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Plant species of concern often occupy narrow habitat ranges, making climate change an outsized potential threat to their
conservation and restoration. Understanding the physiological status of a species during stress has the potential to elucidate
current risk and provide an outlook on population maintenance. However, the physiological status of a plant can be difficult
to interpret without a reference point, such as the capacity to tolerate stress before loss of function, or mortality. We address
the application of plant physiology to conservation biology by distinguishing between two physiological approaches that
together determine plant status in relation to environmental conditions and evaluate the capacity to avoid stress-induced
loss of function. Plant physiological status indices, such as instantaneous rates of photosynthetic gas exchange, describe the
level of physiological activity in the plant and are indicative of physiological health. When such measurements are combined
with a reference point that reflects the maximum value or environmental limits of a parameter, such as the temperature at
which photosynthesis begins to decline due to high temperature stress, we can better diagnose the proximity to potentially
damaging thresholds. Here, we review a collection of useful plant status and reference point measurements related to
photosynthesis, water relations and mineral nutrition, which can contribute to plant conservation physiology. We propose that
these measurements can serve as important additional information to more commonly used phenological and morphological
parameters, as the proposed parameters will reveal early warning signals before they are visible. We discuss their implications
in the context of changing temperature, water and nutrient supply.
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Introduction
Organismal physiology and the capacity to respond to envi-
ronmental change are critical components of predicting con-

servation outcomes in species of concern (Madliger et al.,
2018). When species are the focus of conservation efforts, it
is usually because their populations are reduced enough to
raise alarm about their viability (Hayes and Donnelly, 2014;
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Mcdowell et al., 2016; Keen et al., 2022). Given the increas-
ingly erratic nature of climate change, tenuous population
numbers can make it vital to identify species in habitats where
environmental anomalies can push them beyond their toler-
ance limits. It is equally important to initiate conservation
efforts once species of concern are identified, and prioritize
these efforts against a backdrop of multiple competing needs
(Nicotra et al., 2015). Currently, a consensus is emerging that
conservation decisions should be based on assessments of
the adaptive capacity of species, which incorporate exposure
to habitat change and ecological, genetic and physiological
sensitivity (Williams et al., 2008). This is based on the reality
that with limited funding, conservation priorities must be
established. The primary challenge is how to determine the
current potential threat and adaptive capacity of contrast-
ing species. This endeavour broadly incorporates aspects of
population ecology, genetics and eco-physiological function
(Nicotra et al., 2015), as well as the often difficult to forecast
whims of natural and anthropogenic forcings. We propose
that the physiological status of a species with respect to its
reference points provides a robust and dynamically repeatable
manner to characterize species of concern for their immediate
and long-term risk. These reference points should be related
to maximum values or the ability to withstand physiological
limits within a community context.

Whereas most conservation efforts are focused on popula-
tions (Felton and Smith, 2017), physiological diagnostic mea-
surements are conducted at the individual scale. Individual
measurements can quantify health and physiological robust-
ness, but understanding the propensity of a population to
respond to environmental change requires measures of multi-
ple individuals to discern a range of environmental resilience.
Moreover, resilience to change could be staggered across
a population, with some individuals better positioned to
respond to change than others (Chardon et al., 2020). Fortu-
nately, between-species trait variation is nearly always greater
than within-species trait variation—a fundamental pattern
that has enabled trait-based ecology to flourish (Messier et
al., 2010).

Comparative physiology of contrasting species within
communities can shed light on the competitive potential
of species relative to their neighbours, and how that is
balanced by their capacity for stress tolerance (Grossiord,
2020). Functional ecology theory informs us that species
fall on a spectrum extending from fast-growing, resource-
acquisitive species that are prone to risk on one side of
the spectrum, to slow-growing, conservative species that
are relatively stress tolerant on the other (Reich, 2014;
Díaz et al., 2016). Thus, if a species is intermediate for
an environmental response trait, it may be buffered by the
community. However, if a species stands out in terms of
trait vulnerability relative to the community, environmental
disruptions could have a disproportionately large effect
on that species. This could be a threat to its population
viability. When the local processes that structure communities

have a stronger effect on community composition than the
effect of regional species pools, chance plays a relatively
stronger role (Cornell and Harrison, 2014), thus promoting
local extinction. Key physiological reference points thus
explain where species stand relative to a community and
add information to their risk assessment.

Our synthesis addresses the physiological approaches to
diagnose the health status and capacity to withstand stress
in threatened or managed species. We distinguish between
two classes of physiological measurements that, when used
together, give us the potential to diagnose the proximity to
potentially damaging thresholds. The first is characteriza-
tion of the instantaneous physiological status of key vital
processes such as photosynthetic rate, tissue water status
or mineral nutrition. These measures are common in plant
eco-physiological studies and are broadly used in agriculture
(DaMatta and Ramalho, 2006; Murchie et al., 2009), forestry
(Ceulemans and Deraedt, 1999; Colombo and Parker, 1999)
and ecology (Koide et al., 1989; Aerts and Chapin, 2000;
Maire et al., 2015), with a growing presence in conservation
biology (Wikelski and Cooke, 2006). The second represents
a physiological reference point such as maximum rates of
a physiological process, or the capacity to maintain physi-
ological function in relation to a particular environmental
parameter. For example, a measure of leaf water potential
indicates plant water status, but without a reference point, it
is not immediately clear whether that leaf is undergoing water
stress that threatens function. However, when combined with
a measure of leaf turgor loss point, the water potential at
which the leaf cells lose turgor, or wilt, we can ascertain how
close a leaf is to experiencing a stress-induced loss of function
(Bartlett et al., 2012b; Kunert et al., 2021; Álvarez-Cansino
et al., 2022). In combination with climate and weather data,
these assessments contribute to more informed decision mak-
ing on management (Fig. 1). To better diagnose plant poten-
tial to respond to environmental change and contribute to
conservation outcomes, we review approaches related to pho-
tosynthetic carbon assimilation, plant water relations and
mineral nutrition. Our main questions were as follows: (1)
How can physiological measurements be structured to cap-
ture current, future and comparative performance? (2) Are
there particular considerations for diagnosing plant phys-
iological health in a conservation context? (3) How can
physiological measurements be incorporated into current and
traditional conservation biology approaches, such as analyses
of community composition and vegetation monitoring?

Photosynthesis and productivity
Plant and ecosystem productivity describe the carbon seques-
tration potential of vegetation, which is the source of carbon
income for plant allocation to growth, defence, storage and
reproduction (Poorter et al., 2012; Sevanto and Dickman,
2015). Photosynthetic activity is highly sensitive to temper-
ature, vapour pressure deficit (dryness of air; VPD) and soil
water availability, with stomatal closure often occurring as
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Figure 1: Example of the use of reference points and status indicators in an ecosystem with rare species of interest. The Mediterranean
Chaparral system of Southern California is exposed to extreme droughts, heatwaves and fire. The logical reference points for plants growing in
this system are thus related to hydraulics and leaf temperature. Adequate selection of reference points can help identify the health status of
species in this ecosystem, in turn leading to intervention practices.

an early response to stressful conditions (Martin-StPaul et
al., 2017; Agurla et al., 2018). Increasing drought episodes
in many locations, combined with rising temperatures and
increased VPD, are pushing plant species beyond their climatic
history (Loarie et al., 2009; Allen et al., 2010). Overall,
while some species can operate within a wide range of water,
nutrient availability and temperatures, they often pay the cost
of that flexibility through conservative photosynthesis rates
(Warren and Adams, 2004). In contrast, other species oper-
ate with high temperature sensitivity within narrow thermal
ranges (Perez and Feeley, 2020). Therefore, to determine pho-
tosynthetic status, physiological reference points and eventual

resilience of such species, field measurements are invaluable
(Schönbeck et al., 2022).

The rates of leaf photosynthetic carbon assimilation (A)
and stomatal conductance to water vapour (gs) under field
conditions are usually measured with a portable infrared
gas analyser and can be measured at any time to ascertain
the current rate of carbon and water exchange with the
atmosphere. However, measures of A and gs that fall within a
reasonable range do not signal that a plant is performing well
or struggling with carbon assimilation. Therefore, maximum
photosynthetic rate (Amax) and stomatal conductance (gs-max)

..........................................................................................................................................................
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can provide reference points for interpreting measurements
of gas exchange under non-optimal conditions, since it is
usually measured under the best possible conditions, which
include field conditions on sunny days during mid-morning,
before the depression of rates at midday (Mäkelä et al.,
1996). In this regard, it is important that measurements are
taken consistently at the same leaf age and time of year, as
many of these factors change over time (Westoby, 1998).
The degree to which A and gs fall below maximum values
is important because stomatal closure is a primary stress
response in plants and is the result of a systemic hormonal
response driven by abscisic acid (Tardieu and Davies, 1993).
When successfully characterized, Amax and gs can serve as
reference points and capacity measures for comparison with
the status measurements of gas exchange, allowing us to
determine how far below optimum values a plant is currently
operating. Reference points can differ between ecosystems
or even sub-sections of natural areas because they depend
on micro-climatic factors and interspecific and intraspecific
interactions. A basic knowledge of species composition and
micro-climatic variation within natural areas is thus needed to
select the optimal conditions for measuring reference points.
For example, in a drought-prone area, the most logical time-
point for measuring Amax would be after a significant rainfall
event or at the end of a wet season. Morphological changes
over years may also influence the photosynthetic capacity of
leaves, as specific leaf area is affected by drought, temperature
and CO2, with consequences for photosynthetic potential
(Li et al., 2013; Luong and Loik, 2022). For this reason,
a reconsideration of reference points is useful after one or
multiple unusual climatic years.

Photosynthetic temperature response curves incorporate
gas exchange measures to describe the three physiological
reference points of optimum photosynthetic CO2 assimilation
rate (Aopt), the optimum temperature at which Aopt occurs
(Topt) and the temperature at which photosynthesis reaches
its limit at the upper CO2 compensation point (Tlim) (Sage
and Kubien, 2007) (Fig. 2A). These curves are typically hump-
to parabolic-shaped, where enzymatic activity limits photo-
synthesis at lower and higher temperatures than optimum
values (Fig. 2A) (Medlyn et al., 2002). Above ∼45◦C, pho-
tosynthesis begins to decrease due to chloroplast membrane
lipid damage, irreparably damaging the photosystem (Slot
and Winter, 2017). These photosynthetic parameters can thus
provide an early warning tool for conservationists, as mea-
sures of current photosynthetic rate while continuous moni-
toring of air temperatures give an indication of which plant
species are at risk during heatwaves. One recent study also
underscores the importance of measuring leaf temperature
in concert with air temperature to monitor photosynthetic
stress tolerance, since transpiration can cool leaves several
degrees below air temperature if water is available (Cook et
al., 2021).

Topt is usually determined using photosynthetic tempera-
ture response curves with gas exchange. In field conditions, in

situ, such response curves can be accomplished by measuring
photosynthesis during the course of heating in the morning
(Slot and Winter, 2017). The data can then be fitted according
to June et al. (2004) and Cunningham and Read (2002)
(Table 2). In contrast to photosynthetic temperature response
curves, photosynthetic heat tolerance curves use chlorophyll
fluorescence to describe the thermal capacity to maintain
function under high temperature, with the temperature at
which 50% of photosynthetic capacity is lost (T50) as a
comparative reference point (Krause et al., 2010) (Fig. 2B).
The T50 has gained interest in recent years, as more regular
and intense heatwaves have exposed plants to temperatures
near their thermal tolerance point, something that was rare in
the earlier years (Kunert et al., 2021). Whereas photosynthetic
temperature response curves require complex measurements
of gas exchange, photosynthetic heat tolerance curves can be
accomplished using relatively simple chlorophyll fluorescence
techniques. One photosynthetic heat tolerance curve protocol
that has grown in popularity for its ease involves heating
leaf discs to increasing temperatures in a water bath while
characterizing the darkened leaf chlorophyll fluorescence
(Krause et al., 2010; Perez and Feeley, 2020) (Table 2).
Fluorescence measurements also offer ease of interpretation,
as values above 0.75 in dark acclimated non-senescent leaf
samples generally indicate healthy photosynthesis, and values
below 0.75 indicate increasing photo-damage (Table 1). The
benefits of fluorescence measurements extend more broadly
to the fact that they can be measured remotely in association
with vegetation monitoring and applied in non-accessible
areas using drones equipped with spectral cameras. Beyond
photosynthetic heat tolerance, chlorophyll fluorescence offers
a straightforward, powerful and non-destructive tool for
screening of plant photosynthetic health status (Makarova
et al., 1998; Madliger et al., 2018), as well as early, pre-
visual assessment of plant stress, as it detects changes in
photoprotection that occurs earlier than leaf browning or
shedding due to stress (D’Odorico et al., 2021).

Plant–water relations, drought resistance,
water use and water sources
Climate change-induced plant mortality has become an
increasingly important component of conservation physi-
ology due to recent mortality events associated with elevated
drought (Allen et al., 2010; Hartmann et al., 2018; Hammond
et al., 2022). In addition, where bodies of water have been
altered due to anthropogenic activity, changes in water
availability, management, or hydroperiod can affect this
important resource in species of concern (Mayence et al.,
2022). For example, seasonal wetlands such as vernal pools
are particularly susceptible to alterations in topography
and often provide habitat for rare and endangered species
with delicate hydric habitat requirements (King, 1998;
Zacharias et al., 2007). Therefore, methods to assess plant
water status and capacity to withstand water deficit remain
an essential component of the conservation physiologist’s
toolbox. Such assessments also provide context as to whether
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Figure 2: (A) Simplified diagram of photosynthetic CO2 assimilation rate as a function of temperature illustrating optimum photosynthetic CO2
assimilation rate (Aopt), the optimum temperature at which Aopt occurs (Topt), and the temperature at which photosynthesis reaches its limit at
the upper CO2 compensation point (T lim). (B) Photosynthetic heat tolerance curve illustrating dark-acclimated leaf chlorophyll fluorescence
(Fv/Fm) as a function of increasing leaf temperature to determine the temperature at which 50% of photosynthetic capacity is lost (T50).

Table 1: Status traits that characterize the instantaneous physiological state of plants and corresponding physiological reference points that
identify maximum values or the potential for physiological processes to continue with stress imposed by a particular environmental parameter

Status traits Physiological reference points

Photosynthesis

Instantaneous rate of photosynthetic CO2 assimilation (A) Maximum photosynthetic rate under favourable field conditions (Amax)
Photosynthetic rate at optimal temperature (Aopt)
Temperature of optimum photosynthetic rate (Topt)
Temperature at upper photosynthetic CO2 compensation point (T lim)

Dark acclimated chlorophyll fluorescence Fv/Fm > 0.75 signifies healthy photosystem
Fv/Fm < 0.75 signifies photo-damage with greater photo-damage as Fv/Fm
decreases
Temperature at 50% loss of photosynthetic capacity (T50)

Plant water relations

Leaf water potential (�) Water potential at leaf turgor loss (�TLP)
Water potential at 50% loss of hydraulic conductivity (�50)

RWC RWC at turgor loss (RWCTLP)

Instantaneous stomatal conductance rate (gs) Maximum stomatal conductance (gs-max)
Leaf water potential at 50% loss of stomatal conductance (�gs-50)
Leaf water potential at stomatal closure (�gs-close)

Mineral nutrition

Leaf nutrient concentration Soil nutrient availability

Soil pH
Soil O2 concentration/oxidation–reduction potential

the species of interest is a drought avoider or tolerator, which
is indispensable for understanding species positioning in a
community (Kooyers, 2015). Monitoring plant water status
can inform us with early warning signals of plant drought
stress before leaf shedding, phenological adjustments and
growth reduction take place.

Plant water status is normally characterized through mea-
surement of plant tissue relative water content (RWC) or
water potential (�) (Schulze et al., 1987). Measurements of
RWC are simple and can be accomplished with a drying oven
and balance on any plant tissue, whereas � requires use of a
pressure chamber or psychrometer, limiting the tissue types

..........................................................................................................................................................
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that are appropriate for measurement (Koide et al., 1989;
Rodriguez-Dominguez et al., 2022). Most plant ecophysiol-
ogists use � to characterize plant water status because it can
be conceptually decomposed into its osmotic and pressure
components, which is especially helpful for linking cellular
and whole-tissue processes (Bartlett et al., 2012b). More
recently, ecophysiologists have taken a fresh look at RWC
and suggest that considering plant water pools can deepen
our ability to monitor and anticipate mortality risk because it
integrates multiple aspects of plant function (Martinez-Vilalta
et al., 2019; Sapes and Sala, 2021). However, because of the
broad range of tolerable RWC and � values among different
species, it is not always immediately obvious how close a
particular plant is to dangerous thresholds based on RWC or
� measurements alone. Therefore, plant water status mea-
surements are particularly strengthened when accompanied
by hydraulic capacity measurements.

Most plant hydraulic reference point measurements
involve characterizing the RWC or � value at which an
inflection point in a physiological process occurs. For
example, the point at which leaf cells lose turgor, or wilt,
can be characterized as the RWC at turgor loss point
(RWCTLP) or � at turgor loss point (�TLP), and have become
widely used for characterizing relative potential drought
resistance among species (Tyree and Hammel, 1972; Bartlett
et al., 2012b). Although it does not necessarily signify a
permanent loss of function, it shows ecologically meaningful
variation across precipitation gradients and is correlated
with drought-induced mortality risk and other key plant
hydraulic traits (Baltzer et al., 2008; Bartlett et al., 2016).
A comparison of minimum seasonal � with �TLP as a
reference point is helpful for placing the most extreme degree
of plant water status that a plant experiences into context
(Fig. 3). In the example shown in Fig. 3, data for �TLP and
minimum seasonal midday leaf � are plotted for six species
of chaparral shrubs from southern California to illustrate
the increased value of leaf � measurements when combined
with a reference point denoting the capacity to withstand
stress, in this case the �TLP. Here, Ceanothus tomentosus
Parry, Quercus berberidifolia Liebm. and Salvia mellifera
Greene are shown to have a minimum seasonal � below
their leaf �TLP, illustrating extreme drought stress with
potential to impair leaf function, whereas the other three
species maintain � values above their �TLP. Measurement
of �TLP has increased due to rapid measurement methods,
opening the door for a wider cohort of practitioners to
characterize drought resistance on species of concern (Bartlett
et al., 2012a) (Table 2). However, many plant species show
seasonal plasticity in �TLP (Bartlett et al., 2014; Marechaux
et al., 2017), so time of measurement is an important
consideration. For example, when assessing hydraulic risk
in the dry season, it is important to measure dry season �TLP
as many species adjust their �TLP in response to drought
to lower (more negative) �TLP than wet season values.
Other key water-related plant capacity measurements include
water-use efficiency (WUE; carbon gained/water lost during

Figure 3: eaf minimum seasonal water potential (�min) and leaf
water potential at turgor loss point (�TLP) for six species of southern
California chaparral shrubs (Schönbeck, unpublished data).

photosynthesis), � at 50% loss of hydraulic conductivity
(�50) and the � at stomatal closure (�gs-close) (Tyree and
Sperry, 1989; Sack and Holbrook, 2006).

Analyses of stable carbon isotopic composition (δ13C) can
determine whether C3, C4 or CAM is the major photosyn-
thetic pathway in plants, which strongly structures WUE
during photosynthesis. Generally, values of δ13C between
−33� and − 22� indicate C3 photosynthesis and δ13C val-
ues between −18� and − 8� indicate C4 photosynthesis,
which carries greater WUE and offers a physiological benefit
during drought (Ehleringer and Osmond, 1989). Plants with a
CAM photosynthetic pathway overlap with C3 and C4 plants,
but can be distinguished by their nocturnal tissue acidification
through traditional acid titration (Silvera et al., 2005). At a
finer scale within C3 plants, δ13C scales with photosynthetic
WUE, with less negative values indicating greater WUE. How-
ever, bulk leaf δ13C values, which are commonly used, repre-
sent time-integrated measures over the lifetime of a tissue and
do not account for short-term stress responses. To account
for short term processes, analyses of recent photosynthate
δ13C in C3 plants can reflect daily responses to drought and
heatwaves (Snyder et al., 2022). Such physiological reference
points thus place information on plant water status into
context and provide ancillary information (Table 1).

A key trait that reflects the ultimate capacity for plants
with regards to water access is rooting depth (Hasselquist
et al., 2010; Pivovaroff et al., 2016a). Belowground traits
are inherently difficult to characterize, yet advances in stable
isotope techniques now allow estimation of the depth of water
uptake. This is accomplished by matching stable isotopic
composition of hydrogen and oxygen in water from non-
transpiring plant tissues with soil water profiles or alternate

..........................................................................................................................................................
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Table 2: Measurements, methods and calculation of response curves

Measurement Instrument Method Analysis Reference

Temperature
response

Infrared gas analyser
with temperature
control

In situ measurements
during gradual warming
early morning to midday

Non-linear exponential
equation

Slot and Winter (2017); June
et al. (2004); Cunningham
and Read (2002);
Photosynthesis package
Stinziano et al. (2021);
Stinziano & Muir (2022)

Temperature
sensitivity

Fluorescence meter
such as the miniPAM

Leaf discs exposed to
gradually increasing
temperature

Weibull/sigmoidal function
of Fv/Fm at corresponding
temperature

Archontoulis and Miguez
(2015);

Turgor loss point Osmometer Leaf discs shock-frozen and
punched in osmometer for
osmotic potential
measurement

Linear regression with
pre-determined
parameters

Bartlett et al. (2012a)

WUE and strategy
(C3, C4, CAM)

Isotopic analysis with
isotopic ratio mass
spectrometer

Homogenization of dried
leaf material and weigh in
1–2 mg in tin capsules
before sending off to mass
spectrometer.

Mathias and Hudiburg
(2022)

water sources that vary in isotopic composition with depth
(Allison, 1982; Ehleringer and Dawson, 1992). Downsides
to this technique are that it has usually been relegated to
woody species and involves destructive sampling, which is
often not desired when working with plant species of con-
cern. However, in one study on endangered species along
the Amargosa River in California, water was collected by
bagging leaves to allow transpired water to condense, and
after accounting for evaporative enrichment, the depth of
water uptake was estimated non-destructively (Hasselquist
and Allen, 2009). Overall, we emphasize that as drought
has become an increasingly common component of climate
change, such hydraulic measurements have great potential to
quantify status and risk of species of concern.

Mineral nutrition
Soil mineral nutrition differs fundamentally from the physi-
ological status and reference point measurements described
above for photosynthesis and water relations. Yet mineral
nutrition also interacts with photosynthesis and water trans-
port (Field and Mooney, 1986; Bucci et al., 2006; Pivovaroff
et al., 2016b) and may serve as an upper bound for achieving
physiological potential at any one site. Plant health in relation
to mineral nutrition is based on external sources, thus first
understanding the environmental availability of nutrients and
how it constrains plant function and physiological capacity
is warranted. In this regard, availability of metabolically
restrictive elements such as nitrogen and phosphorus can be
thought of as determining an ultimate ceiling on physiological
potential. This is particularly true for nitrogen, which is ener-
getically costly for plants to store in non-metabolic forms, and
is therefore commonly stored as amino acids or proteins, thus
necessitating metabolic storage costs (Chapin et al., 1990). In

contrast, other elements such as phosphorus and potassium
can be stored in ionic forms in vacuoles without disrupting
pH or cellular processes (Marschner, 1995; Ostertag, 2010).
Thus, luxury consumption, the uptake of mineral elements
from soil by plants beyond current physiological needs, can
buffer temporal variability in nutrient availability. Specific
examples of soil alteration in conservation situations that
would necessitate nutrient analyses include restoration in soils
affected by pollution, mine tailings, soil waterlogging, plant
invasions or when symbiont inoculations such as mycorrhizal
fungi or nitrogen-fixing rhizobia have been introduced to
facilitate restoration (Neuenkamp et al., 2019; Magnoli and
Lau, 2020).

Determining the key soil conditions or elemental concen-
trations that limit productivity at a site can provide a clear pic-
ture of the resource constraints that limit plant growth and the
range of physiological rates that can be accomplished at a par-
ticular site (McGrath et al., 2014). Whereas nutrient addition
experiments that interpret an increase in plant processes such
as growth as limitation by that element are normally required
to pin down the exact element that limits productivity at a site
(Vitousek, 2004), a more accessible method involves measur-
ing the ratio of nitrogen-to-phosphorus concentration (N:P)
in leaves, in which values >16 indicate P limitation, values
<14 indicate N limitation, and values of 14–16 indicate co-
limitation by N and P within a reasonable degree of certainty
(Koerselman and Meuleman, 1996; Aerts and Chapin, 2000;
Schreeg et al., 2014). In other cases, particular soils such as
serpentine, alkali or waterlogged soils may create habitats that
are essential for the conservation of unique species that are
limited in their range due to habitat requirements (Allen et al.,
1997). Such unique soil habitats promote endemism, but can
also offer refuge to invasive species with pre-adaptations to
local conditions (Batten et al., 2006; Damschen et al., 2012).
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Comparison of leaf elemental concentrations with soil
nutrient availability of the same element would be a first
step in characterizing the overall mineral nutrition situation
in a conservation context. Such initial measurements in the
context of ancillary data such as site history and conservation
status can provide an overall picture of whether intervention
is needed. For more detailed mechanistic questions, exper-
iments, often in the greenhouse on potted plants have the
potential to isolate specific questions associated with mineral
deficiency or imbalance.

Implementation
In this review, we propose a tighter connection between
plant physiology and conservation practice. Where eco-
physiology generally relies on large comparative data sets
and replications, investing in higher time-resolution is
another way to gain significant information on the health
status of species and individuals of interest. For robust and
representable measurements, first, a general natural history
knowledge of the ecosystem or managed parcel is necessary
to apply physiological measurements as an indicator for
species status. Site characteristics such as climate, seasonality,
edaphic factors and biotic interactions explain why certain
species perform better in certain locations. Second, a correct
choice of reference point is needed, depending on the
ecosystem, species and questions asked. To fully benefit
from the physiological approaches outlined in this review,
we propose a baseline year for assessment of reference
points at specific times per year. Consider an ecosystem
with a strong dry season and propensity for drought with
measurements beginning at the end of wet and dry season,
to assess the extremes in photosynthesis, water status and
temperature stress. These measurements can be combined
with morphological trait monitoring such as growth, leaf
area and greenness. By linking growth to physiological
parameters, a better understanding of plant stress and
risk can become evident (Manrique-Alba et al., 2018).
This baseline information would enable subsequent lower
frequency measurements of plant function in following
years (Fig. 4). We also acknowledge that some mechanistic
questions require measurements under conditions that deviate
strongly from ambient would have to be conducted in
controlled laboratory conditions, creating important field-
lab synergies in the analysis of plant responses to the
environment.

Conclusions
Land managers in many conservation areas are already
involved in monitoring, including climate and soil moisture,
vegetation surveys, photo surveys, remote sensing and
geographic information systems, which are essentially the
context for many of the measurements we review (Tomlinson
et al., 2021; Merchant et al., 2022). However, most of

Figure 4: A framework for implementation of the proposed
measurements. In year 1, an initiation phase is foreseen where
reference points at several timepoints (e.g. spring, summer and
autumn, depending on the ecosystem and species studied) are
collected. After the first year, monitoring in the seasons of interest on
the species of interest can take place with the correct and
corresponding reference points at hand, together with the
knowledge of the seasonal range of these reference points.

these measurements are at a scale above what is required
to capture the physiological performance of plants. Based on
this review of plant physiological approaches for predicting
conservation outcomes, we conclude that measuring instan-
taneous physiological status, coupled with carefully chosen
reference points related to key environmental variables
specific to the question asked, is a valuable way forward
for mechanistically characterizing the health of species of
concern. We acknowledge that for many conservationists,
physiology represents an approach beyond current instru-
mentation and training, and thus creative collaborations
will be crucial for fully incorporating plant physiological
measurements into conservation assessments. We emphasize
that the utility of these measurements can be maximized by
measuring individuals as part of populations or at a range
of sites to understand intra-specific trait variation, and by
measuring entire plant communities to determine where a
species of concern performs relative to the community. We
also note that plant physiological measurements, especially
physiological reference points that set an effective standard
for future measurements must be taken under the correct
conditions to provide sound comparisons. Finally, based
on the data presented, we conclude that physiological
measurements can best be incorporated into current and tra-
ditional conservation biology approaches, such as population
viability models, matrix models and analyses of community
coexistence by closely matching the scale of study with the
question.
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