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Abstract

Clusters and Features from Combinatorial Stochastic Processes

by

Tamara Ann Broderick

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Michael I. Jordan, Chair

Clustering involves placing entities into mutually exclusive categories. We wish to relax
the requirement of mutual exclusivity, allowing objects to belong simultaneously to multiple
classes, a formulation that we refer to as “feature allocation.” The first step is a theoretical
one. In the case of clustering the class of probability distributions over exchangeable parti-
tions of a dataset has been characterized (via exchangeable partition probability functions
and the Kingman paintbox). These characterizations support an elegant nonparametric
Bayesian framework for clustering in which the number of clusters is not assumed to be
known a priori. We establish an analogous characterization for feature allocation; we define
notions of “exchangeable feature probability functions” and “feature paintboxes” that lead
to a Bayesian framework that does not require the number of features to be fixed a priori.
We focus on particular models within this framework that are both practical for inference
and provide desirable modeling properties. And we explore a further generalization to fea-
ture allocations where objects may exhibit any non-negative integer number of features, or
traits.

The second step is a computational one. Rather than appealing to Markov chain Monte
Carlo for Bayesian inference, we develop a method to transform Bayesian methods for feature
allocation (and other latent structure problems) into optimization problems with objective
functions analogous to K-means in the clustering setting. These yield approximations to
Bayesian inference that are scalable to large inference problems.
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Chapter 1

Introduction

The continued growth of Bayesian statistics may be attributed to the flexibility of hierarchical
modeling and the coherent treatment of uncertainty this paradigm facilitates. Despite the
successes of Bayesian statistics, its classical use is situated firmly in a small data world;
Markov chain Monte Carlo sampling is often too slow for posterior calculation on modern,
massive data sets, and finite-dimensional prior distributions are not able to accommodate
the inevitable growth in complexity that comes with significant growth in data size.

Bayesian nonparametrics is the area of Bayesian analysis in which the finite-dimensional
prior distributions of classical Bayesian analysis are replaced with stochastic processes. One
may view Bayesian nonparametrics as supplying modelers with a richer collection of distri-
butions with which to express prior belief. In practice, however, the field has been dominated
by two stochastic processes—the Gaussian process and the Dirichlet process—and thus the
flexibility promised by the nonparametric approach has arguably not yet been delivered.

This manuscript provides a broader perspective on the kinds of stochastic processes that
populate a toolbox for Bayesian nonparametric analysis. In Part I, we see how combinatorial
stochastic processes embody mathematical structure that is useful for both model specifica-
tion and inference. For instance, a significant body of literature develops prior distributions
for clustering, where each data point can belong to one and only one group, called a cluster.
Chapter 2 introduces an extension of clustering called a feature allocation, where each data
point can belong to any non-negative integer number of groups, now called features. There
are a number of practical examples: each member of a social network might belong to mul-
tiple friend groups; each document in a corpus might best be described by multiple themes,
or topics; and a customer’s purchases might correspond to multiple interests.

With flexible, nonparametric models for these problems in place (Part I), we can focus
on computationally scalable inference. Part II demonstrates how to retain the strengths of
the Bayesian paradigm and nonparametric analysis while simultaneously enabling fast, and
even streaming, inference on large data sets.

We begin in Chapter 2 by noting that a number of disparate representations of clustering
models have been used in proofs and inference. A key concept in our analysis is exchangeabil-
ity, which expresses the assumption that any particular order in which data points are seen
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is irrelevant for inference. Kingman (1978) has shown that the distribution of any random,
exchangeable clustering is equivalent to the distribution of a construction of the following
type: first draw a random partition (potentially countably infinite) of the unit interval, then
draw cluster belonging for each data point with distribution given by this partition, called
the Kingman paintbox. Pitman (1995) has further shown that—given a random, exchange-
able clustering—the probability of any configuration depends only on the cluster sizes, via a
function called the exchangeable partition probability function (EPPF). Both representations
are useful in defining and evaluating new clustering models.

We review how these representations can be viewed as sequential augmentations from
simple distributions over partitions (EPPFs) to cluster frequencies (the sizes of the partition
intervals in Kingman’s paintbox) to subordinators and completely random measures, which
associate a general class of labels with the stick lengths and whose labels we typically use as
cluster-specific parameters in likelihood models (Broderick, Jordan, and Pitman, 2013). We
show how an analogous augmentation regime can be built up for feature frequency models:
from simple distributions over feature allocations to feature frequencies to a (different) class
of subordinators and completely random measures. We discuss implications of each repre-
sentation for tractable inference and provide running examples of the Dirichlet process (for
clustering) and the beta process (for feature modeling).

In Chapter 3, we focus more deeply on the beta process model. Choosing a Bayesian
prior often amounts to choosing the most tractable model for inference that satisfies known
properties of the model. The beta process provides a prior on an unbounded and unknown
number of feature frequencies while also allowing tractable inference. However, power laws
are often observed in real-world data sets; e.g., we expect, from empirical evidence, that the
number of features in a data set will grow as a fixed (but typically unknown) power of the
size of the data set. We define a three-parameter beta process (3BP) as a generalization of
the beta process (Broderick, Jordan, and Pitman, 2012). We show that the 3BP exhibits
many of the same traits that allow straightforward inference in the beta process. We further
prove, and demonstrate via simulation, that the 3BP almost surely exhibits desired power
laws. We show the usefulness of this construction by developing a Markov chain Monte Carlo
(MCMC) inference scheme and learning a factor model in a computer vision experiment.

Chapter 4 takes the generalization from clustering models to feature models one step
further. We define an extension to the feature modeling framework where each data point
may belong any non-negative integer amount to any non-negative integer number of features
(not just 0 or 1 as in vanilla feature modeling) (Broderick, Mackey, et al., 2014). For
instance, we might want to assign multiple words in a document to a topic (e.g., economics,
the arts, sports) or multiple patches in an image to an object class (e.g., grass, sky, car). We
propose a beta process model with negative binomial likelihood. We prove the conjugacy of
these stochastic processes and provide a power-law extension. We develop MCMC inference
and demonstrate the model’s applicability in segmenting images and analyzing documents
through topic identification.

In the remaining chapters of Part I, we examine the space of potential Bayesian non-
parametric models in more depth. In Chapter 5, we show that all exchangeable feature
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allocations have distribution equivalent to a feature paintbox construction. Moreover, we
define both (1) an exchangeable feature probability function (EFPF) and (2) feature frequency
models (Broderick, Jordan, and Pitman, 2013; Broderick, Pitman, and Jordan, 2013). The
EFPF is similar to the EPPF though now with an explicit dependence on the data set size.
A feature frequency model is characterized as having distribution equivalent to the following
construction: draw each feature for each data point as an independent, Bernoulli random
variable conditioned on some underlying, random, feature-specific frequency. We show that
the distributions with EFPFs are exactly the feature frequency models. While one might
initially think of feature models as analogous to cluster models, our results situate feature
frequency models and clusterings as analogous subclasses of feature models. With these
results, we bring the same completeness to feature allocation characterizations as clustering
characterizations.

In Chapter 6, we focus on completely random measures (CRMs) as a particular way
to generate feature frequencies, not just for feature allocations but more generally for the
case where each data point may exhibit features with a non-negative integer multiplicity
(cf. Chapter 4) (Broderick, Wilson, and Jordan, 2014). We demonstrate how to calculate
posteriors for general CRM-based priors and likelihoods for Bayesian nonparametric models.
Motivated by conjugate priors based on exponential family representations of likelihoods,
we introduce a notion of exponential families for CRMs, which we call exponential CRMs.
This construction allows us to specify automatic Bayesian nonparametric conjugate priors
for exponential CRM likelihoods. We demonstrate that our exponential CRMs allow par-
ticularly straightforward recipes for size-biased and marginal representations of Bayesian
nonparametric models.

The focus of Part I is elucidation of a wide range of models, reflecting known desiderata
for various generalizations of clustering. Part II aims more specifically at performing scal-
able inference in the modern Big Data context while maintaining strengths of the Bayesian
paradigm, such as flexible hierarchical modeling.

One particular challenge arising from large datasets is streaming data, where we assume
computer memory can hold only fixed-size data subsets and that data, once processed, cannot
be revisited. We address this challenge while taking advantage of modern distributed com-
puting architectures in Chapter 7 by developing SDA-Bayes, a framework for (S)treaming,
(D)istributed, (A)synchronous computation of a Bayesian posterior (Broderick, Boyd, et
al., 2013). The framework takes advantage of the naturally streaming nature of iterative
Bayesian posterior calculation to make streaming updates to the estimated posterior accord-
ing to a user-specified approximation batch primitive. We demonstrate the usefulness of
our framework on an unsupervised topic learning task with two corpuses: Wikipedia (over
3M documents) and the journal Nature (over 300K documents). We use latent Dirichlet
allocation (LDA) as a model for assigning documents to topics. We use variational Bayes
(VB), a popular and fast posterior approximation method, as the primitive. We demon-
strate that our algorithm, though taking only streaming data, performs as well as a popular
non-streaming algorithm for learning LDA with VB.

There are certain trade-offs involved in using VB—and further our streaming, distributed
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approximation—to approximate a Bayesian posterior. In our MAD-Bayes (MAP-based
Asymptotic Derivation from Bayes) framework (Chapter 8), though, we consider a more
radical trade-off (Broderick, Kulis, and Jordan, 2013). Recognizing the scalability and ease-
of-use of K-means, we take limits of Bayesian posteriors to invent novel K-means-like ob-
jective functions and algorithms. In particular, the classical mixture of Gaussians model
is related to K-means via small variance asymptotics : as the covariances of the Gaussians
tend to zero, the negative log-likelihood of the mixture of Gaussians model approaches the
K-means objective, and the EM algorithm approaches the K-means algorithm. We instead
consider applying small-variance asymptotics directly to the posterior in Bayesian nonpara-
metric models. This framework is independent of any specific Bayesian inference algorithm
and generalizes to a range of models. To illustrate, we apply our framework to feature
learning, where the beta process provides an appropriate Bayesian nonparametric prior.
We obtain novel objective functions and algorithms, all of which are scalable and simple
to implement. Empirical results in computer vision demonstrate the benefits of the new
framework.
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Part I

Models, connections, and inference
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Chapter 2

Cluster and feature modeling from
combinatorial stochastic processes

One of the focal points of the modern literature on Bayesian nonparametrics has been the
problem of clustering, or partitioning, where each data point is modeled as being associated
with one and only one of some collection of groups called clusters or partition blocks. Un-
derlying these Bayesian nonparametric models are a set of interrelated stochastic processes,
most notably the Dirichlet process and the Chinese restaurant process. In this chapter we
provide a formal development of an analogous problem, called feature modeling, for associat-
ing data points with arbitrary non-negative integer numbers of groups, now called features
or topics. We review the existing combinatorial stochastic process representations for the
clustering problem and develop analogous representations for the feature modeling prob-
lem. These representations include the beta process and the Indian buffet process as well as
new representations that provide insight into the connections between these processes. We
thereby bring the same level of completeness to the treatment of Bayesian nonparametric
feature modeling that has previously been achieved for Bayesian nonparametric clustering.

2.1 Introduction

Bayesian nonparametrics is the area of Bayesian analysis in which the finite-dimensional prior
distributions of classical Bayesian analysis are replaced with stochastic processes. While the
rationale for allowing infinite collections of random variables into Bayesian inference is often
taken to be that of diminishing the role of prior assumptions, it is also possible to view
the move to nonparametrics as supplying the Bayesian paradigm with a richer collection of
distributions with which to express prior belief, thus in some sense emphasizing the role of
the prior. In practice, however, the field has been dominated by two stochastic processes—
the Gaussian process and the Dirichlet process—and thus the flexibility promised by the
nonparametric approach has arguably not yet been delivered. In the current chapter we
aim to provide a broader perspective on the kinds of stochastic processes that can provide a
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useful toolbox for Bayesian nonparametric analysis. Specifically, we focus on combinatorial
stochastic processes as embodying mathematical structure that is useful for both model
specification and inference.

The phrase “combinatorial stochastic process” comes from probability theory (Pitman,
2006), where it refers to connections between stochastic processes and the mathematical field
of combinatorics. Indeed, the focus in this area of probability theory is on random versions
of classical combinatorial objects such as partitions, trees, and graphs—and on the role of
combinatorial analysis in establishing properties of these processes. As we wish to argue,
this connection is also fruitful in a statistical setting. Roughly speaking, in statistics it is
often natural to model observed data as arising from a combination of underlying factors. In
the Bayesian setting, such models are often embodied as latent variable models in which the
latent variable has a compositional structure. Making explicit use of ideas from combinatorics
in latent variable modeling can not only suggest new modeling ideas but can also provide
essential help with calculations of marginal and conditional probability distributions.

The Dirichlet process already serves as one interesting exhibit of the connections between
Bayesian nonparametrics and combinatorial stochastic processes. On the one hand, the
Dirichlet process is classically defined in terms of a partition of a probability space (Ferguson,
1973), and there are many well-known connections between the Dirichlet process and urn
models (Blackwell and MacQueen, 1973; Hoppe, 1984). In the current chapter, we will review
and expand upon some of these connections, beginning our treatment (non-traditionally)
with the notion of an exchangeable partition probability function (EPPF) and, from there,
discussing related urn models, stick-breaking representations, subordinators, and random
measures.

On the other hand, the Dirichlet process is limited in terms of the statistical notion
of “combination of underlying factors” that we referred to above. Indeed, the Dirichlet
process is generally used in a statistical setting to express the idea that each data point is
associated with one and only one underlying factor. In contrast to such clustering models,
we wish to also consider featural models, where each data point is associated with a set
of underlying features and it is the interaction among these features that gives rise to an
observed data point. Focusing on the case in which these features are binary, we develop
some of the combinatorial stochastic process machinery needed to specify featural priors.
Specifically, we develop a counterpart to the EPPF, which we refer to as the exchangeable
feature probability function (EFPF), that characterizes the combinatorial structure of certain
featural models. We again develop connections between this combinatorial function and
suite of related stochastic processes, including urn models, stick-breaking representations,
subordinators, and random measures. As we will discuss, a particular underlying random
measure in this case is the beta process, originally studied by Hjort (1990) as a model of
random hazard functions in survival analysis, but adapted by Thibaux and Jordan (2007)
for applications in featural modeling.

For statistical applications it is not enough to develop expressive prior specifications,
but it is also essential that inferential computations involving the posterior distribution
are tractable. One of the reasons for the popularity of the Dirichlet process is that the
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associated urn models and stick-breaking representations yield a variety of useful inference
algorithms (Neal, 2000). As we will see, analogous algorithms are available for featural
models. Thus, as we discuss each of the various representations associated with both the
Dirichlet process and the beta process, we will also (briefly) discuss some of the consequences
of each for posterior inference.

The remainder of the chapter is organized as follows. We start by reviewing partitions
and introducing feature allocations in Section 2.2 in order to define distributions over these
models (Section 2.3) via the EPPF in the partition case (Section 2.3) and the EFPF in the
feature allocation case (Section 2.3). Illustrating these exchangeable probability functions
with examples, we will see that the well-known Chinese restaurant process (CRP) (Aldous,
1985) corresponds to a particular EPPF choice (Example 2.3.1) and the Indian buffet pro-
cess (IBP) (Griffiths and Ghahramani, 2006) corresponds to a particular choice of EFPF
(Example 2.3.5). From here, we progressively build up richer models by first reviewing stick
lengths (Section 2.4), which we will see represent limiting frequencies of certain clusters or
features, and then subordinators (Section 2.5), which further associate a random label with
each cluster or feature. We illustrate these progressive augmentations for both the CRP (Ex-
amples 2.3.1, 2.3.6, 2.4.3, 2.5.7, and 2.5.9) and IBP examples (Examples 2.3.5, 2.3.7, 2.4.4,
and 2.5.4). We augment the model once more to obtain a random measure on a general
space of cluster or feature parameters in Section 2.6, and discuss how marginalization of this
random measure yields the CRP in the case of the Dirichlet process (Example 2.6.1), and
the IBP in the case of the beta process (Example 2.6.2). Finally, in Section 2.7, we mention
some of the other combinatorial stochastic processes, beyond the Dirichlet process and the
beta process, that have begun to be studied in the Bayesian nonparametrics literature, and
we provide suggestions for further developments.

2.2 Partitions and feature allocations

While we have some intuitive ideas about what constitutes a cluster or feature model, we
want to formalize these ideas before proceeding. We begin with the underlying combinatorial
structure on the data indices. We think of [N ] := {1, . . . , N} as representing the indices of
the first N data points. There are different groupings that we apply in the cluster case
(partitions) and feature case (feature allocations); we describe these below.

First, we wish to describe the space of partitions over the indices [N ]. In particular, a
partition πN of [N ] is defined to be a collection of mutually exclusive, exhaustive, non-empty
subsets of [N ] called blocks; that is, πN = {A1, . . . , AK} for some number of partition blocks
K. An example partition of [6] is π6 = {{1, 3, 4}, {2}, {5, 6}}. Similarly, a partition of
N = {1, 2, . . .} is a collection of mutually exclusive, exhaustive, non-empty subsets of N. In
this case, the number of blocks may be infinite, and we have πN = {A1, A2, . . .}. An example
partition of N into two blocks is {{n : n is even}, {n : n is odd}}.

We introduce a generalization of a partition called a feature allocation that relaxes both
the mutually exclusive and exhaustive restrictions. In particular, a feature allocation fN of
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[N ] is defined to be a multiset of non-empty subsets of [N ], again called blocks, such that
each index n can belong to any finite number of blocks. Note that the constraint that no
index belong to infinitely many blocks coincides with our intuition for the meaning of these
blocks as groups to which the index belongs. Consider an example where the data points
are images expressed as pixel arrays, and the latent features represent animals that may or
may not appear in each picture. It is impossible to display an infinite number of animals in
a picture with finitely many pixels.

We write fN = {A1, . . . , AK} for some number of feature allocation blocksK. An example
feature allocation of [6] is f6 = {{2, 3}, {2, 4, 6}, {3}, {3}, {3}}. Just as the blocks of a
partition are sometimes called clusters, so are the blocks of a feature allocation sometimes
called features. We note that a partition is always a feature allocation, but the converse
statement does not hold in general; for instance, f6 given above is not a partition.

In the remainder of this section, we continue our development in terms of feature allo-
cations since partitions are a special case of the former object. We note that we can extend
the idea of random partitions (Aldous, 1985) to consider random feature allocations. If FN
is the space of all feature allocations of [N ], then a random feature allocation FN of [N ] is a
random element of this space.

We next introduce a few useful assumptions on our random feature allocation. Just as
exchangeability of observations is often a central assumption in statistical modeling, so will
we make use of exchangeable feature allocations. To rigorously define such feature allocations,
we introduce the following notation. Let σ : N → N be a finite permutation. That is, for
some finite value Nσ, we have σ(n) = n for all n > Nσ. Further, for any block A ⊂ N,
denote the permutation applied to the block as follows: σ(A) := {σ(n) : n ∈ A}. For any
feature allocation FN , denote the permutation applied to the feature allocation as follows:
σ(FN) := {σ(A) : A ∈ FN}. Finally, let FN be a random feature allocation of [N ]. Then we

say that FN is exchangeable if FN
d
= σ(FN) for every finite permutation σ.

Our second assumption in what follows will be that we are dealing with a consistent
feature allocation. We often implicitly imagine the indices arriving one at a time: first 1,
then 2, up to N or beyond. We will find it useful, similarly, in defining random feature
allocations to suppose that the randomness at stage n somehow agrees with the randomness
at stage n+ 1. More formally, we say that a feature allocation fM of [M ] is a restriction of
a feature allocation fN of [N ] for M < N if

fM = {A ∩ [M ] : A ∈ fN}.

Let RN(fM) be the set of all feature allocations of [N ] whose restriction to [M ] is fM . Then
we say that the sequence of random feature allocations (Fn) is consistent if for all M and N
such that M < N , we have that

FN ∈ RN(FM) a.s. (2.1)

With this consistency condition in hand, we can define a random feature allocation F∞
of N. In particular, such a feature allocation is characterized by the sequence of consistent
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finite restrictions FN to [N ]: FN := {A ∩ [N ] : A ∈ F∞}. Then F∞ is equivalent to a
consistent sequence of finite feature allocations and may be thought of as a random element
of the space of such sequences: F∞ = (Fn)n. We let F∞ denote the space of consistent
feature allocations, of which each random feature allocation is a random element, and we
see that the sigma-algebra associated with this space is generated by the finite-dimensional
sigma-algebras of the restricted random feature allocations Fn.

We say that F∞ is exchangeable if F∞
d
= σ(F∞) for every finite permutation σ. That is,

when the permutation σ changes no indices above N , we require FN
d
= σ(FN), where FN

is the restriction of F∞ to [N ]. A characterization of distributions for F∞ is provided by
Broderick, Pitman, and Jordan (2013), where a similar treatment of the introductory ideas
of this section also appears.

In what follows, we consider particular useful ways of representing distributions for ex-
changeable, consistent random feature allocations with emphasis on partitions as a special
case.

2.3 Exchangeable probability functions

Once we know that we can construct (exchangeable and consistent) random partitions and
feature allocations, it remains to find useful representations of distributions over these ob-
jects.

Exchangeable partition probability function

Consider first an exchangeable, consistent, random partition (Πn). By the exchangeability
assumption, the distribution of the partition should depend only on the (unordered) sizes
of the blocks. Therefore, there exists a function p that is symmetric in its arguments such
that, for any specific partition assignment πn = {A1, . . . , AK}, we have

P(Πn = πn) = p(|A1|, . . . , |AK |). (2.2)

The function p is called the exchangeable partition probability function (EPPF) (Pitman,
1995).

Example 2.3.1 (Chinese restaurant process). The Chinese restaurant process (CRP) (Black-
well and MacQueen, 1973) is an iterative description of a partition via the conditional dis-
tributions of the partition blocks to which increasing data indices belong. The Chinese
restaurant metaphor forms an equivalence between customers entering a Chinese restaurant
and data indices; customers who share a table at the restaurant represent indices belonging
to the same partition block.

To generate the label for the first index, the first customer enters the restaurant and sits
down at some table, necessarily unoccupied since no one else is in the restaurant. A “dish” is
set out at the new table; call the dish “1” since it is the first dish. The customer is assigned
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Figure 2.1: The diagram represents a possible CRP seating arrangement after 11 customers
have entered a restaurant with parameter θ. Each large white circle is a table, and the smaller
gray circles are customers sitting at those tables. If a 12th customer enters, the expressions in
the middle of each table give the probability of the new customer sitting there. In particular,
the probability of the 12th customer sitting at the first table is 5/(11+θ), and the probability
of the 12th customer forming a new table is θ/(11 + θ).

the label of the dish at her table: Z1 = 1. Recursively, for a restaurant with concentration
parameter θ, the nth customer sits at an occupied table with probability in proportion to
the number of people at the table and at a new table with probability proportional to θ. In
the former case, Zn takes the value of the existing dish at the table, and in the latter case,
the next available dish k (equal to the number of existing tables plus one) appears at the
new table, and Zn = k. By summing over all possibilities when the nth customer arrives,
one obtains the normalizing constant for the distribution across potential occupied tables:
(n− 1 + θ)−1. An example of the distribution over tables for the nth customer is shown in
Figure 2.1. To summarize, if we let Kn := max{Z1, . . . , Zn}, then the distribution of table
assignments for the nth customer is

P(Zn = k|Z1, . . . , Zn−1)

= (n− 1 + θ)−1

{
#{m : m < n,Zm = j} for j ≤ Kn−1

θ for k = Kn−1 + 1
(2.3)

We note that an equivalent generative description follows a Pólya urn style in specifying
that each incoming customer sits next to an existing customer with probability proportional
to 1 and forms a new table with probability proportional to θ (Hoppe, 1984).

Next, we find the probability of the partition induced by considering the collection of
indices sitting at each table as a block in the partition. Suppose that Nk individuals sit at
table k so that the set of cardinalities of non-zero table occupancies is {N1, . . . , NK} with
N :=

∑K
k=1Nk. That is, we are considering the case when N customers have entered the

restaurant and sat at K different tables in the specified configuration.
We can see from Eq. (2.3) that when the nth customer enters (n > 1), we obtain a factor

of n − 1 + θ in the denominator. Using the following notation for the rising and falling
factorial

xM↑a :=
M−1∏

m=0

(x+ma), xM↓a :=
M−1∏

m=0

(x−ma),
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we find a factor of (θ + 1)N−1↑1 must occur in the denominator of the probability of the
partition of [N ]. Similarly, each time a customer forms a new table except for the first table,
we obtain a factor of θ in the numerator. Combining these factors, we find a factor of θK−1

in the numerator. Finally, each time a customer sits at an existing table with n occupants,
we obtain a factor of n in the numerator. Thus, for each table k, we have a factor of (Nk−1)!
once all customers have entered the restaurant.

Having collected all terms in the process, we see that the probability of the resulting
configuration is:

P(ΠN = πN) =
θK−1

∏K
k=1(Nk − 1)!

(θ + 1)N−1↑1
. (2.4)

We first note that Eq. (2.4) depends only on the block sizes and not on the order of arrival
of the customers or dishes at the tables. We conclude that the partition generated according
to the CRP scheme is exchangeable. Moreover, as the partition ΠM is the restriction of ΠN

to [M ] for any N > M by construction, we have that Eq. (2.4) satisfies the consistency
condition. It follows that Eq. (2.4) is, in fact, an EPPF. �

Exchangeable feature probability function

Just as we considered an exchangeable, consistent, random partition above, so we now turn
to an exchangeable, consistent, random feature allocation (Fn) now. Let fN = {A1, . . . , AK}
be any particular feature allocation. In calculating P(FN = fN), we start by demonstrating
in the next example that this probability in some sense undercounts features when they
contain exactly the same indices: e.g., Aj = Ak for some j 6= k. For instance, consider the
following example.

Example 2.3.2 (A two-block, Bernoulli feature allocation). Let qA, qB ∈ (0, 1) represent

the frequencies of features A and B. Draw ZA,n
iid∼ Bern(qA) and ZB,n

iid∼ Bern(qB), indepen-
dently. Construct the random feature allocation by collecting those indices with successful
draws:

FN := {{n : n ≤ N,ZA,n = 1}, {n : n ≤ N,ZB,n = 1}}.
Then the probability of the feature allocation F5 = f5 := {{2, 3}, {2, 3}} is

q2
A(1− qA)3q2

B(1− qB)3,

but the probability of the feature allocation F5 = f ′5 := {{2, 3}, {2, 5}} is

2q2
A(1− qA)3q2

B(1− qB)3.

The difference is that in the latter case the features can be distinguished, and so we must
account for the two possible pairings of features to frequencies {qA, qB}.

Now, instead, let F̃N be FN with a uniform random ordering on the features. There is
just a single possible ordering of f5, so the probability of F̃5 = f̃5 := ({2, 3}, {2, 3}) is again

q2
A(1− qA)3q2

B(1− qB)3.
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However, there are two orderings of f ′5, so the probability of F̃5 = f̃ ′5 := ({2, 5}, {2, 3}) is

q2
A(1− qA)3q2

B(1− qB)3,

and the same holds for the other ordering. �

For reasons suggested by the previous example, we will find it useful to work with the
random feature allocation after uniform random ordering, F̃N . One way to achieve such
an ordering and maintain consistency across different N is to associate some independent,
continuous random variable with each feature; e.g. assign a uniform random variable on
[0, 1] to each feature and order the features according to the order of the assigned random
variables. When we view feature allocations constructed as marginals of a subordinator in
Section 2.5, we will see that this construction is natural.

In general, given a probability of a random feature allocation, P(FN = fN), we can find
the probability of a random ordered feature allocation, P(F̃N = f̃N) as follows. Let H be the
number of unique elements of FN , and let (K̃1, . . . , K̃H) be the multiplicities of these unique
elements in decreasing size. Then

P(F̃N = f̃N) =

(
K

K̃1, . . . , K̃H

)−1

P(FN = fN), (2.5)

where (
K

K̃1, . . . , K̃H

)
:=

K!

K̃1! · · · K̃H !
.

We will see in Section 2.5 that augmentation of an exchangeable partition with a random
ordering is also natural. However, the probability of an ordered random partition is not sub-
stantively different from the probability of an unordered version since the factor contributed
by ordering a partition is always 1/K!, where K here is the number of partition blocks.

With this framework in place, we can see that some ordered feature allocations have a
probability function p nearly as in Eq. (2.2) that is, moreover, symmetric in its block-size
arguments. Consider again the previous example.

Example 2.3.3 (A two-block, Bernoulli feature allocation (continued)). Consider any FN
with block sizes N1 and N2 constructed as in Example 2.3.2. Then

P(F̃N = f̃N) =
1

2
qN1
A (1− qA)N−N1qN2

B (1− qB)N−N2

+
1

2
qN2
A (1− qA)N−N2qN1

B (1− qB)N−N1

= p(N,N1, N2), (2.6)

where p is some function of the number of indices N and the block sizes (N1, N2) that we
note is symmetric in all arguments after the first. In particular, we see that the order of N1

and N2 was immaterial. �
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We note that in the partition case,
∑K

k=1 |Ak| = N , so N is implicitly an argument to
the EPPF. In the feature case, this summation condition no longer holds, so we make the
argument N explicit in Eq. (2.6).

However, it is not necessarily the case that such a function, much less a symmetric one,
exists for exchangeable feature models—in contrast to the case of exchangeable partitions
and the EPPF.

Example 2.3.4 (A general two-block feature allocation). We here describe an exchangeable,
consistent random feature allocation whose (ordered) distribution does not depend only on
the number of indices N and the sizes of the blocks of the feature allocation.

Let p1, p2, p3, p4 be fixed frequencies that sum to one. Let Yn represent the collection of
features to which index n belongs. For n ∈ {1, 2}, choose Yn independently and identically
according to:

Yn =





{A} with probability p1

{B} with probability p2

{A,B} with probability p3

∅ with probability p4

.

We form a feature allocation from these labels as follows. For each label (A or B), collect
those indices n with the given label appearing in Yn to form a feature.

Now consider two possible outcome feature allocations: f2 = {{2}, {2}}, and f ′2 =
{{1}, {2}}. The likelihood of any random ordering f̃2 of f2 under this model is

P(F̃2 = f̃2) = p0
1 p

0
2 p

1
3 p

1
4.

The likelihood of any ordering f̃ ′2 of f ′ is

P(F̃2 = f̃ ′2) = p1
1 p

1
2 p

0
3 p

0
4.

It follows from these two likelihoods that we can choose values of p1, p2, p3, p4 such that
P(F̃2 = f̃2) 6= P(F̃2 = f̃ ′2). But f̃2 and f̃ ′2 have the same block counts and N value (N = 2).
So there can be no such symmetric function p, as in Eq. (2.6), for this model. �

When a function p exists in the form

P(F̃N = f̃N) = p(N, |A1|, . . . , |AK |) (2.7)

for some random ordered feature allocation f̃N = (A1, . . . , AK) such that p is symmetric in
all arguments after the first, we call it the exchangeable feature probability function (EFPF).
Note that the EPPF is not a special case of the EFPF. The EPPF assigns zero probability
to any multiset in which an index occurs in more than one element of the multiset; only the
sizes of the multiset blocks are relevant in the EFPF case.

We next consider a more complex example of an EFPF.



CHAPTER 2. CLUSTER AND FEATURE MODELING 15

Buffet dishes

Plates

Customers

· · ·1 2 3 4 5 6 7

1
2

3 4

2
4

5

3
4

6
7

n = 3

n = 2

n = 1

5 /∈ Y3

4 ∈ Y2

Figure 2.2: Illustration of an Indian buffet process. The buffet (top) consists of a vector
of dishes, corresponding to features. Each customer—corresponding to a data point—who
enters first decides whether or not to eat dishes that the other customers have already
sampled and then tries a random number of new dishes, not previously sampled by any
customer. A gray box in position (n, k) indicates customer n has sampled dish k, and a
white box indicates the customer has not sampled the dish. In the example, the second
customer has sampled exactly those dishes indexed by 2, 4, and 5: Y2 = {2, 4, 5}.

Example 2.3.5 (Indian buffet process). The Indian buffet process (IBP) (Griffiths and
Ghahramani, 2006) is a generative model for a random feature allocation that is specified
recursively like the Chinese restaurant process. Also like the CRP, this culinary metaphor
forms an equivalence between customers and the indices n that will be partitioned: n ∈ N.
Here, “dishes” again correspond to feature labels just as they corresponded to partition
labels for the CRP. But in the IBP case, a customer can sample multiple dishes.

In particular, we start with a single customer, who enters the buffet and chooses K+
1 ∼

Poisson(γ) dishes. Here, γ > 0 is called the mass parameter, and we will also see the
concentration parameter θ > 0 below. None of the dishes have been sampled by any other
customers since no other customers have yet entered the restaurant. We label the dishes
1, . . . , K+

1 if K+
1 > 0. Recursively, the nth customer chooses which dishes to sample in two

parts. First, for each dish k that has previously been sampled by any customer in 1, . . . , n−1,
customer n samples dish k with probability Nn−1,k/(θ+ n− 1) for Nn,k equal to the number
of customers indexed 1, . . . , n who have tried dish k. As each dish represents a feature, and
sampling a dish represents that the customer index n belongs to that feature, Nn,k is the
size of the block of the feature labeled k in the feature allocation of [n]. Next, customer n
chooses K+

n ∼ Poisson(θγ/(θ+ n− 1)) new dishes to try. If K+
n > 0, then the dishes receive

unique labels Kn−1 + 1, . . . , Kn. Here, Kn represents the number of sampled dishes after n
customers: Kn = Kn−1 +K+

n . An example of the first few steps in the Indian buffet process
is shown in Figure 2.2.

With this generative model in hand, we can find the probability of a particular feature
allocation. We discover its form by enumeration as for the CRP EPPF in Example 2.3.1. At
each round n, we have a Poisson number of new features, K+

n , represented. The probability
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factor associated with these choices is a product of Poisson densities.

N∏

n=1

1

K+
n !

(
θγ

θ + n− 1

)K+
n

exp

(
− θγ

θ + n− 1

)

Let Mk be the round on which the kth dish, in order of appearance, is first chosen. Then the
denominators for future dish choice probabilities are the factors in the product (θ + Mk) ·
(θ +Mk + 1) · · · (θ +N − 1). The numerators for the times when the dish is chosen are the
factors in the product 1 · 2 · · · (NN,k− 1). The numerators for the times when the dish is not
chosen yield (θ+Mk−1) · · · (θ+N−1−NN,k). Let An,k represent the collection of indices in
the feature with label k after n customers have entered the restaurant. Then Nn,k = |An,k|.
Finally, let K̃1, . . . , K̃H be the multiplicities of unique feature blocks formed by this model.
We note that there are [

N∏

n=1

K+
n !

]
/

[
H∏

h=1

K̃h!

]

rearrangements of the features generated by this process that all yield the same feature
allocation. Since they all have the same generating probability, we simply multiply by this
factor to find the feature allocation probability. Multiplying all factors together and taking
fn = {AN,1, . . . , AN,KN} yields

P(FN = fN)

=

∏N
n=1K

+
n !∏H

h=1 K̃h!
·
[

N∏

n=1

1

K+
n !

(
θγ

θ + n− 1

)K+
n

exp

(
− θγ

θ + n− 1

)]

·
[
KN∏

k=1

Γ(θ +Mk)

Γ(θ +N)
Γ(NN,k)

Γ(θ +N −NN,k)

Γ(θ +Mk − 1)

]

=

(
H∏

h=1

K̃h!

)−1 [ N∏

n=1

(θγ)K
+
n exp

(
− θγ

θ + n− 1

)]
·
[ ∏KN

k=1(θ +Mk − 1)∏N
n=1(θ + n− 1)K

+
n

]

·
[
KN∏

k=1

Γ(NN,k)Γ(θ +N −NN,k)

Γ(θ +N)

]

=

(
H∏

h=1

K̃h!

)−1

(θγ)KN exp

(
−θγ

N∑

n=1

(θ + n− 1)−1

)
KN∏

k=1

Γ(NN,k)Γ(N −NN,k + θ)

Γ(N + θ)
.

It follows from Eq. (2.5) that the probability of a uniform random ordering of the feature
allocation is

P(F̃N = f̃N) (2.8)

=
1

KN !
(θγ)KN exp

(
−θγ

N∑

n=1

(θ + n− 1)−1

)
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·
KN∏

k=1

Γ(NN,k)Γ(N −NN,k + θ)

Γ(N + θ)
.

The distribution of F̃N has no dependence on the ordering of the indices in [N ]. Hence,
the distribution of FN depends only on the same quantities—the number of indices and
the feature block sizes—and the feature multiplicities. So we see that the IBP construction
yields an exchangeable random feature allocation. Consistency follows from the recursive
construction and exchangeability. Therefore, Eq. (2.8) is seen to be in EFPF form (cf.
Eq. (2.7)). �

Above, we have seen two examples of how specifying a conditional distribution for the
block membership of index n given the block membership of indices in [n − 1] yields an
exchangeable probability function: e.g. the EPPF in the CRP case (Example 2.3.1) and
the EFPF in the IBP case (Example 2.3.5). This conditional distribution is often called a
prediction rule, and study of the prediction rule in the clustering case may be referred to as
species sampling (Pitman, 1996; Hansen and Pitman, 1998; Lee et al., 2008). We will see
next that the prediction rule can conversely be recovered from the exchangeable probability
function specification and therefore the two are equivalent.

Induced allocations and block labeling

In Examples 2.3.1 and 2.3.5 above, we formed partitions and feature allocations in the
following way. For partitions, we assigned labels Zn to each index n. Then we generated a
partition of [N ] from the sequence (Zn)Nn=1 by saying that indices m and n are in the same
partition block (m ∼ n) if and only if Zn = Zm. The resulting partition is called the induced
partition given the labels (Zn)Nn=1. Similarly, given labels (Zn)∞n=1, we can form an induced
partition of N. It is easy to check that, given a sequence (Zn)∞n=1, the induced partitions of
the subsequences (Zn)Nn=1, will be consistent.

In the feature case, we first assigned label collections Yn to each index n. Yn is interpreted
as a set containing the labels of the features to which n belongs. It must have finite cardinality
by our definition of a feature allocation. In this case, we generate a feature allocation on [N ]
from the sequence (Yn)Nn=1 by first letting {φk}Kk=1 be the set of unique values in

⋃N
n=1 Yn.

Then the features are the collections of indices with shared labels: fN = {{n : φk ∈ Yn} :
k = 1, . . . , K}. The resulting feature allocation fN is called the induced feature allocation
given the labels (Yn)Nn=1. Similarly, given label collections (Yn)∞n=1, where each Yn has finite
cardinality, we can form an induced feature allocation of N. As in the partition case, given a
sequence (Yn)∞n=1, we can see that the induced feature allocations of the subsequences (Yn)Nn=1

will be consistent.
In reducing to a partition or feature allocation from a set of labels, we shed the infor-

mation concerning the labels for each partition block or feature. Conversely, we introduce
order-of-appearance labeling schemes to give partition blocks or features labels when we have,
respectively, a partition or feature allocation.
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In the partition case, the order-of-appearance labeling scheme assigns the label 1 to the
partition block containing index 1. Recursively, suppose we have seen n indices in k different
blocks with labels {1, . . . , k}. And suppose the n+ 1st index does not belong to an existing
block. Then we assign its block the label k + 1.

In the feature allocation case, we note that index 1 belongs to K+
1 features. If K+

1 =
0, there are no features to label yet. If K+

1 > 0, we assign these K+
1 features labels in

{1, . . . , K+
1 }. Unless otherwise specified, we suppose that the labels are chosen uniformly

at random. Let K1 = K+
1 . Recursively, suppose we have seen n indices and Kn different

features with labels {1, . . . , Kn}. Suppose the n + 1st index belongs to K+
n+1 features that

have not yet been labeled. Let Kn+1 = Kn+K+
n+1. If K+

n+1 = 0, there are no new features to
label. If K+

n+1 > 0, assign these K+
n+1 features labels in {Kn + 1, . . . , Kn+1}, e.g. uniformly

at random.
We can use these labeling schemes to find the prediction rule, which makes use of partition

block and feature labels, from the EPPF or EFPF as appropriate. First, consider a partition
with EPPF p. Then, given labels (Zn)Nn=1 with KN = max{Z1, . . . , ZN}, we wish to find the
distribution of the label ZN+1. Using an order-of-appearance labeling, we know that either
ZN+1 ∈ {Z1, . . . , ZN} or ZN+1 = KN + 1. Let πN = {AN,1, . . . , AN,KN} be the partition
induced by (Zn)Nn=1. Let NN,k = |AN,k|. Let 1(A) be the indicator of event A; that is, 1(A)
equals 1 if A holds and 0 otherwise. Let NN+1,k = Nk + 1{ZN+1 = k} for k = 1, . . . , KN+1,
and set NN,KN+1 = 0 for completeness. KN+1 = KN + 1{ZN+1 > KN} is the number of
partition blocks in the partition of [N + 1]. Then the conditional distribution satisfies

P(ZN+1 = z|Z1, . . . , ZN) =
P(Z1, . . . , ZN , ZN+1 = z)

P(Z1, . . . , ZN)
.

But the probability of a certain labeling is just the probability of the underlying partition
in this construction, so

P(ZN+1 = z|Z1, . . . , ZN) =
p(NN+1,1, . . . , NN+1,KN+1

)

p(NN,1, . . . , NN,KN )
.

Example 2.3.6 (Chinese restaurant process). We continue our Chinese restaurant process
example by deriving the Chinese restaurant table assignment scheme from the EPPF in
Eq. (2.4). Substituting in the EPPF for the CRP, we find

P(ZN+1 = z|Z1, . . . , ZN)

=
p(NN,1, . . . , NN+1,KN+1

)

p(NN,1, . . . , NN,KN )

=

(
θKN+1−1

∏KN+1

k=1 (NN+1,k − 1)!
) (

(θ + 1)(N+1)−1↑1
)−1

(
θKN−1

∏KN
k=1(NN,k − 1)!

)
((θ + 1)N−1↑1)−1

= (N + θ)−1

{
NN,k for z = k ≤ KN

θ for z = KN + 1
, (2.9)
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just as in Eq. (2.3). �

To find the feature allocation prediction rule, we now imagine a feature allocation with
EFPF p. Here we must be slightly more careful about counting due to feature multiplicities.
Suppose that after N indices have been seen, we have label collections (Yn)Nn=1, containing
a total of KN features, labeled {1, . . . , KN}. We wish to find the distribution of YN+1.
Suppose N + 1 belongs to K+

N+1 features that do not contain any index in [N ]. Using an
order-of-appearance labeling, we know that, if K+

N+1 > 0, the K+
N+1 new features have labels

KN + 1, . . . , KN + K+
N+1. Let fN = {A1, . . . , AKN} be the feature allocation induced by

(Yn)Nn=1. Let NN,k = |AN,k| be the size of the kth feature. So NN+1,k = NN,k +1{k ∈ YN+1},
where we let NKN+j = 0 for all of the features that are first exhibited by index N + 1:
j ∈ {1, . . . , K+

N+1}. Further, let the number of features, including new ones, be written
KN+1 = KN +K+

N+1. Then the conditional distribution satisfies

P(Yn+1 = y|Y1, . . . , YN) =
P(Y1, . . . , YN , YN+1 = y)

P(Y1, . . . , YN)
.

As we assume that the labels Y are consistent across N , the probability of a certain labeling is
just the probability of the underlying ordered feature allocation times a combinatorial term.
The combinatorial term accounts first for the uniform ordering of the new features amongst
themselves for labeling and then for the uniform ordering of the new features amongst the
old features in the overall uniform random ordering.

P(YN+1 = y|Y1, . . . , YN) =
1

K+
N+1!

· [(KN + 1) · (KN + 2) · · ·KN+1]

· p(N,NN+1,1, . . . , NN+1,KN+1
)

p(N,NN,1, . . . , NN,KN )

=
1

K+
N+1!

· KN+1!

KN !
· p(N,NN+1,1, . . . , NN+1,KN+1

)

p(N,NN,1, . . . , NN,KN )
. (2.10)

Example 2.3.7 (Indian buffet process). Just as we derived the Chinese restaurant process
prediction rule (Eq. (2.9)) from its EPPF (Eq. (2.4)) in Example 2.3.6, so can we derive
the Indian buffet process prediction rule from its EFPF (Eq. (2.8)) by using Eq. (2.10).
Substituting the IBP EFPF into Eq. (2.10), we find

P(Yn+1 = y|Y1, . . . , YN)

=
1

K+
N+1!

· KN+1!

KN !

·
1

KN+1!
(θγ)KN+1 exp

(
−θγ∑N+1

n=1 (θ + n− 1)−1
)∏KN+1

k=1
Γ(NN+1,k)Γ((N+1)−NN+1,k+θ)

Γ((N+1)+θ)

1
KN !

(θγ)KN exp
(
−θγ∑N

n=1(θ + n− 1)−1
)∏KN

k=1
Γ(NN,k)Γ(N−NN,k+θ)

Γ(N+θ)

=

[
1

K+
N+1!

exp

(
− θγ

θ + (N + 1)− 1

)
·
(

θγ

θ + (N + 1)− 1

)K+
N+1

]
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· (θ + (N + 1)− 1)K
+
N+1 ·

[
KN+1∏

k=KN+1

(θ + (N + 1)− 1)−1

]

·
KN∏

k=1

N
1{k∈z}
k (N −NN,k + θ)1{k/∈z}

N + θ

= Poisson

(
K+
N+1|

θγ

θ + (N + 1)− 1

)
·
KN∏

k=1

Bern

(
1{k ∈ z}| NN,k

N + θ

)
.

The final line is exactly the Poisson distribution for the number of new features times the
Bernoulli distributions for the draws of existing features, as described in Example 2.3.5. �

Inference

The prediction rule formulation of the EPPF or EFPF is particularly useful in providing
a means of inferring partitions and feature allocations from a data set. In particular, we
assume that we have data points X1, . . . , XN generated in the following manner. In the
partition case, we generate an exchangeable, consistent, random partition ΠN according to
the distribution specified by some EPPF p. Next, we assign each partition block a random
parameter that characterizes that block. To be precise, for the kth partition block to appear
according to an order-of-appearance labeling scheme, give this block a new random label
φk ∼ H, for some continuous distribution H. For each n, let Zn = φk where k is the
order-of-appearance label of index n. Finally, let

Xn
indep∼ L(Zn), (2.11)

for some distribution L with parameter Zn. The choices of both H and L are specific to the
problem domain.

Without attempting to survey the vast literature on clustering, we describe a stylized
example to provide intuition for the preceding generative model. In this example, let n
index an animal observed in the wild; Zn = Zm indicates that animals n and m belong to
the same (latent, unobserved) species; Zn = Zm = φk is a vector describing the (latent,
unobserved) height and weight for that species; and Xn is the observed height and weight of
the nth animal.

Xn need not even be directly observed, but Eq. (2.11) together with an EPPF might
be part of a larger generative model. In a generalization of the previous stylized example,
Zn indicates the dominant species in the nth geographical region; Zn = φk indicates some
overall species height and weight parameters (for the kth species); Xn indicates the height
and weight parameters for species k in the nth region. That is, the height and weight for
the species may vary by region. We measure and observe the height and weight (En,j)

J
j=1 of

some J animals in the nth region, believed to be iid draws from a distribution depending on
Xn.
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Note that the sequence (Zn)Nn=1 is sufficient to describe the partition ΠN since ΠN is the
collection of blocks of [N ] with the same label values Zn. The continuity of H is necessary
to guarantee the a.s. uniqueness of the block values. So, if we can describe the posterior
distribution of (Zn)Nn=1, we can in principle describe the posterior distribution of ΠN .

The posterior distribution of (Zn)Nn=1 conditional on (Xn)Nn=1 cannot typically be solved
for in closed form, so we turn to a method that approximates this posterior. We will see
that prediction rules facilitate the design of a Markov Chain Monte Carlo (MCMC) sampler,
in which we approximate the desired posterior distribution by a Markov chain of random
samples proven to have the true posterior as its equilibrium distribution.

In the Gibbs sampler formulation of MCMC (S. Geman and D. Geman, 1984), we sample
each parameter in turn and conditional on all other parameters in the model. In our case,
we will sequentially sample each element of (Zn)Nn=1. The key observation here is that
(Zn)Nn=1 is an exchangeable sequence. This observation follows by noting that the partition
is exchangeable by assumption, and the sequence (φk) is exchangeable since it is iid; (Zn) is
an exchangeable sequence since it is a function of (Πn) and (φk). Therefore, the distribution
of Zn given the remaining elements Z−n := (Z1, . . . , Zn−1, Zn+1, . . . , ZN) is the same as if we
thought of Zn as the final, Nth element in a sequence with N − 1 preceding values given
by Z−n. And the distribution of ZN given Z−N is provided by the prediction rule. The full
details of the Gibbs sampler for the CRP in Examples 2.3.1 and 2.3.6 were introduced by
Escobar (1994); S. N. MacEachern (1994); Escobar and West (1995) and are covered in fuller
generality by Neal (2000).

It is worth noting that the sequence of order-of-appearance labels is not exchangeable; for
instance, the first label is always 1. However, the prediction rule for ZN given (Z1, . . . , ZN−1)
breaks into two parts: (1) the probability of ZN taking a value either in {Z1, . . . , ZN−1} or a
new value and (2) the distribution of ZN when it takes a new value. When programming such
a sampler, it is often useful to simply encode the sets of unique values, which may be done by
retaining any set of labels that induce the correct partition (e.g. integer labels) and separately
retaining the set of unique parameter values. Indeed, updating the parameter values and
partition block assignments separately can lead to improved mixing of the sampler (S. N.
MacEachern, 1994).

Similarly, in the feature case, we imagine the following generative model for our data.
First, let FN be a random feature allocation generated according to the EFPF p. For the
kth feature block in an order-of-appearance labeling scheme, assign a random label φk ∼ H
to this block for some continuous distribution H. For each n, let Yn = {φk : k ∈ Jn}, where
Jn is here the set of order-of-appearance labels of the features to which n belongs. Finally,
as above,

Xn
indep∼ L(Yn),

where the likelihood L and parameter distribution H are again application-specific and where
now L depends on the variable-size collection of parameters in Yn.

Griffiths and Ghahramani (2011) provide a review of likelihoods used in practice for
feature models. To motivate some of these modeling choices, let us consider some stylized
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examples that provide helpful intuition. For example, let n index customers at a book-selling
website; φk describes a book topic such as economics, modern art, or science fiction. If φk
describes science fiction books, φk ∈ Yn indicates that the nth customer likes to buy science
fiction books. But Yn might have cardinality greater than one (the customer is interested in
multiple book topics) or cardinality zero (the customer never buys books). Finally, Xn is a
set of book sales for customer n on the book-selling site.

As a second example, let n index pictures in a database; φk describes a pictorial element
such as a train or grass or a cow; φk ∈ Yn indicates that picture n contains, e.g., a train;
finally, the observed array of pixels Xn that form the picture is generated to contain the
pictorial elements in Yn. As in the clustering case, Xn might not even be directly observed
but might serve as a random effect in a deeper hierarchical model.

We observe that although the order-of-appearance label sets are not exchangeable, the
sequence (Yn) is. This fact allows the formulation of a Gibbs sampler via the observation
that the distribution of Yn given the remaining elements Y−n := (Y1, . . . , Yn−1, Yn+1, . . . , YN)
is the same as if we thought of Yn as the final, Nth element in a sequence with N − 1
preceding values given by Y−n. The full details of such a sampler for the case of the IBP
(Examples 2.3.5 and 2.3.7) are given by Griffiths and Ghahramani (2006).

As in the partition case, in practice when programming the sampler, it is useful to
separate the feature allocation encoding from the feature parameter values. Griffiths and
Ghahramani (2006) describe how left order form matrices give a convenient representation
of the feature allocation in this context.

2.4 Stick lengths

Not every symmetric function defined for an arbitrary number of arguments with values in
the unit interval is an EPPF (Pitman, 1995), and not every symmetric function with an
additional positive integer argument is an EFPF. For instance, the consistency property in
Eq. (2.1) implies certain additivity requirements for the function p.

Example 2.4.1 (Not an EPPF). Consider the function p defined with

p(1) = 1, p(1, 1) = 0.1, p(2) = 0.8, . . . (2.12)

From the information in Eq. (2.12), p may be further defined so as to be symmetric in its
arguments for any number of arguments, but since it does not satisfy p(1) = p(1, 1) + p(2),
it cannot be an EPPF. �

Example 2.4.2 (Not an EFPF). Consider the function p defined with

p(N = 1) = 0.9, p(N = 1, 1) = 0.9, p(N = 1, 1, 1) = 0.9, . . . (2.13)

From the information in Eq. (2.13), p may be further defined so as to be symmetric in its
arguments for any number of arguments after the initial N argument, but since p(N =
1) + p(N = 1, 1) + p(N = 1, 1, 1) > 1, it cannot be an EFPF. �
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It therefore requires some care to define a suitable distribution over consistent, exchange-
able random feature allocations or partitions using the exchangeable probability function
framework.

Since we are working with exchangeable sequences of random variables, it is natural to
turn to de Finetti’s theorem (De Finetti, 1931; Hewitt and Savage, 1955) for clues as to how
to proceed. De Finetti’s theorem tells us that any exchangeable sequence of random variables
can be expressed as an independent and identically distributed sequence when conditioned
on an underlying random mixing measure. While this theorem may seem difficult to apply
directly to, e.g., exchangeable partitions, it may be applied more naturally to an exchangeable
sequence of numbers derived from a sequence of partitions. The argument below is due to
Aldous (1985).

Suppose that (Πn) is an exchangeable, consistent sequence of random partitions. Consider
the kth partition block to appear according to an order-of-appearance labeling scheme, and
give this block a new random label, φk ∼ Unif([0, 1]), such that each random label is drawn
independently from the rest. This construction is the same as the one used for parameter
generation in Section 2.3, and (Πn) is exchangeable by the same arguments used there. Let
Zn equal φk exactly when n belongs to the partition with this label.

If we apply de Finetti’s theorem to the sequence (Zn) and note that (Zn) has at most
countably many different values, we see that there exists some random sequence (ρk) such
that ρk ∈ (0, 1] for all k and, conditioned on the frequencies (ρk), (Zn) has the same dis-
tribution as iid draws from (ρk). In this description, we have brushed over technicalities
associated with partition blocks that contain only one index even as N → ∞ (which may
imply

∑
k ρk < 1).

But if we assume that every partition block eventually contains at least two indices, we
can achieve an exchangeable partition of [N ] as follows. Let (ρk) represent a sequence of

values in (0, 1] such that
∑∞

k=1 ρk
a.s.
= 1. Draw Zn

iid∼ Discrete((ρk)k). Let ΠN be the induced
partition given (Zn)Nn=1. Exchangeability follows from the iid draws, and consistency follows
from the induced partition construction.

When the frequencies (ρk) are thought of as subintervals of the unit interval, i.e. a par-
tition of the unit interval, they are collectively called Kingman’s paintbox (Kingman, 1978).
As another naming convention, we may think of the unit interval as a stick (Ishwaran and
James, 2001). We partition the unit interval by breaking it into various stick lengths, which
represent the frequencies of each partition block.

A similar construction can be seen to yield exchangeable, consistent random feature

allocations. In this case, let (ξk) represent a sequence of values in (0, 1] such that
∑∞

k=1 ξk
a.s.
<

∞. We generate feature collections independently for each index as follows. Start with
Yn = ∅. For each feature k, add k to the set Yn, independently from all other features, with
probability ξk. Let FN be the induced feature allocation given (Yn)Nn=1. Exchangeability
of FN follows from the iid draws of Yn, and consistency follows from the induced feature
allocation construction. The finite sum constraint ensures each index belongs to a finite
number of features a.s.
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1− V1
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V1

V2(1− V1)

Figure 2.3: An illustration of how stick-breaking divides the unit interval into a sequence
of probabilities (Broderick, Jordan, and Pitman, 2012). The stick proportions (V1, V2, · · · )
determine what fraction of the remaining stick is appended to the probability sequence at
each round.

It remains to specify a distribution on the partition or feature frequencies. The frequencies
cannot be iid due to the finite summation constraint in both cases. In the partition case,
any infinite set of frequencies cannot even be independent since the summation is fixed to
one. One scheme to ensure summation to unity is called stick-breaking (McCloskey, 1965;
Patil and Taillie, 1977; Sethuraman, 1994; Ishwaran and James, 2001). In stick-breaking,
the stick lengths are obtained by recursively breaking off parts of the unit interval to return
as the atoms ρ1, ρ2, . . . (cf. Figure 2.3). In particular, we generate stick-breaking proportions
V1, V2, . . . as [0, 1]-valued random variables. Then ρ1 is the first proportion V1 times the
initial stick length 1; hence ρ1 = V1. Recursively, after k breaks, the remaining length of the
initial unit interval is

∏k
j=1(1− Vj). And ρk+1 is the proportion Vk+1 of the remaining stick;

hence ρk+1 = Vk+1

∏k
j=1(1− Vj).

The stick-breaking construction yields ρ1, ρ2, . . . such that ρk ∈ [0, 1] for each k and∑∞
k=1 ρk ≤ 1. If the Vk do not decay too rapidly, we will have

∑∞
k=1 ρk

a.s.
= 1. In particular,

the partition block proportions ρk sum to unity a.s. iff there is no remaining stick mass:∏∞
k=1(1− Vk) a.s.

= 0.
We often make the additional, convenient assumption that the Vk are independent. In

this case, a necessary and sufficient condition for
∑∞

k=1 ρk
a.s.
= 1 is

∑∞
k=1 E [log(1− Vk)] =

−∞ (Ishwaran and James, 2001). When the Vk are independent and of a canonical distri-
bution, they are easily simulated. Moreover, if we assume that the Vk are such that the ρk
decay sufficiently rapidly in k, one strategy for simulating a stick-breaking model is to ignore
all k > K for some fixed, finite K. This approximation is known as truncation (Ishwaran
and James, 2001). It is fortuitously the case that in some models of particular interest, such
useful assumptions fall out naturally from the model construction (e.g. Examples 2.4.3 and
2.4.4).

Example 2.4.3 (Chinese restaurant process). In the original exchangeability result due
to de Finetti (De Finetti, 1931), the exchangeable random variables were zero/one-valued,
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Figure 2.4: An illustration of the proof based on the Pólya urn that Dirichlet process stick-
breaking gives the underlying partition block frequencies for a Chinese restaurant process
model. The kth column in the central matrix corresponds to a tallying of when the kth
table is chosen (gray), when a table of index larger than k is chosen (white), and when an
index smaller than k is chosen (×). If we ignore the × tallies, the gray and white tallies in
each column (after the first) can be modeled as balls drawn from a Pólya urn. The limiting
frequency of gray balls in each column is shown below the matrix.

and the mixing measure was a distribution on a single frequency so that the outcomes
were conditionally Bernoulli. We will find a similar result in obtaining the stick-breaking
proportions associated with the Chinese restaurant process.

We can construct a sequence of binary-valued random variables by dividing the customers
in the CRP who are sitting at the first table from the rest; color the former collection of
customers gray and the latter collection of customers white. Then, we see that the first
customer must be colored gray. And thus we begin with a single gray customer and no white
customers. This binary valuation for the first table in the CRP is illustrated by the first
column in the matrix in Figure 2.4.

At this point, it is useful to recall the Pólya urn construction (Pólya, 1930; D. A. Freed-
man, 1965), whereby an urn starts with G0 gray balls and W0 white balls. At each round N ,
we draw a ball from the urn, replace it, and add κ of the same color of ball to the urn. At
the end of the round, we have GN gray balls and WN white balls. Despite the urn metaphor,
the number of balls need not be an integer at any time. By checking Eq. (2.3) which de-
fines the CRP, we can see that the coloring of the gray/white customer matrix assignments
starting with the second customer has the same distributions as a sequence of balls from a
Pólya urn as a Pólya urn with G1,0 = 1 initial gray balls, W1,0 = θ initial white balls, and
κ1 = 1 replacement balls. Let G1,N and W1,N represent the numbers of gray and white balls,
respectively, in the urn after N rounds. The important fact about the Pólya urn we use here

is that there exists some V ∼ Beta(G0/κ,W0/κ) such that κ−1(GN+1 −GN)
iid∼ Bern(V ) for

all N . In this particular case of the CRP, then, G1,N+1 − G1,N is one if a customer sits at

the first table (or zero otherwise), and G1,N+1 −G1,N
iid∼ Bern(V1) with V1 ∼ Beta(1, θ).

We now look at the sequence of customers who sit at the second and subsequent tables.
That is, we condition on customers not sitting at the first table or equivalently on the
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sequence with G1,N+1 −G1,N = 0. Again, we have that the first customer sits at the second
table, by the CRP construction. Now let customers at the second table be colored gray and
customers at the third and later tables be colored white. This valuation is illustrated in
the second column in Figure 2.4; each × in the figure denotes a data point where the first
partition block is chosen and therefore the current Pólya urn is not in play. As before, we
begin with one gray customer and no white customers. We can check Eq. (2.3) to see that
customer coloring once more proceeds according to a Pólya urn scheme with G2,0 = 1 initial
gray balls, W2,0 = θ initial white balls, and κ2 = 1 replacement balls. Thus, contingent on
a customer not sitting at the first table, the Nth customer sits at the second table with iid
distribution Bern(V2) with V2 ∼ Beta(1, θ). Since the sequence of individuals sitting at the
second table has no other dependence on the sequence of individuals sitting at the first table,
we have that V2 is independent of V1.

The argument just outlined proceeds recursively to show us that the Nth customer, con-
ditional on not sitting at the first K−1 tables for K ≥ 1, sits at the Kth table with iid distri-
bution Bern(VK) and VK ∼ Beta(1, θ) with VK independent of the previous (V1, . . . , VK−1).

Combining these results, we see that we have the following construction for the cus-
tomer seating patterns. The Vk are distributed independently and identically according to
Beta(1, θ). The probability ρK of sitting at the Kth table is the probability of not sitting at
the first K − 1 tables, conditional on not sitting at the previous table, times the conditional

probability of sitting at the Kth table: ρK =
[∏K−1

k=1 (1− Vk)
]
·VK . Finally, with the vector of

table frequencies (ρk), each customer sits independently and identically at the corresponding
vector of tables according to these frequencies. This process is summarized here:

Vk
iid∼ Beta(1, θ)

ρK := VK

K∏

k=1

(1− Vk)

Zn
iid∼ Discrete((ρk)k). (2.14)

To see that this process is well-defined, first note that E [log(1− Vk)] exists, is negative,
and is the same for all k values. It follows that

∑∞
k=1 E [log(1− Vk)] = −∞, so by the

discussion before this example, we must have
∑K

k=1 ρk
a.s.
= 1. �

The feature case is easier. Since it does not require the frequencies to sum to one, the
random frequencies can be independent so long as they have an a.s. finite sum.

Example 2.4.4 (Indian buffet process). As in the case of the CRP, we can recover the stick
lengths for the Indian buffet process using an argument based on an urn model.

Recall that on the first round of the Indian buffet process, K+
1 ∼ Poisson(γ) features are

chosen to contain index 1. Consider one of the features, labeled k. By construction, each
future data point N belongs to this feature with probability NN−1,k/(θ +N − 1). Thus, we
can model the sequence after the first data point as a Pólya urn of the sort encountered
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Dish not yet chosen by anyone
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Figure 2.5: Illustration of the proof that the frequencies of features in the Indian buffet
process are given by beta random variables. For each feature, we can construct a sequence
of zero/one variables by tallying whether (gray, one) or not (white, zero) that feature is
represented by the given data point. Before the first time a feature is chosen, we mark it
with an ×. Each column sequence of gray and white tallies, where we ignore the × marks,
forms a Pólya urn with limiting frequencies shown below the matrix.

in Example 2.4.3 with initially Gk,0 = 1 gray balls, Wk,0 = θ white balls, and κk = 1
replacement balls. As we have seen, there exists a random variable Vk ∼ Beta(1, θ) such
that representation of this feature by data point N is chosen, iid across all N , as Bern(Vk).
Since the Bernoulli draws conditional on previous draws are independent across all k, the Vk
are likewise independent of each other; this fact is also true for k in future rounds. Draws
according to such an urn are illustrated in each of the first four columns of the matrix in
Figure 2.5.

Now consider any round n. According to the IBP construction, K+
n ∼ Poisson(γθ/(θ +

n− 1)) new features are chosen to include index n. Each future data point N (with N > n)
represents feature k among these features with probability NN−1,k/(θ+N − 1). In this case,
we can model the sequence after the nth data point as a Pólya urn with Gk,0 = 1 initial gray
balls, Wk,0 = θ + n − 1 initial white balls, and κk = 1 replacement balls. So there exists a
random variable Vk ∼ Beta(1, θ+ n− 1) such that representation of feature k by data point
N is chosen, iid across all N , as Bern(Vk).

Finally, then, we have the following generative model for the feature allocation by iter-
ating across n = 1, . . . , N (Thibaux and Jordan, 2007):

K+
n

indep∼ Poisson

(
γθ

θ + n− 1

)
(2.15)

Kn = Kn−1 +K+
n

Vk
indep∼ Beta(1, θ + n− 1), k = Kn−1 + 1, . . . , Kn (2.16)

In,k
indep∼ Bern(Vk), k = 1, . . . , Kn

In,k is an indicator random variable for whether feature k contains index n. The collection
of features to which index n belongs, Yn, is the collection of features k with In,k = 1. �
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Inference

As we have seen above, the exchangeable probability functions of Section 2.3 are the marginal
distributions of the partitions or feature allocations generated according to stick-length mod-
els with the stick lengths integrated out. It has been proposed that including the stick
lengths in MCMC samplers of these models will improve mixing (Ishwaran and Zarepour,
2000). While it is impossible to sample the countably infinite set of partition block or fea-
ture frequencies in these models (cf. Examples 2.4.3 and 2.4.4), a number of ways of getting
around this difficulty have been investigated. Ishwaran and Zarepour (2000) examine two
separate finite approximations to the full CRP stick length model; one uses a parametric
approximation to the full infinite model, and the other creates a truncation by setting the
stick break at some fixed size K to be 1: VK = 1. There also exist techniques that avoid any
approximations and deal instead directly with the full model: in particular, retrospective
sampling (Papaspiliopoulos and Roberts, 2008) and slice sampling (Walker, 2007).

While our discussion thus far has focused on MCMC sampling as a means of approximat-
ing the posterior distribution of either the block assignments or both the block assignments
and stick lengths, including the stick lengths in a posterior analysis facilitates a different
posterior approximation; in particular, variational methods can also be used to approximate
the posterior. These methods minimize some notion of distance to the posterior over a family
of potential approximating distributions (Jordan et al., 1999). The practicality and, indeed,
speed of these methods in the case of stick-breaking for the CRP (Example 2.4.3) have been
demonstrated by Blei and Jordan (2006).

A number of different models for the stick lengths corresponding to the features of an
IBP (Example 2.4.4) have been discovered. The distributions described in Example 2.4.4 are
covered by Thibaux and Jordan (2007), who build on work from Hjort (1990); Kim (1999b).
A special case of the IBP is examined by Teh, Görür, and Ghahramani (2007), who detail
a slice sampling algorithm for sampling from the posterior of the stick lengths and feature
assignments. Yet another stick length model for the IBP is explored by Paisley, Zaas, et al.
(2010), who show how to apply variational methods to approximate the posterior of their
model.

Stick length modeling has the further advantage of allowing inference in cases where it
is not straightforward to integrate out the underlying stick lengths to obtain a tractable
exchangeable probability function.

2.5 Subordinators

An important point to reiterate about the labels Zn and label collections Yn is that when we
use the order-of-appearance labeling scheme for partition or feature blocks described above,
the random sequences (Zn) and (Yn) are not exchangeable. Often, however, we would like
to make use of special properties of exchangeability when dealing with these sequences. For
instance, if we use Markov Chain Monte Carlo to sample from the posterior distribution of
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a partition (cf. Section 2.3), we might want to Gibbs sample the cluster assignment of data
point n given the assignments of the remaining data points: that is, Zn given {Zm}Nm=1\{Zn}.
This sampling is particularly easy in some cases (Neal, 2000) if we can treat Zn as the last
random variable in the sequence, but this treatment requires exchangeability.

A way to get around this dilemma was suggested by Aldous (1985) and appeared above
in our motivation for using stick lengths. Namely, we assign to the kth partition block a
uniform random label φk ∼ Unif([0, 1]); analogously, we assign to the kth feature a uniform
random label φk ∼ Unif([0, 1]). We can see that in both cases, all of the labels are a.s.
distinct. Now, in the partition case, let Zn be the uniform random label of the partition
block to which n belongs. And in the feature case, let Yn be the (finite) set of uniform
random feature labels for the features to which n belongs. We can recover the partition or
feature allocation as the induced partition or feature allocation by grouping indices assigned
to the same label. Moreover, as discussed above, we now have that each of (Zn) and (Yn) is
an exchangeable sequence.

If we form partitions or features according to the stick length constructions detailed in
Section 2.4, we know that each unique partition or feature label φk is associated with a
frequency ξk. We can use this association to form a random measure:

µ =
∞∑

k=1

ξkδφk , (2.17)

where δφk is a unit point mass located at φk. In the partition case,
∑

k ξk = 1, so the random

measure is a random probability measure, and we may draw Zn
iid∼ µ. In the feature case,

the weights have a finite sum but do not necessarily sum to one. In the feature case, we
draw Yn by including each φk for which Bern(ξk) yields a draw of 1.

Another way to codify the random measure in Eq. (2.17) is as a monotone increasing
stochastic process on [0, 1]. Let

Ts =
∞∑

k=1

ξk1{φk ≤ s}.

Then the atoms of µ are in one-to-one correspondence with the jumps of the process T .
This increasing random function construction gives us another means of choosing dis-

tributions for the weights ξk. We have already seen that these cannot be iid due to the
finite summation condition. However, we will see that if we require that the increments of
a monotone, increasing stochastic process are independent and stationary, then we can use
the jumps of that function as the atoms in our random measure for partitions or features.

Definition 2.5.1. A subordinator (Bochner, 1955; Bertoin, 1998; Bertoin, 2004) is a stochas-
tic process (Ts, s ≥ 0) that has

• Non-negative, non-decreasing paths (a.s.),
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Figure 2.6: Left: The sample path (Ts) of a subordinator. T−s̃ is the limit from the left of (Ts)
at s = s̃. Right: The right-continuous inverse (St) of a subordinator: St := inf{s : Ts > t}.
The open intervals along the t axis correspond to the jumps of the subordinator (Ts).

• Paths that are right-continuous with left limits, and

• Stationary, independent increments.

For our purposes, wherein the subordinator values will ultimately correspond to (per-
haps scaled) probabilities, we will assume the subordinator takes values in [0,∞) though
alternative ranges with a sense of ordering are possible.

Subordinators are of interest to us because not only do they exhibit the stationary,
independent increments property but they can always be decomposed into two components:
a deterministic drift component and a Poisson point process. Recall that a Poisson point
process on space S with rate measure ν(dx), where x ∈ S, yields a countable subset of points
of S. Let N(A) be the number of points of the process in set A for A ⊆ S. The process
is characterized by the fact that, first, N(A) ∼ Poisson(ν(A)) for any A and, second, for
any disjoint A1, . . . , AK , we have that N(A1), . . . , N(AK) are independent random variables.
See Kingman (1993) for a thorough treatment of these processes. An example subordinator
with both drift and jump components is shown on the lefthand side of Figure 2.6.

The subordinator decomposition is detailed in the following result (Bertoin, 1998).

Theorem 2.5.2. Every subordinator (Ts, s ≥ 0) can be written as

Ts = cs+
∞∑

k=1

ξk1{φk ≤ s}, (2.18)

for some constant c ≥ 0 and where {(ξk, φk)}k is the countable set of points of a Poisson
point process with intensity Λ(dξ) dφ, where Λ is a Lévy measure, i.e.

∫ ∞

0

(1 ∧ ξ)Λ(dξ) <∞.
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In particular, then, if a subordinator is finite at time t, the jumps of the subordinator
up to t may be used as feature block frequencies if they have support in [0, 1]. Or, in
general, the normalized jumps may be used as partition block frequencies. We can see from
the righthand side of Figure 2.6 that the jumps of a subordinator partition intervals of the
form [0, t), as long as the subordinator has no drift component. In either the feature or
cluster case, we have substituted the condition of independent and identical distribution for
the partition or feature frequencies (i.e., the jumps) with a more natural continuous-time
analogue: independent, stationary intervals.

Just as the Laplace transform of a positive random variable characterizes the distribution
of that random variable, so does the Laplace transform of the subordinator—which is a
positive random variable at any fixed time point—describe this stochastic process (Bertoin,
1998; Bertoin, 2004).

Theorem 2.5.3 (Lévy-Khinchin formula for subordinators). If (Ts, s ≥ 0) is a subordinator,
then for λ ≥ 0 we have

E(e−λTs) = e−Ψ(λ)s (2.19)

with

Ψ(λ) = cλ+

∫ ∞

0

(1− e−λξ)Λ(dξ), (2.20)

where c ≥ 0 is called the drift constant and Λ is a non-negative, Lévy measure on (0,∞).

The function Ψ(λ) is called the Laplace exponent in this context. We note that a subor-
dinator is characterized by its drift constant and Lévy measure.

Using subordinators for feature allocation modeling is particularly easy; since the jumps
of the subordinators are formed by a Poisson point process, we can use Poisson process
methodology to find the stick lengths and EFPF. To set up this derivation, suppose we
generate feature membership from a subordinator by taking Bernoulli draws at each of its
jumps with success probability equal to the jump size. Since every jump has strictly positive
size, the feature associated with each jump will eventually score a Bernoulli success for some
index n with probability one. Therefore, we can enumerate all jumps of the process in
order of appearance; that is, we first enumerate all features in which index 1 appears, then
all features in which index 2 appears but not index 1, and so on. At the nth iteration,
we enumerate all features in which index n appears but not previous indices. Let K+

n

represent the number of indices so chosen on the nth round. Let K0 = 0 so that recursively
Kn := Kn−1 + K+

n is the number of subordinator jumps seen by round n, inclusive. Let
ξk for k = Kn−1 + 1, . . . , Kn be the distribution of a particular subordinator jump seen on
round n. We now turn to connecting the subordinator perspective to the earlier derivation
of stick lengths in Section 2.4.

Example 2.5.4 (Indian buffet process). In our earlier discussion, we found a collection of
stick lengths to represent the featural frequencies for the IBP (Eq. (2.16) of Example 2.4.4



CHAPTER 2. CLUSTER AND FEATURE MODELING 32
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Figure 2.7: An illustration of Poisson thinning. The x-axis values of the filled black circles,
emphasized by dotted lines, are generated according to a Poisson process. The [0, 1]-valued
function h(x) is arbitrary. The vertical axis values of the points are uniform draws in [0, 1].
The “thinned” points are the collection of x-axis values corresponding to vertical axis values
below h(x) and are denoted with a × symbol.

in Section 2.4). To see the connection to subordinators, we start from the beta process
subordinator (Kim, 1999b) with zero drift (c = 0) and Lévy measure

Λ(dξ) = γθξ−1(1− ξ)θ−1 dξ. (2.21)

We will see that the mass parameter γ > 0 and concentration parameter θ > 0 are the same
as those introduced in Example 2.3.5 and continued in Example 2.4.4.

Theorem 2.5.5. Generate a feature allocation from a beta process subordinator with Lévy
measure given by Eq. (2.21). Then the sequence of subordinator jumps (ξk), indexed in order
of appearance, has the same distribution as the sequence of IBP stick lengths (Vk) described
by Eqs. (2.15) and (2.16).

Proof. Recall the following fact about Poisson thinning (Kingman, 1993), illustrated in
Figure 2.7. Suppose that a Poisson point process with rate measure λ generates points
with values x. Then suppose that, for each such point x, we keep it with probability
h(x) ∈ [0, 1]. The resulting set of points is also a Poisson point process, now with rate
measure λ′(A) =

∫
A
λ(dx)h(x) dx.

We prove Theorem 2.5.5 recursively. Define the measure

µn(dξ) := γθξ−1(1− ξ)θ+n−1 dξ,

so that µ0 is the beta process Lévy measure Λ in Eq. (2.21). We make the recursive as-
sumption that µn is distributed as the beta process measure without atoms corresponding
to features chosen on the first n iterations.

There are two parts to proving Theorem 2.5.5. First, we show that, on the nth iteration,
the number of features chosen and the distribution of the corresponding atom weights agree
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with Eqs. (2.15) and (2.16), respectively. Second, we check that the recursion assumption
holds.

For the first part, note that on the nth round we choose features with probability equal
to their atom weight. So we form a thinned Poisson process with rate measure ξ · µn−1(dξ).
This rate measure has total mass

∫ 1

0

ξ · µn−1(dξ) = γ
θ

θ + n− 1
=: γn−1.

So the number of features chosen is Poisson-distributed with mean γθ(θ + n − 1)−1, as
desired (cf. Eq. (2.15)). And the atom weights have distribution equal to the normalized
rate measure

γ−1
n−1ξ · γθξ−1(1− ξ)θ+(n−1)−1 dξ = Beta(ξ|1, θ + n− 1)dξ,

as desired (cf. Eq. (2.16)).
Finally, to check the recursion assumption, we note that those sticks that remain were

chosen for having Bernoulli failure draws; i.e., they were chosen with probability equal to
one minus their atom weight. So the thinned rate measure for the next round is

(1− ξ) · γθξ−1(1− ξ)θ+(n−1)−1 dξ,

which is just µn.

The form of the EFPF of the feature allocation generated from the beta process subor-
dinator follows immediately from the stick length distributions we have just derived by the
discussion in Example 2.4.4 in Section 2.4. �

We see from the previous example that feature allocation stick lengths and EFPFs can be
obtained in a straightforward manner using the Poisson process representation of the jumps
of the subordinator. Partitions, however, are not as easy to analyze, principally due to the
fact that the subordinator jumps must first be normalized to obtain a probability measure on
[0, 1]; a random measure with finite total mass is not sufficient in the partition case. Hence
we must compute the stick lengths and EPPF using partition block frequencies from these
normalized jumps instead of directly from the subordinator jumps.

In the EPPF case, we make use a of a result that gives us the exchangeable probability
function as a function of the Laplace exponent. Though we do not derive this formula here,
its derivation can be found in Pitman (2003); the proof relies on, first, calculating the joint
distribution of the subordinator jumps and partition generated from the normalized jumps
and, second, integrating out the subordinator jumps to find the partition marginal.

Theorem 2.5.6. Form a probability measure µ by normalizing jumps of the subordinator
with Laplace exponent Ψ. Let (Πn) be a consistent set of exchangeable partitions induced by
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iid draws from µ. For each exchangeable partition πN = {A1, . . . , AK} of [N ] with Nk := |Ak|
for each k,

P(ΠN = πN) = p(N1, . . . , NK)

=
(−1)N−K

(N − 1)!

∫ ∞

0

λN−1e−Ψ(λ)

K∏

k=1

Ψ(Nk)(λ) dλ, (2.22)

where Ψ(Nk)(λ) is the Nkth derivative of the Laplace exponent Ψ evaluated at λ.

Example 2.5.7 (Chinese restaurant process). We start by introducing the gamma process,
a subordinator that we will see below generates the Chinese restaurant process EPPF. The
gamma process has Laplace exponent Ψ(λ) (Eq. (2.19)) characterized by

c = 0, and Λ(dξ) = θξ−1e−bξ dξ (2.23)

for θ > 0 and b > 0 (cf. Eq. (2.20) in Theorem 2.5.3). We will see that θ corresponds to
the CRP concentration parameter and that b is arbitrary and does not affect the partition
model.

We calculate the EPPF using Theorem 2.5.6.

Theorem 2.5.8. The EPPF for partition block membership chosen according to the normal-
ized jumps (ρk) of the gamma subordinator with parameter θ is the CRP EPPF (Eq. (2.4)).

Proof. By Theorem 2.5.6, if we can find all order derivatives of the Laplace exponent Ψ, we
can calculate the EPPF for the partitions generated with frequencies equal to the normalized
jumps of this subordinator. The derivatives of Ψ, which are known to always exist (Bertoin,
2000; Rogers and Williams, 2000), are straightforward to calculate if we begin by noting
that, from Eq. (2.20) in Theorem 2.5.3, we have in general that

Ψ′(λ) = c+

∫ ∞

0

ξe−λξΛ(dξ).

Hence, for the gamma process subordinator,

Ψ′(λ) =

∫ ∞

0

e−λξθe−bξ dξ =
θ

λ+ b
.

Then simple integration and differentiation yield

Ψ(λ) = θ log(λ+ b)− θ log(b),

since Ψ(0) = 0, and

Ψ(n)(λ) = (−1)n−1 (n− 1)!θ

(λ+ b)n
, n ≥ 1.
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We can substitute these quantities into the general EPPF formula in Eq. (2.22) of Theo-
rem 2.5.6 to obtain

p(N1, . . . , NK)

=
(−1)N−K

(N − 1)!

∫ ∞

0

λN−1(λ+ b)−θbθ
K∏

k=1

(−1)Nk−1 (Nk − 1)!θ

(λ+ b)Nk
dλ

= bθ
θK

(N − 1)!

[
K∏

k=1

(Nk − 1)!

]
bN−1−N−θ+1

∫ ∞

0

xN−1(x+ 1)−N−θ dx

for x = λ/b

=
θK

(N − 1)!

[
K∏

k=1

(Nk − 1)!

]
Γ(N)Γ(θ)

Γ(N + θ)

= θK

[
K∏

k=1

(Nk − 1)!

]
1

θ(θ + 1)N−1↑1
.

The penultimate line follows from the form of the beta prime distribution. The final line is
the CRP EPPF from Eq. (2.4), as desired. We note in particular that the parameter b does
not appear in the final EPPF.

�

Whenever the Laplace exponent of a subordinator is known, Theorem 2.5.6 can simi-
larly be applied to quickly find the EPPF of the partition generated by sampling from the
normalized subordinator jumps.

To find the distributions of the stick lengths, i.e., the partition block frequencies, from the
subordinator representation for a partition, we must find the distributions of the normalized
subordinator jumps.

As in the feature case, we may enumerate the jumps of a subordinator used for partition-
ing in the order of their appearance. That is, let ρ1 be the normalized subordinator jump
size corresponding to the cluster of the first data point. Recursively, suppose index n joins
a cluster to which none of the indices in [n − 1] belong, and suppose there are k clusters
among [n − 1]. Then let ρk+1 be the normalized subordinator jump size corresponding to
the cluster containing n.

Example 2.5.9 (Chinese restaurant process). We continue with the CRP example.

Theorem 2.5.10. The normalized subordinator jumps (ρk) in order of appearance of the
gamma subordinator with concentration parameter θ (and arbitrary parameter b > 0) have
the same distribution as the CRP stick lengths (Eq. (2.14) of Example 2.4.3 in Section 2.4).

Proof. First, we introduce some notation. Let τ =
∑

k ξk, the sum over all of the jumps of

the subordinator. Second, let τk = τ −∑k
j=1 ξk, the total sum minus the first k elements (in
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order of appearance). Note that τ = τ0. Finally, let Wk = τk/τk−1 and Vk = 1−Wk. Then
a simple telescoping of factors shows that ρk = Vk

∏k−1
j=1(1− Vj):

Vk

k−1∏

j=1

(1− Vj) =

(
1− τk

τk−1

) k−1∏

j=1

τj
τj−1

=
τk−1 − τk

τ0

=
ξk
τ

= ρk.

It remains to show that the Vk have the desired distribution. To that end, it is easier to
work with the Wk. We will find the following lemma (Pitman, 2006) useful.

Lemma 2.5.11. Consider a subordinator with Lévy measure Λ, and suppose τ equals the
sum of all jumps of the subordinator. Let ρ be the density of Λ with respect to Lebesgue
measure. And let f be the density of the distribution of τ with respect to Lebesgue measure.
Then

P(τ0 ∈ dt0, . . . , τk ∈ dtk)

= f(tk) dtk

(
k−1∏

j=0

(tj − tj+1)ρ(tj − tj+1)

tj
dtj

)

With this lemma in hand, the result follows from a change of variables calculation; we
use a bijection between {W1, . . . ,Wk, τ} and {τ0, . . . , τk} defined by τk = τ

∏k
j=1Wj. The

determinant of the Jacobian for the transformation to the former variables from the latter is

J =
k∏

j=1

[
τ

j−1∏

i=1

Wi

]
=

k−1∏

j=0

τj(τ,W1, . . . ,Wk)

In the derivation that follows, we start by expressing results in terms of the τj terms with the

dependence on {τ,W1, . . . ,Wk} suppressed to avoid notational clutter: e.g., J =
∏k−1

j=0 τj.
At the end, we will evaluate the τj terms as functions of {τ,W1, . . . ,Wk}.

For now, then, we have

P(W1 ∈ dw1, . . . ,Wk ∈ dwk, τ ∈ dt0)

= P(τ0 ∈ dt0, . . . , τk ∈ dtk) · J

= f(tk) dtk

(
k−1∏

j=0

(tj − tj+1)ρ(tj − tj+1)

)
.

In the case of the gamma process, we can read ρ(ξ) = θξ−1e−bξ from Eq. (2.23). The
function f is determined by ρ and in this case (Pitman, 2006):

f(t) = Gamma(t|θ, b) = bθΓ(θ)−1tθ−1e−bt.

So

P(W1 ∈ dw1, . . . ,Wk ∈ dwk, τ ∈ dt0)
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∝ tθ−1
k e−bt0 = tθ−1

0 e−bt0
k∏

j=1

wθ−1
j .

Since the distribution factorizes, the {Wk} are independent of each other and of τ . Second,

we can read off the distributional kernel of each Wk to establish Wk
iid∼ Beta(θ, 1), from

whence it follows that Vk
iid∼ Beta(1, θ).

�

Inference

In some sense, we skipped ahead in describing inference in Sections 2.3 and 2.4. There, we
made use of the fact that random labels for partitions and features imply exhangeability
of the data partition block assignments (Zn) and data feature assignments (Yn). In the
discussion above, we study the object that associates random uniformly distributed labels
with each partition or feature. Assuming the labels come from a uniform distribution rather
than a general continuous distribution is a special case of the discussion in Section 2.3, and
we defer the general case to the next section (Section 2.6).

We have seen above that it is particularly straightforward to obtain an EPPF or EFPF
formulation, which yields Gibbs sampling steps as described in Section 2.3, when the stick
lengths are generated according to a normalized Poisson process in the partition case or a
Poisson process in the feature case. Examples 2.5.4 and 2.5.7 illustrate how to find such
exchangeable probability functions. Further, we have already seen the usefulness of the
stick representation in inference, and Examples 2.5.4 and 2.5.9 illustrate how stick length
distributions may be recovered from the subordinator framework.

2.6 Completely random measures

In our discussion of subordinators, the jump sizes of the subordinator corresponded to the
feature frequencies or unnormalized partition frequencies and were the quantities of interest.
By contrast, the locations of the jumps mainly served as convenient labels for the frequen-
cies. These locations were chosen uniformly at random from the unit interval. This choice
guaranteed the a.s. uniqueness of the labels and the exchangeability of the sequence of index
assignments: (Zn) in the clustering case or (Yn) in the feature case.

However, a labeling retains exchangeability and a.s. uniqueness as long as the labels are
chosen iid from any continuous distribution (not just the uniform distribution). Moreover,
in typical applications, we wish to associate some parameter, often referred to as a “random
effect,” with each partition block or feature. In the partition case, we usually model the nth
data point Xn as being generated according to some likelihood depending on the parameter
corresponding to its block assignment. E.g., an individual animal’s height and weight, Xn,
varies randomly around the height and weight of its species, Zn. Likewise, in the feature
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case, we typically model the observed data point Xn as being generated according to some
likelihood depending on the collection of parameters corresponding to its collection of feature
block assignments (cf. Eq. (2.11)). E.g., the book-buying pattern of an online consumer, Xn,
varies with some noise based on the topics this person likes to read about: Yn is a collection,
possibly empty, of such topics.

In these cases, it can be useful to suppose that the partition block labels (or feature labels)
φk are not necessarily R+-valued but rather are generated iid according to some continuous
distribution H on a general space Φ. Then, whenever k is the order of appearance partition
block label of index n, we let Zn = φk. Similarly, whenever k is the order-of-appearance
feature label for some feature to which index n belongs, φk ∈ Yn. Finally, then, we complete

the generative model in the partition case by letting Xn
indep∼ L(Zn) for some distribution

function L depending on parameter Zn. And in the feature case, Xn
indep∼ L(Yn), where now

the distribution function L depends on the collection of parameters Yn.
When we take the jump sizes (ξk) of a subordinator as the weights of atoms with locations

(φk) drawn iid according to H as described above, we find ourselves with a completely random
measure µ:

µ =
∞∑

k=1

ξkδφk . (2.24)

A completely random measure is a random measure µ such that whenever A and A′ are
disjoint sets, we have that µ(A) and µ(A′) are independent random variables.

To see that associating these more general atom locations to the jumps of a subordinator
yields a completely random measure, note that Theorem 2.5.2 tells us that the subordinator
jump sizes are generated according to a Poisson point process, with some intensity measure
ν(dξ). The Marking Theorem for Poisson point processes (Kingman, 1993) in turn yields
that the tuples {(ξk, φk)}k are generated according to a Poisson point process with inten-
sity measure ν(dξ)H(dφ). By Kingman (1967), whenever the tuples {(ξk, φk)}k are drawn
according to a Poisson point process, the measure in Eq. (2.24) is completely random.

Example 2.6.1 (Dirichlet process). We can form a completely random measure from the
gamma process subordinator and a random labeling of the partition blocks. Specifically,
suppose that the labels come from a continuous measure H. Then we generate a completely
random measure G called a gamma process (Ferguson, 1973) in the following way:

ν(dξ × dφ) = θξ−1e−bξdξ ·H(dφ) (2.25)

{(ξk, φk)}k ∼ PPP(ν) (2.26)

G =
∞∑

k=1

ξkδφk (2.27)

Here, PPP(ν) denotes a draw from a Poisson point process with intensity measure ν. The
parameters θ > 0 and b > 0 are the same as for the gamma process subordinator. A gamma
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Figure 2.8: The gray manifold depicts the Poisson point process intensity measure ν in
Eq. (2.25) for the choice Φ = [0, 1] and H the uniform distribution on [0, 1]. The endpoints
of the line segments are points drawn from the Poisson point process as in Eq. (2.26). Taking
the positive real-valued coordinate (leftmost axis) as the atom weights, we find the random
measure G (a gamma process) on Φ from Eq. (2.27) in the bottom plane.

process draw, along with its generating Poisson point process intensity measure, is illustrated
in Figure 2.8.

The Dirichlet process (DP) is the random measure formed by normalizing the gamma
process (Ferguson, 1973). Since the Dirichlet process atom weights sum to one, it cannot
be completely random. We can write the Dirichlet process D generated from the gamma
process G above as:

τ =
∞∑

k=1

ξk

ρk = ξk/τ

D =
∞∑

k=1

ρkδφk .

The random variables ρk have the same distribution as the Dirichlet process sticks (Eq. (2.14))
or normalized gamma process subordinator jump lengths, as we have seen above (Exam-
ple 2.5.7). �

Consider sampling points from a Dirichlet process and forming the induced partition of
the data indices. Theorem 2.5.8 shows us that the distribution of the induced partition is
the Chinese restaurant process EPPF.
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Figure 2.9: The gray manifold depicts the Poisson point process intensity measure ν in
Eq. (2.28) for the choice Φ = [0, 1] and H the uniform distribution on [0, 1]. The endpoints
of the line segments are points drawn from the Poisson point process as in Eq. (2.29). Taking
the [0, 1]-valued coordinate (leftmost axis) as the atom weights, we find the measure B (a
beta process) on Φ from Eq. (2.30) in the bottom plane.

Example 2.6.2 (Beta process). We can form a completely random measure from the beta
process subordinator and a random labeling of the feature blocks. If the labels are generated
iid from a continuous measure H, then we say the completely random measure B, generated
as follows, is called a beta process:

ν(dξ × dφ) = γθξ−1(1− ξ)θ−1dξ ·H(dφ) (2.28)

{(ξk, φk)}k ∼ PPP(ν) (2.29)

B =
∞∑

k=1

ξkδφk . (2.30)

The beta process, along with its generating intensity measure, is depicted in Figure 2.9. The
(ξk) have the same distribution as the beta process sticks (Eq. (2.16)) or the beta process
subordinator jump lengths (Example 2.5.4).

�

Now consider sampling a collection of atom locations according to Bernoulli draws from
the atom weights of a beta process and forming the induced feature allocation of the data
indices. Theorem 2.5.5 shows us that the distribution of the induced feature allocation is
given by the Indian buffet process EFPF.
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Inference

In this section, we finally study the full model first outlined in the context of inference of
partition and feature structures in Section 2.3. The partition or feature labels described in
this section are the same as the block-specific parameters first described in Section 2.3. Since
this section focuses on a generalization of the partition or feature labeling scheme beyond
the uniform distribution option encoded in subordinators, inference for the atom weights
remains unchanged from Sections 2.3, 2.4, and 2.5.

However, we note that, in the course of inferring underlying partition or feature struc-
tures, we are often also interested in inferring the parameters of the generative model of
the data given the partition block or the feature labels. Conditional on the partition or
feature structure, such inference is handled as in a normal hierarchical model with fixed
dependencies. Namely, the parameter within a particular block may be inferred from the
data points that depend on this block as well as the prior distribution for the parameters.
Details for the Dirichlet process example inferred via MCMC sampling are provided by S. N.
MacEachern (1994); Escobar and West (1995); Neal (2000); Blei and Jordan (2006) work out
details for the Dirichlet process using variational methods. In the beta process case, Griffiths
and Ghahramani (2006); Teh, Görür, and Ghahramani (2007); Thibaux and Jordan (2007)
describe MCMC sampling, and Paisley, Zaas, et al. (2010) describe a variational approach.

2.7 Discussion

We have pursued a progressive augmentation from (1) simple distributions over partitions
and feature allocations in the form of exchangeable probability functions to (2) the repre-
sentation of stick lengths encoding frequencies of the partition block and feature occurrences
to (3) subordinators, which associate random R+-valued labels with each partition block or
feature, and finally to (4) completely random measures, which associate a general class of
labels with the stick lengths and whose labels we generally use as parameters in likelihood
models built from the partition or feature allocation representation.

Along the way, we have focused primarily on two vignettes. We have shown, via these
successive augmentations, that the Chinese restaurant process specifies the marginal distri-
bution of the induced partition formed from iid draws from a Dirichlet process, which is in
turn a normalized completely random measure. And we have shown that the Indian buffet
process specifies the marginal distribution of the induced feature allocation formed by iid
Bernoulli draws across the weights of a beta process.

There are many extensions of these ideas that lie beyond the scope of this chapter. A
number of extensions of the CRP and Dirichlet process exist—in either the EPPF form (Pit-
man, 1996; Blei and Frazier, 2010), the stick length form (Dunson and Park, 2008), or the
random measure form (Pitman and Yor, 1997). Likewise, extensions of the IBP and beta
process have been explored (Teh, Görür, and Ghahramani, 2007; Paisley, Zaas, et al., 2010;
Broderick, Jordan, and Pitman, 2012).
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More generally, the framework above demonstrates how alternative partition and feature
allocation models may be constructed—either by introducing different EPPFs (Pitman, 1996;
Gnedin and Pitman, 2006) or EFPFs, different stick length distributions (Ishwaran and
James, 2001), or different random measures (Wolpert and Ickstadt, 2004).

Finally, we note that expanding the set of combinatorial structures with useful Bayesian
priors from partitions to the superset of feature allocations suggests that further such struc-
tures might be usefully examined. For instance, the beta negative binomial process (Broder-
ick, Mackey, et al., 2014; Zhou et al., 2012) provides a prior on a generalization of a feature
allocation where we allow the features themselves to be multisets; i.e., each index may have
non-negative integer multiplicities of features. Models on trees (Adams, Ghahramani, and
Jordan, 2010; McCullagh, Pitman, and Winkel, 2008; Blei, Griffiths, and Jordan, 2010),
graphs (W. Li and McCallum, 2006), and permutations (Pitman, 1996) provide avenues for
future exploration. And there likely remain further structures to be fitted out with useful
Bayesian priors.
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Chapter 3

Beta processes, stick-breaking, and
power laws

The beta-Bernoulli process provides a Bayesian nonparametric prior for models involving
collections of binary-valued features. A draw from the beta process yields an infinite collec-
tion of probabilities in the unit interval, and a draw from the Bernoulli process turns these
into binary-valued features. Recent work has provided stick-breaking representations for
the beta process analogous to the well-known stick-breaking representation for the Dirichlet
process. We derive one such stick-breaking representation directly from the characterization
of the beta process as a completely random measure. This approach motivates a three-
parameter generalization of the beta process, and we study the power laws that can be
obtained from this generalized beta process. We present a posterior inference algorithm for
the beta-Bernoulli process that exploits the stick-breaking representation, and we present
experimental results for a discrete factor-analysis model.

3.1 Introduction

Large data sets are often heterogeneous, arising as amalgams from underlying sub-populations.
The analysis of large data sets thus often involves some form of stratification in which group-
ings are identified that are more homogeneous than the original data. While this can some-
times be done on the basis of explicit covariates, it is also commonly the case that the
groupings are captured via discrete latent variables that are to be inferred as part of the
analysis. Within a Bayesian framework, there are two widely employed modeling motifs for
problems of this kind. The first is the Dirichlet-multinomial motif, which is based on the
assumption that there are K “clusters” that are assumed to be mutually exclusive and ex-
haustive, such that allocations of data to clusters can be modeled via a multinomial random
variable whose parameter vector is drawn from a Dirichlet distribution. A second motif is
the beta-Bernoulli motif, where a collection of K binary “features” are used to describe the
data, and where each feature is modeled as a Bernoulli random variable whose parameter
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is obtained from a beta distibution. The latter motif can be converted to the former in
principle—we can view particular patterns of ones and zeros as defining a cluster, thus ob-
taining M = 2K clusters in total. But in practice models based on the Dirichlet-multinomial
motif typically require O(M) additional parameters in the likelihood, whereas those based
on the beta-Bernoulli motif typically require only O(K) additional parameters. Thus, if the
combinatorial structure encoded by the binary features captures real structure in the data,
then the beta-Bernoulli motif can make more efficient usage of its parameters.

The Dirichlet-multinomial motif can be extended to a stochastic process known as the
Dirichlet process. A draw from a Dirichlet process is a random probability measure that
can be represented as follows (McCloskey, 1965; Patil and Taillie, 1977; Ferguson, 1973;
Sethuraman, 1994):

G =
∞∑

i=1

πiδψi , (3.1)

where δψi represents an atomic measure at location ψi, where both the {πi} and the {ψi}
are random, and where the {πi} are nonnegative and sum to one (with probability one).
Conditioning on G and drawing N values independently from G yields a collection of M
distinct values, where M ≤ N is random and grows (in expectation) at rate O(logN).
Treating these distinct values as indices of clusters, we obtain a model in which the number
of clusters is random and subject to posterior inference.

A great deal is known about the Dirichlet process—there are direct connections between
properties of G as a random measure (e.g., it can be obtained from a Poisson point process),
properties of the sequence of values {πi} (they can be obtained from a “stick-breaking pro-
cess”), and properties of the collection of distinct values obtained by sampling from G (they
are characterized by a stochastic process known as the Chinese restaurant process). These
connections have helped to place the Dirichlet process at the center of Bayesian nonpara-
metrics, driving the development of a wide variety of inference algorithms for models based
on Dirichlet process priors and suggesting a range of generalizations (e.g. S. MacEachern,
1999; Ishwaran and James, 2001; Walker, 2007; Kalli, Griffin, and Walker, 2011).

It is also possible to extend the beta-Bernoulli motif to a Bayesian nonparametric frame-
work, and there is a growing literature on this topic. The underlying stochastic process is the
beta process, which is an instance of a family of random measures known as completely ran-
dom measures (Kingman, 1967). The beta process was first studied in the context of survival
analysis by Hjort (1990), where the focus is on modeling hazard functions via the random
cumulative distribution function obtained by integrating the beta process. Thibaux and Jor-
dan (2007) focused instead on the beta process realization itself, which can be represented
as

G =
∞∑

i=1

qiδψi ,

where both the qi and the ψi are random and where the qi are contained in the interval (0, 1).
This random measure can be viewed as furnishing an infinite collection of coins, which, when
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tossed repeatedly, yield a binary featural description of a set of entities in which the number
of features with non-zero values is random. Thus, the resulting beta-Bernoulli process can
be viewed as an infinite-dimensional version of the beta-Bernoulli motif. Indeed, Thibaux
and Jordan (2007) showed that by integrating out the random qi and ψi one obtains—by
analogy to the derivation of the Chinese restaurant process from the Dirichlet process—
a combinatorial stochastic process known as the Indian buffet process, previously studied
by Griffiths and Ghahramani (2006), who derived it via a limiting process involving random
binary matrices obtained by sampling finite collections of beta-Bernoulli variables.

Stick-breaking representations of the Dirichlet process have been particularly important
both for algorithmic development and for exploring generalizations of the Dirichlet process.
These representations yield explicit recursive formulas for obtaining the weights {πi} in
Eq. (3.1). In the case of the beta process, explicit non-recursive representations can be
obtained for the weights {qi}, based on size-biased sampling (Thibaux and Jordan, 2007)
and inverse Lévy measure (Wolpert and Ickstadt, 2004; Teh, Görür, and Ghahramani, 2007).
Recent work has also yielded recursive constructions that are more closely related to the
stick-breaking representation of the Dirichlet process (Teh, Görür, and Ghahramani, 2007;
Paisley, Zaas, et al., 2010).

Stick-breaking representations of the Dirichlet process permit ready generalizations to
stochastic processes that yield power-law behavior (which the Dirichlet process does not),
notably the Pitman-Yor process (Ishwaran and James, 2001; Pitman, 2006). Power-law
generalizations of the beta process have also been studied (Teh and Görür, 2009) and stick-
breaking-like representations derived. These latter representations are, however, based on
the non-recursive sized-biased sampling and inverse-Lévy methods rather than the recursive
representations of Teh, Görür, and Ghahramani (2007) and Paisley, Zaas, et al. (2010).

Teh, Görür, and Ghahramani (2007) and Paisley, Zaas, et al. (2010) derived their stick-
breaking representations of the beta process as limiting processes, making use of the deriva-
tion of the Indian buffet process by Griffiths and Ghahramani (2006) as a limit of finite-
dimensional random matrices. In the current chapter we show how to derive stick-breaking
for the beta process directly from the underlying random measure. This approach not only
has the advantage of conceptual clarity (our derivation is elementary), but it also permits a
unified perspective on various generalizations of the beta process that yield power-law be-
havior.1 We show in particular that it yields a power-law generalization of the stick-breaking
representation of Paisley, Zaas, et al. (2010).

To illustrate our results in the context of a concrete application, we study a discrete factor
analysis model previously considered by Griffiths and Ghahramani (2006) and Paisley, Zaas,
et al. (2010). The model is of the form

X = ZΦ + E, (3.2)

where X ∈ RN×P is the data and E ∈ RN×P is an error matrix. The matrix Φ ∈ RK×P is a
matrix of factors, and Z ∈ RN×K is a binary matrix of factor loadings. The dimension K is

1A similar measure-theoretic derivation has been presented recently by Paisley, Blei, and Jordan (2012),
who focus on applications to truncations of the beta process.
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infinite, and thus the rows of Φ comprise an infinite collection of factors. The matrix Z is
obtained via a draw from a beta-Bernoulli process; its nth row is an infinite binary vector
of features (i.e., factor loadings) encoding which of the infinite collection of factors are used
in modeling the nth data point.

The remainder of the chapter is organized as follows. We introduce the beta process,
and its conjugate measure the Bernoulli process, in Section 3.2. In order to consider stick-
breaking and power law behavior in the beta-Bernoulli framework, we first review stick-
breaking for the Dirichlet process in Section 3.3 and power laws in clustering models in Sec-
tion 3.4. We consider potential power laws that might exist in featural models in Section 3.4.
Our main theoretical results come in the following two sections. First, in Section 3.5, we pro-
vide a proof that the stick-breaking representation of Paisley, Zaas, et al. (2010), expanded
to include a third parameter, holds for a three-parameter extension of the beta process. Our
proof takes a measure-theoretic approach based on a Poisson process. We then make use of
the Poisson process framework to establish asymptotic power laws, with exact constants, for
the three-parameter beta process in Section 3.6. We also show, in Section 3.6, that there
are aspects of the beta-Bernoulli framework that cannot exhibit a power law. We illustrate
the asymptotic power laws on a simulated data set in Section 3.7. We present experimen-
tal results in Section 8.5, and we present an MCMC algorithm for posterior inference in
Appendix 3.A.

3.2 The beta process and the Bernoulli process

The beta process and the Bernoulli process are instances of the general family of random
measures known as completely random measures (Kingman, 1967). A completely random
measure H on a probability space (Ψ,S) is a random measure such that, for any disjoint
measurable sets A1, . . . , An ∈ S, the random variables H(A1), . . . , H(An) are independent.

Completely random measures can be obtained from an underlying Poisson point process.
Let ν(dψ, du) denote a σ-finite measure2 on the product space Ψ × R. Draw a realization
from a Poisson point process with rate measure ν(dψ, du). This yields a set of points Π =
{(ψi, Ui)}i, where the index i may range over a countable infinity. Finally, construct a
random measure as follows:

B =
∞∑

i=1

Uiδψi , (3.3)

where δψi denotes an atom at ψi. This discrete random measure is such that for any mea-
surable set T ∈ S,

B(T ) =
∑

i:ψi∈T

Ui.

That B is completely random follows from the Poisson point process construction.

2 The measure ν need not necessarily be σ-finite to generate a completely random measure though we
consider only σ-finite measures in this work.
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Figure 3.1: The gray surface illustrates the rate density in Eq. (3.4) corresponding to the
beta process. The base measure B0 is taken to be uniform on Ψ. The non-zero endpoints
of the line segments plotted below the surface are a particular realization of the Poisson
process, and the line segments themselves represent a realization of the beta process.

In addition to the representation obtained from a Poisson process, completely random
measures may include a deterministic measure and a set of atoms at fixed locations. The
component of the completely random measure generated from a Poisson point process as
described above is called the ordinary component. As shown by Kingman (1967), completely
random measures are essentially characterized by this representation. An example is shown
in Figure 3.1.

The beta process, denoted B ∼ BP(θ, B0), is an example of a completely random measure.
As long as the base measure B0 is continuous, which is our assumption here, B has only an
ordinary component with rate measure

νBP(dψ, du) = θ(ψ)u−1(1− u)θ(ψ)−1 du B0(dψ), ψ ∈ Ψ, u ∈ [0, 1], (3.4)

where θ is a positive function on Ψ. The function θ is called the concentration function (Hjort,
1990). In the remainder we follow Thibaux and Jordan (2007) in taking θ to be a real-valued
constant and refer to it as the concentration parameter. We assume B0 is nonnegative and
fixed. The total mass of B0, γ := B0(Ψ), is called the mass parameter. We assume γ is
strictly positive and finite. The density in Eq. (3.4), with the choice of B0 uniform over
[0, 1], is illustrated in Figure 3.1.

The beta process can be viewed as providing an infinite collection of coin-tossing prob-
abilities. Tossing these coins corresponds to a draw from the Bernoulli process, yielding an
infinite binary vector that we will treat as a latent feature vector.

More formally, a Bernoulli process Y ∼ BeP (B) is a completely random measure with
potentially both fixed atomic and ordinary components. In defining the Bernoulli process



CHAPTER 3. BETA PROCESSES, STICK-BREAKING, AND POWER LAWS 48

0

0.5

1

Ψ

0

10

20

30

40

50

Ψ

Figure 3.2: Upper left: A draw B from the beta process. Lower left: 50 draws from
the Bernoulli process BeP (B). The vertical axis indexes the draw number among the 50
exchangeable draws. A point indicates a one at the corresponding location on the horizontal
axis, ψ ∈ Ψ. Right: We can form a matrix from the lower left plot by including only those ψ
values with a non-zero number of Bernoulli successes among the 50 draws from the Bernoulli
process. Then, the number of columns K is the number of such ψ, and the number of rows
N is the number of draws made. A black square indicates a one at the corresponding matrix
position; a white square indicates a zero.
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we consider only the case in which B is discrete, i.e., of the form in Eq. (3.3), though not
necessarily a beta process draw or even random for the moment. Then Y has only a fixed
atomic component and has the form

Y =
∞∑

i=1

biδψi , (3.5)

where bi ∼ Bern(ui) for ui the corresponding atomic mass in the measure B. We can see
that E(Y |B) = B(Ψ) from the mean of the Bernoulli distribution, so the number of non-zero
points in any realization of the Bernoulli process is finite when B is a finite measure.

We can link the beta process and N Bernoulli process draws to generate a random feature
matrix Z. To that end, first draw B ∼ BP(θ, B0) for fixed hyperparameters θ and B0 and

then draw Yn
iid∼ BeP(B) for n ∈ {1, . . . , N}. Note that since B is discrete, each Yn will be

discrete as in Eq. (3.5), with point masses only at the atoms {ψi} of the beta process B.
Note also that EB(Ψ) = γ <∞, so B is a finite measure, and it follows that the number of
non-zero point masses in any draw Yn from the Bernoulli process will be finite. Therefore,
the total number of non-zero point masses K across N such Bernoulli process draws is finite.

Now reorder the {ψi} so that the first K are exactly those locations where some Bernoulli
process in {Yn}Nn=1 has a non-zero point mass. We can form a matrix Z ∈ {0, 1}N×K as a
function of the {Yn}Nn=1 by letting the (n, k) entry equal one when Yn has a non-zero point
mass at ψk and zero otherwise. If we wish to think of Z as having an infinite number of
columns, the remaining columns represent the point masses of the {Yn}Nn=1 at {ψk}k>K ,
which we know to be zero by construction. We refer to the overall procedure of drawing
Z according to, first, a beta process and then repeated Bernoulli process draws in this
way as a beta-Bernoulli process, and we write Z ∼ BP− BeP(N, γ, θ). Note that we have
implicitly integrated out the {ψk}, and the distribution of the matrix Z depends on B0 only
through its total mass, γ. As shown by Thibaux and Jordan (2007), this process yields
the same distribution on row-exchangeable, infinite-column matrices as the Indian buffet
process (Griffiths and Ghahramani, 2006), which describes a stochastic process directly on
(equivalence classes of) binary matrices. That is, the Indian buffet process is obtained as an
exchangeable distribution on binary matrices when the underlying beta process measure is
integrated out. This result is analogous to the derivation of the Chinese restaurant process as
the exchangeable distribution on partitions obtained when the underlying Dirichlet process
is integrated out. The beta-Bernoulli process is illustrated in Figure 3.2.

3.3 Stick-breaking for the Dirichlet process

The stick-breaking representation of the Dirichlet process (McCloskey, 1965; Patil and Tail-
lie, 1977; Sethuraman, 1994) provides a simple recursive procedure for obtaining the weights
{πi} in Eq. (3.1). This procedure provides an explicit representation of a draw G from the
Dirichlet process, one which can be usefully instantiated and updated in posterior inference



CHAPTER 3. BETA PROCESSES, STICK-BREAKING, AND POWER LAWS 50

1− V1

0

1

V1

V2(1− V1)

Figure 3.3: A stick-breaking process starts with the unit interval (far left). First, a random
fraction V1 of the unit interval is broken off; the remaining stick has length 1 − V1 (middle
left). Next, a random fraction V2 of the remaining stick is broken off, i.e., a fragment of size
V2(1−V1); the remaining stick has length (1−V1)(1−V2). This process proceeds recursively
and generates stick fragments V1, V2(1− V1), . . . , Vi

∏
j<i(1− Vj), . . .. These fragments form

a random partition of the unit interval (far right).

algorithms (Ishwaran and James, 2001; Blei and Jordan, 2006). We begin this section by
reviewing this stick-breaking construction as well as some of the extensions to this construc-
tion that yield power-law behavior. We then turn to a consideration of stick-breaking and
power laws in the setting of the beta process.

Stick-breaking is the process of recursively breaking off random fractions of the unit
interval. In particular, let V1, V2, . . . be some countable sequence of random variables, each
with range [0, 1]. Each Vi represents the fraction of the remaining stick to break off at step
i. Thus, the first stick length generated by the stick-breaking process is V1. At this point,
a fragment of length 1 − V1 of the original stick remains. Breaking off V2 fraction of the
remaining stick yields a second stick fragment of V2(1 − V1). This process iterates such
that the stick length broken off at step i is Vi

∏
j<i(1− Vj). The stick-breaking recursion is

illustrated in Figure 3.3.
The Dirichlet process arises from the special case in which the Vi are independent draws

from the Beta(1, θ) distribution (McCloskey, 1965; Patil and Taillie, 1977; Sethuraman,
1994). Thus we have the following representation of a draw G ∼ DP(θ,G0):

G =
∞∑

i=1

[
Vi

i−1∏

j=1

(1− Vj)
]
δψi

Vi
iid∼ Beta(1, θ)
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ψi
iid∼ G0, (3.6)

whereG0 is referred to as the base measure and θ is referred to as the concentration parameter.

3.4 Power law behavior

Consider the process of sampling a random measure G from a Dirichlet process and sub-
sequently drawing independently N times from G. The number of unique atoms sampled
according to this process will grow as a function of N . The growth associated with the
Dirichlet process is relatively slow, however, and when the Dirichlet process is used as a
prior in a clustering model one does not obtain the heavy-tailed behavior commonly referred
to as a “power law.” In this section we first provide a brief exposition of the different kinds
of power law that we might wish to obtain in a clustering model and discuss how these
laws can be obtained via an extension of the stick-breaking representation. We then discuss
analogous laws for featural models.

Power laws in clustering models

First, we establish some notation. Given a number N of draws from a discrete random
probability measure G (where G is not necessarily a draw from the Dirichlet process), let
(N1, N2, . . .) denote the sequence of counts associated with the unique values obtained among
the N draws, where we view these unique values as “clusters.” Let

KN,j =
∞∑

i=1

1(Ni = j), (3.7)

and let

KN =
∞∑

i=1

1(Ni > 0). (3.8)

That is, KN,j is the number of clusters that are drawn exactly j times, and KN is the total
number of clusters.

There are two types of power-law behavior that a clustering model might exhibit. First,
there is the type of power law behavior reminiscent of Heaps’ law (Heaps, 1978; Gnedin,
Hansen, and Pitman, 2007) and describing the asymptotic behavior of the number of clusters:

KN
a.s.∼ cNa, N →∞ (3.9)

for some constants c > 0, a ∈ (0, 1). Here, ∼ means that the limit of the ratio of the left-
hand and right-hand side, when they are both real-valued and non-random, is one as the
number of data points N grows large. We denote a power law in the form of Eq. (3.9) as
Type I. Second, there is the type of power law behavior reminiscent of Zipf’s law (Zipf, 1949;
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Gnedin, Hansen, and Pitman, 2007) and describing the asymptotic behavior of the number
of clusters of size j:

KN,j
a.s.∼ aΓ(j − a)

j!Γ(1− a)
cNa, N →∞ (3.10)

again for some constants c > 0, a ∈ (0, 1). We refer to the power law in Eq. (3.10) as Type II.
Note that Gnedin, Hansen, and Pitman (2007) have shown, and we will see further below,
that this particular way of writing the proportionality constant is natural.

Sometimes in the case of Eq. (3.10), we are interested in the behavior in j; therefore we
recall j! = Γ(j + 1) and note the following fact about the Γ-function ratio in Eq. (3.10) (cf.
Tricomi and Erdélyi, 1951):

Γ(j − a)

Γ(j + 1)
∼ j−1−a, j →∞. (3.11)

Again, we see behavior in the form of a power law at work.
Power-law behavior of Types I and II (and equivalent formulations; see Gnedin, Hansen,

and Pitman, 2007) has been observed in a variety of real-world clustering problems including,
but not limited to: the number of species per plant genus, the in-degree or out-degree of
a graph constructed from hyperlinks on the Internet, the number of people in cities, the
number of words in documents, the number of papers published by scientists, and the amount
each person earns in income (Mitzenmacher, 2004; Goldwater, Griffiths, and M. Johnson,
2006). Bayesians modeling these situations will prefer a prior that reflects this distributional
attribute.

While the Dirichlet process exhibits neither type of power-law behavior, the Pitman-Yor
process yields both kinds of power law (Pitman and Yor, 1997; Goldwater, Griffiths, and
M. Johnson, 2006) though we note that in this case c is a random variable (still with no
dependence on N or j). The Pitman-Yor process, denoted G ∼ PY(θ, α,G0), is defined via
the following stick-breaking representation:

G =
∞∑

i=1

[
Vi

i−1∏

j=1

(1− Vj)
]
δψi

Vi
indep∼ Beta(1− α, θ + iα)

ψi
iid∼ G0, (3.12)

where α is known as a discount parameter. The case α = 0 returns the Dirichlet process (cf.
Eq. (3.6)).

Note that in both the Dirichlet process and the Pitman-Yor process, the weights {Vi
∏i−1

j=1(1−
Vj)} are the weights of the process in size-biased order (Pitman, 2006). In the Pitman-Yor
case, the {Vi} are no longer identically distributed.
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Power laws in featural models

The beta-Bernoulli process provides a specific kind of feature-based representation of entities.
In this section we study general featural models and consider the power laws that might arise
for such models.

In the clustering framework, we considered N draws from a process that put exactly one
mass of size one on some value in Ψ and mass zero elsewhere. In the featural framework we
consider N draws from a process that places some non-negative integer number of masses,
each of size one, on an almost surely finite set of values in Ψ and mass zero elsewhere. As
Ni was the sum of masses at a point labeled ψi ∈ Ψ in the clustering framework, so do we
now let Ni be the sum of masses at a point labeled ψi ∈ Ψ. We use the same notation as
in Section 3.4 to define the number of features KN (Eq. (3.8)) and the number of features
represented by j data points KN,j (Eq. (3.7)). But now we note that the counts Ni no longer
sum to N in general.

In the case of featural models, we can still talk about Type I and II power laws, both of
which have the same interpretation as in the case of clustering models: asymptotic power
law behavior of the number of features and asymptotic power law behavior in the number
of features of cardinality j, both as N →∞.

In the featural case, however, it is also possible to consider a third type of power law.
If we let kn denote the number of features present in the nth draw, we say that kn shows
power law behavior if

P(kn > M) ∼ cM−a

for positive constants c and a. We call this last type of power law Type III.

3.5 Stick-breaking for the beta process

The weights {qi} for the beta process can be derived by a variety of procedures, including
size-biased sampling (Thibaux and Jordan, 2007) and inverse Lévy measure (Wolpert and
Ickstadt, 2004; Teh, Görür, and Ghahramani, 2007). The procedures that are closest in
spirit to the stick-breaking representation for the Dirichlet process are those due to Paisley,
Zaas, et al. (2010) and Teh, Görür, and Ghahramani (2007). Our point of departure is the
former, which has the following form:

B =
∞∑

i=1

Ci∑

j=1

V
(i)
i,j

i−1∏

l=1

(1− V (l)
i,j )δψi,j

Ci
iid∼ Poisson(γ)

V
(l)
i,j

iid∼ Beta(1, θ)

ψi,j
iid∼ 1

γ
B0. (3.13)
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This representation is analogous to the stick-breaking representation of the Dirichlet process
in that it represents a draw from the beta process as a sum over independently drawn atoms,
with the weights obtained by a recursive procedure. However, it is worth noting that for
every (i, j) tuple subscript for V

(l)
i,j , a different stick exists and is broken across the superscript

l. Thus, there are no special additive properties across weights in the sum in Eq. (3.13); by
contrast, the weights in Eq. (3.12) sum to one almost surely.

The generalization of the one-parameter Dirichlet process to the two-parameter Pitman-
Yor process suggests that we might consider generalizing the stick-breaking representation
of the beta process in Eq. (3.13) as follows:

B =
∞∑

i=1

Ci∑

j=1

V
(i)
i,j

i−1∏

l=1

(1− V (l)
i,j )δψi,j

Ci
iid∼ Poisson(γ)

V
(l)
i,j

indep∼ Beta(1− α, θ + iα)

ψi,j
iid∼ 1

γ
B0. (3.14)

In Section 3.6 we will show that introducing the additional parameter α indeed yields Type
I and II power law behavior (but not Type III).

In the remainder of this section we present a proof that these stick-breaking representa-
tions arise from the beta process. In contradistinction to the proof of Eq. (3.13) by Paisley,
Zaas, et al. (2010), which used a limiting process defined on sequences of finite binary ma-
trices, our approach makes a direct connection to the Poisson process characterization of the
beta process. Our proof has several virtues: (1) it relies on no asymptotic arguments and
instead comes entirely from the Poisson process representation; (2) it is, as a result, simpler
and shorter; and (3) it demonstrates clearly the ease of incorporating a third parameter anal-
ogous to the discount parameter of the Pitman-Yor process and thereby provides a strong
motivation for the extended stick-breaking representation in Eq. (3.14).

Aiming toward the general stick-breaking representation in Eq. (3.14), we begin by defin-
ing a three-parameter generalization of the beta process.3 We say that B ∼ BP(θ, α,B0),
where we call α a discount parameter, if, for ψ ∈ Ψ, u ∈ [0, 1], we have

νBP(dψ, du) =
Γ(1 + θ)

Γ(1− α)Γ(θ + α)
u−1−α(1− u)θ+α−1 du B0(dψ). (3.15)

It is straightforward to show that this three-parameter density has similar properties to that
of the two-parameter beta process. For instance, choosing α ∈ (0, 1) and θ > −α is necessary
for the beta process to have finite total mass almost surely; in this case,

∫

Ψ×R+

u νBP(dψ, du) = γ <∞. (3.16)

3See also Teh and Görür (2009) or Kim and Lee (2001), with θ(t) ≡ 1 − α, β(t) ≡ θ + α, where the
left-hand sides are in the notation of Kim and Lee (2001).
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We now turn to the main result of this section.

Proposition 3.5.1. B can be represented according to the process described in Eq. (3.14) if
and only if B ∼ BP(θ, α,B0).

Proof. First note that the points in the set

P1 :=
{

(ψ1,1, V
(1)

1,1 ), (ψ1,2, V
(1)

1,2 ), . . . , (ψ1,C1 , V
(1)

1,C1
)
}

are by construction independent and identically distributed conditioned on C1. Since C1 is
Poisson-distributed, P1 is a Poisson point process. The same logic gives that in general, for

Pi :=

{(
ψi,1, V

(i)
i,1

i−1∏

l=1

(1− V (l)
i,1 )

)
, . . . ,

(
ψi,Ci , V

(i)
i,Ci

i−1∏

l=1

(1− V (l)
i,Ci

)

)}
,

Pi is a Poisson point process.
Next, define

P :=
∞⋃

i=1

Pi.

As the countable union of Poisson processes with finite rate measures, P is itself a Poisson
point process.

Notice that we can write B in Eq. (3.14) as the completely random measure B =∑
(ψ,U)∈P Uδψ. Also, for any B′ ∼ BP(θ, α,B0), we can write B′ =

∑
(ψ′,U ′)∈Π U

′δψ′ , where Π
is a Poisson point process with rate measure νBP = B0 × µBP, and µBP is a σ-finite measure
with density

Γ(1 + θ)

Γ(1− α)Γ(θ + α)
u−1−α(1− u)θ+α−1 du. (3.17)

Therefore, to show that B has the same distribution as B′, it is enough to show that P and
Π have the same rate measures.

To that end, let ν denote the rate measure of P . Let #S indicate the number of elements
in set S, and let 1E denote the indicator of the event E; 1E is equal to one when E is true
and equal to zero when E is false. Then we have

ν(A× Ã) = E#{(ψi, Ui) ∈ A× Ã)}

=
1

γ
B0(A) · E

∞∑

i=1

Ci∑

j=1

1{V (i)
ij

i−1∏

l=1

(1− V (l)
ij ) ∈ Ã}

=
1

γ
B0(A) ·

∞∑

i=1

E
Ci∑

j=1

1{V (i)
ij

i−1∏

l=1

(1− V (l)
ij ) ∈ Ã}, (3.18)
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where the last line follows by monotone convergence. Each term in the outer sum can be
further decomposed as

E
Ci∑

j=1

1{V (i)
ij

i−1∏

l=1

(1− V (l)
ij ) ∈ Ã} = E

[
E

[
Ci∑

j=1

1{V (i)
ij

i−1∏

l=1

(1− V (l)
ij ) ∈ Ã}

∣∣∣∣∣Ci
]]

= E [Ci]E

[
1{V (i)

i1

i−1∏

l=1

(1− V (l)
i1 ) ∈ Ã}

]

since the V
(l)
ij are iid across j and independent of Ci

= γ E1{Vi
i−1∏

l=1

(1− Vl) ∈ Ã} (3.19)

for Vi
indep∼ Beta(1− α, θ + iα),

where the last equality follows since the choice of {Vi} gives

Vi

i−1∏

l=1

(1− Vl) d
= V

(i)
i1

i−1∏

l=1

(1− V (l)
i1 ).

Substituting Eq. (3.19) back into Eq. (3.18), canceling γ factors, and applying monotone
convergence again yields

ν(A× Ã) = B0(A) · E
∞∑

i=1

1{Vi
i−1∏

l=1

(1− Vl) ∈ Ã}.

We note that both of the measures ν and νBP factorize:

ν(A× Ã) = B0(A) · E
∞∑

i=1

1{Vi
i−1∏

l=1

(1− Vl) ∈ Ã}

νBP (A× Ã) = B0(A)µBP(Ã),

so it is enough to show that µ = µBP for the measure µ defined by

µ(Ã) := E
∞∑

i=1

1{Vi
i−1∏

l=1

(1− Vl) ∈ Ã}. (3.20)

At this point and later in proving Proposition 3.6.1, we will make use of part of Campbell’s
theorem, which we copy here from Kingman (1993) for completeness.

Theorem 3.5.2 (Part of Campbell’s Theorem). Let Π be a Poisson process on S with rate
measure µ, and let f : S → R be measurable. If

∫
S

min(|f(x)|, 1) µ(dx) <∞, then

E

[∑

X∈Π

f(X)

]
=

∫

S

f(x) µ(dx). (3.21)
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Now let Ũ be a size-biased pick from {Vi
∏i−1

l=1(1 − Vl)}∞i=1. By construction, for any
bounded, measurable function g, we have

E
[
g(Ũ)|{Vi}

]
=
∞∑

i=1

Vi

i−1∏

l=1

(1− Vl) · g(Vi

i−1∏

l=1

(1− Vl)).

Taking expectations yields

Eg(Ũ) = E

[
∞∑

i=1

Vi

i−1∏

l=1

(1− Vl)g(Vi

i−1∏

l=1

(1− Vl))
]

=

∫
ug(u)µ(du),

where the final equality follows by Campbell’s theorem with the choice f(u) = ug(u). Since
this result holds for all bounded, measurable g, we have that

P(Ũ ∈ du) = uµ(du). (3.22)

Finally, we note that, by Eq. (3.20), Ũ is a size-biased sample from probabilities generated
by stick-breaking with proportions {Beta(1− α, θ+ iα)}. Such a sample is then distributed
Beta(1 − α, θ + α) since, as mentioned above, the Pitman-Yor stick-breaking construction
gives the size-biased frequencies in order. So, rearranging Eq. (3.22), we can write

µ(du) = u−1P(Ũ ∈ du)

= u−1 Γ(1 + θ)

Γ(1− α)Γ(θ + α)
u(1−α)−1(1− u)(θ+α)−1

using the Beta(1− α, θ + α) density

= µBP(du),

as was to be shown.

3.6 Power law derivations

By linking the three-parameter stick-breaking representation to the power-law beta process
in Eq. (3.15), we can use the results of the following section to conclude that the feature as-
signments in the three-parameter model follow both Type I and Type II power laws and that
they do not follow a Type III power law (Section 3.4). We note that Teh and Görür (2009)
found big-O behavior for Types I and II in the three-parameter beta process and Poisson tail
behavior in the Type III case. We can strengthen these results to obtain exact asymptotic
behavior with constants in the first two cases and also conclude that Type III power laws
can never hold in the featural framework whenever the sum of the feature probabilities is
almost surely finite, an assumption that would appear to be a necessary component of any
physically realistic model.
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Type I and II power laws

Our subsequent derivation expands upon the work of Gnedin, Hansen, and Pitman (2007).
In that paper, the main thrust of the argument applies to the case in which the feature
probabilities are fixed rather than random. In what follows, we obtain power laws of Type
I and II in the case in which the feature probabilities are random, in particular when the
probabilities are generated from a Poisson process. We will see that this last assumption
becomes convenient in the course of the proof. Finally, we apply our results to the specific
example of the beta-Bernoulli process.

Recall that we defined KN , the number of represented clusters in the first N data points,
and KN,j, the number of clusters represented j times in the first N data points, in Eqs. (3.8)
and (3.7), respectively. In Section 3.4, we noted that the same definitions in Eqs. (3.8) and
(3.7) hold for featural models if we now let Ni denote the number of data points at time N
in which feature i is represented. In terms of the Bernoulli process, Ni would be the number
of Bernoulli process draws, out of N , where the ith atom has unit (i.e., nonzero) weight.
Thus, KN is now the number of represented features in the first N data points, and KN,j is
the number of features represented j times. It need not be the case that the Ni sum to N
here.

Working directly to find power laws in KN and KN,j as N increases is challenging in
part due to N being an integer. A useful technique to surmount this difficulty is called
Poissonization. In Poissonizing KN and KN,j, we consider new functions K(t) and Kj(t)
where the argument t is continuous, in contrast to the integer argument N . We will define
K(t) and Kj(t) such that K(N) and Kj(N) have the same asymptotic behavior as KN and
KN,j, respectively.

In particular, our derivation of the asymptotic behavior of KN and KN,j will consist of
three parts and will involve working extensively with the mean feature counts

ΦN := E[KN ] and ΦN,j := E[KN,j] (j > 1)

with N ∈ {1, 2, . . .} and the Poissonized mean feature counts

Φ(t) := E[K(t)] and Φj(t) := E[Kj(t)] (j > 1)

with t > 0. First, we will take advantage of Poissonization to find power laws in Φ(t) and
Φj(t) as t→∞ (Proposition 3.6.1). Then, in order to relate these results back to the original
process, we will show that ΦN and Φ(N) have the same asymptotic behavior and also that
ΦN,j and Φj(N) have the same asymptotic behavior as N → ∞ (Lemma 3.6.3). Finally,
to obtain results for the random process values KN and KN,j, we will conclude by showing
that KN almost surely has the same asymptotic behavior as ΦN and that

∑
k<jKN,k almost

surely has the same asymptotic behavior as
∑

k<j ΦN,k as N →∞ (Proposition 3.6.4).
To obtain power laws for the Poissonized process, we must begin by defining K(t) and

Kj(t). To do so, we will construct Poisson processes on the positive half-line, one for each
feature. K(t) will be the number of such Poisson processes with points in the interval [0, t];
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Figure 3.4: The first five sets of points, starting from the top of the figure, illustrate Poisson
processes on the positive half-line in the range t ∈ [0, 5] with respective rates q1, . . . , q5. The
bottom set of points illustrates the union of all points from the preceding Poisson point
processes and is, therefore, itself a Poisson process with rate

∑
i qi. In this example, we have

for instance that K(1) = 2, K(4) = 5, and K2(4) = 1.

similarly, Kj(t) will be the number of Poisson processes with j points in the interval [0, t].
This construction is illustrated in Figure 3.4. It remains to specify the rates of these Poisson
processes.

Let (q1, q2, . . .) be a countably infinite vector of feature probabilities. We begin by putting
minimal restrictions on the qi. We assume that they are strictly positive, decreasing real
numbers. They need not necessarily sum to one, and they may be random. Indeed, we will
eventually consider the case where the qi are the (random) atom weights of a beta process,
and then we will have

∑
i qi 6= 1 with probability one.

Let Πi be a standard Poisson process on the positive real line generated with rate qi (see,
e.g., the top five lines in Figure 3.4). Then Π :=

⋃
i Πi is a standard Poisson process on

the positive real line with rate
∑

i qi (see, e.g., the lowermost line in Figure 3.4), where we
henceforth assume

∑
i qi <∞ a.s.

Finally, as mentioned above, we define K(t) to be the number of Poisson processes Πi

with any points in [0, t]:

K(t) :=
∑

i

1{|Πi ∩ [0, t]| > 0}.
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And we define Kj(t) to be the number of Poisson processes Πi with exactly j points in [0, t]:

Kj(t) :=
∑

i

1{|Πi ∩ [0, t]| = j}.

These definitions are very similar to the definitions of KN and KN,j in Eqs. (3.8) and (3.7),
respectively. The principal difference is that the KN are incremented only at integer N
whereas the K(t) can have jumps at any t ∈ R+. The same observation holds for the KN,j

and Kj(t).
In addition to Poissonizing KN and KN,j to define K(t) and Kj(t), we will also find it

convenient to assume that the {qi} themselves are derived from a Poisson process with rate
measure ν. We note that Poissonizing from a discrete index N to a continuous time index
t is an approximation and separate from our assumption that the {qi} are generated from
a Poisson process though both are fundamentally tied to the ease of working with Poisson
processes.

We are now able to write out the mean feature counts in both the Poissonized and original
cases. First, the Poissonized definitions of Φ and K allow us to write

Φ(t) := E[K(t)] = E[E[K(t)|q]] = E[E[
∑

i

1{|Πi ∩ [0, t]| > 0}|q]].

With a similar approach for Φj(t), we find

Φ(t) = E[
∑

i

(1− e−tqi)], Φj(t) = E[
∑

i

(tqi)
j

j!
e−tqi ].

With the assumption that the {qi} are drawn from a Poisson process with measure ν, we can
apply Campbell’s theorem (Theorem 3.5.2) to both the original and Poissonized versions of
the process to derive the final equality in each of the following lines

Φ(t) = E[
∑

i

(1− e−tqi)] =

∫ 1

0

(1− e−tx) ν(dx) (3.23)

ΦN = E[
∑

i

(1− (1− qi)N)] =

∫ 1

0

(1− (1− x)N) ν(dx) (3.24)

Φj(t) = E[
∑

i

(tqi)
j

j!
e−tqi ] =

tj

j!

∫ 1

0

xje−tx ν(dx) (3.25)

ΦN,j =

(
N

j

)
E[
∑

i

qji (1− qi)N−j] =

(
N

j

)∫ 1

0

xj(1− x)N−j ν(dx). (3.26)

Now we establish our first result, which gives a power law in Φ(t) and Φj(t) when the
Poisson process rate measure ν has corresponding power law properties.
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Proposition 3.6.1. Asymptotic behavior of the integral of ν of the following form

ν1[0, x] :=

∫ x

0

u ν(du) ∼ α

1− αx
1−αl(1/x), x→ 0 (3.27)

where l is a regularly varying function and α ∈ (0, 1) implies

Φ(t) ∼ Γ(1− α)tαl(t), t→∞

Φj(t) ∼
αΓ(j − α)

j!
tαl(t), t→∞ (j > 1).

Proof. The key to this result is in the repeated use of Abelian or Tauberian theorems. Let
A be a map A : F → G from one function space to another: e.g., an integral or a Laplace
transform. For f ∈ F , an Abelian theorem gives us the asymptotic behavior of A(f) from
the asymptotic behavior of f , and a Tauberian theorem gives us the asymptotic behavior of
f from that of A(f).

First, integrating by parts yields

ν1[0, x] = −xν̄(x) +

∫ x

0

ν̄(u) du, ν̄(x) :=

∫ ∞

x

ν(u) du,

so the stated asymptotic behavior in ν1 yields ν̄(x) ∼ l(1/x)x−α(x → 0) by a Tauberian
theorem (Feller, 1966; Gnedin, Hansen, and Pitman, 2007) where the map A is an integral.

Second, another integration by parts yields

Φ(t) = t

∫ ∞

0

e−txν̄(x) dx.

The desired asymptotic behavior in Φ follows from the asymptotic behavior in ν̄ and an
Abelian theorem (Feller, 1966; Gnedin, Hansen, and Pitman, 2007) where the map A is a
Laplace transform. The result for Φj(t) follows from a similar argument when we note that
repeated integration by parts of Eq. (3.25) also yields a Laplace transform.

The importance of assuming that the qi are distributed according to a Poisson process
is that this assumption allowed us to write Φ as an integral and thereby make use of classic
Abelian and Tauberian theorems. The importance of Poissonizing the processes Kj and KN,j

is that we can write their means as in Eqs. (3.23) and (3.25), which are—up to integration
by parts—in the form of Laplace transforms.

Proposition 3.6.1 is the most significant link in the chain of results needed to show
asymptotic behavior of the feature counts KN and KN,j in that it relates power laws in
the known feature probability rate measure ν to power laws in the mean behavior of the
Poissonized version of these processes. It remains to show this mean behavior translates
back to KN and KN,j, first by relating the means of the original and Poissonized processes
and then by relating the means to the almost sure behavior of the counts. The next two
lemmas address the former concern. Together they establish that the mean feature counts
ΦN and ΦN,j have the same asymptotic behavior as the corresponding Poissonized mean
feature counts Φ(N) and Φj(N).
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Lemma 3.6.2. Let ν be σ-finite with
∫∞

0
ν(du) = ∞ and

∫∞
0
u ν(du) < ∞. Then the

number of represented features has unbounded growth almost surely. The expected number of
represented features has unbounded growth, and the expected number of features has sublinear
growth. That is,

K(t) ↑ ∞ a.s., Φ(t) ↑ ∞, Φ(t)� t.

Proof. As in Gnedin, Hansen, and Pitman (2007), the first statement follows from the fact
that q is countably infinite and each qi is strictly positive. The second statement follows
from monotone convergence. The final statement is a consequence of

∑
i qi <∞ a.s.

Lemma 3.6.3. Suppose the {qi} are generated according to a Poisson process with rate
measure as in Lemma 3.6.2. Then, for N →∞,

|ΦN − Φ(N)| < 2

N
Φ2(N)→ 0

|ΦN,j − Φj(N)| < cj
N

max{Φj(N),Φj+2(N)} → 0.

for some constants cj.

Proof. The proof is the same as that of Lemma 1 of Gnedin, Hansen, and Pitman (2007).
Establishing the inequalities results from algebraic manipulations. The convergence to zero
is a consequence of Lemma 3.6.2.

Finally, before considering the specific case of the three-parameter beta process, we wish
to show that power laws in the means ΦN and ΦN,j extend to almost sure power laws in the
number of represented features.

Proposition 3.6.4. Suppose the {qi} are generated from a Poisson process with rate measure
as in Lemma 3.6.2. Suppose that Φ(t) ∼ Ctαl(t) and Φj(t) ∼ C ′tαl′(t) for α ∈ (0, 1),
C,C ′ > 0, and l and l′ slowly varying as t→∞. Then, for N →∞,

KN
a.s.∼ ΦN ,

∑

k<j

KN,k
a.s.∼
∑

k<j

ΦN,k.

Proof. We wish to show that KN/ΦN
a.s.→ 1 as N → ∞. By Borel-Cantelli, it is enough to

show that, for any ε > 0,
∑

N

P
(∣∣∣∣
KN

ΦN

− 1

∣∣∣∣ > ε

)
<∞.

To that end, note

P (|KN − ΦN | > εΦN) ≤ P (ΦN > εΦN +KN) + P (KN > εΦN + ΦN) .

The note after Theorem 4 in D. Freedman (1973) gives that

P (ΦN > εΦN +KN) ≤ exp
(
−ε2ΦN

)
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P (KN > εΦN + ΦN) ≤ exp

(
− ε2

1 + ε
ΦN

)
.

So

P
(∣∣∣∣
KN

ΦN

− 1

∣∣∣∣ > ε

)
≤ 2 exp

(
−1

2
ε2ΦN

)

≤ c exp

(
−1

2
ε2Nαl(N)

)

for some constant c and sufficiently large N by Lemma 3.6.3 and the assumption on Φ(t).
The last expression is summable in N , and Borel-Cantelli holds.

The proof that
∑

k<jKN,k
a.s.∼ ∑k<j ΦN,j follows the same argument.

It remains to show that we obtain Type I and II power laws in our special case of the three-
parameter beta process, which implies a particular rate measure ν in the Poisson process
representation of the {qi}. For the three-parameter beta process density in Eq. (3.15), we
have

ν1[0, x] =

∫

Ψ×(0,x]

u νBP (dψ, du)

= γ · Γ(1 + θ)

Γ(1− α)Γ(θ + α)

∫ x

0

u−α(1− u)θ+α−1 du

∼ γ · Γ(1 + θ)

Γ(1− α)Γ(θ + α)

∫ x

0

u−α du, x ↓ 0

= γ · Γ(1 + θ)

Γ(1− α)Γ(θ + α)
· 1

1− αx
1−α.

The final line is exactly the form required by Eq. (3.27) in Proposition 3.6.1, with l(y) equal
to the constant function of value

C :=
γ

α
· Γ(1 + θ)

Γ(1− α)Γ(θ + α)
. (3.28)

Then Proposition 3.6.1 implies that the following power laws hold for the mean of the
Poissonized process:

Φ(t)
a.s.∼ Γ(1− α)Ctα, t→∞

Φj(t)
a.s.∼ αΓ(j − α)

j!
Ctα, t→∞ (j > 1).

Lemma 3.6.3 further yields

ΦN
a.s.∼ Γ(1− α)CNα, N →∞
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ΦN,j
a.s.∼ αΓ(j − α)

j!
CNα, N →∞ (j > 1),

and finally Proposition 3.6.4 implies

KN
a.s.∼ Γ(1− α)CNα, N →∞ (3.29)

KN,j
a.s.∼ αΓ(j − α)

j!
CNα, N →∞ (j > 1). (3.30)

These are exactly the desired Type I and II power laws (Eqs. (3.9) and (3.10)) for appropriate
choices of the constants.

Exponential decay in the number of features

Next we consider a single data point and the number of features that are expressed for that
data point in the featural model. We prove results for the general case where the ith feature
has probability qi ≥ 0 such that

∑
i qi < ∞. Let Zi be a Bernoulli random variable with

success probability qi and such that all the Zi are independent. Then E[
∑

i Zi] =
∑

i qi =: Q.
In this case, a Chernoff bound (Chernoff, 1952; Hagerup and Rub, 1990) tells us that, for
any δ > 0, we have

P[
∑

i

Zi ≥ (1 + δ)Q] ≤ eδQ(1 + δ)−(1+δ)Q.

When M is large enough such that M > Q, we can choose δ such that (1 + δ)Q = M . Then
this inequality becomes

P[
∑

i

Zi ≥M ] ≤ eM−QQMM−M for M > Q. (3.31)

We see from Eq. (3.31) that the number of features
∑

i Zi that are expressed for a
data point exhibits super-exponential tail decay and therefore cannot have a power law
probability distribution when the sum of feature probabilities

∑
i qi is finite. For comparison,

let Z ∼ Poisson(Q). Then (Franceschetti et al., 2007)

P[Z ≥M ] ≤ eM−QQMM−M for M > Q,

the same tail bound as in Eq. (3.31).
To apply the tail-behavior result of Eq. (3.31) to the beta process (with two or three

parameters), we note that the total feature probability mass is a.s. finite by Eq. (3.16).
Since the same set of feature probabilities is used in all subsequent Bernoulli process draws
for the beta-Bernoulli process, the result holds.
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3.7 Simulation

To illustrate the three types of power laws discussed above, we simulated beta process atom
weights under three different choices of the discount parameter α, namely α = 0 (the classic,
two-parameter beta process), α = 0.3, and α = 0.6. In all three simulations, the remain-
ing beta process parameters were kept constant at total mass parameter value γ = 3 and
concentration parameter value θ = 1.

The simulations were carried out using our extension of the Paisley, Zaas, et al. (2010)
stick-breaking construction in Eq. (3.14). We generated 2,000 rounds of feature probabilities;
that is, we generated 2,000 random variables Ci and

∑2,000
i=1 Ci feature probabilities. With

these probabilities, we generated N = 1,000 data points, i.e., 1,000 vectors of (
∑2,000

i=1 Ci)
independent Bernoulli random variables with these probabilities. With these simulated data,
we were able to perform an empirical evaluation of our theoretical results.

Figure 3.5 illustrates power laws in the number of represented features KN on the left
(Type I power law) and the number of features represented by exactly one data point KN,1

on the right (Type II power law). Both of these quantities are plotted as functions of the
increasing number of data points N . The blue points show the simulated values for the
classic, two-parameter beta process case with α = 0. The center set of black points in each
case corresponds to α = 0.3, and the upper set of black points in each case corresponds to
α = 0.6.

We also plot curves obtained from our theoretical results in order to compare them to the
simulation. Recall that in our theoretical development, we noted that there are two steps to
establishing the asymptotic behavior of KN and KN,j as N increases. First, we compare the
random quantities KN and KN,j to their respective means, ΦN and ΦN,j. These means, as
computed via numerical quadrature from Eq. (3.24) and directly from Eq. (3.26), are shown
by red curves in the plots. Second, we compare the means to their own asymptotic behavior.
This asymptotic behavior, which we ultimately proved was shared with the respective KN

or KN,j in Eqs. (3.29) and (3.30), is shown by green curves in the plots.
We can see in both plots that the α = 0 behavior is distinctly different from the straight-

line behavior of the α > 0 examples. In both cases, we can see that any growth in α is slower
than can be described by straight-line growth. In particular, when α = 0, the expected
number of features is

ΦN = E[KN ] = E

[
N∑

n=1

Poisson

(
γ

θ

n+ θ

)]
=

N∑

n=1

γ
θ

n+ θ
∼ γθ log(N). (3.32)

Similarly, when α = 0, the expected number of features represented by exactly one data
point, KN,1, is (by Eq. (3.26))

ΦN,1 = E[KN,1] =

(
N

1

)∫ 1

0

x1(1− x)N−1 · γθx−1(1− x)θ−1 dx

= Nγθ · Γ(1)Γ(N − 1 + θ)

Γ(N + θ)
= γθ

N

N − 1 + θ
∼ γθ,
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Figure 3.5: Growth in the number of represented features KN (left) and the number of
features represented by exactly one data point KN,1 (right) as the total number of data
points N grows. The points in the scatterplot are derived by simulation; blue for α = 0,
center black for α = 0.3, and upper black for α = 0.6. The red lines in the left plot show
the theoretical mean ΦN (Eq. (3.24)); in the right plot, they show the theoretical mean ΦN,1

(Eq. (3.26)). The green lines show the theoretical asymptotic behavior, Eq. (3.29) on the
left (Type I power law) and Eq. (3.30) on the right (Type II power law).

where the second line follows from using the normalization constant of the (proper) beta
distribution. Interestingly, while KN,1 grows as a power law when α > 0, its expectation is
constant when α = 0. While many new features are instantiated as N increases in the α = 0
case, it seems that they are quickly represented by more data points than just the first one.

Type I and II power laws are somewhat easy to visualize since we have one point in our
plots for each data point simulated. The behaviors of KN,j as a function of j for fixed N and
Type III power laws (or lack thereof) are somewhat more difficult to visualize. In the case of
KN,j as a function of j, we might expect that a large number of data points N is necessary
to see many groups of size j for j much greater than one. In the Type III case, we have
seen that in fact power laws do not hold for any value of α in the beta process. Rather, the
number of data points exhibiting more than M features decreases more quickly in M than
a power law would predict; therefore, we cannot plot many values of M before this number
effectively goes to zero.

Nonetheless, Figure 3.6 compares our simulated data to the approximation of Eq. (3.10)
with Eq. (3.11) (left) and Type III power laws (right). On the left, blue points as usual denote
simulated data under α = 0; middle black points show α = 0.3, and upper black points show
α = 0.6. Here, we use connecting lines between plotted points to clarify α values. The green
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Figure 3.6: Left: Change in the number of features with exactly j representatives among
N data points for fixed N as a function of j. The blue points, with connecting lines, are
for α = 0; middle black are for α = 0.3, upper black for α = 0.6. The green lines show the
theoretical asymptotic behavior in j (Eqs. (3.10) and (3.11)) for the two α > 0 cases. Right:
Change in the number of data points, indexed by n, with number of feature assignments kn
greater than some positive, real-valued M as M increases. Neither the α = 0 case (blue) nor
the α > 0 cases (black) exhibit Type III power laws.

lines for the α > 0 case illustrate the approximation of Eq. (3.11). Around j = 10, we see
that the number of feaures exhibited by j data points, KN,j, degenerates to mainly zero and
one values. However, for smaller values of j we can still distinguish the power law trend.

On the right-hand side of Figure 3.6, we display the number of data points exhibiting
more than M features for various values of M across the three values of α. Unlike the
previous plots in Figure 3.5 and Figure 3.6, there is no power-law behavior for the cases
α > 0, as predicted in Section 3.6. We also note that here the α = 0.3 curve does not lie
between the α = 0 and α = 0.6 curves. Such an occurrence is not unusual in this case since,
as we saw in Eq. (3.31), the rate of decrease is modulated by the total mass of the feature
probabilities drawn from the beta process, which is random and not necessarily smaller when
α is smaller.

Finally, since our simulation involves generating the underlying feature probabilities from
the beta process as well as the actual feature assignments from repeated draws from the
Bernoulli process, we may examine the feature probabilities themselves; see Figure 3.7. As
usual, the blue points represent the classic, two-parameter (α = 0) beta process. Black
points represent α = 0.3 (center) and α = 0.6 (upper). Perhaps due to the fact that there
is only the beta process noise to contend with in this aspect of the simulation (and not
the combined randomness due to the beta process and Bernoulli process), we see the most
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Figure 3.7: Feature probabilities from the beta process plotted in decreasing size order.
Blue points represent probabilities from the α = 0 case; center black points show α = 0.3,
and upper black points show α = 0.6. The green lines show theoretical asymptotic behavior
of the ranked probabilities (Eq. (3.33)).

striking demonstration of both power law behavior in the α > 0 cases and faster decay in
the α = 0 case in this figure. The two α > 0 cases clearly adhere to a power law that may be
predicted from our results above and the Gnedin, Hansen, and Pitman (2007) results with
C as in Eq. (3.28):

#{i : qi ≥ x} a.s.∼ Cx−α x ↓ 0. (3.33)

Note that ranking the probabilities merely inverts the plot that would be created with x on
the horizontal axis and {i : qi ≥ x} on the vertical axis. The simulation demonstrates little
noise about these power laws beyond the 100th ranked probability. The decay for α = 0 is
markedly faster than the other cases.

3.8 Experimental results

We have seen that the Poisson process formulation allows for an easy extension of the beta
process to a three-parameter model. In this section we study this model empirically in the
setting of the modeling of handwritten digits. Paisley, Zaas, et al. (2010) present results
for this problem using a two-parameter beta process coupled with a discrete factor analysis
model; we repeat those experiments with the three-parameter beta process. The data consists
of 3,000 examples of handwritten digits, in particular 1,000 handwriting samples of each of
the digits 3, 5, and 8 from the MNIST Handwritten Digits database (LeCun and Cortes,
1998; Roweis, 2007). Each handwritten digit is represented by a matrix of 28×28 pixels; we
project these matrices into 50 dimensions using principal components analysis. Thus, our
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data takes the form X ∈ R50×3000, and we may apply the beta process factor model from
Eq. (3.2) with P = 50 and N = 3,000 to discover latent structure in this data.

The generative model for X that we use is as follows (see Paisley, Zaas, et al., 2010):

X = (W ◦ Z)Φ + E

Z ∼ BP− BeP(N, γ, θ, α)

Φk,p
iid∼ N(0, ρp)

Wn,k
iid∼ N(0, ζ)

En,p
iid∼ N(0, η), (3.34)

with familiar beta process hyperparameters θ, α, and γ = EB0 and new (positive) variance
hyperparameters {ρp}Pp=1, ζ, η. Recall from Eq. (3.2) that X ∈ RN×P is the data, Φ ∈ RK×P

is a matrix of factors, and E ∈ RN×P is an error matrix. Here, we introduce the weight matrix
W ∈ RN×K , which modulates the binary factor loadings Z ∈ RN×K . In Eq. (3.34), ◦ denotes
elementwise multiplication, and the indices have ranges n ∈ {1, . . . , N}, k ∈ {1, . . . , K}, p ∈
{1, . . . , P}. Since we draw Z from a beta-Bernoulli process, the dimension K is theoretically
infinite in the generative model notation of Eq. (3.34). However, we have seen that the
number of columns of Z with nonzero entries is a.s. finite. We use K to denote this number.

We initialized both the two-parameter and the three-parameter models with the same
number of latent features, K = 200, and the same values for all shared parameters (i.e., every
variable except the new discount parameter α). We ran the experiment for 2,000 MCMC
iterations, noting that the MCMC runs in both models seem to have reached equilibrium by
500 iterations (see Figures 3.8 and 3.9).

Figures 3.8 and 3.9 show the sampled values of various parameters as a function of
MCMC iteration. In particular, we see how the number of features K (Figure 3.8), the
concentration parameter θ, and the discount parameter α (Figure 3.9) change over time.
All three graphs illustrate that the three-parameter model takes a longer time to reach
equilibrium than the two-parameter model (approximately 500 iterations vs. approximatively
100 iterations). However, once at equilibrium, the sampling time series associated with the
three-parameter iterations exhibit lower autocorrelation than the samples associated with
the two-parameter iterations (Figure 3.10). In the implementation of both the original
two-parameter model and the three-parameter model, the range for θ is considered to be
bounded above by approximately 100 for computational reasons (in accordance with the
original methodology of Paisley, Zaas, et al. (2010)). As shown in Figure 3.9, this bound
affects sampling in the two-parameter experiment whereas, after burn-in, the effect is not
noticeable in the three-parameter experiment. While the discount parameter α also comes
close to the lower boundary of its discretization (Figure 3.9)—which cannot be exactly zero
due to computational concerns—the samples nonetheless seem to explore the space well.

We can see from Figure 3.10 that the estimated value of the concentration parameter θ
is much lower when the discount parameter α is also estimated. This behavior may be seen
to result from the fact that the power law growth of the expected number of represented
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Figure 3.8: The number of latent features K as a function of the MCMC iteration. Results
for the original, two-parameter model are represented on the left, and results for the new,
three-parameter model are illustrated on the right.
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Figure 3.9: The random values drawn for the hyperparameters as a function of the MCMC
iteration. Draws for the concentration parameter θ under the two-parameter model are shown
on the left, and draws for θ under the three-parameter model are shown in the middle. On
the right are draws of the new discount parameter α under the three-parameter model.
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Figure 3.10: Autocorrelation of the number of factors K, concentration parameter θ, and
discount parameter α for the MCMC samples after burn-in (where burn-in is taken to end
at 500 iterations) under the two-parameter model (left) and three-parameter model (right).

features ΦN in the α > 0 case yields a generally higher expected number of features than
in the α = 0 case for a fixed concentration parameter θ. Further, we see from Eq. (3.32)
that the expected number of features when α = 0 is linear in θ. Therefore, if we instead fix
the number of features, the α = 0 model can compensate by increasing θ over the α > 0
model. Indeed, we see in Figure 3.8 that the number of features discovered by both models
is roughly equal; in order to achieve this number of features, the α = 0 model seems to be
compensating by overestimating the concentration parameter θ.

To get a sense of the actual output of the model, we can look at some of the learned
features. In particular, we collected the set of features from the last MCMC iteration in each
model. The kth feature is expressed or not for the nth data point according to whether Znk
is one or zero. Therefore, we can find the most-expressed features across the data set using
the set of features on this iteration as well as the sampled Z matrix on this iteration. We
plot the nine most-expressed features under each model in Figure 3.11. In both models, we
can see how the features have captured distinguishing features of the 3, 5, and 8 digits.

Finally, we note that the three-parameter version of the algorithm is competitive with
the two-parameter version in running time once equilibrium is reached. After the burn-in
regime of 500 iterations, the average running time per iteration under the three-parameter
model is 14.5 seconds, compared with 11.7 seconds average running time per iteration under
the two-parameter model.
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Two-parameter model

Three-parameter model

Figure 3.11: Upper: The top nine features by sampled representation across the data set
on the final MCMC iteration for the original, two-parameter model. Lower: The top nine
features determined in the same way for the new, three-parameter model.

3.9 Discussion

We have shown that the stick-breaking representation of the beta process due to Paisley,
Zaas, et al. (2010) can be obtained directly from the representation of the beta process as
a completely random measure. With this result in hand the set of connections between the
beta process, stick-breaking, and the Indian buffet process are essentially as complete as
those linking the Dirichlet process, stick-breaking, and the Chinese restaurant process.

We have also shown that this approach motivates a three-parameter generalization of
the stick-breaking representation of Paisley, Zaas, et al. (2010), which is the analog of the
Pitman-Yor generalization of the stick-breaking representation for the Dirichlet process. We
have shown that Type I and Type II power laws follow from this three-parameter model.
We have also shown that Type III power laws cannot be obtained within this framework. It
is an open problem to discover useful classes of stochastic processes that provide such power
laws.

3.A A Markov chain Monte Carlo algorithm

Posterior inference under the three-parameter model can be performed with a Markov chain
Monte Carlo (MCMC) algorithm. Many conditionals have simple forms that allow Gibbs
sampling although others require further approximation. Most of our sampling steps are
as in Paisley, Zaas, et al. (2010) with the notable exceptions of a new sampling step for
the discount parameter α and integration of the discount parameter α into the existing
framework. We describe the full algorithm here.
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Notation and auxiliary variables

Call the index i in Eq. (3.14) the round. Then introduce the round-indicator variables rk such
that rk = i exactly when the kth atom, where k indexes the sequence (ψ1,1, . . . , ψ1,C1 , ψ2,1, . . . , ψ2,C2 , . . .),
occurs in round i. We may write

rk := 1 +
∞∑

i=1

1

{
i∑

j=1

Cj < k

}
.

To recover the round lengths C from r = (r1, r2, . . .), note that

Ci =
∞∑

k=1

1(rk = i). (3.35)

With the definition of the round indicators r in hand, we can rewrite the beta process B
as

B =
∞∑

k=1

Vk,rk

rk−1∏

j=1

(1− Vk,j)δψk ,

where Vk,j
iid∼ Beta(1− α, θ + iα) and ψk

iid∼ γ−1B0 as usual although the indexing is not the
same as in Eq. (3.14). It follows that the expression of the kth feature for the nth data point
is given by

Zn,k ∼ Bern (πk) , πk := Vk,rk

rk−1∏

j=1

(1− Vk,j).

We also introduce notation for the number of data points in which the kth feature is,
respectively, expressed and not expressed:

m1,k :=
N∑

n=1

1(Zn,k = 1), m0,k :=
N∑

n=1

1(Zn,k = 0)

Finally, let K be the number of represented features; i.e., K := #{k : m1,k > 0}. Without
loss of generality, we assume the represented features are the first K features in the index
k. The new quantities {rk}, {m1,k}, {m0,k}, and K will be used in describing the sampler
steps below.

Latent indicators

First, we describe the sampling of the round indicators {rk} and the latent feature indicators
{Zn,k}. In these and other steps in the MCMC algorithm, we integrate out the stick-breaking
proportions {Vi}.



CHAPTER 3. BETA PROCESSES, STICK-BREAKING, AND POWER LAWS 74

Round indicator variables

We wish to sample the round indicator rk for each feature k with 1 ≤ k ≤ K. We can write
the conditional for rk as

p(rk = i|{rl}k−1
l=1 , {Zn,k}Nn=1, θ, α, γ)

∝ p({Zn,k}Nn=1|rk = i, θ, α)p(rk = i|{rl}k−1
l=1 ). (3.36)

It remains to calculate the two factors in the product.
For the first factor in Eq. (3.36), we write out the integration over stick-breaking propor-

tions and approximate with a Monte Carlo integral:

p({Zn,k}Nn=1|rk = i, θ, α) =

∫

[0,1]i
π
m1,k

k (1− πk)m0,k dV

≈ 1

S

S∑

s=1

(π
(s)
k )m1,k(1− π(s)

k )m0,k . (3.37)

Here, π
(s)
k := V

(s)
k,rk

∏rk−1
j=1 (1 − V

(s)
k,j ), and V

(s)
k,j

indep∼ Beta(1 − α, θ + jα). Also, S is the
number of samples in the sum approximation. Note that the computational trick employed
in Paisley, Zaas, et al. (2010) for sampling the {Vi} more efficiently than directly using the
approximation above relies on the first parameter of the beta distribution being equal to
one; therefore, the sampling described above, without further tricks, is exactly the sampling
that must be used in this more general parameterization.

For the second factor in Eq. (3.36), there is no dependence on the α parameter, so the
draws are the same as in Paisley, Zaas, et al. (2010). For Rk :=

∑k
j=1 1(rj = rk), we have

p(rk = r|γ, {rl}k−1
l=1 )

=





0 r < rk−1

1−
∑Rk−1
i=1 Poisson(i|γ)

1−
∑Rk−1−1

i=1 Poisson(i|γ)
r = rk−1(

1− 1−
∑Rk−1
i=1 Poisson(i|γ)

1−
∑Rk−1−1

i=1 Poisson(i|γ)

)
(1− Poisson(0|γ)) Poisson(0|γ)h−1 r = rk−1 + h

for each h ≥ 1. Note that these draws make the approximation that the first K features
correspond to the first K tuples (i, j) in the double sum of Eq. (3.14); these orderings do
not in general agree.

To complete the calculation of the posterior for rk, we need to sum over all values of i to
normalize p(rk = i|{rl}k−1

l=1 , {Zn,k}Nn=1, θ, α, γ). Since this is not computationally feasible, an
alternative method is to calculate Eq. (3.36) for increasing values of i until the result falls
below a pre-determined threshold.
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Factor indicators

In finding the posterior for the kth feature indicator in the nth latent factor, Zn,k, we can
integrate out both {Vi} and the weight variables {Wn,k}. The conditional for Zn,k is

p(Zn,k|Xn,·,Φ, Zn,−k, r, θ, α, η, ζ)

= p(Xn,·|Zn,·,Φ, η, ζ)p(Zn,k|r, θ, α, Zn,−k). (3.38)

First, we consider the likelihood. For this factor, we integrate out W explicitly:

p(Xn,·|Zn,·,Φ, η, ζ)

=

∫

W

p(Xn,·|Zn,·,Φ,W, η)p(W |ζ)

=

∫

Wn,I

N(Xn,·|Wn,IΦI,·, ηIP )N(Wn,I |0|I|, ζI|I|)dWn,I

where I = {i : Zn,i = 1}

= N

(
Xn,·|0P ,

[
η−1IP − η−2ΦI,·

(
η−1Φ>I,·ΦI,· + ζ−1I|I|

)−1
Φ>I,·

]−1
)

= N
(
Xn,·|0P , ηIP + ζΦI,·Φ

>
I,·
)
,

where the final step follows from the Sherman-Morrison-Woodbury lemma.
For the second factor in Eq. (3.38), we can write

p(Zn,k|r, θ, α, Zn,−k) =
p(Zn|r, θ, α)

p(Zn,−k|r, θ, α)
,

and the numerator and denominator can both be estimated as integrals over V using the
same Monte Carlo integration trick as in Eq. (3.37).

Hyperparameters

Next, we describe sampling for the three parameters of the beta process. The mass and
concentration parameters are shared by the two-parameter process; the discount parameter
is unique to the three-parameter beta process.

Mass parameter

With the round indicators {rk} in hand as from Appendix 3.A above, we can recover the
round lengths {Ci} with Eq. (3.35). Assuming an improper gamma prior on γ—with both
shape and inverse scale parameters equal to zero—and recalling the iid Poisson generation
of the {Ci}, the posterior for γ is

p(γ|r, Z, θ, α) = Gamma(γ|
rK∑

i=1

Ci, rK).
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Note that it is necessary to sample γ since it occurs in, e.g., the conditional for the round
indicator variables (Appendix 3.A).

Concentration parameter

The conditional for θ is

p(θ|Z, r, α) ∝ p(θ)
K∏

k=1

p(Z|r, θ, α).

Again, we calculate the likelihood factors p(Z|r, θ, α) with a Monte Carlo approximation
as in Eq. (3.37). In order to find the conditional over θ from the likelihood and prior, we
further approximate the space of θ > 0 by a discretization around the previous value of
θ in the Monte Carlo sampler: {θprev + t∆θ}t=Tt=S , where S and T are chosen so that all
potential new θ values are nonnegative and so that the tails of the distribution fall below
a pre-determined threshold. To complete the description, we choose the improper prior
p(θ) ∝ 1.

Discount parameter

We sample the discount parameter α in a similar manner to θ. The conditional for α is

p(α|Z, r, θ) ∝ p(α)
K∏

k=1

p(Z|r, θ, α).

As usual, we calculate the likelihood factors p(Z|r, θ, α) with a Monte Carlo approximation
as in Eq. (3.37). While we discretize the sampling of α as we did for θ, note that sampling
α is more straightforward since α must lie in [0, 1]. Therefore, the choice of ∆α completely
characterizes the discretization of the interval. In particular, to avoid endpoint behavior, we

consider new values of α among {∆α/2 + t∆α}(∆α)−1−1
t=0 . Moreover, the choice of p(α) ∝ 1

is, in this case, a proper prior for α.

Factor analysis components

In order to use the beta process as a prior in the factor analysis model described in Eq. (3.2),
we must also describe samplers for the feature matrix Φ and weight matrix W .

Feature matrix

The conditional for the feature matrix Φ is

p(Φ·,p|X,W,Z, η, ρp) ∝ p(X·,p|Φ·,p,W, Z, ηIN)p(Φ·,p|ρp)
= N(X·,p|(W ◦ Z)Φ·,p, ηIN)N(Φ·,p|0K , ρpIK)

∝ N (Φ·,p|µ,Σ) ,
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where, in the final line, the variance is defined as follows:

Σ :=
(
η−1(W ◦ Z)>(W ◦ Z) + ρ−1

p IK
)−1

,

and similarly for the mean:
µ := Ση−1(W ◦ Z)>X·,p.

Weight matrix

Let I = {i : Zn,i = 1}. Then the conditional for the weight matrix W is

p(Wn,I |X,Z,Φ, η) ∝ p(Xn,·|ΦI,·,Wn,I , η)p(Wn,I |ζ)

= N(Xn,·|Wn,IΦI,·, ηIp)N(Wn,I |0|I|, ζI|I|)
∝ N(Wn,I |µ̃, Σ̃),

where, in the final line, the variance is defined as Σ̃ :=
(
η−1ΦI,·Φ

>
I,· + ζ−1I|I|

)−1
, and the

mean is defined as µ̃ := Σ̃η−1Xn,·Φ
>
I,·.
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Chapter 4

Combinatorial clustering and the beta
negative binomial process

We develop a Bayesian nonparametric approach to a general family of latent class problems in
which individuals can belong simultaneously to multiple classes and where each class can be
exhibited multiple times by an individual. We introduce a combinatorial stochastic process
known as the negative binomial process (NBP) as an infinite-dimensional prior appropriate for
such problems. We show that the NBP is conjugate to the beta process, and we characterize
the posterior distribution under the beta-negative binomial process (BNBP) and hierarchical
models based on the BNBP (the HBNBP). We study the asymptotic properties of the BNBP
and develop a three-parameter extension of the BNBP that exhibits power-law behavior.
We derive MCMC algorithms for posterior inference under the HBNBP, and we present
experiments using these algorithms in the domains of image segmentation, object recognition,
and document analysis.

4.1 Introduction

In traditional clustering problems the goal is to induce a set of latent classes and to assign
each data point to one and only one class. This problem has been approached within a
model-based framework via the use of finite mixture models, where the mixture components
characterize the distributions associated with the classes, and the mixing proportions capture
the mutual exclusivity of the classes (Fraley and Raftery, 2002; McLachlan and Basford,
1988). In many domains in which the notion of latent classes is natural, however, it is
unrealistic to assign each individual to a single class. For example, in genetics, while it
may be reasonable to assume the existence of underlying ancestral populations that define
distributions on observed alleles, each individual in an existing population is likely to be
a blend of the patterns associated with the ancestral populations. Such a genetic blend is
known as an admixture (Pritchard, Stephens, and Donnelly, 2000). A significant literature on
model-based approaches to admixture has arisen in recent years (Blei, Ng, and Jordan, 2003;
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Erosheva and Fienberg, 2005; Pritchard, Stephens, and Donnelly, 2000), with applications to
a wide variety of domains in genetics and beyond, including document modeling and image
analysis.1

Model-based approaches to admixture are generally built on the foundation of mixture
modeling. The basic idea is to treat each individual as a collection of data, with an exchange-
ability assumption imposed for the data within an individual but not between individuals.
For example, in the genetics domain the intra-individual data might be a set of genetic
markers, with marker probabilities varying across ancestral populations. In the document
domain the intra-individual data might be the set of words in a given document, with each
document (the individual) obtained as a blend across a set of underlying “topics” that encode
probabilities for the words. In the image domain, the intra-individual data might be visual
characteristics like edges, hue, and location extracted from image patches. Each image is
then a blend of object classes (e.g., grass, sky, or car), each defining a distinct distribution
over visual characteristics. In general, this blending is achieved by making use of the prob-
abilistic structure of a finite mixture but using a different sampling pattern. In particular,
mixing proportions are treated as random effects that are drawn once per individual, and the
data associated with that individual are obtained by repeated draws from a mixture model
having that fixed set of mixing proportions. The overall model is a hierarchical model, in
which mixture components are shared among individuals and mixing proportions are treated
as random effects.

Although the literature has focused on using finite mixture models in this context, there
has also been a growing literature on Bayesian nonparametric approaches to admixture
models, notably the hierarchical Dirichlet process (HDP) (Teh, Jordan, et al., 2006), where
the number of shared mixture components is infinite. Our focus in the current chapter is
also on nonparametric methods, given the open-ended nature of the inferential objects with
which real-world admixture modeling is generally concerned.

Although viewing an admixture as a set of repeated draws from a mixture model is
natural in many situations, it is also natural to take a different perspective, akin to latent
trait modeling, in which the individual (e.g., a document or a genotype) is characterized
by the set of “traits” or “features” that it possesses, and where there is no assumption of
mutual exclusivity. Here the focus is on the individual and not on the “data” associated with
an individual. Indeed, under the exchangeability assumption alluded to above it is natural
to reduce the repeated draws from a mixture model to the counts of the numbers of times
that each mixture component is selected, and we may wish to model these counts directly.
We may further wish to consider hierarchical models in which there is a linkage among the
counts for different individuals.

This idea has been made explicit in a recent line of work based on the beta process. Orig-
inally developed for survival analysis, where an integrated form of the beta process was used
as a model for random hazard functions (Hjort, 1990), more recently it has been observed

1While we refer to such models generically as “admixture models,” we note that they are also often
referred to as topic models or mixed membership models.
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that the beta process also provides a natural framework for latent feature modeling (Thibaux
and Jordan, 2007). In particular, as we discuss in detail in Section 4.2, a draw from the
beta process yields an infinite collection of coin-tossing probabilities. Tossing these coins—a
draw from a Bernoulli process—one obtains a set of binary features that can be viewed as a
description of an admixed individual. A key advantage of this approach is the conjugacy be-
tween the beta and Bernoulli processes: this property allows for tractable inference, despite
the countable infinitude of coin-tossing probabilities. A limitation of this approach, however,
is its restriction to binary features; indeed, one of the virtues of the mixture-model-based
approach is that a given mixture component can be selected more than once, with the total
number of selections being random.

We develop a model for admixture that meets all of the desiderata outlined thus far.
Unlike the Bernoulli process likelihood, our featural model allows each feature to be exhibited
any non-negative integer number of times by an individual. Unlike admixture models based
on the HDP, our model cohesively includes a random total number of features (e.g., words
or traits) per individual (e.g., a document or genotype).

As inspiration, we note that in the setting of classical random variables, beta-Bernoulli
conjugacy is not the only form of conjugacy involving the beta distribution—the negative bi-
nomial distribution is also conjugate to the beta. Anticipating the value of conjugacy in the
setting of nonparametric models, we define and develop a stochastic process analogue of the
negative binomial distribution, which we refer to as the negative binomial process (NBP),2

and provide a rigorous proof of its conjugacy to the beta process. We use this process as
part of a new model—the hierarchical beta negative binomial process (HBNBP)—based on
the NBP and the hierarchical beta process (Thibaux and Jordan, 2007). Our theoretical and
experimental development focus on the usefulness of the HBNBP in the admixture setting,
where flexible modeling of feature totals can lead to improved inferential accuracy (see Fig-
ure 4.8 and the surrounding discussion). However, the utility of the HBNBP is not limited
to the admixture setting and should extend readily to the modeling of latent factors and the
identification of more general latent features. Moreover, the negative binomial component
of our model offers addtional flexibility in the form of a new parameter unavailable in either
the Bernoulli or multinomial likelihoods traditionally explored in Bayesian nonparametrics.

The remainder of the chapter is organized as follows. In Section 4.2 we present the
framework of completely random measures that provides the formal underpinnings for our
work. We discuss the Bernoulli process, introduce the NBP, and demonstrate the conjugacy
of both to the beta process in Section 4.3. Section 4.4 focuses on the problem of modeling
admixture and on general hierarchical modeling based on the negative binomial process.
Section 4.5 and Section 4.6 are devoted to a study of the asymptotic behavior of the NBP
with a beta process prior, which we call the beta-negative binomial process (BNBP). We
describe algorithms for posterior inference in Section 4.7. Finally, we present experimental
results. First, we use the BNBP to define a generative model for summaries of terrorist

2 Zhou et al. (2012) have independently investigated negative binomial processes in the context of integer
matrix factorization. We discuss their concurrent contributions in more detail in Section 4.4.
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incidents with the goal of identifying the perpetrator of a given terrorist attack in Section 4.8.
Second, we demonstrate the utility of a finite approximation to the BNBP in the domain of
automatic image segmentation in Section 4.9. Section 4.10 presents our conclusions.

4.2 Completely random measures

In this section we review the notion of a completely random measure (CRM), a general
construction that yields random measures that are closely tied to classical constructions in-
volving sets of independent random variables. We present CRM-based constructions of sev-
eral of the stochastic processes used in Bayesian nonparametrics, including the beta process,
gamma process, and Dirichlet process. In the following section we build on the foundations
presented here to consider additional stochastic processes.

Consider a probability space (Ψ,F ,P). A random measure is a random element µ such
that µ(A) is a non-negative random variable for any A in the sigma algebra F . A completely
random measure (CRM) µ is a random measure such that, for any disjoint, measurable sets
A,A′ ∈ F , we have that µ(A) and µ(A′) are independent random variables (Kingman, 1967).
Completely random measures can be shown to be composed of at most three components:

1. A deterministic measure. For deterministic µdet, it is trivially the case that µdet(A)
and µdet(A

′) are independent for disjoint A,A′.

2. A set of fixed atoms. Let (u1, . . . , uL) ∈ ΨL be a collection of deterministic locations,
and let (η1, . . . , ηL) ∈ RL

+ be a collection of independent random weights for the atoms.
The collection may be countably infinite, in which case we say L = ∞. Then let
µfix =

∑L
l=1 ηlδul . The independence of the ηl implies the complete randomness of the

measure.

3. An ordinary component. Let νPP be a Poisson process intensity on the space Ψ ×
R+. Let {(v1, ξ1), (v2, ξ2), . . .} be a draw from the Poisson process with intensity νPP.
Then the ordinary component is the measure µord =

∑∞
j=1 ξjδvj . Here, the complete

randomness follows from properties of the Poisson process.

One observation from this componentwise breakdown of CRMs is that we can obtain a
countably infinite collection of random variables, the ξj, from the Poisson process component
if νPP has infinite total mass (but is still sigma-finite). Consider again the criterion that a
CRM µ yield independent random variables when applied to disjoint sets. In light of the
observation about the collection {ξj}, this criterion may now be seen as an extension of an
independence assumption in the case of a finite set of random variables. We cover specific
examples next.

Beta process

The beta process (Hjort, 1990; Kim, 1999a; Thibaux and Jordan, 2007) is an example of a
CRM. It has the following parameters: a mass parameter γ > 0, a concentration parameter
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θ > 0, a purely atomic measure Hfix =
∑

l ρlδul with γρl ∈ (0, 1) for all l a.s., and a purely
continuous probability measure Hord on Ψ. Note that we have explicitly separated out the
mass parameter γ so that, e.g., Hord is a probability measure; in Thibaux and Jordan (2007),
these two parameters are expressed as a single measure with total mass equal to γ. Typically,
though, the normalized measure Hord is used separately from the mass parameter γ (as we
will see below), so the notational separation is convenient. Often the final two measure
parameters are abbreviated as their sum: H = Hfix +Hord.

Given these parameters, the beta process has the following description as a CRM:

1. The deterministic measure is uniformly zero.

2. The fixed atoms have locations (u1, . . . , uL) ∈ ΨL, where L is potentially infinite though
typically finite. Atom weight ηl has distribution

ηl
indep∼ Beta (θγρl, θ(1− γρl)) , (4.1)

where the ρl parameters are the weights in the purely atomic measure Hfix.

3. The ordinary component has Poisson process intensity Hord×ν, where ν is the measure

ν(db) = γθb−1(1− b)θ−1 db, (4.2)

which is sigma-finite with finite mean. It follows that the number of atoms in this
component will be countably infinite, but the atom weights will have finite sum.

As in the original specification of Hjort (1990) and Kim (1999a), Eq. (4.2) can be generalized
by allowing θ to depend on the Ψ coordinate. The homogeneous intensity in Eq. (4.2) seems
to be used predominantly in practice (Thibaux and Jordan, 2007; Fox et al., 2009) though,
and we focus on it here for ease of exposition. Nonetheless, we note that our results below
extend easily to the non-homogeneous case.

The CRM is the sum of its components. Therefore, we may write a draw from the beta
process as

B =
∞∑

k=1

bkδψk ,
L∑

l=1

ηlδul +
∞∑

j=1

ξjδvj , (4.3)

with atom locations equal to the union of the fixed atom and ordinary component atom
locations {ψk}k = {ul}Ll=1 ∪ {vj}∞j=1. Notably, B is a.s. discrete. We denote a draw from the
beta process as B ∼ BP(θ, γ,H). The provenance of the name “beta process” is now clear;
each atom weight in the fixed atomic component is beta-distributed, and the Poisson process
intensity generating the ordinary component is that of an improper beta distribution.

From the above description, the beta process provides a prior on a potentially infinite
vector of weights, each in (0, 1) and each associated with a corresponding parameter ψ ∈ Ψ.
The potential countable infinity comes from the Poisson process component. The weights
in (0, 1) may be interpreted as probabilities, though not as a distribution across the indices
as we note that they need not sum to one. We will see in Section 4.4 that the beta process
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is appropriate for feature modeling (Thibaux and Jordan, 2007; Griffiths and Ghahramani,
2006). In this context, each atom, indexed by k, of B corresponds to a feature. The atom
weights {bk}, which are each in [0, 1] a.s., can be viewed as representing the frequency with
which each feature occurs in the dataset. The atom locations {ψk} represent parameters
associated with the features that can be used in forming a likelihood.

In Section 4.5, we will show that an extension to the beta process called the three-
parameter beta process has certain desirable properties beyond the classic beta process, in
particular its ability to generate power-law behavior (Teh and Görür, 2009; Broderick, Jor-
dan, and Pitman, 2012), which roughly says that the number of features grows as a power of
the number of data points. In the three-parameter case, we introduce a discount parameter
α ∈ (0, 1) with θ > −α and γ > 0 such that:

1. There is again no deterministic component.

2. The fixed atoms have locations (u1, . . . , uL) ∈ ΨL, with L potentially infinite but

typically finite. Atom weight ηl has distribution ηl
indep∼ Beta (θγρl − α, θ(1− γρl) + α),

where the ρl parameters are the weights in the purely atomic measure Hfix and we
now have the constraints θγρl − α, θ(1− γρl) + α ≥ 0.

3. The ordinary component has Poisson process intensity Hord×ν, where ν is the measure:

ν(db) = γ
Γ(1 + θ)

Γ(1− α)Γ(θ + α)
b−1−α(1− b)θ+α−1 db.

Again, we focus on the homogeneous intensity ν as in the beta process case though it is
straightforward to allow θ to depend on coordinates in Ψ.

In this case, we again have the full process draw B as in Eq. (4.3), and we say B ∼
3BP(α, θ, γ,H).

Full beta process

The specification that the atom parameters in the beta process be of the form θγρl and
θ(1−γρl) can be unnecessarily constraining; θγρl−α and θ(1−γρl)+α are even more unwieldy
in the power-law case. Indeed, the classical beta distribution has two free parameters. Yet,
in the beta process as described above, θ and γ are determined as part of the Poisson process
intensity, so there is essentially one free parameter for each of the beta-distributed weights
associated with the atoms (Eq. (4.1)). A related problematic issue is that the beta process
forces the two parameters in the beta distribution associated with each atom to sum to θ,
which is constant across all of the atoms.

One way to remove these restrictions is to allow θ = θ(ψ), a function of the position
ψ ∈ Ψ as mentioned above. However, we demonstrate in Appendix 4.A that there are
reasons to prefer a fixed concentration parameter θ for the ordinary component; there is
a fundamental relation between this parameter and similar parameters in other common
CRMs (e.g., the Dirichlet process, which we describe in Section 4.2). Moreover, the concern
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here is entirely centered on the behavior of the fixed atoms of the process, and letting θ
depend on ψ retains the unusual—from a classical parametric perspective—form of the beta
distribution in Eq. (4.1). As an alternative, we provide a generalization of the beta process
that more closely aligns with the classical perspective in which we allow two general beta
parameters for each atom. As we will see, this generalization is natural, and indeed necessary,
in considering conjugacy.

We thus define the full beta process (RBP) as having the following parameterization:
a mass parameter γ > 0, a concentration parameter θ > 0, a number of fixed atoms L ∈
{0, 1, 2, . . .}∪{∞} with locations (u1, . . . , uL) ∈ ΨL, two sets of strictly positive atom weight
parameters {ρl}Ll=1 and {σl}Ll=1, and a purely continuous measure Hord on Ψ. In this case, the
atom weight parameters satisfy the simple condition ρl, σl > 0 for all l ∈ {1, . . . , L}. This
specification is the same as the beta process specification introduced above with the sole
exception of a more general parameterization for the fixed atoms. We obtain the following
CRM:

1. There is no deterministic measure.

2. There are L fixed atoms with locations (u1, . . . , uL) ∈ ΨL and corresponding weights

ηl
indep∼ Beta (ρl, σl) .

3. The ordinary component has Poisson process intensity Hord×ν, where ν is the measure
ν(db) = γθb−1(1− b)θ−1 db.

As discussed above, we favor the homogeneous intensity ν in exposition but note the straight-
forward extension to allow θ to depend on Ψ location.

We denote this CRM by B ∼ RBP(θ, γ,u,ρ,σ, Hord).

Gamma process

While the beta process provides a countably infinite vector of frequencies in (0, 1] with
associated parameters ψk, it is sometimes useful to have a countably infinite vector of positive,
real-valued quantities that can be used as rates rather than frequencies for features. We can
obtain such a prior with the gamma process (Ferguson, 1973), a CRM with the following
parameters: a concentration parameter θ > 0, a scale parameter c > 0, a purely atomic
measure Hfix =

∑
l ρlδul with ∀l, ρl > 0, and a purely continuous measure Hord with support

on Ψ. Its description as a CRM is as follows (Thibaux, 2008):

1. There is no deterministic measure.

2. The fixed atoms have locations (u1, . . . , uL) ∈ ΨL, where L is potentially infinite but

typically finite. Atom weight ηl has distribution ηl
indep∼ Gamma(θρl, c), where we use

the shape-inverse-scale parameterization of the gamma distribution and where the ρl
parameters are the weights in the purely atomic measure Hfix.
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3. The ordinary component has Poisson process intensity Hord×ν, where ν is the measure:

ν(dg̃) = θg̃−1 exp (−cg̃) dg̃. (4.4)

As in the case of the beta process, the gamma process can be expressed as the sum
of its components: G̃ =

∑
k g̃kδψk ,

∑L
l=1 ηlδul +

∑
j ξjδvj . We denote this CRM as G̃ ∼

ΓP(θ, c,H), for H = Hfix +Hord.

Dirichlet process

While the beta process has been used as a prior in featural models, the Dirichlet process
is the classic Bayesian nonparametric prior for clustering models (Ferguson, 1973; S. N.
MacEachern and Müller, 1998; McCloskey, 1965; Neal, 2000; West, 1992). The Dirichlet
process itself is not a CRM; its atom weights, which represent cluster frequencies, must sum
to one and are therefore correlated. But it can be obtained by normalizing the gamma
process (Ferguson, 1973).

In particular, using facts about the Poisson process (Kingman, 1993), one can check that,
when there are finitely many fixed atoms, we have G̃(Ψ) < ∞ a.s.; that is, the total mass
of the gamma process is almost surely finite despite having infinitely many atoms from the
ordinary component. Therefore, normalizing the process by dividing its weights by its total
mass is well-defined. We thus can define a Dirichlet process as

G =
∑

k

gkδψk , G̃/G̃(Ψ),

where G̃ ∼ ΓP(θ, 1, H), and where there are two parameters: a concentration parameter θ
and a base measure H with finitely many fixed atoms. Note that while we have chosen the
scale parameter c = 1 in this construction, the choice is in fact arbitrary for c > 0 and does
not affect the G distribution (Eq. 4.15 and p. 83 of Pitman (2006)).

From this construction, we see immediately that the Dirichlet process is almost surely
atomic, a property inherited from the gamma process. Moreover, not only are the weights of
the Dirichlet process all contained in (0, 1) but they further sum to one. Thus, the Dirichlet
process may be seen as providing a probability distribution on a countable set. In particular,
this countable set is often viewed as a countable number of clusters, with cluster parameters
ψk.

4.3 Conjugacy and combinatorial clustering

In Section 4.2, we introduced CRMs and showed how a number of classical Bayesian nonpara-
metric priors can be derived from CRMs. These priors provide infinite-dimensional vectors
of real values, which can be interpreted as feature frequencies, feature rates, or cluster fre-
quencies. To flesh out such interpretations we need to couple these real-valued processes
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with discrete-valued processes that capture combinatorial structure. In particular, viewing
the weights of the beta process as feature frequencies, it is natural to consider binomial
and negative binomial models that transform these frequencies into binary values or non-
negative integer counts. In this section we describe stochastic processes that achieve such
transformations, again relying on the CRM framework.

The use of a Bernoulli likelihood whose frequency parameter is obtained from the weights
of the beta process has been explored in the context of survival models by Hjort (1990)
and Kim (1999a) and in the context of feature modeling by Thibaux and Jordan (2007). After
reviewing the latter construction, we discuss a similar construction based on the negative
binomial process. Moreover, recalling that Thibaux and Jordan (2007), building on work
of Hjort (1990) and Kim (1999a), have shown that the Bernoulli likelihood is conjugate to
the beta process, we demonstrate an analogous conjugacy result for the negative binomial
process.

Bernoulli process

One way to make use of the beta process is to couple it to a Bernoulli process (Thibaux
and Jordan, 2007). The Bernoulli process, denoted BeP(H̃), has a single parameter, a base
measure H̃; H̃ is any discrete measure with atom weights in (0, 1]. Although our focus will
be on models in which H̃ is a draw from a beta process, as a matter of the general definition
of the Bernoulli process the base measure H̃ need not be a CRM or even random—just as
the Poisson distribution is defined relative to a parameter that may or may not be random
in general but which is sometimes given a gamma distribution prior. Since H̃ is discrete by
assumption, we may write

H̃ =
∞∑

k=1

bkδψk (4.5)

with bk ∈ (0, 1]. We say that the random measure I is drawn from a Bernoulli process,

I ∼ BeP(H̃), if I =
∑∞

k=1 ikδψk with ik
indep∼ Bern(bk) for k = 1, 2, . . .. That is, to form the

Bernoulli process, we simply make a Bernoulli random variable draw for every one of the
(potentially countable) atoms of the base measure. This definition of the Bernoulli process
was proposed by Thibaux and Jordan (2007); it differs from a precursor introduced by Hjort
(1990) in the context of survival analysis.

One interpretation for this construction is that the atoms of the base measure H̃ represent
potential features of an individual, with feature frequencies equal to the atom weights and
feature characteristics defined by the atom locations. The Bernoulli process draw can be
viewed as characterizing the individual by the set of features that have weights equal to one.
Suppose H̃ is derived from a Poisson process as the ordinary component of a completely
random measure and has finite mass; then the number of features exhibited by the Bernoulli
process, i.e. the total mass of the Bernoulli process draw, is a.s. finite. Thus the Bernoulli
process can be viewed as providing a Bayesian nonparametric model of sparse binary feature
vectors.
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Now suppose that the base measure parameter is a draw from a beta process with pa-
rameters θ > 0, γ > 0, and base measure H. That is, B ∼ BP(θ, γ,H) and I ∼ BeP(B).
We refer to the overall process as the beta-Bernoulli process (BBeP). Suppose that the beta
process B has a finite number of fixed atoms. Then we note that the finite mass of the
ordinary component of B implies that I has support on a finite set. That is, even though B
has a countable infinity of atoms, I has only a finite number of atoms. This observation is
important since, in any practical model, we will want an individual to exhibit only finitely
many features.

Hjort (1990) and Kim (1999a) originally established that the posterior distribution of
B under a constrained form of the BBeP was also a beta process with known parameters.
Thibaux and Jordan (2007) went on to extend this analysis to the full BBeP. We cite the
result by Thibaux and Jordan, 2007 here, using the completely random measure notation
established above.

Theorem 4.3.1 (The beta process prior is conjugate to the Bernoulli process likelihood). Let
H be a measure with atomic component Hfix =

∑L
l=1 ρlδul and continuous component Hord.

Let θ and γ be strictly positive scalars. Consider N conditionally-independent draws from

the Bernoulli process: In =
∑L

l=1 ifix,n,lδul +
∑J

j=1 iord,n,jδvj
iid∼ BeP(B), for n = 1, . . . , N

with B ∼ BP(θ, γ,H). That is, the Bernoulli process draws have J atoms that are not
located at the atoms of Hfix. Then, B|I1, . . . , IN ∼ BP(θpost, γpost, Hpost) with θpost = θ +N ,

γpost = γ θ
θ+N

, and Hpost,ord = Hord. Further, Hpost,fix =
∑L

l=1 ρpost,lδul +
∑J

j=1 ξpost,jδvj ,

where ρpost,l = ρl + (θpostγpost)
−1
∑N

n=1 ifix,n,l and ξpost,j = (θpostγpost)
−1
∑N

n=1 iord,n,j.

Note that the posterior beta-distributed fixed atoms are well-defined since ξpost,j > 0

follows from
∑N

n=1 iord,n,j > 0, which holds by construction. As shown by Thibaux and
Jordan (2007), if the underlying beta process is integrated out in the BBeP, we recover the
Indian buffet process of Griffiths and Ghahramani, 2006.

Since the RBP and BP differ only in the fixed atoms, where conjugacy reduces to the
finite-dimensional case, Theorem 4.3.1 immediately implies the following.

Corollary 4.3.2 (The RBP prior is conjugate to the Bernoulli process likelihood).
Assume the conditions of Theorem 4.3.1, and consider N conditionally-independent Bernoulli

process draws: In =
∑L

l=1 ifix,n,lδul +
∑J

j=1 iord,n,jδvj
iid∼ BeP(B), for n = 1, . . . , N with B ∼

RBP(θ, γ,u,ρ,σ, Hord) and {ρl}Ll=1 and {σl}Ll=1 strictly positive scalars. Then, B|I1, . . . , IN ∼
RBP(θpost, γpost,upost,ρpost,σpost, Hpost,ord), for θpost = θ+N , γpost = γ θ

θ+N
, Hpost,ord = Hord,

and L + J fixed atoms, {upost,l′} = {ul}Ll=1 ∪ {vj}Jj=1. The ρpost and σpost parameters sat-

isfy ρpost,l = ρl +
∑N

n=1 ifix,n,l and σpost,l = σl + N −∑N
n=1 ifix,n,l for l ∈ {1, . . . , L} and

ρpost,L+j =
∑N

n=1 iord,n,j and σpost,L+j = θ +N −∑N
n=1 iord,n,j for j ∈ {1, . . . , J}.

The usefulness of the RBP becomes apparent in the posterior parameterization; the
distributions associated with the fixed atoms more closely mirror the classical parametric
conjugacy between the Bernoulli distribution and the beta distribution. This is an issue of
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convenience in the case of the BBeP, but it is more significant in the case of the negative
binomial process, as we show in the following section, where conjugacy is preserved only in
the RBP case (and not for the traditional, more constrained BP).

Negative binomial process

The Bernoulli distribution is not the only distribution that yields conjugacy when coupled
to the beta distribution in the classical parametric setting; conjugacy holds for the negative
binomial distribution as well. As we show in this section, this result can be extended to
stochastic processes via the CRM framework.

We define the negative binomial process as a CRM with two parameters: a shape param-
eter r > 0 and a discrete base measure H̃ =

∑
k bkδψk whose weights bk take values in (0, 1].

As in the case of the Bernoulli process, H̃ need not be random at this point. Since H̃ is
discrete, we again have a representation for H̃ as in Eq. (4.5), and we say that the random
measure I is drawn from a negative binomial process, I ∼ NBP(r, H̃), if I =

∑∞
k=1 ikδψk with

ik
indep∼ NegBin(r, bk) for k = 1, 2, . . .. That is, the negative binomial process is formed by

simply making a single draw from a negative binomial distribution at each of the (potentially
countably infinite) atoms of H̃. This construction generalizes the geometric process studied
by Thibaux (2008).

As a Bernoulli process draw can be interpreted as assigning a set of features to a data
point, so can we interpret a draw from the negative binomial process as assigning a set of
feature counts to a data point. In particular, as for the Bernoulli process, we assume that
each data point has its own draw from the negative binomial process. Every atom with
strictly positive mass in this draw corresponds to a feature that is exhibited by this data
point. Moreover, the size of the atom, which is a positive integer by construction, dictates
how many times the feature is exhibited by the data point. For example, if the data point
is a document, and each feature represents a particular word, then the negative binomial
process draw would tell us how many occurrences of each word there are in the document.

If the base measure for a negative binomial process is a beta process, we say that the
combined process is a beta-negative binomial process (BNBP). If the base measure is a three-
parameter beta process, we say that the combined process is a three-parameter beta-negative
binomial process (3BNBP). When either the BP or 3BP has a finite number of fixed atoms,
the ordinary component of the BP or 3BP still has an infinite number of atoms, but the
number of atoms in the negative binomial process is a.s. finite. We prove this fact and more
in Section 4.5.

We now suppose that the base measure for the negative binomial process is a draw B
from an RBP with parameters θ > 0, γ > 0, {ul}Ll=1, {ρl}Ll=1, {σl}Ll=1, and Hord. The overall
specification is B ∼ RBP(θ, γ,u,ρ,σ, Hord) and I ∼ NBP(r, B). The following theorem
characterizes the posterior distribution for this model. The proof is given in Appendix 4.E.

Theorem 4.3.3 (The RBP prior is conjugate to the negative binomial process likelihood).
Let θ and γ be strictly positive scalars. Let (u1, . . . , uL) ∈ ΨL. Let the members of {ρl}Ll=1
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and {σl}Ll=1 be strictly positive scalars. Let Hord be a continuous measure on Ψ. Consider
the following model for N draws from a negative binomial process: In =

∑L
l=1 ifix,n,lδul +∑J

j=1 iord,n,jδvj
iid∼ NBP(B), for n = 1, . . . , N with B ∼ RBP(θ, γ,u,ρ,σ, Hord). That is, the

negative binomial process draws have J atoms that are not located at the atoms of Hfix. Then,
B|I1, . . . , IN ∼ RBP(θpost, γpost,upost,ρpost,σpost, Hpost,ord) for θpost = θ+Nr, γpost = γ θ

θ+Nr
,

Hpost,ord = Hord, and L + J fixed atoms, {upost,l} = {ul}Ll=1 ∪ {vj}Jj=1. The ρpost and σpost

parameters satisfy ρpost,l = ρl +
∑N

n=1 ifix,n,l and σpost,l = σl + Nr for l ∈ {1, . . . , L} and

ρpost,L+j =
∑N

n=1 iord,n,j and σpost,L+j = θ +Nr for j ∈ {1, . . . , J}.

For the posterior measure to be a BP, we must have ρpost,k + σpost,k = θpost for all k, but
this equality can fail to hold even when the prior is a BP. For instance, whenever there are
new fixed atom locations in the posterior relative to the prior, this equality will fail. So the
BP, by contrast to the RBP, is not conjugate to the negative binomial process likelihood.

4.4 Mixtures and admixtures

We now assemble the pieces that we have introduced and consider Bayesian nonparametric
models of admixture. Recall that the basic idea of an admixture is that an individual (e.g.,
an organism, a document, or an image) can belong simultaneously to multiple classes. This
can be represented by associating a binary-valued vector with each individual; the vector
has value one in components corresponding to classes to which the individual belongs and
zero in components corresponding to classes to which the individual does not belong. More
generally, we wish to remove the restriction to binary values and consider a general notion
of admixture in which an individual is represented by a nonnegative, integer-valued vector.
We refer to such vectors as feature vectors, and view the components of such vectors as
counts representing the number of times the corresponding feature is exhibited by a given
individual. For example, a document may exhibit a given word zero or more times.

As we discussed in Section 4.1, the standard approach to modeling an admixture is
to assume that there is an exchangeable set of data associated with each individual and to
assume that these data are drawn from a finite mixture model with individual-specific mixing
proportions. There is another way to view this process, however, that opens the door to a
variety of extensions. Note that to draw a set of data from a mixture, we can first choose the
number of data points to be associated with each mixture component (a vector of counts)
and then draw the data point values independently from each selected mixture component.
That is, we randomly draw nonnegative integers ik for each mixture component (or cluster)
k. Then, for each k and each n = 1, . . . , ik, we draw a data point xk,n ∼ F (ψk), where ψk is
the parameter associated with mixture component k. The overall collection of data for this
individual is {xk,n}k,n, with N =

∑
k ik total points. One way to generate data according to

this decomposition is to make use of the NBP. We draw I =
∑

k ikδψk ∼ NBP(r, B), where
B is drawn from a beta process, B ∼ BP(θ, γ,H). The overall model is a BNBP mixture



CHAPTER 4. COMBINATORIAL CLUSTERING AND THE BNBP 90

model for the counts, coupled to a conditionally independent set of draws for the individual’s
data points {xk,n}k,n.

An alternative approach in the same spirit is to make use of a gamma process (to obtain
a set of rates) that is coupled to a Poisson likelihood process (PLP)3 to convert the rates
into counts (Titsias, 2008). In particular, given a base measure G̃ =

∑
k g̃kδψk , let I ∼

PLP(G̃) denote I =
∑

k ikδψk , with ik ∼ Poisson(g̃k). We then consider a gamma Poisson
likelihood process (ΓPLP) as follows: G̃ ∼ ΓP(θ, c,H), I =

∑
k ikδψk ∼ PLP(G̃), and xk,n ∼

F (ψk), for n = 1, . . . , ik and each k.
Both the BNBP approach and the ΓPLP approach deliver a random measure, I =∑
k ikδψk , as a representation of an admixed individual.4 While the atom locations, (ψk), are

subsequently used to generate data points, the pattern of admixture inheres in the vector
of weights (ik). It is thus natural to view this vector as the representation of an admixed
individual. Indeed, in some problems such a weight vector might itself be the observed data.
In other problems, the weights may be used to generate data in some more complex way
that does not simply involve conditionally i.i.d. draws.

This perspective on admixture—focusing on the vector of weights (ik) rather than the
data associated with an individual—is also natural when we consider multiple individuals.
The main issue becomes that of linking these vectors among multiple individuals; this linking
can readily be achieved in the Bayesian formalism via a hierarchical model. In the remain-
der of this section we consider examples of such hierarchies in the Bayesian nonparametric
setting.

Let us first consider the standard approach to admixture in which an individual is repre-
sented by a set of draws from a mixture model. For each individual we need to draw a set of
mixing proportions, and these mixing proportions need to be coupled among the individuals.
This can be achieved via a prior known as the hierarchical Dirichlet process (HDP) (Teh,
Jordan, et al., 2006):

G0 ∼ DP(θ,H)

Gd =
∑

k

gd,kδψk
indep∼ DP(θd, G0), d = 1, 2, . . . ,

where the index d ranges over the individuals. Note that the global measure G0 is a discrete
random probability measure, given that it is drawn from a Dirichlet process. In drawing
the individual-specific random measure Gd at the second level, we therefore resample from
among the atoms of G0 and do so according to the weights of these atoms in G0. This shares
atoms among the individuals and couples the individual-specific mixing proportions gd,k. We
complete the model specification as follows:

zd,n
iid∼ (gd,k)k for n = 1, . . . , Nd

3 We use the terminology “Poisson likelihood process” to distinguish a particular process with Poisson
distributions affixed to each atom of some base distribution from the more general Poisson point process of
Kingman (1993).

4We elaborate on the parallels and deep connections between the BNBP and ΓPLP in Appendix 4.A.
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xd,n
indep∼ F (ψzd,n),

which draws an index zd,n from the discrete distribution (gd,k)k and then draws a data point
xd,n from a distribution indexed by zd,n. For instance, (gd,k) might represent topic proportions
in document d; ψzd,n might represent a topic, i.e. a distribution over words; and xd,n might
represent the nth word in the dth document.

In the HDP, Nd is known for each d and is part of the model specification. We propose
to instead take the featural approach as follows; we draw an individual-specific set of counts
from an appropriate stochastic process and then generate the appropriate number of data
points for each individual. Then the number of data points for each individual is itself a
random variable and potentially coupled across individuals. In particular, one might consider
the following conditional independence hierarchy involving the NBP:

B0 ∼ BP(θ, γ,H) (4.6)

Id =
∑

k

id,kδψk
indep∼ NBP(rd, B0),

where we first draw a random measure B0 from the beta process and then draw multiple
times from an NBP with base measure given by B0.

Although this conditional independence hierarchy does couple count vectors across mul-
tiple individuals, it uses a single collection of mixing proportions, the atom weights of B0,
for all individuals. By contrast, the HDP draws individual-specific mixing proportions from
an underlying set of population-wide mixing proportions—and then converts these mixing
proportions into counts. We can model individual-specific, but coupled, mixing proportions
within an NBP-based framework by simply extending the hierarchy by one level:

B0 ∼ BP(θ, γ,H) (4.7)

Bd
indep∼ BP(θd, γd, B0/B0(Ψ))

Id =
∑

k

id,kδψk
indep∼ NBP(rd, Bd).

Since B0 is almost surely an atomic measure, the atoms of each Bd will coincide with those
of B0 almost surely. The weights associated with these atoms can be viewed as individual-
specific feature probability vectors. We refer to this prior as the hierarchical beta-negative
binomial process (HBNBP).

We also note that it is possible to consider additional levels of structure in which a pop-
ulation is decomposed into subpopulations and further decomposed into subsubpopulations
and so on, bottoming out in a set of individuals. This tree structure can be captured by
repeated draws from a set of beta processes at each level of the tree, conditioning on the
beta process at the next highest level of the tree. Hierarchies of this form have previously
been explored for beta-Bernoulli processes by Thibaux and Jordan (2007).
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Comparison with Zhou et al. (2012). Zhou et al. (2012) have independently proposed
a (non-hierarchical) beta-negative binomial process prior

B0 =
∑

k

bkδrk,ψk ∼ BP(θ, γ, R×H)

Id =
∑

k

id,kδψk where id,k
indep∼ NegBin(rk, bk),

where R is a continuous finite measure over R+ used to associate a distinct failure parameter
rk with each beta process atom. Note that each individual is restricted to use the same
failure parameters and the same beta process weights under this model. In contrast, our
BNBP formulation (4.6) offers the flexibility of differentiating individuals by assigning each
its own failure parameter rd. Our HBNBP formulation (4.7) further introduces heterogeneity
in the individual-specific beta process weights by leveraging the hierarchical beta process.
We will see that these modeling choices are particularly well-suited for admixture modeling
in the coming sections.

Zhou et al. (2012) use their prior to develop a Poisson factor analysis model for integer
matrix factorization, while our primary motivation is mixture and admixture modeling. Our
differing models and motivating applications have led to different challenges and algorithms
for posterior inference. While Zhou et al. (2012) develop an inexact inference scheme based
on a finite approximation to the beta process, we develop both an exact Markov chain Monte
Carlo sampler and a finite approximation sampler for posterior inference under the HBNBP
(see Section 4.7). Finally, unlike Zhou et al. (2012), we provide an extensive theoretical
analysis of our priors including a proof of the conjugacy of the full beta process and the
NBP (given in Section 4.3) and an asymptotic analysis of the BNBP (see Section 4.5).

4.5 Asymptotics

An important component of choosing a Bayesian prior is verifying that its behavior aligns
with our beliefs about the behavior of the data-generating mechanism. In models of clus-
tering, a particular measure of interest is the diversity—the dependence of the number of
clusters on the number of data points. In speaking of the diversity, we typically assume a
finite number of fixed atoms in a process derived from a CRM, so that asymptotic behavior
is dominated by the ordinary component.

It has been observed in a variety of different contexts that the number of clusters in
a dataset grows as a power law of the size of the data; that is, the number of clusters is
asymptotically proportional to the number of data points raised to some positive power
(Gnedin, Hansen, and Pitman, 2007). Real-world examples of such behavior are provided
by M. E. Newman (2005) and Mitzenmacher (2004).

The diversity has been characterized for the Dirichlet process (DP) and a two-parameter
extension to the Dirichlet process known as the Pitman-Yor process (PYP) (Pitman and
Yor, 1997), with extra parameter α ∈ (0, 1) and concentration parameter θ > −α. We will
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see that while the number of clusters generated according to a DP grows as a logarithm of
the size of the data, the number of clusters generated according to a PYP grows as a power
of the size of the data. Indeed, the popularity of the Pitman-Yor process—as an alternative
prior to the Dirichlet process in the clustering domain—can be attributed to this power-law
growth (Goldwater, Griffiths, and M. Johnson, 2006; Teh, 2006; Wood et al., 2009). In this
section, we derive analogous asymptotic results for the BNBP treated as a clustering model.

We first highlight a subtle difference between our model and the Dirichlet process. For
a Dirichlet process, the number of data points N is known a priori and fixed. An advantage
of our model is that it models the number of data points N as a random variable and
therefore has potentially more predictive power in modeling multiple populations. We note
that a similar effect can be achieved for the Dirichlet process by using the gamma process
for feature modeling as described in Section 4.4 rather than normalizing away the mass that
determines the number of observations. However, there is no such unnormalized completely
random measure for the PYP (Pitman and Yor, 1997). We thus treat N as fixed for the DP
and PYP, in which case the number of clusters K(N) is a function of N . On the other hand,
the number of data points N(r) depends on r in the case of the BNBP, and the number of
clusters K(r) does as well. We also define Kj(N) to be the number of clusters with exactly
j elements in the case of the DP and PYP, and we define Kj(r) to be the number of clusters
with exactly j elements in the BNBP case.

For the DP and PYP, K(N) and Kj(N) are random even though N is fixed, so it will
be useful to also define their expectations:

Φ(N) , E[K(N)], Φj(N) , E[Kj(N)]. (4.8)

In the BNBP and 3BNBP cases, all of K(r), Kj(r), and N(r) are random. So we further
define

Φ(r) , E[K(r)], Φj(r) , E[Kj(r)], ξ(r) , E[N(r)]. (4.9)

We summarize the results that we establish in this section in Table 4.1, where we also
include comparisons to existing results for the DP and PYP.5 The full statements of our
results, from which the table is derived, can be found in Appendix 4.C, and proofs are given
in Appendix 4.D.

The table shows, for example, that for the DP, Φ(N) ∼ θ log(N) as N →∞, and, for the
BNBP, Φj(r) ∼ γθj−1 as r →∞ (i.e., constant in r). The result for the expected number of
clusters for the DP can be found in Korwar and Hollander (1973); results for the expected
number of clusters for both the DP and PYP can be found in Pitman (2006, Eq. 3.24 on p. 69
and Eq. 3.47 on p. 73). Note that in all cases the expected counts of clusters of size j are
asymptotic expansions in terms of r for fixed j and should not be interpreted as asymptotic
expansions in terms of j.

5 The reader interested in power laws may also note that the generalized gamma process is a completely
random measure that, when normalized, provides a probability measure for clusters that has asymptotic
behavior similar to the PYP; in particular, the expected number of clusters grows almost surely as a power
of the size of the data (Lijoi, Mena, and Prünster, 2007).
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Table 4.1: Let N be the number of data points when this number is fixed and ξ(r) be the
expected number of data points when N is random. Let Φ(N), Φj(N), Φ(r), and Φj(r) be
the expected number of clusters under various scenarios and defined as in Eqs. (4.8) and
(4.9). The upper part of the table gives the asymptotic behavior of Φ up to a multiplicative
constant, and the bottom part of the table gives the multiplicative constants. For the DP,
θ > 0. For the PYP, α ∈ (0, 1) and θ > −α. For the BNBP, θ > 1. For the 3BNBP,
α ∈ (0, 1) and θ > 1− α.

Process Expected number of clusters Expected number of clusters of size j
Function of N or ξ(r)

DP log(N) 1
PYP Nα Nα

BNBP log(ξ(r)) 1
3BNBP (ξ(r))α (ξ(r))α

Constants
DP θ θj−1

PYP Γ(θ+1)
αΓ(θ+α)

Γ(θ+1)
Γ(1−α)Γ(θ+α)

Γ(j−α)
Γ(j+1)

BNBP γθ γθj−1

3BNBP γ1−α

α
Γ(θ+1)
Γ(θ+α)

(
θ+α−1

θ

)α
γ1−α Γ(θ+1)

Γ(1−α)Γ(θ+α)
Γ(j−α)
Γ(j+1)

(
θ+α−1

θ

)α

We conclude that, just as for the Dirichlet process, the BNBP can achieve both logarith-
mic cluster number growth in the basic model and power law cluster number growth in the
expanded, three-parameter model.

4.6 Simulation

Our theoretical results in Section 4.5 are supported by simulation results, summarized in
Figure 4.1; in particular, our simulation corroborated the existence of power laws in the
three-parameter beta process case examined in Section 4.5. The simulation was performed
as follows. For values of the negative binomial parameter r evenly spaced between 1 and
1,001, we generated beta process weights according to a beta process (or three-parameter
beta process) using a stick-breaking representation (Paisley, Zaas, et al., 2010; Broderick,
Jordan, and Pitman, 2012). For each of the resulting atoms, we simulated negative binomial
draws to arrive at a sample from a BNBP. For each such BNBP, we can count the resulting
total number of data points N and total number of clusters K. Thus, each r gives us an
(r,N,K) triple.

In the simulation, we set the mass parameter γ = 3. We set the concentration parameter
θ = 3; in particular, we note that the analysis in Section 4.5 implies that we should always
have θ > 1. Finally, we ran the simulation for both the α = 0 case, where we expect no
power law behavior, and the α = 0.5 case, where we do expect power law behavior. The
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results are shown in Figure 4.1. Is this figure, we scatter plot the (r,K) tuples from the
generated (r,N,K) triples on the left and plot the (N,K) tuples on the right.

In the left plot, the upper black points represent the simulation with α = 0.5, and the
lower blue data points represent the α = 0 case. The lower red line illustrates the asymptotic
theoretical result corresponding to the α = 0 case (Lemma 4.C.6 in Appendix 4.C), and
we can see that the anticipated logarithmic growth behavior agrees with our simulation.
The upper red line illustrates the theoretical result for the α = 0.5 case (Lemma 4.C.7 in
Appendix 4.C). The agreement between simulation and theory here demonstrates that, in
contrast to the α = 0 case, the α = 0.5 case exhibits power law growth in the number of
clusters K as a function of the negative binomial parameter r.

Our simulations also bear out that the expectation of the random number of data points
N increases linearly with r (Lemmas 4.C.4 and 4.C.5 in Appendix 4.C). We see, then, on the
right side of Figure 4.1 the behavior of the number of clusters K now plotted as a function
of N . As expected given the asymptotics of the expected value of N , the behavior in the
right plot largely mirrors the behavior in the left plot. Just as in the left plot, the lower
red line (Theorem 4.C.10 in Appendix 4.C) shows the anticipated logarithmic growth of K
and N when α = 0. And the upper red line (Theorem 4.C.11 in Appendix 4.C) shows the
anticipated power law growth of K and N when α = 0.5.

We can see the parallels with the DP and PYP here. Clusters generated from the Dirichlet
process (i.e., Pitman-Yor process with α = 0) exhibit logarithmic growth of the expected
number of clusters K as the (deterministic) number of data points N grows. And clusters
generated from the Pitman-Yor process with α ∈ (0, 1) exhibit power law behavior in the
expectation of K as a function of (fixed) N . So too do we see that the BNBP, when applied
to clustering problems, yields asymptotic growth similar to the DP and that the 3BNBP
yields asymptotic growth similar to the PYP.

4.7 Posterior inference

In this section we present posterior inference algorithms for the HBNBP. We focus on
the setting in which, for each individual d, there is an associated exchangeable sequence of
observations (xd,n)Ndn=1. We seek to infer both the admixture component responsible for each
observation and the parameter ψk associated with each component. Hereafter, we let zd,n
denote the unknown component index associated with xd,n, so that xd,n ∼ F (ψzd,n).

Under the HBNBP admixture model introduced in Section 4.4, the posterior over com-
ponent indices and parameters has the form

p(z·,·,ψ· | x·,·,Θ) ∝ p(z·,·,ψ·,b0,·,b·,· | x·,·,Θ),

where Θ , (F,H, γ0, θ0,γ ·,θ·, r·) is the collection of all fixed hyperparameters. As is the
case with HDP admixtures (Teh, Jordan, et al., 2006) and earlier hierarchical beta process
featural models (Thibaux and Jordan, 2007), the posterior of the HBNBP admixture cannot
be obtained in analytical form due to complex couplings in the marginal p(x·,· | Θ). We
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Figure 4.1: For each r evenly spaced between 1 and 1,001, we simulate (random) values
of the number of data points N and number of clusters K from the BNBP and 3BNBP.
In both plots, we have mass parameter γ = 3 and concentration parameter θ = 3. On the
left, we see the number of clusters K as a function of the negative binomial parameter r
(see Lemma 4.C.6 and Lemma 4.C.7 in Appendix 4.C); on the right, we see the number of
clusters K as a function of the (random) number of data points N (see Theorem 4.C.10 and
Theorem 4.C.11 in Appendix 4.C). In both plots, the upper black points show simulation
results for the case α = 0.5, and the lower blue points show α = 0. Red lines indicate the
theoretical asymptotic mean behavior we expect from Section 4.5.

therefore develop Gibbs sampling algorithms (S. Geman and D. Geman, 1984) to draw
samples of the relevant latent variables from their joint posterior.

A challenging aspect of inference in the nonparametric setting is the countable infinitude
of component parameters and the countably infinite support of the component indices. We
develop two sampling algorithms that cope with this issue in different ways. In Section 4.7,
we use slice sampling to control the number of components that need be considered on a given
round of sampling and thereby derive an exact Gibbs sampler for posterior inference under
the HBNBP admixture model. In Section 4.7, we describe an efficient alternative sampler
that makes use of a finite approximation to the beta process. Throughout we assume that the
base measure H is continuous. We note that neither procedure requires conjugacy between
the base distribution H and the data-generating distribution F .

Exact Gibbs slice sampler

Slice sampling (Damien, Wakefield, and Walker, 1999; Neal, 2003) has been successfully
employed in several Bayesian nonparametric contexts, including Dirichlet process mixture
modeling (Walker, 2007; Papaspiliopoulos, 2008; Kalli, Griffin, and Walker, 2011) and beta
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process feature modeling (Teh, Görür, and Ghahramani, 2007). The key to its success lies in
the introduction of one or more auxiliary variables that serve as adaptive truncation levels
for an infinite sum representation of the stochastic process.

This adaptive truncation procedure proceeds as follows. For each observation associated
with individual d, we introduce an auxiliary variable ud,n with conditional distribution

ud,n ∼ Unif(0, ζd,zd,n),

where (ζd,k)
∞
k=1 is a fixed positive sequence with limk→∞ ζd,k = 0. To sample the component

indices, we recall that a negative binomial draw id,k ∼ NegBin(rd, bd,k) may be represented
as a gamma-Poisson mixture:

λd,k ∼ Gamma

(
rd,

1− bd,k
bd,k

)

id,k ∼ Poisson(λd,k).

We first sample λd,k from its full conditional. By gamma-Poisson conjugacy, this has the
simple form

λd,k ∼ Gamma (rd + id,k, 1/bd,k) .

We next note that, given λd,· and the total number of observations associated with
individual d, the cluster sizes id,k may be constructed by sampling each zd,n independently
from λd,·/

∑
k λd,k and setting id,k =

∑
n I(zd,n = k). Hence, conditioned on the number of

data points Nd, the component parameters ψk, the auxiliary variables λd,k, and the slice-
sampling variable ud,n, we sample the index zd,n from a discrete distribution with

P(zd,n = k) ∝ F (dxd,n | ψk)
I(ud,n ≤ ζd,k)

ζd,k
λd,k

so that only the finite set of component indices {k : ζd,k ≥ ud,n} need be considered when
sampling zd,n.

Let Kd , max{k : ∃n s.t. ζd,k ≥ ud,n} and K , maxdKd. Then, on a given round of
sampling, we need only explicitly represent λd,k and bd,k for k ≤ Kd and ψk and b0,k for
k ≤ K. The simple Gibbs conditionals for bd,k and ψk can be found in Appendix 4.F. To
sample the shared beta process weights b0,k, we leverage the size-biased construction of the
beta process introduced by Thibaux and Jordan, 2007:

B0 =
∞∑

m=0

Cm∑

i=1

b0,m,iδψm,i,· ,

where

Cm
indep∼ Poisson

(
θ0γ0

θ0 +m

)
, b0,m,i

indep∼ Beta(1, θ0 +m), and ψm,i,·
iid∼ H,

and we develop a Gibbs slice sampler for generating samples from its posterior. The details
are deferred to Appendix 4.F.
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Figure 4.2: Number of admixture components used by the finite approximation sampler
with K = 100 (left) and the exact Gibbs slice sampler (right) on each iteration of HBNBP
admixture model posterior inference. We use a standard “toy bars” dataset with ten un-
derlying admixture components (cf. Griffiths and Steyvers, 2004). We declare a component
to be used by a sample if the sampled beta process weight, b0,k, exceeds a small threshold.
Both the exact and the finite approximation sampler find the correct underlying structure,
while the finite sampler attempts to innovate more because of the larger number of proposal
components available to the data in each iteration.

Finite approximation Gibbs sampler

An alternative to the size-biased construction of B0 is a finite approximation to the beta
process with a fixed number of components, K:

b0,k
iid∼ Beta(θ0γ0/K, θ0(1− γ0/K)), ψk

iid∼ H, k ∈ {1, . . . , K}. (4.10)

It is known that, when H is continuous, the distribution of
∑K

k=1 b0,kδψk converges to
BP(θ0, γ0, H) as the number of components K → ∞ (see the proof of Theorem 3.1 by
Hjort (1990) with the choice A0(t) = γ). Hence, we may leverage the beta process approxi-
mation (4.10) to develop an approximate posterior sampler for the HBNBP admixture model
with an approximation level K that trades off between computational efficiency and fidelity
to the true posterior. We defer the detailed conditionals of the resulting Gibbs sampler
to Appendix 4.F and briefly compare the behavior of the finite and exact samplers on a
toy dataset in Figure Figure 4.2. We note finally that the beta process approximation in
Eq. (4.10) also gives rise to a new finite admixture model that may be of interest in its own
right; we explore the utility of this HBNBP approximation in Section 4.9.
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4.8 Document topic modeling

In the next two sections, we show how the HBNBP admixture model and its finite approxima-
tion can be used as practical building blocks for more complex supervised and unsupervised
inferential tasks.

We first consider the unsupervised task of document topic modeling, in which each indi-
vidual d is a document containing Nd observations (words) and each word xd,n belongs to a
vocabulary of size V . The topic modeling framework is an instance of admixture modeling
in which we assume that each word of each document is generated from a latent admixture
component or topic, and our goal is to infer the topic underlying each word.

In our experiments, we let Hord, the Ψ dimension of the ordinary component intensity
measure, be a Dirichlet distribution with parameter η1 for η = 0.1 and 1 a V -dimensional
vector of ones and let F (ψk) be Multinomial(1, ψk). We use the setting (γ0, θ0, γd, θd) =
(3, 3, 1, 10) for the global and document-specific mass and concentration parameters and set
the document-specific negative binomial shape parameter according to the heuristic rd =
Nd(θ0 − 1)/(θ0γ0). We arrive at this heuristic by matching Nd to its expectation under a
non-hierarchical BNBP model and solving for rd:

E[Nd] = rdE
[∑∞

k=1
bd,k/(1− bd,k)

]
= γ0θ0/(θ0 − 1).

When applying the exact Gibbs slice sampler, we let the slice sampling decay sequence follow
the same pattern across all documents: ζd,k = 1.5−k.

Worldwide Incidents Tracking System

We report results on the Worldwide Incidents Tracking System (WITS) dataset.6 This
dataset consists of reports on 79,754 terrorist attacks from the years 2004 through 2010. Each
event contains a written summary of the incident, location information, victim statistics, and
various binary fields such as “assassination,” “IED,” and “suicide.” We transformed each
incident into a text document by concatenating the summary and location fields and then
adding further words to account for other, categorical fields: e.g., an incident with seven
hostages would have the word “hostage” added to the document seven times. We used a
vocabulary size of V = 1,048 words.

Perpetrator Identification. Our experiment assesses the ability of the HBNBP ad-
mixture model to discriminate among incidents perpetrated by different organizations. We
first grouped documents according to the organization claiming responsibility for the re-
ported incident. We considered 5,390 claimed documents in total distributed across the ten
organizations listed in Table 4.2. We removed all organization identifiers from all documents
and randomly set aside 10% of the documents in each group as test data. Next, for each
group, we trained an independent, organization-specific HBNBP model on the remaining
documents in that group by drawing 10,000 MCMC samples. We proceeded to classify each

6https://wits.nctc.gov

https://wits.nctc.gov
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Table 4.2: The number of incidents claimed by each organization in the WITS perpetrator
identification experiment.

Group ID Perpetrator # Claimed Incidents
1 taliban 2647
2 al-aqsa 417
3 farc 76
4 izz al-din al-qassam 478
5 hizballah 89
6 al-shabaab al-islamiya 426
7 al-quds 505
8 abu ali mustafa 249
9 al-nasser salah al-din 212
10 communist party of nepal (maoist) 291

test document by measuring the likelihood of the document under each trained HBNBP
model and assigning the label associated with the largest likelihood. The resulting confusion
matrix across the ten candidate organizations is displayed in Table 4.3. Results are reported
for the exact Gibbs slice sampler; performance under the finite approximation sampler is
nearly identical.

For comparison, we carried out the same experiment using the more standard HDP ad-
mixture model in place of the HBNBP. For posterior inference, we used the HDP block
sampler code of Yee Whye Teh7 and initialized the sampler with 100 topics and topic hy-
perparameter η = 0.1 (all remaining parameters were set to their default values). For each
organization, we drew 250,000 MCMC samples and kept every twenty-fifth sample for eval-
uation. The confusion matrix obtained through HDP modeling is displayed in Table 4.3.
We see that, overall, HBNBP modeling leads to more accurate identification of perpetrators
than its HDP counterpart. Most notably, the HDP wrongly attributes more than half of
all documents from group 1 (taliban) to group 3 (farc) or group 6 (al-shabaab al-islamiya).
We hypothesize that the HBNBP’s superior discriminative power stems from its ability to
distinguish between documents both on the basis of word frequency and on the basis of
document length.

We would expect the HBNBP to have greatest difficulty discriminating among perpe-
trators when both word usage frequencies and document length distributions are similar
across groups. To evaluate the extent to which this occurs in our perpetrator identification
experiment, for each organization, we plotted the density histogram of document lengths in
Figure 4.8 and the heat map displaying word usage frequency across all associated documents
in Figure 4.8. We find that the word frequency patterns are nearly identical across groups
2, 7, 8, and 9 (al-aqsa, al-quds, abu ali mustafa, and al-nasser salah al-din, respectively) and
that the document length distributions of these four groups are all well aligned. As expected,

7http://www.gatsby.ucl.ac.uk/~ywteh/research/npbayes/npbayes-r1.tgz

http://www.gatsby.ucl.ac.uk/~ywteh/research/npbayes/npbayes-r1.tgz
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Table 4.3: Confusion matrices for WITS perpetrator identification. See Table 4.2 for the
organization names matching each group ID.

[HBNBP Confusion Matrix]
Predicted Groups

1 2 3 4 5 6 7 8 9 10

A
ct

u
al

G
ro

u
p

s

1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.38 0.00 0.02 0.00 0.00 0.29 0.29 0.02 0.00
3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.54 0.00 0.00 0.15 0.27 0.04 0.00
5 0.11 0.33 0.00 0.11 0.44 0.00 0.00 0.00 0.00 0.00
6 0.02 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00
7 0.00 0.10 0.00 0.06 0.02 0.00 0.48 0.30 0.04 0.00
8 0.00 0.04 0.00 0.00 0.00 0.00 0.16 0.76 0.04 0.00
9 0.00 0.10 0.00 0.05 0.10 0.00 0.29 0.43 0.05 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

[HDP Confusion Matrix]
Predicted Groups

1 2 3 4 5 6 7 8 9 10

A
ct

u
a
l

G
ro

u
p

s

1 0.46 0.00 0.26 0.00 0.03 0.23 0.00 0.00 0.00 0.01
2 0.00 0.31 0.02 0.02 0.00 0.00 0.29 0.36 0.00 0.00
3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.52 0.04 0.00 0.06 0.31 0.06 0.00
5 0.11 0.00 0.00 0.00 0.44 0.00 0.11 0.11 0.11 0.11
6 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
7 0.00 0.10 0.00 0.04 0.00 0.00 0.38 0.42 0.06 0.00
8 0.00 0.04 0.00 0.00 0.00 0.00 0.08 0.84 0.04 0.00
9 0.00 0.05 0.00 0.10 0.00 0.00 0.24 0.62 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

the majority of classification errors made by our HBNBP models result from misattribution
among these same four groups. The same group similarity structure is evidenced in a display
of the ten most probable words from the most probable HBNBP topic for each group, Ta-
ble 4.4. There, we also find an intuitive summary of the salient regional and methodological
vocabulary associated with each organization.

4.9 Image segmentation and object recognition

Two problems of enduring interest in the computer vision community are image segmenta-
tion, dividing an image into its distinct, semantically meaningful regions, and object recogni-
tion, labeling the regions of images according to their semantic object classes. Solutions to
these problems are at the core of applications such as content-based image retrieval, video
surveying, and object tracking. Here we will take an admixture modeling approach to jointly
recognizing and localizing objects within images (Cao and F. Li, 2007; Russell et al., 2006;
Sivic et al., 2005; Verbeek and Bill Triggs, 2007). Each individual d is an image comprised
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Table 4.4: The ten most probable words from the most probable topic in the final MCMC
sample of each group in the WITS perpetrator identification experiment. The topic proba-
bility is given in parentheses. See Table 4.2 for the organization names matching each group
ID.

HBNBP: Top topic per organization

group 1 (0.29) afghanistan, assailants, claimed, responsibility, armedattack, fired, police, victims, armed, upon

group 2 (0.77) israel, assailants, armedattack, responsibility, fired, claimed, district, causing, southern, damage

group 3 (0.95) colombia, victims, facility, wounded, armed, claimed, forces, revolutionary, responsibility, assailants

group 4 (0.87) israel, fired, responsibility, claimed, armedattack, causing, injuries, district, southern, assailants

group 5 (0.95) victims, wounded, facility, israel, responsibility, claimed, armedattack, fired, rockets, katyusha

group 6 (0.54) wounded, victims, somalia, civilians, wounding, facility, killing, mortars, armedattack, several

group 7 (0.83) israel, district, southern, responsibility, claimed, fired, armedattack, assailants, causing, injuries

group 8 (0.94) israel, district, southern, armedattack, claimed, fired, responsibility, assailants, causing, injuries

group 9 (0.88) israel, district, southern, fired, responsibility, claimed, armedattack, assailants, causing, injuries

group 10 (0.80) nepal, victims, hostage, assailants, party, communist, claimed, front, maoist/united, responsibility

[Density histograms of document lengths.]
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Figure 4.3: Document length distributions and word frequencies for each organization in the
WITS perpetrator identification experiment.
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of Nd image patches (observations), and each patch xd,n is assumed to be generated by an
unknown object class (a latent component of the admixture). Given a series of training im-
ages with image patches labeled, the problem of recognizing and localizing objects in a new
image reduces to inferring the latent class associated with each new image patch. Since the
number of object classes is typically known a priori, we will tackle this inferential task with
the finite approximation to the HBNBP admixture model given in Section 4.7 and compare
its performance with that of a more standard model of admixture, latent Dirichlet allocation
(LDA) (Blei, Ng, and Jordan, 2003).

Representing an Image Patch

We will represent each image patch as a vector of visual descriptors drawn from multiple
modalities. Verbeek and Bill Triggs (2007) suggest three complementary modalities: texture,
hue, and location. Here, we introduce a fourth: opponent angle. To describe hue, we use
the robust hue descriptor of Van De Weijer and Schmid, 2006, which grants invariance to
illuminant variations, lighting geometry, and specularities. For texture description we use
“dense SIFT” features (Lowe, 2004; Dalal and B. Triggs, 2005), histograms of oriented
gradients computed not at local keypoints but rather at a single scale over each patch. To
describe coarse location, we cover each image with a regular c x c grid of cells (for a total
of V loc = c2 cells) and assign each patch the index of the covering cell. The opponent angle
descriptor of Van De Weijer and Schmid, 2006 captures a second characterization of image
patch color. These features are invariant to specularities, illuminant variations, and diffuse
lighting conditions.

To build a discrete visual vocabulary from these raw descriptors, we vector quantize the
dense SIFT, hue, and opponent angle descriptors using k-means, producing V sift, V hue, and
V opp clusters respectively. Finally, we form the observation associated with a patch by con-
catenating the four modality components into a single vector, xd,n = (xsift

d,n, x
hue
d,n , x

loc
d,n, x

opp
d,n ).

As in Verbeek and Bill Triggs, 2007, we assume that the descriptors from disparate modal-
ities are conditionally independent given the latent object class of the patch. Hence, we
define our data generating distribution and our base distribution over parameters ψk =
(ψsift

k , ψhue
k , ψloc

k , ψopp
k ) via

ψmk
indep∼ Dirichlet(η1Vm) for m ∈ {sift, hue, loc, opp}

xmd,n | zd,n,ψ·
indep∼ Multinomial(1, ψmzd,n) for m ∈ {sift, hue, loc, opp}

for a hyperparameter η ∈ R and 1Vm a V m-dimensional vector of ones.

Experimental Setup

We use the Microsoft Research Cambridge pixel-wise labeled image database v1 in our ex-
periments.8 The dataset consists of 240 images, each of size 213 x 320 pixels. Each image

8http://research.microsoft.com/vision/cambridge/recognition/
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has an associated pixel-wise ground truth labeling, with each pixel labeled as belonging to
one of 13 semantic classes or to the void class. Pixels have a ground truth label of void
when they do not belong to any semantic class or when they lie on the boundaries between
classes in an image. The dataset provider notes that there are insufficiently many instances
of horse, mountain, sheep, or water to learn these classes, so, as in Verbeek and Bill Triggs,
2007, we treat these ground truth labels as void as well. Thus, our general task is to learn
and segment the remaining nine semantic object classes.

From each image, we extract 20 x 20 pixel patches spaced at 10 pixel intervals across the
image. We choose the visual vocabulary sizes (V sift, V hue, V loc, V opp) = (1000, 100, 100, 100)
and fix the hyperparameter η = 0.1. As in Verbeek and Bill Triggs, 2007, we assign each
patch a ground truth label zd,n representing the most frequent pixel label within the patch.
When performing posterior inference, we divide the dataset into training and test images.
We allow the inference algorithm to observe the labels of the training image patches, and we
evaluate the algorithm’s ability to correctly infer the label associated with each test image
patch.

Since the number of object classes is known a priori, we employ the HBNBP finite
approximation Gibbs sampler of Section 4.7 to conduct posterior inference. We again use
the hyperparameters (γ0, θ0, γd, θd) = (3, 3, 1, 10) for all documents d and set rd according to
the heuristic rd = Nd(θ0−1)/(θ0γ0). We draw 10,000 samples and, for each test patch, predict
the label with the highest posterior probability across the samples. We compare HBNBP
performance with that of LDA using the standard variational inference algorithm of Blei,
Ng, and Jordan, 2003 and maximum a posteriori prediction of patch labels. For each model,
we set K = 10, allowing for the nine semantic classes plus void, and, following Verbeek and
Bill Triggs, 2007, we ensure that the void class remains generic by fixing ψm10 = ( 1

Vm
, · · · , 1

Vm
)

for each modality m.

Results

Figure 4.4 displays sample test image segmentations obtained using the HBNBP admixture
model. Each pixel is given the predicted label of its closest patch center. Test patch clas-
sification accuracies for the HBNBP admixture model and LDA are reported in Tables 4.5
and 4.5 respectively. All results are averaged over twenty randomly generated 90% train-
ing / 10% test divisions of the dataset. The two methods perform comparably, with the
HBNBP admixture model outperforming LDA in the prediction of every object class save
building. Indeed, the mean object class accuracy is 0.79 for the HBNBP model versus 0.76
for LDA, showing that the HBNBP provides a viable alternative to more classical approaches
to admixture.

Parameter Sensitivity

To test the sensitivity of the HBNBP admixture model to misspecification of the mass,
concentration, and likelihood hyperparameters, we measure the fluctuation in test set per-
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Figure 4.4: .

MSRC-v1 test image segmentations inferred by the HBNBP admixture model (best viewed
in color).

Table 4.5: Confusion matrices for patch-level image segmentation and object recognition on
the MSRC-v1 database. We report test image patch inference accuracy averaged over twenty
randomly generated 90% training / 10% test divisions.

[HBNBP Confusion Matrix]
Predicted Class Label

building grass tree cow sky aeroplane face car bicycle

A
ct

u
al

C
la

ss
L

ab
el

building 0.66 0.01 0.05 0.00 0.03 0.09 0.01 0.03 0.09
grass 0.00 0.89 0.06 0.02 0.00 0.01 0.00 0.00 0.00
tree 0.01 0.08 0.75 0.01 0.04 0.03 0.00 0.00 0.07
cow 0.00 0.10 0.04 0.72 0.00 0.00 0.05 0.01 0.01
sky 0.04 0.00 0.01 0.00 0.93 0.01 0.00 0.00 0.00

aeroplane 0.10 0.04 0.01 0.00 0.02 0.81 0.00 0.02 0.00
face 0.04 0.00 0.01 0.04 0.00 0.00 0.84 0.00 0.00
car 0.20 0.00 0.01 0.00 0.01 0.01 0.00 0.73 0.02

bicycle 0.16 0.00 0.04 0.00 0.00 0.00 0.00 0.02 0.73

[LDA Confusion Matrix]
Predicted Groups

building grass tree cow sky aeroplane face car bicycle

A
ct

u
al

G
ro

u
p

s

building 0.69 0.01 0.04 0.01 0.03 0.07 0.01 0.03 0.08
grass 0.00 0.88 0.05 0.02 0.00 0.01 0.00 0.00 0.00
tree 0.02 0.08 0.75 0.01 0.04 0.02 0.00 0.00 0.05
cow 0.00 0.10 0.03 0.70 0.00 0.00 0.05 0.01 0.01
sky 0.05 0.00 0.02 0.00 0.91 0.01 0.00 0.00 0.00

aeroplane 0.12 0.04 0.01 0.00 0.02 0.75 0.00 0.03 0.00
face 0.04 0.00 0.01 0.05 0.00 0.00 0.80 0.00 0.00
car 0.19 0.00 0.01 0.00 0.01 0.01 0.00 0.71 0.03

bicycle 0.19 0.00 0.04 0.01 0.00 0.00 0.00 0.02 0.68
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Table 4.6: Sensitivity of HBNBP admixture model to hyperparameter specification for joint
image segmentation and object recognition on the MSRC-v1 database. Each hyperparameter
is varied across the specified range while the remaining parameters are held fixed to the
default values reported in Section 4.9. We report test patch inference accuracy averaged
across object classes and over twenty randomly generated 90% training / 10% test divisions.
For each test patch, we predict the label with the highest posterior probability across 2,000
samples.

Hyperparameter Parameter range Minimum accuracy Maximum accuracy
γ0 [0.3, 30] 0.786 0.787
θ0 [1.5, 30] 0.786 0.786
η [2× 10−16, 1] 0.778 0.788

formance as each hyperparameter deviates from its default value (with the remainder held
fixed). The results of this study are summarized in Table 4.6. We find that the HBNBP
model is rather robust to changes in the hyperparameters and maintains nearly constant
predictive performance, even as the parameters vary over several orders of magnitude.

4.10 Discussion

Motivated by problems of admixture, in which individuals are represented multiple times in
multiple latent classes, we introduced the negative binomial process, an infinite-dimensional
prior for vectors of counts. We developed new nonparametric admixture models based on the
NBP and its conjugate prior, the beta process, and characterized the relationship between
the BNBP and preexisting models for admixture. We also analyzed the asymptotics of
our new priors, derived MCMC procedures for posterior inference, and demonstrated the
effectiveness of our models in the domains of image segmentation and document analysis.

There are many other problem domains in which latent vectors of counts provide a natural
modeling framework and where we believe that the HBNBP can prove useful. These include
the computer vision task of multiple object recognition, where one aims to discover which and
how many objects are present in a given image (Titsias, 2008), and the problem of modeling
copy number variation in genomic regions, where one seeks to infer the underlying events
responsible for large repetitions or deletions in segments of DNA (H. Chen, Xing, and Zhang,
2011).

4.A Connections

In Section 4.4 we noted that both the beta-negative binomial process (BNBP) and the gamma
Poisson likelihood process (ΓPLP) provide nonparametric models for the count vectors aris-
ing in admixture models. In this section, we will elucidate some of the deeper connections
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Table 4.7: A comparison of two Bayesian nonparametric constructions of clusterings such
that the clusters have conditionally independent, random sizes; hence the dataset size itself
is random. PP indicates a Poisson point process draw with the given intensity.

Beta negative binomial process Gamma Poisson likelihood process
ν(dψ, db) = γθb−1(1− b)θ−1 db H(dψ) ν(dψ, dg̃) = θg̃−1e−cg̃ dg̃ H(dψ)
(ψk, bk) ∼ PP(ν(dψ, db)) (ψk, g̃k) ∼ PP(ν(dψ, dg̃))

B =
∑

k bkδψk G̃ =
∑

k g̃kδψk

λk
indep∼ Gamma(r, 1−bk

bk
)

ik
indep∼ Poisson(λk) ik

indep∼ Poisson(g̃k)

between these two stochastic processes. We will see that understanding these connections
can not only inspire new stochastic process constructions but also lead to novel inference
algorithms.

We are motivated by Table 4.7, which indicates a strong parallel between the BNBP
and ΓPLP constructions for clusterings where the size of each cluster is independent and
random conditioned on some underlying process. The former requires an additional random
stage consisting of a draw from a gamma distribution. Here, we use the representation
of the negative binomial distribution, i ∼ NegBin(r, b), as a gamma mixture of Poisson
distributions: b̃ ∼ Gamma(r, (1 − b)/b) and i ∼ Poisson(b̃). However, this table mostly
highlights the parallel on the level of the likelihood process and therefore on the level of
classic, one-dimensional distributions. The relations between such distributions are well-
studied.

Noting that many classic, one-dimensional distributions are easily obtained from each
other by a simple change of variables, we aim to find new, analogous transformations in the
stochastic process setting. In particular, all of our results in this section, which apply to
nonparametric Bayesian priors derived from Poisson point processes, have direct analogues
in the setting of one-dimensional distributions. We start by reviewing these known distri-
butional relations. First, consider a beta distributed random variable x ∼ Beta(a, b). Then
the variable x/(1 − x) has a beta prime distribution with parameters a and b; specifically,
β′(a, b) denotes the beta prime distribution with density

β′(z | a, b) =
Γ(a+ b)

Γ(a)Γ(b)
za−1(1 + z)−a−b.

The beta prime distribution can alternatively be derived from a gamma distribution. Namely,
if x ∼ Gamma(a, c) and y ∼ Gamma(b, c) are independent, then x/y ∼ β′(a, b). This
connection is not the only one between the beta and gamma distributions though. Let

x ∼ Gamma(a, c), y ∼ Gamma(b, c). (4.11)

Then
x/(x+ y) ∼ Beta(a, b). (4.12)



CHAPTER 4. COMBINATORIAL CLUSTERING AND THE BNBP 108

In the rest of this section, we present similar results but now for the process case—the beta
process, gamma process, and a new process we call the beta prime process. The proofs of
these results appear in Appendix 4.B.

We start by defining a new completely random measure with nonnegative, real-valued
feature weights. First, we note that, as for the processes defined in Section 4.2, there is no
deterministic measure. Second, we specify that the fixed atoms have distribution

ηl
indep∼ β′(θγρl, θ(1− γρl))

at locations (ul). Here, θ > 0, γ > 0, (ρl)
∞
l=1, and (ul) are parameters. As usual, while

the number of fixed atoms L may be countably infinite, it is typically finite. Finally, the
ordinary component has Poisson process intensity Hord × ν, where

ν(db̃) = γθb̃−1(1 + b̃)−θ db̃, (4.13)

which we note is sigma-finite with finite mean, guaranteeing that the number of atoms
generated from the ordinary component will be countably infinite with finite sum.

We abbreviate by defining H =
∑L

l=1 ρlδul + Hord and say that the resulting CRM

B̃ ,
∑

k b̃kδψk is a draw from a beta prime process (BPP) with base distribution H:
B̃ ∼ BPP(θ, γ,H). The name “beta prime process” reflects the fact that the underlying
intensity is an improper beta prime distribution as well as the beta prime distribution of the
fixed atoms.

With this definition in hand, we can find the stochastic process analogues of the dis-
tributional results above (with proofs in Appendix 4.B). Just as a beta prime distribution
can be derived from a beta random variable, we have the following result that a similar
transformation of the atom weights of a beta process yields a beta prime process.

Proposition 4.A.1. Suppose B =
∑

k bkδψk ∼ BP(θ, γ,H). Then
∑

k
bk

1−bk
δψk ∼ BPP(θ, γ,H).

Further, just as a beta prime random variable can be derived as the ratio of gamma
random variables, we find that the atoms of the beta prime process can be constructed by
taking ratios of gamma random variables and the atoms of a gamma process.

Proposition 4.A.2. Suppose G̃ =
∑

k g̃kδψk ∼ ΓP(γθ, c,H) and τk ∼ Gamma(θ(1 −
γH({ψk})), c) independently for each k. Then

∑
k
g̃k
τk
δψk ∼ BPP(θ, γ,H).

And, finally, the analogue to constructing a beta random variable from two gamma
random variables is the construction of a beta process from a gamma process and an infinite
vector of independent gamma random variables.

Proposition 4.A.3. Suppose G̃ =
∑

k g̃kδψk ∼ ΓP(γθ, c,H) and τk ∼ Gamma(θ(1 −
γH({ψk})), c) independently for each k. Then

∑
k

g̃k
τk+g̃k

δψk ∼ BP(θ, γ,H).
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The key to the manipulations above is the Poisson process framework of the ordinary
component, with the BPP providing a convenient stepping stone between the BP and ΓP. We
discover, in particular, that the BP can be derived from the ΓP, elucidating a new parallel,
at the prior level, between the BNBP (which we see may be thought of as a ΓPLP augmented
with two additional Gamma draws per atom) and the ΓPLP. Moreover, Proposition 4.A.3
reduces sampling from a BP to sampling from a ΓP, thus allowing us to leverage any sampler
for the ΓP in carrying out BNBP and HBNBP posterior inference. Inference algorithms
built upon existing mature and efficient ΓP samplers see, e.g., Thibaux, 2008 could provide
promising alternatives to the methods derived in Section 4.7.

4.B Proofs for Appendix 4.A

Proof of Proposition 4.A.1: First, consider the ordinary component of a beta process. The
Mapping Theorem of Kingman (1993) tells us that if the collection of tuples (ψk, bk) come
from a Poisson process with intensity Hord × νbeta, where νbeta is the beta process intensity
of Eq. (4.2), then the collection of tuples (ψk, bk/(1− bk)) are draws from a Poisson process
with intensity Hord × ν, where we apply a change of variables to find:

ν(db̃) = γθ

(
b̃

1 + b̃

)−1(
1− b̃

1 + b̃

)θ−1
1

(1 + b̃)2
db̃

ν(db̃) = γθb̃−1(1 + b̃)−θ db̃,

which matches Eq. (4.13).
For any particular atom where bk ∼ Beta(θγρk, θ(1 − γρk)) and ρk = H({ψk}) > 0, we

simply quote the well-known, one-dimensional change of variables bk/(1−bk) ∼ β′(θγρk, θ(1−
γρk)).

Since there is no deterministic component, we have considered all components of the
completely random measure.

Proof of Proposition 4.A.2: We again start with the ordinary component of a completely
random measure. In particular, we assume the collection of tuples (ψk, g̃k) is generated
according to a Poisson process with intensity Hord × νgamma, where νgamma is the gamma
process intensity of Eq. (4.4).

Consider a random variable τk ∼ Gamma(θ, c) associated with each such tuple. Then
1/τk ∼ IG(θ, c). We consider a marked Poisson process with mark b̃k , g̃k/τk at tuple
(ψk, g̃k) of the original process. By the scaling property of the inverse gamma distribution,
we note b̃k ∼ IG(θ, cg̃k) given g̃k. So the Marking Theorem (Kingman, 1993) implies that
the collection of tuples (ψk, b̃k) is itself a draw from a Poisson point process with intensity
Hord × ν, where

ν(db̃) =

∫
p(b̃ | θ, c, g̃) ν(dg̃) dg̃ db̃
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= db̃

∫
1

Γ(θ)
(cg̃)θb̃−θ−1 exp(−cg̃/b̃) · γθg̃−1 exp(−cg̃) dg̃

= γθcθ
1

Γ(θ)
b̃−θ−1db̃

∫
g̃θ−1 exp(−g̃c(1 + b̃)/b̃) dg̃

= γθcθ
1

Γ(θ)
b̃−θ−1Γ(θ)

(
b̃

c(1 + b̃)

)θ

db̃

= γθb̃−1
(

1 + b̃
)−θ

db̃,

which matches the beta prime process ordinary component intensity of Eq. (4.13).
For any particular atom of the gamma process, g̃k ∼ Gamma(θγρk, c) with ρk = H({ψk}) >

0, we have τk ∼ Gamma(θ(1 − γρk), c) by construction. Then it is well known that g̃k/τk
has the β′(θγρk, θ(1− γρk)) distribution, as desired.

There is no deterministic component of the gamma process.

Proof of Proposition 4.A.3: Proposition 4.A.3 follows from Proposition 4.A.2, once we
reverse the relationship established in Proposition 4.A.1. For completeness, we provide a
more direct, self-contained proof paralleling that of Propositions 4.A.1 and 4.A.2 above.
We first note that Proposition 4.A.3 can be derived from Proposition 4.A.2 and an inverse
change of variables from that in Proposition 4.A.1. We begin with the ordinary component
of the gamma process so that the collection of tuples (ψk, g̃k) is generated according to a
Poisson process with intensity Hord×νgamma, where νgamma is the gamma process intensity of
Eq. (4.4). The Marking Theorem (Kingman, 1993) tells us that the marked Poisson process
with points (ψk, g̃k, τk) has intensity Hord × ν, where

ν(dg̃, dτ) = γθg̃−1e−cg̃ · (Γ(θ))−1τ θ−1 exp(−cτ) cθ dg̃ dτ.

Now consider the change of variables u = g̃/(g̃+ τ), v = g̃+ τ . The reverse transformation is
g̃ = uv, τ = (1−u)v with Jacobian v. Then the Poisson point process with points (ψk, uk, vk)
has intensity Hord × ν, where

ν(dψ, du, dv) = (Γ(θ))−1γθcθu−1v−1(1− u)θ−1vθ−1e−cv · v du dv.

So the Poisson point process with points (ψk, uk) has intensity Hord × ν, with

ν(dψ, du) =

∫

v

µ(dψ, du, dv)

=

∫

v

(Γ(θ))−1γθcθu−1(1− u)θ−1vθ−1e−cv du dv

= (Γ(θ))−1γθcθu−1(1− u)θ−1Γ(θ)c−θ du

= γθu−1(1− u)θ−1 du,
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which is the known beta process intensity.
In the discrete case with H({ψk}) = ρk > 0, we have by construction

g̃k ∼ Gamma(θγρk, c)

and
τk ∼ Gamma(θ(1− γρk), c).

From classic finite distributional results, we have

g̃k
τk + g̃k

∼ Beta(θγρk, θ(1− γρk)),

exactly as in the case of the beta process.
As the gamma process and beta process each have no deterministic components, this

completes the proof.

4.C Full results for Section 4.5

In order to fill in Table 4.1, we start by briefly establishing the results for the expected
number of clusters of size j for the DP and PYP; the results for the expected total number
of clusters are cited in the main text. We then move on to full results for the BNBP and
3BNBP. Proofs for all results in this section appear in Appendix 4.D.

Theorem 4.C.1. Assume that the concentration parameter for the DP satisfies θ > 0. Then
the expected number of data clusters of size j, Φj(N), has asymptotic growth

Φj(N) ∼ θj−1, N →∞.
Theorem 4.C.2. Assume that the discount parameter for the PYP satisfies α ∈ (0, 1) and
the concentration parameter satisfies θ > 1 − α. Then the expected number of data clusters
of size j, Φj(N), has asymptotic growth

Φj(N) ∼ Γ(θ + 1)

Γ(1− α)Γ(θ + α)

Γ(j − α)

Γ(j + 1)
Nα, N →∞.

Next we establish how the expected number of data points, ξ(r), grows asymptotically
with r in the BNBP case (in Lemma 4.C.4) and the 3BNBP case (in Lemma 4.C.5). We
begin by showing that the expected number of data points is infinite for the concentration
parameter range θ ≤ 1− α in both the BNBP (α = 0) and 3BNBP models.

Lemma 4.C.3. Assume that the discount parameter for the three-parameter beta process
satisfies α ∈ [0, 1) (the beta process is the special case when α = 0), the concentration
parameter satisfies θ ≤ 1 − α, and the mass parameter satisfies γ > 0. Then the expected
number of data points, ξ(r) = E[

∑
k ik], from a BNBP or 3BNBP, as appropriate, is infinite.
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Lemma 4.C.4. Assume that the concentration parameter for the beta process satisfies θ > 1
and the mass parameter satisifies γ > 0. Then the expected number of data points ξ(r) =
E[
∑

k ik] from a BNBP has asymptotic growth

ξ(r) ∼ γ
θ

θ − 1
r, r →∞.

Lemma 4.C.5. Assume that a three-parameter beta process has discount parameter α ∈
(0, 1) and concentration parameter θ > 1 − α. Then the expected number of data points
ξ(r) = E[

∑
k ik] from a 3BNBP has asymptotic growth

ξ(r) ∼ γ
θ

θ + α− 1
r, r →∞.

Next, we establish how the expected number of clusters, Φ(r), grows asymptotically as
r →∞ in the BNBP case (in Lemma 4.C.6) and in the 3BNBP case (in Lemma 4.C.7).

Lemma 4.C.6. Let θ > 0. Then the expected number of clusters Φ(r) = E[
∑

k 1{ik > 0}]
from a BNBP has asymptotic growth

Φ(r) ∼ γθ log r, r →∞.

Lemma 4.C.7. Consider a three-parameter beta process. Let the discount parameter sat-
isfy α > 0 and the concentration parameter satisfy θ > −α. Then the number of clusters
K(r)

∑
k 1{ik > 0} from a 3BNBP has almost sure asymptotic growth

K(r)
a.s.∼ γ

α

Γ(θ + 1)

Γ(θ + α)
rα, r →∞.

We are also interested in how the expected number of clusters of size j, Φj(r), grows as
r →∞. To that end, we establish this asymptotic growth in the BNBP case in Lemma 4.C.8
and in the 3BNBP case in Lemma 4.C.9 below.

Lemma 4.C.8. Let θ > 0. Then the expected number of clusters of size j, Φj(r) =
E[
∑

k 1{ik = j}], from a BNBP has asymptotic growth

Φj(r) ∼ γθj−1, r →∞.

That is, the number is asymptotically constant in r.

Lemma 4.C.9. Let θ > −α and α ∈ (0, 1). Then the expected number of clusters of size j,
Φj(r) = E[

∑
k 1{ik = j}], from a 3BNBP has asymptotic growth

Φj(r) ∼ γ
Γ(1 + θ)

Γ(1− α)Γ(θ + α)

Γ(j − α)

Γ(j + 1)
rα, r →∞.
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Finally, we wish to combine these results to establish asymptotic results for the diversity,
i.e., the expected number of clusters (or clusters of size j) as the expected number of data
points varies. We find the asymptotic growth in the number of clusters for the BNBP in
Theorem 4.C.10 and for the 3BNBP in Theorem 4.C.11. We find the asymptotic growth in
the number of clusters of size j for the BNBP (in fact, the result has already been shown in
Lemma 4.C.8) and for the 3BNBP in Theorem 4.C.12.

Theorem 4.C.10. Let θ > 1. Then the expected number of clusters Φ grows asymptotically
as the log of the expected number of data points ξ:

Φ(r) ∼ γθ log(ξ(r)), r →∞.

Theorem 4.C.11. Let θ + α > 1 and α ∈ (0, 1). Then the number of clusters K grows
asymptotically as a power of the expected number of data points ξ:

K(r)
a.s.∼ γ1−α

α

Γ(θ + 1)

Γ(θ + α)

(
θ + α− 1

θ

)α
(ξ(r))α, r →∞.

Theorem 4.C.12. Let θ + α > 1 and α ∈ (0, 1). Then the expected number of clusters of
size j, Φj, grows asymptotically as a power of the expected number of data points ξ:

Φj(r) ∼ γ1−α Γ(θ + 1)

Γ(1− α)Γ(θ + α)

Γ(j − α)

Γ(j + 1)

(
θ + α− 1

θ

)α
(ξ(r))α, r →∞.

4.D Proofs for Appendix 4.C

Proof of Theorem 4.C.1: When cluster proportions are generated according to a Dirichlet
process and cluster belonging is generated according to draws from the resulting random
measure, the joint distribution of (K1(N), . . . , KN(N)) is described by the Ewens sampling
formula, which appears as Eq. 2.9 in (Watterson, 1974). It follows that Eq. 2.22 in (Watter-
son, 1974) gives Φj(N) = E[Kj(N)]:

Φj(N) =
θ

j

(
θ +N − j − 1

N − j

)
·
(
θ +N − 1

N

)−1

.

Therefore,

Φj(N) =
θ

j

Γ(θ +N − j)
Γ(N − j + 1)Γ(θ)

· Γ(N + 1)Γ(θ)

Γ(N + θ)

=
θ

j
· Γ(N + θ − j)

Γ(N + θ)
· Γ(N + 1)

Γ(N + 1− j)

∼ θ

j
· (N + θ)−j · (N + 1)j, N →∞
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∼ θ

j
, N →∞,

where the asymptotics for the ratios of gamma functions follow from Tricomi and Erdélyi
(1951).

Proof of Theorem 4.C.2: Pitman (2006) establishes that, for the PYP with parameters θ

and α given in the result statement, we have Φ(N) ∼ Γ(θ+1)
αΓ(θ+α)

Nα as N →∞.

Note that Φ(N) is in the form of Eq. 48 on p. 167 of (Gnedin, Hansen, and Pitman,
2007). The desired result follows by applying Eq. 51 on p. 167 of (Gnedin, Hansen, and
Pitman, 2007).

Proof of Lemma 4.C.3: In this case, we have

E[
∑

k

ik] = E

[
E[
∑

k

ik|b·]
]

by the tower property

= E

[∑

k

E[ik|b·]
]

by monotonicity

= E

[∑

k

bkr

(1− bk)

]

using the mean of the negative binomial distribution

=

∫ 1

0

br

(1− b) ν(db)

by Campbell’s Theorem (Kingman, 1993)

= r
Γ(1 + θ)

Γ(1− α)Γ(θ + α)

∫ 1

0

b−α(1− b)θ+α−2 db.

The final line is finite iff
1− α > 0, and θ + α− 1 > 0.

Equivalently, the final line is finite iff

α < 1 and θ > 1− α.
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Proof of Lemma 4.C.4: Let B =
∑

k bkψk be beta process distributed. Let ik
iid∼

NegBin(r, bk). By the Marking theorem (Kingman, 1993), the Poisson process {(ψk, bk, ik)}
has intensity

ν(dψ, db, i) = γθb−1(1− b)θ−1

(
i+ r − 1

i

)
(1− b)rbi db Hord(dψ). (4.14)

So the Poisson process {ik} has intensity

ν(i) = γθ
Γ(i+ r)

Γ(i+ 1)Γ(r)

Γ(i)Γ(r + θ)

Γ(i+ r + θ)
.

Thus, by Campbell’s theorem (Kingman, 1993),

E[
∑

k

ik] =
∞∑

i=1

iν(i) = γθ
Γ(r + θ)

Γ(r)

∞∑

i=1

Γ(i+ r)

Γ(i+ r + θ)
.

To evaluate the sum
∑∞

i=1
Γ(i+r)

Γ(i+r+θ)
, we appeal to a result from Tricomi and Erdélyi (1951):

Γ(x+ a)

Γ(x+ b)
= xa−b

[
1 +

(a− b)(a+ b− 1)

2x
+O(x−2)

]
, x→∞. (4.15)

In particular,

Γ(i+ r)

Γ(i+ r + θ)
≤ (i+ r)−θ

[
1− θ(θ − 1)

2(i+ r)
+ C(i+ r)−2

]
for some constant C

and

Γ(i+ r)

Γ(i+ r + θ)
≥ (i+ r)−θ

[
1− θ(θ − 1)

2(i+ r)
− C ′(i+ r)−2

]
for some constant C ′.

Before proceeding, we establish for a > 1,

∞∑

i=1

(i+ r)−a ≤
∫ ∞

x=0

(x+ r)−a dx = (a− 1)−1r1−a

and

∞∑

i=1

(i+ r)−a ≥
∫ ∞

x=1

(x+ r)−a dx = (α− 1)−1(r + 1)1−a.

So

∞∑

i=1

Γ(i+ r)

Γ(i+ r + θ)
≤ (θ − 1)−1r1−θ − θ − 1

2
(r + 1)−θ + C(θ + 1)−1r−θ−1
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and

∞∑

i=1

Γ(i+ r)

Γ(i+ r + θ)
≥ (θ − 1)−1(r + 1)1−θ − θ − 1

2
r−θ − C(θ + 1)−1(r + 1)−θ−1.

Since, for θ > 1, we have

r1−θ

(r + 1)1−θ → 1, r →∞, (4.16)

it follows that
∞∑

i=1

Γ(i+ r)

Γ(i+ r + θ)
∼ (θ − 1)−1r1−θ. (4.17)

From Eq. (4.15), we also have Γ(r+θ)
Γ(r)

∼ rθ as r →∞. So we conclude that

E[
∑

k

ik] ∼ γ
θ

θ − 1
r, r →∞,

as desired.

Proof of Lemma 4.C.5: The proof proceeds as above. In this case, we have that the Poisson
process {(ψk, bk, ik)} has intensity

ν(dψ, db, i) = γ
Γ(1 + θ)

Γ(1− α)Γ(θ + α)
b−1−α(1− b)θ+α−1 Γ(i+ r)

Γ(i+ 1)Γ(r)
(1− b)rbi db H(dψ).

So the Poisson process {ik} has intensity

ν(i) = γ
Γ(1 + θ)

Γ(1− α)Γ(θ + α)

Γ(i+ r)

Γ(i+ 1)Γ(r)

Γ(i− α)Γ(r + θ + α)

Γ(i+ r + θ)
.

By Campbell’s theorem,

E[
∑

k

ik] =
∞∑

i=1

iν(i) = γ
Γ(1 + θ)

Γ(1− α)Γ(θ + α)

Γ(r + θ + α)

Γ(r)

∞∑

i=1

Γ(i+ r)

Γ(i+ r + θ)

Γ(i− α)

Γ(i)
.

We will find the following inequalities, with i ≥ 1 and α ∈ (0, 1), useful (cf. Eq. 2.8 in Qi
and Losonczi, 2010):

(i− α)−α ≤ Γ(i− α)

Γ(i)
≤ (i− 1)−α. (4.18)

We will also find the following integrals useful. Let a > 1.

∞∑

i=2

(i+ r)−a(i− α)−α ≤
∞∑

i=2

(i+ r)−a(i− 1)−α
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≤
∫ ∞

x=0

(x+ r)−ax−α dx

= r−a−α+1

∫ ∞

y=0

(y + 1)−ay−α dy

= r−a−α+1 Γ(1− α)Γ(a+ α− 1)

Γ(a)
. (4.19)

Similarly,

∞∑

i=2

(i+ r)−a(i− 1)−α ≥
∞∑

i=2

(i+ r)−a(i− α)−α

≥
∫ ∞

x=2

(x+ r)−ax−α dx

=

∫ ∞

x=0

(x+ r)−ax−α dx−
∫ 2

0

(x+ r)−ax−α dx

≥ r−a−α+1 Γ(1− α)Γ(a+ α− 1)

Γ(a)
− r−a(1− α)−121−α. (4.20)

First, we consider an upper bound. To that end,

∞∑

i=2

Γ(i+ r)

Γ(i+ r + θ)

Γ(i− α)

Γ(i)
≤

∞∑

i=2

(i+ r)−θ
(

1− θ(θ + 1)

2(i+ r)
+ C(i+ r)−2

)
(i− 1)−α

for some constant C

≤ r−θ−α+1 Γ(1− α)Γ(θ + α− 1)

Γ(θ)

− θ(θ + 1)

2
r−θ−α

Γ(1− α)Γ(θ + 1 + α− 1)

Γ(θ + 1)
− r−θ−1(1− α)−121−α

+ Cr−θ−α−1 Γ(1− α)Γ(θ + α + 1)

Γ(θ + 2)
.

For the lower bound,

∞∑

i=2

Γ(i+ r)

Γ(i+ r + θ)

Γ(i− α)

Γ(i)
≥

∞∑

i=2

(i+ r)−θ
(

1− θ(θ + 1)

2(i+ r)
− C ′(i+ r)−2

)
(i− α)−α

for some constant C ′

≥ r−θ−α+1 Γ(1− α)Γ(θ + α− 1)

Γ(θ)
− r−θ(1− α)−121−α

− r−θ−αΓ(1− α)Γ(θ + α)

Γ(θ + 1)
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− C ′r−θ−α−1 Γ(1− α)Γ(θ + α + 1)

Γ(θ + 2)
.

It follows from the two bounds above that
∞∑

i=2

Γ(i+ r)

Γ(i+ r + θ)

Γ(i− α)

Γ(i)
∼ Γ(1− α)Γ(θ + α− 1)

Γ(θ)
r−θ−α+1.

Since
Γ(r + θ + α)

Γ(r)
∼ rθ+α,

it follows that

E[
∑

k

ik] ∼ γ
Γ(1 + θ)

Γ(1− α)Γ(θ + α)

Γ(1− α)Γ(θ + α− 1)

Γ(θ)
r = γ

θ

θ + α− 1
r,

as was to be shown.

Proof of Lemma 4.C.6: Given an atom bk of the beta process, the probability that the
associated negative binomial count ik is non-zero is 1− (1− bk)r. It follows that

E[
∑

k

1{ik > 0}] = E[E[
∑

k

1{ik > 0}|bk]] = E[
∑

k

1− (1− bk)r] =

∫

b

(1− (1− b)r)νBP(db),

where νBP is the intensity of beta process atoms {bk}. For integer r, this integral was
calculated by Broderick, Jordan, and Pitman (2012) to be ∼ γθ log(r).

Note that, in applying the result of Broderick, Jordan, and Pitman (2012), we are using
the form of the negative binomial distribution to reinterpret the desired expectation as the
expected number of features represented in a beta-Bernoulli process with r draws from the
same underlying base measure.

Now consider general r > 1. Let r(0) = brc and r(1) = dre. Then

∫
b
(1− (1− b)r(0))νBP(db)

γθ log(r(1))
≤
∫
b
(1− (1− b)r)νBP(db)

γθ log(r)
≤
∫
b
(1− (1− b)r(1))νBP(db)

γθ log(r(0))
(4.21)

by monotonicity. Moreover,
∫
b
(1− (1− b)r(0))νBP(db)

γθ log(r(1))
=

∫
b
(1− (1− b)r(0))νBP(db)

γθ log(r(0))
· γθ log(r(0))

γθ log(r(1))

→ 1, r →∞.

Similarly,
∫
b
(1− (1− b)r(1))νBP(db)

γθ log(r(0))
→ 1, r →∞ and hence

∫
b
(1− (1− b)r)νBP(db)

γθ log(r)
→ 1, r →∞.
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as was to be shown.

Proof of Lemma 4.C.7: By the discussion in the previous proposition, this result follows
from the results in Broderick, Jordan, and Pitman (2012).

Proof of Lemma 4.C.8: Given an atom bk of the beta process, the probability that the
associated negative binomial count ik is equal to j is NegBin(j|r, bk). It follows that

E[
∑

k

1{ik = j}] = E[E[
∑

k

1{ik = j}|b·]] = E[
∑

k

NegBin(j|r, bk)] = ν(j) = γθ
Γ(j + r)

Γ(j + 1)Γ(r)

Γ(j)Γ(r + θ)

Γ(j + r + θ)

as above. Now we use Γ(r+θ)
Γ(r)

∼ rθ and Γ(j+r)
Γ(j+r+θ)

∼ r−θ to obtain E[
∑

k 1{ik = j}] ∼ γθj−1.

Proof of Lemma 4.C.9: As in the BNBP case, we have

E[
∑

k

1{ik = j}] = ν(j) = γ
Γ(1 + θ)

Γ(1− α)Γ(θ + α)

Γ(j + r)

Γ(j + 1)Γ(r)

Γ(j − α)Γ(r + θ + α)

Γ(j + r + θ)

Now we use Γ(r+θ+α)
Γ(r)

∼ rθ+α and Γ(j+r)
Γ(j+r+θ)

∼ r−θ to obtain E[
∑

k 1{ik = j}] ∼ γ Γ(1+θ)
Γ(1−α)Γ(θ+α)

Γ(j−α)
Γ(j+1)

rα.

Proof of Theorem 4.C.10: Assume θ > 1. We have from the previous discussion that
limr→∞

ξ(r)

γ θ
θ−1

r
= 1. So

lim
r→∞

log(ξ(r))− log(r) = − log

(
γ

θ

θ − 1

)
.

Hence limr→∞
log(ξ(r))

log(r)
= 1 since log(r)→∞ as r →∞.

From Lemma 4.C.6, we also have limr→∞
Φ(r)

γθ log(r)
= 1. Finally, then,

lim
r→∞

Φ(r)

γθ log(ξ(r))
= 1.
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Proof of Theorem 4.C.11: From above, we have

lim
r→∞

ξ(r)

γ θ
θ+α−1

r
= 1 and hence lim

r→∞

(ξ(r))α(
γ θ
θ+α−1

r
)α = 1.

From Lemma 4.C.7, we also have

lim
r→∞

K(r)
γ
α

Γ(θ+1)
Γ(θ+α)

rα
a.s.
= 1 and hence lim

r→∞

(ξ(r))α γ
α

Γ(θ+1)
Γ(θ+α)(

γ θ
θ+α−1

)α
K(r)

a.s.
= 1.

Proof of Theorem 4.C.12: As above, we have from Lemma 4.C.9 that

lim
r→∞

Φj(r)

γ Γ(1+θ)
Γ(1−α)Γ(θ+α)

Γ(j−α)
Γ(j+1)

rα
= 1 and hence lim

r→∞

(ξ(r))αγ Γ(1+θ)
Γ(1−α)Γ(θ+α)

Γ(j−α)
Γ(j+1)(

γ θ
θ+α−1

)α
Φj(r)

= 1,

yielding the desired result.

4.E Conjugacy proofs

Full beta process and negative binomial process

Theorem 4.3.3 in the main text is a corollary of Theorems 4.E.1 and 4.E.2 below. In par-
ticular, Theorems 4.E.1 and 4.E.2 give us the form of the posterior process when we have a
general CRM prior with a Poisson process intensity with finite mean. Choosing the partic-
ular Poisson process intensity for the RBP and choosing the distributions of the prior fixed
weights yields the result.

Finite Poisson process intensity

Theorem 4.E.1. Let Bprior be a discrete, completely random measure on [0, 1] with atom
locations in [0, 1]. Suppose it has the following components.

• The ordinary component is generated from a Poisson point process with intensity
ν(db) dψ such that ν is continuous and ν[0, 1] < ∞. In particular, the weights are
in the b axis, and the atom locations are in the ψ axis.

• There are L fixed atoms at locations u1, . . . , uL ∈ [0, 1]. The weight of the lth fixed
atom is a random variable with distribution hl.
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• There is no deterministic measure component.

Draw a negative binomial process I with shape parameter r and input measure Bprior. Let
K be the number of (nonzero) atoms of I. Let Π = {(ik, sk)}Kk=1 be the pairs of observed
nonzero counts and corresponding atom locations.

Then the posterior process for the input measure to the negative binomial process given
I is a completely random measure Bpost with the following components.

• The ordinary component is generated from a Poisson point process with intensity

(1− b)rν(db) dψ.

• There are three sets of fixed atoms.

1. There are the old, repeated fixed atoms. If ul = sk for some k, there is a fixed
atom at ul with weight density

c−1
or (1− b)rbikhl(db),

where cor is the normalizing constant:

cor =

∫ 1

b=0

(1− b)rbikhl(db).

2. There are the old, unrepeated fixed atoms. If ul /∈ {s1, . . . , sK}, there is a fixed
atom at ul with weight density

c−1
ou (1− b)rhl(db),

where cor is the normalizing constant:

cou =

∫ 1

b=0

(1− b)rhl(db).

3. There are the new fixed atoms. If sk /∈ {u1, . . . , uL}, there is a fixed atom at sk
with weight density

c−1
new(1− b)rbikν(db),

where cnew is the normalizing constant:

cnew =

∫ 1

b=0

(1− b)rbikν(db).

• There is no deterministic measure component.
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Proof of Theorem 4.E.1: Our proof follows the proof of beta-Bernoulli process conjugacy of
Kim (1999a). Let (M,ΣM) be the set of completely random measures on [0, 1] with weights
in [0, 1] and its associated sigma algebra. Let (G,ΣG) be the set of completely random
measures on [0, 1] with atom weights in {1, 2, . . .} and its associated sigma algebra. For any
sets M ∈ ΣM and G ∈ ΣG, let Pprior(M × G) be the probability distribution induced on
such sets by the construction of the prior measure Bprior and the negative binomial process
I. Let Q(M : G) be the probability distribution induced on measures in M by the proposed
posterior distribution. Finally, let Pmarg(G) be the prior marginal distribution on counting
measures in G. To prove the theorem, it is enough to show that, for any such sets M and
G, we have

Pprior(M ×G) =

∫

I∈G
Q(M : I) Pmarg(I). (4.22)

The remainder of the proof will proceed as follows. We start by introducing some further
notation. Then we will note that it is enough to prove Eq. (4.22) for certain, restricted
forms of the sets M and G. Next, we will in turn find the form of each of (1) the prior
distribution Pprior, (2) the proposed posterior distribution Q, and (3) the marginal count
process distribution Pmarg for our special sets of interest. Finally, we will show that we can
integrate out the posterior with respect to the marginal in order to obtain the prior, as in
Eq. (4.22).

Start by noting that we can write Bprior as

Bprior(dψ) =
J∑

j=1

ξjδvj(dψ) +
L∑

l=1

ηlδul(dψ). (4.23)

Here, J is the number of atoms in the ordinary component of Bprior. So the total number
of atoms in Bprior is J + L, and the total number of atoms in the counting measure with
parameter Bprior is K ≤ J + L. The atom locations of the ordinary component are {vj},
and the fixed atom locations are at {ul}. We will assume these location collections are each
respectively in increasing order: v1 ≤ v2 ≤ · · · vJ and u1 ≤ u2 ≤ · · ·uL. Note that the vj
order is well-defined since the density of the vj is continuous. Together, we have that the full
set of atoms of the counting measure is some subset of the disjoint union of the two types
of prior atoms: {sk}Kk=1 ⊆ {vj}Jj=1 ∪ {ul}Ll=1. The atom weight at the fixed ul location is ηl,
and the atom weight at the ordinary component location vj is ξj.

Let λ = ν[0, 1], which we know to be finite by assumption. Then the number of atoms
in the ordinary component is Poisson-distributed:

J ∼ Poisson(λ).

The {ξj}Jj=1 are independent and identically distributed random variables with values in
[0, 1] such that each has density ν(db)/λ.

Next, we note that instead of general sets M and G, we can restrict to sets of the form

M ′ = {J = Ĵ} ∩
Ĵ⋂

j=1

{vj ≤ v̂j, ξj ≤ ξ̂j}Ĵj=1 ∩
L⋂

l=1

{ηl ≤ η̂l}. (4.24)
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G′ = {K = 1} ∩ {i1 = î1, s1 ≤ ŝ1}. (4.25)

That is, in the random measure Bprior case, we consider a set with a fixed number Ĵ of

ordinary component atoms and with fixed upper bounds v̂j, ξ̂j, or η̂l on, respectively, the
location of the jth ordinary component atom, the weight of the jth ordinary component
atom, and the weight of the lth fixed atom. In the counting measure I case, we can restrict
to a single atom with location bounded by ŝ1 and count equal to î1 ∈ {1, 2, . . .}.

With this notation and restriction in hand, we proceed to compute the prior, marginal,
and posterior so that we may check whether Eq. (4.22) holds.

Prior. We first calculate the prior measure of set M ′. Recall that the number of atoms
is Poisson-distributed:

Pprior(J = Ĵ) =
λĴ

Ĵ !
e−λ. (4.26)

Also, the locations of these atoms, given their number, are distributed as

Pprior(
Ĵ⋂

j=1

{vj ≤ v̂j}|J = Ĵ) = Ĵ !

∫ v̂1

ψ1=0

∫ v̂2

ψ2=ψ1

· · ·
∫ v̂Ĵ

ψĴ=ψĴ−1




Ĵ∏

j=1

dψj


 . (4.27)

The Ĵ ! term results from the fact that the vj are, by construction, the order statistics of a
collection of uniformly distributed random variables. Finally, the sizes of the atoms, given
their location and number, have the distribution

Pprior




J⋂

j=1

{ξj ≤ ξ̂j} ∩
L⋂

l=1

{ηl ≤ η̂l}|J = Ĵ ,
Ĵ⋂

j=1

{vj ≤ v̂j}


 =




Ĵ∏

j=1

∫ ξ̂j

b=0

ν(db)

λ


 ·
[

L∏

l=1

∫ η̂l

b=0

hl(db)

]
.

(4.28)

Together, Eqs. (4.26), (4.27), and (4.28) yield the prior probability of the set M ′ (Eq. (4.24))
describing the random measure Bprior.

Next, we turn to the prior probability of the set G′ describing the counting measure I. In
this case, we condition on a particular measure µ ∈M ′. Now, in G′, each counting measure
I has exactly one atom. This atom can occur either at an atom in the ordinary component
of µ, located at one of {vj}Jj=1, or at a fixed atom of µ, located at one of {ul}Ll=1. We take
advantage of the fact that the ul are unique by assumption and that the vj are a.s. unique
and distinct from the ul by the assumption that the distribution on locations is continuous.
We also note that on the set {s1 ≤ ŝ1}, we need only consider those atoms with locations at
most ŝ1. Thus, we break into these two special cases as follows:

Pprior(K = 1, i1 = î1, s1 ≤ ŝ1|µ) =
J∑

j=1

Pprior(K = 1, i1 = î1, s1 = vj|µ)1{vj ≤ ŝ1}
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+
L∑

l=1

Pprior(K = 1, i1 = î1, s1 = ul|µ)1{ul ≤ ŝ1}.

The probability that the single nonzero count occurs at a particular atom is the probability
that a nonzero count appears at this atom and zero counts appear at all other atoms. To
express this probability, we first define a new function:

Φ(J, L,v, ξ,η, i1, s) =

{
J∏

j=1

[NegBin(0|r, ξj)]1{vj 6=s} [NegBin(i1|r, ξj)]1{vj=s}
}

·
{

L∏

l=1

[NegBin(0|r, ηj)]1{ul 6=s} [NegBin(i1|r, ηl)]1{ul=s}
}
.

Here, NegBin(x|a, b) is the negative binomial density. A notable special case is NegBin(0|a, b) =
(1− b)a. We can write the single-atom probabilities with the Φ notation:

Pprior(K = 1, i1 = î1, s1 = vj|µ) = Φ(J, L,v, ξ,η, i1, vj)

Pprior(K = 1, i1 = î1, s1 = ul|µ) = Φ(J, L,v, ξ,η, i1, ul).

We can combine the likelihood of the counting process I given the random measure
Bprior with the prior of the random measure Bprior to find the joint prior probability of the
set M ′×G′. If we use the following notation to express the sets over which we will integrate,

R(v̂, J) , {ψ : ψ ∈ [0, 1]J , ψ1 ≤ · · · ≤ ψJ} ∩
J⋂

j=1

{ψ : ψj ≤ v̂j}

r(T = (t1, . . . , tJ), J) , [0, t1]× · · · × [0, tJ ],

then we may write

Pprior(M ′ ×G′) =

∫

B∈M ′
Pprior(G′|B) dPprior(B)

= e−λ





Ĵ∑

j=1

[∫

v∈R(v̂,Ĵ),ξ∈r(ξ̂,Ĵ),η∈r(η̂,L)

1{vj ≤ ŝ1}

·Φ(Ĵ , L,v, ξ,η, i1, vj) ·




Ĵ∏

j=1

dvj


 ·




Ĵ∏

j=1

ν(dξ)


 ·

(
L∏

l=1

hl(dηl)

)


+
L∑

l=1

[∫

v∈R(v̂,Ĵ),ξ∈r(ξ̂,Ĵ),η∈r(η̂,L)

1{ul ≤ ŝ1}
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·Φ(Ĵ , L,v, ξ,η, î1, ul) ·




Ĵ∏

j=1

dvj


 ·




Ĵ∏

j=1

ν(dξ)


 ·

(
L∏

l=1

hl(dηl)

)



 .

(4.29)

This equation completes our prior calculation for now. We will return to it when we evaluate
Eq. (4.22) for sets M ′ and G′.

Proposed posterior. Next we consider the proposed posterior distribution Q. Just as
we calculated the probability of M ′×G′ under the measure induced by our prior generative
model, we can analogously calculate the quantity Q(M ′ : I) for some I ∈ G′ according to
the definition of Q.

In the theorem statement, we specified a construction of a completely random measure to
induce the proposed posterior. In this case, the completely random measure has an ordinary
component and a set of fixed atoms. Given the specific set G′ we are considering (Eq. (4.25)),
the set of locations of the fixed atoms is {u1, . . . , uL}∪{ŝ1}, where the union is not necessarily
disjoint. So there are two cases we must examine: either the counting process atom is at the
same location as a fixed atom of the prior random measure (ŝ1 = ul for some l ∈ {1, . . . , L}),
or it is at a different location (ŝ1 /∈ {u1, . . . , uL}).

First, we consider the case where the counting process atom location ŝ1 is the same as
that of a fixed atom of the prior random measure, say ul∗ . As before, the number of atoms
in the ordinary component is Poisson-distributed with mean equal to the total Poisson point
process mass

λpost ,
∫ 1

b=0

(1− b)rν(db).

So we have (cf. Eq. (4.26))

Q(J = Ĵ : K = 1, i1 = î1, s1 = ul∗) =
λĴpost

Ĵ !
e−λpost . (4.30)

Also, as in the case of Eq. (4.27), we can calculate the distribution of the locations of the
ordinary component atoms:

Q(
Ĵ⋂

j=1

{vj ≤ v̂j}|J = Ĵ : K = 1, i1 = î1, s1 = ul∗) = Ĵ !

∫ v̂1

ψ1=0

∫ v̂2

ψ2=ψ1

· · ·
∫ v̂Ĵ

ψĴ=ψĴ−1




Ĵ∏

j=1

dψj


 .

(4.31)

And again, as in Eq. (4.28), the sizes of the atoms, given their location and number, have
the distribution

Q




J⋂

j=1

{ξj ≤ ξ̂j} ∩
L⋂

l=1

{ηl ≤ η̂l}|J = Ĵ ,
Ĵ⋂

j=1

{vj ≤ v̂j} : K = 1, i1 = î1, s1 = ul∗



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=




Ĵ∏

j=1

∫ ξ̂j

b=0

NegBin(0|r, b)ν(db)

λpost



[

L∏

l=1

∫ η̂l
b=0

[NegBin(̂i1|r, b)]1{l=l∗}[NegBin(0|r, b)]1{l 6=l∗}hl(db)∫ 1

b=0
[NegBin(̂i1|r, b)]1{l=l∗}[NegBin(0|r, b)]1{l 6=l∗}hl(db)

]
.

(4.32)

Putting together Eqs. (4.30), (4.31), and (4.32), we can find the proposed measure of the set
M ′ given I ∈ G′ for the case ŝ1 = ul∗ :

Q(M ′ : I) = Q


J = Ĵ ,

Ĵ⋂

j=1

{vj ≤ v̂j},
J⋂

j=1

{ξj ≤ ξ̂j} ∩
L⋂

l=1

{ηl ≤ η̂l} : K = 1, i1 = î1, s1 = ul∗




= C−1
fixed,l∗e

−λpost
∫

v∈R(v̂,Ĵ),ξ∈r(ξ̂,Ĵ),η∈r(η̂,L)

Φ(Ĵ , L,v, ξ,η, i1, ul∗) (4.33)

·




Ĵ∏

j=1

dvj


 ·




Ĵ∏

j=1

ν(dξ)


 ·

(
L∏

l=1

hl(dηl)

)
, (4.34)

where

Cfixed,l∗ ,
L∏

l=1

∫ 1

b=0

[NegBin(̂i1|r, b)]1{l=l
∗}[NegBin(0|r, b)]1{l 6=l∗}hl(db).

Second, we consider the case ŝ1 /∈ {u1, . . . , uL}. Then ŝ1 = vj∗ for some j∗ ∈ {1, . . . , J}.
Recall that vj∗ is the j∗th smallest element of {v1, . . . , vJ}. We proceed as above and start
by noting that the number of atoms on either side of the location vj∗ is Poisson-distributed:

Q
(
J = Ĵ : K = 1, i1 = î1, s1 = vj∗

)

=
(λpostvj∗)

j∗−1

(j∗ − 1)!
e−(λpostvj∗) · (λpost(1− vj∗))(Ĵ−j∗)

(Ĵ − j∗)!
e−(λpost(1−vj∗ )). (4.35)

Further, we have the usual distribution for the atom locations on either side of vj∗ :

Q




Ĵ⋂

j=1

{vj ≤ v̂j}|J = Ĵ : K = 1, i1 = î1, s1 = vj∗




= (j∗ − 1)!

∫ v̂1

ψ1=0

∫ v̂2

ψ2=ψ1

· · ·
∫ v̂j∗

ψj∗=ψj∗−1

(
j∗−1∏

j=1

dψj
vj∗

)

· (Ĵ − j∗)!
∫ v̂j∗+1

ψj∗+1=v̂j∗

· · ·
∫ v̂Ĵ

ψĴ=ψĴ−1




Ĵ∏

j=j∗+1

dψj
1− vj∗


 . (4.36)
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As usual, the third step identifies the conditional distribution of the atom weights:

Q




J⋂

j=1

{ξj ≤ ξ̂j} ∩
L⋂

l=1

{ηl ≤ η̂l}|J = Ĵ ,
Ĵ⋂

j=1

{vj ≤ v̂j} : K = 1, i1 = î1, s1 = vj∗


 (4.37)

=




Ĵ∏

j=1

∫ ξ̂j
b=0

[
NegBin(̂i1|r, b)

]
1{j=j∗}

[NegBin(0|r, b)]1{j 6=j∗} ν(db)

∫ 1

b=0

[
NegBin(̂i1|r, b)

]
1{j=j∗}

[NegBin(0|r, b)]1{j 6=j∗} ν(db)



[

L∏

l=1

∫ η̂l
b=0

NegBin(0|r, b)hl(db)∫ 1

b=0
NegBin(0|r, b)hl(db)

]
.

(4.38)

So, combining Eqs. (4.35), (4.36), and (4.38), we find that the proposed posterior distribution
in the case ŝ1 = vj∗ is

Q(M ′ : I) = Q


J = Ĵ ,

Ĵ⋂

j=1

{vj ≤ v̂j},
J⋂

j=1

{ξj ≤ ξ̂j} ∩
L⋂

l=1

{ηl ≤ η̂l} : K = 1, N1 = n1, S1 = ξj∗




= C−1
orde

−λpost
∫

v∈R(v̂,Ĵ),ξ∈r(ξ̂,Ĵ),η∈r(η̂,L)

Φ(Ĵ , L,v, ξ,η, î1, vj∗)

·




Ĵ∏

j=1

dvj


 ·




Ĵ∏

j=1

ν(dξ)


 ·

(
L∏

l=1

hl(dηl)

)
, (4.39)

where

Cord ,

(∫ 1

b=0

NegBin(̂i1|r, b)ν(db)

)
·
(

L∏

l=1

∫ 1

b=0

NegBin(0|r, b)hl(db)
)
.

Putting together the cases ŝ1 = ul∗ for some l∗ (Eq. (4.34)) and ŝ1 /∈ {u1, . . . , uL}
(Eq. (4.39)), we obtain the full proposed posterior distribution:

Q(M ′ : I) = Q


J = Ĵ ,

Ĵ⋂

j=1

{vj ≤ v̂j},
J⋂

j=1

{ξj ≤ ξ̂j} ∩
L⋂

l=1

{ηl ≤ η̂l} : K = 1, i1 = î1, s1 = ŝ1




=
L∑

l∗=1

1{ŝ1 = ul∗} C−1
fixed,l∗e

−λpost
∫

v∈R(v̂,Ĵ),ξ∈r(ξ̂,Ĵ),η∈r(η̂,L)

Φ(Ĵ , L,v, ξ,η, î1, ul∗)

·




Ĵ∏

j=1

dvj


 ·




Ĵ∏

j=1

ν(dξ)


 ·

(
L∏

l=1

hl(dηl)

)

+ 1 {ŝ1 /∈ {u1, . . . , uL}} C−1
orde

−λpost
∫

v∈R(v̂,Ĵ),ξ∈r(ξ̂,Ĵ),η∈r(η̂,L)

Φ(Ĵ , L,v, ξ,η, î1, vj∗)

·




Ĵ∏

j=1

dvj


 ·




Ĵ∏

j=1

ν(dξ)


 ·

(
L∏

l=1

hl(dηl)

)
. (4.40)



CHAPTER 4. COMBINATORIAL CLUSTERING AND THE BNBP 128

Counting process marginal. With the prior and proposed posterior in hand, it remains
to calculate the marginal distribution of the counting process. Then we may integrate out
the proposed posterior with respect to the counting process marginal in order to obtain the
prior (Eq. (4.22)). Since we are focusing on counting process sets G′ of the form in Eq. (4.25),
we aim to calculate

Pmarg(K = 1, i1 = î1, s1 ≤ ŝ1).

In our calculations above, we also worked with a set of prior measure µ ∈ M ′ and
therefore worked with a set of locations for the ordinary component atoms. In this case,
we will need to calculate the probability of zero counts in an interval where the number
and location of the ordinary component atoms is integrated out. Let I ′{ψ} be the counting
process that includes exactly those counts at ordinary component atoms and not the counts
at fixed atoms; we can see, e.g., that I ′{ψ} ≤ I{ψ} at all ψ. Further, similar to Eq. (4.23),
let Bord be the random measure composed only of those atoms in the ordinary component
of Bprior:

Bord =
J∑

j=1

ξjδvj .

Then we are interested in the quantity:

E [1{∀t ∈ (ψ1, ψ2), I ′{t} = 0}] = E


 ∏

t∈(ψ1,ψ2)

(1−Bord{t})r

 =

∏

t∈(ψ1,ψ2)

(1− E [1− (1−Bord{t})r]) ,

where the last equality follows from the independence of Bprior across increments.
Now define a new process B′ , 1− (1−Bord)

r. This process has intensity ν ′, which can
be obtained by a change of variables from the Poisson process intensity ν of Bord. We will
find it notationally useful to refer to ν ′ though we do not calculate it here. Also, let B̄′ be
the mean process of B′: B̄′(dψ) , E [B′(dψ)]. With this notation in hand, we can write

E [1{∀t ∈ (ψ1, ψ2), I ′{t} = 0}]

=
∏

t∈(ψ1,ψ2)

(
1− B̄′{t}

)
= exp

{
−
∫ ψ2

t=ψ1

B̄′{t}
}

= exp

{
−
∫ ψ2

t=ψ1

∫ 1

b=0

b′ ν ′(db′)

}

= exp

{
−(ψ2 − ψ1)

∫ 1

b=0

(1− (1− b)r) ν(db)

}
.

As usual, we consider two separate cases. First, suppose s1 = ul∗ for some l∗ ∈ {1, . . . , L}.
Then using the result above we find

Pmarg(K = 1, i1 = î1, s1 = ul∗) = Pmarg(I{ul∗} = î1) Pmarg(∀l 6= l∗, I{ul} = 0) Pmarg(∀t ∈ (0, 1), I ′{t} = 0)
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=

(
L∏

l=1

∫ 1

b=0

[NegBin(0|r, b)]1{l 6=l∗}
[
NegBin(̂i1|r, b)

]
1{l=l∗}

hl(db)

)

· exp

{
−(1− 0)

∫ 1

b=0

(1− (1− b)r) ν(db)

}

= e−λ+λpostCfixed,l∗ . (4.41)

Next, suppose s1 /∈ {u1, . . . , uL}. Then

Pmarg(K = 1, i1 = î1, s1 /∈ {u1, . . . , uL})
= Pmarg(∀l, I(ul) = 0) · Pmarg(∃ψ : I ′{ψ} = î1 and ∀t ∈ (0, 1)\{ψ}, I ′{t} = 0)

=

[
L∏

l=1

∫ 1

b=0

NegBin(0|r, b)hl(db)
]
· e−(λ−λpost) (λ− λpost)1

1!
·

∫ 1

ψ=0

(∫ 1

b=0
NegBin(̂i1|r, b)ν(db)

)
dψ

∫ 1

ψ=0

(∫ 1

b=0

∑∞
i=1 NegBin(i|r, b)ν(db)

)
dψ

=

[
L∏

l=1

∫ 1

b=0

NegBin(0|r, b)hl(db)
]
· e−(λ−λpost) ·

(∫ 1

b=0

NegBin(̂i1|r, b)ν(db)

)
= e−λ+λpostCord.

(4.42)

Checking integration. The final step is to note that we may integrate out the proposed
posterior in Eq. (4.40) with respect to the marginal described by Eqs. (4.41) and (4.42) to
obtain the joint prior in Eq. (4.29). This integration is exactly the one we desired from
Eq. (4.22) in the special case of sets of the form M ′ in Eq. (4.24) and G′ in Eq. (4.25), as
was to be shown.

Infinite Poisson process intensity

Theorem 4.E.2. Theorem 4.E.1 still applies when the intensity measure ν does not neces-
sarily have a finite integral ν[0, 1] but satisfies the (weaker) condition

∫ 1

b=0

b ν(db) <∞. (4.43)

Proof of Theorem 4.E.2: Note that Eq. (4.43) implies

∀ε > 0, ν[ε,∞) <∞. (4.44)

The main idea behind the proof of Theorem 4.E.2 is to take advantage of the finiteness
condition in Eq. (4.44) to construct a sequence of finite intensity measures tending to the
true intensity measure of the process. We will use the known form of the posterior in the
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finite case from Theorem 4.E.1 to deduce the form of the posterior in the case where ν merely
satisfies the weaker condition in Eq. (4.44).

We therefore start by defining the sequence of (finite) measures νn by

νn(A) ,
∫

b∈A
1{b > 1/n}ν(db), for all measurable A ⊂ [0, 1]. (4.45)

Further, we may generate a random measure Bprior,n as described by the prior in Theo-
rem 4.E.1 with Poisson point process intensity νn. And we may generate a counting process
In with parameters r and Bprior,n as described in Theorem 4.E.1.

As before, let Pprior be the prior distribution on the prior random measure Bprior and
the counting process I. Let Eprior denote the expectation with respect to this distribution.
Further, let Pmarg represent the marginal distribution on the counting process from Pprior.
And let Q(M : G) represent the proposed posterior distribution on sets M ∈ M given any
set G ∈ ΣG. We use the same notation, but with n subscripts, to denote the case with finite
intensity νn.

Our proof will take advantage of Laplacian-style characterizations of distributions. In
particular, we note that in order to prove Theorem 4.E.2, it is enough to show that, for
arbitrary continuous and nonnegative functions f and g (i.e., f, g ∈ C+[0, 1]), we have

∫

B∈M

∫

I∈G
exp

{
−
∫ 1

ψ=0

(g(ψ)B{ψ}+ f(ψ)I{ψ})
}
dQ(B : I) dPmarg(I)

= Eprior
[
exp

{
−
∫ 1

ψ=0

(g(ψ)B{ψ}+ f(ψ)I{ψ})
}]

. (4.46)

By Lemma 4.E.3, we have the following limit for all f, g ∈ C+[0, 1] as n→∞:

Eprior,n
[
exp

{
−
∫ 1

ψ=0

(g(ψ)B{ψ}+ f(ψ)I{ψ}))
}]

→ Eprior
[
exp

{
−
∫ 1

ψ=0

(g(ψ)B{ψ}+ f(ψ)I{ψ})
}]

.

Therefore, by Eq. (4.46) and the observation that Theorem 4.E.1 holds under the finite
intensity νn, we see that it is enough to show that
∫

B∈Mn

∫

I∈G
exp

{
−
∫ 1

ψ=0

(g(ψ)B{ψ}+ f(ψ)I{ψ})
}
dQn(B : I) dPmarg,n(I)

→
∫

B∈M

∫

I∈G
exp

{
−
∫ 1

ψ=0

(g(ψ)B{ψ}+ f(ψ)I{ψ})
}
dQ(B : I) dPmarg(I), n→∞.

(4.47)

Define

Ψn(I) ,
∫

B∈Mn

exp

{
−
∫ 1

ψ=0

g(ψ)B{ψ}
}
dQn(B : I) (4.48)
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Ψ(I) ,
∫

B∈M
exp

{
−
∫ 1

ψ=0

g(ψ)B{ψ}
}
dQ(B : I). (4.49)

By Lemma 4.E.4, we have

∫

I∈G
exp

{
−
∫ 1

ψ=0

f(ψ)I{ψ}
}

(Ψn(I)−Ψ(I))dPmarg,n(I)→ 0. (4.50)

And Lemma 4.E.3 together with the fact that exp
{
−
∫ 1

ψ=0
f(ψ)I{ψ}

}
Ψ(I) is a bounded

function of I yields

∫

I∈G
exp

{
−
∫ 1

ψ=0

f(ψ)I{ψ}
}

Ψ(I)(dPmarg,n(I)− dPmarg(I))→ 0. (4.51)

Combining Eqs. (4.50) and (4.51) yields the desired limit in Eq. (4.47).

Lemma 4.E.3. Let Bprior,n be a completely random measure with a finite set of fixed atoms
in [0, 1] and with the Poisson process intensity νn in Eq. (4.45), where ν satisfies Eq. (4.43).
Let In be drawn as a negative binomial process with parameters r and Bprior,n. Similarly, let
Bprior be a completely random measure with Poisson process intensity ν, and let I be drawn
as a negative binomial process with parameters r and Bprior. Then

(Bprior,n, In)
d→ (Bprior, I)

Proof of Lemma 4.E.3: It is enough to show that, for all f, g ∈ C+[0, 1], we have

Eprior,n
[
exp

{
−
∫ 1

ψ=0

(g(ψ)Bprior,n{ψ}+ f(ψ)In{ψ})
}]

→ Eprior
[
exp

{
−
∫ 1

ψ=0

(g(ψ)Bprior{ψ}+ f(ψ)I{ψ})
}]

, n→∞.

We can construct a new completely random measure, B̂n, by keeping only those jumps
from Bprior (generated with intensity ν) that are either at the fixed atom locations or have

height at least 1/n. Then B̂n
d
= Bprior,n for Bprior,n generated with intensity νn. Let În be

the counting process generated with parameters r and B̂n. Then it is enough to show

Eprior
[
exp

{
−
∫ 1

ψ=0

(g(ψ)B̂n{ψ}+ f(ψ)În{ψ})
}]

→ Eprior
[
exp

{
−
∫ 1

ψ=0

(g(ψ)Bprior{ψ}+ f(ψ)I{ψ})
}]

, n→∞.
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Let B̂−n = Bprior − B̂n be the completely random measure consisting only of an ordinary

component with jumps of size less than 1/n. Let Î−n be a counting process with parameters
r and B̂−n . Then, using the independence of B̂n and B̂−n , we have

Eprior
[
exp

{
−
∫ 1

ψ=0

(g(ψ)Bprior{ψ}+ f(ψ)I{ψ})
}]

= Eprior
[
exp

{
−
∫ 1

ψ=0

(g(ψ)B̂n{ψ}+ f(ψ)În{ψ})
}]
· Eprior

[
exp

{
−
∫ 1

ψ=0

(g(ψ)B̂−n {ψ}+ f(ψ)Î−n {ψ})
}]

.

So it is enough to show that

Eprior
[
exp

{
−
∫ 1

ψ=0

(g(ψ)B̂−n {ψ}+ f(ψ)Î−n {ψ})
}]
→ 1, n→∞. (4.52)

In order to show Eq. (4.52) holds, we establish the following upper bounds:

Eprior
[
exp

{
−
∫ 1

ψ=0

(g(ψ)B̂−n {ψ}+ f(ψ)Î−n {ψ})
}]
≤ 1, (4.53)

and
∫ 1

ψ=0

(g(ψ)B̂−n {ψ}+ f(ψ)Î−n {ψ}) ≤ (max
ψ

g(ψ))B̂−n [0, 1] + (max
ψ

f(ψ))Î−n [0, 1].

Henceforth we use the shorthand c , (maxψ g(ψ)) and c′ , (maxψ f(ψ)). These quanti-
ties are finite by the assumptions on g and f . Choose ε > 0. Further define the events

AB , {B̂−n [0, 1] > ε} and AI , {Î−n [0, 1] > ε}.

By Chebyshev’s inequality,

P(AB,n) < E
[
B̂−n [0, 1]

]
/ε and P(AI,n) < E

[
Î−n [0, 1]

]
/ε.

Using these definitions, we can write

Eprior
[
exp

{
−
∫ 1

ψ=0

(g(ψ)B̂−n {ψ}+ f(ψ)Î−n {ψ})
}]

≥ Eprior
[
exp

{
−cB̂−n [0, 1]− c′Î−n [0, 1]

}]

≥ Eprior
[
1(ACB,n ∩ ACI,n) exp

{
−cB̂−n [0, 1]− c′Î−n [0, 1]

}]

≥ Pprior(ACB,n ∩ ACI,n) · exp {−cε− c′ε} . (4.54)

Now Pprior(ACB,n ∩ ACI,n) = 1− Pprior(AB,n ∪ AI,n). And

Pprior(AB,n ∪ AI,n) ≤ Pprior(AB,n) + Pprior(AI,n)
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≤ ε−1
{
E
[
B̂−n [0, 1]

]
+ E

[
Î−n [0, 1]

]}
→ 0, n→∞,

where the last line follows by noting

E
[
B̂−n [0, 1]

]
=

∫ 1/n

b=0

bν(db)→ 0, n→∞,

since ν is continuous and
∫ 1

b=0
bν(db) <∞ by assumption, and

E
[
Î−n [0, 1]

]
=

∞∑

m=1

∫ 1/n

b=0

Cb−1(1− b)θ−1

(
m+ r − 1

m

)
(1− b)rbm db

where C is a constant in n (cf. Eq. (4.14))

= C
∑

m

(2/n)m
∫ 1/2

0

(b̃)m−1(1− (2/n)b̃)r+θ−1

(
m+ r − 1

m

)
db̃

≤ C2r+θ−1
∑

m

(2/n)m
∫ 1/2

0

b̃m−1(1− b̃)r+θ−1

(
m+ r − 1

m

)
db̃

≤ 2r+θ(1/n)
∞∑

m=1

C

∫ 1

0

b̃m−1(1− b̃)r+θ−1

(
m+ r − 1

m

)
db̃

= 2r+θ(1/n)C ′,

where C ′ is a constant in n (by Lemma 4.C.4). The final line goes to zero as n→∞.
So Pprior(ACB,n ∩ ACI,n)→ 1 as n→∞, and the bound in Eq. (4.54) yields:

lim
n→∞

Eprior
[
exp

{
−
∫ 1

ψ=0

(g(ψ)B̂−n {ψ}+ f(ψ)Î−n {ψ})
}]
≥ exp {−cε− c′ε} .

Since this result is true for every ε > 0, we must have

lim
n→∞

Eprior
[
exp

{
−
∫ 1

ψ=0

(g(ψ)B̂−n {ψ}+ f(ψ)Î−n {ψ})
}]
≥ 1.

Together with Eq. (4.53), this equation gives the desired result.

Lemma 4.E.4. For Φn and Φ defined in, respectively, Eqs. (4.48) and (4.49), we have the
limit in Eq. (4.50):

∫

I∈G
exp

{
−
∫ 1

ψ=0

f(ψ)I{ψ}
}

(Ψn(I)−Ψ(I))dPmarg,n(I)→ 0. (4.55)
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Proof of Lemma 4.E.4: We start by choosing n large enough so that (1) the difference
between the ordinary components in the truncated case and the non-truncated case are, in
some sense, small enough and (2) the number of atoms in the truncated case is bounded
with high probability. Under these two conditions, we will then show that Ψn(I) and Ψ(I)
are sufficiently close in value by examining in turn each of the various types of atoms in the
proposed posterior.

Therefore, choose ε > 0. First note that by the assumption of finite integration of ν
(Eq. (4.43)) we can choose n0 such that for all n > n0 we have

∫ 1/n

b=0

bν(db) < ε. (4.56)

This choice implies the existence of n1 such that for all n > n1 and all i ≥ 1 we have
Eq. (4.56) as well as ∫ 1/n

b=0

bi(1− b)rν(db) < ε. (4.57)

Second, since I ∼ Pmarg,n approaches I ∼ Pmarg in distribution by Lemma 4.E.3, there
exist constants K ′ and n2 such that the number of atoms Kn of In satisfies

Pmarg,n(Kn > K ′) < ε for all n > n2. (4.58)

Moreover, conditional on Kn ≤ K ′, there exists a constant ĩ such that, under any Pmarg,n,
all counts in I are bounded above by ĩ with probability at least 1− ε.

It remains to use these conditions to bound
∫

I∈G
exp

{
−
∫ 1

ψ=0

f(ψ)I{ψ}
}

(Ψn(I)−Ψ(I))dPmarg,n(I).

For instance, since Ψn(I) and Ψ(I) are both bounded between zero and one, we have that

∣∣∣∣
∫

I∈G
exp

{
−
∫ 1

ψ=0

f(ψ)I{ψ}
}

(Ψn(I)−Ψ(I))dPmarg,n(I)

∣∣∣∣

≤ 2ε+ 2ε+

∫
I∈G

Kn≤K′
atoms bounded by ĩ

|Ψn(I)−Ψ(I)| dPmarg,n(I). (4.59)

Next, we need to bound the second term on the righthand side of Eq. (4.59). To that
end, we break Ψn and Ψ into their three constituent parts: the fixed atoms from the prior,
the new fixed atoms in the proposed posterior, and the ordinary component in the proposed
posterior. For Ψn, we have

Ψn(I) =

∫

B∈Mn

exp

{
−
∫ 1

ψ=0

g(ψ)B{ψ}
}
dQ(B : I)
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=

∫

B∈Mn

exp



−

∑

ψ:I{ψ}≥1,ψ /∈{u1,...,uL}

g(ψ)B{ψ} −
L∑

l=1

g(ul)B{ul} −
∫ 1

ψ=0

g(ψ)Bord{ψ}



 dQ(B : I)

=


 ∏

ψ:I{ψ}≥1,ψ /∈{u1,...,uL}

∫

B∈Mn

exp {−g(ψ)B{ψ}} dQ(B : I)




·
[

L∏

l=1

∫

B∈Mn

exp {−g(ul)B{ul}} dQ(B : I)

][∫

B∈Mn

exp

{
−
∫ 1

ψ=0

g(ψ)Bord{ψ}
}
dQ(B : I)

]

by the independence of these components under Q(B : I)

=


 ∏

ψ:I{ψ}≥1,ψ /∈{u1,...,uL}

c−1
new,n

∫ 1

b=0

exp{−g(ψ)b}bI{ψ}(1− b)rνn(db)




·
[

L∏

l=1

∫

B∈Mn

exp {−g(ul)B{ul}} dQ(B : I)

][
exp

{
−
∫ 1

b=0

∫ 1

ψ=0

(
1− e−g(ψ)b

)
(1− b)r dψ νn(db)

}]
.

The final factor results from Campbell’s theorem. The analogous formula holds for Ψ by
removing the n subscripts.

With the formulas for Ψn and Ψ in hand, we turn again to our desired bound. We follow
Lemma 3 of Kim (1999a) in using the following fact: for x1, . . . , xM , y1, . . . , yM ∈ R and
|xm|, |ym| ≤ 1 for all m, we have

∣∣∣∣∣
M∏

m=1

xm −
M∏

m=1

ym

∣∣∣∣∣ ≤
M∑

m=1

|xm − ym|.

In particular, we apply this inequality to transform the difference in Ψn and Ψ into
separate differences in each component, where we note that the prior fixed atom component
is shared and therefore disappears. First, for notational convenience, define

Cn(I, ψ) ,
∫ 1

b=0

exp{−g(ψ)b}bI{ψ}(1− b)rνn(db)

C(I, ψ) ,
∫ 1

b=0

exp{−g(ψ)b}bI{ψ}(1− b)rν(db)

Then
∫

I∈G
Kn≤K′

atoms bounded by ĩ

|Ψn(I)−Ψ(I)| dPmarg(I)

≤
∫

I∈G
Kn≤K′

atoms bounded by ĩ






 ∑

ψ:I{ψ}≥1,ψ /∈{u1,...,uL}

∣∣[cnew,n(I{ψ})]−1Cn(I, ψ)− [cnew(I{ψ})]−1C(I, ψ)
∣∣


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+

∣∣∣∣exp

{
−
∫ 1

b=0

∫ 1

ψ=0

(
1− e−g(ψ)b

)
(1− b)r dψ νn(db)

}
− exp

{
−
∫ 1

b=0

∫ 1

ψ=0

(
1− e−g(ψ)b

)
(1− b)r dψ ν(db)

}∣∣∣∣
}
.

(4.60)

From Eq. (4.57), we can conclude both that |cnew,n(I{ψ}) − cnew(I{ψ})| ≤ ε and that
|Cn(I, ψ)−C(I, ψ)| ≤ ε. Also cnew,n(I{ψ}) ≥ Cn(I, ψ) and likewise without the n subscript.
So

∣∣[cnew,n(I{ψ})]−1Cn(I, ψ)− [cnew(I{ψ})]−1C(I, ψ)
∣∣

≤
∣∣[cnew,n(I{ψ})]−1Cn(I, ψ)− [cnew,n(I{ψ})]−1C(I, ψ)

∣∣+
∣∣[cnew,n(I{ψ})]−1C(I, ψ)− [cnew(I{ψ})]−1C(I, ψ)

∣∣
≤ [cnew,n(I{ψ})]−1 ε+ C(I, ψ) [cnew,n(I{ψ})]−1 [cnew(I{ψ})]−1 ε

≤ 2ε [cnew,n(I{ψ})]−1 ≤ 2ε [cnew(I{ψ})]−1 + 2ε2.

The difference in the two exponential terms in Eq. (4.60) is similarly at most ε. So for large
enough n and hence small enough ε we have

∫
I∈G

Kn≤K′
atoms bounded by ĩ

|Ψn(I)−Ψ(I)| dPmarg(I)

≤ εK ′
[
2ε
[
cnew (̃i)

]−1
+ 2ε2

]
+ ε

Together with Eq. (4.59), this bound completes the proof.

4.F Posterior inference details

Exact Gibbs slice sampler

We sample bd,k and ψk from their Gibbs conditionals as follows:
Sample ψk. The conditional posterior of ψk given z·,· and x·,· is proportional to

H(dψk)
D∏

d=1

Nd∏

n=1

F (dxd,n | ψk)I(zd,n=k).

This has a closed form when H is conjugate to F (ψk) and may otherwise be sampled using
a generic univariate sampling procedure (e.g., random-walk Metropolis-Hastings or slice
sampling).

Sample bd,k. By beta-negative binomial conjugacy, the conditional posterior of bd,k given
zd,. and b0,k is a beta distribution:

bd,k ∼ Beta(γdθdb0,k +Nd,k, θd(1− γdb0,k) + rd),
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where Nd,k ,
∑

n I(zd,n = k).
Sample b0,k. To sample the shared beta process weights b0,k, we turn to the size-biased

construction of the beta process introduced by Thibaux and Jordan, 2007:

B0 =
∞∑

m=0

Cm∑

i=1

b0,m,iδψm,i,· ,

where

Cm
indep∼ Poisson

(
θ0γ0

θ0 +m

)
, b0,m,i

indep∼ Beta(1, θ0 +m), and ψm,i,·
iid∼ H.

If we order the atoms by the rounds in which they were drawn, then the kth atom overall
was drawn in round mk, where

mk , min

{
m :

m∑

j=0

Cj ≥ k

}
.

Conditional on the round indices (mk)
∞
k=1, we have

B0 =
∞∑

k=1

b0,kδψk

for
b0,k

indep∼ Beta(1, θ0 +mk) and ψk
iid∼ H.

The conditional density of b0,k given the remaining variables is therefore proportional to

(1− b0,k)
θ0+mk−1

D∏

d=1

1

Γ(γdθdb0,k)Γ(θd(1− γdb0,k))

(
bd,k

1− bd,k

)γdθdb0,k
(4.61)

and may be sampled using random-walk Metropolis-Hastings.
It remains then to sample the latent round indices mk or, equivalently, their differences

hk , mk −mk−1, where m0 , 0 for notational convenience. Let fm and Fm denote the pmf
and cdf of the Poisson( θ0γ0

θ0+m
) distribution respectively, and define Cm,j ,

∑j
k=1 I(mk = m).

Since Cm =
∑∞

k=1 I(mk = m) ∼ Poisson( θ0γ0
θ0+m

), it follows that

P(hk < 0 | (hj)k−1
j=1) = 0,

P(hk = 0 | (hj)k−1
j=1) =

1− Fmk−1
(Cmk−1,k−1)

1− Fmk−1
(Cmk−1,k−1 − 1)

for mk−1 =
∑k−1

j=1 hj, and

P(hk = h | (hj)k−1
j=1) =

fmk−1
(Cmk−1,k−1)

1− Fmk−1
(Cmk−1,k−1 − 1)

(1− fmk−1+h(0))
h−1∏

g=1

fmk−1+g(0)
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for all h ∈ N. The conditional distribution of hk given (hj)
k−1
j=1 and b0,k is then

p(hk | (hj)k−1
j=1 , b0,k) ∝ (1− b0,k)

hk(θ0 + hk +mk−1)p(hk | (hj)k−1
j=1),

which cannot be normalized in closed form due to the infinite summation. To permit poste-
rior sampling of hk, we introduce an auxiliary variable vk with conditional distribution

vk ∼ Unif(0, ζ0,hk(1− b0,k)
hk),

where (ζ0,h)
∞
h=1 is a fixed positive sequence with limh→∞ ζ0,h = 0. Given vk, we may slice

sample hk from the finite distribution

p(hk | (hj)k−1
j=1 , b0,k) ∝

I(vk ≤ ζ0,hk(1− b0,k)
hk)

ζ0,hk

(θ0 + hk +mk−1)p(hk | (hj)k−1
j=1).

Collapsed sampling

In Eq. (4.61), we sampled b0,k conditional on b·,k. A more efficient alternative is to integrate
b·,k out of this conditional. We exploit the conjugacy of the beta and negative binomial
distributions to derive the conditional distribution of Nd,k given b0,k, γd, θd, and rd:

p(Nd,k | b0,k, γd, θd, rd) =

∫
p(Nd,k | bd,k, rd)p(bd,k | b0,k, γd, θd)dbd,k

=

∫
Γ(Nd,k + rd)

Nd,k! Γ(rd)

Γ(θd)b
Nd,k+γdθdb0,k−1

d,k (1− bd,k)rd+θd(1−γdb0,k)−1

Γ(γdθdb0,k) Γ(θd(1− γdb0,k))
dbd,k

=
Γ(Nd,k + rd)

Nd,k! Γ(rd)

Γ(θd) Γ(Nd,k + γdθdb0,k) Γ(rd + θd(1− γdb0,k))

Γ(Nd,k + rd + θd) Γ(γdθdb0,k) Γ(θd(1− γdb0,k))
.

The conditional density of b0,k with b·,k integrated out now takes the form

(1− b0,k)
θ0+mk−1

D∏

d=1

Γ(Nd,k + γdθdb0,k) Γ(rd + θd(1− γdb0,k))

Γ(γdθdb0,k) Γ(θd(1− γdb0,k))

and may be sampled using random-walk Metropolis-Hastings.

Finite approximation Gibbs sampler

The full conditional distribution of b0,k under the finite approximation of Eq. (4.10) is pro-
portional to

b
θ0γ0/K−1
0,k (1− b0,k)

θ0(1−γ0/K)−1

D∏

d=1

1

Γ(γdθdb0,k)Γ(θd(1− γdb0,k))

(
bd,k

1− bd,k

)γdθdb0,k
,
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while the conditional density with b·,k integrated out is proportional to

b
θ0γ0/K−1
0,k (1− b0,k)

θ0(1−γ0/K)−1

D∏

d=1

Γ(Nd,k + γdθdb0,k) Γ(rd + θd(1− γdb0,k))

Γ(γdθdb0,k) Γ(θd(1− γdb0,k))
.

Random-walk Metropolis-Hastings may be used to sample b0,k from either distribution.
With this approximation in hand, we sample λd,k, bd,k, and ψk precisely as described in

Section 4.7. Since the number of components is finite, no auxiliary slice variables are needed
to sample the component indices. Hence, we may sample zd,n from its discrete conditional
distribution

P(zd,n = k) ∝ F (dxd,n | ψk)λd,k

given the remaining variables.
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Chapter 5

Feature allocations, probability
functions, and paintboxes

The problem of inferring a clustering of a data set has been the subject of much research in
Bayesian analysis, and there currently exists a solid mathematical foundation for Bayesian
approaches to clustering. In particular, the class of probability distributions over partitions
of a data set has been characterized in a number of ways, including via exchangeable partition
probability functions (EPPFs) and the Kingman paintbox. Here, we develop a generalization
of the clustering problem, called feature allocation, where we allow each data point to belong
to an arbitrary, non-negative integer number of groups, now called features or topics. We
define and study an “exchangeable feature probability function” (EFPF)—analogous to the
EPPF in the clustering setting—for certain types of feature models. Moreover, we introduce
a “feature paintbox” characterization—analogous to the Kingman paintbox for clustering—
of the class of exchangeable feature models. We provide a further characterization of the
subclass of feature allocations that have EFPF representations.

5.1 Introduction

Exchangeability has played a key role in the development of Bayesian analysis in general and
Bayesian nonparametric analysis in particular. Exchangeability can be viewed as asserting
that the indices used to label the data points are irrelevant for inference, and as such is often
a natural modeling assumption. Under such an assumption, one is licensed by de Finetti’s
theorem (De Finetti, 1931; Hewitt and Savage, 1955) to propose the existence of an under-
lying parameter that renders the data conditionally independent and identically distributed
(iid) and to place a prior distribution on that parameter. Moreover, the theory of infinitely
exchangeable sequences has advantages of simplicity over the theory of finite exchangeability,
encouraging modelers to take a nonparametric stance in which the underlying “parameter”
is infinite dimensional. Finally, the development of algorithms for posterior inference is often
greatly simplified by the assumption of exchangeability, most notably in the case of Bayesian
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nonparametrics, where models based on the Dirichlet process and other combinatorial priors
became useful tools in practice only when it was realized how to exploit exchangeability to
develop inference procedures (Escobar, 1994).

The connection of exchangeability to Bayesian nonparametric modeling is well established
in the case of models for clustering. The goal of a clustering procedure is to infer a partition
of the data points. In the Bayesian setting, one works with random partitions, and, under an
exchangeability assumption, the distribution on partitions should be invariant to a relabeling
of the data points. The notion of an exchangeable random partition has been formalized by
Kingman, Aldous, and others (Kingman, 1978; Aldous, 1985), and has led to the definition
of an exchangeable partition probability function (EPPF) (Pitman, 1995). The EPPF is a
mathematical function of the cardinalities of the groups in a partition. Exchangeability of
the random partition is captured by the requirement that the EPPF be a symmetric function
of these cardinalities. Furthermore, the exchangeability of a partition can be related to the
exchangeability of a sequence of random variables representing the assignments of data points
to clusters, for which a de Finetti mixing measure necessarily exists. This de Finetti measure
is known as the Kingman paintbox (Kingman, 1978). The relationships among this circle
of ideas are well understood: it is known that there is an equivalence among the class of
exchangeable random partitions, the class of random partitions that possess an EPPF, and
the class of random partitions generated by a Kingman paintbox; see Pitman (2006) for an
overview of these relations. A specific example of these relationships is given by the Chinese
restaurant process and the Dirichlet process, but several other examples are known and have
proven useful in Bayesian nonparametrics.

Our focus in the current chapter is on an alternative to clustering models that we refer
to as feature allocation models. While in a clustering model each data point is assigned to
one and only one class, in a feature allocation model each data point can belong to multiple
groups. It is often natural to view the groups as corresponding to traits or features, such
that the notion that a data point belongs to multiple groups corresponds to the point ex-
hibiting multiple traits or features. A Bayesian feature allocation model treats the feature
assignments for a given data point as random and subject to posterior inference. A nonpara-
metric Bayesian feature allocation model takes the number of features to also be random
and subject to inference.

Research on nonparametric Bayesian feature allocation has been based around a single
prior distribution, the Indian buffet process of Griffiths and Ghahramani (2006), which is
known to have the beta process as its underlying de Finetti measure (Thibaux and Jordan,
2007). There does not yet exist a general definition of exchangeability for feature allocation
models, nor counterparts of the EPPF or the Kingman paintbox.

In this chapter we supply these missing constructions. We provide a rigorous treatment
of exchangeable feature allocations (in Section 8.3 and Section 5.3). In Section 5.4 we
define a notion of exchangeable feature probability function (EFPF) that is the analogue for
feature allocations of the EPPF for clustering. We then proceed to define a feature paintbox
in Section 5.5. Finally, in Section 5.6 we discuss a class of models that we refer to as
feature frequency models for which the construction of the feature paintbox is particularly
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Regular FAs

= Frequency models
FAs with EFPFs

= Feature paintbox models

Exchangeable RPs

= Kingman paintbox models
= RPs with EPPFs

plus singletons

Exchangeable FAs

IBP Two-feature exampleCRP

Figure 5.1: A summary of the relations described in this chapter. Rounded rectangles
represent classes with the following abbreviations: RP for random partition, FA for ran-
dom feature allocation, EPPF for exchangeable partition probability function, EFPF for
exchangeable feature probability function. The large black dots represent particular models
with the following abbreviations: CRP for Chinese restaurant process, IBP for Indian buffet
process. The two-feature example refers to Example 5.4.4 with the choice p11p00 6= p10p01.

straightforward, and we discuss the important role that feature frequency models play in the
general theory of feature allocations.

The Venn diagram shown in Figure 5.1 is a useful guide for understanding our results,
and the reader may wish to consult this diagram in working through the chapter. As shown
in the diagram, random partitions (RPs) are a special case of random feature allocations
(FAs), and previous work on random partitions can be placed within our framework. Thus, in
the diagram, we have depicted the equivalence already noted of exchangeable RPs, RPs that
possess an EPPF, and Kingman paintboxes. We also see that random feature allocations have
a somewhat richer structure: the class of FAs with EFPFs is not the same as those having
an underlying feature paintbox. But the class of EFPFs is characterized in a different way;
we will see that the class of feature allocations with EFPFs is equivalent to the class of FAs
obtained from feature frequency models together with singletons of a certain distribution.
Indeed, we will find that the class of clusterings with EPPFs is, in this way, analogous to
the class of feature allocations with EFPFs when both are considered as subclasses of the
general class of feature allocations. The diagram also shows several examples that we use to
illustrate and develop our theory.

5.2 Feature allocations

We consider data sets with N points and let the points be indexed by the integers [N ] :=
{1, 2, . . . , N}. We also explicitly allow N = ∞, in which case the index set is N =
{1, 2, 3, . . .}. For our discussion of feature allocations and partitioning it is sufficient to
focus on the indices rather than the data points; thus, we will be discussing models for
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collections of subsets of [N ] and N.
Our introduction to feature allocations follows Broderick, Jordan, and Pitman (2013).

We define a feature allocation fN of [N ] to be a multiset of non-empty subsets of [N ]
called features, such that no index n belongs to infinitely many features. We write fN =
{A1, . . . , AK}, where K is the number of features. An example feature allocation of [6] is
f6 = {{2, 3}, {2, 4, 6}, {3}, {3}, {3}}. Similarly, a feature allocation f∞ of N is a multiset of
non-empty subsets of N such that no index n belongs to infinitely many features. The total
number of features in this case may be infinite, in which case we write f∞ = {A1, A2, . . .}. An
example feature allocation of N is f∞ = {{n : n is prime}, {n : n is not divisible by two}}.
Finally, we may have K = 0, and f∞ = ∅ is a valid feature allocation.

A partition is a special case of a feature allocation for which the features are restricted
to be mutually exclusive and exhaustive. The features of a partition are often referred to as
blocks or clusters. We note that a partition is always a feature allocation, but the converse
statement does not hold in general; neither of the examples given above (f6 and f∞) are
partitions.

We now turn to the problem of defining exchangeable feature allocations, extending
previous work on exchangeable random partitions (Aldous, 1985). Let FN be the space of
all feature allocations of [N ]. A random feature allocation FN of [N ] is a random element
of FN . Let σ : N → N be a finite permutation. That is, for some finite value Nσ, we have
σ(n) = n for all n > Nσ. Further, for any feature A ⊂ N, denote the permutation applied
to the feature as follows: σ(A) := {σ(n) : n ∈ A}. For any feature allocation FN , denote
the permutation applied to the feature allocation as follows: σ(FN) := {σ(A) : A ∈ FN}.
Finally, let FN be a random feature allocation of [N ]. Then we say that a random feature

allocation FN is exchangeable if FN
d
= σ(FN) for every permutation of [N ].

In addition to exchangeability, we also require our distributions on feature allocations
to exhibit a notion of coherence across different ranges of the index. Intuitively, we often
imagine the indices as denoting time, and it is natural to suppose that the randomness at
time n is coherent with the randomness at time n+ 1. More formally, we say that a feature
allocation fM of [M ] is the restriction of a feature allocation fN of [N ] for M < N if

fM = {A ∩ [M ] : A ∈ fN , A ∩ [M ] 6= ∅}.

Let RN(fM) be the set of all feature allocations of [N ] whose restriction to [M ] is fM .
Let P denote a probability measure on some probability space supporting (Fn). We say

that the sequence of random feature allocations (Fn) is consistent in distribution if for all
M and N such that M < N , we have

P(FM = fM) =
∑

fN∈RN (fM )

P(FN = fN).

We say that the sequence (Fn) is strongly consistent if for all M and N such that M < N ,
we have

FN
a.s.∈ RN(FM).
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Given any (Fn) that is consistent in distribution, the Kolmogorov extension theorem implies
that we can construct a sequence of random feature allocations that is strongly consistent
and has the same finite dimensional distributions. So henceforth we simply use the term
“consistency” to refer to strong consistency.

With this consistency condition, we can define a random feature allocation F∞ of N as
a consistent sequence of finite feature allocations. Thus F∞ may be thought of as a random
element of the space of such sequences: F∞ = (Fn)∞n=1. We say that FN is a restriction of F∞
to [N ] when it is the Nth element in this sequence. We let F∞ denote the space of consistent
feature allocation sequences, of which each random feature allocation is a random element.
The sigma field associated with this space is generated by the finite-dimensional sigma fields
of the restricted random feature allocations Fn.

We say that F∞ is exchangeable if F∞
d
= σ(F∞) for every finite permutation σ. That

is, for every permutation σ that changes no indices above N for some N < ∞, we require

FN
d
= σ(FN), where FN is the restriction of F∞ to [N ].

5.3 Labeling features

Now that we have defined consistent, exchangeable random feature allocations, we want to
characterize the class of all distributions on these allocations. We begin by considering some
alternative representations of the feature allocation that are not merely useful, but indeed
key to some of our later results.

A number of authors have made use of matrices as a way of representing feature alloca-
tions (Griffiths and Ghahramani, 2006; Thibaux and Jordan, 2007; Doshi et al., 2009). This
representation, while a boon for intuition in some regards, requires care because a matrix
presupposes an order on the features, which is not a part of the feature allocation a priori.
We cover this distinction in some detail next.

We start by defining an a priori labeled feature allocation. Let F̂N,1 be the collection

of indices in [N ] with feature 1, let F̂N,2 be the collection of indices in [N ] with feature 2,
etc. Here, we think of a priori labels as being the ordered, positive natural numbers. This
specification is different from (a priori unlabeled) feature allocations as defined above since
there is nothing to distinguish the features in a feature allocation other than, potentially, the
members of a feature. Consider the following analogy: an a priori labeled feature allocation
is to a feature allocation as a classification is to a clustering. Indeed, when each index n
belongs to exactly one feature in an a priori feature allocation, feature 1 is just class 1,
feature 2 is class 2, and so on.

Another way to think of an a priori labeled feature allocation of [N ] is as a matrix of N
rows filled with zeros and ones. Each column is associated with a feature. The (n, k) entry
in the matrix is one if index n is in feature k and zero otherwise. However, just as—contrary
to the classification case—we do not know the ordering of clusters in a clustering a priori, we
do not a priori know the ordering of features in a feature allocation. To make use of a matrix
representation for a feature allocation, we will need to introduce or find such an order.
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The reasoning above suggests that introducing an order for features in a feature allocation
would be useful. The next example illustrates that the probability P(FN = fN) in some sense
undercounts features when they contain exactly the same indices: e.g., Aj = Ak for some
j 6= k. This fact will suggest to us that it is not merely useful, but indeed a key point of our
theoretical development, to introduce an ordering on features.

Example 5.3.1 (A Bernoulli, two-feature allocation). Given qA, qB ∈ (0, 1), draw Zn,A
iid∼

Bern(qA) and Zn,B
iid∼ Bern(qB), independently, and construct the random feature allocation

by collecting those indices with successful draws:

FN := {{n : n ≤ N,Zn,A = 1}, {n : n ≤ N,Zn,B = 1}}.

One caveat here is that if either of the two sets in the multiset FN is empty, we do not
include it in the allocation. Note that calling the features A and B was merely for the
purposes of construction, and in defining FN , we have lost all feature labels. So FN is a
feature allocation, not an a priori labeled feature allocation.

Then the probability of the feature allocation F5 = f5 := {{2, 3}, {2, 3}} is

q2
A(1− qA)3q2

B(1− qB)3,

but the probability of the feature allocation F5 = f ′5 := {{2, 3}, {2, 5}} is

2q2
A(1− qA)3q2

B(1− qB)3.

The difference is that in the latter case the features can be distinguished, and so we must
account for the two possible pairings of features to frequencies {qA, qB}.

Now, instead, let F̃N be FN with the features ordered uniformly at random amongst all
possible feature orderings. There is just a single possible ordering of f5, so the probability
of F̃5 = f̃5 := ({2, 3}, {2, 3}) is again

q2
A(1− qA)3q2

B(1− qB)3.

However, there are two orderings of f ′5, each of which is equally likely. The probability of
F̃N = f̃ ′5 := ({2, 5}, {2, 3}) is

q2
A(1− qA)3q2

B(1− qB)3.

The same holds for the other ordering. �

This example suggests that there are combinatorial factors that must be taken into
account when working with the distribution of FN directly. The example also suggests that
we can avoid the need to specify such factors by instead working with a suitable randomized
ordering of the random feature allocation FN . We achieve this ordering in two steps.

The first step involves ordering the features via a procedure that we refer to as order-of-
appearance labeling. The basic idea is that we consider data indices n = 1, 2, 3, and so on
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in order. Each time a new data point arrives, we examine the features associated with that
data point. Each time we see a new feature, we label it with the lowest available feature
label from k = 1, 2, . . ..

In practice, the order-of-appearance scheme requires some auxiliary randomness since
each index n may belong to zero, one, or many different features (though the number must
be finite). When multiple features first appear for index n, we order them uniformly at
random. That simple idea is explained in full detail as follows. Recursively suppose that
there are K features among the indices [N − 1]. Trivially there are zero features when
no indices have been seen yet. Moreover, we suppose that we have features with labels 1
through K if K ≥ 1, and if K = 0, we have no features. If features remain without labels,
there exists some minimum index n in the data indices such that n /∈ ⋃K

k=1 Ak, where the
union is ∅ if K = 0. It is possible that no features contain n. So we further note that
there exists some minimum index m such that m /∈ ⋃K

j=1Aj but m is contained in some
feature of the allocation. By construction, we must have m ≥ N . Let Km be the number
of features containing m; Km is finite by definition of a feature allocation. Let (Uk) denote
a sequence of iid uniform random variables, independent of the random feature allocation.
Assign UK+1, . . . , UK+Km to these new features and determine their order of appearance
by the order of these random variables. While features remain to be labeled, continue the
recursion with N now equal to m and K now equal to K +Km.

Example 5.3.2 (Feature labeling schemes). Consider the feature allocation

f6 = {{2, 5, 4}, {3, 4}, {6, 4}, {3}, {3}}. (5.1)

And consider the random variables

U1, U2, U3, U4, U5
iid∼ Unif[0, 1].

We see from f6 that index 1 has no features. Index 2 has exactly one feature, so we assign
this feature, {2, 5, 4}, to have order-of-appearance label 1. While U1 is associated with this
feature, we do not need to break any ties at this point, so it has no effect.

Index 3 is associated with three features. We associate each feature with exactly one of
U2, U3, and U4 (the next three available Uk). For instance, pair {3, 4} with U2, {3} with U3,
and the other {3} with U4. Suppose it happens that U3 < U2 < U4. Then the feature {3}
paired with U3 receives label 2 (the next available order-of-appearance label). The feature
{3, 4} receives label 3. And the feature {3} paired with U4 receives label 4.

Index 4 has three features, but {2, 5, 4} and {3, 4} are already labeled. So the only
remaining feature, {6, 4}, receives the next available order-of-appearance label: 5. U5 is
associated with this feature, but since we do not need to break ties here, it has no effect.
Indices 5 and 6 belong to already-labeled features.

So the features can be listed with order-of-appearance indices as

A1 = {2, 5, 4}, A2 = {3}, A3 = {3, 4}, A4 = {3}, A5 = {6, 4}. (5.2)
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Figure 5.2: Order-of-appearance binary matrix representations of the sequence of feature
allocations on [2], [3], [4], [5], and [6] found by restricting f6 in Example 5.3.2. Rows corre-
spond to indices n, and columns correspond to order-of-appearance feature labels k. A gray
square indicates a 1 entry, and a white square indicates a 0 entry. Y ◦n , the set of order-of-
appearance feature assignments of index n, is easily read off from the matrix as the set of
columns with entry in row n equal to 1.

Let Y ◦n indicate the set of order-of-appearance feature labels for the features to which index n
belongs; i.e., if the features are labeled according to order of appearance as in Eq. (5.2), then
Y ◦n = {k : n ∈ Ak}. By definition of a feature allocation, Y ◦n must have finite cardinality.
The order-of-appearance labeling gives Y ◦1 = ∅, Y ◦2 = {1}, Y ◦3 = {2, 3, 4}, Y ◦4 = {1, 3, 5}, Y ◦5 =
{1}, Y ◦6 = {5}.

Order-of-appearance labeling is well-suited for matrix representations of feature alloca-
tions. The rows of the matrix correspond to indices n and the columns correspond to features
with order-of-appearance labels k. The matrix representation of the order-of-appearance la-
beling and resulting feature assignments (Y ◦n ) for n ∈ [6] is depicted in Figure 5.2. �

Note that when the feature allocation is a partition, there is exactly one feature containing
any m, so this scheme reduces to the order-of-appearance scheme for cluster labeling.

Consider an exchangeable feature allocation F∞. Give order-of-appearance labels to the
features of this allocation, and let Y ◦n be the set of feature labels for features containing n.
So Y ◦n is a random finite subset of N. It can be thought of as a simple point process on N;
a discussion of measurability of such processes may be found in Kallenberg (2002, p. 178).
Our process is even simpler than a simple point process as it is globally finite rather than
merely locally finite.

Note that (Y ◦n )∞n=1 is not necessarily exchangeable. For instance, consider again Exam-
ple 5.3.1. If Y ◦1 is non-empty, 1 ∈ Y ◦1 with probability one. If Y ◦2 is non-empty, with positive
probability it may not contain 1. To restore exchangeability we extend an idea due to Aldous
(1985) in the setting of random partitions; in our feature allocation extension, we associate
to each feature a draw from a uniform random variable on [0, 1]. Drawing these random
variables independently we maintain consistency across different values of N . We refer to
these random variables as uniform random feature labels.

Note that the use of a uniform distribution is for convenience; we simply require that
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Figure 5.3: An illustration of the uniform random feature labeling in Example 5.3.3. The
top rectangle is the unit interval. The uniform random labels are depicted along the interval
with vertical dotted lines at their locations. The indices [6] are shown to the left. A black
circle shows appears when an index occurs in the feature with a given label. The matrix
representations of this feature allocation in Figure 5.4 can be recovered from this plot.

features receive distinct labels with probability one, so any other continuous distribution
would suffice. We also note that in a full-fledged model based on random feature allocations
these labels often play the role of parameters and are used in defining the likelihood. For
further discussion of such constructions, see Broderick, Jordan, and Pitman (2013).

Thus, let (φk) be a sequence of iid uniform random variables, independent of both (Uk)
and F∞. Construct a new feature labeling by taking the feature labeled k in the order-of-
appearance labeling and now label it φk. In this case, let Y †n denote the set of feature labels
for features to which n belongs. Call this a uniform random labeling. Y †n can be thought of
as a (globally finite) simple point process on [0, 1]. Again, we refer the reader to Kallenberg
(2002, p. 178) for a discussion of measurability.

Example 5.3.3 (Feature labeling schemes (continued)). Again consider the feature alloca-
tion

f6 = {{2, 5, 4}, {3, 4}, {6, 4}, {3}, {3}}.
Now consider the random variables

U1, U2, U3, U4, U5, φ1, φ2, φ3, φ4, φ5
iid∼ Unif[0, 1].

Recall from Example 5.3.2 that U1, . . . , U5 gave us the order-of-appearance labeling of the
features. This labeling allowed us to index the features as in Eq. (5.2), copied here:

A1 = {2, 5, 4}, A2 = {3}, A3 = {3, 4}, A4 = {3}, A5 = {6, 4}.

With this order-of-appearance labeling in hand, we can assign a uniform random label
to each feature. In particular, we assign the uniform random label φk to the feature with
order-of-appearance label k: A1 = {2, 5, 4} gets label φ1, A2 = {3} gets label φ2, A3 = {3, 4}
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gets label φ3, A4 = {3} gets label φ4, and A5 = {6, 4} gets label φ5. Let Y †n indicate the set
of uniform random feature labels for the features to which index n belongs. The uniform
random labeling gives

Y †1 = ∅, Y †2 = {φ1}, Y †3 = {φ2, φ3, φ4}, Y †4 = {φ1, φ3, φ5}, Y †5 = {φ1}, Y †6 = {φ5}. (5.3)

�

Lemma 5.3.4. Give the features of an exchangeable feature allocation F∞ uniform random
labels, and let Y †n be the set of feature labels for features containing n. So Y †n is a random
finite subset of [0, 1]. Then the sequence (Y †n )∞n=1 is exchangeable.

Proof. Note that (Y †n )∞n=1 = g((φk)k, (Uk)k, F∞) for some measurable function g. Consider
any finite permutation σ that does not change any index n with n > N for some fixed, finite
N . Let K represent the (potentially random but finite) number of features in FN . If we
construct order-of-appearance labels using the same (Uk)k as above and now σ(F∞) instead
of F∞, the labels will not differ from the original order-of-appearance labels after the first
K features. Therefore, there exists some finite permutation τ—which may be a function of
(Uk)

K
k=1, σ, and FN and hence random—such that (Y †σ(n))n = g((φτ(k))k, (Uk)k, σ(F∞)).

Now
((φτ(k))k, (Uk)k, σ(F∞))

d
= ((φk)k, (Uk)k, σ(F∞))

since the iid sequence (φk)k, the iid sequence (Uk)k, and F∞ are independent by construction
and

((φk)k, (Uk)k, σ(F∞))
d
= ((φk)k, (Uk)k, F∞)

since the feature allocation is exchangeable and the independence used above still holds. So

g((φτ(k))k, (Uk)k, σ(F∞))
d
= g((φk)k, (Uk)k, F∞).

It follows that the sequence (Y †n )n is exchangeable.

We can recover the full feature allocation F∞ from the sequence Y †1 , Y
†

2 , . . .. In particular,
if {x1, x2, . . .} are the unique values in {Y †1 , Y †2 , . . .}, then the features are {{n : xk ∈ Y †n} :
k = 1, 2, . . .}. The feature allocation can similarly be recovered from the order-of-appearance
label collections (Y ◦n ).

We can also recover a new random ordered feature allocation F̃N from the sequence (Y †n ).
In particular, F̃N is the sequence—rather than the collection—of features {n : xk ∈ Y †n} such
that the feature with smallest label φk occurs first, and so on. This construction achieves
our goal of avoiding the combinatorial factors needed to work with the distribution of FN ,
while retaining exchangeability and consistency.

Example 5.3.5 (Feature labeling schemes (continued)). Once more, consider the feature
allocation

f6 = {{2, 5, 4}, {3, 4}, {6, 4}, {3}, {3}}.
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Figure 5.4: The same consistent sequence of feature allocations in Figure 5.2 but now with
the uniform random order of Example 5.3.5 instead of the order of appearance illustrated in
Figure 5.2.

and the uniform random labeling in Eq. (5.3). If it happens that φ4 < φ5 < φ2 < φ1 < φ3,
then the random ordered feature allocation is

f̃6 = ({3}, {6, 4}, {3}, {2, 5, 4}, {3, 4}).

�

Recall that we were motivated by Example 5.3.1 to produce such a random ordering
scheme to avoid obfuscating combinatorial factors in the probability of a feature allocation.
From another perspective, these factors arise because the random labeling is in some sense
more natural than alternative labelings; again, consider random labels as iid parameters for
each feature. While order-of-appearance labeling is common due to its pleasant aesthetic
representation in matrix form (compare Figures 5.2 and 5.4), one must be careful to remem-
ber that the order-of-appearance label sets (Y ◦n ) are not exchangeable. We will use random
labeling extensively below since, among other nice properties, it preserves exchangeability of
the sets of feature labels associated with the indices.

5.4 Exchangeable feature probability function

In general, given a probability of a random feature allocation, P(FN = fN), we can find the
probability of a random ordered feature allocation P(F̃N = f̃N) as follows. Let H be the
number of distinct features of FN , and let (K̃1, . . . , K̃H) be the multiplicities of these distinct
features in decreasing order. Then

P(F̃N = f̃N) =

(
K

K̃1, . . . , K̃H

)−1

P(FN = fN), (5.4)

where (
K

K̃1, . . . , K̃H

)
:=

K!

K̃1! · · · K̃H !
.
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For partitions, the effect of this multiplicative factor is the same across all partitions with
the same number of clusters; for some number of clusters K, it is just 1/K!. In the general
feature case, the multiplicative factor may be different for different feature configurations
with the same number of features.

Example 5.4.1 (A Bernoulli, two-feature allocation (continued)). Consider FN constructed
as in Example 5.3.1. Denote the sizes of the two features by MN,1 and MN,2. Then

P(F̃N = f̃N) =
1

2
q
MN,1

A (1− qA)N−MN,1q
MN,2

B (1− qB)N−MN,2

+
1

2
q
MN,2

A (1− qA)N−MN,2q
MN,1

B (1− qB)N−MN,1

= p(N,MN,1,MN,2). (5.5)

Here, p is some function of the number of indices N and the feature sizes (MN,1,MN,2) that
we note is symmetric in (MN,1,MN,2); i.e., p(N,MN,1,MN,2) = p(N,MN,2,MN,1). �

When the feature allocation probability admits the representation

P(F̃N = f̃N) = p(N, |A1|, . . . , |AK |) (5.6)

for every ordered feature allocation f̃N = (A1, . . . , AK) and some function p that is symmetric
in all arguments after the first, we call p the exchangeable feature probability function (EFPF).
We take care to note that the exchangeable partition probability function (EPPF), which
always exists for partitions, is not a special case of the EFPF. Indeed, the EPPF assigns zero
probability to any multiset in which an index occurs in more than one feature of the multiset;
e.g., {{1}, {2}} is a valid partition and a valid feature allocation of [2], but {{1}, {1}} is a
valid feature allocation but not a valid partition of [2]. Thus, the EPPF must examine
the feature indices of a feature allocation to judge their exclusivity and thereby assign a
probability. By contrast, the indices in the multiset provide no such information to the
EFPF; only the sizes of the multiset features are relevant in the EFPF case.

Proposition 5.4.2. The class of exchangeable feature allocations with EFPFs is a strict but
non-empty subclass of the class of exchangeable feature allocations.

Proof. Example 5.4.3 below shows that the class of feature allocations with EFPFs is non-
empty, and Example 5.4.4 below establishes that there exist simple exchangeable feature
allocations without EFPFs.

Example 5.4.3 (Three-parameter Indian buffet process). The Indian buffet process (IBP)
(Griffiths and Ghahramani, 2006) is a generative model for a random feature allocation
that is specified recursively in a manner akin to the Chinese restaurant process (Aldous,
1985) in the case of partitions. The metaphor involves a set of “customers” that enter a
restaurant and sample a set of “dishes.” Order the customers by placing them in one-to-one
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Figure 5.5: Illustration of an Indian buffet process in the order-of-appearance representation
of Figure 5.2. The buffet (top) consists of a vector of dishes, corresponding to features. Each
customer—corresponding to a data point—who enters the restaurant first decides whether
or not to choose dishes that the other customers have already sampled. The customer then
selects a random number of new dishes, not previously sampled by any customer. A gray
box in position (n, k) indicates customer n has sampled dish k, and a white box indicates
the customer has not sampled the dish. In the example, the second customer has sampled
exactly those dishes indexed by 2, 4, and 5: Y ◦2 = {2, 4, 5}.

correspondence with the indices n ∈ N. The dishes in the restaurant correspond to feature
labels. Customers in the Indian buffet can sample any non-negative integer number of dishes.
The set of dishes chosen by a customer n is just Y ◦n , the collection of feature labels for the
features to which n belongs, and the procedure described below provides a way to construct
Y ◦n recursively.

We describe an extended version (Teh and Görür, 2009; Broderick, Jordan, and Pitman,
2012) of the Indian buffet that includes two extra parameters beyond the single mass pa-
rameter γ (γ > 0) originally specified by Griffiths and Ghahramani (2006); in particular, we
include a concentration parameter θ (θ > 0) and a discount parameter α (α ∈ [0, 1)). We
abbreviate this three-parameter IBP as “3IBP.” The single-parameter IBP may be recovered
by setting θ = 1 and α = 0.

We start with a single customer, who enters the buffet and chooses K+
1 ∼ Poisson(γ)

dishes. None of the dishes have been sampled by any other customers since no other cus-
tomers have yet entered the restaurant. An order-of-appearance labeling gives the dishes
labels 1, . . . , K+

1 if K+
1 > 0.

Recursively, the nth customer chooses which dishes to sample in two phases. First, for
each dish k that has previously been sampled by any customer in 1, . . . , n − 1, customer n
samples dish k with probability

Mn−1,k − α
θ + n− 1

,
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for Mn,k equal to the number of customers indexed 1, . . . , n who have tried dish k. As each
dish represents a feature, sampling a dish represents that the customer index n belongs to
that feature. And Mn,k is the size of the feature labeled k in the feature allocation of [n].

Next, customer n chooses

K+
n ∼ Poisson

(
γ

Γ(θ + 1)

Γ(θ + n)
· Γ(θ + α− 1 + n)

Γ(θ + α)

)

new dishes to try. If K+
n > 0, then the dishes receive unique order-of-appearance labels

Kn−1 + 1, . . . , Kn. Here, Kn represents the number of sampled dishes after n customers:
Kn = Kn−1 +K+

n (with base case K0 = 0).
With this generative model in hand, we can find the probability of a particular feature

allocation. We discover its form by enumeration. At each round n, we have a Poisson number
of new features, K+

n , represented. The probability factor associated with these choices is a
product of Poisson densities:

N∏

n=1

1

K+
n !

[C(n, γ, θ, α)]K
+
n exp (−C(n, γ, θ, α)) ,

where

C(n, γ, θ, α) := γ
Γ(θ + 1)

Γ(θ + n)
· Γ(θ + α− 1 + n)

Γ(θ + α)
.

Let Rk be the round on which the kth dish, in order of appearance, is first chosen.
Then the denominators for future dish choice probabilities are the factors in the product
(θ+Rk) · (θ+Rk + 1) · · · (θ+N − 1). The numerators for the times when the dish is chosen
are the factors in the product (1 − α) · (2 − α) · · · (MN,k − 1 − α). The numerators for the
times when the dish is not chosen yield (θ+Rk− 1 +α) · · · (θ+N − 1−MN,k +α). Let An,k
represent the collection of indices in the feature with label k after n customers have entered
the restaurant. Then Mn,k = |An,k|.

Finally, let K̃1, . . . , K̃H be the multiplicities of distinct features formed by this model.
We note that there are [

N∏

n=1

K+
n !

]
/

[
H∏

h=1

K̃h!

]

rearrangements of the features generated by this process that all yield the same feature
allocation. Since they all have the same generating probability, we simply multiply by this
factor to find the feature allocation probability.

Multiplying all factors together1 and taking fn = {AN,1, . . . , AN,KN} yields

P(FN = fN)
1Readers curious about how the Rk terms disappear may observe that

KN∏

k=1

Γ(θ +Rk)

Γ(θ +Rk + α− 1)
=

N∏

n=1

(
Γ(θ + n)

Γ(θ + n+ α− 1)

)K+
N

.
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=

(
H∏

h=1

K̃h!

)−1(
γ

Γ(θ + 1)

Γ(θ + α)

)KN
exp

(
−

N∑

n=1

γ
Γ(θ + 1)

Γ(θ + n)
· Γ(θ + α− 1 + n)

Γ(θ + α)

)

·
[
KN∏

k=1

Γ(MN,k − α)

Γ(1− α)
· Γ(θ +N −MN,k + α)

Γ(θ +N)

]
.

It follows from Eq. (5.4) that the probability of a uniform random ordering of the feature
allocation is

P(F̃N = f̃N)

=
1

KN !

(
γ

Γ(θ + 1)

Γ(θ + α)

)KN
exp

(
−

N∑

n=1

γ
Γ(θ + 1)

Γ(θ + n)
· Γ(θ + α− 1 + n)

Γ(θ + α)

)

·
[
KN∏

k=1

Γ(MN,k − α)

Γ(1− α)
· Γ(θ +N −MN,k + α)

Γ(θ +N)

]
. (5.7)

The distribution of F̃N has no dependence on the ordering of the indices in [N ]. Hence,
the distribution of FN depends only on the same quantities—the number of indices and the
feature sizes—and the feature multiplicities. So we see that the 3IBP construction yields an
exchangeable random feature allocation. Consistency follows from the recursive construction
and exchangeability. Therefore, Eq. (5.7) is seen to be in EFPF form given by Eq. (5.6). �

The three-parameter Indian buffet process has an EFPF representation, but the following
simple model does not.

Example 5.4.4 (A general two-feature allocation). We here describe an exchangeable, con-
sistent random feature allocation whose (randomly ordered) distribution does not depend
only on the number of indices N and the sizes of the features of the allocation.

Let p10, p01, p11, p00 be fixed frequencies that sum to one. Let Yn represent the collection
of features to which index n belongs. For n ∈ {1, 2}, choose Yn independently and identically
according to:

Yn =





{1} with probability p10

{2} with probability p01

{1, 2} with probability p11

∅ with probability p00.

We form a feature allocation from these labels as follows. For each label (1 or 2), collect
those indices n with the given label appearing in Yn to form a feature.

Now consider two possible outcome feature allocations: f2 = {{2}, {2}}, and f ′2 =
{{1}, {2}}. The probability of any ordering f̃2 of f2 under this model is

P(F̃2 = f̃2) = p0
10 p

0
01 p

1
11 p

1
00.
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To see this result, note the distinction between indices {1, 2} and the feature labels {1, 2}
used in an intermediate step above. Likewise, the probability of any ordering f̃ ′2 of f ′2 is

P(F̃2 = f̃ ′2) = p1
10 p

1
01 p

0
11 p

0
00.

It follows from these two probabilities that we can choose values of p10, p01, p11, p00 such that
P(F̃2 = f̃2) 6= P(F̃2 = f̃ ′2). But f̃2 and f̃ ′2 have the same feature counts and N value (N = 2).
So there can be no such symmetric function p, as in Eq. (5.5), for this model. �

5.5 The Kingman paintbox and feature paintbox

Since the class of exchangeable feature models with EFPFs is a strict subclass of the class of
exchangeable feature models, it remains to find a characterization of the latter class. Noting
that the sequence of feature collections Y †n is an exchangeable sequence when the uniform
random labeling of features is used, we might turn to the de Finetti mixing measure of this
exchangeable sequence for such a characterization.

Indeed, in the partition case, the Kingman paintbox (Kingman, 1978; Aldous, 1985)
provides just such a characterization.

Theorem 5.5.1 (Kingman paintbox). Let Π∞ := (Πn)∞n=1 be an exchangeable random par-
tition of N, and let (M↓

n,k, k ≥ 1) be the decreasing rearrangement of cluster sizes of Πn

with M↓
n,k = 0 if Πn has fewer than k clusters. Then M↓

n,k/n has an almost sure limit ρ↓k
as n → ∞ for each k. Moreover, the conditional distribution of Π∞ given (ρ↓k, k ≥ 1) is
as if Π∞ were generated by random sampling from a random distribution with ranked atoms
(ρ↓k, k ≥ 1).

When the partition clusters are labeled with uniform random labels rather than by the
ranking in the statement of the theorem above, Kingman’s paintbox provides the de Finetti
mixing measure for the sequence of partition labels of each index n. Two representations
of an example Kingman paintbox are illustrated in Figure 5.6. The Kingman paintbox is
so named since we imagine each subinterval of the unit interval as containing paint of a
certain color; the colors have a one-to-one mapping with the uniform random cluster labels.
A random draw from the unit interval is painted with the color of the Kingman paintbox
subinterval into which it falls. While Figure 5.6 depicts just four subintervals and hence
at most four clusters, the Kingman paintbox may in general have a countable number of
subintervals and hence clusters. Moreover, these subintervals may themselves be random.

Note that the ranked atoms need not sum to one; in general,
∑

k ρ
↓
k ≤ 1. When random

sampling from the Kingman paintbox does not select some atom k with ρ↓k > 0, a new cluster
is formed but it is necessarily never selected again for another index. In particular, then,
a corollary of the Kingman paintbox theorem is that there are two types of clusters: those
with unbounded size as the number of indices N grows to infinity and those with exactly
one member as N grows to infinity; the latter are sometimes referred to as singletons or
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17 453 62

17 453 62

φ3

φ4

φ1

φ2

Figure 5.6: Left : An example Kingman paintbox. The upper rectangle represents the
unit interval. The lower rectangles represent a partition of the unit interval into four subin-
tervals corresponding to four clusters. The horizontal locations of the seven vertical lines
represent seven uniform random draws from the unit interval. The resulting partition of
[7] is {{3, 5}, {7, 1, 2}, {6}, {4}}. Right : An alternate representation of the same Kingman
paintbox, now with each subinterval separated out into its own vertical level. To the right
of each cluster subinterval is a uniform random label (with index determined by order of
appearance) for the cluster.

collectively as Kingman dust. In the feature case, we impose one further regularity condition
that essentially rules out dust. Consider any feature allocation F∞. Recall that we use the
notation Y †n to indicate the set of features to which index n belongs. We assume that, for each
n, with probability one there exists some m with m 6= n such that Y †m = Y †n . Equivalently,
with probability one there is no index with a unique feature collection. We call a random
feature allocation that obeys this condition a regular feature allocation.

We can prove the following theorem for the feature case, analogous to the Kingman
paintbox construction for partitions.

Theorem 5.5.2 (Feature paintbox). Let F∞ := (Fn) be an exchangeable, consistent, regular
random feature allocation of N. There exists a random sequence (Ck)

∞
k=1 such that Ck is a

countable union of subintervals of [0, 1] (and may be empty) and such that F∞ has the same
distribution as F ′∞ where F ′∞ is generated as follows. Randomly sample (U ′n)n iid uniform
in [0, 1]. Let Yn := {k : U ′n ∈ Ck} represent a collection of feature labels for index n, and let
F ′∞ be the induced feature allocation from these label collections.

Proof. Given F∞ as in the theorem statement, we can construct (Y †n )∞n=1 as in Lemma 5.3.4.
Then, according to Lemma 5.3.4, (Y †n )∞n=1 is an exchangeable sequence. Note that Y †n defines
a partition: n ∼ m (i.e., n and m belong to the same cluster of the partition) if and only
if Y †n = Y †m. This partition is exchangeable since the feature allocation is. Moreover, since
we assume there are no singletons in the induced partition (by regularity), the Kingman
paintbox theorem implies that the Kingman paintbox atoms sum to one.

By de Finetti’s theorem (Aldous, 1985), there exists α such that α is the directing random
measure for (Y †n ). Condition on α = µ. Write µ =

∑∞
j=1 qjδxj , where the qj satisfy qj ∈ (0, 1]

and are written in monotone decreasing order: q1 ≥ q2 ≥ · · · . The condition that the atoms
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φ5

17 453 62

φ2

φ3

φ1

φ4

Figure 5.7: An example feature paintbox. The top rectangle represents the unit interval.
Each vertical level below the top rectangle represents a subset of the unit interval corre-
sponding to a feature. To the right of each subset is a uniform random label for the feature.
For example, using the notation of Theorem 5.5.2, the topmost subset is C2 correspond-
ing to feature label φ2. The vertical dashed lines represent uniform random draws; i.e.,
U ′n for index n. The resulting feature allocation of [7] for this realization of the construc-
tion is {{3, 5, 7, 1}, {5, 7}, {7, 1}, {6}, {6}}. The collection of feature labels for index 7 is
Y7 = {φ2, φ3, φ1}. The collection of feature labels for index 4 is Y4 = ∅.

of the paintbox sum to one translates to
∑∞

j=1 qj = 1. The (xj) are the (countable) unique

values of Y †n , ordered to agree with the qj. The strong law of large numbers yields

N−1#{n : n ≤ N, Y †n = xj} → qj, N →∞.
Since

∑∞
j=1 qj = 1, we can partition the unit interval into subintervals of length qj. The

jth such subinterval starts at sj :=
∑j−1

l=1 ql and ends at ej := sj+1. For k = 1, 2, . . ., define
Ck :=

⋃
j:φk∈xj [sj, ej). We call the (Ck)

∞
k=1 the feature paintbox.

Then F∞ has the same distribution as the following construction. Let (U ′1, U
′
2, . . .) be an

iid sequence of uniform random variables. For each n, define Yn = {k : U ′n ∈ Ck} to be the
collection of features, now labeled by positive integers, to which n belongs. Let F ′∞ be the
feature allocation induced by the (Yn).

A point to note about this feature paintbox construction is that the ordering of the
feature paintbox subsets Ck in the proof is given by the order of appearance of features in
the original feature allocation F∞. This ordering stands in contrast to the ordering of atoms
by size in the Kingman paintbox. Making use of such a size-ordering would be more difficult
in the feature case due to the non-trivial intersections of feature subsets. A particularly
important implication is that the conditional distribution of F∞ given (Ck)k is not the same
as that of F ′∞ given (Ck)k (cf. Pitman (1995) for similar ordering issues in the partition case).

An example feature paintbox is illustrated in Figure 5.7. Again, we may think of each
feature paintbox subset as containing paint of a certain color (where these colors have a one-
to-one mapping with the uniform random labels). Draws from the unit interval to determine
the feature allocation may now be painted with some subset of these colors rather than just
a single color.
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p00p10 p11 p01

Figure 5.8: A feature paintbox for the two-feature allocation in Example 5.4.4. The top
rectangle is the unit interval. The middle rectangle is the feature paintbox subset for feature
1. The lower rectangle is the feature paintbox subset for feature 2.

Next, we revisit earlier examples to find their feature paintbox representations.

Example 5.5.3 (A general two-feature allocation (continued)). The feature paintbox for
the random feature allocation in Example 5.4.4 consists of two features. The total measure
of the paintbox subset for feature 1 is p10 + p11. The total measure of the paintbox subset
for feature 2 is p01 + p11. The total measure of the intersection of these two subsets is p11.
A depiction of this paintbox appears in Figure 5.8. �

Example 5.5.4 (Three-parameter Indian buffet process (continued)). The 3IBP turns out
to be an instance of a general class of exchangeable feature models that we refer to as
feature frequency models. This class of models not only provides a straightforward way to
construct feature paintbox representations in general, but also plays a key role in our general
theory, providing a link between feature paintboxes and EFPFs. In the following section, we
define feature frequency models, develop the general construction of paintboxes from feature
frequency models, and then return to the construction of the feature paintbox for the 3IBP
as an example. We subsequently turn to the general theoretical characterization of feature
frequency models. �

5.6 Feature frequency models

We now discuss a general class of exchangeable feature models for which it is straightforward
to describe the feature paintbox. Let (Vk) be a sequence of (not necessarily independent)

random variables with values in [0, 1] such that
∑∞

k=1 Vk < ∞ almost surely. Let φk
iid∼

Unif[0, 1] and independent of the (Vk). A feature frequency model is built around a random
measure B =

∑∞
k=1 Vkδφk . We may draw a feature allocation given B as follows. For

each data point n, independently draw its features like so: for each feature indexed by k,
independently make a Bernoulli draw with success probability Vk. If the draw is a success, n
belongs to the feature indexed by k (i.e., the feature with label φk). If the draw is a failure,
n does not belong to the feature indexed by k. The feature allocation is induced in the usual
way from these labels.

The condition that the frequencies have an almost surely finite sum guarantees, by the
Borel-Cantelli lemma, that the number of features exhibited by any index n is almost surely
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φ1

φ2

φ3
...

Figure 5.9: An example feature paintbox for a feature frequency model (Section 5.6). One
such model is the 3IBP (Example 5.6.1).

finite, as required in the definition of a feature allocation. We obtain exchangeable feature
allocations simply by virtue of the fact that the feature allocations are independently and
identically distributed given B. The Bernoulli draws from the feature frequencies guarantee
that the feature allocation is regular.

Before constructing the feature paintbox for such a model, we note that Vk is the total
length of the paintbox subset for the feature indexed by k. In this sense, it is the frequency
of this feature (hence the name “feature frequency model”). And φk is the uniform random
feature label for the feature with frequency Vk. Finally, to achieve the independent Bernoulli
draws across k required by the feature allocation specification, we need for the intersection
of any two paintbox subsets to have length equal to the product of the two paintbox subset
lengths. This desideratum can be achieved with a recursive construction.

First, divide the unit interval into one subset (call it I1) of length V1 and another subset
(call it I0) of length 1 − V1. Then I1 is the paintbox subset for the feature indexed by 1.
Recursively, suppose we have paintbox subsets for features indexed 1 to K − 1. Let e be a
binary string of length K − 1. Suppose that Ie is the intersection of (a) all paintbox subsets
for features indexed by k (k < K) where the kth digit of e is 1 and (b) all paintbox subset
complements for features indexed by k (k < K) where the kth digit of e is 0. For every e,
we construct I(e,1) to be a subset of Ie with total length equal to VK times the length of Ie.
We construct I(e,0) to be Ie\I(e,1).

Finally, the paintbox subset for the feature indexed by K is the union of all Ie′ with e′ a
binary string of length K such that the final digit of e′ is 1. An example of such a paintbox
is illustrated in Figure 5.9.

Example 5.6.1 (Three-parameter Indian buffet process (continued)). We show that the
three-parameter Indian buffet process is an example of a feature frequency model, and thus
its feature paintbox can be constructed according to the general recipe that we have just
presented.

The underlying random measure for the three-parameter Indian buffet process is known
as the three-parameter beta process (Teh and Görür, 2009; Broderick, Jordan, and Pitman,
2012). This random measure, denoted B, can be constructed explicitly via the following
recursion (with K0 = 0 and n = 1, 2, . . .), which extends the results of Thibaux and Jordan
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(2007):

K+
n ∼ Poisson

(
γ

Γ(θ + 1)

Γ(θ + n)
· Γ(θ + α− 1 + n)

Γ(θ + α)

)
,

Kn = Kn−1 +K+
n

Vk ∼ Beta(1− α, θ + n− 1 + α), k = Kn−1 + 1, . . . , Kn

φk ∼ Unif[0, 1]

B =
∞∑

k=1

Vkδφk ,

where we recall that the φk are assumed to be drawn from the uniform distribution for
simplicity in this chapter, but in general they may be drawn from a continuous distribution
that serves as a prior for the parameters defining a likelihood.

Given B =
∑∞

k=1 Vkδφk , the feature allocation is drawn according to the procedure out-
lined for feature frequency models conditioned on the underlying random measure. Teh and
Görür (2009) demonstrate that the distribution of the resulting feature allocation is the same
as if it were generated according to a three-parameter Indian buffet process. An alterna-
tive proof proceeds as in the two-parameter case covered by Broderick, Jordan, and Pitman
(2013). �

We have seen that the 3IBP can be represented as a feature frequency model. It is
straightforward to observe that the two-feature model in Examples 5.4.4 and 5.5.3 cannot be
represented as a feature frequency model unless the intersection of the feature subsets has
length p11 equal to the product of the feature subset lengths (p10 + p11 and p01 + p11); i.e.,
unless (p10 + p11)(p01 + p11) = p11 (cf. Figure 5.8). Therefore, we have the following result
similar to Proposition 5.4.2.

Proposition 5.6.2. The class of feature frequency models is a strict but non-empty subclass
of the class of exchangeable feature allocations.

In proving Propositions 5.6.2 and 5.4.2, we used the 3IBP as an example that belongs
to both the class of feature models with EFPFs and the class of feature frequency models.
Moreover, in both cases we used two-feature models as an example of exchangeable feature
models that do not belong to these subclasses; in particular, we used two-feature models in
which the feature combination probabilities p10, p01, p11, p00 are not in the necessary propor-
tions. These observations suggest that feature frequency models and EFPFs may be linked.
We flesh out the relationship between the two representations in the next few results.

We start with a priori labeled features. Recall from Section 5.3 that an a priori labeled
feature allocation is to a feature allocation what a classification is to a clustering; that is, the
feature labels are known in advance. The case where we know the feature order in advance
is somewhat easier and gives intuition for the type of result we would like in the true feature
allocation case. In particular, we prove the results for the case of two a priori labeled features
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in Theorem 5.6.3 and then the case of an unbounded number of a priori labeled features in
Theorem 5.6.4.

From there, we move on to the (a priori) unlabeled case that is the focus of the chapter
and prove the equivalence of EFPFs and a slight extension of feature frequency models in
Theorem 5.6.5.

Theorem 5.6.3. Consider a model with two a priori labeled features: feature 1 and feature 2.
If the two features are generated from labeled feature frequencies, the probability of an a priori
labeled feature allocation of [N ] with MN,1 occurrences of feature 1 and MN,2 occurrences of
feature 2 takes the form p̌(N ;MN,1,MN,2), where we make no symmetry assumptions about
p̌ here and also allow any of MN,1 and MN,2 to be zero. Conversely, if the probability of
any a priori labeled feature allocation can be written as p̌(N ;MN,1,MN,2), then the feature
allocation has the same distribution as if it were generated from labeled feature frequencies.

Proof. Note that throughout this proof we consider the probability of a particular labeled
feature allocation of [N ] with MN,1 occurrences of feature 1 and MN,2 occurrences of feature 2,
as distinct from the probability of all labeled feature allocations of [N ] with MN,1 occurrences
of feature 1 and MN,2 occurrences of feature 2. The latter, which is not addressed here, would
be the sum over instances of the former. In particular, recalling the matrix representation
from Section 5.3, there are (

N

MN,1

)(
N

MN,2

)

possible N × 2 matrices with MN,1 ones in the first column and MN,2 ones in the second
column.

The reader may feel there is some similarity in this setup to the two-feature allocation
of Examples 5.4.4 and 5.5.3. We note that the quantities p10, p01, p11, p00—which retain
essentially the same meaning as in Figure 5.8—may now be random and that their order is
pre-specified and non-random.

First, we calculate the probability of a certain labeled feature configuration under this
model. Let M ′

n,10 be the number of indices in [n] with feature 1 but not feature 2. Let M ′
n,01

be the number of indices in [n] with feature 2 but not feature 1. Let M ′
n,00 count the indices

with neither feature, and let M ′
n,11 count the indices with both features. Then

P(F̂N,1 = f̂N,1, F̂N,2 = f̂N,2) = E(p
M ′N,10
10 p

M ′N,01
01 p

M ′N,11
11 p

M ′N,00
00 ). (5.8)

Denote the total probabilities of features 1 and 2 as, respectively, q1 = p10 + p11 and
q2 = p01 + p11. Suppose that we have a feature frequency model. This assumption implies
that

p10
a.s.
= q1(1− q2), p01

a.s.
= (1− q1)q2, p11

a.s.
= q1q2, p00

a.s.
= (1− q1)(1− q2), (5.9)

where any one of the equalities in Eq. (5.9) implies the others. It follows that

P(F̂N,1 = f̂N,1, F̂N,2 = f̂N,2) = E[q
MN,1

1 (1− q1)N−MN,1q
MN,2

2 (1− q2)N−MN,2 ], (5.10)
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where Mn,1 = M ′
n,10 + M ′

n,11 is the total number of indices with feature 1, and likewise
Mn,2 = M ′

n,01 +M ′
n,11 is the total number of indices with feature 2.

So we see that making a feature frequency model assumption yields a feature allocation
probability in Eq. (5.10) that depends only on N,MN,1,MN,2. Since we retain the known
labeling in this example, the probability is not symmetric in MN,1 and MN,2.

In the other direction, suppose we know that

P(F̂N,1 = f̂N,1, F̂N,2 = f̂N,2) = p̌(N,MN,1,MN,2) (5.11)

for some function p̌. Again, we make no symmetry assumptions about p̌ here, and any of
MN,1 and MN,2 may be zero. Then frequencies p10, p01, p11, p00 must exist by the law of large
numbers; we note they may be random.

The assumption in Eq. (5.11) implies that the configurations

(M ′
4,10,M

′
4,01,M

′
4,00,M

′
4,11) = (2, 2, 0, 0)

(M ′
4,10,M

′
4,01,M

′
4,00,M

′
4,11) = (0, 0, 2, 2)

(M ′
4,10,M

′
4,01,M

′
4,00,M

′
4,11) = (1, 1, 1, 1)

have the same probability. That is, by Eq. (5.8),

E[p2
10p

2
01] = E[p2

11p
2
00] = E[p10p01p11p00].

It follows that

E[(p10p01 − p11p00)2] = E[p2
10p

2
01 + p2

11p
2
00 − 2p10p01p11p00] = 0.

So it must be that p10p01
a.s.
= p11p00. Recall that this condition is familiar from Example 5.4.4.

Adding p10p11 to both sides of the almost sure equality and then further adding p11(p01 +
p11) to both sides yields

(p10 + p11)(p01 + p11)
a.s.
= p11(p10 + p01 + p11 + p00),

which reduces to
q1q2

a.s.
= p11

from the definitions of q1 and q2 and from the fact that p10 + p01 + p11 + p00 = 1.
By Eq. (5.9) and surrounding text, we see that Eq. (5.11) implies our model is a feature

frequency model. Thus, the equivalence between models with a priori labeled EFPFs and
a priori labeled feature frequency models in the case of two features results from simple
algebraic manipulations.

Extending the argument above becomes more tedious when more than two features are
involved. In the case of multiple, or even countably many, labeled features, a more elegant
proof exists.
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Theorem 5.6.4. Consider a model with features a priori labeled 1, 2, 3, . . .. If the features
are generated from labeled feature frequencies, the probability of an a priori labeled feature al-
location of [N ] with K or fewer features and MN,k occurrences of feature k for k ∈ {1, . . . , K}
takes the form p̌(N ;MN,1, . . . ,MN,K), where we make no symmetry assumptions about p̌ here
and note that any of MN,1, . . . ,MN,K may be zero. Call p̌ a labeled EFPF. Conversely, if the
probability of any a priori labeled feature allocation can be written as p̌(N ;MN,1, . . . ,MN,K),
then the feature allocation has the same distribution as if it were generated from labeled
feature frequencies.

Proof. First, consider the claim that every labeled feature frequency model has a labeled
EFPF. This claim is intuitively clear since the independent Bernoulli draws at each atom of
the (potentially random) measure B =

∑∞
k=1 Vkδφk result in a probability that depends only

on the number of occurrences of the corresponding feature and not any interactions between
features.

To show this direction formally, we consider a fixed, labeled feature allocation f̂N =
(AN,1, AN,2, . . . , AN,K) with MN,k := |AN,k| and note that

P(F̂N = f̂N)

= E
[
P(F̂N = f̂N |B)

]

= E

[(
K∏

k=1

V
MN,k

k (1− Vk)N−MN,k

)
·
(

∞∏

k=K+1

(1− Vk)N
)]

.

It follows that P(F̂N = f̂N) has p̌ form.
Now consider the other direction. We start with a labeled feature allocation F∞. In this

case, we know that for every labeled feature allocation of [N ],

f̂N = (AN,1, . . . , AN,K),

we have that a function p̌ exists in the form

P(F̂N = f̂N) = p̌(N, |AN,1|, . . . , |AN,K |), (5.12)

with no additional symmetry assumptions for p̌ and where the block sizes MN,k = |AN,k|
may be zero.

Let Zn,k be one if n belongs to the kth feature (i.e., n ∈ AN,k) or zero otherwise. Let
b1, . . . , bk be values in {0, 1}. Our goal is to show that conditional on some (as yet unknown)
labeled feature frequencies, the probability of feature presence factorizes as independent
Bernoulli draws:

P(Z1,1 = b1, . . . , Z1,K = bK |V1, . . . , VK) =
K∏

k=1

V bk
k (1− Vk)1−bk . (5.13)
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By the assumption on p̌, the labeled feature sizes MN,1, . . . ,MN,K are sufficient for the
distribution of the labeled feature allocation. Let ξN be the sigma-field of events invariant
under permutations of the first N indices. We note that MN,1, . . . ,MN,K are measurable
with respect to ξN and start by considering

P(Z1,1 = b1, . . . , Z1,K = bK |ξN)

=
K∏

k=1

P(Z1,k = bk|Z1,1 = b1, . . . , Z1,k−1 = bk−1, ξN). (5.14)

Then since the feature sizes are sufficient for the feature allocation distribution, we have

P(Z1,k = bk|Z1,1 = b1, . . . , Z1,k−1 = bk−1, ξN)

= P(Z1,k = bk|ξN)

=
1

N

N∑

n=1

P(Zn,k = bk|ξN)

= E

[
1

N

N∑

n=1

1{Zn,k = bk}|ξN
]

=
1

N

N∑

n=1

1{Zn,k = bk}.

The last line follows since the sum is measurable in ξN . By the strong law of large numbers,
the final sum converges almost surely as N →∞ to some potentially random value in [0, 1];
call it Vk if bk = 1. By Eq. (5.14), then, we have

P(Z1,1 = b1, . . . , Z1,K = bK |ξN)
a.s.−→

K∏

k=1

V bk
k (1− Vk)1−bk . (5.15)

We next observe that the lefthand side of Eq. (5.15) is a reverse martingale. (ξN) is a
reversed filtration since ξN ⊇ ξN+1 for all N . Moreover, (1) P(Z1,1 = b1, . . . , Z1,K = bK |ξN)
is measurable with respect to ξN ; (2) the same quantity is integrable; and (3) by the tower
law,

E [P(Z1,1 = b1, . . . , Z1,K = bK |ξN)|ξN+1] = P(Z1,1 = b1, . . . , Z1,K = bK |ξN+1).

Since P(Z1,1 = b1, . . . , Z1,K = bK |ξN) is a reverse martingale, we have that

P(Z1,1 = b1, . . . , Z1,K = bK |ξN)
a.s.−→ P(Z1,1 = b1, . . . , Z1,K = bK |ξ∞)

for ξ∞ =
⋂∞
n=1 ξn by reverse martingale convergence. Together with Eq. (5.15), this conver-

gence implies that

P(Z1,1 = b1, . . . , Z1,K = bK |ξ∞) =
K∏

k=1

V bk
k (1− Vk)1−bk ,
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and since the Vk are measurable with respect to ξ∞, the tower law yields Eq. (5.13), as was
to be shown.

While illustrative, the two previous results do not directly deal with feature allocations
as defined earlier in this chapter; namely, they do not show any equivalence between EFPFs
and feature frequency models in the case where the features are unlabeled (which is exactly
the case where EFPFs are defined). We will show in the unlabeled case that every feature
frequency model has an EFPF and that every regular feature allocation with an EFPF is an
feature frequency model. In fact, we can consider a general—i.e., not necessarily regular—
feature allocation and characterize the EFPF representation in this case.

Theorem 5.6.5. Let λ be a non-negative random variable (which may have some arbitrary
joint law with the feature frequencies in a feature frequency model). We can obtain an
exchangeable feature allocation by generating a feature allocation from a feature frequency
model and then, for each index n, including an independent Poisson(λ)-distributed number
of features of the form {n} in addition to those features previously generated (which may also
include index n). A feature allocation of this type has an EFPF. Conversely, every feature
allocation with an EFPF has the same distribution as one generated by this construction for
some joint distribution of λ and the feature frequencies.

Proof. Suppose a feature allocation f̃ is generated as described by the construction in The-
orem 5.6.5 with (potentially random) measure B =

∑∞
k=1 Vkδφk giving the frequencies in

the feature frequency model component. We wish to show that the feature allocation has
an EFPF. We will make use of the fact that an equivalent way to generate the Poisson
component of the feature allocation is to draw Poisson (Nλ) singletons and then assign each
uniformly at random to an index in [N ].

Consider f̃N = (A1, A2, . . . , AK). Let S = {k : |Ak| = 1} represent the feature indices
of the singletons of the feature allocation. These features may have been generated either
from the feature frequency model or from the Poisson component. To find the probability
of the feature allocation, we consider each possible association of singletons to one of these
components. For any such association, let S̃ represent those singletons assigned to the
Poisson component; that is, S̃ ⊆ S. Let K̃ = K − |S̃| represent the number of remaining
features, which we denote by

(Ã1, . . . , ÃK̃).

Then the probability of this feature allocation satisfies

P(F̃N = f̃N)

= E
[
P(F̃N = f̃N |B, λ)

]

= E



∑

S̃:S̃⊆S

N−S̃Poisson
(
S̃|Nλ

) ∑

(i1,...,iK̃
)

distinct
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1

K!


V

|Ã1|
i1

(1− Vi1)N−|Ã1| · · ·V |ÃK̃ |iK̃
(1− ViK̃ )N−|ÃK̃ |

∏

l∈N
l /∈{i1,...,iK̃}

(1− Vl)N





 .

The final expression depends only on the number of data points N and feature sizes and is
symmetric in the feature sizes. So it has EFPF form.

In the other direction, we sidestep the issue of feature ordering by looking at the number
of features to which each data index belongs. The advantage of this approach is that this
number does not depend on the feature order. The following result is the key to making use
of this observation.

Lemma 5.6.6. Let Kn be a sequence of positive integers. For each n, suppose we have
(constants)

1 ≥ pn,1 ≥ pn,2 ≥ . . . ≥ pn,Kn > 0.

And, for completeness, suppose pn,k = 0 for k > Kn. Let Xn,k ∼ Bern(pn,k), independently

across n and k and with k = 1 : Kn. Define #n :=
∑Kn

k=1Xn,k. Then the following are
equivalent.

1. #n
d→ # for some finite-valued random variable # on {0, 1, 2, . . .}.

2. There exist (constants) {pk}∞k=1 and λ such that pk ∈ [0, 1] and λ > 0 and further such
that, ∀k = 1, 2, . . .,

pn,k → pk, n→∞ (5.16)

and
Kn∑

k=1

pn,k →
∞∑

k=1

pk + λ, n→∞. (5.17)

In this case, we further have
1 ≥ p1 ≥ p2 ≥ · · · , (5.18)

and

#
d
= Y +

∞∑

k=1

Xk, (5.19)

where Xk ∼ Bern(pk), independently across k, and Y ∼ Poisson(λ).

The proof of Lemma 5.6.6 appears in Appendix 5.B; this lemma is essentially a special
case of a more general result in Appendix 5.A.

In this direction of the proof of Theorem 5.6.5, we want to show that if we assume that
the probability of a feature allocation takes EFPF form, then the allocation has the same
distribution as if it were generated according to a feature frequency model with a Poisson-
distributed number of singleton features for each n. To see how Lemma 5.6.6 may be useful,
we let #̂ be the number of features in which index 1 occurs. Recall that in order to use
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the EFPF, we apply a uniform random ordering to the features of our feature allocation.
Examining #̂ is advantageous since it is invariant to the ordering of the features, and we
can thereby avoid complicated considerations that may arise related to the feature ordering
and consistency of ordering across feature allocations of increasing index sets.

Indeed, recall that once we have chosen a uniform random ordering for the features, the
EFPF assumption tells us that any feature allocation with the requisite feature sizes and
number of indices has the same probability. Let KN be the number of features containing
indices [N ]. If MN,k is the size of the kth feature (under the uniform random ordering) after
N indices, then there are (

N

MN,1

)
· · ·
(

N

MN,KN

)

such configurations. MN,1/N have index 1 in the first feature. For each such allocation,
there are equally many configurations of the remaining features. So, for each such allocation,
MN,2/N have index 1 in the second feature. And so on. That is, we have that, conditionally
on the feature sizes, the number of features with index 1 has the same distribution as a sum
of Bernoulli random variables:

KN∑

k=1

X̃N,k, X̃N,k
indep∼ Bern(MN,k/N). (5.20)

First, we note that the feature sizes are sufficient for the distribution by the EFPF assump-
tion. So we may, in fact, condition on ξN , which we define to be the sigma-field of events
invariant under permutations of the indices n = 1, . . . , N . That is, #̂|ξN has the same
distribution as the sum in Eq. (5.20).

Second, we note that the sum in Eq. (5.20) has no dependence on the ordering of the
features. In particular, then, let 1 ≥ pN,1 ≥ pN,2 ≥ · · · ≥ pN,KN be the sizes of the features
divided by N and ordered so as to be monotonically decreasing. Again, note that we are
only considering those features including some data index in [N ]. It follows that

#̂|ξN d
=

KN∑

k=1

X̃N,k, X̃N,k
indep∼ Bern(pN,k). (5.21)

So we see that we have circumvented ordering concerns and can simply use a size ordering
in what follows.

At this point, it seems natural to apply Lemma 5.6.6 to #̂|ξN . To do so, we need to
show that #̂|ξN converges in distribution to some random variable with non-negative integer
values as N → ∞. To that end, we note that (ξN) is a reversed filtration: ξN ⊇ ξN+1

for all N . And further P(#̂ = j|ξN) is a reversed martingale since (1) P(#̂ = j|ξN) is
measurable with respect to ξN ; (2) P(#̂ = j|ξN) is integrable; and (3) by the tower law,
E[P(#̂ = j|ξN)|ξN+1] = P(#̂ = j|ξN+1). It follows that

P(#̂ = j|ξN)
a.s.−→ P(#̂ = j|ξ∞)
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and hence
#̂|ξN d−→ #̂|ξ∞ a.s.

for ξ∞ =
⋂∞
n=1 ξn by reverse martingale convergence.

So we may apply Lemma 5.6.6 conditional on ξ∞. By the lemma, we have that, condi-
tional on ξ∞,

#̂
d
= Y +

∞∑

k=1

Xk

Y ∼ Poisson(λ)

Xk
indep∼ Bern(pk)

for some λ ≥ 0 and some 1 ≥ p1 ≥ p2 ≥ · · · . The conditioning on ξ∞ means that, in general,
λ and the frequencies 1 ≥ p1 ≥ p2 ≥ · · · may be positive random variables, as was to be
shown.

5.7 Discussion

It has been known for some time that the class of exchangeable partitions is the same as
the class of partitions generated by the Kingman paintbox, which is in turn the same as
the class of partitions with exchangeable partition probability functions (EPPFs). In this
chapter, we have developed an analogous set of concepts for the feature allocation problem.
We defined a feature allocation as an extension of partitions in which indices may belong to
multiple groups, now called features. We have developed analogues of the EPPF and the
Kingman paintbox, which we refer to as the exchangeable feature partition function (EFPF)
and the feature paintbox, respectively. The feature paintbox allows us to construct a feature
allocation via iid draws from an underlying collection of sets in the unit interval. In the
special cases of partitions and feature frequency models the construction of these sets is
particularly straightforward.

The Venn diagram presented earlier in Figure 5.1 summarizes our results and also sug-
gests a number of open areas for further investigation. In particular it would be useful to
develop a fuller understanding of the regularity condition on feature allocations that allows
the connection to the feature paintbox. It would also be of interest to carry the program fur-
ther by exploring generalizations of the partition and feature allocation framework to other
combinatorial representations, such as the setting in which we allow multiplicity within, as
well as across, features (Broderick, Mackey, et al., 2014; Zhou et al., 2012).
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5.A Intermediate lemmas leading to Lemma 5.6.6

To prove Lemma 5.6.6, we will make use of a few definitions and lemmas. We start with two
definitions. First, suppose we have constants p1, p2, p3, . . . such that

1 ≥ p1 ≥ p2 ≥ p3 ≥ . . . ≥ 0

and a constant λ such that 0 ≤ λ < ∞. Then we say that the random variable # has the
extended Poisson-binomial distribution with parameters (λ, p1, p2, . . .) if there exist indepen-
dent random variables X0, X1, X2, . . . with

X0 ∼ Poisson(λ)

Xk ∼ Bern(pk), k = 1, 2, . . .

such that

# = X0 +
∞∑

k=1

Xk.

The terminology “extended Poisson-binomial distribution” is motivated by the familiar
Poisson-binomial distribution (Y. H. Wang, 1993; S. X. Chen and Liu, 1997; O. Johnson,
Kontoyiannis, and Madiman, 2011), which describes the special case of the above where
λ = 0 and pk = 0 for all k > K for some finite K.

Second, we say that µ is the spike size-location measure with parameters (λ, p1, p2, . . .) if
µ puts mass λ at 0 and mass pk at pk for k = 1, 2, . . .. With these definitions in hand, we
can state the following lemmas.

Lemma 5.A.1. Let # have the extended Poisson-binomial distribution with parameters
(λ, p1, p2, . . .).

Then

1. # is a.s. finite if and only if
∑∞

k=1 pk <∞.

2. If # is a.s. finite, then the parameters (λ, p1, p2, . . .) are uniquely determined by the
distribution of #.

In particular, since the parameters (λ, p1, p2, . . .) uniquely determine the distribution of
#, Lemma 5.A.1 tells us that there is a bijection between the distribution of # and the pa-
rameters (λ, p1, p2, . . .) when # is a.s. finite. See Appendix 5.C for the proof of Lemma 5.A.1.

The next lemma tells us that this correspondence between distributions and parameters
is also continuous in a sense.

Lemma 5.A.2. For n = 1, 2, . . ., let #n have the extended Poisson-binomial distribution
with parameters (λn, pn,1, pn,2, . . .). Let µn be the spike size-location measure with parameters
(λn, pn,1, pn,2, . . .).

Then the following two statements are equivalent:
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1. #n converges in distribution to a finite-valued limit random variable.

2. µn converges weakly to some finite measure on [0, 1].

If the convergence holds, the limiting random variable (call it #) has an extended Poisson-
binomial distribution, and the limiting measure (call it µ) is a spike size-location measure.
In this case, # and µ have the same parameters; call the parameters (λ, p1, p2, . . .).

This lemma is suggested by, and provides an extension to, previous results on triangular
arrays of random variables with row sums converging in distribution; cf. Kallenberg (2002).
See Appendix 5.D for the proof of Lemma 5.A.2.

Lemma 5.6.6 highlights a special case of Lemmas 5.A.1 and 5.A.2 that we use to prove
the equivalence in Theorem 5.6.5.

5.B Proof of Lemma 5.6.6

We can rephrase the statement of Lemma 5.6.6 in terms of the terminology introduced in
Appendix 5.A. In particular, we are given a sequence of random variables #n, where #n has
an extended Poisson-binomial distribution with parameters

(0, pn,1, pn,2, . . . , pn,Kn , 0, 0, . . .).

Then we see that Lemma 5.6.6 is essentially a special case of Lemma 5.A.2 where λn and
all but finitely many of the pn,k are equal to zero; this special case is exactly the usual
Poisson-binomial distribution.

(1) ⇒ (2). We assume that #n converges in distribution to some finite-valued random
variable #, and we wish to show that the pn,k converge to some limiting pk as n → ∞
for each k, and likewise that

∑Kn
k=1 pn,k converges to

∑∞
k=1 pk + λ for some non-negative

constant λ. The pn,k are just the ordered atom sizes of the spike size-location measures µn in
Lemma 5.A.2. By Lemma 5.A.2, the µn converge weakly to some spike size-location measure
µ.

Denote the parameters of µ by (λ, p1, p2, . . .). The convergence of µn to µ yields both the
desired convergence of the atom sizes (Eq. (5.16), repeated here)

pn,k → pk, n→∞

and the desired convergence of the total mass of µn (Eq. (5.17), repeated here)

Kn∑

k=1

pn,k →
∞∑

k=1

pk + λ, n→∞.
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(2) ⇒ (1). Now we assume that the pn,k converge to some limiting pk as n → ∞ for

each k, and likewise that
∑Kn

k=1 pn,k converges to
∑∞

k=1 pk + λ for some appropriate positive
constants {pk}, λ. We wish to show that #n converges in distribution to some finite-valued
random variable #.

The assumed convergences guarantee the weak convergence of the spike size-location
measures µn to some finite measure on [0, 1]. Lemma 5.A.2 then guarantees that #n converges
in distribution to some finite-valued random variable #.

Assume (1) and (2). We wish to show that 1 ≥ p1 ≥ p2 ≥ . . . (Eq. (5.18)), but this
result follows from the monotonicity of the pn,k.

Eq. (5.19) in the original lemma statement can be rephrased as wanting to show that #
has the extended Poisson-binomial distribution with parameters (λ, p1, p2, . . .). This follows
directly from the final statement in Lemma 5.A.2 and our identification of the limiting spike
size-location measure µ as having parameters (λ, p1, p2, . . .) in a previous part of this proof
(“(1) ⇒ (2)”).

5.C Proof of Lemma 5.A.1

Throughout we assume that # has the extended Poisson-binomial distribution with param-
eters (λ, p1, p2, . . .).

(1). We want to show that # is a.s. finite if and only if
∑∞

k=1 pk <∞. Since # is extended
Poisson-binomially distributed, we can write # = X0 +

∑∞
k=1Xk for independent X0 ∼

Poisson(λ) and Xk ∼ Bern(pk) for k = 1, 2, . . .. First suppose
∑∞

k=1 pk <∞. Then
∑∞

k=1Xk

is a.s. finite by the Borel-Cantelli lemma. Second, suppose
∑∞

k=1 pk =∞. Then
∑∞

k=1Xk is
a.s. infinite by the second Borel-Cantelli lemma. Since X0 is a.s. finite by construction, the
result follows.

(2). We want to show that if # is a.s. finite, then the parameters (λ, p1, p2, . . .) are uniquely
determined by the distribution of #. To that end, let µ be the spike size-location measure
with parameters (λ, p1, p2, . . .) . Note that µ need not be a probability measure but is finite
by the assumption that # is a.s. finite together with part (1) of the lemma.

To better understand the distribution of #, we write the probability generating function
of #. For s with 0 ≤ s ≤ 1, we have

Es# = e−λ(1−s)
∞∏

k=1

[1− (1− s)pk] ,

which implies that for s with 0 < s ≤ 1 we have

− logEs# = λ(1− s)−
∞∑

k=1

log [1− (1− s)pk] (5.22)
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= λ(1− s) +
∞∑

k=1

∞∑

j=1

1

j
(1− s)jpjk

from the Taylor series expansion of the logarithm

= λ(1− s) +
∞∑

j=1

1

j
(1− s)j

∞∑

k=1

pjk

interchanging the order of summation since the summands are non-negative

= (1− s)µ{0}+
∞∑

j=1

1

j
(1− s)j

∫

(0,1]

xj−1µ(dx) (5.23)

=
∞∑

j=1

1

j
(1− s)jmj−1, (5.24)

where

mj :=

∫

[0,1]

xjµ(dx)

is the jth moment of the measure µ.
Now the distribution of # uniquely determines the probability generating function of #,

which by Eq. (5.24) uniquely determines the sequence of moments of the measure µ. In turn,
µ is a bounded measure on [0, 1] and hence uniquely determined by its moments. And the
parameters (λ, p1, p2, . . .) are uniquely determined by µ.

5.D Proof of Lemma 5.A.2

For n = 1, 2, . . ., we assume #n has the extended Poisson-binomial distribution with pa-
rameters (λn, pn,1, pn,2, . . .). We further assume µn has the spike size-location measure with
parameters (λn, pn,1, pn,2, . . .).

(2) ⇒ (1). Suppose the µn converge weakly to some finite measure µ on [0, 1]. We want
to show that #n converges in distribution to a finite-valued limit random variable.

In Appendix 5.C, we noted that we can express the probability generating function of
an extended Poisson-binomial distribution in terms of a spike size-location measure with
the same parameters. In particular, by Eq. (5.23), we can write the negative log of the
probability generating function of #n as

− logEs#n =

∫

[0,1]

fs(x) µn(dx),

where

fs(x) :=
∞∑

j=1

1

j
(1− s)jxj−1 =

{
−x−1 log [1− (1− s)x] x > 0
1− s x = 0

. (5.25)
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Since fs(x) is bounded in x for each fixed s with 0 < s ≤ 1, we have by the assumption of
weak convergence of µn that

lim
n→∞

− logEs#n =

∫

[0,1]

fs(x) µ(dx).

Moreover, since µ is finite by assumption, we have that the result is finite for each s with
0 < s ≤ 1. It follows that #n converges in distribution to a finite random variable #, with
probability generating function given by

Es# = exp

{
−
∫

[0,1]

fs(x) µ(dx)

}
. (5.26)

Assume (1). Now suppose the #n converge in distribution to a finite random variable
#. The next two parts of the proof will rely on an intermediate step: showing that µn has
bounded total mass in this case.

To show that µn has bounded total mass, first note that E#n is exactly the total mass
of µn:

E#n = λn +
∞∑

k=1

pn,k =: Σn,

and Var#n = λn +
∞∑

k=1

pn,k(1− pn,k).

Noting that Var#n ≤ Σn allows us to apply Chebyshev’s inequality to find

1/4 ≥ P(|#n − E#n| ≥ 2
√

Var#n)

3/4 ≤ P(|#n − Σn| ≤ 2
√

Var#n)

≤ P(|#n − Σn| ≤ 2
√

Σn)

≤ P(#n ≥ Σn − 2
√

Σn).

Since #n converges in distribution by assumption, the sequence #n is tight. Choose
ε such that 1/2 > ε > 0. Then there exists some Nε such that, for all n ≥ 1, we have
P(#n ≤ Nε) > 1− ε > 1/2. It follows that, for all n ≥ 1,

1/4 ≤ P(Nε ≥ Σn − 2
√

Σn).

Since Σn is non-random, it must be that P(Nε ≥ Σn − 2
√

Σn) = 1. That is, the total mass
of µn is bounded.
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Assume (1) and (2). Suppose #n converges in distribution to some finite-valued limit
random variable # and that µn converges weakly to some finite measure µ. We want to
show that # has an extended Poisson-binomial distribution, that µ is a spike size-location
measure, and that # and µ have the same parameters.

We start by showing that µ is discrete. Choose any ε > 0. Since the mass of µn is
bounded across n by the previous part of the proof (“Assume (1)”), the number of atoms
of µn greater than ε is bounded across n. It follows that the number of atoms of µ has the
same bound. So µ is discrete. Since µn converges weakly to µ, we see that µ must have
atoms with sizes and locations p1, p2, . . . such that

1 ≥ p1 ≥ p2 ≥ . . .

as well as a potential atom, with size we denote by λ, at zero. That is, µ is a spike size-
location measure with parameters (λ, p1, p2, . . .).

In a previous part of the proof (“(2) ⇒ (1)”), we expressed the probability generating
function of # as a function of µ (Eq. (5.26)). With this relation in hand, we can reverse
the series of equations presented in Appendix 5.C and ending in Eq. (5.23) to find the form
of the probability generating function for # (Eq. (5.22)). In particular, Eq. (5.22) tells us
that # is an extended Poisson-binomial random variable with parameters (λ, p1, p2, . . .). In
particular, we emphasize that # has the same parameters as µ, which we have already shown
above is a spike size-location measure.

(1) ⇒ (2) Now step back and assume that #n converges in distribution to a finite-valued
limit random variable; call it #. We wish to show that µn converges weakly to some finite
measure on [0, 1].

By a previous part of this proof (“Assume (1)”), the mass of µn is bounded across n.
Moreover, by construction, all of the mass for each µn is concentrated on [0, 1]. So it must
be that the sequence µn is tight. It follows that if every weakly convergent subsequence µnj
has the same limit µ, then µn converges weakly to µ.

Consider a subsequence (nj)j of N. We know #nj converges in distribution to # by the
assumption that #n converges in distribution to #. The previous part of this proof (“Assume
(1) and (2)”) gives that the form of the limit of µnj is determined by #; namely, the limit is
a spike size-location measure with parameters shared by #. In particular, then, the limit µ
must be the same for every subsequence, and the desired result is shown.
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Chapter 6

Posteriors, conjugacy, and exponential
families for completely random
measures

We demonstrate how to calculate posteriors for general CRM-based priors and likelihoods for
Bayesian nonparametric models. We further show how to represent Bayesian nonparametric
priors as a sequence of finite draws using a size-biasing approach—and how to represent full
Bayesian nonparametric models via finite marginals. Motivated by conjugate priors based
on exponential family representations of likelihoods, we introduce a notion of exponential
families for CRMs, which we call exponential CRMs. This construction allows us to specify
automatic Bayesian nonparametric conjugate priors for exponential CRM likelihoods. We
demonstrate that our exponential CRMs allow particularly straightforward recipes for size-
biased and marginal representations of Bayesian nonparametric models. Along the way, we
prove that the gamma process is a conjugate prior for the Poisson likelihood process and the
beta prime process is a conjugate prior for a process we call the odds Bernoulli process. We
deliver a size-biased representation of the gamma process and a marginal representation of
the gamma process coupled with a Poisson likelihood process.

6.1 Introduction

An important milestone in Bayesian analysis was the development of a general strategy for
obtaining conjugate priors based on exponential family representations of likelihoods (De-
Groot, 1970). While slavish adherence to exponential-family conjugacy can be criticized,
conjugacy continues to occupy an important place in Bayesian analysis, for its computa-
tional tractability in high-dimensional problems and for its role in inspiring investigations
into broader classes of priors (e.g., via mixtures, limits, or augmentations). The exponential
family is, however, a parametric class of models, and it is of interest to consider whether
similar general notions of conjugacy can be developed for Bayesian nonparametric models.
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Indeed, the nonparametric literature is replete with nomenclature that suggests the exponen-
tial family, including familiar names such as “Dirichlet,” “beta,” “gamma,” and “Poisson.”
These names refer to aspects of the random measures underlying Bayesian nonparametrics,
either the Lévy measure used in constructing certain classes of random measures or prop-
erties of marginals obtained from random measures. In some cases, conjugacy results have
been established that parallel results from classical exponential families; in particular, the
Dirichlet process is known to be conjugate to a multinomial process likelihood (Ferguson,
1973), the beta process is conjugate to a Bernoulli process (Kim, 1999a; Thibaux and Jordan,
2007) and to a negative binomial process (Broderick, Mackey, et al., 2014). Moreover, vari-
ous useful representations for marginal distributions, including stick-breaking and size-biased
representations, have been obtained by making use of properties that derive from exponen-
tial families. It is striking, however, that these results have been obtained separately, and
with significant effort; a general formalism has not yet emerged. In this chapter, we provide
the single, holistic framework so strongly suggested by the nomenclature. Within this single
framework, we show that it is straightforward to calculate posteriors and establish conjugacy.
Our framework includes the specification of a Bayesian nonparametric analog of the finite
exponential family, which allows us to provide automatic and constructive nonparametric
conjugate priors given a likelihood specification as well as general recipes for marginal and
size-biased representations.

A broad class of Bayesian nonparametric priors—including those built on the Dirichlet
process (Ferguson, 1973), the beta process (Hjort, 1990), the gamma process (Titsias, 2008),
and the negative binomial process (Zhou et al., 2012; Broderick, Mackey, et al., 2014)—can
be viewed as models for the allocation of data points to traits. These processes give us pairs
of traits together with rates or frequencies with which the traits occur in some population.
Corresponding likelihoods assign each data point in the population to some finite subset of
traits conditioned on the trait frequencies. What makes these models nonparametric is that
the number of traits in the prior is countably infinite. Then the (typically random) number
of traits to which any individual data point is allocated is unbounded, but also there are
always new traits to which as-yet-unseen data points may be allocated. That is, such a
model allows the number of traits in any data set to grow with the size of that data set.

A principal challenge of working with such models arises in posterior inference. There
is a countable infinity of trait frequencies in the prior which we must integrate over to
calculate the posterior of trait frequencies given allocations of data points to traits. Bayesian
nonparametric models sidestep the full infinite-dimensional integration in three principal
ways: conjugacy, size-biased representations, and marginalization.

In its most general form, conjugacy simply asserts that the prior is in the same family of
distributions as the posterior. When the prior and likelihood are in finite-dimensional conju-
gate exponential families, conjugacy can turn posterior calculation into, effectively, vector ad-
dition. As a simple example, consider a model with beta-distributed prior, θ ∼ Beta(θ|α, β),
for some fixed hyperparameters α and β. For the likelihood, let each observation xn with

n ∈ {1, . . . , N} be iid Bernoulli-distributed conditional on parameter θ: xn
iid∼ Bern(x|θ).
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Then the posterior is simply another beta distribution, Beta(θ|αpost, βpost), with parameters

updated via addition: αpost := α+
∑N

n=1 xn and βpost := β+N −∑N
n=1 xn. While conjugacy

is certainly useful and popular in the case of finite parameter cardinality, there is arguably a
stronger computational imperative for its use in the infinite-parameter case. Indeed, the core
prior-likelihood pairs of Bayesian nonparametrics are generally proven (Hjort, 1990; Kim,
1999a; Thibaux and Jordan, 2007; Broderick, Mackey, et al., 2014), or assumed to be (Tit-
sias, 2008; Thibaux, 2008), conjugate. When such proofs exist, though, thus far they have
been specialized to specific pairs of processes. In what follows, we demonstrate a general way
to calculate posteriors for a class of distributions that includes all of these classical Bayesian
nonparametric models. We also define a notion of exponential family representation for the
infinite-dimensional case and show that, given a Bayesian nonparametric exponential family
likelihood, we can readily construct a Bayesian nonparametric conjugate prior.

Size-biased sampling provides a finite-dimensional distribution for each of the individual
prior trait frequencies (Thibaux and Jordan, 2007; Paisley, Zaas, et al., 2010). Such a
representation has played an important role in Bayesian nonparametrics in recent years,
allowing for either exact inference via slice sampling (Damien, Wakefield, and Walker, 1999;
Neal, 2003)—as demonstrated by Teh, Görür, and Ghahramani (2007); Broderick, Mackey,
et al. (2014)—or approximate inference via truncation (Doshi et al., 2009; Paisley, Carin,
and Blei, 2011). This representation is particularly useful for building hierarchical models
(Thibaux and Jordan, 2007). We show that our framework yields such representations
in general, and we show that our construction is especially straightforward to use in the
exponential family framework that we develop.

Marginal processes avoid directly representing the infinite-dimensional prior and poste-
rior altogether by integrating out the trait frequencies. Since the trait allocations are finite
for each data point, the marginal processes are finite for any finite set of data points. Again,
thus far, such processes have been shown to exist separately in special cases; for example, the
Indian buffet process (Griffiths and Ghahramani, 2006) is the marginal process for the beta
process prior paired with a Bernoulli process likelihood (Thibaux and Jordan, 2007). We
show that the integration that generates the marginal process from the full Bayesian model
can be generally applied in Bayesian nonparametrics and takes a particularly straightforward
form when using conjugate exponential family priors and likelihoods. We further demon-
strate that, in this case, a basic, constructive recipe exists for the general marginal process
in terms of only finite-dimensional distributions.

Our results are built on the general class of stochastic processes known as completely
random measures (CRMs) (Kingman, 1967). We review CRMs in Section 6.2 and we discuss
what assumptions are needed to form a full Bayesian nonparametric model from CRMs in
Section 6.2. Given a general Bayesian nonparametric prior and likelihood (Section 6.2),
we demonstrate in Section 6.3 how to calculate the posterior. Although the development
up to this point is more general, we next introduce a concept of exponential families for
CRMs (Section 6.4) and call such models exponential CRMs. We show that we can generate
automatic conjugate priors given exponential CRM likelihoods in Section 6.4. Finally, we
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show how we can generate recipes for size-biased representations (Section 6.5) and marginal
processes (Section 6.6), which are particularly straightforward in the exponential CRM case
(Corollary 6.5.2 in Section 6.5 and Corollary 6.6.2 in Section 6.6). We illustrate our results
on a number of examples and derive new conjugacy results, size-biased representations, and
marginal processes along the way.

6.2 Bayesian models based on completely random

measures

As we have discussed, we view Bayesian nonparametric models as being composed of two
parts: (1) a collection of pairs of traits together with their frequencies or rates and (2) for
each data point, an allocation to different traits. Both parts can be expressed as random
measures. Recall that a random measure is a random element whose values are measures.

We represent each trait by a point ψ in some space Ψ of traits. Further, let θk be the
frequency, or rate, of the trait represented by ψk, where k indexes the countably many traits.
In particular, θk ∈ R+. Then (θk, ψk) is a tuple consisting of the frequency of the kth trait
together with its trait descriptor. We can represent the full collection of pairs of traits with
their frequencies by the discrete measure on Ψ that places weight θk at location ψk:

Θ =
K∑

k=1

θkδψk , (6.1)

where the cardinality K may be finite or infinity.
Next, we form data point Xn for the nth individual. The data point Xn is viewed as a

discrete measure. Each atom of Xn represents a pair consisting of (1) a trait to which the
nth individual is allocated and (2) a degree to which the nth individual is allocated to this
particular trait. That is,

Xn =
Kn∑

k=1

xn,kδψn,k , (6.2)

where again ψn,k ∈ Ψ represents a trait and now xn,k ∈ R+ represents the degree to which
the nth data point belongs to trait ψn,k. Kn is the total number of traits to which the nth
data point belongs.

Here and in what follows, we treat X1:N = {Xn : n ∈ [N ]} as our observed data points
for [N ] := {1, 2, 3, . . . , N}. In practice X1:N is often incorporated into a more complex
Bayesian hierarchical model. For instance, in topic modeling, ψk represents a topic; that is,
ψk is a distribution over words in a vocabulary (Blei, Ng, and Jordan, 2003; Teh, Jordan,
et al., 2006). θk might represent the frequency with which the topic ψk occurs in a corpus
of documents. xn,k might be a positive integer and represent the number of words in topic

ψn,k that occur in the nth document. So the nth document has a total length of
∑Kn

k=1 xn,k
words. In this case, the actual observation consists of the words in each document, and the
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topics are latent. Not only are the results concerning posteriors, conjugacy, and exponential
family representations that we develop below useful for inference in such models, but in fact
our results are especially useful in such models—where the traits and any ordering on the
traits are not known in advance.

Next, we want to specify a full Bayesian model for our data points X1:N . To do so, we
must first define a prior distribution for the random measure Θ as well as a likelihood for
each random measure Xn conditioned on Θ. We let ΣΨ be a σ-algebra of subsets of Ψ, where
we assume all singletons are in ΣΨ. Then we consider random measures Θ and Xn whose
values are measures on Ψ. Note that for any random measure Θ and any measurable set
A ∈ ΣΨ, Θ(A) is a random variable.

Completely random measures

We can see from Eqs. (6.1) and (6.2) that we desire a distribution on random measures that
yields discrete measures almost surely. A particularly simple form of random measure called
a completely random measure has been shown to have this property (Kingman, 1967).

A completely random measure Θ is defined as a random measure that satisfies one ad-
ditional property; for any disjoint, measurable sets A1, A2, . . . , AK ∈ ΣΨ, we require that
Θ(A1),Θ(A2), . . . ,Θ(AK) be independent random variables. Kingman (1967) showed that
a completely random measure can always be decomposed into a sum of three independent
parts:

Θ = Θdet + Θfix + Θord. (6.3)

Here, Θdet is the deterministic component, Θfix is the fixed-location component, and Θord is
the ordinary component. In particular, Θdet is any deterministic measure. It is straightfor-
ward to include a deterministic measure in a statistical model, so—without loss of generality
in our treatment and according to the prevailing norm in using models based on CRMs—in
what follows we will set Θdet ≡ 0. We define the remaining two parts next.

The fixed-location component is called the “fixed component” by Kingman (1967), but
we change the name slightly here to emphasize that Θfix is defined to be constructed from
a set of random weights at fixed (i.e., deterministic) locations. That is,

Θfix =

Kfix∑

k=1

θfix,kδψfix,k , (6.4)

where the number of fixed-location atoms, Kfix, may be either finite or infinity; ψfix,k is
deterministic, and θfix,k is a non-negative, real-valued random variable (since Φ is a measure).
Without loss of generality, we assume that the locations ψfix,k are all distinct. Then, by
the independence assumption of CRMs, we must have that θfix,k are independent random
variables across k. Although the fixed-location atoms are often ignored in the Bayesian
nonparametrics literature, we will see that the fixed-location component has a key role to
play in establishing Bayesian nonparametric conjugacy and in the CRM representations we
present.
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The third and final component is the ordinary component. Let #(A) denote the cardi-
nality of some countable set A. Let µ be any σ-finite, deterministic measure on R+ × Ψ,
where R+ is equipped with the Borel σ-algebra and ΣR+×Ψ is the resulting product σ-algebra
given ΣΨ. Recall that a Poisson point process with rate measure µ on R+ ×Ψ is a random
countable subset Π of R+ ×Ψ such that two properties hold (Kingman, 1993):

1. For any A ∈ ΣR+×Ψ, #(Π ∩ A) ∼ Poisson(µ(A)).

2. For any disjoint A1, A2, . . . , AK ∈ ΣR+×Ψ, #(Π ∩ A1),#(Π ∩ A2), · · · ,#(Π ∩ AK) are
independent random variables.

To generate an ordinary component, start with a Poisson point process on R+ ×Ψ, charac-
terized by its rate measure µ(dθ × dψ). This process yields Π, a random and countable set
of points: Π = {(θord,k, ψord,k)}Kordk=1 , where Kord may be finite or infinity. Form the ordinary
component measure by letting θord,k be the weight of the atom located at ψord,k:

Θord =

Kord∑

k=1

θord,kδψord,k . (6.5)

Recall that we stated at the start of Section 6.2 that CRMs yield a.s. discrete random
measures. To check this assertion, note that Θfix is a.s. discrete by construction (Eq. (6.4))
and Θord is a.s. discrete by construction (Eq. (6.5)). When we set Θdet ≡ 0 as above, we are
left with Θ = Θfix + Θord by Eq. (6.3). So Θ is also discrete, as desired.

Prior and likelihood

The prior that we place on Θ will be a fully general CRM (minus any deterministic com-
ponent) with one additional assumption on the rate measure of the ordinary component.
That is, before incorporating the additional assumption, we say that Θ has a fixed-location

component with Kfix atoms, where the kth atom has arbitrary distribution Ffix,k: θfix,k
indep∼

Ffix,k(dθ). Kfix may be finite or infinity, and Θ has an ordinary component characterized
by rate measure µ(dθ× dψ). The additional assumption we make is that the distribution on
the weights in the ordinary component is assumed to be decoupled from the distribution on
the locations. The locations are typically more interesting in other parts of a full Bayesian
model hierarchy and have been discussed extensively elsewhere (Neal, 2000; C. Wang and
Blei, 2013). Moreover, it is the weights that affect the allocation of data points to traits. So
henceforth we assume that the rate measure decomposes as

µ(dθ × dψ) = ν(dθ) ·G(dψ), (6.6)

where ν is any σ-finite, deterministic measure on R+ and G is any proper distribution on Ψ.
Given the factorization of µ in Eq. (6.6), an the ordinary component of Θ can be generated

by letting {θfix,k}Kordk=1 be the points of a Poisson point process generated on R+ with rate ν.1

1Recall that Kord may be finite or infinity depending on ν and is random when taking finite values.
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We then draw the locations {ψfix,k}Kordk=1 iid according to G(dψ): ψfix,k
iid∼ G(dψ). Finally, for

each k, θfix,kδψfix,k is an atom in Θord. This factorization will allow us to focus our attention
on the trait frequencies, and not the trait locations, in what follows. Moreover, going forward,
we will assume G is diffuse (i.e., G has no atoms) so that the ordinary component atoms are
all at a.s. distinct locations, which are further a.s. distinct from the fixed locations.

Since we have seen that Θ is an a.s. discrete random measure, we can write it as

Θ =
K∑

k=1

θkδψk , (6.7)

where K := Kfix+Kord may be finite or infinity and every ψk is a.s. unique. That is, we will
sometimes find it helpful notationally to use Eq. (6.7) instead of separating the fixed and
ordinary components. At this point, we have specified the prior for Θ in our general model.

Next, we specify the likelihood; i.e., we specify how to generate the data points Xn given
Θ. We will assume each Xn is generated iid given Θ across the data indices n. We will let
Xn be a CRM with only a fixed-location component given Θ. In particular, the atoms of Xn

will be located at the atom locations of Θ, which are fixed when we condition on Θ:

Xn :=
K∑

k=1

xn,kδψk .

Here, xn,k is drawn according to some distribution H that may take θk, the weight of Θ at
location ψk, as a parameter; i.e.,

xn,k
indep∼ H(dx|θk) independently across n and k. (6.8)

Note that while every atom of Xn is located at an atom of Θ, it is not necessarily the
case that every atom of Θ has a corresponding atom in Xn. In particular, if xn,k is zero for
any k, there is no atom in Xn at ψk.

Bayesian nonparametrics

So far we have described a prior and likelihood that may be used to form a Bayesian model.
We have already stated above that forming a Bayesian nonparametric model imposes some
restrictions on the prior and likelihood. We formalize these restrictions in Assumptions A0,
A1, and A2 below.

Recall that the premise of Bayesian nonparametrics is that the number of traits repre-
sented in a collection of data can grow with the number of data points. More explicitly, we
achieve the desideratum that the number of traits is unbounded, and may always grow as
new data points are collected, by modeling a countable infinity of traits. This assumption
requires that the prior have a countable infinity of atoms. These must either be fixed-location
atoms or ordinary component atoms. Fixed-location atoms represent known traits in some
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sense since we must know the fixed locations of the atoms in advance. Conversely, ordi-
nary component atoms represent unknown traits, as yet to be discovered, since both their
locations and associated rates are unknown a priori. Since we cannot know (or represent) a
countable infinity of traits a priori, we cannot start with a countable infinity of fixed-location
atoms.

A0. The number of fixed-location atoms in Θ is finite.

Since we require a countable infinity of traits in total and they cannot come from the fixed-
location atoms by Assumption A0, the ordinary component must contain a countable infinity
of atoms. This assumption will be true if and only if the rate measure on the trait frequencies
has infinite mass.

A1. ν(R+) =∞.

Finally, an implicit part of the starting premise is that each data point be allocated to
only a finite number of traits; we do not expect to glean an infinite amount of information
from finitely represented data. Thus, we require that the number of atoms in every Xn be
finite. By Assumption A0, the number of atoms in Xn that correspond to fixed-location
atoms in Θ is finite. But by Assumption A1, the number of atoms in Θ from the ordinary
component is infinite. So there must be some restriction on the distribution of values of X
at the atoms of Θ (that is, some restriction on H in Eq. (6.8)) such that only finitely many
of these values are nonzero.

In particular, note that if H(dx|θ) does not contain an atom at zero for any θ, then
a.s. every one of the countable infinity of atoms of X will be nonzero. One consequence of
this observation is that H(dx|θ) cannot be purely continuous for all θ. Though this line of
reasoning does not necessarily preclude a mixed continuous and discrete H, we henceforth
assume that H(dx|θ) is discrete, with support Z∗ = {0, 1, 2, . . .}, for all θ.

In what follows, we write h(x|θ) for the probability mass function of x given θ. So our
requirement that each data point be allocated to only a finite number of traits translates into
a requirement that the number of atoms of Xn with values in Z+ = {1, 2, . . .} be finite. Note
that, by construction, the pairs {(θord,k, xord,k)}Kordk=1 form a marked Poisson point process
with rate measure µmark(dθ × dx) := ν(dθ)h(x|θ). And the pairs with xord,k equal to any
particular value x ∈ Z+ further form a thinned Poisson point process with rate measure
νx(dθ) := ν(dθ)h(x|θ). In particular, the number of atoms of X with weight x is Poisson-
distributed with mean νx(R+). So the number of atoms of X is finite if and only if the
following assumption holds.

A2.
∑∞

x=1 νx(R+) <∞ for νx := ν(dθ)h(x|θ).

Thus Assumptions A0, A1, and A2 capture our Bayesian nonparametric desiderata. We
illustrate the development so far with an example.
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Example 6.2.1. The beta process (Hjort, 1990) provides an example distribution for Θ. In
its most general form, sometimes called the three-parameter beta process (Teh and Görür,
2009; Broderick, Jordan, and Pitman, 2012), the beta process has an ordinary component
whose weight rate measure has a beta distribution kernel,

ν(dθ) = γθ−α−1(1− θ)c+α−1dθ, (6.9)

with support on (0, 1]. Here, the three fixed hyperparameters are γ, the mass parameter ;
c, the concentration parameter ; and α, the discount parameter.2 Moreover, each of its Kfix

fixed-location atoms, θkδψk , has a beta-distributed weight (Broderick, Mackey, et al., 2014):

θfix,k ∼ Beta(θ|ρfix,k, σfix,k), (6.10)

where ρfix,k, σfix,k > 0 are fixed hyperparameters of the model.
By Assumption A0, Kfix is finite. By Assumption A1, ν(R+) = ∞. To achieve this

infinite-mass restriction, the beta kernel in Eq. (6.9) must be improper; i.e., either −α ≤ 0
or c + α ≤ 0. Also, note that we must have γ > 0 since ν is a measure (and the case γ = 0
would be trivial).

Often the beta process is used as a prior paired with a Bernoulli process likelihood
(Thibaux and Jordan, 2007). The Bernoulli process specifies that, given Θ =

∑∞
k=1 θkδψk ,

we draw
xn,k

indep∼ Bern(x|θk),
which is well-defined since every atom weight θk of Θ is in (0, 1] by the beta process con-
struction. Thus,

Xn =
∞∑

k=1

xn,kδψk .

Finally, then, we may apply Assumption A2, which specifies that the number of atoms
in each observation Xn is finite; in this case, the assumption means

∞∑

x=1

∫

θ∈R+

ν(dθ) · h(x|θ)

=

∫

θ∈(0,1]

ν(dθ) · h(1|θ)

since θ is supported on (0, 1] and x is supported on {0, 1}

=

∫

θ∈(0,1]

γθ−α−1(1− θ)c+α−1dθ · θ

2 In (Teh and Görür, 2009; Broderick, Jordan, and Pitman, 2012), the ordinary component features
the beta distribution kernel in Eq. (6.9) multiplied not only by γ but also by a more complex, positive,
real-valued expression in c and α. Since all of γ, c, and α are fixed hyperparameters, and γ is an arbitrary
positive real value, any other constant factors containing the hyperparameters can be absorbed into γ, as in
the main text here.
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= γ

∫

θ∈(0,1]

θ1−α−1(1− θ)c+α−1dθ

<∞.

The integral here is finite if and only if 1− α and c+ α are the parameters of a proper beta
distribution: i.e., if and only if α < 1 and c > −α. Together with the restrictions above,
these restrictions imply the following allowable parameter ranges for the beta process fixed
hyperparameters:

γ > 0

α ∈ [0, 1)

c > −α
ρfix,k, σfix,k > 0 for all k ∈ [Kfix].

(6.11)

These correspond to the hyperparameter ranges previously found in (Teh and Görür, 2009;
Broderick, Jordan, and Pitman, 2012). �

6.3 Posteriors

In Section 6.2, we defined a full Bayesian model consisting of a CRM prior for Θ and a
CRM likelihood for an observation X conditional on Θ. Now we would like to calculate the
posterior distribution of Θ|X.

Theorem 6.3.1 (Bayesian nonparametric posteriors). Let Θ be a completely random mea-
sure that satisfies Assumptions A0 and A1; that is, Θ is a CRM with Kfix fixed atoms such
that Kfix <∞ and such that the kth atom can be written θfix,kδψfix,k with

θfix,k
indep∼ Ffix,k(dθ)

for proper distribution Ffix,k and deterministic ψfix,k. The ordinary component of Θ has rate
measure

µ(dθ × dψ) = ν(dθ) ·G(dψ),

where G is a proper distribution and ν(R+) = ∞. Write Θ =
∑∞

k=1 θkδψk , and let X be

generated conditional on Θ according to X =
∑∞

k=1 xkδψk with xk
indep∼ h(x|θk) for proper,

discrete probability mass function h. And suppose X and Θ jointly satisfy Assumption A2
so that

∞∑

x=1

∫

θ∈R+

ν(dθ)h(x|θ) <∞.

Then let Θpost be a random measure with the distribution of Θ|X. Θpost is a completely
random measure with three parts.
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1. For each k ∈ [Kfix], Θpost has a fixed-location atom at ψfix,k with weight θpost,fix,k
distributed according to the finite-dimensional posterior Fpost,fix,k(dθ) that comes from
prior Ffix,k, likelihood h, and observation X({ψfix,k}).

2. Let {xnew,kδψnew,k : k ∈ [Knew]} be the atoms of X that are not at fixed-locations in the
prior of Θ. Knew is finite by Assumption A2. Then Θpost has a fixed-location atom at
xnew,k with random weight θpost,new,k, whose distribution Fpost,new,k(dθ) is proportional
to

ν(dθ)h(xnew,k|θ).

3. The ordinary component of Θpost has rate measure

νpost(dθ) := ν(dθ)h(0|θ).

Proof. To prove the theorem, we consider in turn each of the two parts of the prior: the
fixed-location component and the ordinary component. First, consider any fixed-location
atom, θfix,kδψfix,k , in the prior. All of the other fixed-location atoms in the prior, as well as
the prior ordinary component, are drawn independently from the weight θfix,k. So it follows
that all of X except xfix,k := X({ψfix,k}) is independent of θfix,k. Thus the posterior has a
fixed atom located at ψfix,k whose weight, which we denote θpost,fix,k, has distribution

Fpost,fix,k(dθ) ∝ Ffix,k(dθ)h(xfix,k|θ),

which follows from the usual finite Bayes Theorem.
Next, consider the ordinary component in the prior. Let

Ψfix = {ψfix,1, . . . , ψfix,Kfix}

be the set of fixed-location atoms in the prior. Recall that Ψfix is deterministic, and since
G is continuous, all of the fixed-location atoms and ordinary component atoms of Θ are at
a.s. distinct locations. So the measure Xfix defined by

Xfix(A) := X(A ∩Ψfix)

can be derived purely from X, without knowledge of Θ. It follows that the measure Xord

defined by
Xord(A) := X(A ∩ (Ψ\Ψfix))

can be derived purely from X without knowledge of Θ. Xord is the same as the observed
data point X but with atoms only at atoms of the ordinary component of Θ and not at the
fixed-location atoms of Θ.

Now for any value x ∈ Z+, let

{ψnew,x,1, . . . , ψnew,x,Knew,x}
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be all of the locations of atoms of size x in Xord. By Assumption A2, the number of such
atoms, Knew,x, is finite. Further let θnew,x,k := Θ({ψnew,x,k}). Then the values {θnew,x,k}Knew,xk=1

are generated from a thinned Poisson point process with rate measure

νx(dθ) := ν(dθ)h(x|θ). (6.12)

And since νx(R+) <∞ by assumption, each θnew,x,k has distribution equal to the normalized
rate measure in Eq. (6.12). Note that θnew,x,kδψnew,x,k is a fixed-location atom in the posterior
now that its location is known from the observed Xord.

By contrast, if a likelihood draw at an ordinary component atom in the prior returned a
zero, that atom is not observed in Xord. Such atom weights in Θpost thus formed a marked
Poisson point process with rate measure

ν(dθ)h(0|θ),

as was to be shown.

In Theorem 6.3.1, we consider generating Θ and then a single data point X conditional
on Θ. Now suppose we generate Θ and then N data points, X1, . . . , XN , iid conditional
on Θ. In this case, Theorem 6.3.1 may be iterated to find the posterior Θ|X1:N . We now
illustrate the results of the theorem with an example.

Example 6.3.2. Suppose we again start with a beta process prior for Θ as in Example 6.2.1.
This time we consider a negative binomial process likelihood (Zhou et al., 2012; Broderick,
Mackey, et al., 2014). The negative binomial process specifies that, given Θ =

∑∞
k=1 θkδψk ,

we draw X =
∑∞

k=1 xkδψk with

xk
indep∼ NegBin(x|r, θk),

for some fixed hyperparameter r > 0. So

Xn =
∞∑

k=1

xn,kδψk .

In this case, Assumption A2 translates into the following restriction.

∞∑

x=1

∫

θ∈R+

ν(dθ) · h(x|θ)

=

∫

θ∈R+

ν(dθ) · [1− h(0|θ)]

=

∫

θ∈(0,1]

γθ−α−1(1− θ)c+α−1dθ · [1− (1− θ)r]

since the support of ν(dθ) is (0, 1]
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<∞.

Since 1− (1− θ)r is asymptotically equivalent to rθ as θ → 0, we require
∫

θ∈(0,1]

θ1−α−1(1− θ)c+α−1dθ <∞,

which is satisfied if and only if 1−α and c+α are the parameters of a proper beta distribution.
Thus, we have the same parameter restrictions as in Eq. (6.11).

Now we calculate the posterior given the beta process prior on Θ and the negative bino-
mial process likelihood for X conditional on Θ. In particular, the posterior has the distribu-
tion of Θpost, a CRM with three parts given by Theorem 6.3.1.

First, at each fixed atom ψfix,k of the prior with weight θfix,k given by Eq. (6.10), there
is a fixed atom in the posterior with weight θpost,fix,k. Let xpost,fix,k := X({ψfix,k}). Then
θpost,fix,k has distribution

Fpost,fix,k(dθ) ∝ Ffix(dθ) · h(xpost,fix,k|θ)
= Beta(θ|ρfix,k, σfix,k) dθ · NegBin(xpost,fix,k|r, θ)
∝ θρfix,k−1(1− θ)σfix,k−1 dθ · θxpost,fix,k(1− θ)r
∝ Beta (θ |ρfix,k + xpost,fix,k, σfix,k + r ) dθ.

(6.13)

Second, for any atom xnew,kδψnew,k in X that is not at a fixed location in the prior, Θpost

has a fixed atom at ψnew,k whose weight θpost,new,k has distribution

Fpost,new,k(dθ) ∝ ν(dθ) · h(xnew,k|θ)
= ν(dθ) · NegBin(xnew,k|r, θ)
∝ θ−α−1(1− θ)c+α−1 dθ · θxnew,k(1− θ)r
∝ Beta (θ |−α + xnew,k, c+ α + r ) dθ,

(6.14)

which is a proper distribution since we have the following restrictions on its parameters. For
one, by assumption, xnew,k ≥ 1. And further, by Eq. (6.11), we have α ∈ [0, 1) as well as
c+ α > 0 and r > 0.

Third, the ordinary component of Θpost has rate measure

ν(dθ)h(0|θ) = γθ−α−1(1− θ)c+α−1 dθ · (1− θ)r
= γθ−α−1(1− θ)c+r+α−1 dθ.

Not only have we found the posterior distribution Θpost above, but now we can note that
the posterior is in the same form as the prior with updated ordinary component hyperpa-
rameters:

γpost = γ

αpost = α
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cpost = c+ r.

The posterior also has old and new beta-distributed fixed atoms with beta distribution
hyperparameters given in Eq. (6.13) and Eq. (6.14), respectively. Thus, we have proven that
the beta process is, in fact, conjugate to the negative binomial process. An alternative proof
was first given by Broderick, Mackey, et al. (2014). �

As in Example 6.3.2, we can use Theorem 6.3.1 not only to calculate posteriors but also,
once those posteriors are calculated, to check for conjugacy. This approach unifies existing
disparate approaches to Bayesian nonparametric conjugacy. However, it still requires the
practitioner to guess the right conjugate prior for a given likelihood. In the next section,
we define a notion of exponential families for CRMs, and we show how to automatically
construct a conjugate prior for any exponential family likelihood.

6.4 Exponential families

Exponential families are what typically make conjugacy so powerful in the finite case. For
one, when a finite likelihood belongs to an exponential family, then existing results give an
automatic conjugate, exponential family prior for that likelihood. In this section, we review
finite exponential families, define exponential CRMs, and show that analogous automatic
conjugacy results can be obtained for exponential CRMs. Our development of exponen-
tial CRMs will also allow particularly straightforward results for size-biased representations
(Corollary 6.5.2 in Section 6.5) and marginal processes (Corollary 6.6.2 in Section 6.6).

In the finite-dimensional case, suppose we have some (random) parameter θ and some
(random) observation x whose distribution is conditioned on θ. We say the distribution
Hexp,like of x conditional on θ is in an exponential family if

Hexp,like(dx|θ) = hexp,like(x|θ) dx
= κ(x) exp {〈η(θ), φ(x)〉 − A(θ)} µ(dx),

(6.15)

where η(θ) is the natural parameter, φ(x) is the sufficient statistic, κ(x) is the base density,
and A(θ) is the log partition function. We denote the density of Hexp,like here, which exists by
definition, by hexp,like. The measure µ—with respect to which the density hexp,like exists—is
typically Lebesgue measure when Hexp,like is diffuse or counting measure when Hexp,like is
atomic. A(θ) is determined by the condition that Hexp,like(dx|θ) have unit total mass on its
support.

It is a classic result that the following distribution for θ ∈ RD constitutes a conjugate
prior:

Fexp,prior(dθ) = fexp,prior(θ) dθ

= exp {〈ξ, η(θ)〉+ λ [−A(θ)]−B(ξ, λ)} dθ. (6.16)
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Fexp,prior is another exponential family distribution, now with natural parameter (ξ′, λ)′, suf-
ficient statistic (η(θ)′,−A(θ))′, and log partition function B(ξ, λ). Note that the logarithms
of the densities in both Eq. (6.15) and Eq. (6.16) are linear in η(θ) and −A(θ). So, by Bayes
Theorem, the posterior Fexp,post also has these quantities as sufficient statistics in θ, and we
can see Fexp,post must have the following form.

Fexp,post(dθ|x)

= fexp,post(θ|x) dθ

= exp {〈ξ + φ(x), η(θ)〉+ (λ+ 1) [−A(θ)]−B(ξ + φ(x), λ+ 1)} dθ.
(6.17)

Thus we see that Fexp,post belongs to the same exponential family as Fexp,prior in Eq. (6.16),
and hence Fexp,prior is a conjugate prior for Hexp,like in Eq. (6.15).

Exponential families for completely random measures

In the finite-dimensional case, we saw that for any exponential family likelihood, as in
Eq. (6.15), we can always construct a conjugate exponential family prior, given by Eq. (6.16).

In order to prove a similar result for CRMs, we start by defining a notion of exponential
families for CRMs.

Definition 6.4.1. We say that a CRM Θ is an exponential CRM if it has the following two
parts. First, let Θ have Kfix fixed-location atoms, where Kfix may be finite or infinite. The
kth fixed-location atom is located at any ψfix,k, unique from the other fixed locations, and
has random weight θfix,k, whose distribution has density ffix,k:

ffix,k(θ) = κ(θ) exp {〈η(ζk), φ(θ)〉 − A(ζk)} ,

for some base density κ, natural parameter function η, sufficient statistic φ, and log partition
function A shared across atoms. Here, ζk is an atom-specific parameter.

Second, let Θ have an ordinary component with rate measure µ(dθ×dψ) = ν(dθ) ·G(dψ)
for some proper distribution G and weight rate measure ν of the form

ν(dθ) = γ exp {〈η(ζ), φ(θ)〉} .

In particular, η and φ are shared with the fixed-location atoms, and fixed hyperparameters
γ and ζ are unique to the ordinary component.

Automatic conjugacy for completely random measures

With Definition 6.4.1 in hand, we can specify an automatic Bayesian nonparametric conju-
gate prior for an exponential CRM likelihood.
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Theorem 6.4.2 (Automatic conjugacy). Let Θ =
∑∞

k=1 θkδψk , in accordance with Assump-
tion A1. Let X be generated conditional on Θ according to an exponential CRM with fixed-
location atoms at {ψk}∞k=1 and no ordinary component. In particular, the distribution of the
weight xk at ψk of X has the following density conditional on the weight θk at ψk of Θ:

h(x|θk) = κ(x) exp {〈η(θk), φ(x)〉 − A(θk)} .

Then a conjugate prior for Θ is the following exponential CRM distribution. First, let Θ
have Kprior,fix fixed-location atoms, in accordance with Assumption A0. The kth such atom
has random weight θfix,k with proper density

fprior,fix,k(θ) = exp {〈ξfix,k, η(θ)〉+ λfix,k [−A(θ)]−B(ξfix,k, λfix,k)} ,

where (η′,−A)′ here is the sufficient statistic and B is the log partition function. ξfix,k and
λfix,k are fixed hyperparameters for this atom weight.

Second, let Θ have ordinary component characterized by any proper distribution G and
weight rate measure

ν(dθ) = γ exp {〈ξ, η(θ)〉+ λ [−A(θ)]} ,
where γ, ξ, and λ are fixed hyperparameters of the weight rate measure chosen to satisfy
Assumptions A1 and A2.

Proof. To prove the conjugacy of the prior for Θ with the likelihood for X, we calculate the
posterior distribution of Θ|X using Theorem 6.3.1. Let Θpost be a CRM with the distribution
of Θ|X. Then, by Theorem 6.3.1, Θpost has the following three parts.

First, at any fixed location ψfix,k in the prior, let xfix,k be the value of X at that location.
Then Θpost has a fixed-location atom at ψfix,k, and its weight θpost,fix,k has distribution

Fpost,fix,k(dθ)

∝ fprior,fix,k(θ) dθ · h(xfix,k|θ)
∝ exp {〈ξfix,k, η(θ)〉+ λfix,k [−A(θ)]} dθ · exp {〈η(θ), φ(xfix,k)〉 − A(θ)} dθ
= exp {〈ξfix,k + φ(xfix,k), η(θ)〉+ (λfix,k + 1) [−A(θ)]} dθ.

It follows, from putting in the normalizing constant, that the distribution of θpost,fix,k has
density

fpost,fix,k(θ) = exp {〈ξfix,k + φ(xfix,k), η(θ)〉+ (λfix,k + 1) [−A(θ)]

−B(ξfix,k + φ(xfix,k), λfix,k + 1)} .

Second, for any atom xnew,kδψnew,k in X that is not at a fixed location in the prior, Θpost

has a fixed atom at ψnew,k whose weight θpost,new,k has distribution

Fpost,new,k(θ) ∝ ν(dθ) · h(xnew,k|θ)
∝ exp {〈ξ, η(θ)〉+ λ [−A(θ)]} · exp {〈η(θ), φ(xnew,k)〉 − A(θ)} dθ
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= exp {〈ξ + φ(xnew,k), η(θ)〉+ (λ+ 1) [−A(θ)]} dθ

and hence density

fpost,new,k(θ) = exp {〈ξ + φ(xnew,k), η(θ)〉+ (λ+ 1) [−A(θ)]

−B(ξ + φ(xnew,k), λ+ 1)} .

Third, the ordinary component of Θpost has weight rate measure

ν(dθ) · h(0|θ)
= γ exp {〈ξ, η(θ)〉+ λ [−A(θ)]} · κ(0) exp {〈η(θ), φ(0)〉 − A(θ)}
= γκ(0) · exp {〈ξ + φ(0), η(θ)〉+ (λ+ 1) [−A(θ)]} .

Thus, the posterior rate measure is in the same exponential CRM form as the prior rate
measure with updated hyperparameters:

γpost = γκ(0)

ξpost = ξ + φ(0)

λpost = λ+ 1.

Since we see that the posterior fixed-location atoms are likewise in the same exponential
CRM form as the prior, we have shown that conjugacy holds, as desired.

We next use Theorem 6.4.2 to give proofs of conjugacy in cases where conjugacy has not
previously been established in the Bayesian nonparametrics literature.

Example 6.4.3. Let X be generated according to a Poisson likelihood process3 conditional
on Θ. That is, X =

∑∞
k=1 xkδψk conditional on Θ =

∑∞
k=1 θkδψk has an exponential CRM

distribution with only a fixed-location component. The weight xk at location ψk has support
on Z∗ and has a Poisson density with parameter θk ∈ R+:

h(x|θk) =
1

x!
θxke
−θk

=
1

x!
exp {x log(θk)− θk} .

(6.18)

The final line is rewritten to emphasize the exponential family form of this density, with

κ(x) =
1

x!
φ(x) = x

η(θ) = log(θ)

3We use the term “Poisson likelihood process” to distinguish this specific Bayesian nonparametric like-
lihood from the Poisson point process.
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A(θ) = θ.

By Theorem 6.4.2, this Poisson likelihood process has a Bayesian nonparametric conjugate
prior for Θ with two parts.

First, Θ has a set of Kprior,fix fixed-location atoms, where Kprior,fix < ∞ by Assump-
tion A0. The kth such atom has random weight θfix,k with density

fprior,fix,k(θ) = exp {〈ξfix,k, η(θ)〉+ λfix,k [−A(θ)]−B(ξfix,k, λfix,k)}
= θξfix,ke−λfix,kθ exp {−B(ξfix,k, λfix,k)}
= Gamma(θ |ξfix,k + 1, λfix,k ), (6.19)

where Gamma(θ|a, b) denotes the gamma density with shape parameter a > 0 and rate
parameter b > 0. So we must have fixed hyperparameters ξfix,k > −1 and λfix,k > 0.
Further,

exp {−B(ξfix,k, λfix,k)} = λ
ξfix,k+1

fix,k /Γ(ξfix,k + 1)

to ensure normalization.
Second, Θ has an ordinary component characterized by any proper distribution G and

weight rate measure

ν(dθ) = γ exp {〈ξ, η(θ)〉+ λ [−A(θ)]} dθ
= γθξe−λθ dθ. (6.20)

Note that Theorem 6.4.2 guarantees that the weight rate measure will have the same distri-
butional kernel in θ as the fixed-location atoms.

Finally, we need to choose the allowable hyperparameter ranges for γ, ξ, and λ. γ > 0 to
ensure ν is a measure. By Assumption A1, we must have ν(R+) = ∞, so ν must represent
an improper gamma distribution. As such, we require either ξ + 1 ≤ 0 or λ ≤ 0. By
Assumption A2, we must have

∞∑

x=1

∫

θ∈R+

ν(dθ) · h(x|θ)

=

∫

θ∈R+

ν(dθ) · [1− h(0|θ)]

=

∫

θ∈R+

γθξe−λθ dθ ·
[
1− e−θ

]

<∞.

To ensure the integral over [1,∞) is finite, we must have λ > 0. To ensure the integral over
(0, 1) is finite, we note that 1− e−θ is asymptotically equivalent to θ as θ → 0. So we require

∫

θ∈(0,1)

γθξ+1e−λθ dθ <∞,
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which is satisfied if and only if ξ + 2 > 0.
Finally, then the hyperparameter restrictions can be summarized as:

γ > 0

ξ ∈ (−2,−1]

λ > 0

ξfix,k > −1 and λfix,k > 0 for all k ∈ [Kprior,fix].

The ordinary component of the conjugate prior for Θ discovered in this example is typ-
ically called a gamma process. Here, we have for the first time specified the distribution of
the fixed-location atoms of the gamma process and, also for the first time, proved that the
gamma process is conjugate to the Poisson likelihood process. We highlight this result as a
corollary to Theorem 6.4.2.

Corollary 6.4.4. Let the Poisson likelihood process be a CRM with fixed-location atom
weight distributions as in Eq. (6.18). Let the gamma process be a CRM with fixed-location
atom weight distributions as in Eq. (6.19) and ordinary component weight measure as in
Eq. (6.20). Then the gamma process is a conjugate Bayesian nonparametric prior for the
Poisson likelihood process.

�

Example 6.4.5. Next, let X be generated according to a new process we call an odds
Bernoulli process. We have previously seen a typical Bernoulli process likelihood in Exam-
ple 6.2.1. In the odds Bernoulli process, we say that X, conditional on Θ, has an exponential
CRM distribution. In this case, the weight of the kth atom, xk, conditional on θk has support
on {0, 1} and has a Bernoulli density with odds parameter θk ∈ R+:

h(x|θk) = θxk(1 + θk)
−1

= exp {x log(θk)− log(1 + θk)} .
(6.21)

That is, if ρ is the probability of a successful Bernoulli draw, then θ = ρ/(1− ρ) represents
the odds ratio of the probability of success over the probability of failure.

The final line of Eq. (6.21) is written to emphasize the exponential family form of this
density, with

κ(x) = 1

φ(x) = x

η(θ) = log(θ)

A(θ) = log(1 + θ).

By Theorem 6.4.2, the likelihood for X has a Bayesian nonparametric conjugate prior for Θ.
This conjugate prior has two parts.
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First, Θ has a set of Kprior,fix fixed-location atoms. The kth such atom has random
weight θfix,k with density

fprior,fix,k(θ) = exp {〈ξfix,k, η(θ)〉+ λfix,k [−A(θ)]−B(ξfix,k, λfix,k)}
= θξfix,k(1 + θ)−λfix,k exp {−B(ξfix,k, λfix,k)}
= BetaPrime (θ |ξfix,k + 1, λfix,k − ξfix,k − 1) , (6.22)

where BetaPrime(θ|a, b) denotes the beta prime density with shape parameters a > 0 and
b > 0. Further,

exp {−B(ξfix,k, λfix,k)} =
Γ(λfix,k)

Γ(ξfix,k + 1)Γ(λfix,k − ξfix,k − 1)

to ensure normalization.
Second, Θ has an ordinary component characterized by any proper distribution G and

weight rate measure

ν(dθ) = γ exp {〈ξ, η(θ)〉+ λ [−A(θ)]} dθ
= γθξ(1 + θ)−λ dθ. (6.23)

We need to choose the allowable hyperparameter ranges for γ, ξ, and λ. γ > 0 to ensure
ν is a measure. By Assumption A1, we must have ν(R+) = ∞, so ν must represent an
improper beta prime distribution. As such, we require either ξ + 1 ≤ 0 or λ− ξ− 1 ≤ 0. By
Assumption A2, we must have

∞∑

x=1

∫

θ∈R+

ν(dθ) · h(x|θ)

=

∫

θ∈R+

ν(dθ) · h(1|θ)

since the support of x is {0, 1}

=

∫

θ∈R+

γθξ(1 + θ)−λ dθ · θ1(1 + θ)−1

= γ

∫

θ∈R+

θξ+1(1 + θ)−λ−1 dθ

<∞.

Since the integrand is the kernel of a beta prime distribution, we simply require that this
distribution be proper; i.e., ξ + 2 > 0 and λ− ξ − 1 > 0.

The hyperparameter restrictions can be summarized as:

γ > 0
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ξ ∈ (−2,−1]

λ > ξ + 1

ξfix,k > −1 and λfix,k > ξfix,k + 1 for all k ∈ [Kprior,fix].

We call the distribution for Θ described in this example the beta prime process. Its
ordinary component has previously been defined by Broderick, Mackey, et al. (2014). But
this result represents the first time the beta prime process is described in full, including
parameter restrictions and fixed-location atoms, as well as the first proof of its conjugacy
with the odds Bernoulli process. We highlight the latter result as a corollary to Theorem 6.4.2
below.

Corollary 6.4.6. Let the odds Bernoulli process be a CRM with fixed-location atom weight
distributions as in Eq. (6.21). Let the beta process be a CRM with fixed-location atom weight
distributions as in Eq. (6.22) and ordinary component weight measure as in Eq. (6.23). Then
the beta process is a conjugate Bayesian nonparametric prior for the odds Bernoulli process.

�

6.5 Size-biased representations

We have shown in Section 6.4 that our exponential CRM (Definition 6.4.1) is useful in that
we can find an automatic Bayesian nonparametric conjugate prior given an exponential CRM
likelihood. We will see in this section and the next that exponential CRMs allow us to build
representations that allow tractable inference despite the infinite-dimensional nature of the
models we are using.

The best-known size-biased representation of a random measure in Bayesian nonparamet-
rics is the stick-breaking representation of the Dirichlet process ΘDP (Sethuraman, 1994):

ΘDP =
∞∑

k=1

θDP,kδψk

θDP,k = βk

k−1∏

j=1

(1− βj) for k ∈ Z∗

βk
iid∼ Beta(1, c)

ψk
iid∼ G,

(6.24)

where c is a fixed hyperparameter satisfying c > 0.
The name stick-breaking originates from thinking of the unit interval as a stick of length

one. At each round k, only some of the stick remains; βk describes the proportion of the
remaining stick that is broken off in round k, and θDP,k describes the total amount of re-
maining stick that is broken off in round k. By construction, not only is each θDP,k ∈ (0, 1)
but in fact the θDP,k add to one (the total stick length) and thus describe a distribution.
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Eq. (6.24) is called a size-biased representation for the following reason. Since the weights
{θDP,k}∞k=1 describe a distribution, we can make draws from this distribution; each such draw
is sometimes thought of as a multinomial draw with a single trial. In that vein, typically we
imagine that our data points Xmult,n are described as iid draws conditioned on ΘDP , where
Xmult,n is a random measure with just a single atom:

Xmult,n = δψmult,n

ψmult,n = ψk with probability θDP,k.
(6.25)

Then the limiting proportion of data points Xmult,n with atom at ψmult,1 (the first atom
location chosen) is θDP,1. The limiting proportion of data points with atom at the next
unique atom location chosen will have size θDP,2, and so on (Broderick, Jordan, and Pitman,
2013).

The representation in Eq. (6.24) is so useful because there is a familiar, finite-dimensional
distribution for each of the atom weights θDP,k of the random measure ΘDP . This repre-
sentation allows approximate inference via truncation (Ishwaran and James, 2001) or exact
inference via slice sampling (Walker, 2007; Kalli, Griffin, and Walker, 2011).

Since the weights {θDP,k}∞k=1 are constrained to sum to one, the Dirichlet process is not
a CRM.4 However, size-biased representations have been explored in the past for particular
CRM examples, notably the beta process (Paisley, Zaas, et al., 2010; Broderick, Jordan,
and Pitman, 2012). And even though there is no interpretation of these representations in
terms of a single stick representing all probability mass, they are sometimes referred to as
stick-breaking representations as a nod to the popularity of Dirichlet process stick-breaking.

In the beta process case, such size-biased representations have already been shown to
allow approximate inference via truncation (Doshi et al., 2009; Paisley, Carin, and Blei,
2011) or exact inference via slice sampling (Teh, Görür, and Ghahramani, 2007; Broderick,
Mackey, et al., 2014). Here we provide general recipes for the creation of these representations
and illustrate our recipes by discovering previously unknown size-biased representations.

We have seen that a general CRM Θ takes the form of an a.s. discrete random measure:

∞∑

k=1

θkδψk . (6.26)

The fixed-location atoms are straightforward to simulate; there are finitely many by As-
sumption A0, their locations are fixed, and their weights are assumed to come from finite-
dimensional distributions. The infinite-dimensionality of the Bayesian nonparametric CRM
comes from the ordinary component (cf. Section 6.2 and Assumption A1). So far the only
description we have of the ordinary component is its generation from the countable infinity
of points in a Poisson point process. The next result constructively demonstrates that we
can represent the distributions of the CRM weights {θk}∞k=1 in Eq. (6.26) as a sequence of
finite-dimensional distributions, much as in the familiar Dirichlet process case.

4In fact, the Dirichlet process is a normalized gamma process (cf. Example 6.4.3) (Ferguson, 1973).
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Theorem 6.5.1 (Size-biased representations). Let Θ be a completely random measure that
satisfies Assumptions A0 and A1; that is, Θ is a CRM with Kfix fixed atoms such that
Kfix < ∞ and such that the kth atom can be written θfix,kδψfix,k . The ordinary component
of Θ has rate measure

µ(dθ × dψ) = ν(dθ) ·G(dψ),

where G is a proper distribution and ν(R+) = ∞. Write Θ =
∑∞

k=1 θkδψk , and let Xn be

generated iid given Θ according to Xn =
∑∞

k=1 xn,kδψk with xn,k
indep∼ h(x|θk) for proper,

discrete probability mass function h. And suppose Xn and Θ jointly satisfy Assumption A2
so that

∞∑

x=1

∫

θ∈R+

ν(dθ)h(x|θ) <∞.

Then we can write

Θ =
∞∑

m=1

∞∑

x=1

ρm,x∑

j=1

θm,x,jδψm,x,j

ψm,x,k
iid∼ G iid across m,x, j

ρm,x
indep∼ Poisson

(
ρ

∣∣∣∣
∫

θ

ν(dθ)h(0|θ)m−1h(x|θ)
)

across m,x

θm,x,j
indep∼ Fsize,m,x(dθ) ∝ ν(dθ)h(0|θ)m−1h(x|θ)
iid across j and independently across m,x.

(6.27)

Proof. By construction, Θ is an a.s. discrete random measure with a countable infinity of
atoms. Without loss of generality, suppose that for every (non-zero) value of an atom weight
θ, there is a non-zero probability of generating an atom with non-zero weight x in the
likelihood. Now suppose we generate X1, X2, . . .. Then, for every atom θδψ of Θ, there exists
some finite n with an atom at ψ. Therefore, we can enumerate all of the atoms of Θ by
enumerating

• Each atom θδψ such that there is an atom in X1 at ψ.

• Each atom θδψ such that there is an atom in X2 at ψ but there is not an atom in X1

at ψ.
...

• Each atom θδψ such that there is an atom in Xm at ψ but there is not an atom in any
of X1, X2, . . . , Xm−1 at ψ.
...

Moreover, on the mth round of this enumeration, we can further break down the enumeration
by the value of the observation Xm at the atom location:
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• Each atom θδψ such that there is an atom in Xm of weight 1 at ψ but there is not an
atom in any of X1, X2, . . . , Xm−1 at ψ.

• Each atom θδψ such that there is an atom in Xm of weight 2 at ψ but there is not an
atom in any of X1, X2, . . . , Xm−1 at ψ.
...

• Each atom θδψ such that there is an atom in Xm of weight x at ψ but there is not
an atom in any of X1, X2, . . . , Xm−1 at ψ.
...

Recall that the values θk that form the weights of Θ are generated according to a Poisson
point process with rate measure ν(dθ). So, on the first round, the values of θk such that
x1,k = x also holds are generated according to a thinned Poisson point process with rate
measure

ν(dθ)h(x|θ).
In particular, since the rate measure has finite total mass by Assumption A2, we can define

M1,x :=

∫

θ

ν(dθ)h(x|θ),

which will be finite. Then the number of atoms θk for which x1,k = x is

ρ1,x ∼ Poisson(ρ|M1,x).

And each such θk has weight with distribution

Fsize,1,x(dθ) ∝ ν(dθ)h(x|θ).

Finally, note from Theorem 6.3.1 that the posterior Θ|X1 has weight rate measure

ν1(dθ) := ν(dθ)h(0|θ).

Now take any m > 1. Suppose, inductively, that the ordinary component of the posterior
Θ|X1, . . . , Xm−1 has weight rate measure

νm−1(dθ) := ν(dθ)h(0|θ)m−1.

The atoms in this ordinary component have been selected precisely because they have not
appeared in any of X1, . . . , Xm−1. As for m = 1, we have that the atoms θk in this ordinary
component with corresponding weight in Xm equal to x are formed by a thinned Poisson
point process, with rate measure

νm−1(dθ)h(x|θ) = ν(dθ)h(0|θ)m−1h(x|θ).
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Since the rate measure has finite total mass by Assumption A2, we can define

Mm,x :=

∫

θ

ν(dθ)h(0|θ)m−1h(x|θ),

which will be finite. Then the number of atoms θk for which x1,k = x is

ρm,x ∼ Poisson(ρ|Mm,x).

And each such θk has weight

Fsize,m,x ∝ ν(dθ)h(0|θ)m−1h(x|θ).

Finally, note from Theorem 6.3.1 that the posterior Θ|X1:m, which can be thought of as
generated by prior Θ|X1:(m−1) and likelihood Xm|Θ, has weight rate measure

ν(dθ)h(0|θ)m−1h(0|θ) = νm(dθ),

confirming the inductive hypothesis.
Recall that every atom of Θ is found in exactly one of these rounds and that x ∈ Z+. Also

recall that the atom locations may be generated independently and identically across atoms,
and independently from all the weights, according to proper distribution G (Section 6.2).
To summarize, we have then

Θ =
∞∑

m=1

∞∑

x=1

ρm,x∑

j=1

θm,x,jδψm,x,j ,

where

ψm,x,k
iid∼ G iid across m,x, j

Mm,x =

∫

θ

ν(dθ)h(0|θ)m−1h(x|θ) across m,x

ρm,x
indep∼ Poisson(ρ|Mm,x) across m,x

Fsize,m,x(dθ) ∝ ν(dθ)h(0|θ)m−1h(x|θ) across m,x

θm,x,j
indep∼ Fsize,m,x(dθ) iid across j and independently across m,x,

as was to be shown.

The following corollary gives a more detailed recipe for the calculations in Theorem 6.5.1
when the prior is in a conjugate exponential CRM to the likelihood.

Corollary 6.5.2 (Exponential CRM size-biased representations). Let Θ be an exponential
CRM with no fixed-location atoms (thereby trivially satisfying Assumption A0) such that
Assumption A1 holds.
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Let X be generated conditional on Θ according to an exponential CRM with fixed-location
atoms at {ψk}∞k=1 and no ordinary component. Let the distribution of the weight xn,k at ψk
have probability mass function

h(x|θk) = κ(x) exp {〈η(θk), φ(x)〉 − A(θk)} .

Suppose that Θ and X jointly satisfy Assumption A2. And let Θ be conjugate to X as in
Theorem 6.4.2. Then we can write

Θ =
∞∑

m=1

∞∑

x=1

ρm,x∑

j=1

θm,x,jδψm,x,j

ψm,x,j
iid∼ G iid across m,x, j

Mm,x = γ · κ(0)m−1κ(x) · exp {B(ξ + (m− 1)φ(0) + φ(x), λ+m)}
ρm,x

indep∼ Poisson (ρ|Mm,x)

independently across m,x

θm,x,j
indep∼ fsize,m,x(θ) dθ

= exp {〈ξ + (m− 1)φ(0) + φ(x), η(θ)〉+ (λ+m)[−A(θ)]

−B(ξ + (m− 1)φ(0) + φ(x), λ+m)}
iid across j and independently across m,x.

(6.28)

Proof. The corollary follows from Theorem 6.5.1 by plugging in the particular forms for
ν(dθ) and h(x|θ).

In particular,

Mm,x =

∫

θ∈R+

ν(dθ)h(0|θ)m−1h(x|θ)

=

∫

θ∈R+

γ exp {〈ξ, η(θ)〉+ λ [−A(θ)]}

· [κ(0) exp {〈η(θ), φ(0)〉 − A(θ)}]m−1

· κ(x) exp {〈η(θ), φ(x)〉 − A(θ)} dθ
= γκ(0)m−1κ(x) exp {B (ξ + (m− 1)φ(0) + φ(x), λ+m)} ,

Corollary 6.5.2 can be used to find the known size-biased representation of the beta pro-
cess (Thibaux and Jordan, 2007); we demonstrate this derivation in detail in Example 6.B.1
in Appendix 6.B. Here we use Corollary 6.5.2 to discover a new size-biased representation of
the gamma process.
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Example 6.5.3. Let Θ be a gamma process, and let Xn be iid Poisson likelihood processes
conditioned on Θ for each n as in Example 6.4.3. That is, we have

ν(dθ) = γθξe−λθ dθ.

And

h(x|θk) =
1

x!
θxke
−θk

with

γ > 0

ξ ∈ (−2,−1]

λ > 0

ξfix,k > −1 and λfix,k > 0 for all k ∈ [Kprior,fix]

by Example 6.4.3.
We can pick out the following components of h:

κ(x) =
1

x!
φ(x) = x

η(θ) = log(θ)

A(θ) = θ.

Thus, by Corollary 6.5.2, we have

fsize,m,x(θ) ∝ θξ+xe−(λ+m)θ

∝ Gamma (θ |ξ + x+ 1, λ+m) .

We summarize the representation that follows from Corollary 6.5.2 in the following result.

Corollary 6.5.4. Let the gamma process be a CRM Θ with fixed-location atom weight dis-
tributions as in Eq. (6.19) and ordinary component weight measure as in Eq. (6.20). Then
we may write

Θ =
∞∑

m=1

∞∑

x=1

ρm,x∑

j=1

θm,x,jδψm,x,j

ψm,x,j
iid∼ G iid across m,x, j

Mm,x = γ · 1

x!
· Γ(ξ + x+ 1) · (λ+m)−(ξ+x+1) across m,x

ρm,x
indep∼ Poisson (ρ|Mm,x) across m,x

θm,x,j
indep∼ Gamma (θ |ξ + x+ 1, λ+m)

iid across j and independently across m,x.

�
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6.6 Marginal processes

In Section 6.5, although we conceptually made use of the observations {X1, X2, . . .}, we
focused on a representation of the prior Θ: cf. Eqs. (6.27) and (6.28). In this section, we
provide a representation of the marginal of X1:N , with Θ integrated out.

The canonical example of a marginal process again comes from the Dirichlet process (DP).
In this case, the full model consists of the DP-distributed prior on ΘDP (as in Eq. (6.24))
together with the likelihood for Xmult,n conditional on ΘDP (iid across n) described by
Eq. (6.25). Then the marginal distribution of Xmult,1:N is described by the Chinese restaurant
process. This marginal takes the following form.

For each n = 1, 2, . . . , N ,

1. Let {ψk}Kn−1

k=1 be the union of atom locations in Xmult,1, . . . , Xmult,n−1. Then

Xmult,n|Xmult,1, . . . , Xmult,n−1

has a single atom at ψ, where

ψ =

{
ψk with probability ∝ ∑Kn−1

k=1 Xmult,m({ψk})
ψnew with probability ∝ c

ψnew ∼ G

In the case of CRMs, the canonical example of a marginal process is the Indian buffet
process (Griffiths and Ghahramani, 2006). Both the Chinese restaurant process and Indian
buffet process have proven popular for inference since the underlying infinite-dimensional
prior is integrated out in these processes and only the finite-dimensional marginal remains.
Indeed, by Assumption A2, we know that this will generally be the case for our CRM
Bayesian models. And thus we have the following general marginal representations for such
models.

Theorem 6.6.1 (Marginal representations). Let Θ be a completely random measure that
satisfies Assumptions A0 and A1; that is, Θ is a CRM with Kfix fixed atoms such that
Kfix < ∞ and such that the kth atom can be written θfix,kδψfix,k . The ordinary component
of Θ has rate measure

µ(dθ × dψ) = ν(dθ) ·G(dψ),

where G is a proper distribution and ν(R+) = ∞. Write Θ =
∑∞

k=1 θkδψk , and let Xn be

generated iid given Θ according to Xn =
∑∞

k=1 xn,kδψk with xn,k
indep∼ h(x|θk) for proper,

discrete probability mass function h. And suppose Xn and Θ jointly satisfy Assumption A2
so that

∞∑

x=1

∫

θ∈R+

ν(dθ)h(x|θ) <∞.
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Then the marginal distribution of X1:N is the same as that provided by the following
construction.

For each n = 1, 2, . . . , N ,

1. Let {ψk}Kn−1

k=1 be the union of atom locations in X1, . . . , Xn−1. Let xm,k := Xm({ψk}).
Let xn,k denote the weight of Xn|X1, . . . , Xn−1 at ψk. Then xn,k has distribution de-
scribed by the following probability mass function:

hcond
(
xn,k = x

∣∣x1:(n−1),k

)
=

∫
θ∈R+

ν(dθ)h(x|θ)∏n−1
m=1 h(xm,k|θ)∫

θ∈R+
ν(dθ)

∏n−1
m=1 h(xm,k|θ)

.

2. For each x = 1, 2, . . .

• Xn has ρn,x new atoms. That is, Xn has atoms at locations {ψn,x,j}ρn,xj=1 , where

{ψn,x,j}ρn,xj=1 ∩ {ψk}Kn−1

k=1 = ∅ a.s.

Moreover,

ρn,x
indep∼ Poisson

(
ρ

∣∣∣∣
∫

θ

ν(dθ)h(0|θ)n−1h(x|θ)
)

across n, x

ψn,x,j
iid∼ G(dψ) across n, x, j.

Proof. We saw in the proof of Theorem 6.5.1 that the marginal for X1 can be expressed as
follows. For each x ∈ Z+, there are ρ1,x atoms of X1 with weight x, where

ρ1,x
indep∼ Poisson

(∫

θ

ν(dθ)h(x|θ)
)

across x.

These atoms have locations {ψ1,x,j}ρ1,xj=1, where

ψ1,x,j
iid∼ G(dψ) across x, j.

For the upcoming induction, let K1 :=
∑∞

x=1 ρ1,x. And let {ψk}K1
k=1 be the (a.s. disjoint by

assumption) union of the sets {ψ1,x,j}ρ1,xj=1 across x. Note that K1 is finite by Assumption A2.
We will also find it useful in the upcoming induction to let Θpost,1 have the distribution

of Θ|X1. Let θpost,1,x,j = Θpost,1({ψ1,x,j}). By Theorem 6.3.1 or the proof of Theorem 6.5.1,
we have that

θpost,1,x,j
indep∼ Fpost,1,x,j(dθ) ∝ ν(dθ)h(x|θ)

independently across x and iid across j.

Now take any n > 1. Inductively, we assume {ψn−1,k}Kn−1

k=1 is the union of all the atom
locations of X1, . . . , Xn−1. Further assume Kn−1 is finite. Let Θpost,n−1 have the distribution
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of Θ|X1, . . . , Xn−1. Let θn−1,k be the weight of Θpost,n−1 at ψn−1,k. And, for any m ∈ [n− 1],
let xm,k be the weight of Xm at ψn−1,k. We inductively assume that

θn−1,k
indep∼ Fn−1,k(dθ) ∝ ν(dθ)

n−1∏

m=1

h(xm,k|θ)

independently across k.

(6.29)

Now let ψn,k equal ψn−1,k for k ∈ [Kn−1]. Let xn,k denote the weight of Xn at ψn,k for k ∈
[Kn−1]. Conditional on the atom weight of Θ at ψn,k, the atom weights of X1, . . . , Xn−1, Xn

are independent. Since the atom weights of Θ are independent as well, we have that
xn,k|X1, . . . , Xn−1 has the same distribution as xn,k|x1,k, . . . , xn−1,k. We can write the prob-
ability mass function of this distribution as follows.

hcond (xn,k = x |x1,k, . . . , xn−1,k )

=

∫

θ∈R+

Fn−1,k(dθ)h(x|θ)

=

∫
θ∈R+

[
ν(dθ)

∏n−1
m=1 h(xm,k|θ)

]
· h(x|θ)

∫
θ∈R+

ν(dθ)
∏n−1

m=1 h(xm,k|θ)
,

where the last line follows from Eq. (6.29).
We next show the inductive hypothesis in Eq. (6.29) holds for n and k ∈ [Kn−1]. Let xn,k

denote the weight of Xn at ψn,k for k ∈ [Kn−1]. Let Fn,k(dθ) denote the distribution of xn,k
and note that

Fn,k(dθ) ∝ Fn−1,k(dθ) · h(xn,k|θ)

= ν(dθ)
n∏

m=1

h(xm,k|θ),

which agrees with Eq. (6.29) for n when we assume the result for n− 1.
The previous development covers atoms that are present in at least one of X1, . . . , Xn−1.

Next we consider new atoms in Xn; that is, we consider atoms in Xn for which there are no
atoms at the same location in any of X1, . . . , Xn−1.

We saw in the proof of Theorem 6.5.1 that, for each x ∈ Z+, there are ρn,x new atoms of
Xn with weight x such that

ρn,x
indep∼ Poisson

(
ρ

∣∣∣∣
∫

θ

ν(dθ)h(0|θ)n−1h(x|θ)
)

across x.

These new atoms have locations {ψn,x,j}ρn,xj=1 with

ψn,x,j
iid∼ G(dψ) across x, j.
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By Assumption A2,
∑∞

x=1 ρn,x <∞. So

Kn := Kn−1 +
∞∑

x=1

ρn,x

remains finite. Let ψn,k for k ∈ {Kn−1 + 1, . . . , Kn} index these new locations. Let θn,k be
the weight of Θpost,n at ψn,k for k ∈ {Kn−1 + 1, . . . , Kn}. And let xn,k be the value of X at
ψn,k.

We check that the inductive hypothesis holds. By repeated application of Theorem 6.3.1,
the ordinary component of Θ|X1, . . . , Xn−1 has rate measure

ν(dθ)h(0|θ)n−1.

So, again by Theorem 6.3.1, we have that

θn,k
indep∼ Fn.k(dθ) ∝ ν(dθ)h(0|θ)n−1h(xn,k|θ).

Since Xm has value 0 at ψn,k for m ∈ {1, . . . , n − 1} by construction, we have that the
inductive hypothesis holds.

As in the case of size-biased representations (Section 6.5 and Corollary 6.5.2), we can find
a more detailed recipe when the prior is in a conjugate exponential CRM to the likelihood.

Corollary 6.6.2 (Exponential CRM marginal representations). Let Θ be an exponential
CRM with no fixed-location atoms (thereby trivially satisfying Assumption A0) such that
Assumption A1 holds.

Let X be generated conditional on Θ according to an exponential CRM with fixed-location
atoms at {ψk}∞k=1 and no ordinary component. Let the distribution of the weight xn,k at ψk
have probability mass function

h(x|θk) = κ(x) exp {〈η(θk), φ(x)〉 − A(θk)} .

Suppose that Θ and X jointly satisfy Assumption A2. And let Θ be conjugate to X as in
Theorem 6.4.2. Then the marginal distribution of X1:N is the same as that provided by the
following construction.

For each n = 1, 2, . . . , N ,

1. Let {ψk}Kn−1

k=1 be the union of atom locations in X1, . . . , Xn−1. Let xm,k := Xm({ψk}).
Let xn,k denote the weight of Xn|X1, . . . , Xn−1 at ψk. Then xn,k has distribution de-
scribed by the following probability mass function:

hcond
(
xn,k = x

∣∣x1:(n−1),k

)

= κ(x) exp

{
−B(ξ +

n−1∑

m=1

xm, λ+ n− 1) +B(ξ +
n−1∑

m=1

xm + x, λ+ n)

}
.
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2. For each x = 1, 2, . . .

• Xn has ρn,x new atoms. That is, Xn has atoms at locations {ψn,x,j}ρn,xj=1 , where

{ψn,x,j}ρn,xj=1 ∩ {ψk}Kn−1

k=1 = ∅ a.s.

Moreover,

Mn,x := γ · κ(0)n−1κ(x) · exp {B(ξ + (n− 1)φ(0) + φ(x), λ+ n)}
across n, x

ρn,x
indep∼ Poisson (ρ |Mn,x ) across n, x

ψn,x,j
iid∼ G(dψ) across n, x, j.

Proof. The corollary follows from Theorem 6.6.1 by plugging in the forms for ν(dθ) and
h(x|θ).

In particular,

∫

θ∈R+

ν(dθ)
n∏

m=1

h(xm,k|θ)

=

∫

θ∈R+

γ exp {〈ξ, η(θ)〉+ λ [−A(θ)]} ·
[

n∏

m=1

κ(xm,k) exp {〈η(θ), φ(xm,k)〉 − A(θ)}
]

= γ

[
n∏

m=1

κ(xm,k)

]
B

(
ξ +

n∑

m=1

φ(xm,k), λ+ n

)
.

So

hcond
(
xn,k = x

∣∣x1:(n−1),k

)

=

∫
θ∈R+

ν(dθ)h(x|θ)∏n−1
m=1 h(xm,k|θ)∫

θ∈R+
ν(dθ)

∏n−1
m=1 h(xm,k|θ)

= κ(x) exp

{
−B(ξ +

n−1∑

m=1

xm, λ+ n− 1) +B(ξ +
n−1∑

m=1

xm + x, λ+ n)

}
.

In Example 6.C.1 in Appendix 6.C we show that Corollary 6.6.2 can be used to recover
the Indian buffet process marginal from a beta process prior together with a Bernoulli process
likelihood. In the following example, we discover a new marginal for the Poisson likelihood
process with gamma process prior.
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Example 6.6.3. Let Θ be a gamma process, and let Xn be iid Poisson likelihood processes
conditioned on Θ for each n as in Example 6.4.3. That is, we have

ν(dθ) = γθξe−λθ dθ.

And

h(x|θk) =
1

x!
θxke
−θk

with

γ > 0

ξ ∈ (−2,−1]

λ > 0

ξfix,k > −1 and λfix,k > 0 for all k ∈ [Kprior,fix]

by Example 6.4.3.
We can pick out the following components of h:

κ(x) =
1

x!
φ(x) = x

η(θ) = log(θ)

A(θ) = θ.

And we calculate

exp {B(ξ, λ)} =

∫

θ∈R+

exp {〈ξ, η(θ)〉+ λ[−A(θ)]} dθ

=

∫

θ∈R+

θξe−λθ

= Γ(ξ + 1)λ−(ξ+1).

So, for k ∈ Z∗, we have

P(xn = x) = κ(x) exp

{
−B(ξ +

n−1∑

m=1

xm, λ+ n− 1) +B(ξ +
n−1∑

m=1

xm + x, λ+ n)

}

=
1

x!
· (λ+ n− 1)ξ+

∑n−1
m=1 xm+1

Γ(ξ +
∑n−1

m=1 xm + 1)

· Γ(ξ +
∑n−1

m=1 xm + x+ 1)

(λ+ n)ξ+
∑n−1
m=1 xm+x+1

=
Γ(ξ +

∑n−1
m=1 xm + x+ 1)

Γ(x+ 1)Γ(ξ +
∑n−1

m=1 xm + 1)
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·
(
λ+ n− 1

λ+ n

)ξ+∑n
m=1 xm+1(

1

λ+ n

)x

= NegBin

(
x

∣∣∣∣∣ξ +
n−1∑

m=1

xm + 1, (λ+ n)−1

)
.

And

Mn,x := γ · κ(0)n−1κ(x) · exp {B(ξ + (n− 1)φ(0) + φ(x), λ+ n)}

= γ · 1

x!
· Γ(ξ + x+ 1)(λ+ n)−(ξ+x+1).

We summarize the marginal distribution representation of X1:N that follows from Corol-
lary 6.6.2 in the following result.

Corollary 6.6.4. Let Θ be a gamma process with fixed-location atom weight distributions as
in Eq. (6.19) and ordinary component weight measure as in Eq. (6.20). Let Xn be drawn, iid
across n, conditional on Θ according to a Poisson likelihood process with fixed-location atom
weight distributions as in Eq. (6.18). Then X1:N has the same distribution as the following
construction.

For each n = 1, 2, . . . , N ,

1. Let {ψk}Kn−1

k=1 be the union of atom locations in X1, . . . , Xn−1. Let xm,k := Xm({ψk}).
Let xn,k denote the weight of Xn|X1, . . . , Xn−1 at ψk. Then xn,k has distribution de-
scribed by the following probability mass function:

hcond
(
xn,k = x

∣∣x1:(n−1),k

)

= NegBin

(
x

∣∣∣∣∣ξ +
n−1∑

m=1

xm,k + 1, (λ+ n)−1

)
.

2. For each x = 1, 2, . . .

• Xn has ρn,x new atoms. That is, Xn has atoms at locations {ψn,x,j}ρn,xj=1 , where

{ψn,x,j}ρn,xj=1 ∩ {ψk}Kn−1

k=1 = ∅ a.s.

Moreover,

Mn,x := γ · 1

x!
· Γ(ξ + x+ 1)

(λ+ n)ξ+x+1

across n, x

ρn,x
indep∼ Poisson (ρ |Mn,x ) independently across n, x

ψn,x,j
iid∼ G(dψ) independently across n, x and iid across j.

�
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6.7 Discussion

In the preceding sections, we have shown how to calculate posteriors for general CRM-based
priors and likelihoods for Bayesian nonparametric models. We have also shown how to
represent Bayesian nonparametric priors as a sequence of finite draws, and full Bayesian
nonparametric models via finite marginals. We have introduced a notion of exponential
families for CRMs, which we call exponential CRMs, that has allowed us to specify automatic
Bayesian nonparametric conjugate priors for exponential CRM likelihoods. And we have
demonstrated that our exponential CRMs allow particularly straightforward recipes for size-
biased and marginal representations of Bayesian nonparametric models. Along the way, we
have proved that the gamma process is a conjugate prior for the Poisson likelihood process
and the beta prime process is a conjugate prior for the odds Bernoulli process. We have
discovered a size-biased representation of the gamma process and a marginal representation
of the gamma process coupled with a Poisson likelihood process.

All of this work has relied heavily on the description of Bayesian nonparametric models
in terms of completely random measures. As such, we have worked very particularly with
pairings of real values—the CRM atom weights, which we have interpreted as trait frequen-
cies or rates—together with trait descriptors—the CRM atom locations. However, all of
our proofs broke into essentially two parts: the fixed-location atom part and the ordinary
component part. The fixed-location atom development essentially translated into the usual
finite version of Bayes Theorem and could easily be extended to full Bayesian models where
the prior describes a random element that need not be real-valued. Moreover, the ordinary
component development relied entirely on its generation as a Poisson point process over a
product space. It seems reasonable to expect that our development might carry through
when the first element in this tuple need not be real-valued. And thus we believe our results
are suggestive of broader results over more general spaces.

6.A Further automatic conjugate priors

We use Theorem 6.4.2 to calculate automatic conjugate priors for further exponential CRMs.

Example 6.A.1. Let X be generated according to a Bernoulli process as in Example 6.2.1.
That is, X has an exponential CRM distribution with Klike,fix fixed-location atoms, where
Klike,fix <∞ in accordance with Assumption A0:

X =

Klike,fix∑

k=1

xlike,kδψlike,k .

The weight of the kth atom, xlike,k, has support on {0, 1} and has a Bernoulli density with
parameter θk ∈ (0, 1]:

h(x|θk) = θxk(1− θk)1−x
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= exp {x log(θk/(1− θk)) + log(1− θk)} .

The final line is rewritten to emphasize the exponential family form of this density, with

κ(x) = 1

φ(x) = x

η(θ) = log

(
θ

1− θ

)

A(θ) = − log(1− θ).

Then, by Theorem 6.4.2, X has a Bayesian nonparametric conjugate prior for

Θ :=

Klike,fix∑

k=1

θkδψk .

This conjugate prior has two parts.
First, Θ has a set of Kprior,fix fixed-location atoms at some subset of the Klike,fix fixed

locations of X. The kth such atom has random weight θfix,k with density

fprior,fix,k(θ) = exp {〈ξfix,k, η(θ)〉+ λfix,k [−A(θ)]−B(ξfix,k, λfix,k)}
= θξfix,k(1− θ)λfix,k−ξfix,k exp {−B(ξfix,k, λfix,k)}
= Beta (θ |ξfix,k + 1, λfix,k − ξfix,k + 1) ,

where Beta(θ|a, b) denotes the beta density with shape parameters a > 0 and b > 0. So we
must have fixed hyperparameters ξfix,k > −1 and λfix,k > ξfix,k − 1. Further,

exp {−B(ξfix,k, λfix,k)} =
Γ(λfix,k + 2)

Γ(ξfix,k + 1)Γ(λfix,k − ξfix,k + 1)

to ensure normalization.
Second, Θ has an ordinary component characterized by any proper distribution G and

weight rate measure

ν(dθ) = γ exp {〈ξ, η(θ)〉+ λ [−A(θ)]} dθ
= γθξ(1− θ)λ−ξ dθ.

Finally, we need to choose the allowable hyperparameter ranges for γ, ξ, and λ. γ > 0
ensures ν is a measure. By Assumption A1, we must have ν(R+) =∞, so ν must represent
an improper beta distribution. As such, we require either ξ + 1 ≤ 0 or λ − ξ ≤ 0. By
Assumption A2, we must have

∞∑

x=1

∫

θ∈R+

ν(dθ) · h(x|θ)
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=

∫

θ∈(0,1]

ν(dθ)h(1|θ)

since the support of x is {0, 1} and the support of θ is (0, 1]

= γ

∫

θ∈(0,1]

θξ(1− θ)λ−ξ dθ · θ

<∞

Since the integrand is the kernel of a beta distribution, the integral is finite if and only if
ξ + 2 > 0 and λ− ξ + 1 > 0.

Finally, then the hyperparameter restrictions can be summarized as:

γ > 0

ξ ∈ (−2,−1]

λ > ξ − 1

ξfix,k > −1 and λfix,k > ξfix,k − 1 for all k ∈ [Kprior,fix]

By setting α = ξ+ 1, c = λ+ 2, ρfix,k = ξfix,k + 1, and σfix,k = λfix,k − ξfix,k + 1, we recover
the hyperparameters of Eq. (6.11) in Example 6.2.1. Here, by contrast to Example 6.2.1, we
found the conjugate prior and its hyperparameter settings given just the Bernoulli process
likelihood. Henceforth, we use the parameterization of the beta process above. �

6.B Further size-biased representations

Example 6.B.1. Let Θ be a beta process, and let Xn be iid Bernoulli processes conditioned
on Θ for each n as in Example 6.A.1. That is, we have

ν(dθ) = γθξ(1− θ)λ−ξ dθ.

And
h(x|θk) = θxk(1− θk)1−x

with

γ > 0

ξ ∈ (−2,−1]

λ > ξ − 1

ξfix,k > −1 and λfix,k > ξfix,k − 1 for all k ∈ [Kprior,fix]

by Example 6.A.1.
We can pick out the following components of h:

κ(x) = 1
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φ(x) = x

η(θ) = log

(
θ

1− θ

)

A(θ) = − log(1− θ).
Thus, by Corollary 6.5.2,

Θ =
∞∑

m=1

∞∑

x=1

ρm,x∑

j=1

θm,x,jδψm,x,j

ψm,x,j
iid∼ G iid across m,x, j

θm,x,j
indep∼ fsize,m,x(θ) dθ

∝ θξ+x(1− θ)λ+m−ξ−x dθ

∝ Beta (θ |ξ + x, λ− ξ +m− x) dθ

iid across j and independently across m,x

Mm,x := γ · Γ(ξ + x+ 1)Γ(λ− ξ +m− x+ 1)

Γ(λ+m+ 2)

ρm,x
indep∼ Poisson (Mm,x)

across m,x

Broderick, Jordan, and Pitman (2012) and Paisley, Blei, and Jordan (2012) have previ-
ously noted that this size-biased representation of the beta process arises from the Poisson
point process. �

6.C Further marginals

Example 6.C.1. Let Θ be a beta process, and let Xn be iid Bernoulli processes conditioned
on Θ for each n as in Examples 6.A.1 and 6.B.1.

We calculate the main components of Corollary 6.6.2 for this pair of processes. In par-
ticular, we have

P(xn = 1) = κ(k) exp

{
−B(ξ +

n−1∑

m=1

xm, λ+ n− 1) +B(ξ +
n−1∑

m=1

xm + 1, λ+ n)

}

=
Γ(λ+ n− 1 + 2)

Γ(ξ +
∑n−1

m=1 xm + 1)Γ(λ+ n− 1− ξ −∑n−1
m=1 xm + 1)

· Γ(ξ +
∑n−1

m=1 xm + 1 + 1)Γ(λ+ n− ξ −∑n−1
m=1 xm − 1 + 1)

Γ(λ+ n+ 2)

=
ξ +

∑n−1
m=1 xm + 1

λ+ n+ 1
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And

Mn,1 := γ · κ(0)n−1κ(1) · exp {B(ξ + (n− 1)φ(0) + φ(1), λ+ n)}

= γ · Γ(ξ + 1 + 1)Γ(λ+ n− ξ − 1 + 1)

Γ(λ+ n+ 2)

Thus, the marginal distribution of X1:N is the same as that provided by the following
construction.

For each n = 1, 2, . . . , N ,

1. At any location ψ for which there is some atom in X1, . . . , Xn−1, let xm be the weight
of Xm at ψ for m ∈ [n− 1]. Then we have that Xn|X1, . . . , Xn−1 has weight xn at ψ,
where

P(dxn) = Bern

(
xn

∣∣∣∣∣
ξ +

∑n−1
m=1 xm + 1

λ+ n+ 1

)

2. Xn has ρn,1 atoms at locations {ψn,1,j} with j ∈ [ρn,1] where there have not yet been
atoms in any of X1, . . . , Xn−1. Moreover,

Mn,1 := γ · Γ(ξ + 1 + 1)Γ(λ+ n− ξ − 1 + 1)

Γ(λ+ n+ 2)

across n

ρn,1
indep∼ Poisson (Mn,1) across n, x

ψn,1,j
iid∼ G(dψ) across n, j

Here, we have recovered the three-parameter extension of the Indian buffet process (Teh
and Görür, 2009; Broderick, Jordan, and Pitman, 2013). �
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Part II

Scaling inference
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Chapter 7

Streaming variational Bayes

We present SDA-Bayes, a framework for (S)treaming, (D)istributed, (A)synchronous com-
putation of a Bayesian posterior. The framework makes streaming updates to the estimated
posterior according to a user-specified approximation batch primitive. We demonstrate the
usefulness of our framework, with variational Bayes (VB) as the primitive, by fitting the
latent Dirichlet allocation model to two large-scale document collections. We demonstrate
the advantages of our algorithm over stochastic variational inference (SVI) by comparing
the two after a single pass through a known amount of data—a case where SVI may be
applied—and in the streaming setting, where SVI does not apply.

7.1 Introduction

Large, streaming data sets are increasingly the norm in science and technology. Simple
descriptive statistics can often be readily computed with a constant number of operations
for each data point in the streaming setting, without the need to revisit past data or have
advance knowledge of future data. But these time and memory restrictions are not generally
available for the complex, hierarchical models that practitioners often have in mind when
they collect large data sets. Significant progress on scalable learning procedures has been
made in recent years (e.g., Niu et al., 2011; Kleiner et al., 2012). But the underlying models
remain simple, and the inferential framework is generally non-Bayesian. The advantages
of the Bayesian paradigm (e.g., hierarchical modeling, coherent treatment of uncertainty)
currently seem out of reach in the Big Data setting.

An exception to this statement is provided by (Hoffman, Blei, and Bach, 2010; Hoffman,
Blei, Paisley, et al., 2013; C. Wang, Paisley, and Blei, 2011), who have shown that a class of
approximation methods known as variational Bayes (VB) (Wainwright and Jordan, 2008)
can be usefully deployed for large-scale data sets. They have applied their approach, referred
to as stochastic variational inference (SVI), to the domain of topic modeling of document
collections, an area with a major need for scalable inference algorithms. VB traditionally
uses the variational lower bound on the marginal likelihood as an objective function, and the
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idea of SVI is to apply a variant of stochastic gradient descent to this objective. Notably,
this objective is based on the conceptual existence of a full data set involving D data points
(i.e., documents in the topic model setting), for a fixed value of D. Although the stochastic
gradient is computed for a single, small subset of data points (documents) at a time, the
posterior being targeted is a posterior for D data points. This value of D must be specified
in advance and is used by the algorithm at each step. Posteriors for D′ data points, for
D′ 6= D, are not obtained as part of the analysis.

We view this lack of a link between the number of documents that have been processed
thus far and the posterior that is being targeted as undesirable in many settings involving
streaming data. In this chapter we aim at an approximate Bayesian inference algorithm that
is scalable like SVI but is also truly a streaming procedure, in that it yields an approximate
posterior for each processed collection of D′ data points—and not just a pre-specified “final”
number of data points D. To that end, we return to the classical perspective of Bayesian
updating, where the recursive application of Bayes theorem provides a sequence of posteriors,
not a sequence of approximations to a fixed posterior. To this classical recursive perspective
we bring the VB framework; our updates need not be exact Bayesian updates but rather
may be approximations such as VB. This approach is similar in spirit to assumed density
filtering or expectation propagation (Minka, 2001b; Minka, 2001a; Opper, 1998), but each
step of those methods involves a moment-matching step that can be computationally costly
for models such as topic models. We are able to avoid the moment-matching step via the use
of VB. We also note other related work in this general vein: MCMC approximations have
been explored by (Canini, Shi, and Griffiths, 2009), and VB or VB-like approximations have
also been explored by (Honkela and Valpola, 2003; Luts, Broderick, and Wand, 2012).

Although the empirical success of SVI is the main motivation for our work, we are also
motivated by recent developments in computer architectures, which permit distributed and
asynchronous computations in addition to streaming computations. As we will show, a
streaming VB algorithm naturally lends itself to distributed and asynchronous implementa-
tions.

7.2 Streaming, distributed, asynchronous Bayesian

updating

Streaming Bayesian updating. Consider data x1, x2, . . . generated iid according to a
distribution p(x |Θ) given parameter(s) Θ. Assume that a prior p(Θ) has also been specified.
Then Bayes theorem gives us the posterior distribution of Θ given a collection of S data
points, C1 := (x1, . . . , xS):

p(Θ | C1) = p(C1)−1 p(C1 | Θ) p(Θ),

where p(C1 |Θ) = p(x1, . . . , xS |Θ) =
∏S

s=1 p(xs |Θ).
Suppose we have seen and processed b − 1 collections, sometimes called minibatches, of

data. Given the posterior p(Θ | C1, . . . , Cb−1), we can calculate the posterior after the bth
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minibatch:
p(Θ | C1, . . . , Cb) ∝ p(Cb | Θ) p(Θ | C1, . . . , Cb−1). (7.1)

That is, we treat the posterior after b−1 minibatches as the new prior for the incoming data
points. If we can save the posterior from b − 1 minibatches and calculate the normalizing
constant for the bth posterior, repeated application of Eq. (7.1) is streaming; it automatically
gives us the new posterior without needing to revisit old data points.

In complex models, it is often infeasible to calculate the posterior exactly, and an approx-
imation must be used. Suppose that, given a prior p(Θ) and data minibatch C, we have an
approximation algorithm A that calculates an approximate posterior q: q(Θ) = A(C, p(Θ)).
Then, setting q0(Θ) = p(Θ), one way to recursively calculate an approximation to the pos-
terior is

p(Θ | C1, . . . , Cb) ≈ qb(Θ) = A (Cb, qb−1(Θ)) . (7.2)

When A yields the posterior from Bayes theorem, this calculation is exact. This approach
already differs from that of (Hoffman, Blei, and Bach, 2010; C. Wang, Paisley, and Blei, 2011;
Hoffman, Blei, Paisley, et al., 2013), which we will see (Section 7.3) directly approximates
p(Θ | C1, . . . , CB) for fixed B without making intermediate approximations for b strictly
between 1 and B.

Distributed Bayesian updating. The sequential updates in Eq. (7.2) handle stream-
ing data in theory, but in practice, the A calculation might take longer than the time interval
between minibatch arrivals or simply take longer than desired. Parallelizing computations
increases algorithm throughput. And posterior calculations need not be sequential. Indeed,
Bayes theorem yields

p(Θ | C1, . . . , CB) ∝
[

B∏

b=1

p(Cb | Θ)

]
p(Θ) ∝

[
B∏

b=1

p(Θ | Cb) p(Θ)−1

]
p(Θ). (7.3)

That is, we can calculate the individual minibatch posteriors p(Θ | Cb), perhaps in parallel,
and then combine them to find the full posterior p(Θ | C1, . . . , CB).

Given an approximating algorithm A as above, the corresponding approximate update
would be

p(Θ | C1, . . . , CB) ≈ q(Θ) ∝
[

B∏

b=1

A(Cb, p(Θ)) p(Θ)−1

]
p(Θ), (7.4)

for some approximating distribution q, provided the normalizing constant for the right-hand
side of Eq. (7.4) can be computed.

Variational inference methods are generally based on exponential family representa-
tions (Wainwright and Jordan, 2008), and we will make that assumption here. In particular,
we suppose p(Θ) ∝ exp{ξ0 · T (Θ)}; that is, p(Θ) is an exponential family distribution for Θ
with sufficient statistic T (Θ) and natural parameter ξ0. We suppose further that A always
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returns a distribution in the same exponential family; in particular, we suppose that there
exists some parameter ξb such that

qb(Θ) ∝ exp{ξb · T (Θ)} for qb(Θ) = A(Cb, p(Θ)). (7.5)

When we make these two assumptions, the update in Eq. (7.4) becomes

p(Θ | C1, . . . , CB) ≈ q(Θ) ∝ exp

{[
ξ0 +

B∑

b=1

(ξb − ξ0)

]
· T (Θ)

}
, (7.6)

where the normalizing constant is readily obtained from the exponential family form. In what
follows we use the shorthand ξ ← A(C, ξ0) to denote that A takes as input a minibatch C
and a prior with exponential family parameter ξ0 and that it returns a distribution in the
same exponential family with parameter ξ.

So, to approximate p(Θ|C1, . . . , CB), we first calculate ξb via the approximation primitive
A for each minibatch Cb; note that these calculations may be performed in parallel. Then
we sum together the quantities ξb − ξ0 across b, along with the initial ξ0 from the prior,
to find the final exponential family parameter to the full posterior approximation q. We
previously saw that the general Bayes sequential update can be made streaming by iterating
with the old posterior as the new prior (Eq. (7.2)). Similarly, here we see that the full
posterior approximation q is in the same exponential family as the prior, so one may iterate
these parallel computations to arrive at a parallelized algorithm for streaming posterior
computation.

We emphasize that while these updates are reminiscent of prior-posterior conjugacy, it
is actually the approximate posteriors and single, original prior that we assume belong to
the same exponential family. It is not necessary to assume any conjugacy in the generative
model itself nor that any true intermediate or final posterior take any particular limited
form.

Asynchronous Bayesian updating. Performing B computations in parallel can in
theory speed up algorithm running time by a factor of B, but in practice it is often the
case that a single computation thread takes longer than the rest. Waiting for this thread
to finish diminishes potential gains from distributing the computations. This problem can
be ameliorated by making computations asynchronous. In this case, processors known as
workers each solve a subproblem. When a worker finishes, it reports its solution to a single
master processor. If the master gives the worker a new subproblem without waiting for the
other workers to finish, it can decrease downtime in the system.

Our asynchronous algorithm is in the spirit of Hogwild! (Niu et al., 2011). To present the
algorithm we first describe an asynchronous computation that we will not use in practice, but
which will serve as a conceptual stepping stone. Note in particular that the following scheme
makes the computations in Eq. (7.6) asynchronous. Have each worker continuously iterate
between three steps: (1) collect a new minibatch C, (2) compute the local approximate
posterior ξ ← A(C, ξ0), and (3) return ∆ξ := ξ − ξ0 to the master. The master, in turn,
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starts by assigning the posterior to equal the prior: ξ(post) ← ξ0. Each time the master
receives a quantity ∆ξ from any worker, it updates the posterior synchronously: ξ(post) ←
ξ(post) +∆ξ. If A returns the exponential family parameter of the true posterior (rather than
an approximation), then the posterior at the master is exact by Eq. (7.4).

A preferred asynchronous computation works as follows. The master initializes its poste-
rior estimate to the prior: ξ(post) ← ξ0. Each worker continuously iterates between four steps:
(1) collect a new minibatch C, (2) copy the master posterior value locally ξ(local) ← ξ(post), (3)
compute the local approximate posterior ξ ← A(C, ξ(local)), and (4) return ∆ξ := ξ − ξ(local)

to the master. Each time the master receives a quantity ∆ξ from any worker, it updates the
posterior synchronously: ξ(post) ← ξ(post) + ∆ξ.

The key difference between the first and second frameworks proposed above is that, in
the second, the latest posterior is used as a prior. This latter framework is more in line with
the streaming update of Eq. (7.2) but introduces a new layer of approximation. Since ξ(post)

might change at the master while the worker is computing ∆ξ, it is no longer the case that
the posterior at the master is exact when A returns the exponential family parameter of the
true posterior. Nonetheless we find that the latter framework performs better in practice,
so we focus on it exclusively in what follows.

We refer to our overall framework as SDA-Bayes, which stands for (S)treaming, (D)istributed,
(A)synchronous Bayes. The framework is intended to be general enough to allow a variety of
local approximations A. Indeed, SDA-Bayes works out of the box once an implementation
of A—and a prior on the global parameter(s) Θ—is provided. In the current chapter our
preferred local approximation will be VB.

7.3 Case study: latent Dirichlet allocation

In what follows, we consider examples of the choices for the Θ prior and primitive A in the
context of latent Dirichlet allocation (LDA) (Blei, Ng, and Jordan, 2003). LDA models the
content of D documents in a corpus. Themes potentially shared by multiple documents are
described by topics. The unsupervised learning problem is to learn the topics as well as
discover which topics occur in which documents.

More formally, each topic (of K total topics) is a distribution over the V words in the
vocabulary: βk = (βkv)

V
v=1. Each document is an admixture of topics. The words in docu-

ment d are assumed to be exchangeable. Each word wdn belongs to a latent topic zdn chosen
according to a document-specific distribution of topics θd = (θdk)

K
k=1. The full generative

model, with Dirichlet priors for βk and θd conditioned on respective parameters ηk and α,
appears in (Blei, Ng, and Jordan, 2003).

To see that this model fits our specification in Section 7.2, consider the set of global
parameters Θ = β. Each document wd = (wdn)Ndn=1 is distributed iid conditioned on the global
topics. The full collection of data is a corpus C = w = (wd)

D
d=1 of documents. The posterior
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for LDA, p(β, θ, z | C, η, α), is equal to the following expression up to proportionality:

∝
[
K∏

k=1

Dirichlet(βk | ηk)
]
·
[
D∏

d=1

Dirichlet(θd | α)

]
·
[
D∏

d=1

Nd∏

n=1

θdzdnβzdn,wdn

]
. (7.7)

The posterior for just the global parameters p(β|C, η, α) can be obtained from p(β, θ, z|C, η, α)
by integrating out the local, document-specific parameters θ, z. As is common in complex
models, the normalizing constant for Eq. (7.7) is intractable to compute, so the posterior
must be approximated.

Posterior-approximation algorithms

To apply SDA-Bayes to LDA, we use the prior specified by the generative model. It re-
mains to choose a posterior-approximation algorithm A. We consider two possibilities here:
variational Bayes (VB) and expectation propagation (EP). Both primitives take Dirichlet
distributions as priors for β and both return Dirichlet distributions for the approximate
posterior of the topic parameters β; thus the prior and approximate posterior are in the
same exponential family. Hence both VB and EP can be utilized as a choice for A in the
SDA-Bayes framework.

Subroutine LocalVB(d, λ)
Output: (γd, φd)
Initialize γd
while (γd, φd) not converged do
∀(k, v), set φdvk ∝ exp (Eq[log θdk] + Eq[log βkv]) (normalized across k)

∀k, γdk ← αk +
∑V

v=1 φdvkndv
end

Algorithm 7.1: Subroutine LocalUpdate(d, λ), used by the global variational algorithms.
Here, ndv represents the number of words v in document d.

Mean-field variational Bayes. We use the shorthand pD for Eq. (7.7), the posterior
given D documents. We assume the approximating distribution, written qD for shorthand,
takes the form

qD(β, θ, z | λ, γ, φ) =

[
K∏

k=1

qD(βk | λk)
]
·
[
D∏

d=1

qD(θd | γd)
]
·
[
D∏

d=1

Nd∏

n=1

qD(zdn | φdwdn)

]
(7.8)

for parameters (λkv), (γdk), (φdvk) with k ∈ {1, . . . , K}, v ∈ {1, . . . , V }, d ∈ {1, . . . , D}.
Moreover, we set qD(βk | λk) = DirichletV (βk | λk), qD(θd | γd) = DirichletK(θd | γd), and
qD(zdn | φdwdn) = CategoricalK(zdn | φdwdn). The subscripts on Dirichlet and Categorical
indicate the dimensions of the distributions (and of the parameters).
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Input: Data (nd)
D
d=1; hyperparameters η, α

Output: λ
Initialize λ
while (λ, γ, φ) not converged do

for d = 1, . . . , D do
(γd, φd)← LocalVB(d, λ)

end

∀(k, v), λkv ← ηkv +
∑D

d=1 φdvkndv
end

Algorithm 7.2: VB for LDA. Iterates multiple times through the data. Here, ndv repre-
sents the number of words v in document d. See Alg. 7.1 for the subroutine LocalVB.

Input: Hyperparameters η, α
Output: A sequence λ(1), λ(2), . . .
Initialize ∀(k, v), λ

(0)
kv ← ηkv

for b = 1, 2, . . . do
Collect new data minibatch C
foreach document indexed d in C do

(γd, φd)← LocalVB(d, λ)
end

∀(k, v), λ
(b)
kv ← λ

(b−1)
kv +

∑
d in C φdvkndv

end

Algorithm 7.3: SSU for LDA (streaming). Here, ndv represents the number of words v
in document d. See Alg. 7.1 for the subroutine LocalVB.

Input: Hyperparameters η, α,D, (ρt)
T
t=1

Output: λ
Initialize λ
for t = 1, . . . , T do

Collect new data minibatch C
foreach document indexed d in C do

(γd, φd)← LocalVB(d, λ)
end

∀(k, v), λ̃kv ← ηkv + D
|C|
∑

d in C φdvkndv

∀(k, v), λkv ← (1− ρt)λkv + ρtλ̃kv
end

Algorithm 7.4: SVI for LDA (single-pass). Here, ndv represents the number of words v
in document d. See Alg. 7.1 for the subroutine LocalVB.
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The problem of VB is to find the best approximating qD, defined as the collection of
variational parameters λ, γ, φ that minimize the KL divergence from the true posterior:
KL (qD ‖ pD). Even finding the minimizing parameters is a difficult optimization problem.
Typically the solution is approximated by coordinate descent in each parameter (Blei, Ng,
and Jordan, 2003; Wainwright and Jordan, 2008) as in Alg. 7.2. The derivation of VB for
LDA can be found in (Blei, Ng, and Jordan, 2003; Hoffman, Blei, Paisley, et al., 2013) and
Appendix 7.A.

Expectation propagation. An EP (Minka, 2001b) algorithm for approximating the
LDA posterior appears in Alg. 7.7 of Appendix 7.B. Alg. 7.7 differs from (Minka and Laf-
ferty, 2002), which does not provide an approximate posterior for the topic parameters,
and is instead our own derivation. Our version of EP, like VB, learns factorized Dirichlet
distributions over topics.

Other single-pass algorithms for approximate LDA posteriors

The algorithms in Section 7.3 pass through the data multiple times and require storing
the data set in memory—but are useful as primitives for SDA-Bayes in the context of the
processing of minibatches of data. Next, we consider two algorithms that can pass through a
data set just one time (single pass) and to which we compare in the evaluations (Section 7.4).

Stochastic variational inference. VB uses coordinate descent to find a value of qD,
Eq. (7.8), that locally minimizes the KL divergence, KL (qD ‖ pD). Stochastic variational
inference (SVI) (Hoffman, Blei, and Bach, 2010; Hoffman, Blei, Paisley, et al., 2013) is
exactly the application of a particular version of stochastic gradient descent to the same
optimization problem. While stochastic gradient descent can often be viewed as a streaming
algorithm, the optimization problem itself here depends on D via pD, the posterior on D
data points. We see that, as a result, D must be specified in advance, appears in each step
of SVI (see Alg. 7.4), and is independent of the number of data points actually processed
by the algorithm. Nonetheless, while one may choose to visit D′ 6= D data points or revisit
data points when using SVI to estimate pD (Hoffman, Blei, and Bach, 2010; Hoffman, Blei,
Paisley, et al., 2013), SVI can be made single-pass by visiting each of D data points exactly
once and then has constant memory requirements. We also note that two new parameters,
τ0 > 0 and κ ∈ (0.5, 1], appear in SVI, beyond those in VB, to determine a learning rate ρt
as a function of iteration t: ρt := (τ0 + t)−κ.

Sufficient statistics. On each round of VB (Alg. 7.2), we update the local parameters
for all documents and then compute λkv ← ηkv +

∑D
d=1 φdvkndv. An alternative single-pass

(and indeed streaming) option would be to update the local parameters for each minibatch
of documents as they arrive and then add the corresponding terms φdvkndv to the current
estimate of λ for each document d in the minibatch. This essential idea has been proposed
previously for models other than LDA by (Honkela and Valpola, 2003; Luts, Broderick, and
Wand, 2012) and forms the basis of what we call the sufficient statistics update algorithm
(SSU): Alg. 7.3. This algorithm is equivalent to SDA-Bayes with A chosen to be a single
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iteration over the global variable λ of VB (i.e., updating λ exactly once instead of iterating
until convergence).

7.4 Evaluation

We follow (Hoffman, Blei, Paisley, et al., 2013) (and further (Teh, D. Newman, and Welling,
2006; Asuncion et al., 2009)) in evaluating our algorithms by computing (approximate)
predictive probability. Under this metric, a higher score is better, as a better model will
assign a higher probability to the held-out words.

We calculate predictive probability by first setting aside held-out testing documents C(test)

from the full corpus and then further setting aside a subset of held-out testing words Wd,test

in each testing document d. The remaining (training) documents C(train) are used to estimate
the global parameter posterior q(β), and the remaining (training) words Wd,train within the
dth testing document are used to estimate the document-specific parameter posterior q(θd).

1

To calculate predictive probability, an approximation is necessary since we do not know the
predictive distribution—just as we seek to learn the posterior distribution. Specifically, we
calculate the normalized predictive distribution and report “log predictive probability” as

∑
d∈C(test) log p(Wd,test | C(train),Wd,train)∑

d∈C(test) |Wd,test|
=

∑
d∈C(test)

∑
wtest∈Wd,test

log p(wtest | C(train),Wd,train)
∑

d∈C(test) |Wd,test|
,

where we use the approximation

p(wtest | C(train),Wd,train) =

∫

β

∫

θd

(
K∑

k=1

θdkβkwtest

)
p(θd | Wd,train, β) p(β | C(train)) dθd dβ

≈
∫

β

∫

θd

(
K∑

k=1

θdkβkwtest

)
q(θd) q(β) dθd dβ =

K∑

k=1

Eq[θdk] Eq[βkwtest ].

To facilitate comparison with SVI, we use the Wikipedia and Nature corpora of (Hoffman,
Blei, and Bach, 2010; C. Wang, Paisley, and Blei, 2011) in our experiments. These two
corpora represent a range of sizes (3,611,558 training documents for Wikipedia and 351,525
for Nature) as well as different types of topics. We expect words in Wikipedia to represent
an extremely broad range of topics whereas we expect words in Nature to focus more on
the sciences. We further use the vocabularies of (Hoffman, Blei, and Bach, 2010; C. Wang,
Paisley, and Blei, 2011) and SVI code available online at (Hoffman, 2010). We hold out
10,000 Wikipedia documents and 1,024 Nature documents (not included in the counts above)
for testing. In the results presented in the main text, we follow (Hoffman, Blei, and Bach,
2010; Hoffman, Blei, Paisley, et al., 2013) in fitting an LDA model with K = 100 topics

1 In all cases, we estimate q(θd) for evaluative purposes using VB since direct EP estimation takes
prohibitively long.
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Wikipedia Nature

32-SDA 1-SDA SVI SSU 32-SDA 1-SDA SVI SSU

Log pred prob −7.31 −7.43 −7.32 −7.91 −7.11 −7.19 −7.08 −7.82
Time (hours) 2.09 43.93 7.87 8.28 0.55 10.02 1.22 1.27

Table 7.1: A comparison of (1) log predictive probability of held-out data and (2) running
time of four algorithms: SDA-Bayes with 32 threads, SDA-Bayes with 1 thread, SVI, and
SSU.

and hyperparameters chosen as: ∀k, αk = 1/K, ∀(k, v), ηkv = 0.01. For both Wikipedia and
Nature, we set the parameters in SVI according to the optimal values of the parameters
described in Table 1 of (Hoffman, Blei, and Bach, 2010) (number of documents D correctly
set in advance, step size parameters κ = 0.5 and τ0 = 64).

Figures 7.4 and 7.4 demonstrate that both SVI and SDA are sensitive to minibatch size
when ηkv = 0.01, with generally superior performance at larger batch sizes. Interestingly,
both SVI and SDA performance improve and are steady across batch size when ηkv = 1
(Figures 7.4 and 7.4). Nonetheless, we use ηkv = 0.01 in what follows in the interest of
consistency with (Hoffman, Blei, and Bach, 2010; Hoffman, Blei, Paisley, et al., 2013).
Moreover, in the remaining experiments, we use a large minibatch size of 215 = 32,768. This
size is the largest before SVI performance degrades in the Nature data set (Figure 7.4).

Performance and timing results are shown in Table 7.1. One would expect that with
additional streaming capabilities, SDA-Bayes should show a performance loss relative to
SVI. We see from Table 7.1 that such loss is small in the single-thread case, while SSU
performs much worse. SVI is faster than single-thread SDA-Bayes in this single-pass setting.

Full SDA-Bayes improves run time with no performance cost. We handicap
SDA-Bayes in the above comparisons by utilizing just a single thread. In Table 7.1, we
also report performance of SDA-Bayes with 32 threads and the same minibatch size. In
the synchronous case, we consider minibatch size to equal the total number of data points
processed per round; therefore, the minibatch size equals the number of data points sent
to each thread per round times the total number of threads. In the asynchronous case, we
analogously report minibatch size as this product.

Figure 7.1 shows the performance of SDA-Bayes when we run with {1, 2, 4, 8, 16, 32}
threads while keeping the minibatch size constant. The goal in such a distributed context is
to improve run time while not hurting performance. Indeed, we see dramatic run time im-
provement as the number of threads grows and in fact some slight performance improvement
as well. We tried both a parallel version and a full distributed, asynchronous version of the
algorithm; Figure 7.1 indicates that the speedup and performance improvements we see here
come from parallelizing—which is theoretically justified by Eq. (7.3) when A is Bayes rule.
Our experiments indicate that our Hogwild!-style asynchrony does not hurt performance. In
our experiments, the processing time at each thread seems to be approximately equal across
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Figure 7.1: SDA-Bayes log predictive probability (two upper plots) and run time (two lower
plots) as a function of number of threads.

threads and dominate any communication time at the master, so synchronous and asyn-
chronous performance and running time are essentially identical. In general, a practitioner
might prefer asynchrony since it is more robust to node failures.

SVI is sensitive to the choice of total data size D. The evaluations above are for a
single posterior over D data points. Of greater concern to us in this work is the evaluation of
algorithms in the streaming setting. We have seen that SVI is designed to find the posterior
for a particular, pre-chosen number of data points D. In practice, when we run SVI on the
full data set but change the input value of D in the algorithm, we can see degradations in
performance. In particular, we try values of D equal to {0.01, 0.1, 1, 10, 100} times the true



CHAPTER 7. STREAMING VARIATIONAL BAYES 226

D in Figure 7.4 for the Wikipedia data set and in Figure 7.4 for the Nature data set.
A practitioner in the streaming setting will typically not know D in advance, or multiple

values of D may be of interest. Figures 7.4 and 7.4 illustrate that an estimate may not be
sufficient. Even in the case where D is known in advance, it is reasonable to imagine a new
influx of further data. One might need to run SVI again from the start (and, in so doing,
revisit the first data set) to obtain the desired performance.

SVI is sensitive to learning step size. (Hoffman, Blei, and Bach, 2010; C. Wang,
Paisley, and Blei, 2011) use cross-validation to tune step-size parameters (τ0, κ) in the
stochastic gradient descent component of the SVI algorithm. This cross-validation requires
multiple runs over the data and thus is not suited to the streaming setting. Figures 7.4 and
7.4 demonstrate that the parameter choice does indeed affect algorithm performance. In
these figures, we keep D at the true training data size.

(Hoffman, Blei, and Bach, 2010) have observed that the optimal (τ0, κ) may interact with
minibatch size, and we further observe that the optimal values may vary with D as well. We
also note that recent work has suggested a way to update (τ0, κ) adaptively during an SVI
run (Ranganath et al., 2013).

EP is not suited to LDA. Earlier attempts to apply EP to the LDA model in the
non-streaming setting have had mixed success, with (Buntine and Jakulin, 2004) in par-
ticular finding that EP performance can be poor for LDA and, moreover, that EP requires
“unrealistic intermediate storage requirements.” We found this to also be true in the stream-
ing setting. We were not able to obtain competitive results with EP; based on an 8-thread
implementation of SDA-Bayes with an EP primitive2, after over 91 hours on Wikipedia (and
6.7 × 104 data points), log predictive probability had stabilized at around −7.95 and, after
over 97 hours on Nature (and 9.7×104 data points), log predictive probability had stabilized
at around −8.02. Although SDA-Bayes with the EP primitive is not effective for LDA, it
remains to be seen whether this combination may be useful in other domains where EP is
known to be effective.

7.5 Discussion

We have introduced SDA-Bayes, a framework for streaming, distributed, asynchronous com-
putation of an approximate Bayesian posterior. Our framework makes streaming updates
to the estimated posterior according to a user-specified approximation primitive. We have
demonstrated the usefulness of our framework, with variational Bayes as the primitive, by
fitting the latent Dirichlet allocation topic model to the Wikipedia and Nature corpora. We
have demonstrated the advantages of our algorithm over stochastic variational inference and
the sufficient statistics update algorithm, particularly with respect to the key issue of ob-
taining approximations to posterior probabilities based on the number of documents seen
thus far, not posterior probabilities for a fixed number of documents.

2We chose 8 threads since any fewer was too slow to get results and anything larger created too high of
a memory demand on our system.



CHAPTER 7. STREAMING VARIATIONAL BAYES 227

5 10 15
−8.5

−8.2

−7.9

−7.6

−7.3

−7

log batch size (base 2)

lo
g 

pr
ed

ic
tiv

e 
pr

ob
ab

ili
ty

 

 

SVI, η = 1.0
SVI, η = 0.01
SDA, η = 1.0
SDA, η = 0.01

(a) Sensitivity to minibatch size on
Wikipedia

5 10 15
−8.5

−8.2

−7.9

−7.6

−7.3

−7

log batch size (base 2)

lo
g 

pr
ed

ic
tiv

e 
pr

ob
ab

ili
ty

 

 

SDA, η = 1.0
SDA, η = 0.01
SVI, η = 0.01
SVI, η = 1.0

(b) Sensitivity to minibatch size on Na-
ture

0 1e6 2e6 3e6
−7.5

−7.45

−7.4

−7.35

−7.3

number of examples seen

lo
g 

pr
ed

ic
tiv

e 
pr

ob
ab

ili
ty

 

 

D = 361155800
D = 36115580
D = 3611558
D = 361155
D = 36115

(c) SVI sensitivity to D on Wikipedia

0 1e5 2e5 3e5

−8

−7.8

−7.6

−7.4

−7.2

−7

number of examples seen

lo
g 

pr
ed

ic
tiv

e 
pr

ob
ab

ili
ty

 

 

D = 3515250
D = 35152500
D = 351525
D = 35152
D = 3515

(d) SVI sensitivity to D on Nature

0 1e6 2e6 3e6
−7.5

−7.45

−7.4

−7.35

−7.3

number of examples seen

lo
g 

pr
ed

ic
tiv

e 
pr

ob
ab

ili
ty

 

 

τ0 = 16,κ = 1.0

τ0 = 256,κ = 0.5

τ0 = 64,κ = 1.0

τ0 = 256,κ = 1.0

τ0 = 64,κ = 0.5

τ0 = 16,κ = 0.5

(e) SVI sensitivity to stepsize parameters
on Wikipedia

0 1e5 2e5 3e5
−8

−7.8

−7.6

−7.4

−7.2

−7

number of examples seen

lo
g 

pr
ed

ic
tiv

e 
pr

ob
ab

ili
ty

 

 

τ0 = 16,κ = 0.5

τ0 = 64,κ = 0.5

τ0 = 256,κ = 1.0

τ0 = 16,κ = 1.0

τ0 = 64,κ = 1.0

τ0 = 256,κ = 0.5

(f) SVI sensitivity to stepsize parameters
on Nature

Figure 7.2: Sensitivity of SVI and SDA-Bayes to some respective parameters. Legends have
the same top-to-bottom order as the rightmost curve points.
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7.A Variational Bayes

Batch VB

As described in the main text, the idea of VB is to find the distribution qD that best approx-
imates the true posterior, pD. More specifically, the optimization problem of VB is defined
as finding a qD to minimize the KL divergence between the approximating distribution and
the posterior:

KL (qD ‖ pD) := EqD [log (qD/pD)]

Typically qD takes a particular, constrained form, and finding the optimal qD amounts to
finding the optimal parameters for qD. Moreover, the optimal parameters usually cannot be
expressed in closed form, so often a coordinate descent algorithm is used.

For the LDA model, we have qD in the form of Eq. (7.8) and pD defined by Eq. (7.7).
We wish to find the following variational parameters (i.e., parameters to qD): λ (describing
each topic), γ (describing the topic proportions in each document), and φ (describing the
assignment of each word in each document to a topic).

Evidence lower bound

Finding qD to minimize the KL divergence between qD and pD is equivalent to finding qD to
maximize the evidence lower bound (ELBO),

ELBO := EqD [log p(Θ, x1:D)]− EqD [log qD]

= EqD [log pD] + p(x1:D)− EqD [log qD]

= −KL (qD ‖ pD) + p(x1:D),

since p(x1:D) is constant in qD. The VB optimization problem is often phrased in terms of
the ELBO instead of the KL divergence.

The ELBO for LDA can be written as follows, where the model parameters are β, θ, z
and the data is w; η and α are fixed hyperparameters.

ELBO(λ, γ, φ) = Eq [log p(β, θ, z, w | η, α)]− Eq [log q(β, θ, z | λ, γ, φ)]

=
K∑

k=1

Eq [log Dirichlet(βk | ηk)] +
D∑

d=1

Eq [log Dirichlet(θd | α)]

+
D∑

d=1

Nd∑

n=1

Eq [log Multinomial(zdn | θd)]

+
D∑

d=1

Nd∑

n=1

Eq [log Multinomial(wdn | βzdn)]

−
K∑

k=1

Eq [log Dirichlet(βk | λk)]−
D∑

d=1

Eq [log Dirichlet(θd | γd)]
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−
D∑

d=1

Nd∑

n=1

Eq [log Multinomial(zdn | φdwdn)] .

The expectations in q in the previous equation can be evaluated as follows. The equations
below make use of the digamma function ψ and trigamma function ψ1. Here,

ψ(x) =
d

dx
log Γ(x) =

[
d

dx
Γ(x)

]
/Γ(x)

ψ1(x) =
d2

dx2
log Γ(x) =

d

dx
ψ(x).

Then,

Eq [log Dirichlet(βk | ηk)]

= log Γ

(
V∑

v=1

ηkv

)
−

V∑

v=1

log Γ(ηkv) +
V∑

v=1

(ηkv − 1) Eq[log βkv]

= log Γ

(
V∑

v=1

ηkv

)
−

V∑

v=1

log Γ(ηkv) +
V∑

v=1

(ηkv − 1)

(
ψ(λkv)− ψ

( V∑

u=1

λku

))

Eq [log Dirichlet(θd | α)]

= log Γ

(
K∑

k=1

αk

)
−

K∑

k=1

log Γ(αk) +
K∑

k=1

(αk − 1) Eq[log θdk]

= log Γ

(
K∑

k=1

αk

)
−

K∑

k=1

log Γ(αk) +
K∑

k=1

(αk − 1)

(
ψ(γdk)− ψ

( K∑

j=1

γdj

))

Eq [log Multinomial(zdn | θd)]

=
K∑

k=1

φdwdnkEq[log θdk]

=
K∑

k=1

φdwdnk

(
ψ(γdk)− ψ

( K∑

j=1

γdj

))

Eq [log Multinomial(wdn | βzdn)]

=
V∑

v=1

1{wdn = v} Eq[log βzdn,v]

=
V∑

v=1

1{wdn = v}
K∑

k=1

φdwdnkEq[log βkv]

=
V∑

v=1

K∑

k=1

1{wdn = v} φdwdnk
(
ψ(λkv)− ψ

( V∑

u=1

λku

))
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Eq [log Dirichlet(βk | λk)]

= log Γ

(
V∑

v=1

λkv

)
−

V∑

v=1

log Γ(λkv) +
V∑

v=1

(λkv − 1) Eq[log βkv]

= log Γ

(
V∑

v=1

λkv

)
−

V∑

v=1

log Γ(λkv) +
V∑

v=1

(λkv − 1)

(
ψ(λkv)− ψ

( V∑

u=1

λku

))

Eq [log Dirichlet(θd | γd)]

= log Γ

(
K∑

k=1

γdk

)
−

K∑

k=1

log Γ(γdk) +
K∑

k=1

(γdk − 1) Eq[log θdk]

= log Γ

(
K∑

k=1

γdk

)
−

K∑

k=1

log Γ(γdk) +
K∑

k=1

(γdk − 1)

(
ψ(γdk)− ψ

( K∑

j=1

γdj

))

Eq [log Multinomial(zdn | φdn)]

=
K∑

k=1

φdwdnk log φdwdnk.

Coordinate ascent

We maximize the ELBO via coordinate ascent in each dimension of the variational parame-
ters: λ, γ, and φ.

Variational parameter λ. Choose a topic index k. Fix γ, φ, and each λj for j 6= k.
Then we can write the ELBO’s functional dependence on λk as follows, where “const” is a
constant in λk.

ELBO(λk) =
V∑

v=1

(ηkv − 1)

(
ψ(λkv)− ψ

( V∑

u=1

λku

))

+
D∑

d=1

Nd∑

n=1

V∑

v=1

1{wdn = v} φdwdnk
(
ψ(λkv)− ψ

( V∑

u=1

λku

))

− log Γ

(
V∑

v=1

λkv

)
+

V∑

v=1

log Γ(λkv)

−
V∑

v=1

(λkv − 1)

(
ψ(λkv)− ψ

( V∑

u=1

λku

))
+ const

=
V∑

v=1

(
ηkv − λkv +

D∑

d=1

Nd∑

n=1

1{wdn = v} φdwdnk
)(

ψ(λkv)− ψ
( V∑

u=1

λku

))
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− log Γ

(
V∑

v=1

λkv

)
+

V∑

v=1

log Γ(λkv) + const

The partial derivative of ELBO(λk) with respect to one of the dimensions of λk, say λkv, is

∂

∂λkv
ELBO(λk)

= −
(
ψ(λkv)− ψ

( V∑

u=1

λku

))

+

(
ηkv − λkv +

D∑

d=1

Nd∑

n=1

1{wdn = v} φdwdnk
)(

ψ1(λkv)− ψ1

( V∑

u=1

λku

))

−
∑

t:t6=v

(
ηkt − λkt +

D∑

d=1

Nd∑

n=1

1{wdn = t} φdwdnk
)
ψ1

( V∑

u=1

λku

)
− ψ

( V∑

u=1

λku

)
+ ψ(λkv)

= ψ1(λkv)

(
ηkv − λkv +

D∑

d=1

Nd∑

n=1

1{wdn = v} φdwdnk
)

− ψ
( V∑

u=1

λku

) V∑

u=1

(
ηku − λku +

D∑

d=1

Nd∑

n=1

1{wdn = u} φdwdnk
)
.

From the last line of the previous equation, we see that one can set the gradient of ELBO(λk)
to zero by setting

λkv ← ηkv +
D∑

d=1

Nd∑

n=1

1{wdn = v} φdwdnk for v = 1, . . . , V.

Equivalently, if ndv is the number of occurrences (tokens) of word type v in document d,
then the update may be written

λkv ← ηkv +
D∑

d=1

ndv φdvk for v = 1, . . . , V.

Variational parameter γ. Now choose a document d. Fix λ, φ, and γc for c 6= d. Then
we can express the functional dependence of the ELBO on γd as follows.

ELBO(γd) =
K∑

k=1

(αk − 1)

(
ψ(γdk)− ψ

( K∑

j=1

γdj

))
+

Nd∑

n=1

K∑

k=1

φdwdnk

(
ψ(γdk)− ψ

( K∑

j=1

γdj

))

− log Γ

(
K∑

k=1

γdk

)
+

K∑

k=1

log Γ(γdk)−
K∑

k=1

(γdk − 1)

(
ψ(γdk)− ψ

( K∑

j=1

γdj

))
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+ const

=
K∑

k=1

(
αk − γdk +

Nd∑

n=1

φdwdnk

)(
ψ(γdk)− ψ

( K∑

j=1

γdj

))

− log Γ

(
K∑

k=1

γdk

)
+

K∑

k=1

log Γ(γdk) + const

The partial derivative of ELBO(γd) with respect to one of the dimensions of γd, say γdk, is

∂

∂γdk
ELBO(γd)

= −
(
ψ(γdk)− ψ

( K∑

j=1

γdj

))
+

(
αk − γdk +

Nd∑

n=1

φdwdnk

)(
ψ1(γdk)− ψ1

( K∑

j=1

γdj

))

−
∑

i:i 6=k

(
αi − γdi +

Nd∑

n=1

φdwdni

)
ψ1

( K∑

j=1

γdj

)
− ψ

( K∑

j=1

γdj

)
+ ψ(γdk)

= ψ1(γdk)

(
αk − γdk +

Nd∑

n=1

φdwdnk

)
− ψ1

( K∑

j=1

γdj

) K∑

j=1

(
αj − γdj +

Nd∑

n=1

φdwdnj

)
.

As for the λ case above, one obvious way to achieve a gradient of ELBO(γd) equal to zero is
to set

γdk ← αk +

Nd∑

n=1

φdwdnk for k = 1, . . . , K.

Equivalently,

γdk ← αk +
V∑

v=1

ndv φdvk for k = 1, . . . , K.

Variational parameter φ. Finally, consider fixing λ, γ, and φcu for (c, u) 6= (d, v). In
this case, the dependence of the ELBO on φdv can be written as follows.

ELBO(φdv)

=
K∑

k=1

ndv φdvk

(
ψ(γdk)− ψ

( K∑

j=1

γdj

))

+
K∑

k=1

ndv φdvk

(
ψ(λkv)− ψ

( V∑

u=1

λku

))
−

K∑

k=1

ndv φdvk log φdvk + const

=
K∑

k=1

ndv φdvk

(
− log φdvk + ψ(γdk)− ψ

( K∑

j=1

γdj

)
+ ψ(λkv)− ψ

( V∑

u=1

λku

))
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+ const

The partial derivative of ELBO(φdv) with respect to one of the dimensions of φdv, say φdvk,
is

∂

∂φdvk
ELBO(φdv)

= ndv

(
− log φdvk + ψ(γdk)− ψ

( K∑

j=1

γdj

)
+ ψ(λkv)− ψ

( V∑

u=1

λku

)
− 1

)
.

Using the method of Lagrange multipliers to incorporate the constraint that
∑K

k=1 φdvk = 1,
we wish to find ρ and φdvk such that

0 =
∂

∂φdvk

[
ELBO(φdv)− ρ

(
K∑

k=1

φdvk − 1

)]
. (7.9)

Setting

φdvk ∝k exp

(
ψ(γdk)− ψ

( K∑

j=1

γdj

)
+ ψ(λkv)− ψ

( V∑

u=1

λku

))

achieves the desired outcome in Eq. (7.9). Here, ∝k indicates that the proportionality is
across k. The optimal choice of ρ is expressed via this proportionality. The above assignment
may also be written as

φdvk ∝k exp (Eq[log θdk] + Eq[log βkv])

The coordinate-ascent algorithm iteratively updates the parameters λ, γ, and φ. In prac-
tice, we usually iterate the updates for the “local” parameters φ and γ until they converge,
then update the “global” parameter λ, and repeat. The resulting batch variational Bayes
algorithm is presented in Alg. 7.2.

SDA-Bayes VB

For a fixed hyperparameter α, we can think of BatchVB as an algorithm that takes input in
the form of a prior on topic parameters β and a minibatch of documents. In particular, let
Cb be the bth minibatch of documents; for documents with indices in Db, these documents
can be summarized by the word counts (nd)d∈Db . Then, in the notation of Eq. (7.2), we have
Θ = β, A = BatchVB, and

q0(β) =
K∏

k=1

Dirichlet(βk|ηk).
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In general, the bth posterior takes the same form and therefore can be summarized by its
parameters λ(b):

qb(β) =
K∏

k=1

Dirichlet(βk|λ(b)
k ).

In this case, if we set the prior parameters to λ
(0)
k := ηk, Eq. (7.2) becomes Alg. 7.5.

Input: Hyperparameter η
Initialize λ(0) ← η
foreach Minibatch Cb of documents do

λ(b) ← BatchVB
(
Cb, λ

(b−1)
)

qb(β) =
∏K

k=1 Dirichlet(βk|λ(b)
k )

end

Algorithm 7.5: Streaming VB for LDA.

Next, we apply the asynchronous, distributed updates described in the “Asynchronous
Bayesian updating” portion of Section 7.2 to the batch VB primitive and LDA model. In
this case, λ(post) is the posterior parameter estimate maintained at the master, and each
worker updates this value after a local computation. The posterior after seeing a collection
of minibatches is q(β) =

∏K
k=1 Dirichlet(βk|λ(post)

k ). The resulting algorithm is Alg. 7.6.

Input: Hyperparameter η
Initialize λ(post) ← η
foreach Minibatch Cb of documents, at a worker do

Copy master value locally: λ(local) ← λ(post) λ← BatchVB
(
Cb, λ

(local)
)

∆λ← λ− λ(local)

Update the master value synchronously: λ(post) ← λ(post) + ∆λ
end

Algorithm 7.6: SDA-Bayes with VB primitive for LDA.

7.B Expectation propagation

Batch EP

Our batch expectation propagation (EP) algorithm for LDA learns a posterior for both the
document-specific topic mixing proportions (θd)

D
d=1 and the topic distributions over words
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(βk)
K
k=1. By contrast, the algorithm in (Minka and Lafferty, 2002) learns only the former

and so is not appropriate to the model in Section 7.3.
For consistency, we also follow Minka and Lafferty (2002) in making a distinction between

token and type word updates, where a token refers to a particular word instance and a type
refers to all words with the same vocabulary value. Let C = (wd)

D
d=1 denote the set of

documents that we observe, and for each word v in the vocabulary, let ndv denote the
number of times v appears in document d.

Collapsed posterior. We begin by collapsing (i.e., integrating out) the word assignments
z in the posterior (7.7) of LDA. We can express the collapsed posterior as

p(β, θ | C, η, α) ∝
[
K∏

k=1

DirichletV (βk | ηk)
]
·
D∏

d=1

[
DirichletK(θd | α) ·

V∏

v=1

(
K∑

k=1

θdk βkv

)ndv]
.

For each document-word pair (d, v), consider approximating the term
∑K

k=1 θdkβkv above by

[
K∏

k=1

DirichletV (βk | χkdv + 1V )

]
·DirichletK(θd | ζdv + 1K),

where χkdv ∈ RV , ζdv ∈ RK , and 1M is a vector of all ones of length M . This proposal serves
as inspiration for taking the approximating variational distribution for p(β, θ | C, η, α) to be
of the form

q(β, θ | λ, γ) :=

[
K∏

k=1

q(βk | λk)
]
·
D∏

d=1

q(θd | γd), (7.10)

where q(βk | λk) = Dirichlet(βk | λk) and q(θd | γd) = Dirichlet(θd | γd), with the parameters

λk = ηk +
D∑

d=1

V∑

v=1

ndvχkdv, γd = α +
V∑

v=1

ndvζdv, (7.11)

and the constraints λk ∈ RV
+ and γd ∈ RK

+ for each k and d. We assume this form in
the remainder of the analysis and write q(β, θ | χ, ζ) for q(β, θ | λ, γ), where χ = (χkdv),
ζ = (ζdv).

Optimization problem. We seek to find the optimal parameters (χ, ζ) by minimizing
the (reverse) KL divergence:

min
χ,ζ

KL (p(β, θ | C, η, α) ‖ q(β, θ | χ, ζ)) .

This joint minimization problem is not tractable, and the idea of EP is to proceed iteratively
by fixing most of the factors in Eq. (7.10) and minimizing the KL divergence over the
parameters related to a single word.
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More formally, suppose we already have a set of parameters (χ, ζ). Consider a document
d and word v that occurs in document d (i.e., ndv ≥ 1). We start by removing the component
of q related to (d, v) in Eq. (7.10). Following Minka (2001b), we subtract out the effect of
one occurrence of word v in document d, but at the end of this process we update the
distribution on the type level. In doing so, we use the following shorthand for the remaining
global parameters:

λ
\(d,v)
k = λk − χkdv = ηk + (ndv − 1)χkdv +

∑

(d′,v′):(d′,v′)6=(d,v)

nd′v′χkd′v′

γ
\(d,v)
d = γd − ζdv = α + (ndv − 1)ζdv +

∑

v′:v′ 6=v

ndv′ζdv′ .

We replace this removed part of q by the term
∑K

k=1 θdkβkv, which corresponds to the contri-
bution of one occurrence of word v in document d to the true posterior p. Call the resulting
normalized distribution q̃dv, so q̃dv(β, θ | λ\(d,v), γ\d, γ

\(d,v)
d ) satisfies

∝
[
K∏

k=1

Dirichlet(βk | λ\(d,v)
k )

]
·
[∏

d′ 6=d

Dirichlet(θd′ | γd′)
]
·Dirichlet(θd | γ\(d,v)

d ) ·
K∑

k=1

θdk βkv.

We obtain an improved estimate of the posterior q by updating the parameters from (λ, γ)
to (λ̂, γ̂), where

(λ̂, γ̂) = arg min
λ′,γ′

KL
(
q̃dv(β, θ | λ\(d,v), γ\d, γ

\(d,v)
d ) ‖ q(β, θ | λ′, γ′)

)
. (7.12)

Solution to the optimization problem. First, note that for d′ : d′ 6= d, we have
γ̂d′ = γd′ .

Now consider the index d chosen on this iteration. Since β and θ are Dirichlet-distributed
under q, the minimization problem in Eq. (7.12) reduces to solving the moment-matching
equations (Minka, 2001b; Seeger, 2005)

Eq̃dv [log βku] = Eλ̂k [log βku] for 1 ≤ k ≤ K, 1 ≤ u ≤ V,

Eq̃dv [log θdk] = Eγ̂d [log θdk] for 1 ≤ k ≤ K.

These can be solved via Newton’s method though Minka (2001b) recommends solving exactly
for the first and “average second” moments of βku and θdk, respectively, instead. We choose
the latter approach for consistency with Minka (2001b); our own experiments also suggested
taking the approach of Minka (2001b) was faster than Newton’s method with no noticeable
performance loss. The resulting moment updates are

λ̂ku =

∑V
y=1

(
Eq̃dv [β2

ky]− Eq̃dv [βky]
)

∑V
y=1

(
Eq̃dv [βky]2 − Eq̃dv [β2

ky]
) · Eq̃dv [βku] (7.13)
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γ̂dk =

∑K
j=1

(
Eq̃dv [θ2

dj]− Eq̃d,n [θdj]
)

∑K
j=1

(
Eq̃dv [θdj]2 − Eq̃dv [θ2

dj]
) · Eq̃dv [θdk]. (7.14)

We then set (χkdv)
K
k=1 and ζdv such that the new global parameters (λk)

K
k=1 and γd are equal

to the optimal parameters (λ̂k)
K
k=1 and γ̂d. The resulting algorithm is presented in Alg. 7.7.

Input: Data C = (wd)
D
d=1; hyperparameters η, α

Output: λ
Initialize ∀(k, d, v), χkdv ← 0 and ζdv ← 0
while (χ, ζ) not converged do

foreach (d, v) with ndv ≥ 1 do

/* Variational distribution without the word token (d, v) */

∀k, λ\(d,v)
k ← ηk + (ndv − 1)χkdv +

∑
(d′,v′)6=(d,v) nd′v′χkd′v′

γ
\(d,v)
d ← α + (ndv − 1)ζdv +

∑
v′ 6=v ndv′ζdv′

If any of λ
\(d,v)
ku or γ

\(d,v)
dk are non-positive, skip updating this (d, v) (†)

/* Variational parameters from moment-matching */

∀(k, u), compute λ̂ku from Eq. (7.13)
∀k, compute γ̂dk from Eq. (7.14)
/* Type-level updates to parameter values */

∀k, χkdv ← n−1
dv

(
λ̂k − λ\(d,v)

k

)
+
(
1− n−1

dv

)
χkdv

ζdv ← n−1
dv

(
γ̂d − γ\(d,v)

d

)
+
(
1− n−1

dv

)
ζdv

Other χ, ζ remain unchanged
end

end
/* Global variational parameters */

∀k, λk ← ηk +
∑D

d=1

∑V
v=1 ndvχkdv

Algorithm 7.7: EP for LDA.

The results in the main text (Section 7.4) are reported for Alg. 7.7. We also tried a
slightly modified EP algorithm that makes token-level updates to parameter values, rather
than type-level updates. This modified version iterates through each word placeholder in
document d; that is, through pairs (d, n) rather than pairs (d, v) corresponding to word
values. Since there are always at least as many (d, n) pairs as (d, v) pairs with ndv ≥ 1 (and
usually many more of the former), the modified algorithm requires many more iterations. In
practice, we find better experimental performance for the modified EP algorithm in terms of
log predictive probability as a function of number of data points in the training set seen so
far: e.g., leveling off at about −7.96 for Nature vs. −8.02. However, the modified algorithm
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is also much slower, and still returns much worse results than SDA-Bayes or SVI, so we do
not report these results in the main text.3

SDA-Bayes EP

Putting a batch EP algorithm for LDA into the SDA-Bayes framework is almost identical to
putting a batch VB algorithm for LDA into the SDA-Bayes framework. This similarity is to
be expected since SDA-Bayes works out of the box with a batch approximation algorithm
in the correct form.

For a fixed hyperparameter α, we can think of BatchEP as an algorithm (just like
BatchVB) that takes input in the form of a prior on topic parameters β and a minibatch of
documents. The same setup and notation from Appendix 7.A applies. In this case, Eq. (7.2)
becomes Alg. 7.8. This algorithm is exactly the same as Alg. 7.5 but with a batch EP
primitive instead of a batch VB primitive.

Input: Hyperparameter η
Initialize λ(0) ← η
foreach Minibatch Cb of documents do

λ(b) ← BatchEP
(
Cb, λ

(b−1)
)

qb(β) =
∏K

k=1 Dirichlet(βk|λ(b)
k )

end

Algorithm 7.8: Streaming EP for LDA.

Next, we apply the asynchronous, distributed updates described in the “Asynchronous
Bayesian updating” portion of Section 7.2 to the batch EP primitive and LDA model. Again,
the setup and notation from Appendix 7.A applies, and we find Alg. 7.9. Indeed, the recipe
outlined here applies more generally to other primitives besides EP and VB.

Input: Hyperparameter η
Initialize λ(post) ← η
foreach Minibatch Cb of documents, at a worker do

Copy master value locally: λ(local) ← λ(post) λ← BatchEP
(
Cb, λ

(local)
)

∆λ← λ− λ(local)

Update the master value synchronously: λ(post) ← λ(post) + ∆λ
end

Algorithm 7.9: SDA-Bayes with EP primitive for LDA.

3Here and in the main text we run EP with η = 1. We also tried EP with η = 0.01, but the positivity

check for λ
\(d,v)
ku and γ

\(d,v)
dk on line (†) in Alg. 7.7 always failed and as a result none of the parameters were

updated.
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Chapter 8

MAD-Bayes: MAP-based asymptotic
derivations from Bayes

The classical mixture of Gaussians model is related to K-means via small-variance asymp-
totics : as the covariances of the Gaussians tend to zero, the negative log-likelihood of the
mixture of Gaussians model approaches the K-means objective, and the EM algorithm ap-
proaches the K-means algorithm. Kulis and Jordan (2012) used this observation to obtain
a novel K-means-like algorithm from a Gibbs sampler for the Dirichlet process (DP) mix-
ture. We instead consider applying small-variance asymptotics directly to the posterior in
Bayesian nonparametric models. This framework is independent of any specific Bayesian
inference algorithm, and it has the major advantage that it generalizes immediately to a
range of models beyond the DP mixture. To illustrate, we apply our framework to the
feature learning setting, where the beta process and Indian buffet process provide an appro-
priate Bayesian nonparametric prior. We obtain a novel objective function that goes beyond
clustering to learn (and penalize new) groupings for which we relax the mutual exclusivity
and exhaustivity assumptions of clustering. We demonstrate several other algorithms, all of
which are scalable and simple to implement. Empirical results demonstrate the benefits of
the new framework.

8.1 Introduction

Clustering is a canonical learning problem and arguably the dominant application of unsuper-
vised learning. Much of the popularity of clustering revolves around the K-means algorithm;
its simplicity and scalability make it the preferred choice in many large-scale unsupervised
learning problems—even though a wide variety of more flexible algorithms, including those
from Bayesian nonparametrics, have been developed since the advent of K-means (Steinley,
2006; Jain, 2010). Indeed, Berkhin (2006) writes that K-means is “by far the most popular
clustering tool used nowadays in scientific and industrial applications.”

K-means does have several known drawbacks. For one, the K-means algorithm clusters
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data into mutually exclusive and exhaustive clusters, which may not always be the optimal
or desired form of latent structure for a data set. For example, pictures on a photo-sharing
website might each be described by multiple tags, or social network users might be described
by multiple interests. In these examples, a feature allocation in which each data point
can belong to any nonnegative integer number of groups—now called features—is a more
appropriate description of the data (Griffiths and Ghahramani, 2006; Broderick, Jordan,
and Pitman, 2013). Second, the K-means algorithm requires advance knowledge of the
number of clusters, which may be unknown or grow with the number of data points in
some applications. A vast literature exists just on how to choose a number of clusters using
heuristics or extensions of K-means (Steinley, 2006; Jain, 2010). A recent algorithm called
DP-means (Kulis and Jordan, 2012) provides another perspective on the choice of cluster
cardinality. Recalling the small-variance asymptotic argument that takes the EM algorithm
for mixtures of Gaussians and yields the K-means algorithm, the authors apply this argument
to a Gibbs sampler for a Dirichlet process (DP) mixture (Antoniak, 1974; Escobar, 1994;
Escobar and West, 1995) and obtain a K-means-like algorithm that does not fix the number
of clusters upfront.

Notably, this derivation of DP-means is specific to the choice of the sampling algorithm
and is also not immediately amenable to the feature learning setting. In this chapter, we
provide a more general perspective on these small-variance asymptotics. We show that one
can obtain the objective function for DP-means (independent of any algorithm) by applying
asymptotics directly to the MAP estimation problem of a Gaussian mixture model with a
Chinese Restaurant Process (CRP) prior (Blackwell and MacQueen, 1973; Aldous, 1985)
on the latent clustering. The key is to express the posterior in terms of the exchangeable
partition probability function (EPPF) of the CRP (Pitman, 1995).

A critical advantage of this more general view of small-variance asymptotics is that it
provides a framework for extending beyond the DP mixture. The Bayesian nonparametric
toolbox contains many models that may yield—via small-variance asymptotics—a range of
new algorithms that to the best of our knowledge have not been discovered in the K-means
literature. We thus view our major contribution as providing new directions for researchers
working on K-means and related discrete optimization problems.

To highlight this generality, we show how the framework may be used in the feature
learning setting. We take as our point of departure the beta process (BP) (Hjort, 1990;
Thibaux and Jordan, 2007), which is the feature learning counterpart of the DP, and the
Indian Buffet Process (IBP) (Griffiths and Ghahramani, 2006), which is the feature learning
counterpart of the CRP. We show how to express the corresponding MAP inference problem
via an analogue of the EPPF that we refer to as an “exchangeable feature probability func-
tion” (EFPF) (Broderick, Pitman, and Jordan, 2013). Taking an asymptotic limit we obtain
a novel objective function for feature learning, as well as a simple and scalable algorithm for
learning features in a data set. The resulting algorithm, which we call BP-means, is similar
to the DP-means algorithm, but allows each data point to be assigned to more than one
feature. We also use our framework to derive several additional algorithms, including algo-
rithms based on the Dirichlet-multinomial prior as well as extensions to the marginal MAP
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problem in which the cluster/feature means are integrated out. We compare our algorithms
to existing Gibbs sampling methods as well as existing hard clustering methods in order to
highlight the benefits of our approach.

8.2 MAP asymptotics for clusters

We begin with the problem setting of Kulis and Jordan (2012) but diverge in our treatment
of the small-variance asymptotics. We consider a Bayesian nonparametric framework for
generating data via a prior on clusterings and a likelihood that depends on the (random)
clustering. Prior and likelihood yield a posterior distribution. A point estimate of the
clustering (i.e., a hard clustering) may be achieved by choosing a clustering that maximizes
the posterior; the result is a maximum a posteriori (MAP) estimate.

Consider a data set x1, . . . , xN , where xn is a D-component vector. Let K+ denote the
(random) number of clusters. Let znk equal one if data index n belongs to cluster k and 0
otherwise, so there is exactly one value of k for each n such that znk = 1. We can order the
cluster labels k so that the first K+ clusters are non-empty (i.e., znk = 1 for some n for each
such k). Together K+ and z1:N,1:K+ describe a clustering.

The Chinese restaurant process (CRP) (Blackwell and MacQueen, 1973; Aldous, 1985)
gives a prior onK+ and z1:N,1:K+ as follows. Let θ > 0 be a hyperparameter of the model. The
first customer (data index 1) starts a new table in the restaurant; i.e., z1,1 = 1. Recursively,
the nth customer (data index n) sits at an existing table k with probability in proportion to
the number of people sitting there (i.e., in proportion to Sn−1,k :=

∑n−1
m=1 zmk) and at a new

table with probability proportional to θ.
Suppose the final restaurant has K+ tables with N total customers sitting according to

z1:N,1:K+ . Then the probability of this clustering is found from the above recursion:

P(z1:N,1:K+) = θK
+−1 Γ(θ + 1)

Γ(θ +N)

K+∏

k=1

(SN,k − 1)!, (8.1)

a formula that is known as an exchangeable partition probability function (EPPF) Pitman,
1995.

A common choice for the likelihood is to assume that data in cluster k are Gaussian with
cluster-specific mean µk and shared variance σ2ID (where ID is the D ×D identity matrix
and σ2 > 0). Then the likelihood of data x = x1:N given clustering z = z1:N,1:K+ and means
µ = µ1:K+ is:

P(x|z, µ) =
K+∏

k=1

∏

n:zn,k=1

N (xn|µk, σ2ID).

Further suppose the µk are drawn iid Gaussian from a prior with mean 0 in every dimension

and variance ρ2ID for hyperparameter ρ2 > 0: P(µ1:K+) =
∏K+

k=1N (µk|0, ρ2ID).
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The posterior distribution over the clustering given the observed data, P(z, µ|x), is cal-
culated from the prior and likelihood using Bayes theorem: P(z, µ|x) ∝ P(x|z, µ)P(µ)P(z).
We find the MAP point estimate for the clustering and cluster means by maximizing the
posterior: argmaxK+,z,µ P(z, µ|x). Note that the point estimate will be the same if we instead
minimize the negative log joint likelihood: argminK+,z,µ− logP(z, µ, x).

In general, calculating the posterior or MAP estimate is difficult and usually requires
approximation, e.g. via Markov chain Monte Carlo or a variational method. A different
approximation can be obtained by taking the limit of the objective function above as the
cluster variances decrease to zero: σ2 → 0. Since the prior allows an unbounded number of
clusters, taking this limit will result in each data point being assigned to its own cluster in the
MAP. To arrive at a limiting objective function that favors a non-trivial cluster assignment,
we modulate the number of clusters via the hyperparameter θ, which varies linearly with the
expected number of clusters in the prior. In particular, we choose some constant λ2 > 0 and
let θ = exp(−λ2/(2σ2)), so that, e.g., θ → 0 as σ2 → 0.

Substituting θ as a function of σ2 and letting σ2 → 0, we find that −2σ2 logP(z, µ, x)
satisfies

∼
K+∑

k=1

∑

n:znk=1

‖xn − µk‖2 + (K+ − 1)λ2, (8.2)

where f(σ2) ∼ g(σ2) here denotes f(σ2)/g(σ2) → 1 as σ2 → 0. The double sum orig-
inates from the exponential function in the Gaussian data likelihood, and the penalty
term—reminiscent of an AIC penalty (Akaike, 1974)—originates from the CRP prior (Ap-
pendix 8.A).

From Eq. (8.2), we see that finding the MAP estimate of the CRP Gaussian mixture
model is asymptotically equivalent to the following optimization problem:

argmin
K+,z,µ

K+∑

k=1

∑

n:znk=1

‖xn − µk‖2 + (K+ − 1)λ2. (8.3)

Kulis and Jordan (2012) derived a similar objective function, which they called the DP-
means objective function (a name we retain for Eq. (8.3)), by first deriving a K-means-style
algorithm from a DP Gibbs sampler. Here, by contrast, we have found this objective function
directly from the MAP problem, with no reference to any particular inference algorithm and
thereby demonstrating a more fundamental link between the MAP problem and Eq. (8.3).
In the following, we show that this focus on limits of a MAP estimate can yield useful
optimization problems in diverse domains.

Notably, the objective in Eq. (8.3) takes the form of the K-means objective function
(the double sum) plus a penalty of λ2 for each cluster after the first; this offset penalty is
natural since any partition of a non-empty set must have at least one cluster.1 Once we

1The objective of Kulis and Jordan (2012) penalizes all K+ clusters; the optimal arguments are the same
in each case.
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have Eq. (8.3), we may consider efficient solution methods; one candidate is the DP-means
algorithm of Kulis and Jordan (2012).

8.3 MAP asymptotics for features

Once more consider a data set x1:N , where xn is a D-component vector. Now let K+ denote
the (random) number of features. Let znk equal one if data index n is in feature k and zero
otherwise. In the feature case, while there must be a finite number of k values such that
znk = 1 for any n, it is not required that there be exactly a single such k or even any such
k. We order the feature labels k so that the first K+ features are non-empty; i.e., we have
znk = 1 for some n for each such k. Together K+ and z1:N,1:K+ describe a feature allocation.

The Indian buffet process (IBP) (Griffiths and Ghahramani, 2006) is a prior on z1:N,1:K+

that places strictly positive probability on any finite, nonnegative value of K+. Like the
CRP, it is based on an analogy between the customers in a restaurant and the data indices.
In the IBP, the dishes in the buffet correspond to features. Let γ > 0 be a hyperparameter
of the model. The first customer (data index 1) samples K+

1 ∼ Poisson(γ) dishes from the
buffet. Recursively, when the nth customer (data index n) arrives at the buffet,

∑n−1
m=1K

+
m

dishes have been sampled by the previous customers. Suppose dish k of these dishes has
been sampled Sn−1,k times by the first n − 1 customers. The nth customer samples dish k
with probability Sn−1,k/n. The nth customer also samples K+

n ∼ Poisson(γ/n) new dishes.
Suppose the buffet has been visited by N customers who sampled a total of K+ dishes.

Let z = z1:N,1:K+ represent the resulting feature allocation. Let H be the number of unique

values of the z1:N,k vector across k; let K̃h be the number of k with the hth unique value of
this vector. We calculate an “exchangeable feature probability function” (EFPF) (Broderick,
Pitman, and Jordan, 2013) by multiplying together the probabilities from the N steps in the
description and find that P(z) equals (Griffiths and Ghahramani, 2006)

γK
+

exp
{
−∑N

n=1
γ
n

}

∏H
h=1 K̃h!

K+∏

k=1

S−1
N,k

(
N

SN,k

)−1

. (8.4)

It remains to specify a probability for the observed data x given the latent feature al-
location z. The linear Gaussian model of Griffiths and Ghahramani (2006) is a natural
extension of the Gaussian mixture model to the feature case. As previously, we specify a

prior on feature means µk
iid∼ N (0, ρ2ID) for some hyperparameter ρ2 > 0. Now data point n

is drawn independently with mean equal to the sum of its feature means,
∑K+

k=1 znkµk, and
variance σ2ID for some hyperparameter σ2 > 0. In the case where each data point belongs
to exactly one feature, this model is just a Gaussian mixture. We often write the means as
a K ×D matrix A with kth row µk. Writing Z for the N ×K matrix with (n, k) element
znk and X for the N ×D matrix with nth row xn, we have P(X|Z,A) equal to

1

(2πσ2)ND/2
exp

{
−tr((X − ZA)′(X − ZA))

2σ2

}
. (8.5)
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As in the clustering case, we wish to find the joint MAP estimate of the structural
component Z and group-specific parameters A. It is equivalent to find the values of Z and
A that minimize − logP(X,Z,A). Finally, we wish to take the limit of this objective as
σ2 → 0. Lest every data point be assigned to its own separate feature, we modulate the
number of features in the small-σ2 limit by choosing some constant λ2 > 0 and setting
γ = exp(−λ2/(2σ2)).

Letting σ2 → 0, we find that asymptotically (Appendix 8.B)

−2σ2 logP(X,Z,A) ∼ tr[(X − ZA)′(X − ZA)] +K+λ2,

The trace originates from the matrix Gaussian, and the penalty term originates from the
IBP prior.

It follows that finding the MAP estimate for the feature learning problem is asymptoti-
cally equivalent to solving:

argmin
K+,Z,A

tr[(X − ZA)′(X − ZA)] +K+λ2. (8.6)

We follow Kulis and Jordan (2012) in referring to the underlying random measure when
naming objective functions derived from Bayesian nonparametric priors. Recalling that
the beta process (BP) (Hjort, 1990; Thibaux and Jordan, 2007) is the random measure
underlying the IBP, we call the objective in Eq. (8.6) the BP-means objective. The trace
term in Eq. (8.6) forms a K-means-style objective on a feature matrix Z and feature means
A when the number of features (i.e., the number of columns of Z or rows of A) is fixed. The
second term enforces a penalty of λ2 for each feature. In contrast to the DP-means objective,
even the first feature is penalized since K+ = 0 is allowed here.

We formulate a BP-means algorithm to solve the optimization problem in Eq. (8.6) and
discuss its convergence properties. In Alg. 8.1, note that Z ′Z is invertible so long as no two
features have the same collection of indices. If that is not the case, we simply combine the
two features into a single feature before performing the inversion.

Iterate until no changes are made:
1. For n = 1, . . . , N
• For k = 1, . . . , K+, choose the optimal value (0 or 1) of znk.
• Let Z ′ equal Z but with one new feature (labeled K+ + 1) containing only data

index n. Set A′ = A but with one new row: A′K++1,· ← Xn,· − Zn,·A.
• If the triplet (K+ + 1, Z ′, A′) lowers the objective from the triplet (K+, Z, A),

replace the latter triplet with the former.
2. Set A← (Z ′Z)−1Z ′X.

Algorithm 8.1: BP-means.

Proposition 8.3.1. The BP-means algorithm converges after a finite number of iterations
to a local minimum of the BP-means objective in Eq. (8.6).
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See Appendix 8.G for the proof. Though the proposition guarantees convergence, it does
not guarantee convergence to the global optimum—an analogous result to those available for
the K-means and DP-means algorithms (Kulis and Jordan, 2012). Many authors have noted
the problem of local optima in the clustering literature (Steinley, 2006; Jain, 2010). One
expects that the issue of local optima is only exacerbated in the feature domain, where the
combinatorial landscape is much more complex. In clustering, this issue is often addressed
by multiple random restarts and careful choice of cluster initialization; in Section 8.5 below,
we also make use of random algorithm restarts and propose a feature initialization akin to
one with provable guarantees for K-means clustering (Arthur and Vassilvitskii, 2007).

8.4 Extensions

We demonstrate our methodology using different priors on Z below and using different
likelihoods in Appendix 8.F.

Collapsed objectives. It is believed that collapsing out the cluster or feature means
from a Bayesian model by calculating instead the marginal structural posterior can improve
MCMC sampler mixing in many scenarios (Liu, 1994). In the clustering case, collapsing
translates to forming the posterior P(z|x) =

∫
µ
P(z, µ|x). Note that even in the cluster case,

we may use the matrix representations Z, X, and A so long as we make the additional

assumption that
∑K+

k=1 znk = 1 for each n. Finding the MAP estimate argmaxZ P(Z|X) may,
as usual, be accomplished by minimizing the negative log joint distribution with respect to
Z. P(Z) is given by the CRP (Eq. (8.1)). P(X|Z) takes the form:

exp

{
− tr

(
X′(IN−Z(Z′Z+σ2

ρ2
ID)−1Z′)X

)
2σ2

}

(2πσ2)ND/2(ρ2/σ2)K+D/2|Z ′Z + σ2

ρ2
ID|D/2

. (8.7)

Eq. (8.7) was derived by Griffiths and Ghahramani (2006) for linear-Gaussian features but
applies to Gaussian clusters when Z encodes a clustering. Using the same asymptotics in σ2

and θ as before, we find the limiting optimization problem (Appendix 8.C):

argmin
K+,Z

tr(X ′(IN − Z(Z ′Z)−1Z ′)X) + (K+ − 1)λ2. (8.8)

The first term in this objective was proposed, via independent considerations, by Gordon
and Henderson (1977).

Simple algebraic manipulations allow us to rewrite the objective in a more intuitive
format (Appendix 8.C):

argmin
K+,Z

K+∑

k=1

∑

n:znk=1

‖xn,· − x̄(k)‖2
2 + (K+ − 1)λ2, (8.9)
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where x̄(k) := S−1
N,k

∑
m:zmk=1 xm,· is the kth empirical cluster mean, i.e., the mean of all

data points assigned to cluster k. This collapsed DP-means objective is just the original
DP-means objective in Eq. (8.3) with the cluster means replaced by empirical cluster means.
A corresponding optimization algorithm appears in Alg. 8.2. A similar proof to that of Kulis
and Jordan (2012) shows that this algorithm converges in a finite number of iterations to a
local minimum of the objective.

Iterate until no changes are made:
1. For n = 1, . . . , N
• Assign xn to the closest cluster if the contribution to the objective in Eq. (8.9)

from the squared distance is at most λ2.
• Otherwise, form a new cluster with just xn.

Algorithm 8.2: Collapsed DP-means.

We have already noted that the likelihood associated with the Gaussian mixture model
conditioned on a clustering is just a special case of the linear Gaussian model conditioned
on a feature matrix. Therefore, it is not surprising that Eq. (8.7) also describes P(X|Z)
when Z is a feature matrix. Now, P(Z) is given by the IBP (Eq. (8.4)). Using the same
asymptotics in σ2 and γ as in the joint MAP case, the MAP problem for feature allocation
Z asymptotically becomes (Appendix 8.D):

argmin
K+,Z

tr(X ′(IN − Z(Z ′Z)−1Z ′)X) +K+λ2. (8.10)

The key difference with Eq. (8.8) is that here Z may have any finite number of ones in each
row. We call the objective in Eq. (8.10) the collapsed BP-means objective.

Repeat the following step until no changes are made:
1. For n = 1, . . . , N
• Choose zn,1:K+ to minimize the objective in Eq. (8.10). Delete any redundant

features.
• Add a new feature (indexed K+ + 1) with only data index n if doing so decreases

the objective and if the feature would not be redundant.

Algorithm 8.3: Collapsed BP-means.

Just as the collapsed DP-means objective has an empirical cluster means interpretation,
so does the collapsed BP-means objective have an interpretation in which the feature means
matrix A in Eq. (8.6) is replaced by its empirical estimate (Z ′Z)−1ZX (cf. Appendix 8.G).
In particular, we can rewrite the objective in Eq. (8.10) as tr[(X − Z(Z ′Z)−1Z ′X)′(X −
Z(Z ′Z)−1Z ′X)] + K+λ2. A corresponding optimization algorithm appears in Alg. 8.3. A
similar proof to that of Proposition 8.3.1 shows that this algorithm converges in a finite
number of iterations to a local minimum of the objective.
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Parametric objectives. The generative models studied so far are nonparametric in the
usual Bayesian sense; there is no a priori bound on the number of cluster or feature param-
eters. The objectives above are similarly nonparametric. Parametric models, with a fixed
bound on the number of clusters or features, are often useful as well. See Appendix 8.E for
derivations of objectives for clustering and feature learning in the parametric case. Since be-
low we apply the parametric version for the feature learning setting, which we call K-features
(analogous to K-means but for feature learning), we include its description in Alg. 8.4.

Repeat until no changes are made:
1. For n = 1, . . . , N
• For k = 1, . . . , K, set zn,k to minimize ‖xn,1:K − zn,1:KA‖2.

2. Set A = (Z ′Z)−1Z ′X.

Algorithm 8.4: K-features.

8.5 Experiments

We examine collections of unlabeled data to discover latent shared features. We have already
seen the BP-means and collapsed BP-means algorithms when the number of features is
unknown. A third algorithm that we evaluate here involves running the K-features algorithm
for different values of K and choosing the joint values of K,Z,A that minimize the BP-means
objective in Eq. (8.6); we call this the stepwise K-features algorithm. If we assume the plot of
the minimized K-features objective (Eq. (8.14)) as a function of K has increasing increments
(i.e., decreasing negative increments), then we need only run the K-features algorithm for
increasing K until the objective increases.

It is well known that the K-means algorithm is sensitive to the choice of cluster initializa-
tion (Peña, Lozano, and Larrañaga, 1999). Potential methods of addressing this issue include
multiple random initializations and choosing initial, random cluster centers according to the
K-means++ algorithm (Arthur and Vassilvitskii, 2007). In the style of K-means++, we
introduce a similar feature means initialization.

We first consider fixed K. In K-means++, the initial cluster center is chosen uniformly at
random from the data set. However, we note that empirically, the various feature algorithms
discussed tend to prefer the creation of a base feature, shared amongst all the data. So start
by assigning every data index to the first feature, and let the first feature mean be the mean
of all the data points. Recursively, for feature k with k > 1, calculate the distance from
each data point xn,· to its feature representation zn,·A for the construction thus far. Choose
a data index n with probability proportional to this distance squared. Assign Ak,· to be
the nth distance. Assign zm,k for all m = 1, . . . , N to optimize the K-features objective. In
the case where K is not known in advance, we repeat the recursive step as long as doing so
decreases the objective.
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Another important consideration in running these algorithms without a fixed number of
clusters or features is choosing the relative penalty effect λ2. One option is to solve for λ2

from a proposed K value via a heuristic (Kulis and Jordan, 2012) or validation on a data
subset. Rather than assume K and return to it in this roundabout way, in the following we
aim merely to demonstrate that there exist reasonable values of λ2 that return meaningful
results. More carefully examining the translation from a discrete (K) to continuous (λ2)
parameter space may be a promising direction for future work.

Tabletop data. Using a LogiTech digital webcam, Griffiths and Ghahramani (2006)
took 100 pictures of four objects (a prehistoric handaxe, a Klein bottle, a cellular phone,
and a $20 bill) placed on a tabletop. The images are in JPEG format with 240 pixel height,
320 pixel width, and 3 color channels. Each object may or may not appear in a given picture;
the experimenters endeavored to place each object (by hand) in a respective fixed location
across pictures.

This setup lends itself naturally to the feature allocation domain. We expect to find a
base feature depicting the tabletop and four more features, respectively corresponding to
each of the four distinct objects. Conversely, clustering on this data set would yield either a
cluster for each distinct feature combination—a much less parsimonious and less informative
representation than the feature allocation—or some averages over feature combinations. The
latter case again fails to capture the combinatorial nature of the data.

We emphasize a further point about identifiability within this combinatorial structure.
One “true” feature allocation for this data is the one described above. But an equally valid
allocation, from a combinatorial perspective, is one in which the base feature contains all
four objects and the tabletop. There are four further features, each of which deletes an
object and replaces it with tabletop so that every possible combination of objects on the
tabletop can be constructed from the features. Indeed, any combination of objects on the
tabletop could equally well serve as a base feature; the four remaining features serve to add
or delete objects as necessary.

We run PCA on the data and keep the first D = 100 principal components to form the
data vector for each image. This pre-processing is the same as that performed by Griffiths
and Ghahramani (2006), except the authors in that case first average the three color channels
of the images.

We consider the Gibbs sampling algorithm of Griffiths and Ghahramani (2006) with
initialization (mass parameter 1 and feature mean variance 0.5) and number of sampling
steps (1000) determined by the authors; we explore alternative initializations below. We
compare to the three feature means algorithms described above—all with λ2 = 1. Each of
the final three algorithms uses the appropriate variant of greedy initialization analogous to
K-means++. We run 1000 random initializations of the collapsed and BP-means algorithms
to mitigate local minima. We run 300 random initializations of K-features for each value of
K and note that K = 2, . . . , 6 are (dynamically) explored by the algorithm. All code was
run in Matlab on the same computer. Timing and feature count results are on the left of
Figure 8.1.

While it is notoriously difficult to compare computation times for deterministic, hard-
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Alg Per run Total #
Gibbs 8.5 · 103 — 10
Collap 11 1.1 · 104 5
BP-m 0.36 3.6 · 102 6
FeatK 0.10 1.55 · 102 5

Figure 8.1: Left : A comparison of results for the IBP Gibbs sampler (Griffiths and Ghahra-
mani, 2006), the collapsed BP-means algorithm, the basic BP-means algorithm, and the
stepwise K-features algorithm. The first column shows the time for each run of the algo-
rithm in seconds; the second column shows the total running time of the algorithm (i.e., over
multiple repeated runs for the final three); and the third column shows the final number of
features learned (the IBP # is stable for > 900 final iterations). Right : A histogram of col-
lections of the final K values found by the IBP for a variety of initializations and parameter
starting values.

10111 11111 11010 10000

(subtract) (subtract) (add) (add)

Figure 8.2: Upper row: Four example images in the tabletop data set. Second row: Feature
assignments of each image. The first feature is the base feature, which depicts the Klein
bottle and $20 bill on a tabletop and is almost identical to the fourth picture in the first row.
The remaining four features are shown in order in the third row. The fourth row indicates
whether the picture is added or subtracted when the feature is present.
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assignment algorithms such K-means to stochastic algorithms such as Gibbs sampling, par-
ticularly given the practical need for reinitialization to avoid local minima in the former, and
difficult-to-assess convergence in the latter, it should be clear from the first column in the
lefthand table of Figure 8.1 that there is a major difference in computation time between
Gibbs sampling and the new algorithms. Even when the BP-means algorithm is run 1000
times in a reinitialization procedure, the total time consumed is still an order of magnitude
less than that for a single run of Gibbs sampling. Stepwise K-features is the fastest of the
new algorithms.

We further note that if we were to take advantage of parallelism, additional drastic
advantages could be obtained for the new algorithms. The Gibbs sampler requires each
Gibbs iteration to be performed sequentially whereas the random initializations of the various
feature means algorithms can be performed in parallel. A certain level of parallelism may even
be exploited for the steps within each iteration of the collapsed and BP-means algorithms
while the zn,1:K optimizations of K-features may all be performed in parallel across n

Another difficulty in comparing algorithms is that there is no clear single criterion with
which to measure accuracy of the final model in unsupervised learning problems such as
these. We do note, however, that theoretical considerations suggest that the IBP is not
designed to find either a fixed number of features as N varies nor roughly equal sizes in
those features it does find (Broderick, Jordan, and Pitman, 2012). This observation may
help explain the distribution of observed feature counts over a variety of IBP runs with the
given data. To obtain feature counts from the IBP, we tried running in a variety of dif-
ferent scenarios—combining different initializations (one shared feature, 5 random features,
10 random features, initialization with the BP-means result) and different starting param-
eter values2 (mass parameter values ranging logarithmically from 0.01 to 1 and mean-noise
parameter values ranging logarithmically from 0.1 to 10). The final 100 K draws for each
of these combinations are aggregated and summarized in a histogram on the right of Fig-
ure 8.1. Feature counts lower than 7 were not obtained in our experiments, which suggests
these values are, at least, difficult to obtain using the IBP with the given hyperpriors.

On the other hand, the feature counts for the new K-means-style algorithms suggest
parsimony is more easily achieved in this case. The lower picture and text rows of Figure 8.2
show the features (after the base feature) found by stepwise K-features: as desired, there
is one feature per tabletop object. The upper text row of Figure 8.2 shows the features
to which each of the example images in the top row are assigned by the optimal feature
allocation. For comparison, the collapsed algorithm also finds an optimal feature encoding.
The BP-means algorithm adds an extra, superfluous feature containing both the Klein bottle
and $20 bill.

Faces data. Next, we analyze the FEI face database, consisting of 400 pre-aligned images
of faces (Thomaz and Giraldi, 2010). 200 different individuals are pictured, each with one
smiling and one neutral expression. Each picture has height 300 pixels, width 250 pixels,
and one grayscale channel. Four example pictures appear in the first row of Figure 8.3. This

2We found convergence failed for some parameter initializations outside this range.
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Figure 8.3: 1st row: Four sample faces. 2nd row: The base feature (left) and other 2 features
returned by stepwise K-features with λ2 = 5. The final pictures are the cluster means from
K-means with K = 3 (3rd row) and K = 4 (4th row). The righthand text shows how the
sample pictures are assigned to features/clusters by each algorithm.

time, we compare the stepwise K-features algorithm to classic K-means. We keep the top
100 principal components to form the data vectors for both algorithms.

Given λ2 = 5, stepwise K-features chooses one base feature (lefthand picture in the second
row of Figure 8.3) plus two additional features as optimal; the central and righthand pictures
in the second row of Figure 8.3 depict the sum of the base feature plus the corresponding
feature. The second feature codes for longer hair and a shorter chin relative to the base
feature. The third feature codes for darker skin and slightly different facial features. The
feature combinations of each picture in the first row appear in the first text row on the right;
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all four possible combinations are represented.
K-means with 2 clusters and K-features with 2 features both encode exactly 2 distinct,

disjoint groups. For larger numbers of groups though, the two representations diverge.
For instance, consider a 3-cluster model of the face data, which has the same number of
parameters as the 3-feature model. The resulting cluster means appear in the third row of
Figure 8.3. While the cluster means appear similar to the feature means, the assignment of
faces to clusters is quite different. The second righthand text row in Figure 8.3 shows to which
cluster each of the four first-row faces is assigned. The feature allocation of the fourth picture
in the top row tells us that the subject has long hair and certain facial features, roughly,
whereas the clustering tells us that the subject’s hair is more dominant than facial structure
in determining grouping. Globally, the counts of faces for clusters (1,2,3) are (154,151,95)
while the counts of faces for feature combinations (100,110,101,111) are (139,106,80,75).

We might also consider a clustering of size 4 since there are 4 groups specified by the
3-feature model. The resulting cluster means are in the bottom row of Figure 8.3, and the
cluster assignments of the sample pictures are in the bottom, righthand text row. None of
the sample pictures falls in cluster 4. Again, the groupings provided by the feature allocation
and the clustering are quite different. Notably, the clustering has divided up the pictures
with shorter hair into 3 separate clusters. In this case, the counts of faces for clusters
(1,2,3,4) are (121,150,74,55). The feature allocation here seems to provide a sparser and
more interpretable representation relative to both cluster cardinalities.

8.6 Discussion

We have developed a general methodology for obtaining hard-assignment objective functions
from Bayesian MAP problems. The key idea is to include the structural variables explicitly in
the posterior using combinatorial functions such as the EPPF and the EFPF. We apply this
methodology to a number of generative models for unsupervised learning, with particular
emphasis on latent feature models. We show that the resulting algorithms are capable of
modeling latent structure out of reach of clustering algorithms but are also much faster than
existing feature allocation learners from Bayesian nonparametrics.

8.A DP-means objective derivation

First consider the generative model in Section 8.2. The joint distribution of the observed
data x, cluster indicators z, and cluster means µ can be written as follows.

P(x, z, µ) = P(x|z, µ)P(z)P(µ)

=
K+∏

k=1

∏

n:zn,k=1

N (xn|µk, σ2ID)
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· θK+−1 Γ(θ + 1)

Γ(θ +N)

K+∏

k=1

(SN,k − 1)!

·
K+∏

k=1

N (µk|0, ρ2ID).

Then set θ := exp(−λ2/(2σ2)) and consider the limit σ2 → 0. In the following, f(σ2) =
O(g(σ2)) denotes that there exist some constants c, s2 > 0 such that |f(σ2)| ≤ c|g(σ2)| for
all σ2 < s2.

− logP(x, z, µ)

=
K+∑

k=1

∑

n:zn,k=1

[
O(log σ2) +

1

2σ2
‖xn − µk‖2

]

+ (K+ − 1)
λ2

2σ2
+O(1)

+O(1).

It follows that

−2σ2 logP(x, z, µ) =
K+∑

k=1

∑

n:zn,k=1

‖xn − µk‖2

+ (K+ − 1)λ2 +O(σ2 log(σ2)).

But since σ2 log(σ2) → 0 as σ2 → 0, we have that the remainder of the righthand side is
asymptotically equivalent (as σ2 → 0) to the lefthand side (Eq. (8.2)).

8.B BP-means objective derivation

The recipe is the same as in Appendix 8.A. This time we start with the generative model in
Section 8.3. The joint distribution of the observed data X, feature indicators Z, and feature
means A can be written as follows.

P(X,Z,A) = P(X|Z,A)P(Z)P(A)

=
1

(2πσ2)ND/2
exp

{
− 1

2σ2
tr((X − ZA)′(X − ZA))

}

·
γK

+
exp

{
−∑N

n=1
γ
n

}

∏H
h=1 K̃h!

K+∏

k=1

(SN,k − 1)!(N − SN,k)!
N !

· 1

(2πρ2)K+D/2
exp

{
− 1

2ρ2
tr(A′A)

}
.
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Now set γ := exp(−λ2/(2σ2)) and consider the limit σ2 → 0. Then

− logP(X,Z,A)

= O(log σ2) +
1

2σ2
tr((X − ZA)′(X − ZA))

+K+ λ2

2σ2
+ exp(−λ2/(2σ2))

N∑

n=1

n−1 +O(1)

+O(1).

It follows that

−2σ2 logP(X,Z,A) = tr[(X − ZA)′(X − ZA)] +K+λ2

+O
(
σ2 exp(−λ2/(2σ2))

)
+O(σ2 log(σ2)).

But since exp(−λ2/(2σ2))→ 0 and σ2 log(σ2)→ 0 as σ2 → 0, we have that−2σ2 logP(X,Z,A) ∼
tr[(X − ZA)′(X − ZA)] +K+λ2.

8.C Collapsed DP-means objective derivation

We apply the usual recipe as in Appendix 8.A. The generative model for collapsed DP-
means is described in Section 8.4. The joint distribution of the observed data X and cluster
indicators Z can be written as follows:

P(X,Z) = P(X|Z)P(Z)

=

(
(2π)ND/2(σ2)(N−K+)D/2(ρ2)K

+D/2|Z ′Z +
σ2

ρ2
ID|D/2

)−1

· exp

{
− 1

2σ2
tr

(
X ′(IN − Z(Z ′Z +

σ2

ρ2
ID)−1Z ′)X

)}

· θK+−1 Γ(θ + 1)

Γ(θ +N)

K+∏

k=1

(SN,k − 1)!.

Now set θ := exp(−λ2/(2σ2)) and consider the limit σ2 → 0. Then

− logP(X,Z) = O(log(σ2))

+
1

2σ2
tr

(
X ′(IN − Z(Z ′Z +

σ2

ρ2
ID)−1Z ′)X

)

+ (K+ − 1)
λ2

2σ2
+O(1).

It follows that

−2σ2 logP(X,Z)
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= tr

(
X ′(IN − Z(Z ′Z +

σ2

ρ2
ID)−1Z ′)X

)

+ (K+ − 1)λ2 +O(σ2 log(σ2)).

We note that σ2 log(σ2)→ 0 as σ2 → 0. Further note that Z ′Z is a diagonal K ×K matrix
with (k, k) entry (call it SN,k) equal to the number of indices in cluster k. Z ′Z is invertible
since we assume no empty clusters are represented in Z. Then

−2σ2 logP(X,Z)

∼ tr
(
X ′(IN − Z(Z ′Z)−1Z ′)X

)
+ (K+ − 1)λ2

as σ2 → 0.

More interpretable objective

The objective for the collapsed Dirichlet process is more interpretable after some algebraic
manipulation. We describe here how the opaque tr (X ′(IN − Z(Z ′Z)−1Z ′)X) term can be

written in a form more reminiscent of the
∑K+

k=1

∑
n:zn,k=1 ‖xn−µk‖2 term in the uncollapsed

objective. First, recall that C := Z ′Z is a K × K matrix with Ck,k = SN,k and Cj,k = 0
for j 6= k. Then C ′ := Z(Z ′Z)−1Z ′ is an N × N matrix with C ′n,m = S−1

N,k if and only if
zn,k = zm,k = 1 and C ′n,m = 0 if zn,k 6= zm,k.

tr(X ′(IN − Z(Z ′Z)−1Z ′)X)

= tr(X ′X)− tr(X ′Z(Z ′Z)−1Z ′X)

= tr(XX ′)−
D∑

d=1

K+∑

k=1

∑

n:zn,k=1

∑

m:zm,k=1

S−1
N,kXn,dXm,d

=
K+∑

k=1


 ∑

n:zn,k=1

xnx
′
n − 2S−1

N,k

∑

n:zn,k=1

xn
∑

m:zm,k=1

x′m

+ S−1
N,k

∑

n:zn,k=1

xn
∑

m:zm,k=1

x′m




=
K+∑

k=1

∑

n:zn,k=1

‖xn − S−1
N,k

∑

m:zm,k=1

xm,k‖2

=
K+∑

k=1

∑

n:zn,k=1

‖xn − x̄(k)‖2,

for the cluster-specific empirical mean defined as x̄(k) := S−1
N,k

∑
m:zm,k=1 xm,k, as in the main

text.
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8.D Collapsed BP-means objective derivation

We continue to apply the usual recipe as in Appendix 8.A. The generative model for collapsed
BP-means is described in Section 8.4. The joint distribution of the observed data X and
feature indicators Z can be written as follows:

P(X,Z) = P(X|Z)P(Z)

=

(
(2π)ND/2(σ2)(N−K+)D/2(ρ2)K

+D/2|Z ′Z +
σ2

ρ2
ID|D/2

)−1

· exp

{
− 1

2σ2
tr

(
X ′(IN − Z(Z ′Z +

σ2

ρ2
ID)−1Z ′)X

)}

·
γK

+
exp

{
−∑N

n=1
γ
n

}

∏H
h=1 K̃h!

K+∏

k=1

(SN,k − 1)!(N − SN,k)!
N !

.

Now set γ := exp(−λ2/(2σ2)) and consider the limit σ2 → 0. Then

− logP(X,Z) = O(log(σ2))

+
1

2σ2
tr

(
X ′(IN − Z(Z ′Z +

σ2

ρ2
ID)−1Z ′)X

)

+K+ λ2

2σ2
+ exp(−λ2/(2σ2))

N∑

n=1

n−1 +O(1).

It follows that

−2σ2 logP(X,Z) = tr

(
X ′(IN − Z(Z ′Z +

σ2

ρ2
ID)−1Z ′)X

)

+K+λ2 +O
(
σ2 exp(−λ2/(2σ2))

)
+O(σ2 log(σ2)).

But exp(−λ2/(2σ2)) → 0 and σ2 log(σ2) → 0 as σ2 → 0. And Z ′Z is invertible so long as
two features do not have identical membership (in which case we collect them into a single
feature). So we have that −2σ2 logP(X,Z) ∼ tr (X ′(IN − Z(Z ′Z)−1Z ′)X) +K+λ2.

8.E Parametric objectives

First, consider a clustering prior with some fixed maximum number of clusters K. Let
q1:K represent a distribution over clusters. Suppose q1:K is drawn from a finite Dirichlet
distribution with size K > 1 and parameter θ > 0. Further, suppose the cluster for each
data point is drawn iid according to q1:K . Then, integrating out q, the marginal distribution
of the clustering is Dirichlet-multinomial:

P(z) =
Γ(Kθ)

Γ(N +Kθ)

K∏

k=1

Γ(SN,k + θ)

Γ(θ)
. (8.11)
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We again assume a Gaussian mixture likelihood, only now the number of cluster means µk
has an upper bound of K.

We can find the MAP estimate of z and µ under this model in the limit σ2 → 0.
With θ fixed, the clustering prior has no effect, and the resulting optimization problem is
argminz,µ

∑K
k=1

∑
n:znk=1 ‖xn− µk‖2, which is just the usual K-means optimization problem.

We can also try scaling θ = exp(−λ2/(2σ2)) for some constant λ2 > 0 as in the unbounded
cardinality case. Then taking the σ2 → 0 limit of the log joint likelihood yields a term of λ2

for each cluster containing at least one data index in the product in Eq. (8.11)—except for
one such cluster. Call the number of such activated clusters K+. The resulting optimization
problem is

argmin
K+,z,µ

K∑

k=1

∑

n:znk=1

‖xn − µk‖2 + (K ∧K+ − 1)λ2. (8.12)

This objective caps the number of clusters at K but contains a penalty for each new cluster
up to K.

A similar story holds in the feature case. Imagine that we have a fixed maximum of K
features. In this finite case, we now let q1:K represent frequencies of each feature and let

qk
iid∼ Beta(γ, 1). We draw znk ∼ Bern(qk) iid across n and independently across k. The

linear Gaussian likelihood model is as in Eq. (8.5) except that now the number of features
is bounded. If we integrate out the q1:K , the resulting marginal prior on Z is

K∏

k=1

(
Γ(SN,k + γ)Γ(N − SN,k + 1)

Γ(N + γ + 1)

Γ(γ + 1)

Γ(γ)Γ(1)

)
. (8.13)

Then the limiting MAP problem as σ2 → 0 is

argmin
Z,A

tr[(X − ZA)′(X − ZA)]. (8.14)

This objective is analogous to the K-means objective but holds for the more general prob-
lem of feature allocations. Eq. (8.14) can be solved according to the K features algorithm
(Alg. 8.4). Notably, all of the optimizations for n in the first step of the algorithm may be
performed in parallel.

We can further set γ = exp(−λ2/(2σ2)) as for the unbounded cardinality case before
taking the limit σ2 → 0. Then a λ2 term contributes to the limiting objective for each
non-empty feature from the product in Eq. (8.13):

argmin
K+,Z,A

tr[(X − ZA)′(X − ZA)] + (K ∧K+)λ2, (8.15)

reminiscent of the BP-means objective but with a cap of K possible features.
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8.F General multivariate Gaussian likelihood

Above, we assumed a multivariate spherical Gaussian likelihood for each cluster. This as-
sumption can be generalized in a number of ways. For instance, assume a general covariance
matrix σ2Σk for positive scalar σ2 and positive definite D × D matrix Σk. Then we as-
sume the following likelihood model for data points assigned to the kth cluster (zn,k = 1):
xn ∼ N (µk, σ

2Σk). Moreover, assume an inverse Wishart prior on the positive definite ma-
trix Σk: Σk ∼ W−1(Φ, ν) for Φ a positive definite matrix and ν > D − 1. Assume a prior
P(µ) on µ that puts strictly positive density on all real-valued D-length vectors µ. For now
we assume K is fixed and that P(z) puts a prior that has strictly positive density on all valid
clusterings of the data points. Then

P(x, z, µ, σ2Σ)

= P(x|z, µ, σ2Σ)P(z)P(µ)P(Σ)

=
K+∏

k=1

∏

n:zn,k=1

N (xn|µk, σ2Σk)

· P(z)P(µ) ·
K∏

k=1

[ |Φ|ν/2
2νD/2ΓD(ν/2)

|Σk|−
ν+D+1

2

· exp

{
−1

2
tr(ΦΣ−1

k )

}]
,

where ΓD is a multivariate gamma function. Consider the limit σ2 → 0. Set ν = λ2/σ2 for
some constant λ2 : λ2 > 0. Then

− logP(x, z, µ, σ2Σ)

=
K∑

k=1

∑

n:zn,k=1

[
O(log σ2) +

1

2σ2
(xn − µk)′Σ−1

k (xn − µk)
]

+O(1) +
K∑

k=1

[
− 1

2σ2
λ2 log |Φ|+ D

2σ2
λ2 log 2

+ log ΓD(λ2/(2σ2)) +

(
λ2

2σ2
+
D + 1

2

)
log |Σk|+O(1)

]
.

So we find

−2σ2
[
logP(x, z, µ, σ2Σ) + log ΓD(λ2/(2σ2))

]

∼
K∑

k=1

∑

n:zn,k=1

(xn − µk)′Σ−1
k (xn − µk)
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+
K∑

k=1

λ2 log |Σk|+ c+O(σ2),

where c is a constant in z, µ, σ2,Σ. Letting σ2 → 0, the righthand side becomes

K∑

k=1

∑

n:zn,k=1

(xn − µk)′Σ−1
k (xn − µk) +

K∑

k=1

λ2 log |Σk|+ c.

It is equivalent to optimize the same quantity without c.
If the Σk are known, they may be inputted and the objective may be optimized over the

cluster means and cluster assignments. For unknown Σk, though, the resulting optimization
problem is

min
z,µ,Σ

K∑

k=1


 ∑

n:zn,k=1

(xn − µk)′Σ−1
k (xn − µk) + λ2 log |Σk|


 .

That is, the squared Euclidean distance in the classic K-means objective function has been
replaced with a Mahalanobis distance, and we have added a penalty term on the size of the
Σk matrices (with λ2 modulating the penalty as in previous examples). This objective is
reminiscent of that proposed by Sung and Poggio (1998).

8.G Proof of BP-means local convergence

The proof of Proposition 8.3.1 is as follows.

Proof. By construction, the first step in any iteration does not increase the objective. The
second step starts by deleting any features that have the same index collection as an existing
feature. Suppose there are m such features with indices J and we keep feature k. By setting
Ak,· ←

∑
j∈J Aj,·, the objective is unchanged.

Next, let ‖Y ‖F =
√

tr(Y ′Y ) denote the Frobenius norm of a matrix Y . Then ‖Y ‖2
F is a

convex function. We check that f(A) = tr[(X − ZA)′(X − ZA)] is convex. Take λ ∈ [0, 1],
and let A and B be K ×D matrices; then,

f(λA+ (1− λ)B)

= ‖Z[λA+ (1− λ)B]−X‖2
F

= ‖λ(ZA−X) + (1− λ)(ZB −X)‖2
F

≤ λ‖ZA−X‖2
F + (1− λ)‖ZB −X‖2

F

= λf(A) + λf(B)

We conclude that f(A) is convex.
With this result in hand, note

∇Atr[(X − ZA)′(X − ZA)] = −2Z ′(X − ZA). (8.16)
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Setting the gradient to zero, we find that A = (Z ′Z)−1Z ′X solves the equation for A and
therefore minimizes the objective with respect to A when Z ′Z is invertible, as we have
already guaranteed.

Finally, since there are only finitely many feature allocations in which each data point
has at most one feature unique to only that data point and no features containing identical
indices (any extra such features would only increase the objective due to the penalty), the
algorithm cannot visit more than this many configurations and must finish in a finite number
of iterations.
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