate regarding the replicability of psychological networks (Forbes,

Wright, Markon, & Krueger, 2019; Jones, Williams, & McNally, 2019).

That is, group comparisons are not of primary interest but the focus is to replicate a given

conditional (in)dependence structure in different groups. To our knowledge, all current

methods for comparing GGMs rely on null hypothesis significance testing. This approach

can only reject the null hypothesis of (typically) no effect but cannot provide evidence for

the null hypothesis that networks are the same. Similar critiques also apply to classical

measurement invariance testing procedures, for example as noted in Verhagen and Fox

(2013) and Verhagen et al. (2016), which partially motivates this work. In order to address

these issues, we introduce novel Bayesian methods that allow for not only assessing group

differences but also invariances. The latter can test the entire network or specific aspects

(e.g., individual partial correlations).

This work is further motivated by additional limitations of existing methods. As noted, there

is a re-sampling based approach, the network comparison test (NCT), that uses ℓ1-

regularization to estimate the networks (van Borkulo et al., 2016). It is important to note that

this approach does not require the use of ℓ1-regularization and it could be used with non-

regularized approaches for estimating networks (Williams, Rhemtulla, Wysocki, & Rast,

2019). This method is not only computationally intensive, due to re-sampling and data

driven model selection, but information is also lost with the chosen test statistics. For

example, the test for invariant network structure is based on the maximum difference

between two partial correlations in reference to a permutation distribution. As such, power to

detect a difference depends completely on the magnitude of a single effect. We are aware of

one additional classical (frequentist) approach for comparing GGMs that relies on de-

sparisifying ℓ1-regularized point estimates (Belilovsky, Varoquaux, & Blaschko, 2015). In

that approach, confidence intervals are constructed for testing differences between two

partial correlations. This suffers from the same limitations as the NCT. In order to address

these shortcomings, we propose a “global” approach that allows for testing the hypothesis of

interest, that is, whether two networks were generated from different multivariate normal

distributions–this is a critical assumption that underlies conditional independence coinciding

with a partial correlation (Baba, Shibata, & Sibuya, 2004).

Together, the Bayesian methods introduced in this work were developed to overcome these

limitations. First we introduce a “global” test that is based on a posterior predictive check.

This test answers the question whether there is some form of misfit of a model with equal

networks across groups given the observed data. This is achieved by comparing the

Kullback-Leibler divergence, which can be seen as a “distance” measure for distributions,

between the expected networks of different groups, conditional on the observed data, with

the Kullback-Leibler divergence from a model that assumes group equality. This considers

all aspect of the network model, and essentially results in a predictive likelihood ratio that

accounts for posterior uncertainty. Second we introduce a Bayesian model selection criterion

that can answer which hypothesis out of a set of competing hypotheses best describes the

observed data. This can be used to determine, for example whether specific aspects of the

networks are the same. We introduce “local” approaches for individual partial correlations.
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Here the differences are tested with the Bayes factor, which can provide relative evidence for

the null hypothesis–that is, whether a specific partial correlation is the same across groups.

This work is organized as follows. We first introduce notation and nomenclature specific to

GGMs. We then describe the proposed “global” method based on posterior predictive loss

functions, after which we examine numerical performance and then apply the methods to

post-traumatic stress disorder symptoms. Next, Bayesian model selection is introduced for

the “local” method, based on the recently developed matrix-F prior distribution. In a series

of numerical experiments we examine sample size requirements for determining whether

two GGMs are the same (in contrast to the predictive approach), in addition to detecting

differences between two partial correlations with the Bayes factor. The extensive application

integrates the predictive method and Bayesian model selection, for example by first testing

whether groups are different and then asking specific questions about (possible) invariances

in the estimated networks. We end by discussing limitation as well as future directions of the

proposed methods.

The Gaussian Graphical Model

The Gaussian graphical model captures conditional relationships Lauritzen (1996) that are

typically visualized to infer the underlying conditional (in)dependence structure (i.e., the

“network”; Højsgaard, Edwards, & Lauritzen, 2012). The undirected graph is G = (V , E), and

includes a veex set V = 1, …, p  as well as an edge set E ⊂ V × V. Let y = y1, …, yp
⊤

 be a

random vector indexed by the graphs vertices, of dimension p, that is assumed to follow a

multivariate normal distribution Np(μ, Σ) and with a p × p positive definite covariance matrix

Σ. Without loss of information, the data is considered centered with mean vector 0. Denote

the precision matrix Θ = Σ−1. The graph is obtained from the off-diagonal elements

θi j ∈ Θi j. This is used to construct an adjacency matrix A that follows

Ai j =
1, if θi j ≠ 0, 1 ≤ i < j ≤ p

0, otherwise,
(1)

with 1 ≤ i < j ≤ p denoting the elements in the upper-triangular of the p × p matrix. Further,

(i, j) ∈ E when the variables i and j are not conditionally independent and set to zero

otherwise. Note that the edges are partial correlations (ρ) determined to be non-zero. These

are computed directly from the precision matrix as

ρi j =
−θi j
θiiθ j j

, 1 ≤ i < j ≤ p . (2)

These partial correlations are explicitly used for the Bayes factor based approaches, whereas

the precision matrix is targeted for the posterior predictive method.
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Posterior Predictive Distribution

The posterior predictive distribution plays a central role in Bayesian model checking (Gabry,

Simpson, Vehtari, Betancourt, & Gelman, 2019; Levy, Mislevy, & Sinharay, 2009; Sinharay

& Stern, 2003). The idea is that generated data from the fitted model should look like the

observed data Y, which contains the response vector of person p on the p-th row for

example. Hence, with n observation from each person, this results in a n × p data matrix Y.

In the case of a well fitting model, the replicated data, herein referred to as Yrep, can be

viewed as data that could have been observed (but were not) or as predictive data of future

observations (Rubin, 1984). We adopt the latter perspective. This is summarized in Gelman,

Meng, and Stern (1996):

“as the data that would appear if the experiment that produced Y today were replicated

tomorrow with the same model, ℳ, [and] the same (unknown) value of θ that produced Y

(pp. 737).”

For our purposes, we extend “experiment” to the more general “data generating process.” In

the context of comparing GGMs, say, between two groups, the approach is to first estimate

the GGM (i.e., Θ) conditional on all of the groups being equal. Then the posterior predictive

distribution can be sampled from Θ. Yrep then represents the data that we expect to observe

in the future, assuming that the fitted model of group equality was the underlying data

generating process. Of course, when comparing two groups, the same model is necessarily

fit to both groups which allows for comparisons to the realized predictive distribution under

group equality. Given that the predictive distribution can be obtained from any number of

groups, this approach seamlessly expands to situations where we wish to compare more than

two groups. This is also a novel aspect of this work, in that the permutation based method is

specifically for two groups (van Borkulo et al., 2016).

The posterior predictive distribution, for the purpose of model checking, is not without

limitations (Robins, van der Vaart, & Ventura, 2000). For example, it has been criticized for

double use of data (Dahl, Gasemyr, & Natvig, 2007) and that it is overly conservative (i.e.,

low “power” to detect misfit; Meng, 1994). The latter is attributed to the fact that posterior

predictive p-values are not uniform under the null-hypothesis (Gelman, 2013; van

Kollenburg, Mulder, & Vermunt, 2017). Although there have been proposals to achieve

calibration (Bayarri & Berger, 2000; Hjort, Dahl, & Steinbakk, 2006; van Kollenburg et al.,

2017), our approach does not aim to be calibrated in the frequentist sense. Of course,

posterior predictive model checking does share similarities with classical methods (Gelman,

2013)–e.g., tail area probabilities are computed from repeatedly sampling an assumed model

and that it is not possible to gain evidence for the null hypothesis. This also applies to this

method, in that only group differences can be assessed (but see Section Bayesian Hypothesis

Testing). Futhermore, we are not model checking in the typical sense, but explicitly testing

whether two or more precision matrices were generated from different multivariate normal

distributions.
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Method Description

We first introduce the customary notation, for the univariate case, which serves as the

foundation for our method. The observed data is denoted by Y, a fitted model is denoted by

ℳ, and the parameters to be estimated is θ, with prior distribution p(θ). The posterior

predictive distribution is then

p Yrep ∣ ℳ, y = ∫ p Yrep ∣ ℳ, θ p(θ ∣ ℳ, Y)dθ . (3)

Note that Yrep can be compared visually to y, but for computing posterior predictive p-

values, herein referred to as p-values, a test-statistic T is needed which is a function of an

observed or replicated data set. This allows for comparing T(Yrep) to the observed T(Y)–i.e.,

p‐value  = p T Yrep  > T(y) ∣ ℳ, Y . (4)

This is the probability that T(Yrep) is greater than T(Y), conditional on ℳ and Y. This is

computed as the proportion of T(Yrep) that exceed T(Y). Note that the replicated data set are

obtained from drawing samples from the posterior distribution of Θ. This is further clarified

below.

We now extend this notation to multivariate data from possibly multiple groups. We first

assume that each group g ∈ 1, …, G  is a realization from the same multivariate normal

distribution–i.e., the null model

ℳ0:Θ1 = … = ΘG . (5)

The posterior for the common precision matrix Θ = Θ1 = … = ΘG , given the observed data,

can be written as p Θ ∣ Y1
obs, …, YG

obs, ℳ0 . Under ℳ0, a posterior draw (s) for Θ(s) is in fact a

posterior draw for the precision matrix in all groups, i.e., Θ(s) = Θ1
(s) = … = ΘG

(s). To simplify

computing the posterior distribution we use the improper Jeffreys prior. This allows for

sampling directly from a Wishart distribution–i.e.,

Θ = Θ1 = … = ΘG ∼ W n − 1, S−1 , (6)

where n is the sample size (of all groups combined) and S denotes the scatter matrix Y′ Y
(for all groups as well; Gelman et al., 2014). Next we generate a replicated data set given

these precision matrices, i.e.,

Θ1
(s) Y1

rep(s)

⋮

ΘG
(s) YG

rep(s)
.

(7)
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Note that, in the case of unequal group sizes, these replicated data sets are generated with

the observed group sizes. Now the posterior expectation of a precision matrix for group g

given Yg
rep can be approximated as

E Θg
rep ∣ Yg

rep = ng − 1 Yg
rep′Yg

rep −1 . (8)

This approximation is the inverse of unbiased estimate of the sample based covariance

matrix, which will coincide (approximately) with the posterior expectation in the case of an

improper prior distribution (6).

In review it was pointed out that focusing on Θ is not ideal, because it includes the diagonal

elements that are not important for network inference. A test using (8) could result in

detecting a difference that is attributable to the variance. However, two groups could have

the same underlying partial correlation network. To remove the effects of Θii, we follow the

approach described in Padmanabhan, White, Zhou, and O’Connell (2016) and use the

normalized precision matrix. This is accomplished with the following parameterization

Θ = DRD, (9)

where D is a diagonal matrix with Dii = Θii and R has ri j = Θi j/ ΘiiΘ j j on the off-diagonals

and 1 on the diagonal. This is similar to the parameterization described in Epskamp,

Rhemtulla, and Borsboom (2017). In our formulation, this effectively separates out the

diagonal elements of Θ. Note R is not the partial correlation–that would require reversing

the direction (±) of rij. However, we found that reversing the direction can result in ill-

conditioned matrices that does not allow for computing the chosen test statistic. Hence we

use of the normalized precision matrix R for the predictive check.

Network Predictive Check.—This approach is meant to parallel the network structure

invariance test in van Borkulo et al. (2016). Of note, while the name implies a test for the

null hypothesis (i.e., no-difference), it only can determine differences. Because this also

applies to our approach, we avoid the word invariance until later on (Section Bayesian

Hypothesis Testing). In van Borkulo et al. (2016) the maximum difference between two

edges, in reference to a permutation distribution for two groups, was taken to indicate

whether the network structures differed. Our aim is the directly assess whether two or more

GGMs, while accounting for posterior uncertainty, were generated from different

multivariate normal distributions. For the test-statistic we thus use a version of Kullback-

Leibler divergence (KLD), which is also known as entropy loss (Kuismin & Sillanpää,

2017), is proportional (i.e., by 1
2 ) to Stein’s loss for covariance matrices (e.g., equation (72)

in: James & Stein, 1961), and is the log likelihood ratio between two distributions (Eguchi &

Copas, 2006). Note that KLD has several motivations, for example maximizing the

likelihood is equivalent to minimizing KLD between two distributions (Grewal, 2011).

Further, in Bayesian contexts, it has been used for selecting models (Goutis, 1998; Piironen

& Vehtari, 2017) and prior distributions (Bernardo, 2005), variational inference (Blei,

Kucukelbir, & McAuliffe, 2017), and is known to be minimized by the Bayes factor (when
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used for model selection) in so-called ℳ-open settings (Bernardo & Smith, 2001; Yao,

Vehtari, Simpson, & Gelman, 2017).

These uses have one common theme–i.e., assessing the distance between distributions.

However, KLD is not a true distance measure because it is asymmetric. As such, we use

Jensen-Shannon divergence (JSD) which symmetrizes KLD (Nielsen, 2010). For two

randomly selected groups, the test-statistic is then

T Y1, …, YG = JSD E Rg1
∣ Yg1

, E Rg2
∣ Yg2

, (10)

which is the average KLD in both directions-i.e.,

JSD = 1
2 KLD E Rg1

∣ Yg1
, E Rg2

∣ Yg2

+KLD E Rg2
∣ Yg2

, E Rg1
∣ Yg1

.
(11)

For a multivariate normal distribution KLD is defined as

KLD Rg1 ∥ Rg2 = 1
2 tr Rg1

−1Rg2 − log Rg1
−1Rg2 − p , (12)

where p is the number of variables. Note that inverting Θg1 results in the covariance matrix

Σg1 and E[.] has been removed to simplify (12). Repeating this process for each posterior

sample produces the predictive distribution of JSD. To be clear, this distribution can be

thought of as the amount of divergence (or relative entropy) we would expect to see

assuming that the null model of group equality were true. This serves as the reference

distribution, from which the predictive p-value is computed as

p = 1
S ∑

s = 1

S
I T Y1

obs, …, YG
obs < T Y1

rep(s)
, …, YG

rep(s)
, (13)

where I(·) is the indicator function. A decision rule is required for determining whether the

two Gaussian graphical models are “significantly” different from each other (i.e., p-value ≤

α). This leaves open the choice of α which can either be determined based on subjective

grounds or with guidance from the present numerical experiments (or a combination of

both).

To summarize, this method follows these steps:

1. Estimate p Θ ∣ Y1
obs, …, YG

obs, M0  with (6).

2. For each posterior sample (s)

a. Θg
(s) Yg

rep(s)
, for g ∈ 1, …, G .
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b.
Compute Rg

rep(s)

• Rg
rep(s)

= dg
rep(s)

Θg
rep(s)

dg
rep(s)

, where dg
rep(s)

 is a diagonal

matrix with dii
rep(s)

= 1 Θii
rep(s)

.

• Θg
rep(s)

= (n − 1)S−1, where S = Yg
rep(s)′

Yg
rep(s)

c. Compute the predictive “distance”:

JSD E Rg1
rep(s)

∣ Yg1
rep(s)

, E Rg2
rep(s)

∣ Yg2
rep(s)

.

3. Compute the observed “distance”:

JSD E Rg1
obs ∣ Yg1

obs , E Rg2
obs ∣ Yg2

obs .

4. Compute the posterior predictive p-value with (4).

Note that g1 and g2 were used to keep the notation manageable. This procedure can apply to

any number of groups.

At this point, it is worth emphasizing that the predictive method is not restricted to

(symmetric) KL-divergence–the method is general. For example, the package NCT uses the

maximum partial correlation difference between two networks or the “weighted absolute

sum of all edges in the network” (p.8, van Borkulo et al., 2016). These could also used as

test statistics in the predictive method, although we think it is important to consider other

possibilities for comparing networks. This is discussed further in Future Directions.

Nodewise Predictive Check.—The network approach is “global”, in that all aspects of

the normalized precision matrices are being tested. It is also important to consider more

targeted comparisons, particularly in the event ℳ0 is rejected. We thus extend the method to

consider predictive KL-divergence of each node in the network. This is a result of the direct

correspondence between the elements of Θ and regression coefficients (Kwan, 2014;

Stephens, 1998)–i.e.,

θi j = −
βi j

σ j
2 and θ j j = 1

σ j
2 , i ≠ j, (14)

Here j denotes the respective column of the p × p matrix and σ j
2 is the residual variance from

the jth regression model, where the jth column is predicted by the remaining (p − 1)

variables. Further details can be found in Williams (2018). This relationship allows for

directly building upon the previously described method by estimating the respective
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regression coefficients from Θg
(s) Yg

rep(s)
 for g ∈ 1, …, G . Then KL-divergence is

computed based on the predictive distribution as

yg, j
rep(s)

= Yg, − j
rep(s)

βg, j
(s) , (15)

where “−j” denotes removal of that specific column, as it is the outcome variable, βg, j
rep(s)

 is a

(p − 1) vector of estimated regression coefficients (with least squares), and yg, j
rep(s)

 is the

predicted values for the jth variable. Since the data was scaled in advance, this simplifies the

calculation of KL-divergence by only having to consider the variance of yg, j
rep(s)

 –i.e.,

KLD yg1, j
rep(s)

∥ yg2, j
rep(s)

= log
σg2, j

rep(s)

σg1, j
rep(s) +

σg1, j
2 rep(s)

2σg2, j
2 rep(s) − 0.5. (16)

Here σg, j
2 rep(s)

 is the variance of the predictive distribution for each replicated data set and j

denotes the node under consideration. This can similarly be symmetrized, by taking the

average of both directions, which results in Jensen-Shannon divergence. Furthermore, the p-

value is computed as in (4) but with respect to each variable in the network. This allows for

testing whether each node, for any number of groups, is different from one another

according to the predictive distribution and chosen α level. Note that the following

experiments only look at the network approach (Section Network Predictive Check), but the

null distribution, assuming group equality, was similar for both approaches.

Numerical Performance

Null Distribution.—Posterior predictive p-values, defined in (4), are not necessarily

calibrated in the frequentist sense. That is, under the null hypothesis classical p-values ∈ [0,

1] are equally likely which results in a uniform distribution. This is not necessarily the case

for the present p-values. We thus examined the null-distribution for Jensen-Shannon

divergence (10), where the null hypothesis of group equality was true. In particular, we set G
= 2 and n ∈ {250, 500, and 1000}. We also examined unequal group sizes by reducing the

sample size of one group by 50 %–e.g., ng1 = 250 and ng2 = 125. All of the simulations used

correlations matrices from Fried et al. (2018), which included post-traumatic stress

symptoms from four groups. This decision was made because we wanted the population

values and level of sparsity (i.e., the proportion of zeroes) to be representative of a common

psychological application in the network literature. For this simulation in particular, we used

the largest sample size (N = 956 and p = 16). We first converted the correlation matrix to the

partial correlation matrix, set values less than 0.05 to zero (Epskamp, 2016; Williams et al.,

2018), then treated this as the true network structure for each group. Each condition was

repeated for 1,000 simulation trials.
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We first plotted representative predictive distributions (Figure 1; panel A). The

corresponding observed divergence is also included (the black dots), each of which was not

surprising such that the null hypothesis, i.e., ℳ0, would not be rejected (α = 0.05). Note that

this is an explicitly one-sided test in that we are only concerned with more divergence under

the fitted ℳ0 than the observed divergence. This visualization shows the effect of sample

size on the predictive distribution, in that the expected divergence, assuming group equality,

reduced with larger sample sizes. Note that this behavior is also typically observed for the

sampling distribution in classical significance tests such as in the classical t test.

Furthermore, as seen in Table 1, it appears that the error rate is close to the nominal level of

0.05. Of course, from a Bayesian perspective the goal is not necessarily to be calibrated in

the frequentist since, so long as it is still possible to reliably detect differences. Although not

discussed here, the error rates were similar when considering more than two groups.

Detecting Differences.—Here we examine power for detecting differences between two

GGMs. Because our method is different than the NCT, it was not entirely clear how best to

compare their performances. For example, while we could have implemented an approach

that tests the maximum difference based on the predictive distribution, this would not take

full advantage of KL-divergence that is the expected log likelihood ratio (Eguchi & Copas,

2006). We thus followed a similar approach as van Borkulo et al. (2016), in that we

manipulated the strongest edge, reduced some edges to zero, and also a combination of both.

First, the same correlation matrix (Section Null Distribution) was converted to the partial

correlation matrix, and then values less than 0.05 were set to zero. This served as the

baseline, and for the subtle manipulations, we either reduced the largest edge by 25 %, set

additional values to zero (i.e., also those less than 0.075), or a combination of both. These

network structures are provided in the Appendix (Figure A1). The total sample size was

fixed to 500, 1,000, and 2,000. For the unequal conditions the largest sample size was 60 %

of the total–e.g., ng1 = 1200 and ng2 = 800. We further manipulated which group, that is the

largest or smallest, had the altered network structure. We used the default settings in the

NCT package, and the p-values for both network “invariance” and global strength (which

sums the absolute errors between partial correlations matrices) were collected. The alpha

level was set to 0.05 and each condition was repeated for 100 simulation trials.

Both methods require repeated sampling. The NCT performs data-driven model selection for

each permutation sample, whereas our method first samples from the posterior and then

from the predictive distribution. We thus looked at the speed of each method per 1,000

iterations. The results are provide in the Appendix (Table A1). The predictive approach was

faster than the permutation based NCT. This highlights the computational efficiency of the

assumed prior distribution in (6). Note that the predictive approach did require more time

with larger sample sizes, whereas sample sizes did not seem to matter for the NCT. Still, that

the NCT took more than eight times longer for the largest sample size (n = 1000) indicates

computational feasibility is not an issue with the predictive method.

The simulation results are provided in Figure 1 (panel C). Because our method considers the

entire precision matrix, we compared it to both NCT approaches for all conditions (although

each is for a specific test statistic). The predictive method not only had competitive

Williams et al. Page 11

Psychol Methods. Author manuscript; available in PMC 2021 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



performance, but for almost all conditions, the power was higher than both NCT approaches.

In particular, with different conditional independence structures (Figure 1; “Cut” and

“Both”), the predictive method had much higher power to detect the differences. Note that

cutting of edges effectively created differences of 0.075 or less, which would take a

considerable sample size to detect for the maximum difference NCT. This is because it

focuses on only one difference, whereas our use of JSD can be understood as a multivariate

log likelihood ratio that also incorporates posterior uncertainty. Note that the maximum

difference NCT did have the most power when only the largest edge in the network was

reduced.. The power was also low, for all methods, when the maximum edge was reduced

but the network (e.g., the conditional independence structure) otherwise stayed the same.

However, with subtle differences in both the conditional independence structure and a small

difference in the strongest edge, the predictive method excelled by capturing all aspects of

the normalized precision matrix. Further, as shown in the panel “Largest Group Changes”,

the predictive approach was less sensitive to unequal sample sizes. It is important to

emphasize that these changes to the networks were small, as seen in Figure A1, which

indicates the predictive method has high power while also maintaining the nominal α level

(Table 1).

Bayesian Hypothesis Testing

Although the predictive method did well at detecting differences between networks

structures, it cannot provide evidence for a null model that assumes that certain edges have

equal strengths across groups. Further, the predictive approach is essentially an omnibus test;

it does not provide specific information about the differences between groups. We thus

compliment the “global” predictive method with a “local” Bayes factor test, which allows

for focusing on particular aspects of the network. The key difference is that the following

does not attempt to reject the null model (i.e., ℳ0 that groups are the same), but compares

models to assess the relative evidence in the data between competing hypotheses. For

example we could quantify the evidence in favor of H0: the groups are (exactly) the same

against, H1: the groups are not (exactly) the same, or we could test differences between

specific partial correlations. In contrast to the predictive approach, that used an improper

Jeffreys prior (6), the Bayes factor test requires proper prior distributions for all parameters

that are tested (e.g., Jeffreys, 1961).

A Matrix-F Distributed Conjugate Prior

The matrix-F was recently proposed as a flexible alternative to the inverse Wishart and

Wishart prior for covariance and precision matrices, respectively (Mulder & Raúl Pericchi,

2018). To our knowledge this prior has only been employed once in the context of GGMs

(Williams & Mulder, 2019a). We specify an encompassing matrix-F prior distribution for the

precision matrix,

Θ ∼ F(ν, δ, B), (17)

where ν > p − 1 and δ > 0 are the first and second degrees of freedom, which control the

behavior near the origin and in the tails, respectively, and B is a positive definite scale
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matrix. For completeness the prior density of the matrix-F prior is given in Appendix A and

further details about the encompassing prior approach for hypothesis testing can be found in

Klugkist, Kato, and Hoijtink (2005). The matrix-F prior can be written as a scale mixture of

Wishart distributions with an inverse Wishart mixture distribution, i.e.,

Θ ∣ Ψ ∼ w(ν, Ψ)
Ψ ∼ IW(δ + p − 1, B) . (18)

Because the Wishart prior is conjugate, it follows that the matrix-F prior is conditionally

conjugate. That is, the conditional posterior of Θ given Ψ has a Wishart distribution and the

conditional posterior of Ψ given Θ has an inverse Wishart distribution (Appendix A). This

makes the matrix-F prior computationally feasible for GGMs, in that the posterior can be

obtained with a Gibbs sampler (Appendix A).

The hypotheses of interest are not directly formulated on Θ, but on the partial correlations ρ
given in (2). To understand the implied marginal prior for ρij, consider the fact that the

matrix-F prior can be written as a scale mixture of inverse Wishart distributions with a

Wishart mixture distribution, i.e.,

Θ ∣ Φ ∼ IW(δ + p − 1, Φ)
Φ ∼ W(ν, B) . (19)

Furthermore, due to Barnard, McCulloch, and Meng (2000) it is known that a covariance

matrix having an inverse Wishart prior distribution with an identity scale matrix, i.e.,

IW ν, Ip , results in marginal priors for the bivariate correlations having beta ν
2 , ν

2
distributions in the interval (−1, 1). Consequently, if a precision matrix has an inverse

Wishart prior distribution, i.e., Θ ∼ IW δ + p − 1, Ip , the partial correlations then follow a

beta δ
2 , δ

2  distribution in the interval (−1, 1), which is invariant to the dimension of the

network p. We therefore set B = ϵIp and ν = ϵ−1, for a small value for ϵ (e.g., 0.001), so that

Φ ≈ Ip and Θ is approximately distributed as IW δ + p − 1, Ip .

In sum, the prior for the precision matrix and the implied marginal prior for the partial

correlations are specified as

Θ ∼ F ϵ−1, δ, ϵIp

ρi j ∼ beta δ
2, δ

2 on ( − 1, 1),
(20)

for i ≠ j = 1, …, p, respectively. The prior hyperparameter δ can be chosen such that the prior

standard deviation corresponds with the expected deviation from zero in the case of a partial

correlation would be unequal to zero. Because the prior standard equals sρ = 1/ δ + 1, which

is the standard deviation of a beta distribution, one can set the hyperparameter equal to
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δ = sρ
2 −1 − 1 by plugging in the anticipated deviation from zero of the partial correlations

for sρ.

Pairwise Hypothesis Testing

In this section we present a Bayes factor for testing whether partial correlations between

variable i and j are equal across groups,

H0, i j: ρi j, 1 = … = ρi j, G vs. H1, i j: “not H0, i j ” .

Under the alternative hypothesis the partial correlations of at least two groups are unequal.

The constraints under the null hypothesis can compactly be formulated as Ri jρ = 0, where

Rij is a matrix with coefficients capturing the equality constraints. The hypothesis test can

then be written as H0, i j:Ri jρ = 0 versus H1, i j:Ri jρ ≠ 0. For example, in the simple case of a

network with three variables and two groups, the hypothesis can be written as

H0, i j: ρ12, 1 = ρ12, 2, the parameter vector as (ρ12,1, ρ13,1, ρ23,1, ρ12,2, ρ13,2, ρ23,2), and the

coefficients matrix as R12 = 100 − 100 .

When testing a precise hypothesis with certain equality constraints on the parameters of

interest, it is well-known that the prior for the free parameters under the alternative should

be carefully chosen based on the anticipated effects (Bartlett, 1957; Jeffreys, 1961; Lindley,

1957). If the prior is unrealistically vague, it places too much probability mass at unrealistic

values of the parameters, resulting in an overestimation of the evidence for the null when

observing moderately sized effects. On the other hand if the prior is too informative by

placing too much probability mass near the origin, it becomes difficult to distinguish

between the null and the alternative hypothesis when quantifying the relative evidence in the

data between the hypotheses. An example of this, for GGMs in particular, is provided in

Williams and Mulder (Table C.3; 2019a)

Due to the importance of the prior standard deviation under the alternative, the flexibility of

the matrix-F prior becomes particularly useful by choosing δ such that the prior reflects the

anticipated magnitude of the effects before observing the data. This can be done regardless

of the network size p. Figure 2 displays the implied prior for ρij,g (left panel) as well as the

implied prior for the difference of partial correlations between two groups ρij,g − ρij,g−1, for

δ = 2, 15, and 99, corresponding to prior standard deviations of .58, .25, and .10 for ρij,g,

respectively. Note that ρij,g − ρij,g−1 equals 0 under the above null hypothesis.

Now that the prior is specified, we can quantify the relative evidence between the hypotheses

via the Bayes factor using the Savage-Dickey density ratio (Dickey, 1971; Mulder, Hoijtink,

& Klugkist, 2010; Wetzels, Grasman, & Wagenmakers, 2010), which is defined as the ratio

of the posterior and prior density evaluated at the null value under an unconstrained model,

i.e.,
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B01, i j =
pu Ri jρ = 0 ∣ Y

pu Ri jρ = 0
, (21)

where pu in the numerator and denominator denote the unconstrained posterior and prior

density. The posterior and prior density in the numerator and denominator in (21) do not

have analytic expressions. In the simple case of G = 2 groups, we can get an accurate

estimate of the posterior and prior density of ρij,2 − ρij,1 at 0. This can be accomplished by

first obtaining posterior and prior draws for the partial correlations, subtracting those to get

the posterior and prior draws for the difference between partial correlations, and then finding

the posterior and prior density (of the difference) evaluated at zero. This can be computed

with the density or logspline functions in R (Deng & Wickham, 2011).

In the general case of more than two groups, the respective multivariate posterior and prior

densities cannot be estimated using those R-functions. In that case we get an accurate and

computationally feasible estimate of the posterior and prior density by following these steps:

1. Get S prior and posterior draws for ρ by sampling from the matrix-F prior and by

using the Gibbs sampler (Appendix A).

2. Apply a Fisher transformation to the drawn partial correlations, i.e.,

ηi j, g
(s) = F ρi j, g

(s) = 1
2log

1 + ρi j, g
(s)

1 − ρi j, g
(s) , for s = 1, …, S . (22)

3. Compute the Fisher transformed differences via ξ(s) = Ri jη
(s), for draws s = 1,...,

S. These transformed parameters are approximately normally distributed in the

prior and posterior as shown below. Note that in terms of these transformed

parameters, the hypothesis test can be written as H0, i j:ξ = 0 versus H1, i j:ξ ≠ 0.

4. Estimate the posterior mean vector μξ, N and covariance matrix Ψξ, N, and the

prior covariance matrix Ψξ, 0 from their respective posterior and prior samples.

Note that the prior mean vector equals 0.

5. Estimate the Bayes factor using

B01, i j ≈
N 0; μξ, N, Ψξ, N

N 0; 0, Ψξ, 0
(23)

where N(0; μ, Ψ) denotes a multivariate normal density with mean vector μ and

covariance matrix Ψ evaluated at 0.

The approximate normality of the posterior in Step 4 can be understood from the well-

known fact that the sampling distribution (i.e., the likelihood) of a Fisher transformed

correlation is approximately normally distributed (Fisher, 1915, 1921). Furthermore, the

prior of a Fisher transformed partial correlation, ηij,g, is also approximately normally
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distributed, as can be seen from Figure 2 for different values for δ = 2, 15, and 99.

Importantly, for small values of δ the approximation is slightly off near the origin, whereas

for larger values of δ the approximation is very accurate. Note that typically one would not

set a very small value for δ, as to avoid placing too much prior probability mass on

unrealistically large effects. Consequently, combining an approximately normal prior with

an approximately normal likelihood results in an approximately normal posterior for ηij,g

(Mulder, 2016). Furthermore the linear transformation ξ = Ri jη preserves the normal

approximation.

Joint Hypothesis Testing

Besides or in addition to pair-wise testing, as discussed in the previous section, it may also

be of interest to jointly test for the equality of a subset, say, E0 ⊆ E, of partial correlations

across groups. This joint hypothesis test can be formulated as

H0, E0
:RE0

ρ = 0 versus H1, E0
:RE0

ρ ≠ 0,

where RE0
 denotes a matrix containing the coefficients of the contrasts of interest. For

example, in the case of a network with three variables, a researcher could ask whether the

edges have equal strength between variables 1 and 2, and 1 and 3 across groups, the system

of equalities under the null hypothesis can be formulated as

RE0
ρ = 1 0 0 −1 0 0

0 1 0 0 −1 0

ρ12, 1
ρ13, 1
ρ23, 1
ρ12, 2
ρ13, 2
ρ23, 2

= 0
0 . (24)

To quantify the evidence between the null and the alternative hypothesis for the joint test, the

same steps can be applied as for the pair-wise test where RE0
 replaces Rij in Step 3. Note

that this formulation extends beyond testing two partial correlations. It also applies to testing

entire networks (i.e. all edges are the same), or to specific aspects such as invariant edges for

a specific node. The latter allows for asking specific questions about network similarity, even

when the entire network structure is determined to be different. That is, perhaps there are a
priori expectations for relations between specific variables in the network. We demonstrate

this approach below (Section Application).

Numerical Performance

The following simulations address two primary aims. The first examined posterior model

probabilities with respect to different values for the hyperparameter δ, in addition to how

this was influenced by the number of groups tested simultaneously. Although we focus on
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pairwise hypothesis testing (Section Pairwise Hypothesis Testing), varying the number of

groups allows for determining the extent to which the number of hypotheses under

consideration influences the posterior probabilities. The second simulation focuses on error

rates and power for detecting edge differences. We do not compare to the NCT method

(although edge tests are possible), and instead perform significance testing on the Fisher

transformed edge differences estimated with maximum likelihood. This decision was made

because it has an analytic solution, which avoids re-sampling and provides a valuable

baseline for comparison. 1 The following used a Bayes factor of 3 as the evidentiary

threshold (Kass & Raftery, 1995).

Hyperparameter Selection.—We used the same partial correlation matrix as in Section

Null Distribution (Figure A1). We again focus on the strongest edge in the network (ρ1,3 =

0.46), which for each simulation trial, was reduced for only one group. This reduction

ranged between 0 % (i.e., all groups are the same) to 100 % (i.e., a difference of 0.46). In

other words, for group 1 and a 75 % reduction, data were generated with ρ1,3,g1 = 0.46 · 0.25

whereas the generating matrix for the remaining groups was left unaltered (ρi,j,g≠1 = 0.46).

For this simulation we assumed equal sample sizes n ∈ {100 and 400}, three values for the

hyperparamter δ ∈ {10,20, and 40}, which corresponds to prior standard deviations of

approximately sp ∈ {0.30, 0.22 and 0.16}, and three numbers of groups G ∈ {2, 3, and 4}.

The posterior probabilities in favor of the unrestricted model, that is all groups have the

same ρ1,3 vs. the alternative hypothesis (Hu), were averaged over 100 simulation trials.

These results are presented in Figure 3 (panel A). The y-axis denotes the unconstrained

model posterior probability for ρ1,3. For the x-axis a 0 % reduction corresponds to the null

hypothesis, in that all groups were equal, whereas any amount of reduction resulted in the

alternative model being true (in this case group 1 was different). Here the influence of δ can

be seen, in particular when the null hypothesis was true, for example the smallest value δ =

10 (sp = 0.30) resulted in the most support for H0 (i.e., the probability for Hu was the

lowest). Further, this difference between hyperparamter values became increasingly

pronounced with more hypotheses under consideration. For example, again in reference to

the 0 % reduction condition, the probability in favor of Hu steadily decreased for δ = 10 as

the number of groups increased. On the other hand, for the largest value δ = 40 (sp = 0.16),

the average probability was around 0.50 which indicates that it is difficult to gain evidence

for the null hypothesis for these sample sizes. A similar pattern was observed when Hu was

true, in that largest probabilities were observed for δ = 40. Further context for these results,

in reference to error rates and power, is provided below.

Pairwise Error Rates.—In this section we investigate error rates and power for the

proposed method. We used the same partial correlation matrix (Figure A1), but this time set

values less than 0.10 to zero. This cutoff was chosen to ensure there was adequate power to

detect the majority of edge differences in the respective networks. This then served as the

covariance structure for group 1, whereas for the remaining groups it was an identity matrix.

1This was accomplished by computing the difference and the corresponding standard error.
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Thus all partial correlations were zero, which created pairwise differences with group 1. As

performance measures, we looked at specificity (SPC) and sensitivity (SN), i.e.,

SPC = # true negatives
# true negatives+# false positives ,

SN = # true positives
# true positives+# false negatives .

(25)

The former can be understood in relation to the type I error rate which is 1 − SPC, and the

latter is “power” (1 − SN = the type II error rate). The simulation conditions paralleled the

previous section, in that we assumed three values for the hyperparamter δ ∈ {10, 20, and

40} and also three numbers of groups G ∈ {2, 3, and 4}. We looked at the following sample

sizes n ∈ {100, 250, 500 and 1,000}. We could not find any frequentist implementations for

jointly testing several correlations. As such the maximum likelihood based method is only

included for the 2 group condition (α = 0.01). The scores were averaged over 100 simulation

trials.

These results are presented in Figure 3 (panel B and C). The performance scores for

detecting non-zero edges are displayed in panel B, whereas panel C included the results for

detecting zero edges. The latter was accomplished by switching the labels (i.e., 0’s changed

to 1’s) and then computing the scores with (25). Also note that frequentist hypothesis testing

(denoted MLE), with α = 0.01, is only included in panel B and for the “2 Groups”

conditions. All hyperparameter values were competitive with the MLE that, as expected, was

calibrated to 99 % SPC (1 − α). However, the largest value (δ = 40; sp = 0.16) also had the

lowest specificity for the smallest sample size and this became pronounced with more

groups. Note that the error rate steadily decreased with larger sample sizes, such that all

methods performed similarly with larger sample size. On the other hand, when also

considering sensitivity (“power”), the MLE was more conservative for the smallest sample

sizes while the Bayesian methods were not only able to detect more effects but also had a

comparable score for SPC (excluding δ = 40). Finally, for all prior distributions, the Bayes

factor showed consistent behavior in that the errors steadily reduced to zero as n → ∞, in

addition to increasing scores for SN.

The results for detecting the (true) null hypothesis are provided in panel C. These are

particularly important, because they highlight the previously described asymmetry that can

arise with too informative or too diffuse prior distributions (Gu, Hoijtink, & Mulder, 2016).

For example, with δ = 10 (the least informative prior), SPC was strikingly low for the

smallest sample sizes. In other words, the false alarm rate for incorrectly supporting the null

hypothesis exceeded 0.50 (n = 100). On the other hand, the other hyperparameter values had

much higher specificity that improved with the larger sample sizes. Together, when

considering sensitivity for detecting non-zero edges, these simulations point towards

possible default values for δ. That is, with the explicit goal of balancing the errors for both

Hu and H0, hyperparamter values between 20 and 40 should be used for more than two

groups in particular.
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Application

We now apply our methods to post-traumatic stress disorder symptoms that were measured

in four groups (Ng1 = 526, Ng2 = 365, Ng3 = 926, and Ng4 = 956). The symptoms and

corresponding node numbers are provided in Table 2. Detailed information about the

samples is provided in Fried et al. (2018). The partial correlation matrices are displayed in

Figure 4 (panel A). For aesthetic purposes edges smaller than 0.05 were set to zero.

Importantly, because the presented methods require the posterior distributions (nothing is set

to zero), we emphasize these plots are to visualize the respective edges and not to infer the

underlying conditional independence structures. Further note that we only had access to the

correlation matrices, but it is possible to generate data with an empirical (in contrast to

population) covariance structure. The following examples are for demonstrative purposes,

wherein the intent it primarily to highlight the information provided by the proposed

methods.

Posterior Predictive Distribution

We first tested ℳ0 (5) with the predictive method (Posterior Predictive Distribution). The

posterior assuming group equality was computed with all four groups, i.e.,

p Θ ∣ Yg1
obs, Yg2

obs, Yg3
obs, Yg4

obs, ℳ0 . (26)

For each of the 10,000 posterior samples, with the prior given in (6), we then performed

pairwise comparisons in which the posterior predictive distribution of Θ was sampled with

the respective samples sizes of the groups being compared. The p-values were computed

with (4).

The results are displayed in Figure 1 (panel B). For aesthetic purposes the results are

presented on the logarithmic scale. The densities correspond to the predictive JSD, that is a

symmetric version of Kullback-Leibler divergence (12). The black dots are the observed

distances between two multivariate normal distributions, where the density greater than the

observed value is the posterior predictive p-value. Here it was revealed that ℳ0 would be

rejected at any α level, in that a total of zero predictive draws exceeded the observed

distance. In other words, the error for all groups was much greater than that expected under

the null model of group equality. These results also parallel the simulation results, in

particular the example plot (Figure A1), where the largest groups size had the least amount

predictive divergence. Of note the NCT method based on the maximum difference came to a

similar conclusion (see: Fried et al., 2018). However, it is important to consider the question

asked by each approach. The predictive approach explicitly answers the question of whether

two covariance structures, and inversely two precision matrices, were generated from

different multivariate normal distributions which is the necessary assumption behind partial

correlations corresponding to conditionally (in)dependent effects (Baba et al., 2004). In the

discussion we describe extensions to this approach, for example that essentially any loss

function can serve as the discrepancy measure.
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We now discuss the results for the nodewise testing approach (Network Predictive Check).

The node names are provided in Table 3. Furthermore, to make clear what is being tested we

have plotted one of the nodes in Figure 4 (panel B). We did not correct the p-values

(although this would be possible), as our primary focus is to demonstrate the proposed

method and the information provided therein. We return to this in the discussion. However,

as a point of reference, Y0.95
rep  can be understood as the critical value that corresponds to α =

0.05. It appears that specific groups were different from one another, for example group 3

and 4, whereas groups 1 and 2 did not have many small p-values. Of course, this could be

related to power in that the former also had the largest sample sizes. Interestingly, the only

node in which the p-value was never smaller than 0.05 was for irritability (i.e., node 13).

Bayesian Model Comparison

The predictive approach shares some similarities with classical measurement invariance

testing, in that failing to reject the null hypothesis does not provide evidence for the null

hypothesis. Further, since nothing is fixed (e.g., factor loadings) it also does not provide

insight into where the difference is. The following allows for answering more detailed

questions about potential differences as well as similarities between network structures.

Since ℳ0 was rejected for all pairwise contrasts, we do not test the entire network structure

for equality (although this is possible). Instead, again for demonstrative purposes, we focus

on individual edges in the networks.

We begin by testing the individual edges for all groups–i.e.,

H0, i j: ρi j, 1 = … = ρi j, G vs. H1, i j: “not H0, i j” .

The multivariate normal density is then evaluated after applying a linear transformation,

which for the posterior mean vector μξ, N, follows

Ri jρ =
1 −1 0 0
0 1 −1 0
0 0 1 −1

ρi j, g1
ρi j, g2
ρi j, g3
ρi j, g4

=
0
0
0

. (27)

The Bayes factor for each edge, assuming the same transformation has also been applied to

the prior distributions, is then given by

B01, i j ≈
N 0; μξ, N, Ψξ, N

N 0; 0, Ψξ, 0
. (28)

In this case the groups are assumed to be independent. For each group we sampled 50,000

draws from the posterior and prior distributions with δ = 20 (i.e., sp = 0.22), and then

computed the Bayes factor in (28). We assumed equal prior probabilities for each
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hypothesis, which is the customary approach for Bayesian hypothesis testing. The results are

presented in Figure 5 (panel C), where the results are on the logarithmic scale. There was

evidence for the null hypothesis of group equality in 52 % of the edges. On the other hand,

for 30 % of the edges there was evidence for the unrestricted model. Importantly, because

the Bayes factor provides relative evidence, we emphasize this tells us there is more support

for “not H0,ij” but this is not absolute (i.e., it is restricted to the models under consideration).

For the remaining edges the Bayes factors did not exceed the threshold of 3. Interestingly,

for each node in the network, there were at least two edges for which there was evidence for

a difference in strength. Because of this finding, in combination with the posterior predictive

results, we decided against investigating further hypotheses. However, note that this general

approach applies to essentially any hypothesis one can formulate. We further discuss this in

the discussion.

Discussion

This work introduced two novel methods for comparing any number of Gaussian graphical

models. The first is based on the posterior predictive distribution. which as we demonstrated,

provides a powerful test against the null hypothesis of group equality. This test is not limited

to the overall network structure, but also applies to individual nodes in the network. This

allows one to focus on particular variables, for example in the context of psychopathology,

examining differences in particular symptoms across networks could be of interest. The

second approach uses Bayesian model selection to compare competing theoretical models as

they relate to potential differences, or invariances, between networks. Alternative

hyperparameters for the matrix-F prior were characterized, wherein a range of values

emerged as reasonable defaults that can balance both type I and II errors for the null relative

to alternative hypothesis. We applied the methods to post-traumatic stress disorder

symptoms measured in four groups. This served to highlight the information provided by the

respective methods, in addition to demonstrating another major contribution of this work–

the methods apply to any number of groups.

We emphasize that these novel contributions are not restricted to the social-behavioral

sciences, but extend to the general Gaussian graphical model literature. Indeed, only recently

was there a proposal in the statistics literature to detect differences between precision

matrices estimated with Bayesian methods (Bashir, Carvalho, Hahn, & Jones, 2018).

However, because this method focused on individual off-diagonal elements of Θ, we decided

against contacting the authors for their Matlab implementation which would then need to be

converted to R for general use in psychology. When focusing on specific edges in low-

dimensional settings (p ≪ n), a valuable comparison in our view is classical hypothesis

testing because it will be calibrated to the desired α level (as seen in Figure 3). Their method

also used the graphical lasso procedure which has recently been shown to have poor

performance in settings common to the network literature in psychology (Williams & Rast,

2018; Williams et al., 2018). Furthermore, as we demonstrated, our methods are much more

general and not restricted to detecting pairwise edge differences between two groups. They

can accurately detect differences between entire precision matrices or specific nodes, as well

as flexible Bayesian hypothesis testing that allows for gaining evidence for equality of
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network structures. These are all novel contributions. Finally, our methods are implemented

in the R package BGGM (Williams & Mulder, 2019b).

This work includes two philosophically distinct approaches for statistical inference. The

decision to present both methods together is addressed here. In our view the two tests answer

different research questions and therefore they complement each other. First the proposed

posterior predictive check tests whether there is ‘enough evidence’ in the data to reject the

null model of equal network structures across groups. In the case of misfit the challenge is

how to extend the null model to better fit the observed data. Second the Bayes factor test can

be used to quantify the ‘relative evidence’ in the data for the hypothesis of equal edge

strength against an alternative hypothesis that assumes unequal edge strength. The predictive

approach has some parallels to classical significance testing (although the predictive

distribution is inherently Bayesian), whereas Bayesian model selection is often presented in

opposition to such ideas (Wagenmakers, Wetzels, Borsboom, & van der Maas, 2011). We

believe that falsifying an assumed model does have scientific value (Gelman & Shalizi,

2013). Furthermore, there is interesting work that describes the interplay between inference

based on estimation and the Bayes factor (Rouder, Haaf, & Vandekerckhove, 2018). That

said, there are two primary reasons we decided to present both approaches. First, because

network modeling is relatively new in psychology (Epskamp et al., 2018), there are limited

statistical tools available to applied researchers (e.g., compared to SEM). For example, in the

case of one network, only recently was an approach for confirmatory hypothesis testing

described (Williams & Mulder, 2019a). As such, this work fills a large gap in literature that

we viewed as more important than adhering to a particular statistical philosophy.

Second, as we articulated in this work, each approach has different inferential goals. In

applied setting this can be advantageous depending on the research question. For example, to

investigate misfit from an assumed model, the predictive method provides a powerful test for

this purpose. On the other hand, to fully realize the benefits of Bayesian hypothesis testing

the hypotheses should be derived from theory (i.e., scientific expectations; Mulder &

Olsson-Collentine, 2018). It is unlikely that a theory makes hundreds of predictions, but is

rather focused on a subset of edges in the respective networks (Section Joint Hypothesis

Testing). In addition to evaluating individual edge differences (as well as invariances)

between any number of groups (Figure 3; panel C), we encourage applied researchers to test

specific hypotheses in network models. We emphasize that the inferential goal should be

decided a priori and the respective hypotheses pre-registered. We refer to Faelens,

Hoorelbeke, Fried, De Raedt, and Koster (2019) that includes the first pre-registered

network analysis.

Note that we did not discuss the substantive implications of the applied examples.

Furthermore, we will not make specific claims about network replicability based on these

data. Nonetheless, in the more general sense, the results to raise some important questions

that should be addressed going forward. That is, if researchers genuinely believe that the

relations constitute a psychological network, then these four networks are indeed much

different than one another (Figure 1; panel C). However, to retain ℳ0, this would quite

literally require drawing two samples from the same multivariate normal distribution. While
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it is customary to test whether the true covariance structure has been fitted (e.g., χ2 in SEM),

this hypothesis is typically rejected at some point. On the other hand, perhaps we do not

actually fit true models and thus, in a model with hundreds of effects, it is expected that ℳ0
will be rejected. This is important to consider, going forward, because then the focus should

shift from considering “networks” (as a whole) to a subset of the most important partial

correlations. For example, as seen in Figure 3 (panel C), there was evidence for group

equality for several edges. The methods presented in the work thus allow for testing an

ambitious hypothesis (i.e., ℳ0), in addition to more specific hypotheses about particular

nodes (Table 3), individual edges (Figure 3; panel C), or a subset of edges (Section Joint

Hypothesis Testing).

Future Directions

There are Bayesian methods that can jointly estimate Gaussian graphical models (Lin,

Wang, Yang, & Zhao, 2015; Peterson, Stingo, & Vannucci, 2015), where information is

shared across networks to improve accuracy. This has been shown to lower the false positive

and negative rate compared to estimating the networks independently from one another. This

is similar to the joint graphical lasso (JGL) that is commonly used in psychology. Indeed, it

was used to jointly estimate the conditional dependence structures the four data sets used in

this work (Fried et al., 2018). However, we would caution applied researchers from

assuming methods like the JGL accurately estimate psychological networks (e.g., compared

to independently with Bayesian or maximum likelihood estimation; Williams & Rast, 2018).

The simulation conditions in Danaher, Wang, and Witten (2014), where the JGL was

introduced, were not representative of the psychological network literature (e.g., p = 1000

and n = 100). As such, it is not clear whether the reported advantages extend to more

common situations in the social-behavioral sciences (p < n). Nonetheless, it would be

interesting to extend the present methods to jointly estimate the conditional independence

structures of (potentially) any number of networks. Here it could be determined if there are

indeed advantage compared independent estimation that was shown to have excellent

performance in this work (i.e., Figures 1 and 3).

Additionally, the posterior predictive method is not limited to KL-divergence such that any

test statistic could be used as the discrepancy measure. To parallel the NCT package (van

Borkulo et al., 2016) it would be possible to obtain the predictive distribution of absolute

error between partial correlations matrices. However, we would not limit the possibilities to

this current paper or what is implemented in the NCT package. For example, a measure that

is related to binary classification such as Hamming distance (Norouzi, Fleet, Salakhutdinov,

& Blei, 2012) or Matthews correlation coefficient which is a measure of association for

binary variables (e.g., adjacency matrices, Powers, 2011). However, before employing an

alternative measure in practice, its numerical performance should first be evaluated to

understand its frequentist properties (Rubin, 1984).

On the other hand, we know more about the properties of Bayesian model selection (Casella,

Girón, Martinez, & Moreno, 2009)–i.e., the Bayes factor is known to converge on the true
model with infinite data. As such, the package BGGM includes approaches that extend

beyond what is presented in this work. It is possible to test any hypothesis of interest. In the
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context of an experimental design (control vs. treatment), one possibility is that a subset of

edges stayed the same, others increased, while yet others decreased in response to the

treatment. This can be tested with the method described in the Section Joint Hypothesis

Testing. Because our focus was on introducing two novel methods, it was beyond the scope

of this work to provide more detailed instruction (although there are examples in the

package documentation). Consequently, we plan to write an in-depth tutorial that applies

Bayesian model section to test specific hypotheses of interest in network models.

Limitations

There are limitations of this work. First, because network models include several edges

(typically over 100), determining how best to evaluate numerical performance was not

straightforward. The simulation conditions, in this regard, were simplified to focus on key

aspects of the proposed methods–e.g., demonstrating calibrated error rates under the null

hypothesis (Table 1). However, the predictive distribution and Bayesian hypothesis testing

are well established approaches in the Bayesian literature. As such, there is no reason to

assume that the known properties of each would not extend to Gaussian graphical models

(especially when there is a direct correspondence to multiple regression; Kwan, 2014;

Stephens, 1998). Examining performance, going forward, would be particularly important in

the context of model misspecification (e.g., omitted nodes).

Second, we did not consider estimating the conditional independence structures. We refer

interested readers to Williams and Mulder (2019a), where Bayesian methods specifically for

determining the edge set in one network are described. These are also implemented in the

package BGGM. Moreover, since the focus of this work was explicitly on low-dimensional

settings, we considered it a given that the models would be accurately estimated. Relatedly,

note that in a Bayesian context there is never a truly sparse solution and thus a decision rule

is required for determining the edge set. However, when considering differences between

networks, this can be advantageous because no post-processing is required. The method

described in Belilovsky et al. (2015) first used ℓ1-regularization and then desparsified the

estimates after the fact (Van De Geer, Bühlmann, Ritov, & Dezeure, 2014). This removes the

zeroes, which then allows for constructing confidence intervals to conduct classical

significance tests on the respective differences. Of course, this is entirely unnecessary

because confidence intervals can readily be constructed non-regularized partial correlations

(as done in this work, which assumes p < n; Williams & Rast, 2018). Similarly, while not

included here, it would be straightforward to subtract the posterior distributions for two

edges and then check the credible interval for zero. In contrast to using the Bayes factor, this

cannot provide evidence for the null hypothesis. In the case of the predictive method, note

that imposing zeroes would alter the joint posterior density, thereby resulting in a distorted

predictive distribution.

Third it is well-known that the Bayes factor is sensitive to the prior standard deviation of the

effect under the alternative. This was also observed in this work through the choice of δ in

our parameterization of the matrix-F prior distribution. This however is not necessarily a

negative property because it forces the researcher to carefully think about the anticipated

effect, through δ, if the null model would be false. Although specifying δ may be difficult,
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especially because the network approach is relatively new in psychological science, we

expect that network researchers are able to make sensible choices for the prior standard

deviation of the effect under the alternative based on there own prior experience or based on

results from published literature. In the case of prior uncertainty it is recommended to

perform a prior sensitivity analysis by computing the Bayes factor based on (realistic)

minimal and maximal anticipated effects (e.g. ?). This would provide a realistic range of the

relative evidence in the data between the hypotheses of interest.

Fourth, although it would be possible to adjust to the posterior predictive p-values (e.g.,

controlling false discovery rate; Benjamini & Hochberg, 1995), this will not always be

possible. This is due to the fact that the p-value can be exactly zero, wherein none of the

predictive draws exceed the observed distance (see Table 3). This indicates a substantial

difference from what the null model predicts but should be considered nonetheless.

Alternatively, it is perfectly acceptable to interpret the p-values as a continuous measure of

discrepancy from the assumed model (i.e., of group equality; Greenland, 2017). We prefer

this approach in practice, and emphasize the thresholds used in this work (i.e., α = 0.05 and

B01 > 3) were necessarily adopted to evaluate numerical performance.

Lastly, this work focused exclusively on continuous data. It is common in psychology to

have ordinal data, for example constructs measured with Likert scales. While it was shown

that assuming normality for 5-level ordinal had close to nominal error rates in networks

(Williams et al., 2018), which parallels (Rhemtulla, Brosseau-Liard, & Savalei, 2012), we

caution against using these methods for ordinal data with few categories. We plan to extend

these methods to allow for comparing polychoric partial correlations between groups.

Conclusion

We introduced two novel methods for comparing Gaussian graphical models. The applied

examples demonstrated the utility of the proposed methods. They can be used to test the null

hypothesis of network equality, or gain evidence for invariant network structures with the

Bayes factor. To ensure the methods can readily be adopted by applied researchers, they are

implemented in the R package BGGM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A) Representative predictive distributions of JSD (symmetric KL-divergence) under the null

hypothesis (M0). The observed error is denoted with the black points and the red area is the

critical region (α = 0.05). The posterior predictive p-value (4) is the density to the right of

the observed error. B) Predictive distributions for pairwise comparisons between four groups

(Posterior Predictive Distribution). The observed error is denoted with the black points. The

density greater than the observed is the p-value, which in this case, is 0 for all comparisons.

C) Simulation results (Detecting Differences). The x-axis denotes the total sample size of

both groups combined. Unequal groups were divided: 60 % and 40 % of the total sample

size. NCT (a): global strength. NCT (b): maximum difference. Cut: edges smaller than 0.075
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were set to zero. Reduce: the largest edge was reduced by 25 % (creating a difference greater

than 0.10). Both: edges were cut and the largest was reduced.
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Figure 2.
A) Marginal prior distributions. Left panel: Marginal prior for the partial correlation between

variables i and j in group g for a prior hyperparameter of δ = 2 (solid line), 15 (dashed line),

and 99 (dotted line), which corresponds to prior standard deviations of .58, .25, and .10,

respectively. Right panel: Marginal prior for the difference between the partial correlation

between variables i and j (in two different groups) and based on the same prior

hyperparameters. B) Prior of Fisher transformed partial correlation ηi j, g = F ρi j, g  (solid

line) and corresponding normal approximation (dashed line) for δ = 2 (left panel), δ = 15

(middle panel), and δ = 99 (right panel).
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Figure 3.
A) Posterior probabilities for the unconstrained model. Percent reduction is the decrease

applied to the maximum edge (ρ1, 3, g1 ≈ 0.46) for group number 1. The remaining groups

had identical edges for ρ1,3. B) Performance scores for detecting non-zero effects. The MLE

corresponds to using confidence intervals with α = 0.01 (only included for the “2 Groups”

panel). C) Performance scores for detecting zeros (i.e., the null hypothesis.) SPC =

Specificity. SN = Sensitivity. Error bars are 90 % highest density intervals.
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Figure 4.
A) Partial correlation matrices for each group. Values less than 0.05 were set to zero. B)

Example node (“irritability”) in the network. Each node was tested with the nodewise

predictive method. The null hypothesis of equality was not rejected for this node (Table 3).
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Figure 5.
The Bayes factor (BF; on the logarithmic scale) for each individual edge. The null model

assumed that each edge was the same in each group. The left plot includes edges for which

there was evidence for group equality, whereas in the right plot there was evidence for the

alternative hypothesis (“Not H0”). The empty tiles correspond to a Bayes factor that was less

than 3 (log(3) ≈ 1.10).
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Table 1

Error rate for rejecting the (true) null model.

Measure n Sample composition Error rate MCE

JSD 250 equal 0.052 0.002

unequal 0.043 0.001

500 equal 0.047 0.001

unequal 0.048 0.001

1000 equal 0.041 0.001

unequal 0.046 0.001

Note. JSD: Jensen-Shannon divergence. α = 0.05. MCE: Monte Carlo error rounded to the third decimal place. The provided sample size
corresponds to the largest group for the unequal conditions (the smaller group was half that size).
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Table 2

Node descriptions

Node Symptom

1 Intrusive Thoughts

2 Nightmares

3 Flashbacks

4 Physiological/psychological reactivity

5 Avoidance of thoughts

6 Avoidance of situations

7 Amnesia

8 Disinterest in activities

9 Feeling detached

10 Emotional numbing

11 Foreshortened future

12 Sleep problems

13 Irritability

14 Concentration problems

15 Hypervigilance

16 Startle response
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Table 3

Nodewise predictive test

Yg1 vs. Yg2 Yg1 vs. Yg3 Yg1 vs. Yg4

Node Y0.95
rep Yobs p-value Y0.95

rep Yobs p-value Y0.95
rep Yobs p-value

1 −5.32 −4.91 0.02 −5.67 −7.01 0.30 −5.75 −3.05 0

2 −4.92 −4.38 0.01 −5.38 −7.65 0.53 −5.39 −2.56 0

3 −5.12 −5.42 0.09 −5.53 −7.56 0.48 −5.56 −3.37 0

4 −5.05 −7.35 0.54 −5.48 −5.72 0.08 −5.50 −2.1 0

5 −4.47 −2.26 0 −4.85 −13.55 0.98 −4.90 −1.81 0

6 −4.66 −2.35 0 −5.08 −9.37 0.83 −5.09 −1.97 0

7 −3.14 −9.8 0.95 −3.49 −1.36 0 −3.49 −6.21 0.62

8 −4.49 −9.45 0.87 −4.93 −13.98 0.98 −4.91 −2.43 0

9 −4.78 −8.8 0.79 −5.18 −3.82 0 −5.21 −4.01 0.04

10 −4.00 −7.37 0.70 −4.38 −4.47 0.06 −4.40 −2.6 0

11 −4.39 −3.72 0.01 −4.85 −8.39 0.75 −4.82 −3.04 0

12 −4.43 −4.01 0.02 −4.81 −8.89 0.80 −4.86 −2.84 0

13 −3.74 −4.82 0.23 −4.21 −6.16 0.46 −4.19 −4.83 0.15

14 −4.38 −4.32 0.04 −4.85 −5.92 0.26 −4.80 −3.19 0

15 −4.41 −5.9 0.34 −4.81 −3.62 0 −4.79 −3.15 0.01

16 −4.60 −5.71 0.25 −5.10 −8.26 0.71 −5.02 −2.51 0

Yg2 vs. Yg3 Yg2 vs. Yg4 Yg3 vs. Yg4

Node Y0.95
rep Yobs p-value Y0.95

rep Yobs p-value Y0.95
rep Yobs p-value

1 −5.49 −5.78 0.09 −5.52 −4.06 0 −6.03 −3.35 0

2 −5.14 −4.82 0.02 −5.15 −3.62 0 −5.69 −2.73 0

3 −5.28 −6.27 0.23 −5.29 −4.27 0 −5.86 −3.64 0

4 −5.27 −6.9 0.40 −5.24 −1.95 0 −5.86 −1.77 0

5 −4.61 −2.27 0 −4.68 −5.14 0.12 −5.22 −1.82 0

6 −4.80 −2.29 0 −4.83 −5.55 0.18 −5.42 −1.91 0

7 −3.28 −1.33 0 −3.19 −6.57 0.72 −3.87 −1.17 0

8 −4.66 −9.67 0.88 −4.68 −2.49 0 −5.26 −2.43 0

9 −4.92 −3.99 0 −4.93 −3.84 0 −5.57 −2.51 0

10 −4.19 −4.05 0.04 −4.21 −2.8 0 −4.78 −1.91 0

11 −4.52 −3.93 0.01 −4.57 −5.57 0.23 −5.11 −3.19 0

12 −4.54 −4.2 0.02 −4.60 −4.5 0.04 −5.16 −2.94 0

13 −3.88 −6.25 0.54 −3.93 −15.44 1 −4.50 −6.27 0.42

14 −4.49 −3.58 0 −4.58 −4.90 0.10 −5.15 −2.73 0

15 −4.56 −4.41 0.03 −4.59 −2.69 0 −5.19 −1.95 0

16 −4.74 −6.36 0.38 −4.78 −2.98 0 −5.41 −2.63 0
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