Title
Tethered bis-pyrrolidine additions to C70: Some unexpected and new regioisomers

Permalink
https://escholarship.org/uc/item/9s5760bf

Authors
Cerón, Maira R
Izquierdo, Marta
Aghabali, Amineh
et al.

Publication Date
2016-08-01

DOI
10.1016/j.carbon.2016.04.044

Peer reviewed
Tethered bis-pyrrolidine additions to C\textsubscript{70}: Some unexpected and new regioisomers

Maira R. Cerón a,1, Marta Izquierdo a,1, Amineh Aghabali b,1, Sophie P. Vogel a, Marilyn M. Olmstead b,***,, Alan L. Balch b,***, Luis Echegoyen a,*

a Department of Chemistry, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
b Department of Chemistry, University of Texas at El Paso, 500W University Ave, El Paso, TX 79968, USA

1 These authors contributed equally.

1. Introduction

Fullerene derivatives have been extensively used as electron acceptor materials in organic photovoltaic (OPV) solar cells [1–3]. Currently [6,6]-phenyl-C\textsubscript{61}-butyric acid methyl ester (PC\textsubscript{61}BM) is widely used in OPV solar cells [2,4–8]. Recently, considerable effort has been devoted to the search for other fullerene-based compounds with optimal performance in OPV solar cells [2,4–8]. As a result, it has been shown that [70]fullerene bis-adducts exhibit appealing acceptor properties partly due to the higher absorption coefficient of C\textsubscript{70} compared with that of C\textsubscript{60}, and the higher lowest unoccupied molecular orbital (LUMO) levels compared with those of monooadduct analogs [2,9–11]. It was also demonstrated that the use of some regioisomerically pure bis-adducts resulted in higher efficiencies compared with those of the corresponding isomeric mixtures [9,11–15]. However, impractical and time-consuming techniques are usually required for the purification of bis-adduct regioisomers [16]. Thus, there is a need to develop selective reactions that are able to efficiently produce pure fullerene bis-adduct regioisomers to avoid high-performance liquid chromatography (HPLC) separations. A pioneer in this field was Diederich and co-workers who introduced the tethered-directed remote multifunctionalization, which involved the addition of two or more reactive centers linked by a spacer of a given length and rigidity [17–19].

The chemical reactivity of higher fullerenes such as C\textsubscript{70}-D\textsubscript{2h} has not been fully investigated mainly because of its lower symmetry compared with that of C\textsubscript{60}-D\textsubscript{2h}, which results in an increase of the number of isomers observed. C\textsubscript{70} possesses four inequivalent types of [6,6]-ring junctions defined as \(\alpha\), \(\beta\), \(\gamma\) and \(\delta\) (Fig. 1). The strain of these bonds typically determines the most favored sites for addition. The \(\alpha\)-bonds, which are the most strained and on the poles of the molecule, are the most reactive bonds, followed by the \(\beta\)- and then the \(\gamma\)-bonds. The \(\delta\)-bonds, on the equator, are the least reactive.

The most common reactions used to functionalize C\textsubscript{70} are the [2 + 1], [3 + 2], [2 + 2] or Diels–Alder cycloadditions, which normally give rise to the \(\alpha\)-isomer as the major product [20–23]. The 1,3-dipolar cycloaddition of azomethine ylides is the least regioselective reaction, which leads to \(\alpha\), \(\beta\) and \(\gamma\)-isomers in different ratios depending on the reaction conditions and the nature of the azomethine ylide [22,24–28].

Echegoyen \textit{et al.} recently reported some regioselective tethered bis-1,3-dipolar cycloadditions on C\textsubscript{60} and the formation of two regiosomeric bis-adducts (\(cis\)-1 and \(cis\)-2) out of the 8 possible isomers [29]. The number of possible independent bis-adducts on C\textsubscript{70} is 38 if both addends are identical and additions occur exclusively on [6,6]-bonds. To the best of our knowledge, there is no precedent of bis-pyrrolidine additions on C\textsubscript{70} besides those obtained as byproducts [30]. Due to the difference in symmetry and reactivity of C\textsubscript{70} compared with C\textsubscript{60}, it is not possible to predict if using the same tethered reagents will lead to similar regioisomers as observed for C\textsubscript{60} [29]. Here we report the one step synthesis of
four new **bis**-pyrrolidine C70 regioisomers and their full characterization including the X-ray crystal structures of three of them.

2. Experimental

2.1. Synthesis of **bis**-pyrrolidines C70

Four **bis**-pyrrolidine C70 compounds (defined as 1 to 4) were synthesized following the same procedure described previously by us but using C70 instead of C60 (Fig. 2) [29]. A mixture of 50.00 mg of C70 (0.059 mmol, 1 equiv) 7.98 mg of OPA (0.059 mmol, 1 equiv) and 49.08 mg of N-Ethylglycine (0.476 mmol, 8 equiv) in 40 mL of toluene were refluxed for 1 day. After cooling to room temperature, the solvent was removed under vacuum and the crude product was purified by silica gel column chromatography using CS2 as eluent to recover the unreacted C70 and C70CHCl3 to elute compounds 1 (12% yield) and 2 (23% yield) in order of polarity. By increasing the polarity of the solvents, minor fractions of two additional **bis**-adducts 3 (3% yield) and 4 (3% yield) and of some polyadducts were eluted.

2.2. 1H NMR chemical shifts of **bis**-pyrrolidines C70

Compound 1: δ 7.35 (dd, 1HAr, J = 3.61, 5.64), 7.07 (dd, 1HAr, J = 3.49, 5.77), 4.60 (d, 1H, J = 10.19), 4.21 (s, 1H), 3.68 (d, 1H, J = 10.22), 3.37 (m, 1H, N=CH2−CH3, J = 7.56, 12.48), 2.35 (m, 1H, N−CH2−CH3, J = 6.91, 13.87), 7.39 (t, 1H, N−CH2−CH3, J = 7.24) ppm.

Compound 2: δ 7.89 (dd, 1HAr, J = 3.71, 5.47), 7.54 (dd, 1HAr, J = 3.44, 5.67), 4.74 (d, 1H, J = 9.92), 4.10 (s, 1H), 3.60 (m, 1H, N=CH2−CH3, J = 7.38, 14.90), 3.40 (d, 1H, J = 9.85), 2.38 (m, 1H, N−CH2−CH3, J = 6.96, 13.90), 1.53 (t, 1H, N−CH2−CH3, J = 7.22) ppm.

2.3. Crystal data for **bis**-pyrrolidines C70 β-2-β (1)-toluene

C91H12O12N3M = 1149.15, black block, 1.555 x 0.554 x 0.172 mm, λ = 0.71073 Å (Bruker Apex2), monoclinic, space group P21/m (no. 14), a = 13.1366(13), b = 12.4026(14), c = 14.5370(15) Å, β = 109.5768(14)°, T = 90(2) K, V = 24115.4 Å3, Z = 2, 38827 reflections measured, 7640 unique (Rint = 0.0187) which were used in all calculations, 2θmax = 61.958°, min/max transmission = 0.7012/0.7462 (multi-scan absorption correction applied); direct and Patterson methods solution; full-matrix least squares based on F2 (SHELXT and SHELXL-2014); The final wR(F2) was 0.1478 (all data), conventional R1 = 0.0540 computed for 6863 reflections with I > 2σ(I) using 438 parameters with no restraints.

2.4. Crystal data for **bis**-pyrrolidines C70 α-1-β (3)-CS2

C65H20N2S2, M = 1114.12, black block, 0.313 x 0.188 x 0.074 mm, λ = 1.54178 Å (Bruker Apex2), orthorhombic, space group Pnca (no. 61), a = 19.4120(6), b = 18.0214(5), c = 26.1217(7) Å, T = 90(2) K, V = 9138.2(5) Å3, Z = 8, 37918 reflections measured, 7505 unique (Rint = 0.0516) which were used in all calculations, 2θmax = 127.36°; min/max transmission = 0.6234/0.7531 (multi-scan absorption correction applied); direct and Patterson methods solution; full-matrix least squares based on F2 (SHELXT and SHELXL-2014); The final wR(F2) was 0.2703 (all data), conventional R1 = 0.0899 computed for 5399 reflections with I > 2σ(I) using 804 parameters with no restraints.

2.5. Crystal data for **bis**-pyrrolidines C70 α-1-α (4)-0.4CH2Cl2·CH2OH

C95H22O4Cl2, M = 1103.40, black block, 0.308 x 0.278 x 0.072 mm, λ = 1.54178 Å (Bruker Apex2), orthorhombic, space group Pnca (no. 61), a = 18.9504(9), b = 17.5667(8), c = 27.2806(14) Å, T = 90(2) K, V = 9076.9(8) Å3, Z = 8, 49150 reflections measured, 8022 unique (Rint = 0.0612) which were used in all calculations, 2θmax = 125.46°; min/max transmission = 0.5889/0.7537 (multi-scan absorption correction applied); direct and Patterson methods solution; full-matrix least squares based on F2 (SHELX and SHELXL-2014). The final wR(F2) was 0.3353 (all data), conventional R1 = 0.1187 computed for 6110 reflections with I > 2σ(I) using 808 parameters with 3 restraints.

3. Results and discussion

Based on the stereochemical information from the analogous reaction on C60 [29], the possible regioisomers that could be obtained with C70 are shown in Fig. 2. To determine the number of possible regioisomers on C70, several factors were considered:

i. The **bis**-1,3-dipole should cyclo-add to the most reactive bonds, thus excluding possible combinations such as γ-γ, γ-δ or δ-δ.

ii. The optimal length between the attached addends should be one or two bonds (preferentially two bonds based on the observations with C60).

iii. The stereo-conformation of the hydrogen atoms of both C2 carbons of the pyrrolidine rings can be **endo-endo**, **exo-exo**, **endo-exo** or **exo-endo** and some of these would exist as enantiomeric pairs (Fig. 3).

The tether-controlled multifunctionalization method significantly decreases the number of regioisomers that are likely to form. Nevertheless, due to the reactivity difference of the [6,6]-bonds, the presence of two chiral centers in the addend and the relatively low regioselectivity of the 1,3-dipolar cycloaddition on C70, the number of possible isomers is considerably higher than for C60. For each site-isomer (Fig. 2b) three stereo-conformations are possible, so a total of 18 possible isomers could be observed.

3.1. Structural characterization of symmetric **bis**-pyrrolidines C70 1 and 2

Compounds 1 and 2 were characterized by UV/vis and nuclear
magnetic resonance spectroscopy (NMR), mass spectrometry, and cyclic voltammetry (see ESI). The matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra confirmed the presence of the molecular-ion peak for the bis-adduct products (m/z 1056.2120 and 1056.0857 for compounds 1 and 2, respectively).

The 1H NMR spectra of 1 and 2 exhibit only one set of signals, clearly establishing the presence of a plane of symmetry in each molecule (Fig. 4). These additions must have occurred on the same type of bond (α-α or β-β), because a combination of different types of bonds would result in the formation of unsymmetric products (α-β, α-γ or β-γ). Furthermore, the hydrogen atoms on the stereogenic centers (C2 of the pyrrolidine ring) need to be oriented in the same direction. Thus, the stereo-conformation is either endo-endo or endo-exo. The two stereogenic centers in the molecule and the plane of symmetry indicate that compounds 1 and 2 are non-chiral molecules and correspond to a meso form. The 1H NMR spectra of 1 and 2 exhibit one singlet in the middle of the AB quartet due to the pyrrolidine protons. Based on this pattern, the chemical shift of the signals and by comparison to the previously reported 1H NMR spectrum of compound B (Fig. 2a, cis-2 H endo - H endo) [24,29,32], we suggest that compounds 1 and 2 exhibit the same endo–endo conformation.

UV/vis spectroscopy is a useful tool to assign fullerene isomers since unique absorption patterns are observed for each derivative based on the addition sites and not on the nature of the addends. Unfortunately, there are only a few examples of well characterized [70]fullerene bis-adducts that have been reported, so assignments based exclusively on the UV/vis absorption spectra are not possible for the most part. Indeed, except for a very few examples [31,33], the reported [70]fullerene bis-adducts correspond to double additions on opposite poles of the C70 cage [20,34–38].

As discussed before, two bonds between the addition sites are more energetically favorable than one, thus we can reduce the number of possible symmetric regioisomers to α-2-α or β-2-β. To confirm that our hypothesis was correct, we compared the UV/vis spectra of compounds 1 and 2 with that for a previously reported α-1-α (Fig. 5) and by elimination conclude that compounds 1 and 2 are the α-2-α and β-2-β regioisomers. Since compound 2 is the
major product, and the α-2-α regioisomer should be preferred. 2 is assigned as the α-2-α isomer. Therefore, compound 1 is assigned as the β-2-β regioisomer.

Fortunately, crystals of compound 1 were grown by slow evaporation of a toluene solution of the compound. The structure of 1 was determined by X-ray crystallography as shown in Fig. 6. The fullerene is ordered. The asymmetric unit contains half of the adduct with the other half generated by reflection through a
where the adduct forms as shown by the data in Table 1. Little change in distance occurs for the other \(\alpha \)- and \(\beta \)-C–C bonds. The pyramidalization of the carbon atoms at the addition sites also increases.

3.2. Structural characterization of unsymmetric bis-pyrrolidines C\(_{70}\) 3 and 4

These results establish the structure of compound 1 as the \(\beta \)-2-\(\beta \) regioisomer and thus indicate that compound 2 is likely to be the \(\alpha \)-2-\(\alpha \) regioisomer. Unfortunately, suitable crystals of compound 2 could not be obtained for X-ray diffraction studies.

A minor fraction of a mixture of \([70]\) fullerene bis-adducts 3 and 4 (6% yield) was further purified by recycling HPLC using a Buckyprep column and characterized by UV/vis, NMR spectroscopy and mass spectrometry (see ESI). The \(^1\)H NMR spectra of compounds 3 and 4 exhibited no symmetry (see ESI), thus assigning specific regioisomeric structures is very difficult because there are many unsymmetric possibilities, including the \(\alpha \)-1-\(\alpha \), \(\alpha \)-2-\(\alpha \) or \(\beta \)-2-\(\beta \) regioisomers with endo-exo stereo-conformations at the C2 positions, or \(\alpha \)-1-\(\beta \), \(\alpha \)-2-\(\gamma \) or \(\beta \)-1-\(\gamma \) regioisomers with any of the possible stereo-conformations of the hydrogens. Compounds 3 and 4 showed similar UV/vis absorption spectra to that reported for the \(\alpha \)-1-\(\beta \) and \(\alpha \)-1-\(\alpha \) regioisomers [32], respectively (see ESI) [31].

Crystals of compound 3 were grown by slow diffusion of methanol into a carbon disulfide solution of the adduct. Solution of the structure unambiguously showed that compound 3 is the \(\alpha \)-1-\(\beta \) regioisomer (Fig. 7a), with the hydrogen atoms at the C2 positions on the pyrrolidine ring in an endo-exo orientation. The molecule crystallizes in a centrosymmetric space group with one entire molecule in the asymmetric unit. Compound 3 is a chiral molecule but the crystal consists of a racemic mixture (RR and SS), similar to the situation observed for the corresponding C60 adduct (compound C, Fig. 2a) [29].

Crystals of compound 4 were grown by slow diffusion of methanol into a dichloromethane solution of the compound. The crystallographically determined structure of 4 shows that it is the \(\alpha \)-1-\(\alpha \) regioisomer, with the hydrogen atoms at the C2 of the pyrrolidine rings in an endo–endo orientation (Fig. 7b). This molecule also crystallizes in a centrosymmetric space group with one entire molecule in the asymmetric unit. Compound 4 is also a chiral molecule. The crystal consists of a racemic mixture (RR and SS), similar to the situation observed for 3 and the related C60 adduct (compound C, Fig. 2a) [31].

Interestingly, comparing the regioisomers obtained for the bis-1,3-dipolar cycloadditions with those obtained for the bis-diazo [31] and bis-Bingel [38] cycloadditions on C70, we observed a remarkable difference in the reactivity of the inequivalent [6,6]-junctons depending on the type of cycloaddition reaction performed. For the case of the bis-diazo cycloaddition to C70, the \(\alpha \)-1-\(\alpha \) regioisomer was the major product [31], showing that the isomers

Figure 5. UV/vis spectra of compounds 1 and 2 compared with the reported \(\alpha \)-1-\(\alpha \) [31]. (A colour version of this figure can be viewed online.)

Figure 6. Crystallographically determined structure of compound 1 (meso-\(\beta \)-2-\(\beta \) endo–endo) from the solvate, toluene. The apical pentagons of C70 are shown in pink and the pyrrolidine rings attached to the \(\beta \)-bonds are yellow. Nitrogen atoms are blue. Thermal ellipsoids are drawn at the 0.50 level. (A colour version of this figure can be viewed online.)

Table 1

<table>
<thead>
<tr>
<th>Bond Type</th>
<th>Bond Length (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C–C bond</td>
<td>1.375 (average)</td>
</tr>
<tr>
<td>C–C bond</td>
<td>1.392(10), 1.376(10), 1.340(11), 1.352(11), 1.403(10)</td>
</tr>
<tr>
<td>C–C bond</td>
<td>1.392(10), 1.376(10), 1.340(11), 1.352(11), 1.403(10)</td>
</tr>
</tbody>
</table>

Distances in boldface are the C–C bond lengths at the sites of addition, the * indicates the corresponding distances involving the C–C bonds in the opposite end cap where no addition has occurred.
observed for this type of reaction are those formed from the addition at the more reactive \(\alpha \)-bonds (kinetic control). Similar results were observed for the bis-Bingel cycloaddition to \(\text{C}_{70} \), in which the length and rigidity of the bis-tether linker and the higher reactivity of the \(\alpha \)-bonds directed the formation of a dumbbell-\(\text{C}_{70} \) as the major product (kinetic control).

Although one should not make direct comparisons between three different reactions that proceed through different mechanisms, the 1,3-dipolar, bis-diazo and bis-Bingel cycloadditions preferentially attack the \(\alpha \)- and \(\beta \)-bonds. This observation shows the remarkable difference in the reactivity of \(\alpha \)- and \(\beta \)-bonds compared with the \(\gamma \)- and \(\delta \)-bonds, and provides the challenge of looking for reactions able to afford the unexplored \(\gamma \)- and \(\delta \)-isomers.

3.3. Electrochemical studies of symmetric bis-pyrrolidines \(\text{C}_{70} \) 1 and 2

The electrochemical properties of 1 and 2 were measured by cyclic voltammetry (CV) and SWV on a glassy carbon minielectrode with ortho-dichlorobenzene (o-DCB) as solvent and n-Bu4NPF6 as supporting electrolyte. The reduction potentials are shown in Table 2. As expected, the reduction potentials of 1 and 2 are cathodically shifted with respect to the values of pristine fullerene \(\text{C}_{70} \) by approximately 400 mV [40].

<table>
<thead>
<tr>
<th>Compound</th>
<th>(E^{0/-})</th>
<th>(E^{-1/-2})</th>
<th>(E^{-2/-3})</th>
<th>UV/vis (toluene)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{C}_{70}) [31]</td>
<td>-0.98</td>
<td>-1.31</td>
<td>-1.75</td>
<td>323, 369, 470, 542 (sh) [30]</td>
</tr>
<tr>
<td>(\beta)-2-(\beta) [1]</td>
<td>-1.37</td>
<td>-1.72</td>
<td>-2.21</td>
<td>353, 390, 434 (sh), 480, 635</td>
</tr>
<tr>
<td>(\alpha)-2-(\alpha) [2]</td>
<td>-1.38</td>
<td>-1.74</td>
<td>-2.16</td>
<td>393 (sh), 414 (sh), 425, 454 (sh), 503, 569, 713</td>
</tr>
</tbody>
</table>

[a] Values obtained by square wave voltammetry (SWV) in volts vs Fc/Fc couple. sh — shoulder.

4. Conclusions

We described the one step synthesis of four, easily isolable, bis-pyrrolidine adducts of \(\text{C}_{70} \). In addition, we unambiguously assigned these four \([70]\) fullerene bis-adducts as the \(\alpha \)-2-\(\alpha \), \(\beta \)-2-\(\beta \), \(\alpha \)-1-\(\beta \) and \(\alpha \)-1-\(\alpha \) regioisomers. These results substantially enrich the library of well-characterized \([70]\) fullerene bis-adducts and also contribute to the understanding of the reactivity of the higher fullerenes. These compounds represent rare examples of bis-adducts of \(\text{C}_{70} \) in which both addends are positioned on the same hemispherical pole of the fullerene.

Based on our observations, we can propose that the 1,3-dipolar cycloaddition reaction of azomethine ylides on \(\text{C}_{70} \) is primarily controlled by the optimal conformation adopted by the dipole, with two bonds between the two pyrrolidines, to obtain the unexpected \(\alpha \)-2-\(\alpha \) and \(\beta \)-2-\(\beta \) isomers, rather than controlled by the reactivity of the bonds on the carbon cage, which would have led to the formation of the \(\alpha \)-1-\(\alpha \) regioisomer as one of the main products.

We also note that all four \([70]\) fullerene bis-adducts possess higher absorption coefficients when compared with the \([60]\) fullerene bis-adducts analogs, suggesting better acceptor properties if used in OPV solar cells.

Acknowledgments

We thank the NSF for generous support of this work under the PREM Program (DMR-1205302) and for grant CHE-1408865 to L.E. and grant CHE-1305125 to A.L.B. and M.M.O. The Robert A. Welch Foundation is also gratefully acknowledged for an endowed chair to L.E. (grant AH-0033). We thank Prof. Dino Villagrán and José M. Veleta for their kind advice with the DFT calculations.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http:// dx.doi.org/10.1016/j.carbon.2016.04.044.

References

400

M.R. Cerón et al. / Carbon 105 (2016) 394–400

