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Z-nucleic acid structures play vital roles in cellular processes
and have implications in innate immunity due to their recog-
nition by Za domains containing proteins (Z-DNA/Z-RNA
binding proteins, ZBPs). Although Za domains have been
identified in six proteins, including viral E3L, ORF112, and
I73R, as well as, cellular ADAR1, ZBP1, and PKZ, their prev-
alence across living organisms remains largely unexplored. In
this study, we introduce a computational approach to predict
Za domains, leading to the revelation of previously unidenti-
fied Za domain-containing proteins in eukaryotic organisms,
including non-metazoan species. Our findings encompass the
discovery of new ZBPs in previously unexplored giant viruses,
members of the Nucleocytoviricota phylum. Through experi-
mental validation, we confirm the Za functionality of select
proteins, establishing their capability to induce the B-to-Z
conversion. Additionally, we identify Za-like domains within
bacterial proteins. While these domains share certain features
with Za domains, they lack the ability to bind to Z-nucleic
acids or facilitate the B-to-Z DNA conversion. Our findings
significantly expand the ZBP family across a wide spectrum of
organisms and raise intriguing questions about the evolu-
tionary origins of Za-containing proteins. Moreover, our study
offers fresh perspectives on the functional significance of Za
domains in virus sensing and innate immunity and opens av-
enues for exploring hitherto undiscovered functions of ZBPs.

Nucleic acids adopt a variety of structures other than right-
handed double helices. Both DNA and RNA can form tri-
plexes, I-motifs, G-quadruplexes, and left-handed helices
referred to as “Z-nucleic acids” (Z-DNA and Z-RNA) (1–3).
These alternative structures are critical components of
cellular functions, influencing a myriad of biological processes
(4–6). In particular, it is now well established that the innate
immune system exploits Z-nucleic acids as pathogen-
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associated molecular patterns and damage-associated molec-
ular patterns (7, 8).

Z-DNA/Z-RNA biology owes its now-recognized relevance
to several proteins containing Za domains, which are
responsible for recognizing Z-nucleic acids (9). Za domains
are found in metazoan proteins involved in immunity and
cancer, as well as in viral proteins. The first crystal structure
revealed that the Za domain of ADAR1 (adenosine deaminase
acting on RNA 1) adopts a winged-helix-turn-helix (wHTH)
fold. This structure is characterized by a compact a/b archi-
tecture encompassing a three-helix bundle (a1 to a3), juxta-
posed to a twisted antiparallel b-sheet (b1 to b3) (10). Specific
amino acids are important for the specific recognition of Z-
nucleic acids, such as N173 and Y177 within helix a3, and
P192 and P193; W195 contributes to both protein stability and
nucleic acid binding (10). This earlier work demonstrated that
the commonly found wHTH domain across proteins only
binds to Z-nucleic acids when these amino acids are present.

The only other proteins known to contain Za domains are
ZBP1 in mammals, amphibia, and reptilia (11), PKZ in sal-
moniform and cypriniform fish (12), E3L in poxviruses (13),
ORF112 in cyprinid herpesviruses (CyHV-1-to-3) (14) and
I73R in the asfarviridae African swine fever virus (ASFV) (15).
Our current understanding of the biology of these proteins
points to antagonistic relationships in innate immunity and a
potential regulatory role in gene expression (16, 17). Briefly,
the recognition of Z-nucleic acids by ADAR1 and ZBP1 is
essential for the immune system’s ability to detect and respond
to viral threats effectively (18). Conversely, viruses have
evolved Za-containing proteins like E3L to subvert and
antagonize host immune defenses, thereby enhancing their
own virulence and survival within the host organism (19, 20).
However, Za domains have functional roles that need to be
nuanced, as they cannot always be swapped, especially across
different viruses (20, 21). This level of complexity implies an
evolutionary balance between a virus and its host, where the
unique characteristics of Za domains are finely tuned to suit
the particular dynamics of each virus-host relationship.

Because Z-nucleic acid biology is now viewed as a deter-
minant for cell fate during infection and auto-immune dis-
eases, one could ask the question of whether more proteins
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with Za domains could be discovered, and in what species.
Recent computational efforts based on structure similarity
search have unveiled the existence of 14 potential Za domains
(22). Additionally, two other potential ZBPs were identified,
namely RBP7910 in Trypanosoma brucei (23), and DprA in
Riemerella anatipestifer (24). However, these studies did not
address the absence of the complete set of required amino
acids for binding Z-nucleic acids, and no experimental vali-
dations of these putative Za domains were carried out.

Here, we introduce a computational approach for predicting
Za domains, which combines primary sequence analysis,
three-dimensional modeling, and manual examination of the
resulting hits through structural analysis. This method led to
the discovery of 8 putative Za domain-containing proteins in
eukaryotic organisms, and 68 in giant viruses diverse and
mainly unexplored giant viruses in the viral phylum Nucleo-
cytoviricota. We also report Za-like domains in bacterial
proteins, which deviate somewhat from their eukaryotic and
viral counterparts in primary amino acid sequence. Finally, we
have experimentally validated our predictions by assessing the
Z-DNA binding capacity and ability to shift the B-Z equilib-
rium for two Za and two Za-like candidates. This work offers
fresh insights into the functional role of Za domains in virus
sensing and innate immunity. Furthermore, it may shed light
on previously undiscovered functions of ZBPs, expanding our
understanding of their roles in biological processes.
Results and discussion

A combinatory method to predict Za-domain and Za-like
candidates

Initially, we employed BLAST search tools in conjunction
with primary sequence analysis by domain prediction software
SMART and PROSITE to identify the Za-domain candidates.
Subsequently, 3D structure analysis and prediction tools were
used to refine our predictions. Leveraging our existing
knowledge of the essential attributes of the Za-domain, we
further refined the results derived from our in silico analysis
(Fig. 1A). We used multiple sequence alignments to compare
the candidate sequences with some representative Za domains
in all 6 known ZBPs. We checked the presence of residues
crucial for the functionality of the Za-domain by primary
sequence alignment. Among these, the NxxxY motif within a3
is essential for Z-DNA binding, while the pPxWmotif in the b-
wing plays a significant role in both Z-DNA (10) binding and
A-to-Z conversion (25). In the crystal structure of the
HsZaADAR1, tryptophan 195 has been demonstrated to be vital
not only for protein stability but also for DNA binding. The
double mutation involving asparagine 173 and tyrosine 177
within the a3 helix completely abolishes Za0s capacity to bind
Z-DNA, rendering it functionally inoperative for both
mammalian and viral ZBPs. Additionally, proline 192 and
proline 193 contribute significantly through van der Waals
interactions with DNA (10). Despite the limited overall
sequence similarity typical to Za domains, the aliphatic resi-
dues (marked in red) from the three helices, along with
Tryptophan 195 in the b-wing, exhibit strong conservation in
2 J. Biol. Chem. (2024) 300(8) 107504
all candidates. These residues are well-established for their role
in supporting the hydrophobic core of the winged helix-turn-
helix structure (Figs. 1B, and S1) (10). In line with this, the
predicted 3D structures, generated by AlphaFold (26), reveal
that all candidates adopt the characteristic winged-HTH
conformation. The 3D fold comparisons underscore a
remarkable degree of structural similarity between these can-
didates and the crystallized ADAR1 Za domain, PDB ID 2GXB
(27) (Fig. 1, C and D). Despite these similarities, some candi-
dates found in bacteria lack conserved residues in the corre-
sponding positions N173 and Y177 in HsZaADAR1 displaying
instead a serine and an asparagine respectively. As such, we
classify them as Za-like candidates (Figs. 1B and S1).

Identification of novel Za-domain candidates in eukaryotic
organisms

All predicted Za candidates maintain the conserved resi-
dues N173 and Y177 in HsZaADAR1 crucial for Z-DNA binding
(10). In Anthozoa, a class of marine invertebrates that includes
sea anemones, stony corals, and soft corals, we predicted a new
Za containing protein. Interestingly, in some families such as
the Poritidae or Actinidea, the novel Za displays all important
residues found in the known Za. However, some families such
as Acroporidae or Caryophylliidae display a Za domain in
which the Y177 is substituted by phenylalanine and W195 is
replaced by a tyrosine (Fig. S1). We predicted other potential
Za domain-containing proteins in other eukaryotic organisms
out of metazoan and DNA viruses, such as a protein annotated
as transcription activator p15 in phytoplankton, and another
annotated as acetate-CoA ligase in unicellular microalgae of
the Symbiodiniaceae family (Figs. S1 and S3).

Identification of novel Za-domain candidates in giant viruses

The most substantial contingent of novel ZBP candidates
emerged within giant virus metagenome-assembled genomes
(GVMAGs), revealing the presence of potential ZBPs in
members of the orders pimascovirales, pandoravirales, and
imitervirales. These proteins are distinct from previously
documented ZBPs in fish-herpesviruses, poxviruses, and Af-
rican swine fever virus (ASFV) (Fig. 2). These giant viruses
were recovered in our previous metagenomic survey of
samples from marine and freshwater, soil, and thermal envi-
ronments (Fig. S2) (28), but also included additional se-
quences from deep-sea sediments (29) and permafrost (from
49 to 53,000 years old) (30). Our analysis shows that the
candidate ZBPs in these giant viruses share similar domain
architectures as in previously identified viral-containing
proteins (13, 15, 20). The only exception is the viral ZBP
candidate in which Za is associated with tRNA metabolism
domains (IMGM3300021083) (Fig. S3).

In our phylogenetic analysis, the clade topology in the ZBPs
protein tree does not align with the topology found in the
Nucleocytoviricota species tree (Fig. 2). This finding suggests
that proteins with Za domains have been independently ac-
quired, likely multiple times, originating from a specific host
via gene transfer. This possibility, as proposed by Ku�s et al.,



Figure 1. Prediction of new Za candidates. A, the summary of the workflow for identifying Za candidates. B, alignment of two predicted Za and two Za-
like with known Za domains from human and mouse ADAR1 (HsZaADAR1), human ZBP1 (HsZaZBP1), and viral from vaccinia virus and cyprinid-herpesvirus-3
(vvZaE3 ASFV ZaI73R CyHV-3Za112). The consensus structure Za domain is shown at the top. The key DNA-interacting residues in ADAR1 (corresponding to
Asn174, Tyr177, P192, P193, and Trp195 in HsZaADAR1) are pointed with red arrows. Hydrophobic residues in the hydrophobic core are highlighted in red
front. C, structural alignment of AlphaFold predicted structure of Za candidates with HsZaADAR1 (brown, PDB ID 2GXB). D, structural alignment of AlphaFold
predicted structure of Za-like candidate with HsZaADAR1 (brown, PDB ID 2GXB).
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Figure 2. Phylogenetic tree of proteins that contain Za and Za-like domains. Proteins that were included in the analysis are giant virus ZBPs and
homologs identified and extracted from the NCBI nr database.

JBC COMMUNICATION: Novel Z-DNA binding domains in giant viruses
suggests that CyHV-3 ORF112 might have been co-opted
independently from the host by the common ancestor of
the cyprinid herpesviruses, rather than through horizontal
4 J. Biol. Chem. (2024) 300(8) 107504
transfer from a poxvirus (31). Such scenarios are further
supported by the fact that in our tree, proteins from different
giant virus lineages group together and are simultaneously
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intertwined in monophyletic clades with eukaryotic and
archaeal homologs.

Our results imply that giant viruses with the Za domain
likely infect a wide range of organisms ranging from di-
noflagellates to marine vertebrates and arthropods as well as
early diverging metazoans such as cnidarians (32). The pres-
ence of ZBP in diverse Nucleocytoviricota lineages raises the
question of the role of Za in the interactions of these viruses
with their hosts, and how this fits into our current under-
standing of the role of ZBPs in animal innate immunity.
Furthermore, the manifold presence of ZBPs in divergent giant
virus lineages, known to infect protists and algae, sparks cu-
riosity. This observation is particularly intriguing given that
virus-protist interactions entail mechanisms distinctly
different from the innate immunity found in animals (33).
Could the presence of ZBP indicate that these giant viruses
infect metazoan hosts? In line with this, the ASFV infects two
phylogenetically distant hosts, functioning as an arthropod-
borne DNA virus (34), significantly impacting pig farming
due to its high virulence (19).
Experimental validation of Za and Za-like candidates

To validate our prediction, we experimentally studied some
of these Za and Za-like domains by circular dichroism, an
established method to probe their ability to induce B(A)-to-Z
conversion (35). We found that two predicted Za domains
from two distinct members of the viral order pimascovirales
are able to efficiently convert B-DNA duplex of different
lengths d(CpG)3 and d(CpG)6 to Z-form (Fig. 3, A and B).
Interestingly, we found that these two Za domains are not able
to induce A-to-Z conversion of RNA duplex as seen for the
positive control HsZaADAR1 or in the high salt concentration
condition (Fig. 3C). Consequently, our study identifies new
cases of Za capable of converting B-DNA to Z-form but not
A-RNA. Indeed, the conversion of A-RNA to Z-RNA is a less
favorable and energetically costly process compared with B-
DNA to Z-DNA conversion (35). To test the binding capacity
to sequence contexts that have a lower B-Z energy barrier or
preformed Z-form nucleic acids, we used a singly methylated
RNA duplex 8mG4 r(CpG)3 which stabilized 50% of the
population in Z-form (36, 37) (Fig. 3D). In this case, the Za
domains are capable of flipping the RNA to Z-form. This in-
dicates that Za domains bind to the pre-stabilized Z-RNA
since they cannot flip A-RNA to the Z-form.

It is interesting to speculate on the distinction between
competent A/B-to-Z flipping Za domains, Za domains that
can only flip B-DNA, and the nonfunctional Za-like domains,
and their evolutionary/functional relevance. Numerous studies
have tried to identify key residues/regions within the Za
domain that are important for binding and flipping nucleic
acids to the Z-conformation. Kim et al. were able to restore the
partial function of ADAR1’s Zb domain by mutating Ile335
back to a tyrosine as is typical for all other ZBDs (38). Addi-
tionally, residues within the b-wing play a large role in not only
the stabilization of the Z-conformation but also the rate at
which it converts nucleic acids to the Z-conformation (39, 40).
Furthermore, distantly related wHTH domains with no ability
to convert nucleic acids to the Z-conformation can be con-
verted into good Z-binders and converters through directed
mutagenesis (41). It is likely that numerous factors contribute
to the ability of any given Za domain’s ability to bind and
convert nucleic acids to the Z-conformation, and the loss of
one stabilizing interaction may result in the inability to convert
A-RNA while still retaining the ability to convert B-DNA.

As expected, we found that for the Za-like domain, there
was no conversion of B-DNA to Z-DNA or A-RNA to Z-RNA,
in contrast to our positive control HsZaADAR1 (Fig. 3, E and F).
To test the binding capacity to sequence contexts that have a
lower B-Z energy barrier or preformed Z-form nucleic acids,
we used a methylated DNA duplex d(m5CpG)3 and the singly
methylated RNA duplex 8mG4 d(CpG)3 respectively (36, 37).
The Za-like domains show no ability to stabilize or shift the B-
Z transition equilibrium of the Z-nucleic acid analogs (Fig. 3, G
and H). The Za-like domain is found in the bacterial protein
annotated as sigma 54 (s54)-interacting transcriptional regu-
lator. s54 also encompasses an ATPase AAA region, which
overlaps with the Holliday junction DNA helicase RuvB. RuvB
is a component of the RuvABC revolvasome, crucial for
resolving Holliday junctions (42). Remarkably, both Holliday
junctions and Z-DNA are found in bacterial biofilms (43, 44).
Studies have shown that RuvA protein or DNABII stabilizes
Holliday junctions, inducing supercoiling that reduces the
energy needed for B-Z transition and promotes Z-DNA for-
mation in the extracellular DNA biofilm matrix (43). There-
fore, it would be interesting to test the B-to-Z conversion of
the predicted association between the Za-like domain and the
helicase RuvB in s54. Moreover, knowing that bacteria of the
genius of Lactobacillus are biofilm-forming bacteria (45), we
hypothesize that s54 could be involved in the biofilm matrix
formation.
Experimental procedures

In silico prediction of Za domain

To identify new Za domain candidates, we developed a
combinatorial approach. Using the Basic Local Alignment
Search Tool, blastp algorithm of NCBI (46), we performed
taxid-exclusion blast and taxid-targeted blast using the Za
peptides from CyHV-3 and HsADAR1 as the query sequences.
The candidates with a minimum of three crucial residues
conserved or featuring less drastic substitutions (such as in A
digitifera-Za, where phenylalanine replaces the tyrosine in
helix-a3 and a tyrosine replaces the tryptophane in the b-wing
Fig. S1), were considered as the best hits and were selected.
Their primary sequences were subjected to Za domain pre-
diction using SMART (47) and PROSITE (48, 49) software
enabling us to determine the peptide length covered by the Za
domain. Leveraging our knowledge of the essential attributes of
the Za-domain, we further refined the results derived from our
in silico prediction. We check the presence of certain residues
crucial for the functionality of the Za-domain by primary
sequence alignment using MEGA-11 (50) and UGENE (51)
tools. The presence or absence of these critical motifs served as
J. Biol. Chem. (2024) 300(8) 107504 5



Figure 3. Experimental validation by circular dichroism. A and B, the predicted viral Za domains induce B-to-Z conversion of DNA. C, viral Za domains do
not convert A-RNA to Z-RNA. D, viral Za domains do convert an RNA with prestabilized Z-conformation (A:Z form �50%/50%) to full Z-RNA. E and F, Za –like
domains are not able to induce B(A)-to-Z conversion. G and H, Za –like domains do not bind to Z-nucleic acids. For comparison, the profile of a B-form DNA
is shown in grey in (H), demonstrating the presence of a large portion of Z-form in 8mG4 d(CpG)3. The profiles overlaid with profiles from second in-
dependent measurements are provided in Fig. S4.
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the final determinant in our analysis, allowing us to confidently
identify Za candidates. Any candidates lacking tyrosine and
asparagine were categorized as Za-like, given their alignment
with other defining characteristics. SMART software also out-
puts structure primary sequence homologs of known in the
protein data bank (PDB) or blast with known SCOPs (structural
classification of proteins) of the Za, for example, d1qbja (52).
6 J. Biol. Chem. (2024) 300(8) 107504
Finally, to strengthen the Za prediction, a structure prediction
using AlphaFold (26, 53) confirms the winged helix-turn-helix
fold superposable with the crystallized Za available with the
PDBs using UCSF ChimeraX (54). With the predicted 3D
structures, we performed a 3D-BLAST search (55) to confirm
that the best hits are entries corresponding to the Za domain.
Figures 1A and S3 were created with BioRender.com.

http://BioRender.com
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Sequence source and annotation

Most of the giant viruses used in our analysis were identified
in our metagenomic analysis performed in samples from
different biotopes (S2) (28). We also included other giant vi-
ruses identified in other studies such as Pithovirus (29) and
Marseillesvirus (30). The sequencing of the full viral genome or
the viral genome fragment covering the coding sequence of the
ZBP allowed the complete identification of the open reading
frame corresponding to the ZBP. For the other organisms, the
ZBPs are annotated at the PDB genomic level and (protein and
mRNA level for Micromonas pusilla (56). Za domain sequence
and the ID numbers of ZBPs are listed in Table S6.

Phylogenetic analysis

Novel Za and Za-like domain sequences were clustered at
40% identity using cd-hit (57) and the resulting cluster repre-
sentative sequences were aligned using mafft-linsi (version
7.505) (58). We used the hmmbuild (version 3.3.2, hmmer.org)
to create a profile hidden Markov model from the represen-
tative sequence alignment and then used it as a query for the
hmmsearch program (version 3.3.2, hmmer.org) on the NCBI
nr database (59). Protein sequences that had an overall e-value
<0.005 and contained at least one domain with length ≥ 60
amino acids were considered as significant hits to the model.
Then we de-replicated the protein sequences with significant
hits with cd-hit at 90% identity and an alignment length
covering at least 60% the length of the longer sequence (-aL
0.6). The representative protein sequences were aligned
together with Za containing sequences from the viral phylum
Nucleocytoviricota using the mafft FFT-NS-2 method (58). The
alignment was trimmed with trimal with the -gt 0.1 option (60).
A protein tree was built using IQ-Tree (version 1.6.12) (61)
with 1000 ultra fast bootstrap replicates (62) and the JTT+R10
model, which was selected with the ModelFinder feature in IQ-
Tree (63). The tree was visualised using iToL (64).

To build the giant virus species tree the nsgtree pipeline was
used (https://github.com/NeLLi-team/nsgtree) on representa-
tive genome of the viral phylum Nucleocytoviricota (65) and
additional GVMAGs that contained proteins with a Za domain.
In brief, 7 giant virus orthologous groups (GVOGs) were iden-
tified using hmmsearch (version 3.1/b2, hmmer.org), extracted
GVOGs were aligned with mafft (version 7.31) (58), trimmed
with trimal (-gt 0.1, v1.4) and concatenated. A species tree was
built from the supermatrix alignment using IQ-Tree (version
2.03) (66) with LG+F + I + G4 and visualized in iToL (64).

Protein expression and purification

The Za domains from Homo sapiens ADAR1, L. pasteurii,
L. dextrinicus, giant virus (IMGM3300021083 and
GCA_003814225–1) were cloned into the pet-28a(+) plasmid
(N-terminal 6x His-tag and thrombin cleavage site between
His tag and the Za sequence). The plasmids were transformed
and expressed in BL21(DE3) E. coli cells. The cell cultures
were grown in Luria Broth (LB) to an OD600 of �0.4 and
induced with IPTG to a final concentration of 1 mM and
allowed to express Za for 4 h at 37 �C, then centrifuged to
collect the cell pellets. Cell pellets were resuspended in lysis
buffer (50 mM Tris-HCl (pH 8.0), 300 mM NaCl, 10 mM
imidazole, 1 mM BME) and sonicated. Lysate was centrifuged
and the supernatant was applied to a His-trap column, (50 mM
Tris-HCl (pH 8.0), 1 M NaCl, 10 mM imidazole, 1 mM BME),
and eluted in 20 ml of elution buffer washed with 40 ml of lysis
buffer, 80 ml of wash buffer (50 mM Tris-HCl (pH 8.0),
300 mM NaCl, 500 mM imidazole, 1 mM BME). The eluents
were concentrated to �2 ml and applied to a HiLoad 16/600
Superdex 200 prep grade Gel Filtration Column (GE Health-
care) and the peak corresponding to pure protein (which elutes
at �80 ml in 20 mM potassium phosphate (pH 6.4), 300 mM
NaCl) was collected and concentrated using an Amicon 3 kDa
cutoff centrifugal filter (Millipore-Sigma, Burlington, MA). Za
was dialyzed and concentrated into 20 mM potassium phos-
phate (pH 6.4), 25 mM, 0.5 mM EDTA and concentrated to
�2 mM using an Amicon 3 kDa cutoff centrifugal filter
(Millipore-Sigma). Subsequent dilutions were made in 20 mM
potassium phosphate (pH 6.4), 25 mM, 0.5 mM EDTA as
needed for the different experiments. We confirmed that all
recombinant proteins were free of contaminating nucleic acid
(Fig. S5).

DNA and RNA constructs and preparation

The d(CpG)3, d(CpG)6, and d(5mCpG)3 constructs were
synthesized by Integrated DNA Technologies. The r(CpG)3
construct was synthesized by Dharmacon (a part of Horizon
Discovery). The 8mG4 d(CpG)3 construct was synthesized by
the Yale School of Medicine oligo synthesis resource. All
nucleic acid constructs in this study were heat annealed prior
to use at 95 �C for 5 minutes followed by slow cooling at room
temperature for 30 min. For circular dichroism (CD) mea-
surements, all of the constructs were 50 mM in 20 mM po-
tassium phosphate, 25 mM NaCl (pH 6.4), 0.5 mM EDTA, or
the same buffer but with 6 M NaClO4 or a 1:6 M ratio of
nucleic acid:Za.

Circular dichroism

All CD measurements were collected using a JASCO J-815
CD spectrometer (run using Spectra Manager version 2
(JASCO)) in a 0.1 cm quartz cuvette. Z-form adoption by high-
salt and Za binding was carried out by incubating the con-
structs in 6M NaClO4 or with saturating amounts of Za at a
1:6 M ratio of nucleic acid:Za for 1 h at 42 �C before cooling to
25 �C and measuring. Spectra were collected in 1-nm steps
from 320 to 220 nm with an average of two scans. All mea-
surements with unmodified nucleic acids as well as
d(5mCpG)3 and 8mG4 r(CpG)3 were conducted twice, and the
profiles shown in Figure 3 overlaid with profiles from second
independent measurements are provided in Fig. S4. All
duplicate profiles confirmed the high reproducibility of the
measurements.

Conclusion

In summary, our study employed a computational com-
bined with an experimental approach that enabled the
J. Biol. Chem. (2024) 300(8) 107504 7
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identification of potential Za-containing proteins across
various organisms. These ZBPs open up new avenues in
studies of Za domains and Z-nucleic acids in virus sensing and
innate immunity. The domain architectures within predicted
Z-DNA binding proteins imply that they potentially serve
functions distinct from those currently attributed to the
known ZBPs (Fig. S3). These functions could be conserved in
mammals but in the form of synergy between a ZBP and
another protein like the cooperative function between
ADAR1p150 and DHX9 (67). Furthermore, our experimental
validation of two Za-containing proteins confirms not only
their presence in currently uncultivated giant viruses but also
their functionality. Our findings open new questions regarding
the role of Za domains in these giant viruses and suggest that
the interplay between ZBPs/Z-nucleic acid is an evolutionarily
ancient feature as shown for the cGAS/STING pathway (68). It
is tempting to speculate that the ZBPs we predicted in giant
viruses and early diverging metazoan could be involved in an
ancient pathogen detection mechanism that could provide
functional and evolutionary insight into innate immune
signaling pathways in animals. Our validation results under-
score the need for heightened caution in Za domain predic-
tion. We demonstrate that the mere detection of a Za domain
by prediction tools or the observation of structural similarities
between predicted wHTH and crystallized Za domains fall
short of substantiating experimental B(A)-to-Z conversion or
Z-nucleic acid-binding. These findings emphasize that the
ability to bind to Z-nucleic acid should be the definitive cri-
terion for establishing a wHTH as a true Za domain.

In our study, we focused on validating the Za and Za-like
domains found mainly in multi-domain proteins. Although we
demonstrate that wHTH domains we classify as Za-like
cannot bind Z-nucleic acid nor convert B-to-Z, we cannot
exclude the possibility that the proteins with Za-like domains
may still be involved in Z-nucleic biology. This is because
other proteins lacking Za domains have been found to bind Z-
DNA (69) or play a role in regulating Z-RNA sensing (70).
Data availability
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