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Abstract

Enhancers act to regulate cell type specific gene expression by facilitating the transcription of 

target genes. In mammalian cells active or primed enhancers are commonly marked by 

monomethylation of Histone H3 at lysine 4 (H3K4me1) in a cell-type specific manner. Whether 

and how this histone modification regulates enhancer-dependent transcription programs in 

mammals is unclear. In this study, we conducted SILAC Mass-spec experiments with mono-

nucleosomes and identified multiple H3K4me1 associated proteins, including many involved in 

chromatin remodeling. We demonstrate that H3K4me1 augments the association of the chromatin 

remodeling complex BAF to enhancers in vivo and that in vitro, H3K4me1 nucleosomes are more 

efficiently remodeled by the BAF complex. Crystal structures of BAF component BAF45c reveal 

that monomethylation, but not trimethylation, is accommodated by BAF45c’s H3K4 binding site. 

Our results suggest that H3K4me1 plays an active role at enhancers by facilitating the binding of 

the BAF complex and possibly other chromatin regulators.
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In cells, cis-regulatory elements such as enhancers and promoters can be defined not only by 

DNA sequence motifs but also by common and predictive patterns of epigenetic 

modifications1. Active promoters are enriched for H3K4me3, H3/H4 acetylation along with 

binding of multiple chromatin regulatory complexes2. Primed enhancers are marked by 

H3K4me1 (coupled with a depletion of H3K4me3) whereas active enhancers are enriched 

for H3K4me1, H3K27ac and sometimes H4K16ac and H3K122ac2–8. Such epigenetic 

signatures are commonly used to predict de novo regulatory elements in novel cell types. 

Numerous studies have demonstrated that H3K4me1 is highly dynamic and correlates well 

with cell-type specific gene expression profiles, whereas promoter-associated H3K4me3 is 

more invariant across cell types9.

It has been postulated that specific histone modifications function as binding elements for 

effector proteins that serve to regulate transcription through manipulation of the chromatin 

environment or assembly of transcription machinery10–13. For example, promoter-associated 

H3K4me3 can lead to recruitment of TFIID (through direct interaction with TAF3) to 

positively regulate transcription14. On the other hand, the function of H3K4me1 at enhancers 

has not been well understood. In Drosophila, knockout of the Trithorax-related (Trr) histone 

methyltransferase results in a global loss of H3K4me115 and a concomitant loss of enhancer 

function15,16. Similarly, loss of KMT2C/D, the human homologs of Trr, abolishes H3K4me1 

and reduces H3K27ac levels as well as binding of Mediator and RNA polymerase II at 

enhancers16,17. KMT2C/D knockout cells exhibited defects in enhancer activation, cell type 

specific gene expression and differentiation capacities15,17. These studies, while supporting 

a role for H3K4me1 in enhancer function, did not reveal the mechanism of action by this 

histone mark. It is very likely that H3K4me1 may act by recruiting specific effector proteins.

A recent study of the H3K4 demethylase KDM5C revealed that while H3K4me3 positively 

regulates transcription at promoters, increased H3K4me3 serves to decrease enhancer 

function18. The correct balance of H3K4me1 and me3 at promoters is equally important for 

transcriptional regulation. At promoters, a decrease of H3K4me3 and repression of 

transcription is coupled with an increase of H3K4me1 in many cell types19. Additionally, 

H3K4me1 is known to block binding of H3K4me3-associated factors such as ING1. In fact, 

H3K4me1 also demarcates the boundaries of active promoters, thus limiting the recruitment 

of factors and specifying the promoter region19. Clearly these closely related modifications 

play very distinct roles in gene regulatory networks in cells, depending on localization and 

differential association with regulatory complexes. This fact underscores the need to identify 

factors that can specifically bind to H3K4me1, and perhaps distinguish between H3K4me1 

and me3, in order to fully understand the role of this histone modification in gene regulation.

Peptide or nucleosome pulldown coupled with SILAC mass spec analysis has been utilized 

to identify factors associating specifically with histone tail modifications14,20,21. Such 

studies have successfully identified proteins associated with H3K9me, H3K4me3, and 

H3K27me3. However, in all previous studies, binding of complexes to methylated versus 

unmethylated histone states was compared. In the current study, we designed a screen to 

identify candidate H3K4me1 binders while simultaneously comparing association of factors 

with mononucleosomes bearing the H3K4me1 versus H3K4me3 modification. Our approach 

identified multiple components of the transcriptional regulatory machinery including the 
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BAF complex as enriched for H3K4me1 association. ChIP-seq analysis confirmed that these 

factors’ binding to putative enhancers correlates with H3K4me1 genome-wide in mESCs. 

Importantly, binding of these H3K4me1-associating proteins was drastically reduced upon 

depletion of KMT2C/D and loss of H3K4me1 at enhancers. In addition, loss of H3K4me1 in 

a mutant mouse ES cell line bearing catalytic site mutations in KMT2C and KMT2D 

correlates with reduced binding of BAF components SMARCA4 (BRG1) and DPF2 

(BAF45d). We characterized the subunit in the BAF complex involved in preferential 

recognition of H3K4me1 over H3K4me3 by X-ray crystallographic analysis. We further 

demonstrated that in vitro BAF more efficiently remodels H3K4me1 nucleosomes. Taken 

together, our results provide mechanistic insights by which H3K4me1 acts to regulate the 

function of enhancers.

Results

Identification of potential H3K4me1 binding partners

We assembled nucleosomes with chemically modified histone H3 and naïve H4, H2A, and 

H2B (Fig. 1A)22–25. The H3K4me1 and H3K4me3 nucleosomes were used as baits in 

pulldowns from nuclear extract (NE) prepared from HeLa cells grown in media containing 

either light or heavy isotope-labeled amino acids as shown in Figure 1B20. Any factor 

specifically associating with H3K4me1 over H3K4me3 in the forward reaction would be 

detected by mass spec as enriched in light Lys labeled peptides, and in heavy Lys labeled 

peptides in the reverse reaction (Fig. 1B). Multiple replicates were performed with similar 

results. For final analysis, 2 replicates were combined and ratios of light peptides to heavy 

peptides were averaged across replicates (Fig. 1C and Supplemental Table S1). As we are 

only assessing H3K4me1 vs me3 affinities we cannot rule out the possibility that factors 

identified as H3K4me1 binders may also associate with H3K4me2 or me0. Nevertheless, our 

approach yielded a plethora of putative H3K4me1 associated proteins including many 

known chromatin regulators and chromatin associated factors (Supplemental Table S2). 

Multiple subunits of the BAF (SWI/SNF) complex, such as SMARCA4 (BRG1) and 

SMARCC1/2 (BAF155/170), were isolated in the precipitates. Also identified were 

components of other chromatin remodeling complexes such as BAZ1B from WINAC and 

WICH, and BAZ1A from ACF. Many factors isolated contain histone-binding domains 

(Supplementary Table S2) and, in addition, several of these factors have been found 

associated with H3K4me1 regions of the genome in cells by ChIP mass spectrometry26. 

Interestingly, two Cohesin subunits were found to be associated with H3K4me1-

nucleosomes. Cohesin is known to associate with enhancers and facilitate enhancer-

promoter looping27. The results implicate H3K4me1 in many facets of enhancer function 

from chromatin remodeling to looping of enhancers and promoters. In addition to the 

H3K4me1 associated factors we identified several novel H3K4me3 associated proteins such 

as the FACT components SSRP1 and SUPT16H.

Our mono-nucleosome pulldowns differed from previous experiments that largely employed 

methylated histone tail peptides as bait. For the purpose of comparison, the assay was 

repeated comparing H3K4me1 and H3K4me3 peptides instead of mono-nucleosomes and in 

this case we observed enrichment of TAF and ING family proteins as observed by other 
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labs14. Notably, there was less enrichment of factors for H3K4me1 in the peptide pulldowns, 

compared to the use of mono-nucleosome templates. This difference could be due to histone 

tails adopting a distinct conformation, necessary for substrates to bind, only in the presence 

of intact nucleosomes28. Alternatively, it could be due to additional interactions that exist 

only in intact nucleosome substrates.

To validate association and identity of a subset of the chromatin regulators (CRs) identified 

in our screen we incubated methylated nucleosomes with HeLa NE and performed western 

blotting to identify associated factors (Fig. 1D). Target validation was limited by availability 

of specific antibodies so unfortunately we were unable to conduct further analysis on several 

interesting candidates. However, we confirmed preferential binding of H3K4me1 over 

H3K4me3 by a number of known enhancer-associated factors. It should also be noted that 

some proteins bind to multiple methylation states, such as Sap18 to H3K4me1/me2 and 

SMARCC2 to H3K4me0/1 (Fig. 1D). While some factors have domains known to bind 

methylated Lysine residues, such as PHD domains found in PHRF1, and BAF components, 

other factors identified in the screen do not have any know histone binding domains. It is 

clear that complex binding patterns of multiple protein complexes is involved.

CRs are localized to H3K4me1 rich regions of the genome

Next we performed ChIP-seq for 16 CRs and 4 histone modification marks in mouse 

embryonic stem cells (mESCs) to determine the localization of the candidate H3K4me1-

binding chromatin regulators (CRs). Clustering analysis of the ChIP-seq profiles of these 

factors along with three histone H3 lysine 4 methylation states (me1, me2 and me3) showed 

that nearly all of the CRs tested cluster together with H3K4me1 in a branch separate from 

H3K4me2 and H3K4me3 (Fig. 2A). We further assayed the binding of the CRs to a subset 

of previously validated enhancers29 and negative control regions by ChIP-qPCR, and found 

CRs to be enriched at all enhancers tested (Fig. 2B–C and Fig. S1A–D). Enrichment of 

H3K4me1-associated CRs was observed at a previously validated Sox2 enhancer30, and 

several factors are also enriched at the Sox2 promoter overlapping with the promoter-

flanking H3K4me1 domains. Interestingly we observed consistently higher CR enrichment 

at regions with both H3K4me1 and H3K27ac (Fig. S2C and S2D). Next we investigated CR 

association with poised (n=28,008) and active (n=13,811) enhancer regions, defined as 

H3K4me1-positive regions with or without concomitant H3K27ac signals. For this specific 

analysis “active” enhancers were defined based on H3K27ac signals and not H3K16ac or 

H3K122ac. We discovered that active enhancer regions tend to be occupied by multiple CRs 

while poised enhancer regions show individual CR binding patterns (Fig. 2D and Fig. S2D 

left vs right panel). The majority of CRs tested bound a high fraction of H3K27ac containing 

enhancer regions (Fig. S1E). That acetylation of H3K27 at enhancers coincides with binding 

by multiple co-activators implies that binding of multiple CRs might be necessary for full 

activation of the enhancers.

H3K4me1 dependent association of CRs with enhancers

The above results confirmed the association of CR complexes to H3K4me1 in vitro and in 
vivo. To determine if chromatin association of CRs is dependent upon H3K4me1, we carried 

out ChIP-seq analyses of these protein complexes in mouse ESC deleted of KMT2C/D31. 

Local et al. Page 4

Nat Genet. Author manuscript; available in PMC 2018 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Previous studies have demonstrated that KMT2C/D are responsible for H3K4me1 deposition 

at enhancers in multiple species15–17. Consistent with previous data from mouse pre-

adipocytes and human colon cancer cells, knockout of both of these enzymes in mouse ESCs 

results in a general decrease in H3K4me1 but has little effect on the global level of 

H3K4me331. We performed H3K4me1, H3K4me2, and H3K4me3 ChIP-seq in mESCs 

deleted of both KMT2C and KMT2D genes (DKO) and compared the results with the data 

from WT mESCs. We observed that the majority of H3K4me3 distribution remains 

unaltered between WT and DKO (Fig. 3C) whereas H3K4me2 levels are mildly effected 

(Fig. 3B and Fig. S2A–B). Consistent with the previous studies we observed a dramatic 

reduction in H3K4me1 signal throughout the genome (Fig. 3A and Fig. S2A–B): 47% of 

H3K4me1 peaks detected in WT mESCs were lost in DKO mESC (Fig. 3D, Fig. S2C). The 

KMT2C/D-dependent H3K4me1 peaks are enriched at enhancers (Fig. 3D), consistent with 

previously suggested function of KMT2C/D at these sites15–17. KMT2C/D-independent 

H3K4me1 peaks, on the other hand, overlap not only with enhancers and but also promoters 

(Fig. 3D). We also detected both KMT2C/D dependent and independent H3K4me2 peaks 

(Fig. S2D). However, in contrast to H3K4me1 peaks, the KMT2C/D-dependent-H3K4me2 

is found at both enhancers and promoters at equal proportions. Additionally, as seen in pre-

adipocytes, KMT2C/D dependent loss of H3K4me1 also coincides with a moderate decrease 

in H3K27ac at the same regions (Fig. 3E and Fig. S2A and S2B).

Both KMT2C/D dependent and independent peaks are bound by CRs but the fraction of 

associated peaks is highly variable (Fig. 3F). CRs should be reduced at KMT2C/D 

dependent sites in DKO cells if H3K4me1 acts to facilitate or stabilize their binding. To test 

this hypothesis, we performed ChIP-seq for a subset of the H3K4me1-associated CRs and 

demonstrate and overlap with H3K4me1 occupancy in the wild-type cells. All CRs tested 

were reduced at KMT2C/D dependent H3K4me1 sites compared to KMT2C/D independent 

sites in the DKO mESCs (Fig. 3F and S2). We obtained similar results assessing CR 

association with known mESC enhancers using ChIP-qPCR (Fig. S2E).

A recent study by Dorighi and colleagues highlights a role for KMT2C/D in transcription 

regulation independent of H3K4me1 deposition32. Our data suggests that H3K4me1 is 

important for CR binding, however this new study raised the possibility that loss of 

KMT2C/D could directly affect binding of CRs independently of H3K4me1 loss. We 

therefore utilized the KMT2C/D catalytically inactive cell line (dCD) to distinguish between 

the role of H3K4me1 and KMT2C/D in binding of CRs. We performed ChIP-seq for 

H3K4me marks, H3K27ac, and BAF complex components SMARCA4 (BRG1) and DPF2 

(BAF45d) (Fig. 4A). In the dCD cells 38% of the distal H3K4me1 sites had reduced levels 

of H3K4me1. Interestingly, a small fraction of H3K4me1 sites also gained H3K4me1 signal, 

which is consistent with the previous data32, and these sites are located closer to promoters 

than the H3K4me1 depleted regions. As in DKO cells, H3K4me2 and me3 levels were less 

affected than H3K4me1 (Fig 4B–C, S3B). At regions where we observed specific loss of 

H3K4me1 signal we likewise observed a decrease in binding of both SMARCA4 and DPF2 

(Fig 4E–F, S3C–D). Reduced BAF complex binding is specific for sites where H3K4me1 is 

depleted (Fig. 4F) and was not seen at sites where H3K4me1 is unchanged, confirming the 

role of H3K4me1 in facilitating BAF binding to these regions. Taken together, our data from 
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KMT2C/D KO and catalytically inactive cells supports the hypothesis that H3K4me1 plays 

an important role in binding of multiple CR complexes to enhancers.

BAF complex preferentially binds to and remodels H3K4me1 nucleosomes

The BAF complex is known to co-localize with H3K4me1 in the genome6. Our data 

suggests that H3K4me1 may play a direct role in stabilizing BAF complex binding to 

chromatin. To confirm that H3K4me1 can indeed serve to facilitate binding of BAF 

complexes in the absence of other co-factors or transcription factors, we repeated the mono-

nucleosome pulldown assays with BAF complex purified from HeLa cells (Fig. S4A). We 

demonstrate that purified BAF complex binds to H3K4me1 with higher affinity than 

H3K4me3 on mono-nucleosomes (Fig. 5A) and, to a lesser extent, H3 tail peptides (Fig. 

S4B). These data demonstrate that protein complexes can recognize and distinguish between 

closely related H3K4 methylation states, and this could be important for their recruitment to 

enhancers. The BAF complex regulates transcription by remodeling nucleosomes at sites of 

H3K4me1, suggesting a link between histone methylation and BAF activity. Utilizing in 
vitro nucleosome remodeling assays33 we find that the BAF complex more efficiently 

remodels H3K4me1 mono-nucleosomes, than H3K4me0, H3K4me2, and H3K4me3 mono-

nucleosomes (Fig. 5B–C, S4C). This data suggests a functional link between enhancer-

specific histone modifications and the activity of recruited chromatin regulatory complexes.

Crystal structure of DPF3 binding preferentially H3K4me1

Based on peptide binding and NMR/X-ray structures, the PHD1 domain of BAF component 

DPF3 (BAF45c) recognizes H3K14ac, while the PHD2 domain in these proteins binds to 

H3K4me034. BAF subunits DPF1, DPF2, DPF3, and PHF10 (BAF45B, C, D, and A 

isoforms respectively) have cell type specific expression patterns35. Our data demonstrates 

that mESC specific DPF2 associates with H3K4me1. To determine if the DPF3 (BAF45c) 

PHD2 domain could contribute to H3K4me1 recognition as well, we purified the PHD1/2 

region of DPF3 of this family of proteins, and used isothermal titration calorimetry to 

measure its affinity for H3 tail peptides containing H3K14ac plus H3K4me0, H3K4me1, or 

H3K4me3. Consistent with our biochemical studies, we found that the isolated BAF45c 

PHD1/2 region strongly preferred H3K4me1 (Kd of 20 µM for H3K4me1/K14ac) over 

H3K4me3 binding (Kd of 115 µM for H3K4me3/K14ac) (Fig. S5A–C). However, in contrast 

to our findings with the intact BAF complex and mono-nucleosomes the DPF3 PHD1/2 

region bound to the H3K4me0 peptide with slightly higher affinity (Kd of 7.8 µM for 

H3K4me0/K14ac) than the H3K4me1 peptide. These data suggest that additional factors in 

the BAF complex and/or nucleosomes may influence H3K4me1 specificity.

To reveal the atomic basis of the preferential recognition of DPF3 PHD1/2 for H3K4me1 

over H3K4me3, we next determined two high-resolution (1.2 Å) crystal structures of the 

DPF3 PHD1–2 region bound to H3 tail peptides (residues 1–18) containing H3K14ac and 

either H3K4me0 or H3K4me1 (Supplemental Table 3). The two structures show a nearly 

identical overall structure of DPF3 (<0.04 Å overall Cα r.m.s.d.), and largely agree with 

prior structures of this protein, with a 1.5 Å overall Cα r.m.s.d. to a prior NMR structure 

(PDB ID 2KWJ) and 0.8 Å overall Cα r.m.s.d. to a prior X-ray crystal structure (PDB ID 

5I3L)31,34. In our two structures, the two PHD domains are intimately associated with one 

Local et al. Page 6

Nat Genet. Author manuscript; available in PMC 2018 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



another, with a binding pocket in PHD1 that recognizes H3K14ac, and a pocket in PHD2 

that recognizes H3K4 (Figure 6A–C) leading to virtually identical bound conformations of 

the H3K4me0 and H3K4me1 peptides. In both complexes, H3K4 is nestled tightly in a 

surface cavity made up of the hydrophobic side chains of I314, L331, and F333. In addition, 

the main chain carbonyl groups of residues 314, 315, and 317 are all close enough to the 

H3K4 amino group to form hydrogen-bonding interactions. These interactions likely 

contribute to the preferential binding of unmethylated or monomethylated H3K4, the amino 

groups of which can form two (K4me1) or three (K4me0) hydrogen bonds, over di-or 

trimethylated H3K4. In addition, the H3K4 mono-methyl group packs in a preformed cavity 

that is just large enough for a single methyl group. Hence, these carbonyls may sterically 

disfavor di- or trimethylated H3K4 binding.

In contrast to earlier NMR structures of the DPF3-H3 tail complex34, but in agreement with 

a recent crystal structure31, our structures show that H3 residues 4–10 adopt an α-helical 

conformation. Additionally, we find that H3R8 forms a “lid” over the binding site, extending 

directly over H3K4 and forming a hydrogen-bonding network with DPF3 residues E315 and 

D328 on opposite sides of the H3K4 binding pocket (Fig. 6B–C and S5D–E); this residue’s 

position was not well-resolved in the previous crystal structure31. Both the α-helical 

conformation of the H3 tail and the H3R8 “lid” most closely mirror earlier observations in 

crystal structures of the MYST family acetyltransferase KAT6A (MOZ), which possesses a 

double-PHD finger domain at its N-terminus that recognizes unmodified H3K4 and 

acetylated H3K1428 or propionylated/butyrylated/crotonylated H3K1436. This H3 tail-

binding mode may also be shared in other double-PHD finger protein families; for instance, 

an unpublished NMR structure of KMT2C (PDB code 2YSM) shows that this protein 

possesses a pair of acidic residues bracketing the H3K4 binding site that could participate in 

H3R8 binding. This mode of H3K4 recognition may also have functional relevance as it 

leaves the H3K4me1 group solvent exposed in the complex, creating the possibility that 

additional factors in BAF or in the nucleosome itself could associate with the composite 

DPF3-H3K4me1 surface and provide additional specificity for H3K4me1 over H3K4me0.

Discussion

In summary, we carried out SILAC mass spectrometry analysis to systematically identify 

nuclear proteins that bind H3K4me1. Our experiments uncovered components of multiple 

chromatin regulatory complexes, including the BAF chromatin remodeling complex, as 

H3K4me1-associating proteins. We further validated the binding of a subset of these 

complexes to H3K4me1 mononucleosomes in vitro and to genomic regions bearing the 

histone mark in embryonic stem cells. We showed that deletion of H3K4 

methyltransferaseses KMT2C/D leads to a loss of occupancy by these complexes at 

KMT2C/D-dependent H3K4me1 regions. Importantly, we confirmed that loss of H3K4me1 

in both KMT2C/D knock out and catalytically null mutant cells correlated with a decrease in 

binding of CRs to enhancers, supporting our hypothesis that H3K4me1 plays an important 

role in binding of key chromatin regulatory factors. We chose to focus on the BAF complex, 

and obtained strong evidence suggesting that H3K4me1 is directly involved in the 

association of this complex to chromatin. The BAF complex belongs to the SWI/SNF family 

of ATP-dependent chromatin remodeling complexes35. Containing between 10 to 12 
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components, BAF complexes are necessary for early embryogenesis, activation of lineage 

specific genes during cellular differentiation, and maintenance of pluripotency of embryonic 

stem cells. Genome-wide profiling studies have shown that BAF complexes generally 

localize to distal enhancers where they are required for histone acetylation during 

differentiation of ES cells. A recent study involving in situ capture of specific genomic 

regions also identified BAF as an enhancer bound complex37. However, exactly how BAF 

complex is recruited to the enhancers has not been fully understood35. Here, we provided 

multiple lines of evidence that H3K4me1 may play a role in the recruitment of BAF 

complex to enhancers. BAF complexes fail to localize to promoter-distal enhancers in 

KMT2C/D double-KO, and in KMT2C/D catalytically inactive mutant cells. Using protein-

pull down assays, we showed that the BAF complex interacts directly with H3K4me1 

mononucleosome in vitro via the PHD2 domain in DPF3 (BAF45c). X-ray crystallography 

experiments further revealed a surface cavity in the PHD2 domain of DPF3 that readily 

accommodates monomethylated lysine 4 of histone H3, but not tri-methylation. Finally, 

nucleosome remodeling assays demonstrated that H3K4me1 facilitates the BAF complex’ 

nucleosome remodeling activity above all other H3K4me states. These results, taken 

together, support a model in which the histone modification H3K4me1 directly helps to 

recruit BAF complex to enhancers, and therefore plays an active role in enhancer function.

While this work was under revision, Dorighi and colleagues32 reported that KMT2C/D 

promotes RNA synthesis at enhancers and nearby promoters independently of the H3K4 

monomethylation activities. While this observation suggests that H3K4me1 may not be 

necessary for loading of RNA polymerase II at enhancers and subsequent activation of target 

promoters, it does not rule out other functions of H3K4me1 at enhancers. Another recent 

study demonstrated that Drosophila bearing catalytically inactive Trr (H3K4me1 histone 

methyltransferase) survive to adulthood with only subtle gene expression changes. However, 

if subjected to temperature stress conditions developmental abnormalities were observed38. 

In addition, this and other studies have found that loss of KMT2C/D in mESCs does not 

affect self-renewal17,38. This can be partially explained by the fact that at poised enhancers 

in mESCs H3K4me1 is KMT2C/D independent32, suggesting a role for other 

methyltransferases in H3K4me1 deposition and enhancer function in higher organisms. This 

is in agreement with our current study demonstrating that ~50% of H3K4me1 peaks in 

mESCs are KMT2C/D independent. Therefore, additional experiments are needed to better 

define the role of H3K4me1 in enhancer function during cellular differentiation and animal 

development.

Online Methods

Protein Purification

Individual histones were expressed in E.coli as described by K. Luger1,2. We utilized wild 

type H2B, H2A, H3, H4 and a histone 3 C110A K4C mutant construct (provided by Dr. M. 

Carey, UCLA). Methyl-lysine analogs were made as previously described3. Briefly, 5 mg of 

lyophilized H3 was mixed with (2-hal-oethyl) amines under reducing conditions. After 

quenching with β-mercaptoethanol the resultant methylated histone was dialyzed against 

water overnight, spun to remove precipitant, aliquoted and lyophilized. Histones were stored 
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lyophilized at −80°C until used. Equimolar amounts of histones were combined under 

denaturing conditions and then dialyzed overnight to assemble octamers that were then 

purified via size selection2. Octamers were stored at 4°C or aliquoted at −80°C. Biotin 

tagged 601λ positioning sequence was prepared as described4, mono-nucleosomes were 

produced via salt dialysis5. We tested lysine methylation by western blotting with antibodies 

validated to recognize specific H3K4me states. The resulting mono-nucleosomes were 

immobilized to streptavidin coated beads (Invitrogen MyOneT1 cat# 65602) as per 

manufacturers binding instructions and employed as a bait in a variety of binding studies.

BAF complex was purified from HeLa cells stably expressing F-Ini1 (BAF47). HeLa NE 

was prepared using standard conditions and buffers6,7. Magnetic Flag M2 beads (Invitrogen 

cat#M8823) were washed 3 times with 140mM NaCl, 25mM Tris pH 8.0, 1mM EDTA then 

incubated for 2 hours at 4c with Flag-Ini1 NE. Beads were washed 3 times with 250mM 

NaCl buffer and Flag-BAF complex eluted in above buffer plus 1mM DTT and 20 fold 

excess of Flag peptide (Sigma Cat#F3290). The BAF complex was validated by silver stain, 

and western blotting with Flag M2 antibody.

We cloned the PHD1-2 region of human BAF45c (residues 254–368) into a pET3a-derived 

vector containing an N-terminal His6-SUMO tag, and expressed in E. coli Rosetta DE3 

pLysS (EMD Millipore) in 2XYT media supplemented with 0.1 mM ZnCl2. We grew cells 

to an OD600 of 0.6 at 37°C, cooled to 18°C and induced with 0.3 mM IPTG for 16 hours. 

We purified the protein using Ni2+ affinity purification (Qiagen Ni-NTA Superflow), 

followed by cleavage of the tag with TEV protease8 and size-exclusion chromatography 

(Superdex 200, GE Life Sciences). We concentrated the purified protein to 20 mg/mL in a 

buffer containing 20 mM Tris-HCl pH 7.5, 150 mM NaCl, 2mM DTT, and generated peptide 

complexes by mixing peptides – H3K14Ac (ARTKQTRARKSTGGK(Ac)APRK) or 

H3K4me1K14Ac (ARTK(me)QTRARKSTGGK(Ac)APRK) – with BAF45c at a 1.2:1 

molar ratio, and incubating at room temperature for 30 minutes.

SILAC Mass Spec

HeLa cells (ATCC CCL-2) were grown in normal DMEM culture media, with 10% FBS and 

1% Pen/Strep (termed light from here on) or in culture media containing N15 and C13 

labeled Arginine and Lysine (termed heavy NE). NE was prepared using a small scale 

Digman and Roeder protocol7,9. Concentration of NE batches was determined by BCA 

assay as per manufacturer’s instructions (Pierce cat# 23228). For the forward reaction 25 µg 

of immobilized H3K4me1 mononucleosomes was incubated with 1mg of “light” NE and in 

a separate tube 25 µg of H3K4me3 nucleosomes were incubated with an equal amount of 

“heavy” NE (13C6,15N4-L-arginine and 13C6,15N2-L-lysine) at 4°C for 4 hours. Beads were 

washed 3 times in 250mM NaCl, 25mM Tris pH 8.0, 1mM EDTA, 1mM DTT, and 0.2% 

NP40. Bound factors were eluted in 400 µl of 4M Urea, 500mM NaCl, 20mM HEPES pH 

8.0, and 0.2% NP40. Eluates were combined, alkylated, and digested by trypsin. Digested 

peptides were desalted by C18, fractionated by HILIC column (Tosoh Bioscience Cat # 

21486), and analyzed by LC-MS/MS using an Orbitrap-LTQ mass spectrometer (MS)10. MS 

data was then searched on Sorcerer-SEQUEST using a non-redundant human database 

downloaded from Uniport with 50ppm parental mass tolerance and a 0.8 cutoff for the 
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peptide prophet probability used to filter the dataset similar to that previously described11. 

The identified peptides were quantified using XPRESS with a 50ppm mass tolerance and 

± 25 scans from the apex. The median of the peptide ratio was then calculated. The reverse 

reaction was set up with the same concentrations but with H3K4me1 with heavy extract and 

H3K4me3 with light extract. Replicate reactions were performed with different batches of 

HeLa NE and chemically modified histones. For the forward reaction we calculated the ratio 

of light to heavy peptides and for the reverse reaction the ratio of heavy to light peptides and 

logarithm-transformed ratios were plotted. The top right quadrant includes any proteins 

enriched for H3K4me1 and the bottom left quadrant includes those enriched for H3K4me3 

binding. Replicate pulldowns performed with NE and modified nucleosomes prepared as 

independent biological replicates. As expected, common processing contaminants (such as 

actin, ribosomal protein and keratin), along with histones that were part of the nucleosomes 

used in the purification were removed from the final data sets listed. Proteins in the final 

dataset were required to be found in both the forward and reverse reactions and their 

enrichment for both mono- and tri-methylation was required to be consistently positive or 

negative. Proteins that did not meet this criteria were removed from the dataset. SILAC 

experiments were performed twice with two separate chemically modified nucleosome sets 

and biological replicate nuclear extracts.

Methyl-nucleosome Pulldowns

3 µg of mono-nucleosomes were pre-bound to MyOneT1 beads and binding was verified by 

Western blotting with H2B antibody. Immobilized nucleosomes were incubated with HeLa 

NE (200 µl of ~5 mg/ml), GST-PHD domain (2 µg) or Flag-tagged BAF complex for 1 hour 

at room temperature. Purified domains or complexes were bound in 140mM NaCl, 25mM 

Tris pH 8.0, 1mM EDTA, and 100mM ZnCl2. Beads were washed 3 times with 250mM 

NaCl, 25mM Tris pH 8.0, 1mM EDTA, 0.2% NP40, and 1mM DTT and resuspended in 

equal volume of 2X Laemmli Sample Buffer (Biorad cat# 161-0737). Binding was assayed 

via western blotting with antibodies listed in Supplemental table 4. At least 2 biological 

replicates were performed for each pulldown. Multiple factors were probed on each 

membrane, uncropped original images are shown in Supplementary figure 6.

Nucleosome Remodeling Assay

The 216-bp DNA fragment containing 146-bp Widom601 sequence in the middle was P32 

labeled by PCR amplification from the pGEM-3Z-601 vector12. Four types of human 

histone octamer (wt, H3K4me1, H3K4me2, and H3K4me3) were ordered from EpiCypher, 

Inc.13. Mono-nucleosomes were assembled onto the labeled template by salt serial dilution 

method as previously described14. Cold mono-nucleosome (2 µM) was assembled using 

Xenopus laevis histones with unlabeled DNA fragment by the same method, which is then 

mixed with sonicated calf thymus DNA (1mg/ml, Sigma). 1 µl purified BAF complex (0.15 

mg/ml) was incubated with 2 µl P32 labeled mono-nucleosomes (25 nM) at room 

temperature in final 10 µl remodeling buffer (20 mM Tris-HCl pH7.5, 50 mM NaCl, 2.5 mM 

MgCl2, 2 mM DTT, 100 µg/ml BSA, 5% Glycerol, 0.01% NP-40, 0.01% Triton X-100, and 

1 mM ATP). After 30min, 1.5 µl cold nucleosome was added to quench the reaction for 30 

minutes at room temperature. The reaction products were loaded onto 5% native 

polyacrylamide gels and resolved by electrophoresis at 4°C for 2.5 hours at 200 volts. Gels 
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were exposed to storage phosphor screens and scanned with a Typhoon imaging scanner. 

Quantified calculations were done using the software of Image Lab 4.1 (Bio-rad). Error bars, 

mean ±SD n=4 replicates.

Chromatin Immunoprecipitation

KMT2C/D DKO cells and control WT mESC lines were previously described15. Cells were 

cultured on MEF feeder cells in serum free media (DMEM 10013-cv supplemented with 

15% KSR, 2 mM L-glutamine, 100 µM nonessential amino acids, 50 µM beta-

mercaptoethanol, 1000 units ml−1; leukemia inhibitory factor (LIF), 100 units ml−1 

penicillin, and 100 µg ml−1 streptomycin.) at 37°C with 5%CO2. ChIP was performed as 

previously described16,17 with antibodies listed in Supplemental Table 5. Briefly, 2 µg of 

specific antibodies were bound to Dynal magnetic secondary beads for 6 hours. After 

washing, 20–50 µg of sonicated chromatin from WT or KMT2C/D DKO mESCs was 

incubated with the bead bound antibody overnight. mESCs previously validated in Mouse 

model Encode studies. Beads were then washed and enriched DNA purified. The ChIP DNA 

was then sequenced as previously described or analyzed by qPCR. For qPCR, we utilized 

Sybr green 1 master mix (Roche cat# 04707516001) and mESC specific enhancer primers 

(Supplemental Table 5). Reactions were performed in triplicate and data shown is average of 

at least 3 biological replicates, error bars represent one standard deviation from mean.

Sequencing Read Alignment

ChIP-seq libraries were sequenced on the Hi-Seq 2500 platforms. 36bp single end 

sequencing data was aligned to a reference mouse genome (mm9) downloaded from UCSC 

genome browser by using Bowtie18. Unmapped and non-uniquely mapped reads were 

removed, and PCR duplicate reads were removed with Picard. ChIP-seq data sets are 

available on GEO accession number GSE80049.

Peak Identification

H3K4me1 and H3K4me3 peaks were defined by using MACS2 with default parameters 

except following options “–m 5 50 –p 1e-5” for each biological replicate. After that we 

selected the best quality replicate for each modification based on number of identified peaks. 

From the best quality replicate, we only selected reproducible peaks at least two biological 

replicates. H3K4me1 and H3K4me3 peaks were merged together and classified into 

H3K4me1 peaks, H3K4me3 peaks, and common H3K4me1/me3 peaks.

Chromatin regulator (CR) peaked regions were defined by comparing predefined 

H3K4me1/me3 peaked regions. Due to the limited quality of CR ChIP-seq results we first 

calculated input normalized CR ChIP-seq RPKMs on H3K4me1/me3 peaked regions for 

each biological replicate. If CR ChIP-seq RPKMs is enriched more than 1.5 fold compared 

to input RPKMs at least two biological replicates the h3k4me1/me3 peaked region was 

defined as occupied by the corresponding CR.

H3K27ac ChIP-seq data was processed similarly as described in CR ChIP-seq data analysis 

except using 2-fold enrichment threshold when we define H3K27ac peaked regions. The 
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density of histone modifications and CR binding was defined by taking average input 

normalized RPKMs of reproducible peaks across multiple biological replicates.

Clustering of CR-binding patterns

K-means clustering was performed for CR binding patterns according to poised enhancer 

and active enhancer regions. The peaks occupied by H3K4me1 but depleted by H3K4me3 

were considered as enhancer regions after excluding upstream and downstream 2.5kb from 

RefSeq transcription start sites. Active enhancers were defined if the enhancer regions were 

overlapped with H3K27ac peaked regions (n=13,811). Otherwise the region was defined as 

poised enhancer regions (n=28,008). We performed K-mean clustering based on 13 CR 

binding patterns at active and poised enhancer regions separately, and generated 15 different 

clusters. Based on the enrichment of CR binding patterns in each cluster we manually 

assigned each cluster as ‘No CR bind’, ‘CR-specific bind’, and ‘Multiple CR bind’.

Identification of KMT2C/D dependent and independent H3K4me1 and H3K4me3 peaks

We defined KMT2C/D dependent and independent sites based on H3K4me1 levels between 

WT and KMT2C/D DKO cell lines. If the region is occupied by H3K4me1 more than 2-fold 

compared to input data and depleted more than 2-fold in KMT2C/D DKO cell lines the 

region was defined as a KMT2C/D dependent site, otherwise defined as a KMT2C/D 

independent site.

Analysis of CR-binding patterns in KMT2C/D DKO cell lines

To determine whether CR binding patterns are dependent on H3K4me1, we performed 

additional ChIP-seq for CRs in with KMT2C/D DKO cell lines. Sequence read alignment 

was performed as described in WT CR ChIP-seq data. During downstream analysis of DKO 

cell lines we only considered CR ChIP-seq peaked regions defined in WT.

Analysis of BAF complex association in KMT2C/D catalytically null mutant mES cells (dCD)

The KMT2C/D catalytically null mutant cells (dCD) and control WT mESC cell lines were 

a gift from Wysocka lab and described before19. Antibodies used were: H3K4me1 (Abcam, 

ab8895), H3K4me2 (Active Motif, 36979, clone 0303), H3K4me3 (Millipore, 

MC315,04-745), H3K27ac(Active Motif, 39685), BRG1 (Abcam, ab110641), DPF2 

(Abcam, ab134942). The sequencing reads were aligned to mm9 (July 2007, NCBI37) by 

bwa (version 0.7.13-r1126). Unmapped, multimapped and PCR duplicates were removed by 

Picard (2.11.0). ChIP seq peaks were called for each replicate and pooled data using 

MACS2 (2.1.0.20150731) with default parameters. Pooled peaks found in both replicates 

were defined as reproducible peaks for each factor. ChIP Fold enrichment over input was 

calculated by macs2 bdgcmp. Normalized ChIP signal was generated by UCSC tool 

bedGraphToBigWig. Averaged ChIP-seq fold enrichment over input at each reproducible 

peak was calculated using bigWigAvgOverBed. Distal regions are peaks whose center are 

± 2kb away from GENCODE transcript TSS. Using two fold difference cut off, distal 

regions were classified as “decreased”,”unchanged” and “increased” by comparing the fold 

enrichment over input in dCD to that in WT. If the fold enrichment of a region in dCD is less 
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than half of that in WT, the region was defined as “decreased” and vice versa. Heatmap and 

aggregate profile of input normalized ChIP-seq signal were generated by deepTools 2.5.1.

Isothermal Titration Calorimetry

Isothermal titration calorimetry was performed at the Sanford Burnham Prebys Medical 

Discovery Institute, Protein Analysis Core Facility. Assays were performed in buffer 

containing 20 mM Tris-HCl, pH 7.5, 300 mM NaCl and 1 mM DTT, using an ITC200 

calorimeter from Microcal (Northampton, MA). Nineteen 2.0-µl aliquots of solution 

containing 1.0 mM peptides – H3K14Ac (ARTKQTRARKSTGGK(Ac)APRK), 

H3K4me1K14Ac (ARTK(me)QTRARKSTGGK(Ac)APRK), or H3K4me3K14Ac 

(ARTK(me3)QTRARKSTGGK(Ac)APRK) – were injected into the cell containing 200 µL 

of 80 µM BAF45c (residues 254–368) at 23°C. Data were analyzed using Origin software 

provided by Microcal. Peptides were synthesized by WuXi AppTec. Single replicate assay 

performed for each peptide.

Crystallography

We obtained BAF45c:peptide crystals by mixing 1:1.2 in a crystallization buffer containing 

1.2 M tri-sodium citrate, 0.1 M HEPES pH 7.5 and 4% MPD. Despite growing crystals in 

similar conditions to those reported for an earlier structure of BAF45c bound to H3 tail 

peptide15, we obtained crystals in a different space group (P43212 versus C2221). We flash-

froze crystals without additional cryoprotection in liquid nitrogen, and collected diffraction 

data on beamline 9-2 at the Stanford Synchrotron Radiation Lightsource (support statement 

below). We processed all datasets with the SSRL autoxds script, which uses XDS20 for data 

indexing and reduction), AIMLESS21 for scaling and TRUNCATE22 for conversion to 

structure factors. We determined the structure by SAD methods, with a 1.55 Å-resolution 

single-wavelength dataset collected at the Zn anomalous absorption peak. The Phenix 

Autosol pipeline23 (HySS24 for heavy-atom search, PHASER25 for phasing, RESOLVE26,27 

for density modification and autobuilding) generated an initial model, which we manually 

rebuilt in COOT28. We refined this model against high-resolution (1.2 Å) datasets for each 

peptide (with a consistent free-R test set) in phenix.refine29, using positional and individual 

anisotropic B-factor refinement for all non-hydrogen atoms, then iteratively rebuilt and 

refined each model. Both final models are of high quality as judged by refinement statistics 

and model geometry (Supplemental Table 3).

SSRL Support Statement—Use of the Stanford Synchrotron Radiation Lightsource, 

SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, 

Office of Science, Office of Basic Energy Sciences under Contract No. DE-

AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the 

DOE Office of Biological and Environmental Research, and by the National Institutes of 

Health, National Institute of General Medical Sciences (including P41GM103393). The 

contents of this publication are solely the responsibility of the authors and do not necessarily 

represent the official views of NIGMS or NIH.
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Data Availability and Accession Code Availability

The mass spectrometry proteomics data presented in figure 1 have been deposited to the 

ProteomeXchange Consortium (http://www.proteomexchange.org) with the dataset identifier 

PXD007942. ChIP-seq data sets used for analysis presented in figures 2, 3, 4, S1, S2, and S3 

are available on GEO - accession number GSE80049. https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?token=uhsroacglvcvvib&acc=GSE80049 Crystal structures presented in 

figure 6 and S5 are available through PDB https://www.ncbi.nlm.nih.gov/Structure/pdb and 

(ID: 5SZB and 5SZC) and the structural biology database (https://data.sbgrid.org/dataset/

359/). Customized code for ChIP-seq analysis is available via GitHub. https://github.com/

HuiHuang001/h3k4me1_associated_proteins_scripts

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identification of H3K4me1 binding proteins using SILAC and Mass-spec analysis
A) Left – Mononucleosomes assembled from biotin tagged 601λ positioning sequence and 

methylated octamers. Right – Chemically modified nucleosomes are recognized by specific 

antibodies against various H3K4 methylation. 3 independent chemical modifications were 

tested yielding similar results. B) Schematic of SILAC mass spec screen. C) Average Log2 

L/H of forward reactions on X-axis and log2 H/L of reverse reactions on y-axis (from 4 

independent biological replicates). Top right quadrant is H3K4me1 associated factors and 

bottom left quadrant contains H3K4me3 associated factors. D) Biotin-tagged methylated 

nucleosomes used as bait for pulldowns from HeLa NE. The bound proteins detected by 
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western blotting with specific antibodies are listed, experiments were repeated at least twice 

with similar results.
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Figure 2. Binding of CRs at H3K4me1 regions and enhancers
A) Hierarchical clustering of genome-wide ChIP-seq signals (RPKM) for H3K4me1, 

H3K4me2, H3K4me3 and chromatin binding proteins with 1kb-binning, n=2,435,743. The 

heatmap shows pair-wise Pearson correlation coefficient between different ChIP-seq 

datasets. B) ChIP-qPCR in mESC with antibodies listed, primers designed for validated 

enhancers E110, E151, E8 and negative control region N9. Error bars, mean ±SD for n=3 

biological replicates. C) Browser shot of candidate H3K4me1 readers at the Sox2 enhancer. 

Active enhancer with high H3K27ac boxed left, poised enhancer with low H3K27ac boxed 

right. D) Heat maps for K-means clustering results of input normalized CR signals 
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according to poised enhancers versus active enhancers. Each cluster was manually classified 

as ‘Multiple CR bind’, ‘CR-specific bind’, and ‘No CR bind’ according to CR binding 

patterns. Experiments were repeated at least twice with each antibody.
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Figure 3. Concomitant loss of H3K4me1 and CR binding at enhancers in KMT2C/D DKO mouse 
ES cells
A) A scatter density plot of input normalized H3K4me1 RPKMs between wild-type and 

KMT2C/D DKO cell lines at H3K4me1 peaked regions, n=43,918. B) A scatter density plot 

of input normalized H3K4me2 RPKMs between WT and KMT2C/D DKO cell lines at 

H3K4me2 peaked regions, n=33,197. C) A scatter density plot of input normalized 

H3K4me3 RPKMs between wild-type and KMT2C/D DKO cell lines at H3K4me3 peaked 

regions, n=22,157. D) Upper panel - A pie chart for the fraction of H3K4me1 peaks in DKO 

KMT2C/D mESCs according to KMT2C/D dependent or KMT2C/D independent patterns. 

Lower panel - 2 by 2 table of the relationship with enhancer regions according to KMT2C/D 
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dependent and independent H3K4me1 peaked regions. E) Browser shot of H3K4me1, 

H3K4me2, H3K4me3, H3K27ac, and CR levels in WT vs DKO KMT2C/D mESCs at the 

Sox2 enhancer. For each factor top track in form WT and bottom track is DKO. F) Bar plots 

are shown for the fraction of CR peaks in wild-type (y-axis) according to overlap with 

KMT2C/D independent (blue) and dependent sites (orange). Total number of CR peaks 

identified are : CHD1 (n=14,846), PHRF1 (n=21,924), SMARCA5 (n=13,891), SRSF1 

(n=23,221), SRSF2 (n=31,200), BAZ1A (n=13,806), SMARCA4 n=10,897), PHRF5a 

(n=11,926), BAZ1B (n=5,405). Experiments were repeated at least twice in each cell type.
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Figure 4. Reduced BAF complex binding is associated with depletion of H3K4me1 in KMT2C/D 
catalytically null (dCD) cells
A) Browser shot of ChIP-seq signal (RPKM) for SMARCA4 and DPF2 at the Sox2 locus. 

The Sox2 super-enhancer is shaded on right. Experiments were repeated independently 

twice with similar results. B,C,D) Scatter density plots of input normalized fold enrichment 

between WT and dCD at H3K4me1(n=82,053), H3K4me2(n=53,501) and 

H3K4me3(n=34,553) peaked regions. E) Left - Heatmap of input normalized H3K4me1 

ChIP signal in WT and dCD over 21,661 distal H3K4me1 regions with decreased signals in 

dCD and 32,475 distal H3K4me1 regions with invariable signals, with regions sorted by 

strength of H3K4me1 signal. Right - aggregate plot showing the average signal in WT and 
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dCD. F) Left - Heatmap of input normalized SMARCA4 ChIP-seq signal in WT and DCD 

over the same regions in E. Right - aggregate plot showing the average signal in WT and 

dCD.

Local et al. Page 25

Nat Genet. Author manuscript; available in PMC 2018 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. BAF complex preferentially binds and remodels H3K4me1 modified nucleosomes
A) Purified Flag-BAF complex binding to H3K4 methylated-nucleosomes, western blotted 

with anti-FLAG antibody (M2). Pulldown repeated 3 times yielding the same result. B) 

Polyacrylamide gel showing representative (n=4) in vitro remodeling assay. After incubation 

with BAF complex, nucleosomes are slid to the end of the 216-bp DNA fragment resulting 

in a change in mobility in the gel. Top band is un-remodeled nucleosome, and lower four 

bands are slid nucleosomes with different positions away from 146-bp Widom601 binding 

sites in the middle. C) Quantification of nucleosome remodeling assays. Error bars, mean 
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±SD n=4 biological replicates, see Figure S4C. The reduced percentage of the top band is 

defined as remodeling efficiency.
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Figure 6. Structural basis for H3K4 recognition by DPF3
A) Overall structure of DPF3:H3K4me0 complex. DPF3 PHD1 domain is shown in green, 

PHD2 in blue, and histone H3 tail peptide shown in yellow. B) Close-up view of the DPF3 

PHD1–2 region (light blue, white surface) with H3 residues 1–18 with H3K4me0 and 

H3K14ac (yellow). PHD1 binds H3K14ac as previously observed, while PHD2 binds H3K4 

and H3R8. C) Close-up view of DPF3 binding H3 1–18 with H3K4me1 and H4K14ac. The 

mono-methyl group is accommodated in a pre-formed surface pocket on DPF3. For views of 

the overall structure and electron density maps, see Figure S5.
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