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Abstract

Segmentation and Detection Methods to Connect Brain Structure and Function

by

Angela Zhang

Exploring the connection between structure and function is an important piece of

the puzzle in understanding the brain. The structure of the brain refers to the physical

connections and morphological features of the neuronal cells, while function refers to the

behaviors and symptoms manifesting in the individual.

In this research we investigate the structure-function relationships at different spatial

scales, from single neuron connections to tissue level connectomics. We present meth-

ods to detect and identify the neurotransmitter types of synapses in a small organism,

Ciona, from confocal and electron microscopy images. Ciona is a chordate closely re-

lated to humans on the evolutionary tree, but with a much simpler neuronal structure.

Understanding the Ciona connectome is an important step towards understanding the

human brain. This is one of the first attempts to discover the relationship of the synaptic

structures with their function in Ciona that includes mapping the confocal data with the

EM data, detecting synaptic regions, and developing a classification model for neuro-

transmitter types.

At the tissue level, we consider the problem of predicting Normal Pressure Hydro-

cephalus (NPH) from the brain CT scans of human subjects. NPH is a highly treatable

condition which is often misdiagnosed due to confounding factors, such as Parkinson’s.

Here we develop methods for segmenting the brain scans and using the human con-

nectome data to improve the overall prediction accuracy. Detailed experimental results

validating the methods are presented.
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Chapter 1

Introduction

The brain is a complex web of conscious and sub-conscious thought, where processes

are generated, organized, and executed. It is an organ which we are just beginning to

understand. Two things we can determine about the brain are 1) its physical structure

and 2) the behavior of the individual who possesses the brain in question. While we can

obtain these two pieces of information through imaging techniques, little is known about

the link between structure of the brain and its behavior, or function. The motivation of

this dissertation is to shed more light on this connection on multiple levels of granularity.

We observe the brain through imaging techniques on the tissue level of granularity,

where groups of cells with similar function can be viewed. In humans, these cells form

specialized tissue in the brain, which can be imaged in a clinical setting with Computed

Tomography (CT) and Magnetic Resonance Imaging (MRI).

On the cellular level, neurons connect with other neurons in an intricate web of

communication. These neurons can be observed with a variety of microscopy techniques.

The parts of neuronal cells which send signals to other cells are axons and dendrites,

which contain synapses, which are small sub-cellular structures visible thorough electron

microscopy. We study the cell-to-cell interactions in the brain of an organism called Ciona
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Introduction Chapter 1

intestinalis, or Ciona for short. This organism is a good proxy for the human brain, but

is much simpler and smaller, allowing us to gain a more complete understanding of each

cell in its brain.

1.1 Motivation

There remains much to be discovered about the structure of the brain and how it

relates to behavior and pathology. Currently, brain disorders such as dementia are di-

agnosed and treatment determined primarily through observing the outwards symptoms

and behavior of the patient. Similarity, treatment efficacy is approximated through the

administration of cognitive tests and behavioral observation. Analytical tools to empower

doctors and researchers to measure structural features of the brain through medical im-

age analysis would enable more accurate disease diagnosis and further in depth analysis

of treatment efficacy.

Brain imaging techniques for the human brain consist primarily of Computed To-

mography (CT) scans and Magnetic Resonance Imaging (MRI), which capture brain

structures on the tissue level. In addition to these modalities, it is also important to

understand the brain on the cellular and sub-cellular level. Microscopy techniques allow

us to observe individual neurons and neuron clusters at high resolution. Understanding

the inter-cellular interactions between neurons will ultimately allow us to reach a more

thorough understanding of the complex workings of the brain.

The following sections go into more detail about the different levels of granularity

and their benefits and challenges.

2



Introduction Chapter 1

1.1.1 Imaging Modalities at Different Scales

Tissue Level Imaging

Tissues are groups of cells that have similar structure and function together as a unit.

The human brain consists of grey matter, which are the cell bodies and processing units,

and white matter, which are the axons that transport signals between processing hubs.

In addition to these tissue types, there is also cereberospinal fluid in pockets throughout

the brain, which transports nutrients and removes waste from brain tissue, in addition

to providing a cushion of fluid around the brain. The use of medical imaging techniques

such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) allows us

to see these structures inside the brain.

Diffusion MRI allows us to see the direction of water movement in the brain, which

enables us to map out the location and direction of white matter structures in the brain.

These white matter structures are the pathways for communication between brain pro-

cessing regions (gray matter), and their properties can help us understand the state of

the human brain. While diffusion MRI is not as commonly used in a clinical setting,

especially with respect to time-sensitive situations and on patients with high levels of

trauma, there is a wealth of diffusion MRI data collected by various research efforts such

as the Human Connectome Project (HCP) and the Alzheimer’s Disease Neuroimaging

Initiative (ADNI), which provide insight into the appearance of white matter structures of

neurotypical human brains of various age groups as well as those with Alzheimer’s-caused

dementia. The data gathered using diffusion MRI can be used to create a tractograph of

a patient, which is a model of the major white matter tracts running through the regions

of the brain and can be computed with a myriad of methods, from deterministic fiber

tracking to probabilistic computations.

Compared to MRI, CT scans are faster, cheaper and used commonly in a clinical

3



Introduction Chapter 1

setting to assess patients with possible brain injury or disease. Though CT scans do

not differentiate between white matter and gray matter as well as MRI, they reveal the

location and shape of internal brain structures containing cerebrospinal fluid, such as the

ventricles and subarachnoid space. In a clinical setting, CT scans are often collected for

patients with abnormal physical and psychological symptoms and behaviors requiring

diagnosis. This provides valuable data rich with potential for computational analysis.

Combining the information contained in clinical CT scans and symptoms with average

human brain structure information can provide valuable, multi-modal insight into how

certain disorders affect the brain in multiple ways.

Cellular and Sub-Cellular Level Imaging

Cellular and sub-cellular imaging allows us to see the cell-to-cell interactions taking

place between neurons. Neurons consist of sub-cellular structures, including notably

synapses, which are junctions of communication between one neuron to another.

Confocal light microscopy and electron microscopy (EM) can help us see these cells

and sub-cellular structures. Due to the time-intensive, costly, and invasive nature of these

techniques, it is not currently possible to use them on a living human brain. However, a

simpler organism closely related to humans on the evolutionary tree can provide a starting

point to understanding the nature of inter-neuron communication. One such organism

is the Ciona intestinalis larva, a chordate with approximately 177 neurons. Ciona is a

microscopic organism closely related to humans on the evolutionary tree, more so than

insects such as drosophila, another commonly studied organism. The full neuronal map

of the Ciona has already been mapped [1], but the map did not include the types of

messages being sent between neurons, nor are connections drawn between the neuronal

map and the behavior of the organism.

One crucial piece of information to understand the inner workings of the brain is the
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type of neurotransmitters being sent between neurons. Two major types of neurotrans-

mitters exist - excitatory and inhibitory. In simplified terms, excitatory neurotransmitters

sent from one neuron to another cause the receiving neuron to activate, while inhibitory

neurotransmitters cause the receiving neuron to deactivate. A neuron can receive multiple

conflicting neurotransmitters from different neurons at the same time, leading to com-

plex reactions and obscure action pathways. Fluorescent microscopy of neurons that have

undergone in-situ hybridization can reveal the neurotransmitter expression of neuronal

types. Specific fluorescent markers are designed to bind to the messenger ribonucleic acid

(RNA) of neurons, which are then visible through light microscopy.

In addition to the neurotransmitter expressed by neurons, the complementary piece of

the puzzle to understanding neuronal behavior is the connection pathways, or synapses,

between neurons. Analogous to the white matter structures in the human brain, synapses

between neurons allow one neuron to communicate by sending packets of information

(neurotransmitters) to the receiving neuron. Knowledge of the location and size of the

synapses in the brain is essential to understanding the circuitry of the brain as a whole.

Synapses, comprised of vesicles (which contain packages of neurotransmitters) and post-

synaptic density (the region which receives the neurotransmitters), are approximately

20-40 nanometers (nm) in length, while the wavelength of light is approximately 400-700

nm. Because synapses are smaller than the wavelength of light, electron microscopy is

used to reveal these structures, as electrons are much smaller than protons (approxi-

mately 1.23 nm) and can therefore image at a higher resolution. By imaging all of the

neurons and their synapses, we can build a complete connectome mapping the communi-

cation pathways of each neuron to all other neurons in the system. This mapping, along

with neurotransmitter expression information and behavioral experiments, can then be

used to understand the basis for behavior.

5
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1.2 Challenges and Contributions

The main challenges involve gleaning insight from incomplete and low resolution

unstructured data, developing a framework which is useful and practical for clinicians in

the field, and combining multi-modal data without any available ground truth due to the

exploratory nature of the study.

1.2.1 Combining multi-modal medical imaging data

Data captured in hospitals are often low resolution and incomplete. This is due to

several reasons, including the need for cost efficiency and concerns for the health of the

patient, who is often not in stable condition and cannot be imaged for long periods of

time or in restrictive environments such as a Magnetic Resonance Imaging (MRI) device.

As such, Computed Tomography (CT) scans are often used due to their lower costs,

faster imaging time, and adaptability to different configurations.

In order to gain more information about the patient’s status, we combine CT scans

with more detailed diffusion MRI in order to get a more complete picture.

Our contributions towards overcoming these challenges are:

• The use of aggregated information from ground truth annotations to provide more

context for the segmentation of low-resolution CT scans.

• Bringing in additional white matter structure information through the creation of

an atlas based on data from an alternative source and modifying the connectome

created from the atlas using generated segmentations specific to each patient.

6
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1.2.2 Adapting algorithms for clinical purposes

In order for an algorithm to be useful in the medical field, it must be adapted to the

needs of the clinician. We present our work with our collaborators in neurosurgery at

the University of California, Irvine Medical Center to make our algorithms as useful as

possible in a clinical setting.

• With our collaborators at the University of California, Irvine (UCI) Medical Center,

we have developed a rigorous annotation protocol to fully annotate the important

regions of the brain relevant to NPH on CT scans. A valuable dataset was created

through this process that can be used for training a deep network.

• In conjunction with the annotation process, we have worked to create a robust

system for clinicians to upload and segment each scan on their own, through a cloud-

based computational framework. It is currently being used by our collaborators at

UCI.

1.2.3 Gaining insight from multi-modal microscopy data

For cellular and sub-cellular level analysis, we have disparate data from confocal light

microscopy (cellular) and electron microscopy (sub-cellular). On the cellular level, we

have information about the type of signals each neuron is capable of sending via in-situ

hybridization experimentation, but not where they are sending the signals to. On the

sub-cellular level, we have a map of the connections between each neuron, but cannot

discern what kind of signals they are sending.

While highly detailed annotations of electron microscopy data exists

In order to put together the two pieces of information, we have contributed the

following.

7
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• We have used point cloud registration techniques to match cell nuclei locations in

light microscopy data to cell nuclei locations in electron microscopy data. Statis-

tical analysis was done to determine the consistency of the registration process on

different regions of the brain.

• From the conclusions we are able to draw using point cloud registration, we trained

a deep network to differentiate between excitatory and inhibitory synapses. We

used the trained network to extrapolate on possible neurotransmitter expressions

of cells which we could not differentiate using point cloud registration.

In summary, the goal of the work presented in this dissertation is to better understand

how the structure of the brain affects its function on multiple levels of granularity, from

sub-cellular structures to large regions of brain tissue.

1.3 Organization

This dissertation is organized in the following manner:

• Chapter 2 describes the development of novel algorithms to segment brain CT scans

and predict whether a patient has Normal Pressure Hydrocephalus. The chapter

discusses the connection drawn between tissue-level segmentation, patient-specific

tractography, and diagnosis prediction.

• Chapter 3 provides the background of in-situ hybridization, confocal light mi-

croscopy, and electron microscopy for imaging individual neurons and sub-cellular

neuronal structures, as well as a brief description of the Ciona larva and its neu-

ronal structure. A point cloud matching algorithm is presented to match in-situ

data with electron microscopy data, and results and shortcomings are explained.

8
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• Chapter 4 discusses another method to take advantage of both modalities of mi-

croscopy data and gain insights about the Ciona connectome. Deep learning for

synapse detection and classification are the major algorithms used, and the results

are analyzed in detail to assess their rigor and applicability.

• Chapter 5 summarizes the main concepts and contributions of this dissertation,

and discusses potential future work which would benefit the field and which follows

from the work presented.

9



Chapter 2

Tissue Level Analysis: Predicting

NPH in the Human Brain

2.1 Introduction

We propose an automated method of predicting Normal Pressure Hydrocephalus

(NPH) from CT scans. A deep convolutional network is developed to segment regions

of interest from the CT Scans. These regions are combined with information derived

from MRI to predict NPH. To our knowledge, this is the first method which automat-

ically predicts NPH from CT scans, and also the first method to incorporate diffusion

tractography information for prediction.

Due to their low cost and high versatility, CT scans have long been used to help

diagnose intragray-white anomalies such as NPH. However, no well-defined and effective

protocol currently exists for the analysis of CT scans for NPH. The Evans’ Index, an

approximation of ventricle to brain volume using one 2D image slice, has been proposed

but is not robust to varying conditions and imaging angles in a clinical setting [2]. In

contrast, the proposed approach is an effective way to quantify the regions of interest and

10
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offers a computationally reproducible method for predicting NPH conditions in subjects.

We propose a novel method to predict NPH by combining regions of interest seg-

mented from CT scans with connectome data to compute connectivity features. These

features capture the impact of enlarged ventricles, a typical NPH condition, by excluding

fiber tracts that pass through these regions. The segmentation and network features are

then used to train a Support Vector Machine for NPH prediction. Our method out-

performs the current state-of-the-art by 9 precision points and 29 recall points. Our

segmentation model outperforms the current state-of-the-art in segmenting the ventri-

cle, gray-white matter, and subarachnoid space in CT scans. Our experimental results

demonstrate that fast and accurate volumetric segmentation of CT brain scans can help

improve the NPH diagnosis process, and that network properties can increase NPH pre-

diction accuracy.

2.2 Background

More than an estimated 700,000 Americans have NPH, but due to the presence of

confounding co-morbidities and the lack of a rigorous diagnosis protocol, the majority of

cases are under- or misdiagnosed [3] as other forms of often co-morbid dementia, leading

to a delay in treatment that would significantly improve neurologic function. NPH is one

of few reversible causes of dementia in the elderly, making correct diagnosis important, as

shunt placement to drain the excess cerebrospinal fluid (CSF) has been demonstrated to

be a safe and effective treatment [4]. Meanwhile, misdiagnosis and missed treatment can

lead to decreased quality of life and cognitive deterioration. NPH presents as enlargement

of the lateral ventricles in the brain, while maintaining normal CSF pressure levels. CSF

normally flows through the subarachnoid space and ventricles, but in patients with NPH,

there is an abnormality of CSF flow and absorption that results in CSF accumulation in

11
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the ventricular system, causing the ventricles to swell, as illustrated in Figure 2.1. This

swelling causes a multitude of neurological symptoms if left untreated.

NPH afflicts mainly elderly patients, often with co-morbid factors such as Parkinson’s

or Alzheimer’s disease, and is commonly accompanied by symptoms of dementia. More

specifically, cognitive dysfunction, changes in gait, and urinary incontinence are major

symptoms indicating the presence of NPH [4]. Current diagnostic methods for NPH

involve a mixture of clinical and imaging approaches [4]. Most commonly, a memory test

is conducted, along with observation of gait and inquiry of urinary continence status.

In addition, a Computed Tomography (CT) scan is often acquired to visually determine

lateral ventricle size.

Sometimes, the Evans’ Index, a 2D manually computed ratio illustrated in Figure

2.2, is computed as a proxy for the size of the lateral ventricles in comparison to the size

of the brain as a whole. The Evan’s Index is the ratio of the transverse diameter of the

anterior horns of the lateral ventricles to the greatest internal diameter of the skull in a

single slice of a 3D volume CT or Magnetic Resonance Imaging (MRI) Scan.

Current guidelines define ventricular enlargement an Evan’s index of greater than 0.3

[2]. However, determining the Evans’ Index is time-intensive, manual, and prone to error

due to varying imaging conditions and subjectivity of measurement. It has been shown

that the Evan’s ratio in fact varies greatly depending on the level (slice location) of the

brain CT scan image at which the frontal horns and maximal inner skull diameters are

measured [2]. More importantly, the Evans’ index measurement only takes into account

a proxy for the ventricle and skull sizes, as shown in Figure 2.2 and does not account for

other important volumes such as the subarachnoid space—the smaller folded channels also

containing CSF located near the surface of the brain—and gray-white matter volumes.

These volumes are important due to the presence of increased subarachnoid space and

decreased gray-white matter in subjects with dementia, which is a major confounding

12
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Figure 2.1: Example CT image slice of area with widest frontal horns in (a) a normal
subject and (b) a subject diagnosed with NPH. (c) and (d) are masks overlaid on
the original image indicating the ventricles (red), gray-white matter (green), and
subarachnoid space (blue). In this example, the width of the frontal horns appear
similar in the normal subject and the NPH subject, but the total volume of the
ventricles differs. This is one example of a case where 3D volumetric measurements
may be helpful in differentiating potential patients with NPH from those without
NPH. These annotations are carefully created from the 3D data and are available to
the public.

13
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Figure 2.2: Demonstration of the measurements involved in obtaining the Evans’ Index
in a normal (left) and NPH (right) patient. A is the distance between the widest part
of the frontal horns. B is the width of the widest part of the skull. The Evans’ Index
is computed as A/B.

factor in diagnosing NPH.

A 3-dimensional multi-class volumetric method of measuring the relevant regions of

the brain could help to mitigate these challenges and holds promise for improving NPH

differential diagnosis [5]. Manual 3D segmentation of CT scans is a time-consuming pro-

cess, with one detailed volumetric segmentation of the ventricles, subarachnoid space,

and gray-white matter taking up to twenty hours to complete. Moreover, delineating

these regions in detail requires domain expertise, limiting the possibility of such segmen-

tation being done on a regular basis. An automated method to segment CT scans would

allow for widespread usage of volumetric analysis as an aid in NPH diagnosis, as well as

the monitoring of patients over time to determine the effects of treatment.

An automated method of computing the Evan’s ratio from CT is presented in [6],

but this method loses the volumetric advantage of directly computing the volumes from

CT scans. For segmentation of the lateral ventricles, [7] uses expert priors to aid in

patch based segmentation of the lateral ventricles in MRI. [8] implements a method

for automated ventricular volume measurement in MRI using the strong force algorithm

14
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to find the best statistical features and a support vector machine to compute the final

classification. The paper claims feasibility in CT, but does not discuss NPH. Another

method of lateral ventricle segmentation in MRI is presented in [9] using a fuzzy rep-

resentative line. The authors in [10] explore challenges in ventricle segmentation from

MRI using neural networks, finding difficulties transferring segmentation models trained

normal patients to work with NPH patients. [11] performs highly detailed segmentation

of CT scans for the purpose of NPH analysis, using 4-6 slices per scan to capture the

ventricular region of the scan.

To our knowledge, our proposed method is the first to predict NPH by first fully

segmenting the subarachnoid space, lateral ventricles, and gray/white matter of the brain

from a CT scan. An automated method of segmenting all of the relevant regions in the

brain from a CT scan would greatly aid in the discovery and treatment of patients with

NPH. Moreover, changes in brain connectivity due to the enlarged lateral ventricles may

be modeled from this segmentation and its effects used to aid in NPH prediction.

2.2.1 The Connectome

The connectome is a map of the white tissue structures connecting different regions

in the brain, which consist of axonal bundles that neurons use to communicate with

one another. These white tissue structures can be seen using diffusion MRI, an imaging

method which allows us to see the diffusion properties of water through the matter being

imaged. since water travels in a directed pattern through axonal bundles, they are visible

through this method. Diffusion orientation computation methods and fiber tracking

[12, 13] reveal network properties of the brain that are unique to each connectome, in a

process called diffusion tractography.
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2.3 Contributions

We hypothesise that the enlargement of the lateral ventricles in patients with NPH

cause changes to the connectome, especially in the regions closest to the enlarged ven-

tricular space (i.e., the frontal horns). Since patient specific diffusion imaging is not

gathered in a typical NPH clinical workflow, we propose an inventive method to approx-

imate changes in the connectome using the segmented scan and a diffusion MRI atlas.

The network metric derived from this approximated connectome is used as additional

information during the NPH prediction process. To our knowledge, this is the first time

connectome information has been combined with volumetric segmentation features to

predict the presence of a disorder such as NPH.

The major contributions of chapter are as follows.

1. We have developed a robust, data-driven CT segmentation method which is derived

from data from NPH and age-matched normal patients which can aid in NPH

diagnosis. Our algorithm is the first of its kind to take into account the spatial

distribution of the regions of interest. The robustness of our algorithm allows for

the segmentation of CT scans from both normal and NPH subjects, which has

historically been a challenge even with deep learning [10].

2. Additionally, we combine diffusion tractography information with the segmentation

in a novel way to improve NPH prediction.

3. The creation of a novel and valuable data set of detailed and full manual seg-

mentations of CT brain scans. This data will be made publicly available and can

further benefit the medical research community. The code is available on GitHub

at https://github.com/UCSB-VRL/NPH_Prediction/tree/connectome.
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2.4 Data

2.4.1 Data collection

To study the morphological differences between NPH and non-NPH patients and

create a pipeline for predicting NPH, CT brain scans are collected from patients with and

without NPH. To incorporate additional white matter structural (diffusion tractography)

information into the NPH prediction process, diffusion MRI of normal subjects between

the ages of 75 and 85 are collected from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI).

The CT data comes from two sources: the University of California Irvine Medical

Center (UCI) and the Santa Barbara Cottage Hospital. This is a retrospective study,

with all images de-identified as specified by the IRB agreement between each medical

center and the University of California, Santa Barbara.

There is no protocol determining the number of slices, orientation, or other imaging

parameters for the data used in this study. CT scans of n = 65 subjects are included

in the study, with 42 subjects having a diagnosis of normal and 23 subjects having a

diagnosis of NPH. Axial scans are acquired as part of the treatment process, and the

number of slices varied from 25 to 207. For the subjects from UCI, the average subject

age is 75 ± 15 years. For the subjects from Cottage Hospital, the average age of the

subjects is 72 ± 14 years.

2.4.2 Data Processing and Annotation

40 manual segmentations are performed by members of the research team under di-

rect supervision and validation by a neurological surgeon. Each annotation took approxi-

mately 20 hours to complete, and includes the subarachnoid space, ventricles, gray-white
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matter, and cerebellum. The annotation is first initialized using semi-supervised snake

segmentation through the ITK-SNAP tool[14], then further refined manually. There are

a total of approximately 2,000 completed manually segmented slices used in this study,

taking approximately 800 hours to annotate. The rest of the scans are not used for seg-

mentation training or validation, but are added to the dataset for diagnosis training and

validation.

For annotation consistency using ITK-SNAP, the viewing window is adjusted to have

a viewing intensity minimum of −980 and maximum of 80. After window adjustment,

curve-based contrast adjustment is done with 3 control points. The middle control point

is set at x = −10 and y = 0.020.

The refined annotation is compared to the initial semi-supervised segmentation. The

Evan’s index, measured under direct supervision of a neurological surgeon, is calculated

for all subjects.

As noted earlier, diffusion tractography information is incorporated in a novel way

into the NPH prediction process to improve the prediction results. In addition to the

CT data, Diffusion MRI of 11 normal subjects between the ages of 75 and 85 from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) are used to create an average

connectome with which to conduct connectivity studies comparing NPH and non-NPH

subjects.

2.5 Approach

2.5.1 Algorithm Overview

First, the CT image is segmented into three regions of interest (ROI) - the white/gray

matter, subarachnoid space, and lateral ventricles - using a modified trained 3D UNet.
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Algorithm 1: NPH Prediction. CT Scan Segmentation

Input : CT Scan of the subject, MNI152 Atlas, Population Average diffusion
data for diffusion tractography computation in the MNI152 space

Output: 3D Segmentation of CT Scan into 3 regions, NPH Score
1 Compute the Affine Transform Matrix H that aligns the MNI152 atlas to the

subject space
2 Compute probability maps using ground truth annotations and transform it into

the subject space using H
3 The CT Scans are segmented using modified 3D-UNet and affine transformed

Probability Maps. The resulting segmentation is mapped back to the MNI152
space using H−1 for the tractography computations below

4 Compute ROA(region of avoidance) Tractographs using the ventricles as the
ROA

5 Compute Patient Specific connectivity matrix and the derived network properties
6 Using the segmentation volumes and network properties, predict whether the

subject has NPH.

These ROIs are important to NPH prediction due to the enlargement of the lateral ven-

tricles in relation to the rest of the brain which occurs during NPH. The UNet uses both

the original CT scan as well as a probability map created from the ground truth annota-

tions to provide contextual data to the up-sampling layers. The segmented volumes are

used to create a subject-specific connectome from average older subject diffusion MRI

tractography. The segmented volumetric and diffusion tractography information are used

as input features to a fully connected layer to perform feature fusion. The fused features

are then used to make the final prediction of NPH vs. non-NPH. Figure 2.3 illustrates the

main components of the prediction process. Figure 2.4 shows the layers in the modified

3D UNet. Algorithm 1 summarizes the various steps.

2.5.2 Segmentation Using a Modified 3D UNet

We modified a 3D UNet architecture to perform accurate segmentations of the lateral

ventricles, subarachnoid space, and gray/white matter in Computed Tomography (CT)

scans of the brain. The relative values in each CT scan are preserved to maintain density
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Figure 2.3: Flowchart for CT segmentation and NPH prediction. Segmentation of the
CT scan is achieved with a modified 3D UNet. The segmentation result is used to cre-
ate a Region of Avoidance (ROA) during the computation of the average connectome
of normal elderly people. From the computed tractography results, a patient-specific
connectivity map is created and the associated network properties are used in combi-
nation with the features from the modified 3D UNet (prediction module) to reach a
final prediction of probable NPH.

information. In preparation for the next steps, an affine transform matrix is computed

by matching the features of the CT scan to an MRI MNI-152 atlas using FSL FLIRT

[15]. The original image is then passed to a modified 3D UNet, along with a probability

map derived from the transformed volume which is further described in section 2.5.2.

3-dimensional convolutional neural network models are currently the state of the

art for medical image segmentation. Because many of the most successful models are
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variants of 3D U-Net [16, 17], we have adopted it as the basic model from which we

create a segmentation pipeline. The full model is shown in Figure 2.4. The input size

is 256 × 256 × 128. There are 4 downsampling blocks each containing two 3 × 3 × 3

convolutional layers and one rectified linear unit (RELU) [18]. These blocks each reduce

the dimensions of the previous input by half while doubling the number of feature layers.

The last downsampling block is preceded by max pooling. Following the downsampling

layers, there are 4 upsampling layers. Each upsampling layer consists of 2 iterations

of a 3 × 3 × 3 convolutional layer followed by a RELU, a 2 × 2 × 2 upsampling layer,

a 1 × 1 × 1 convolutional layer, Group Normalization [19], and another RELU. Each

upsampling block increases the dimensions by 2 in all 3 dimensions, while halving the

number of feature layers. The output of each upsampling block is concatenated with the

output of the corresponding downsampling block. For the entire network, each 3× 3× 3

convolutional layer is followed by group normalization. After the first RELU of the

2nd and 3rd upsampling block, the output at that layer is passed through a 1 × 1 × 1

convolutional layer, followed by summation and a 2 × 2 × 2 upsampling layer. The

output of these extra blocks are concatenated with the next layer as shown in Figure

2.4. The output of the final upsampling block is also concatenated with the output of

the probability map layers (described in the next paragraph), and passed through one

more 3 × 3 × 3 convolutional layer, a RELU and one 1 × 1 × 1 layer. Finally, the end

result is passed through a softmax layer and a 1 × 1 × 1 convolution layer followed by

summation. The final output is the 3D segmentation of the input CT scan, at a size of

256 × 256 × 128. Our main modification to the 3D UNet is the probability map layers,

which are described in the next paragraph.
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Figure 2.4: Modified 3D UNet. The 3D CT Scan is fed into a UNet, with the stan-
dard downsampling and upsampling layers. The layer with aggregated probability
maps improves the performance of the network for the ventricle and especially for the
subarachnoid class.

Probability Maps

While the base 3D U-Net model provided good results for brain CT segmentation, the

trained network still failed to differentiate between subarachnoid space and ventricle on

some border regions. In addition to this, subarachnoid space would often be misclassified

as white/gray matter if the subarachnoid spaces are thin, as the intensity values are

lighter for thin subarachnoid spaces. Since the occurrence of subarachnoid space and

ventricles are highly similar between subjects, a location-aware layer is added to the

network to boost performance in these areas. Regional probability maps are generated

from the ground truth annotations and used in the up-sampling layer of the 3D UNet.

The probability maps are created by averaging all of the ground truth annotations once

they have been registered to a common space (MNI152). The same probability map is

used for each patient, but it is transformed into that patient’s space using a reverse affine

transformation that is calculated through the registration process. Two convolutional

layers and a ReLU are used to learn the weights with which to apply each probability
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map, and the output of the ReLU is concatenated to the output features of the 3D

UNet at the last upsampling layer. The dimensions of the input and output to the

probability maps layers is 2×256×256×128, with the 2 being the number of probability

maps we are using (corresponding to the ventricle and subarachnoid space). To see the

probability map layers, see Figure 2.4. These probability maps are then transformed into

the patient space with an affine transformation. We use the ground truth annotations

to create spatial probability maps for each of the 2 significant regions - ventricles and

subarachnoid spaces. Thus, each voxel location in the probability map represents the

likelihood of that voxel belonging to one of these regions.

2.5.3 Diffusion Tractography Analysis

Population Average Connectome Computation

Since the swelling of the ventricles that occur during NPH may result in damaged

white matter tracts that affect brain connectivity as a whole, we analyzed the effect of

using white matter disturbance information in the NPH prediction process. However,

diffusion MRI are not commonly collected from patients with suspected NPH in a clin-

ical setting. Therefore, we used a proxy for the possible white matter disturbances by

modifying the average diffusion tractography from normal (control) older subjects in the

ADNI dataset with the automated segmentation outputs of each subject. Deterministic

fiber tractography using QSDR reconstruction [12] is conducted of the average diffusion

tractography from 11 subjects in the ADNI dataset with a seed count of one million seeds

per sample. This results in approximately 50,000 tracts per subject.
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ROA Tractography Computation

For each subject in the NPH dataset, the predicted ventricle segmentation is used

as a Region of Avoidance (ROA) during fiber tractography. Affine transformations are

computed using FSL [20, 21] by first thresholding the skull and computing a rigid trans-

formation from each CT scan to an MNI152 MRI atlas, then an affine transform using

the soft tissue inside of the brain. The affine matrix for transforming each CT to MNI152

space is then used on the ventricle segmentation for each subject scan to project the ROA

into MNI152 space for comparison.

Patient Specific Connectivity Matrix and Network Metrics Computation

A connectivity matrix computed using the Automated Anatomical Labeling 2 (AAL2)

atlas [22] in MNI-152 space is constructed for each set of fibers, and the network properties

of the matrix are used as additional features to a shallow, fully connected network which

also uses the features from the last downsampling layer of the UNet to differentiate NPH

and non-NPH subjects. These network properties are briefly described in Table 2.1 and

are explained in detail in [23].

2.5.4 NPH Prediction Module - Feature Fusion

The volumes per class from the modified 3D UNet segmentation results are concate-

nated with the patient-specific network properties defined in Table 2.1. These features

are then used to train a linear SVM with the L2 regularization. The output of the SVM

is a binary prediction of NPH (1) or not NPH (0).
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Network Coefficients Brief Description
density fraction of present connections to possible connec-

tions
clustering coeff average fraction of triangles (node’s neighbors that are also

neighbors of each other) around a node (vertex con-
nected to other vertices)

transitivity ratio of triangles to triplets (three nodes that are
connected by either two or three ties) in the network

network characteristic path
length

average shortest path length in the network

small-worldness average path length of the network divided by the
average path length of a random network with the
same node and edge (connection between two nodes)
count as the network being analyzed

global efficiency average efficiency (1/distance) between all sets of
nodes

diameter of graph maximum eccentricity (maximal shortest path
length between a node and any other node)

radius of graph minimum eccentricity
assortativity coefficient correlation of the degree (number of overall connec-

tions) of connected nodes.
rich k club, k = (5, 10, 15, 20) fraction of edges that connect nodes of degree k or

higher out of the maximum number of edges that such
nodes might share

Table 2.1: Network coefficients used for NPH vs Non-NPH comparison. All coefficients
included a weighted and a binary version, except for the network density.

2.6 Experiments and Results

2.6.1 Segmentation Results

The Modified 3D UNet with the probability map modification is trained on 30 seg-

mented CT scans using a learning rate of 0.001, Adam optimizer, weight decay of 0.0001,

dropout rate of 0.5, and hard per image cross entropy for 300 epochs. The segmentation

masks have 6 classes—the ventricle, subarachnoid space, and gray/white matter, and the

same tissue classes in the cerebellum. The cerebellum is differentiated from the rest of

the brain so that its volume can be observed and monitored separately for future medical
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studies. 5-fold cross-validation is used to verify the segmentation accuracy of the model.

Some basic machine learning methods are implemented to compare with the proposed

method. They include random forest (RF) classification, 3D morphological geodesic

active contours (MGAC) [24], and 3D morphological Chan-Vese (MCV) [25].

The implementations of these alternatives methods of ventricle segmentation use

thresholding to find the skull region and remove any labels outside of this region. Each

implementation first computes and applies the affine transformations into MNI152 space,

then computes and applies the inverse transformation after completing segmentation. For

the MCV and MGAC methods, the volumes are seeded in anatomically informed loca-

tions pertaining to the gray-white matter. The regions are then grown according to their

perspective algorithms.

For the scores in Table 2.2, the Dice Score,

2|X ∩ Y |
|X|+ |Y |

=
2TP

2TP + FP + FN
(2.1)

where X and Y are two classes (positive and negative for each class) and TP = True

Positives, FP = False Positives, and FN = False Negatives, is used for each class. The

average Dice Score is taken over all of the subjects. The dice score calculates the union

over intersection of a given class, and is especially useful for determining the effectiveness

of a segmentation algorithm when the class labels vary in size.

The results of Table 2.2 show that our proposed method outperforms the baseline

methods at segmenting the regions of interest. Our U-Net without probability map

enhancement also performs well in the three categories, but the use of probability maps

reduces the variance in the dice scores.

The proposed method is unique in that it allows for better separation of ventricle

space and subarachnoid space. The subarachnoid space and the ventricles are both
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Method Ventricle Gray-White Matter Subarachnoid
3D U-Net + Prob. Maps 85.0 ± 0.1 % 93.5 ± 0.5 % 71.6 ± 5 %
3D U-Net 85.1 ± 7.2 % 93.3 ± 0.8 % 68.8 ± 13.2 %
RF + MCV 84.2 ± 3.8 % 86.8 ± 1.8 % 35.1 ± 9.5 %
Random Forest 64.6 ± 11.5 % 86.5 ± 2.0 % N/A
3D MGAC 24.8 ± 17.4 % 81.3 ± 2.1 % N/A
3D MCV 13.3 ± 14.1 % 79.9 ± 2.0 % N/A

Table 2.2: Comparison of Dice Scores for various ventricle and gray-white mass seg-
mentation algorithms for CT scans. The scores are reported as mean ± standard
deviation. All methods are our implementations created for the purpose of compari-
son. The marked improvement in subarachnoid segmentation performance is critical
for probability maps are generated from the training set for each fold.

composed of cereberospinal fluid, so they show up with similar intensities on a CT scan.

Our method successfully separates these similar-looking regions with high performance.

The following plots further analyze the results of the segmentations for NPH and

normal subjects. Figures 2.10–2.9 show the mean and standard deviation of volumes of

each region by slice in the axial direction. Figure 2.11 shows the distribution of subjects

by diagnosis based on their connectivity network properties.

2.6.2 Diagnosis Prediction and Comparison with Evan’s Ratio

For comparison, each scan is labeled with the Evan’s ratio as measured under direct

supervision of a neurological surgeon. NPH prediction on the labeled subset using only

the Evan’s ratio are first computed by the current guidelines, with subjects having an

Evan’s ratio greater than or equal to 0.3 classified as NPH, and the remaining subjects

classified as non-NPH.

Precision and Recall are calculated for 3 methods of NPH prediction - thresholding

of the manually annotated Evans’ Index, using fully connected layers with the modified

3D UNet features, and using fully connected layers with the modified 3D UNet features

along with the network properties.

Precision is defined as the number of true predicted positives over the number of all
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(a)

(b)

(c)

(d)

Figure 2.5: Example of segmentation results: (a) shows the original scan, (b) shows the
ground truth annotations, (c) shows the results of the segmentation network without
probability maps, and (d) shows the results of the segmentation network with proba-
bility maps. It can be seen that the biggest difference exists in the subarachnoid space,
which takes up a small portion of the brain, but is important for clinical analysis. The
slices shown are taken at every third index in the axial direction.

Precision (train / test) Recall (train / test)
Evan’s Index, Thresholding 86 70
Volumetric Features (model 1) 86 ± 3 / 86 ± 13 80 ± 7 / 76 ± 17
Network Properties (model 2) 80 ± 5 / 78 ± 17 85 ± 7 / 75 ± 21
Volumetric Features + Network Properties (model 3) 96 ± 3 / 93 ± 12 89 ± 4 / 89 ± 13

Table 2.3: NPH prediction scores using various methods and features. All rows except
the first row (Evan’s Index) used a linear support vector machine for training and
testing. The predictive models are trained and tested for 100 iterations using 5-fold
cross validation with randomized selection at each fold using scikit-learn, as explained
in [26].

predicted positives. Recall is defined as the number of true predicted positives over the

total number of actual positives. Essentially, precision is a proxy for how many selected

elements are relevant, while recall is a proxy for how many relevant elements are selected.

As seen in Table 2.3, Using the volumetric information and network properties for

prediction of NPH outperformed Evans’ Index thresholding in both Precision and Recall.

We did not implement automated Evans’ Index calculations from [6] for comparison

purposes, because the paper claims equivalence to manual Evans’ Index calculations as
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(a) Ventr icle

(b) Subarachnoid Space

Figure 2.6: Probability maps for the ventricle (a) and subarachnoid (b) class. Each
image shows one slice in the z dimension. The progression of the images (column-wise,
then row-wise) goes from the top of the brain to the bottom of the brain. Cooler colors
represent lower values while warmer colors represent higher values. Black represents
a value of zero. The legend bar has been scaled to 1.

the best case scenario. One-sided t-tests yielded p < 0.001 for precision and recall between

model 3 and model 2, and p < 0.1 for precision and recall between model 3 and model 1.

Performance did not vary when we used the 3D UNet model without probability maps.

This is expected, for the purpose of the probability maps is to achieve higher accuracy

in the finer details of the segmentation for clinical analysis purposes.

We plot the AUC and feature importance of the SVM in Figures 2.12 and 2.13.

Feature importance are calculated by using 5-fold cross validation to generate class

membership probabilities using logistic regression on the SVM’s scores [27]. After ob-

taining the class membership probabilities, Individual Conditional Expectation plots [28]

are generated using the ml-insights software. From Figure 2.13, it can be seen that the
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most important features when predicting NPH with volume information only are the

total volume, subarachnoid space, and cerebral mass. This is interesting because the

expected features of importance are total volume and ventricle volume. However, given

the top 3 features, the ventricle volume can be derived, so due to the correlated nature

of the features, the feature importance plot still makes sense. For plots (b) and (c), it

can be seen that the diameter and radius of the graph are important network metrics

for predicting NPH. When all of the features are used for NPH prediction, a mixture of

volumetric and network features are deemed important. All of the volumetric features

are in the top 30% of the most important features for NPH prediction.

2.7 Summary

The paper presents a fully automated, volumetric method of lateral ventricles, sub-

arachnoid space and gray-white mass segmentation in CT scans. Additionally, we propose

a fully automated method to predict NPH diagnosis, which in conjunction with the clin-

ical symptomatology, can facilitate the diagnosis of NPH and rule out subjects who do

not meet the radiographic criteria of an NPH diagnosis. This technological system out-

performs the thresholding method using Evan’s ratio and can be used as a screening tool

to identify or stratify possible NPH cases in a clinical setting. Our segmentation model

can be used to segment and study the volumes of CT brain scans in cases other than

NPH.

Furthermore, we contribute a novel method of using network properties to aid in

NPH diagnosis prediction, and explores potential brain regions most affected by NPH by

studying the connectivity changes that may occur during ventricle dilation.
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2.7.1 Study Limitations and Future Work

The work presented in this chapter is intended as a proof of concept, with represen-

tative samples of CT scans from subjects in each category. The network is sensitive to

differences in CT appearance due to age, so a fusion of networks may be used in the

future to accommodate patients of all ages, not only those in the NPH risk range. Addi-

tionally, it would be beneficial to provide more examples of CT scans with high resolution

in the sagittal and coronal planes, to make the model robust to scanning direction. One

intrinsic limitation of this work is the idiopathic nature of NPH, meaning it is diagnosed

when other conditions have been ruled out. This could lead to a biased dataset. We

would like to include more confounding factors in future studies, such as the presence of

Alzheimer’s, Parkinson’s, or non-NPH hydrocephalus.

Currently, the runtime for diffusion tractography and network analysis takes approx-

imately 1.5 minutes per subject on a standard computer with 64 GB of RAM. It is

possible to explore alternatives to the tractography process using methods such as prob-

ablistic tractography, as described in [29] or tractography using deep learning methods,

as presented in [30, 31, 32].

To conclude, auto segmentations of CT scans are helpful because CT scans are more

common, readily available, and accessible compared to MRI scans. Since auto segmen-

tations of CT scans have not been done before in such detail, this machine-learning

based algorithm can be applied to study many other neurological conditions. In par-

ticular, changes over time with serial CT scans can be examined both retrospectively

and prospectively. For example, CT scans of patients with Alzheimer’s disease, TBI, or

NPH can be analyzed to compare the ratios of ventricles to subarachnoid to cerebrum.

Changes in these ratios can hold valuable information about the progression/resolution

of these disease entities. Furthermore, with respect to NPH, this ability to do this type of
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detailed volumetric analysis space offers tremendous potential for determining whether

or not there are changes reflective of proper shunt functioning.
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Figure 2.7: Example segmentation generated by the proposed algorithm. The first (a)
set of images consists of cross sections of a normal subject and the second (b) set of
images are cross sections of a subject diagnosed with NPH. The images in first row of
each set are cross sections of the original scan, the images in the second row are the
ground truth segmentation for the scan, the images in the third row are the results of
the 3D UNet without the probability map modification, and the images in the fourth
row are the results of the proposed algorithm with the probability map layers. The
cross sections are in descending order from top to bottom of the brain.
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NPH Normal NPH Normal

Figure 2.8: Average volumes in mL/slice of the subarachnoid in NPH (blue) and
normal (orange) subjects after registration to MNI-152 space. The standard deviation
is also plotted in light blue(NPH) and light orange (normal). Probability maps at
inflection points are shown underneath the plot. It can be seen that the average
subarachnoid space volume of subjects with NPH is greater towards the bottom of
the head near the spine, and smaller towards the top of the head, compared with
normal subjects.
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NPH Normal

Figure 2.9: Average volumes in mL per slice of the white/gray matter in NPH (blue)
and normal (orange) subjects after registration to MNI-152 space. The standard devi-
ation is also plotted in light blue(NPH) and light orange (normal). Probability maps
at the location with the largest difference between the means is shown underneath the
plot.

NPH Normal

Figure 2.10: Average volumes in mL per slice of the ventricles in NPH (blue) and
normal (orange) subjects after registration to MNI-152 space. The standard deviation
is also plotted in light blue(NPH) and light orange (normal). Probability maps at the
location with the largest difference between the means is shown underneath the plot.
As expected, the volumes are greater for subjects with NPH than those without NPH.
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Figure 2.11: Average location of network metric after PCA reduction from 26 connec-
tivity features to 2 principal components. For the most part, a separation can be seen
between normal and NPH subjects, but there is some mixing of the classes as well.
The trend towards separation shows why the network properties are useful features
for NPH prediction.
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Figure 2.12: Test AUC for the linear SVM trained on different features: ventricle,
subarachnoid, white/gray matter, and overall volumes (4 features); network properties
(26 features); and volume and network properties (30 features). While the AUC for
volumes and network metrics is lower than for volumes only, the inflection point
of the model associated with volumes and network metrics has consistently higher
performance over 100 iterations using 5-fold validation. Each iteration uses a new
generator for the 5 folds.
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Normalized ICE Coefficient

Normalized ICE Coefficient

Normalized ICE Coefficient

Figure 2.13: Feature significance of each SVM model using the ml-insights python
package. (a) shows the importance of each feature when only volumetric features are
used. (b) shows the importance of each feature when only network properties are used.
(c) shows the importance of each feature when volumetric and network properties are
used. It is interesting to see that in (c), the most important features are a mixture
of volumetric features and network properties. For (a) and (c), linear scale was used,
while in (b), log scale was used.
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Chapter 3

Neuron Level Analysis: Ciona

Connectome

This chapter introduces the Ciona intestinalis larva as a suitable proxy of the more

complex human brain with which to study individual neuron-to-neuron interactions, and

analysis methods for connecting fluorescent microscopy data with electron microscopy

data. Specifically, we consider establishing a correspondence between florescent imaging

data with annotations that are derived manually from EM data, towards identifying

neurotransmitter expressions of individual neurons. In Chapter 4, we extend this to

include analysis on the EM imaging data, for detecting synapses and classifying these

synapses based on excitatory or inhibitory neurotransmitter expressions. Much of this

Chapter contents is derived from our paper [33]. The in-situ hybridization experiments

and data collection are carried out by our collaborators in the Smith Lab at the University

of California, Santa Barbara.

First, the motivation for analyzing the brain on a neuronal scale using Ciona is ex-

plained, followed by a section on the background of research on the central nervous

system of Ciona larva. The datasets are introduced next, with two main parts - confo-

39



Neuron Level Analysis: Ciona Connectome Chapter 3

cal microscopy on in-situ hybridization results, and electron microscopy for connectome

analysis. The annotation and data extraction process are detailed, and existing work on

point cloud registration is explained.

After the introduction of the dataset and background, we present the use of a point-

cloud registration technique to match nuclei centroid locations between the EM dataset

and the in-situ hybridization results, in order to identify which cells exhibit which neu-

rotransmitter expressions. The results and analysis of the algorithm are given and sum-

marized.

3.1 Significance of Ciona Connectome

While tissue level analysis is commonplace in the field of brain imaging, the human

brain is far too large and complex to study neuron-to-neuron interactions at a cellular

and sub-cellular level with current available imaging and computational technology. A

common central nervous system (CNS) architecture is observed in all chordates, from

vertebrates such as humans to basal chordates like the ascidian Ciona. Ascidians, in-

cluding those of the widely studied ascidian genus Ciona, are members of the chordate

sub-phylum Tunicata, and comprise the closest extant relatives of the vertebrates [34].

While much smaller and containing many fewer cells than those of vertebrates, the ascid-

ian tadpole larvae resembles vertebrate larvae in having a prominent notochord running

the length of the muscular tail and a dorsal CNS with regional anterior-to-posterior ho-

mology to vertebrate CNSs [35]. Despite these homologies with vertebrates, the Ciona

CNS contains only 177 neurons [1]. This makes it a prime candidate for connectomic

analysis, as each additional neuron introduces exponential complexity to the system.

An essential aspect of constructing a connectome, a comprehensive map of neurons

and their connections in the brain, is to identify the synapses which form chemical and
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electrical communication links between neurons [17]. Traditionally, synapse detection

of synapses is completed manually through expert analysis of thousands of EM images.

This is a time consuming process that can take thousands of hours for one specimen. For

example, the first Ciona connectome was constructed manually over a period of 5 years

from serial section EM images [36].

Another crucial but missing component of understanding the connectome is the clas-

sification of the function and properties of each synapse. With some exceptions, Ciona

neurons express only one neurotransmitter per cell, but different cells in the same may

express different neurotransmitters from each other. While some experimental methods

such as in situ hybridization can identify cells, or clusters of cells, expressing transcripts

indicating neurotransmitter use [33], the resolving power of light microscopy cannot re-

veal the connectivity of these neurons. Additionally, in cases with intermingled neu-

rotransmitter expressions and high variability in cell location across specimens, it was

not possible to determine the neurotransmitter expression of the cell through in situ

hybridization alone.

3.1.1 Background

Anatomically, the Ciona larval central nervous system is comprised anteriorly of the

brain vesicle (BV; also known as the sensory vesicle), a region homologous to the verte-

brate forebrain and midbrain, followed by the neck region, a homolog of the vertebrate

midbrain/hindbrain junction as seen in Figure 3.1. Immediately posterior to the neck is

the motor ganglion (MG; also known as the visceral ganglion). The MG is thought to

be homologous to the vertebrate hindbrain and/or spinal cord, and contains ten motor

neurons (MN) as well as a number of interneurons – including the two descending decus-

sating neurons (ddN). An illustration of the neuronal composition of the Ciona larva is
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Figure 3.1: From [33]: the minimal visuomotor circuit is shown with circles repre-
senting classes of neurons with the number of cells of each class indicated in the
parentheses of the key. Abbreviations: dor., dorsal; vent., ventral; ant., anterior;
post., posterior; PR-II, photoreceptor group II; PR-I, photoreceptor group I; pr-AMG
RN, photoreceptor ascending motor ganglion relay neuron; prRN, photoreceptor relay
neuron; MGIN, motor ganglion interneuron; MN, motor neuron. L, left; R, right. Cell
types are color coded according to [1].

shown in Figure 3.1.

Ascidians, including members of the widely-studied Ciona genus, have a biphasic

life cycle. At the start of their life, most ascidians spend their first few days as free-

swimming tadpole larvae. It is at the larval stage that ascidians display unmistakable

chordate traits, including a prominent notochord running the length of a muscular tail and

a dorsal central nervous system (CNS). Ciona stands apart among chordates in having

a complete larval connectome [1]. A comprehensive understanding of nervous system

function requires detailed descriptions of circuits in which all contributing neurons and

their synaptic connections are known and characterized – in other words, a connectome.

Both the small scale of synapses (< 0.5µm), which necessitates serial section electron

microscopy (ssEM) or other similar methods, and the inherent difficulty in visualizing and

tracing synaptic connections has so far limited the number connectomic descriptions of

complex nervous systems to discrete CNS regions [37, 38]. Until the recent description of

the larval Ciona connectome [1], whole-nervous system conncectomics was limited to the

nematode C. elegans, although extensive connectomes are now available for Platynereis

[39] and Drosophila [40, 41] larvae. Even for the simplest vertebrate models, such as
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larval zebrafish with 100,000 neurons [42], a full connectome is likely many years away.

Given the challenges of vertebrate conncectomics, the ascidian larva provides a unique

model for bridging connectomic-level understanding of simple invertebrate models and

vertebrates [1]. Understanding not only the connections between these neurons, but also

the types of signals being sent between one neuron to another will allow us to fully

understand the neural pathways of the Ciona larva. We can then use the information we

have gained about neuronal connectivity and activity to better understand the mechanics

behind Ciona behavior to controlled environmental stimuli, as observed in experiments

such as those in [33].

3.2 Dataset

Ciona intestinalis-type B (Marine Biological Laboratories, Woods Hole) are used for

in situ studies to match the animals used in the connectome study [1]. Ciona intestinalis

presents with certain neurotransmitters, which require transporters that can be detected

with in situ staining. These neurotransmitters include the inhibitory neurotransmitters

gamma-Aminobutyric acid (GABA) and glycine, and the excitatory neurotransmitters

acetylcholine and dopamine.

3.2.1 Cell Types

From [1], 21 cell types are identified through electron microscopy imaging by their

location and function. For our work, we are primarily interested in the photoreceptors

(PR-I and PR-II) and the relay neurons (prRN, pr-AMG RN, AntRN, PBRN, PCRN,

and PNRN). The photoreceptors react to changes in light levels in the environment, while

the relay neurons convey messages from the photoreceptors to the rest of the nervous

system.
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3.2.2 In-Situ Hybridization of Ciona Neurons

The neurotransmitter expression of a cell can be detected through detection of its

messenger Ribonucleic Acid (mRNA). Fluorescent markers attached to opposing strands

of the signature mRNA indicating each neurotransmitter expression can be used to detect

the mRNA present in a cell using light microscopy. This process is called in situ staining.

In situ staining to 5 larvae using probes for the vesicular GABA transporter (VGAT),

vesicular glutamate transporter (VGLUT), tyrosine hydroxylase, and vesicular acetyl-

choline transporter (VACHT) was done as described in [43]. Larvae are also stained

with 4’,6-diamidino-2-phenylindole (DAPI), a fluorescent stain that binds strongly to

adenine–thymine-rich regions in DNA in order to view the nuclei. The resulting larvae

are imaged by confocal microscopy. Nuclei are segmented using the IMARIS software

package, Bitplane, and manually pruned to find nuclei locations within regions displaying

fluorescence from in-situ hybridization. An illustration of the results of this process is

shown in Figure 3.2, and an example of the nuclei locations for the photoreceptors is

shown in Figure 3.3.

Figure 3.2: From [33]: example result of in-situ hybridization and fluorescent mi-
croscopy result on the photoreceptors in Ciona [33]. The cell nuclei are visible due to
nuclei staining, but the synapses and other subcellular structures which are smaller
than the wavelength of light are not visible. This means we do not know the cell
identities of each neuron based solely on light microscopy.

From Figure 3.3, the heterogeneity of photo receptor configurations can be seen.
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Figure 3.3: Plots of the nuclei centroids of 8 Ciona specimens after manually notating
the centroids. The color corresponds to the in-situ hybridization appearance under
confocal light microscopy. Some samples, with both pink and blue, have been hy-
bridized with both VGAT and VGLUT, while some have only been hybridized with
one of the two markers. The gray centroids have no visible marker for that particular
specimen.

Computational methods can help us to match each neuron in the in-situ hybridization

results to its identity, and therefore, its connectomic qualities, derived from electron

microscopy imaging data.

3.2.3 Electron Microscopy of Ciona Neuronal Structures

For point set registration, a summary of the EM annotation results are used to extract

nuclei centroid locations for each cell. An example of the aggregated information for one

cell is shown in Figure 3.4.

A continuous series of cross sections are cut from a Ciona larva after fixation for

electron microscopy (EM). A total of 3375 60 nm sections from the anterior brain vesicle

and motor ganglion are collected and imaged at 3.85 nm per pixel [1]. The data collected

surpasses 1 terabyte. The original Ciona EM serial section image data set was collected,
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Figure 3.4: Example row of aggregate and derived data from EM annotations. The
relevant fields for point cloud registration are the X, Y, and Z locations. While this
example shows soma location, for our work we used nuclei location.

Figure 3.5: Example of manual annotations of synapses, indicated by the cyan arrows.
The zoomed in image shows a patch containing a synapse, with the vesicles encircled
with bright green and the cell boundaries marked with dotted lines. The direction of
the arrow does not indicate synaptic direction.

processed and annotated using the program RECONSTRUCT [44]. The annotations

we focused on are the synapse annotations, which are stored as points in 3 dimensions

with a naming system to indicate the pre- and post-synaptic neuron. In order to facili-

tate analysis, python scripts are written to interface with the program and stored data

and extract image patches corresponding to annotated regions. A series of geometric

transforms was used to co-register the annotation coordinates with the aligned 3D image

stack coordinates. The RECONSTRUCT images used in this project are available upon

request. The image processing and extraction steps are described in section 3.2.3.
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Data Curation and Annotation

EM cell IDs for each neuron was stored in an excel spreadsheet, along with each cell’s

location in 3D coordinates. This data was extracted and normalized for matching with

the collected fluorescent microscopy data.

To extract synapse images from EM data, each synapse object which was labelled

using RECONSTRUCT was parsed based on pre- and post- synaptic cell ID. Then,

the location of the object was found through a series of inverse transformations and

magnifications as follows.

The EM images are scaled and aligned in the z-dimension while annotating. Image

scaling is specified by a pixel size (magnification) parameter while alignment is repre-

sented by a non-linear transformation associated with the image. Each transformation

maps trace points or image pixels into the section using a combination of basis functions

representing an elementary motion such as translation, orientation, scaling, and defor-

mation. We extract the underlying annotations (actual section coordinates in microns)

from each section by combining these movement components in different proportions.

Each image is associated with an independent transformation which determines the size

and location of the element on the section. Applying the inverse transform on the con-

tour point (x,y), we obtain the points (x’, y’), on which applying the forward image

transformation brings the points to the original image domain. For our study, synapse

is represented by seven points forming an arrow as shown in Figure 3. After getting the

coordinates of these points on the original image domain, we determine the centroid of

these points, and extract a 500x500 dimensional patch around this centroid point. We

perform this operation for all the synapse annotations to obtain approximately 25,000

total number of patches.

Visual inspection of the synapses in Ciona do not reveal any distinguishable differ-
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Figure 3.6: Illustration of Data Preparation Method. The first set of images repre-
sent the image patches which are obtained through electron microscopy. After image
stitching, the individual image patches are registered and stitched together on one
plane. After 3D registration, the image planes are registered lengthwise from the
head to the tail of the organism. Finally, manual annotation of the registered image
planes result in the labelled EM data that we use to extract synapses with which to
train a deep network. The purple colored object indicates the boundaries of a cell
which has been selected in RECONSTRUCT.

ences between known excitatory and inhibitory neurons. Some examples are included in

Figure 3.7. Ciona synapses typically include the vesicle cluster on the transmitting end,

which varies in count and size, and the post-synaptic density on the receiving end, which

varies in size and density. No apparent pattern in these features is visible upon manual

inspection.

From the datasets described in this chapter, it is evident that no one modality contains

all of the information needed to untangle the workings of the Ciona connectome. Cross-

modality analysis between data at the cellular level (i.e. confocal light microscopy) and

data at the sub-cellular level (i.e. electon microscopy) must be conducted in order to

gain further understanding of each neuron and its place in the brain.

3.2.4 Prior Work

To our knowledge, this is the first time a semi-automated method of matching fluo-

rescent microscopy data with electron microscopy data has been developed.

For 3D point cloud matching, there are several techniques which are currently used

to match sets of points in 3 dimensions. One such method is the iterative point cloud
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Figure 3.7: Examples of (a) inhibitory and (b) excitatory synapses. The synaptic
region is circled in green. The vesicles are the small circles in the center of the green
bordered regions. From the image examples, it can be seen that there are varying
vesicle counts and sizes between inhibitory and excitatory synapses, as well as little
visible post-synaptic density, which is a darkened region on the other side of the cell
boundary from the vesicles.

matching algorithm by the Insight Toolkit [14]. This method relies on the Iterative

Closest Point algorithm [45], which is an iterative method to solve the least squares

problem of finding the appropriate rigid or affine transformation matrix to minimize the

difference between two point clouds. We initially tried using this method, but found that

the algorithm often ends up in poor local minima which did not find the optimal solution.

The sensitivity of the ITK Iterative Closest Point method made it less suitable for our

purposes.

Another 3D point cloud matching algorithm is Robust Point Matching, which uses a

soft correspondence to find the optimal affine transformation between two point clouds

[46]. While this method was more robust than Iterative Closest Point, it still got easily

stuck in local minima, making it a poor fit for our dataset.

49



Neuron Level Analysis: Ciona Connectome Chapter 3

3.3 Methods

3.3.1 Point Cloud Registration

For both the EM and confocal microscopy datasets, nuclei centroid locations are

manually annotated for each neuron. The nuclei centroids are split by cell types, and

each type is registered on its own. in this chapter, we focus on the ocellus, or the

simple eye, and the relay neurons, which relay information from the ocellus to the motor

system. Point cloud registration is used on the 3D coordinates of each in-situ dataset to

match each cell in the dataset to a cell in the EM dataset. First, a rotation matrix is

calculated based on the 3-dimensional vectors between the ddN and/or anterior cells and

the center of the cluster of cells in the target set of cell locations and the source set of cell

locations. The source set is then rotated to a approximate orientation to the target set.

Next, the Coherent Point Drift Algorithm is used to calculate an affine transformation

matrix between the source set and the target set of cells [47], and confusion matrices

are constructed with all of the data available in order to analyze the consistency of the

registration for each cell type. Figure 3.8 shows a summary of the steps involved in

registration and consistency verification.
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Figure 3.8: (a) The registration process for predicting cell IDs of fluorescent imaging
results for each type of neurons, and (b) The process of generating a confusion matrix
for the registration results of multiple fluorescent light microscopy datasets to one EM
dataset.

3.3.2 Coherent Point Drift Algorithm

The Coherent Point Drift algorithm models the source set as a Gaussian Mixture

Model (GMM) [48], and the target set is treated as observations from the GMM. A

GMM is constructed from the moving point cloud (confocal microscopy data) and the

fixed point cloud is treated as observations from the moving GMM. Due to the prob-

abilistic nature of the algorithm, this method is more robust that the other iterative
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Algorithm 2: Coherent Point Drift and Nearest Neighbors Matching

Input : 3D locations of nuclei centroids from fluorescent confocal microscopy
and 3D locations of nuclei centroids from electron microscopy

Output: 1-1 matching of confocal microscopy cell to electron microscopy cell
1 Initialization of affine transformation matrix to the Identity matrix.
2 Repeat steps 3 and 4 until the error is under a threshold:
3 Expectation step: find the Gaussian from which each point in the moving set

was sampled from
4 Maximization step: maximize likelihood that observed points are sampled

from the GMM (solve for the affine transformation matrix)
5 Apply calculated transform to moving point set
6 For each point in the moving set, find the nearest neighbor point in the static set

methods described in this chapter. The expectation maximization algorithm [49] is used

to optimize the cost function as follows. First, we find the Gaussian from which the

observed point cloud was sampled from (the expectation step). Next, we maximize the

negative log-likelihood that the observed points are sampled from the GMM with respect

to transformation parameters (the maximization step). The transformation matrix is cal-

culated to maximize the Maximum A Posteriori estimation that the observed point cloud

is drawn from the GMM. The GMM centroids are forced to move coherently, preserving

the topological structure of the set of points [47]. Following the registration algorthm,

A nearest neighbor mapping based on Euclidean distance is then used to find the closest

corresponding point in the fixed cell set for each cell in the transformed cell set. The

algorithm is described in Algorithm 2. An illustration of the progression of the iterative

Coherent Point Drift algorthm is shown in Figure 3.9.
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(a) (b)

Figure 3.9: For one sample of the photo-receptor neurons: (a) An earlier iteration in
the Coherent Point Drift process, and (b) Convergence of the Coherent Point Drift
Registration Process. The EM-derived point locations are in red (Target) and the
transformed fluorescent microscopy points are in blue (Source).

3.3.3 Registration Consistency Analysis

Each dataset containing neurotransmitter information is registered to every other

dataset of the same type using the algorithm detailed above, completing all possible

combinations of pairwise registrations. The EM-registration based cell assignments of

each cell in both sets is then compared to each other to see if they agree. A confusion

matrix [50] is generated from the results to view the consistency of each registration by

cell. The confusion matrix shows the number of times a cell assignment in one dataset

corresponds with each other cell assignment in another dataset.

3.4 Results

Confusion matrix

As seen in Figure 3.10, good consistency was achieved in the registration process for

the photoreceptor(PR) neurons. We are able to discern that for the PR-I cells, PR-9
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expressed VGAT and PR-10 expressed both VGAT and VGLUT, while the rest of the

PR-I neurons expressed only VGLUT. For the PR-II cells, we are able to discern that

they all expressed VGAT, with some of them also expressing VGLUT. However, the

confusion matrix results showed some ambiguity in the identities of the PR-II neurons,

so we are not able to pin down exactly which cells expressed VGAT only and which cells

had dual expression. Based on our results, we tentatively conjecture that PR-b and PR-e

may be the cells expressing solely VGAT.

Our results are not as clear cut for the relay neurons (RNs). The confusion matrix

in Figure 3.11 shows the inconsistency of cross-registration results for these cells.
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Figure 3.10: From [33]. (a) Coexpression of opsin and VGAT reporter constructs in
the ocellus (white and orange arrowheads). Insets show expression of Opsin-1 and
VGAT individually. (b) Expression of VGLUT and VGAT in the brain vesicle and
epidermis by in situ hybridization. VGAT was observed in an anterior (white ar-
rowhead) and posterior (orange arrowhead) domain of the ocellus. Blue arrowhead
indicates VGLUT expression in the ocellus, and red arrowheads indicate VGLUT–
expressing epidermal sensory neurons. (c) Posterior VGAT-expression in the ocellus
consists of two cells (orange arrowheads), one exclusively expressing VGAT, and one
coexpressing VGAT and VGLUT. Two cells in the anterior exclusively express VGAT
(white arrowheads). Nuclei are shown as red spheres. Asterixis indicate overlap of
VGAT and VGLUT. (d) Neurotransmitter predictions color-coded on a schematic di-
agram of the ocellus photoreceptors. Lines between photoreceptors indicate chemical
synaptic connections taken from [51], with red lines indicating projections to the relay
neurons. (e) Heat map of neurotransmitter predictions from registration for photore-
ceptor group I (cells 01–23). Scale assigns color to proportion of iterations predicting
VGAT or VGLUT within a particular cell. (f) Confusion matrix of registration of
photoreceptor group I cells (cells 01–23). High values (light colors) in the diagonal
indicate higher confidence. Abbreviations: dor., dorsal; vent., ventral; ant., anterior;
post., posterior; em., eminens cell; RN, relay neuron; AC, antenna cells; pr-AMG RN,
photoreceptor ascending motor ganglion relay neuron; prRN, photoreceptor relay neu-
ron; VGAT, vesicular GABA transporter; VGLUT, vesicular glutamate transporter;
PR-I, photoreceptor group I (01–23).
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Figure 3.11: Neurotransmitter use in the relay neurons.From (a), VGAT expression
seems to be hear the posterior while VACHT expression seems to be more anteri-
or-ventral. However, from (b) it is evident that point-cloud registration was not able
to consistently match cells from in-situ hybridization with EM cell centroids. (c)
shows that most while point cloud matching was not able to resolve individual cell
identities, it was reasonably able to stay consistent within cell types. If we assume
within-type consistency, we can predict from (d) that AntRN are primarily VGAT, as
well as PCRN and PNRN.

3.5 Summary

On a cellular and sub-cellular level of granularity, multiple modes of microscopy are

used to image cells for different types of information. Confocal light microscopy on in-

situ hybridized specimens allows us to view the types of neurotransmitters expressed in

discrete regions of the brain, while electron microscopy allows us to view the connections

between each neuron via sub-cellular synaptic structures.

56



Neuron Level Analysis: Ciona Connectome Chapter 3

The neuronal model we are able to build from the results of computational analysis

on in-situ hybridization of Ciona Intestinalis support a model for two parallel visuomotor

pathways, one mediated by the PR-Is and sensitive to the direction of light, and the

other mediated by the PR-IIs and sensitive to changes in ambient light.

From in situ hybridization we observed that some PR-IIs exclusively express VGAT,

while other co-express VGAT and VGLUT. The significance of VGAT/VGLUT coex-

pression in the Ciona visuomotor pathway is not yet clear, although similar coexpression

is widely observed in mammalian brains (Fattorini et al., 2015; Zander et al., 2010) and

invertebrates (Fabian-Fine et al., 2015). It is speculated that co-release of GABA and

GLUT may serve to tune excitatory/inhibitory balance. While the connectome shows

that not all of the PR-IIs project to the RNs, with a subset instead forming exten-

sive connections to other PR-Is and PR-IIs, the connectome indicates that several of

the VGAT-exclusive PR-IIs do project to the pr-AMG RNs (Figure 2e and Ryan et

al., 2016), consistent with our hypothesis that the PR-II output to the pr-AMG RNs is

predominantly inhibitory.

In order to determine with greater certainty the neurotransmitter expression of the

relay neurons, more analysis needed to be done on the multimodal dataset. The next

chapter will describe an automated synapse detection and classification method based on

the information we have gained from the current chapter.
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Chapter 4

Synapse Level Analysis: Ciona

Connetome

The point cloud registration presented in Chapter 3 allowed us to determine the neuro-

transmitter expressions of a subset of neurons in the Ciona nervous system. However,

a large portion of neurons remain unclassified due to variations in configuration and ex-

perimental limitations. In order to draw further conclusions about neurons in the Ciona

brain, the synapses visible in electron microscopy (EM) are to be further examined. More

specifically, we would like to associate the synaptic structure with the neurotransmitter

valence (excitatory or inhibitory). This is the first attempt, to the best of our knowledge,

to connect Ciona synaptic structure with their valence. Towards this, we present a con-

volutional neural network to predict the neurotransmitter valence of a synapse based on

its appearance in electron microscopy images. The ability to determine neurotransmitter

expression directly from EM images allows us to confirm the results of experiments on

behavior, as well as in-situ hybridization results. Because each step introduces poten-

tial errors, directly predicting neurotransmitter expression from EM images can reduce

misidentification of individual cells. With more training data and validation, we may be
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able to bypass the time and resource-consuming experiments.

This chapter presents the algorithms and computational methods used to analyze

and predict the function and form of sub-cellular EM structures based on the multi-

modal data introduced in the previous chapter. A deep learning framework for image

detection and classification is detailed. Statistical and computational methods are used to

verify algorithm performance and consistency, and attention maps are used to discover

important features to the deep learning model. The results and analysis of the deep

networks are presented. Finally, a summary of the approach and results are given, along

with commentary on the results and future directions.

4.1 Prior Work

Previous work have reported successful application of computer vision methods for

automatically detecting synapses in EM images of Drosophila, mouse and rabbit neurons

[52, 53, 54]. However, the synapses of these organisms contain unique features which the

detection systems rely on heavily. The algorithm for Drosophila synapse detection [52]

uses primarily the t-shaped feature and postsynaptic density to detect the synapse with a

3D UNet [55], while the algorithms for mouse synapse detection [53], [54] was created for

cryogenic EM. One approach applies pixel-level classification and graph cut segmentation

on EM images to identify potential synapses, then filters the potential synapses with a

random forest classifier [53]. The classifiers are trained on manually annotated samples.

A second approach finds handcrafted synaptic cleft features for the presynaptic and

postsynaptic regions, and uses LogitBoost to perform the final synapse detection [54]. A

third publication describes the uses of a fusion of ribbon, cleft, and vesicle features of

a rabbit retina synapse to detect retinal synapses through kernel learning [56]. Ribbons

are not ubiquitous amongst synapses and clefts are not always visible for different types
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of synapses, so this method would not work on all types of synapses.

Studies have qualitatively shown differences between excitatory and inhibitory synapses

- namely that the vesicle shape and post-synaptic density appearance varied between the

two functions [57, 58, 59]. However, these papers are mostly qualitative, and do not pro-

vide predictive functionality. Furthermore, these studies do not analyze a large number

of synapses, and are not directly translatable to Ciona synapses due to studying different

species. More recently, synapse classification using a 3D UNet was done on EM images

of Drosophila neurons [60]. This body of work is most similar to the one presented in this

chapter, but differs in granularity, dealing with large groups of neurons approximately

ten times greater in number than Ciona. In contrast, we seek to resolve the neurotrans-

mitter class of individual neurons and verify predictions with prior knowledge derived

from a variety of experiments in other modalities. Our previous study [33] combined

in situ hybridization with the existing connectome derived from EM to determine the

neurotransmitter expression of neuron types, such as the photoreceptors. Point cloud

matching was done to match relative cell locations in 3 dimensions between fluorescent

microscopy and electron microscopy results. While we are successful in determining the

neurotransmitter expression of individual cells belonging to the photoreceptors, we are

unable to determine with certainty the neurotransmitter expression of individual cells

belonging to the relay neurons and other types. The present study aims to take steps

towards resolving the neurotransmitter assignments in these ambiguous regions while

applying neural network approaches to this problem.

4.2 Synapse Detection and Classification

We propose a deep learning convolutional neural network to detect Ciona intesti-

nalis synapses from serial section transmission electron microscopy (EM) images, as well
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as a multi-modal method of predicting neurotransmitter expression based on several

modalities of data obtained in different ways - EM imaging, light microscopy of in situ

hybridization, and behavioral observation experiments.

Our contributions to the synapse classification problem are as follows:

• An automated method to detect and localize synapses from EM data with high

accuracy.

• A method to predict the neurotransmitter class of neurons in Ciona based on its

synapse structure. Creation and analysis of class activation maps (CAM) from the

neural network to derive the synaptic features which are identified as important to

neurotransmitter prediction.

• Model-based predictions of neurotransmitter class by cell which are previously un-

known, and can be used in further experiments to help determine the true neuro-

transmitter expression of said cells.

4.2.1 Algorithm Details

The major steps involved in Ciona synapse detection and classification are shown

in Figure 4.1. The synapse detection workflow includes image patch extraction and

training of a ResNeXT network. The neurotransmitter prediction workflow is similar,

but sorts the images based on the assigned IDs [1] of the presynaptic cell before training

the deep learning network. Post-prediction class activation maps of the convolutional

neural network are computed for better understanding of important imaging features for

classification. Feature maps are reduced to 2 dimensional space and plotted to visualize

the feature-space distance between synapses of various neurotransmitter expressions.
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Figure 4.1: Synapse Detection / Classification flowchart.

For both synapse detection and classification, the training process is used as follows.

A ResNeXt-50 network architecture [61] pretrained on the ImageNet [62] dataset was re-

trained on the extracted image patches. First, the last fully connected layer was replaced

with a randomly initialized fully connected layer with an input of 2048 and an output of

2. The output has 2 possible classes, with 0 being inhibitory and 1 being excitatory. The

training was done in two stages. First, all layers of the ResNeXt are frozen, with no gra-

dient, except for the last fully connected layer. The model is trained for 100 epochs, and

the best model is used for the second round of training. On the second round of training,

the entire network is unfrozen, every layer of the network is tuned with retraining for 200

epochs. The architecture of the deep network is shown in Table 4.1.
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stage layers output
conv1 7x7, 64 stride 2 112x112

conv2 (x3)

3x3 max pool stride 2
1x1, 128

56x563x3, 128 C = 32
1x1, 256

conv3 (x4)
1x1, 256

28x283x3, 256 C = 32
1x1, 512

conv4 (x6)
1x1, 512

14x143x3, 512 C = 32
1x1, 1024

conv5 (x3)
1x1, 1024

7x73x3, 1024 C = 32
1x1, 2048

global average pool
1000-d fc, softmax prediction (0 or 1)

Table 4.1: ResNeXt-50 architecture.

Synapse Detection

Image patches containing annotated synapses and image patches containing non-

synaptic structures are used for the training (80%) and testing (20%) sets. 1,400 500x500

image patches containing synapses, and 1,392 500x500 image patches containing non-

synaptic structures, are used for training a synapse detection network. Non-synaptic

structures used are annotated variously as botrysomes, coated vesicles, basal bodies,

and autophagosomes1. Annotated structures which are avoided due to the possibility

of synapse presence included terminals, vesicles, dense core vesicles, and gap junctions.

Misclassified patches are analyzed visually for confounding factors.

1Botrysomes are compartment-like organelles resembling a cluster of vesicles [63]. Coated vesicles
are vesicles which transport lipids and protein and are coated with proteins on a membrane [64]. Au-
tophagosomes are spherical structures with double membranes which are used to degrade damaged or
expired organelles and proteins [65].
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Synapse Neurotransmitter Prediction

Image patches are grouped by presynaptic and postsynaptic cell ID [1] before splitting

into training, validation, and testing sets. A similarity computation was applied to each

patch to ensure that no duplicates or extremely overlapping patches are used. Due to

the limited number of synapses and known neuron types available, we combined the two

inhibitory neurotransmitter expressions (glycine, gamma-Aminobutyric acid (GABA))

and the two excitatory neurotransmitter expressions (glutamate, acetylcholine). 470

excitatory synapses and 338 inhibitory synapses are used for training a synapse detection

network. 1246 excitatory synapses and 396 inhibitory synapses are used for testing. Each

synapse was composed of 3-10 image patches in the z dimension.

9 neuron types with 4 known neurotransmitters, as determined by in situ hybridiza-

tion [33], are used in training and testing. These types and their neurotransmitter ex-

pressions are shown in table 4.5. Each presynaptic neuron had 1-41 associated synapses.

Neurotransmitter class was predicted using the trained network on an additional 13 neu-

ron types with previously unknown neurotransmitter expressions. For each presynaptic

neuron, a majority vote was made from the predictions of each synapse belonging to the

neuron. Based on the strength of consensus, network confidence, and prior knowledge

from in situ hybridization experiments [33], predictions are made on the neurotransmitter

expression of neurons which surpassed a confidence interval. For each neuron, we tallied

the number of predictions for each neurotransmitter valence. This tally is referred to as a

vote. The valence with the most votes is chosen as the raw prediction of that presynaptic

neuron. If the votes for each valence are close (e.g., inhibitory vote is not more than

e1.02 times of the excitatory votes) or that the total number of votes is less than 3, we

determine the prediction to be inconclusive.
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Class Activation Maps

512x512 image patches with labels are passed through the neurotransmitter prediction

neural network. The final layer of our network uses global average pooling to go from a

size of 16x16x2048 to 2048 features, then compute probabilities for each of the N classes

using a fully connected layer without bias. For each pixel in the 16x16 feature map, we

then compute the amount that this feature contributes to the output class. We apply the

fully-connected weights to the features at each pixel, cutting out the average pooling step.

The basic idea for deriving class activation maps is described in [66]. After extracting

the activation maps from the model, we use connected component analysis to find seed

points, then employ a watershed algorithm to segment the activation map into disjoint

regions to further analyze spatial and intensity information about the activations. Next,

we removed regions that are smaller than a set threshold, which was set empirically to

5000 pixels. Following this step, for each remaining connected region, we then calculated

the x and y coordinates of the centroid for the region and the average activation intensity

inside the region of interest.

Feature Maps

To better understand the network’s decision boundaries, the high-dimensional fea-

tures from the output layer of the prediction network are reduced to 20 dimensions using

Principal Component Analysis. The 20 dimensional feature is then further reduced to 2

dimensions using t-distributed Stochastic Neighbor Embedding [67], which better visu-

alizes the clustering characteristics of the features. The features are grouped in various

ways to gain more insight into how they are clustered.
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4.3 Results

4.3.1 Model Performance

For synapse detection, a training accuracy of 0.99 and a testing accuracy of 0.98

was achieved. For training, 2780 samples are used, with half of the samples containing

synapses and half without synapses. For testing, 692 samples are used, also with a 50/50

split of synapse vs. non-synapse sample. There are no false negatives, but there are 13

false positives which are detected by the model. Examples of some false positives are

shown in Figure 4.2.

Performance of the network on classification is shown in Table 4.2. Precision is the

number of True Positives (TP) divided by the sum of TP and True Negatives (TN),

and recall is TP divided by the total number of positive samples. Precision determines

how often selected items are relevant, and recall determines how often relevant items are

selected.

Of the failed detections (all false positives), 10 cases are image patches annotated

as coated vesicles, 2 cases are annotated as botrysomes, and 1 case annotated as an

autophagosome. Some representative patches are included in Figure 4.2. From the failed

cases, it can be seen that they tend to contain cell boundaries and vesicles, which are

features associated with synapses. The lack of false negatives is reassuring, as the goal

of the detection network is to detect likely synapses for screening by experts, so false

positives are better tolerated than false negatives.
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Figure 4.2: Examples of false positives for the synapse detection network. a), b), and
c) contain coated vesicles, d) and e) contain botrysome, and f) contains an autophago-
some. It can be seen that either cell boundaries (blue arrows) or groups of vesicles
(red arrows) are visible in many of the cases.

Precision (per synapse) Recall (per synapse) Precision (per cell) Recall (per cell)
inhibitory 0.98 train / 0.98 test 0.93 train / 0.91 test 1.0 0.95
excitatory 0.96 train / 0.93 test 0.99 train / 0.99 test 0.98 1.0

Table 4.2: Automated synapse classification performance - per synapse (train and
test) and per cell.
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Number of Cells Number of Synapses Accuracy (per cell) Accuracy (per synapse)
gly 3 22 0.67 0.71 train / 0.6 test

gaba 19 457 1.0 0.92 train / 0.95 test
ach 19 292 1.0 0.97 train / 1.0 test
glut 23 342 1.0 1.0 train / 0.98 test

overall 64 1113 0.98 0.95 train / 0.97 test

Table 4.3: Automated synapse classification performance breakdown by neurotrans-
mitter expression. As seen in the table, the performance for glycine was the worst,
most likely due to the low number of cells and synapses available to train the model.
Performance for GABA, acetylcholine, and glutamate are similar to each other.

4.3.2 Model Analysis

To get a better idea of the features which are important to the neurotransmitter

predictor network, we visualized the activation maps of the network on different classes,

as described in section 4.2.1. The results of the visualization show that cell boundaries,

vesicles, and postsynaptic density are the main focus of the majority of the attention for

the trained network. Some examples of activation maps are shown in Figure 4.3

The feature maps derived from the model outputs are shown in Figures 4.4 - 4.6.

One potential failure mode of the deep learning model is the possibility of picking

up on features which are specific to cell type (as defined in section 3.2.1), rather than

neurotransmitter expression. From the feature maps, it is evident that the synapses are

placed in clusters which mostly correspond to their neurotransmitter class, inhibitory or

excitatory. From Figure 4.6 it appears that the differences between different excitatory

neurotransmitters (acetylcholine and glutamate) are also captured by the model, even

though this information was not explicitly included during training. From Figure 4.4, it

can be seen that the features of synapses tend to be spread out throughout the feature

space, and co-mingle amongst cell types. This is promising, because this indicates that

the model is picking up on differences between synapses which are more indicative of

neurotransmitter class, rather than type-specific differences.
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Figure 4.3: Processed Class Activation Maps for Excitatory and Inhibitory Synapse
Image Patches. The network seems to pay more attention to the vesicles when pre-
dicting inhibitory neurons, and the cell boundary when predicting excitatory neurons.
The blue arrows indicate cell boundaries while the red arrows indicate vesicles. The
green outline shows the main region of interest of the network.

Table 4.5 shows the performance of the model on synapses belonging to cells of known

neurotransmitter expression. Some of these synapses are used for training, and others

are used for testing. We tallied the number of predictions by presynaptic neuron type

and valence (inhibitory and excitatory) in the training set. The tally is repeated for the

testing set. The tally for each valence is referred to as a vote. The valence with the

most votes is chosen as the raw prediction of that presynaptic neuron. If the votes for

each valence are close (e.g., inhibitory vote is not more than e1.02 times of the excitatory

votes) or that the total number of votes is less than 3, we determine the prediction to be
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Figure 4.4: Visualization of features for 30 neuron types after reduction to 2 di-
mensions using principal component analysis and t-distributed stochastic neighbor
embedding. Each data point on the plot is the computed feature of a synapse, with
synapses that span multiple frames averaged across all frames. There is quite a bit
of intermingling of the features between cell types, which is an encouraging sign that
the model is picking up on differences not unique to each cell type.

inconclusive. Those are the values in the Predicted Valence section. We compared the

valence of the raw prediction with the neurotransmitter expression determined by in situ

hybridization to calculate precision and recall.

Table 4.4 shows the predictions of the model on relay neurons of unknown neuro-

transmitter expression. We noticed that the prediction model tends towards predicting

more excitatory synapses in the relay neuron type, since the observed average number

of excitatory relay neurons from in situ hybridization was 11, while the number of pre-

dicted excitatory relay neurons was 14 [33]. All by one of the pr-AMG relay neurons

was predicted to be excitatory, with varying degrees of likelihood. This is different from

our predictions in [10], which indicated an inclination towards inhibitory pr-AMG relay

neurons, but with low confidence. However, the predicted number of excitatory and in-
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Figure 4.5: Feature visualization for synapses belonging to cells with known neuro-
transmitter expression, grouped by valence. Two distinct groups can be seen, one
primarily composed of excitatory synapses and one primarily composed of inhibitory
synapses.

hibitory neurons in the relay neuron type is closer to the observed number in [33] than

the predicted results from 3D point cloud matching, which suggests a promising direction

for resolving the neurotransmitter expressions in that region. Further experiments and

analysis is needed to determine with certainty the neurotransmitter expression of each

relay neuron.

The full prediction table is included in Table 4.5. Summaries of the available data

are shown in Figures 4.7 and 4.8.

71



Synapse Level Analysis: Ciona Connetome Chapter 4

Figure 4.6: Feature visualization for synapses with known neurotransmitter expres-
sion, grouped by neurotransmitter. Even though the prediction model was trained
only to differentiate between excitatory and inhibitory synapses, it can be seen that
the features tend towards separation by neurotransmitter expression, with the excep-
tion of glycine, likely do to the lack of training samples.

Figure 4.7: Number of unique cells per cell type of selected groups of interest.
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Figure 4.8: Frequency of cells with various number of synapses. It can be seen that
the majority of cells have between 10-20 synapses.

4.3.3 Comparison with Manual Overlay

The crux of our analysis lies in our hypothesis that the same cells appear in similar

locations across Ciona specimens. To provide an additional point of comparison, we

manually overlay the fluorescent imaging results from in-situ hybridization with the cell

centroids provided by the annotated EM data, as seen in Figure 4.9. Using the Unity

software [68], the centroid and volume of each neuron in the four selected cell types

as given in [1] is rendered in 3D. Each neuron is approximated with a sphere of its

corresponding volume. As seen on the leftmost image in Figure 9, image stacks of in

situ from [33] which contain expression of both vesicular GABA transporter (VGAT,

inhibitory) and vesicular Acetylcholine transporter (VAChT, excitatory) in the posterior

Brain Vesicle are also rendered into the software with real-world dimensions. Since certain

parts of the VGAT structure are well known and consistent, such as in the photoreceptors
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and at the posterior end of the relay neurons, this was used to manually align the in

situ with the connectome. The matching criteria is as follows: the posterior border

doesn’t pass the most posterior antRN, the dorsal cap marks the Eminen cells, and

the two patches, a smaller posterior one and larger anterior one, on the right mark the

two photoreceptor types, PR-I (only pr9 and pr10) and PR-II, respectively. After this

alignment is done, the smaller VACHT-labelled regions are brought into view for analysis.

7 in situs from [33] are aligned using the mentioned structures and similarity across the

in situs as guides. Once they are aligned, a collision detector is used to compute the

number of voxels in contact with each neuron. An illustration of the matching process is

shown in Figure 4.9, and the comparative results are shown in Table 4.4.

Figure 4.9: Illustration of manual overlay of in-situ hybridization results for VGAT
(left image) and EM-derived cell centroids (middle image) in 3D. Of the four cell
types shown, The areas with VGAT are encapsulated by the cell models, as seen in
the rightmost image. See text for more details.
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Name cell type Excitatory Voxel Inhibitory Voxel Excitatory Score Inhibitory Score Network Prediction Overlay Estimation
90 Bipolar prIN 6234 532 1.10E-02 1.40E-03 excitatory excitatory
92 Bipolar prIN 6767 259 1.20E-02 6.79E-04 excitatory excitatory
93 non-sensory RN 308 905 5.44E-04 2.37E-03 inconclusive inconclusive
103 non-sensory RN 5 867 8.84E-06 2.27E-03 excitatory inconclusive
106 non-sensory RN 51 1924 9.01E-05 5.05E-03 inconclusive inhibitory
122 non-sensory RN 25 2113 4.42E-05 5.54E-03 excitatory inhibitory
125 non-sensory RN 83 12696 1.47E-04 3.33E-02 inhibitory inhibitory
4 PNIN 0 0 0 0 excitatory inconclusive
6 PNIN 0 0 0 0 excitatory inconclusive
20 PNIN 0 0 0 0 excitatory inconclusive
29 PNIN 0 0 0 0 excitatory inconclusive
30 PNIN 0 0 0 0 excitatory inconclusive
85 PNIN 6909 484 1.22E-02 1.27E-03 excitatory excitatory
61 PNIN 1673 0 2.96E-03 0 excitatory excitatory
65 PNIN 8273 146 1.46E-02 3.83E-04 excitatory excitatory
88 PNIN 13979 236 2.47E-02 6.19E-04 excitatory excitatory
131 PNRN 1 6828 1.77E-06 1.79E-02 excitatory inhibitory
74 pr-AMG RN 1665 0 2.94E-03 0 excitatory excitatory
94 pr-AMG RN 8900 9602 1.57E-02 2.52E-02 excitatory inconclusive
108 pr-AMG RN 5903 1558 1.04E-02 4.09E-03 excitatory inconclusive
116 pr-AMG RN 7398 423 1.31E-02 1.11E-03 inconclusive excitatory
124 pr-AMG RN 6215 6184 1.10E-02 1.62E-02 excitatory inconclusive
127 pr-AMG RN 871 6454 1.54E-03 1.69E-02 excitatory inhibitory
140 pr-AMG RN 1485 7463 2.62E-03 1.96E-02 excitatory inconclusive
157 pr-AMG RN 941 3979 1.66E-03 1.04E-02 inconclusive inconclusive
123 pr-BTN RN 6077 2991 1.07E-02 7.84E-03 inconclusive inconclusive
130 pr-BTN RN 312 84 5.51E-04 2.20E-04 inhibitory inconclusive
105 pr-cor RN 2953 760 5.22E-03 1.99E-03 inconclusive excitatory
112 pr-cor RN 197 6530 3.48E-04 1.71E-02 inconclusive inhibitory
119 pr-cor RN 236 3234 4.17E-04 8.48E-03 inconclusive inhibitory
80 prRN 2301 1352 4.07E-03 3.55E-03 inconclusive inconclusive
86 prRN 4822 1696 8.52E-03 4.45E-03 inconclusive inconclusive
96 prRN 3660 4863 6.47E-03 1.28E-02 excitatory inconclusive
100 prRN 174 11273 3.08E-04 2.96E-02 inconclusive inhibitory
121 prRN 751 7371 1.33E-03 1.93E-02 inconclusive inhibitory
126 prRN 1096 4588 1.94E-03 1.20E-02 inconclusive inhibitory

Table 4.4: Predicted neurotransmitter valence for the relay neurons (RNs). RNs
used for training with known neurotransmitter expression are omitted from this table
and included in the appendix. The column with our model predictions is ‘Network
Prediction’, which is ‘inconclusive’ if there are fewer than 3 synapses for a given cell,
or if the number of excitatory and inhibitory predictions are similar, that is, one is
not more than 1.5 times the other.
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cell id in situ llr test llr train excitatory test inhibitory test excitatory train inhibitory train prediction test prediction train
ACIN1L gly 0.24 -1.73 1 0 0 6 excitatory inhibitory
ACIN2L gly -0.68 0.12 1 2 4 3 inhibitory excitatory
ACIN2R gly -0.46 -0.54 0 1 1 3 inhibitory inhibitory
AMG1 gaba -1.08 -1.66 0 5 1 9 inhibitory inhibitory
AMG2 gaba -0.67 -3.09 1 4 1 14 inhibitory inhibitory
AMG3 gaba -0.21 -3.59 0 1 0 14 inhibitory inhibitory
AMG4 gaba -0.47 -2.42 0 2 2 12 inhibitory inhibitory
AMG5 ach 2.49 2.87 8 0 14 2 excitatory excitatory
AMG6 gaba -0.49 -3.55 1 2 1 14 inhibitory inhibitory
AMG7 gaba -0.6 -3.1 0 3 1 16 inhibitory inhibitory
Ant1 glut 0.21 3.89 3 1 14 0 excitatory excitatory
Ant2 glut 2.46 7.25 9 0 25 1 excitatory excitatory
120 gaba -1.56 -11.75 0 4 1 29 inhibitory inhibitory
134 gaba -1.58 -6.74 0 5 1 20 inhibitory inhibitory
135 gaba -1.15 -5.12 0 3 1 19 inhibitory inhibitory
142 gaba -1.54 -7.14 0 5 2 23 inhibitory inhibitory
143 gaba -1.75 -6.55 0 5 3 20 inhibitory inhibitory
147 gaba -2.94 -7.12 0 7 0 20 inhibitory inhibitory
152 gaba -2.58 -5.79 0 8 3 21 inhibitory inhibitory
153 gaba -1.52 -3.36 0 5 1 10 inhibitory inhibitory
159 gaba -1.79 -5.6 0 5 2 16 inhibitory inhibitory
161 gaba -3.02 -5.22 0 6 1 16 inhibitory inhibitory

ddNL ach 1.39 4.69 4 0 16 0 excitatory excitatory
ddNR ach 1.37 3.79 4 0 12 0 excitatory excitatory
Em1 gaba -1.11 -7.92 1 6 3 31 inhibitory inhibitory
Em2 gaba -1.6 -6.26 1 6 3 24 inhibitory inhibitory

MGIN1L ach 0.87 6.27 5 0 25 1 excitatory excitatory
MGIN1R ach 0.43 6 3 0 22 0 excitatory excitatory
MGIN2L ach 0.82 4.85 3 0 14 0 excitatory excitatory
MGIN2R ach 2.01 3.88 6 0 14 1 excitatory excitatory
MGIN3L ach 0.33 2.91 1 0 7 0 excitatory excitatory
MGIN3R ach 0.68 2 2 0 7 1 excitatory excitatory

MN1L ach 1.13 5.77 3 0 18 0 excitatory excitatory
MN1R ach 2.9 3.85 8 0 16 1 excitatory excitatory
MN2L ach 1.84 3.46 4 0 9 0 excitatory excitatory
MN2R ach 1.56 4.81 4 0 11 0 excitatory excitatory
MN3L ach 0.43 1.91 1 0 5 0 excitatory excitatory
MN3R ach 0.85 2.77 3 0 7 0 excitatory excitatory
MN4L ach 1.91 1.02 6 0 4 0 excitatory excitatory
MN4R ach 0.76 2.92 2 0 7 0 excitatory excitatory
MN5L ach 0.4 1.34 1 0 3 0 excitatory excitatory
MN5R ach 0.37 2.54 1 0 6 0 excitatory excitatory

pr1 glut 1.5 2.05 4 0 9 0 excitatory excitatory
pr11 glut 0.67 2.41 3 0 10 0 excitatory excitatory
pr12 glut 0.85 4.72 3 0 16 0 excitatory excitatory
pr13 glut 1.1 2.96 3 0 11 0 excitatory excitatory
pr14 glut 0.16 – 1 0 0 0 excitatory excitatory
pr15 glut 1.98 7.33 7 0 27 0 excitatory excitatory
pr16 glut 0.89 1.83 3 0 7 0 excitatory excitatory
pr17 glut 0.44 3.35 2 0 13 0 excitatory excitatory
pr18 glut 0.14 0.58 1 0 2 0 excitatory excitatory
pr19 glut 1.38 1.48 5 0 7 0 excitatory excitatory
pr2 glut 0.39 1.3 2 0 6 0 excitatory excitatory
pr20 glut 2.92 5.94 9 0 22 0 excitatory excitatory
pr21 glut 0.43 2.18 2 0 9 0 excitatory excitatory
pr22 glut 0.58 2.4 3 0 10 0 excitatory excitatory
pr23 glut 1.06 4.16 4 0 14 0 excitatory excitatory
pr3 glut 0.54 3.06 2 0 12 0 excitatory excitatory
pr4 glut 0.66 – 3 1 0 0 excitatory excitatory
pr5 glut 0.85 2.41 3 0 8 0 excitatory excitatory
pr6 glut 0.75 2.14 2 0 9 0 excitatory excitatory
pr7 glut 1.18 4.82 4 0 16 0 excitatory excitatory
pr8 glut 0.66 2.7 3 0 11 0 excitatory excitatory
pr9 gaba -0.36 -1.3 0 1 4 11 inhibitory inhibitory

Table 4.5: Predictions on synapses with known ground truth.
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4.4 Summary

The proposed synapse detection model has good performance on the detection of

synapses in electron microscopy for Ciona. While there are some false positives from

the model prediction (Table 4.5), this is desirable compared to false negatives, because

an expert can then screen the predictions to determine true synapses. The ratio of

synapses to non-synaptic structures in a typical EM of Ciona is on the order of 1:1000.

Instead of scanning an entire image for possible synapses, the model can drastically reduce

the annotation time needed for synapse annotation. The synapse prediction model has

helped to identify possible neurotransmitter expression for cells from certain neuronal

types, which are previously unknown. While we cannot be absolutely certain that the

model has predicted correctly for synapses belonging to cells with previously unknown

neurotransmitter expressions, the output of the model seems reasonable given the feature

analysis we have done. Comparison with previous in situ hybridization results have

also shown that the prediction of the model is likely correct. For the relay neurons, in

[33] we had previously found an average of 16 VGAT-positive neurons and 11 VACHT-

positive neurons. The prediction of the network matches these numbers well, and much

better than the point-cloud registration method used in [33]. We hope that the model

predictions will work in conjunction with both prior and future analysis to help resolve

the neurotransmitter expression of individual neurons in regions which have been difficult

to resolve using in-situ hybridization and other experimental methods.

4.4.1 Future Work

More work can be done on the analysis of cellular and subcellular features in neurons

with undetermined neurotransmitter expression. Overall connectivity and cell shape can

be obtained from the annotated EM data and may be useful tools in better understanding
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the relationship between structural features and neurotransmitter expression expression.

The connection between and synapse structure can also be further explored, and may

help with a more robust neurotransmitter prediction method.
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Discussion

The primary goal of this dissertation is to introduce and explore the concept of relating

brain structure to function. The structure of the brain is deduced from the results of

multiple imaging modalities spanning a wide range of scales, while the function refers to

an observed behavior in response to controlled and known stimuli, or a patient diagnosis

or prognosis.

Chapter 2 introduced the problem of diagnosing Normal Pressure Hydrocephalus

(NPH) and the clinical workflow for diagnosing and assessing NPH, which currently

consists of a CT scan of the head and observation of symptoms, such as a shuffling

gait, confusion, and urinary incontinence. A robust segmentation algorithm is presented,

along with the use of network metrics to predict NPH diagnosis. The network metrics

are computed from a common atlas which is modified based on the segmentation results

to fit each patient.

In Chapter 3, the Ciona organism is introduced as a simpler chordate closely re-

lated to humans on the evolutionary tree. The structure of the Ciona neuronal system

is described, and datasets from different modalities from the cellular level (fluorescent

confocal microscopy) to the sub-cellular level (electron microscopy) are presented. The
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annotation process for the data is also described.

Finally, Chapter 4 details the computational methods we employed to collate and

match the neurotransmitter expression data from confocal microscopy with the cell con-

nection maps from electron microscopy and gain new insights into the neuronal processes

of Ciona. Reports on statistical and feature analysis is provided to determine the validity

and consistency of the computational results.

5.1 Broader Impacts

The exploration of tractographic features for to predict patient outcome has many

applications in the analysis of the brain. [17] uses tractographic features computed

from brain tumor segmentations to improve patient outcome prediction. Exploration of

connectivity matrix generation methods from tractography led to the implementation of

a Reeb graph approach to tractography bundle formation [69, 70] and a demonstrative

application to the ADNI dataset to differentiate dementia and normal subjects. There

remains much more to be explored on the topic of creating features from structural

information derived from brain imaging, and connecting that information with brain

function, whether it be a diagnosis or a prediction of behavior.

We are in the process of implementing our brain CT segmentation algorithm on

BisQue. Currently, a version of the algorithm is available on the cloud for use by clinical

researchers. A graphical user interface allows the user to upload a CT scan from their

own database, process it in the cloud using servers in our laboratory, and obtain and store

the segmentation results, along with volumetric estimates and a diagnosis prediction of

NPH or no NPH. Figure 5.1 is a snapshot of the user interface.
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Figure 5.1: Example result of the brain CT segmentation algorithm from Chapter
1 on BisQue. The BisQue implementation of the algorithm is currently used as an
initial segmentation method for CT scans in the Chen Lab in neurosurgery at the
University of California, Irvine.

5.2 Future Directions

The work presented in this thesis proposed multiple methods to combine multi-modal

imaging data with computational methods to predict observed behavior and function.

While we developed our algorithms to accomplish specific tasks, such as predicting Nor-

mal Pressure Hydrocephalus from CT scans and determining neurotransmitter expression

of Ciona neurons, the concepts and approaches used in this work can be generalized to

other areas of study related to brain imaging.

On the tissue level, one promising direction is in the study of the effects of hormones on

brain structure and function. The work done by [71] show that there are significant cog-

nitive differences based on age and sex. It would be interesting to explore the structural

differences in the brain correlated with hormonal changes and age through computational

methods. Likewise, image processing and computer vision techniques could be applied
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to analyze brain images of patients with other diagnoses, such as dementia or depression.

On the cellular level, more work can be done to verify the neurotransmitter expres-

sions of neurons in regions where model confidence was low, or disagreed with previous

results. While we had the complete electron microscopy data and annotations for one

Ciona sample, it would be tremendously helpful to have a second fully annotated elec-

tron microscopy dataset of a second sample for comparison and further analysis. The

annotation of a second dataset is currently in the works at Dalhousie University in Hal-

ifax, Canada. The full annotations include information about cell boundary locations

for the main cell body, axons, and dendrites. Shape features can be extracted from this

information and used to provide additional context for neurotransmitter expression or

cell behavior information. Likewise, network metrics for each cell could be incorporated

into the neurotransmitter prediction process.
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