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Sullivan2, Corie Y. Ralston3, Mark R. Chance2, and Sarah A. Woodson1,*

1T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., 
Baltimore, MD 21218 USA

2Center for Proteomics and Bioinformatics and Center for Synchrotron Biosciences, Case 
Western Reserve University, Upton, New York 11973 USA

3Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, 
Berkeley, California 94720, USA

Abstract

The assembly of the E. coli ribosome has been widely studied and characterized in vitro. Despite 

this, ribosome biogenesis in living cells is only partly understood because assembly is coupled 

with transcription, modification and processing of the pre-ribosomal RNA. We present a method 

for footprinting and isolating pre-rRNA as it is synthesized in E. coli cells. Pre-rRNA synthesis is 

synchronized by starvation, followed by nutrient upshift. RNA synthesized during outgrowth is 

metabolically labeled to facilitate isolation of recent transcripts. Combining this technique with 

two in vivo RNA probing methods, hydroxyl radical and DMS footprinting, allows the structure of 

nascent RNA to be probed over time. Together, these can be used to determine changes in the 

structures of ribosome assembly intermediates as they fold in vivo.

 1. Introduction

Ribonucleoprotein (RNP) complexes typically undergo many structural changes during their 

lifecycles, from transcription of the RNA to maturation of the complex and degradation. 

Because the full lifecycle of an RNP cannot often be reconstituted in the test tube, 

footprinting methods for probing RNA structure in the cell have gained increasing attention 

[1,2]. Here, we describe methods for probing the structure of the 16S ribosomal RNA in E. 
coli cells following metabolic labeling of pre-rRNA. This approach can be adapted to high-

throughput investigations of RNP dynamics.

The bacterial ribosome is made up of three rRNAs and over 50 proteins that assemble into 

the large (50S) and small (30S) subunits. Assembly of the subunits is coupled with pre-
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rRNA synthesis [3–5] and requires only a few minutes during logarithmic growth [6]. Near 

the end of the assembly process, an intermediate 17S form of the pre-rRNA is trimmed to its 

mature (16S) length in several steps by ribonucleases. Several features likely contribute to 

the rapidity of subunit biogenesis in the cell. First, the 5′-to-3′ polarity of co-transcriptional 

assembly limits the opportunities of forming non-native RNA secondary structures, because 

5′ regions of the rRNA are able to fold before the 3′ regions have been transcribed [5]. 

Second, more than 15 assembly factors and additional RNA and protein modification 

enzymes facilitate assembly and carry out the final steps of subunit maturation [7,8]. Third, 

homeostasis of free ribosomal proteins ensures a constant pool of protein components [9]. In 

eukaryotes, ribosome assembly is aided by over 200 assembly factors and is also coupled to 

transport of assembly intermediates from the site of transcription in the nucleolus to the 

cytoplasm [10].

Because the bacterial ribosomal subunits can be reconstituted in vitro using only free rRNA 

and ribosomal proteins [11,12], they have long served as a model for the assembly of 

ribonucleoprotein complexes. Despite this, ribosome biogenesis in living cells remains 

poorly understood. One reason for this is the low abundance of assembly intermediates, 

which constitute 2–5% of total rRNA in E. coli under normal growth conditions [6]. 

Moreover, the predominant intermediates are difficult to isolate using sucrose gradient 

sedimentation, because they tend to migrate near the mature subunits.

Previous studies increased the concentration of ribosomal intermediates by using 

temperature-sensitive strains or conditional mutations that stall assembly under non-

permissive conditions such as low temperature [13]. Ideally, one should study the path of 

assembly in real time, under normal conditions. The kinetics of ribosome synthesis or 

protein binding has been measured by pulse-labeling cells with isotopically-modified 

nucleosides or amino acids and then analyzing via scintillation counting [6] or mass 

spectrometry [14]. These approaches reveal the protein composition of assembly 

intermediates. When complemented by structure probing of the RNA, a more complete 

picture of the assembly process can be obtained.

We present here a technique for probing the structure of ribosome assembly intermediates in 

E. coli (Figure 1). To synchronize pre-rRNA synthesis, we take advantage of the role that 

two intracellular small molecule effectors play in regulating the initiation of bacterial rRNA 

transcription. In E. coli, rRNA transcription is repressed during starvation through both the 

stringent response (ppGpp) and the concentration of the initiating NTP [15]. During the late 

stationary phase and extended periods of starvation, the concentration of the initiating NTP 

becomes the primary repressor of rrn promoter activity [15]. When nutrients become 

available, there is a rapid increase in intracellular NTP concentration and pre-rRNA 

synthesis is reactivated. For log phase cells subject to a nutrient upshift and cells diluted 

from stationary phase into fresh media, rrn promoter activity increases within 1 min [15].

In order to label nascent transcripts when pre-rRNA transcription resumes, we pulse-labeled 

starved cells with 4-thiouridine (4sU) just before feeding [16]. After extracting the total 

RNA from the cells, the nascent RNA labeled with 4sU can be conjugated to a biotinylation 

reagent via a reversible disulfide bond [17]. The labeled RNA is captured on streptavidin 

Hulscher et al. Page 2

Methods. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



beads and analyzed by direct primer extension or high-throughput sequencing. In this way, it 

is possible to get snapshots of the ribosome assembly process after transcription begins 

again.

4sU is photoactive and has been widely used to study RNA-protein complexes by in-cell 

photocrosslinking [16,18]. More recently, metabolic labeling with 4sU has been used to 

isolate RNA from yeast [17] and metazoan cells [19] for transcriptome studies. To our 

knowledge, this represents the first use of 4sU to isolate newly synthesized RNA in bacteria.

A variety of reagents, such as dimethylsulfate (DMS), ribonucleases, N-methylisotoic acid 

(SHAPE) and hydroxyl radicals, have been used to probe RNA structures in vitro [20,21]. 

DMS and hydroxyl radical (X-ray) footprinting are particularly useful for probing RNA 

structures in the cell. DMS is lipophilic and readily passes the cell membrane [22,23]. 

Hydroxyl radicals can be generated in situ by synchrotron or gamma radiation [24–26]. We 

have successfully used hydroxyl radicals and DMS to probe rRNA in vivo with a time 

resolution of 30 s. Both techniques will be presented here.

Time-resolved X-ray-dependent hydroxyl radical footprinting has been used to study the 

kinetics of in vitro RNA folding [27] because sufficient hydroxyl radicals to probe RNA can 

be generated in a few milliseconds using a synchrotron X-ray source with high flux density 

[28]. X-ray footprinting has also been used on frozen E. coli cells to characterize the 

structure of the small subunit of the ribosome and examine the effect of ribosome assembly 

factor deletion [29]. Because the hydroxyl radical is produced in situ by photolysis of the 

water, no harmful permeabilization of the cell is needed. Another advantage of X-ray 

footprinting is that the extent of cleavage can be controlled by varying the X-ray dose [30].

The hydroxyl radicals break the RNA strand by abstracting a proton from the ribose C4′, C5′ 

or C1′ [31]. The probability of cleavage depends on the solvent accessibility of the ribose, 

and thus reflects the RNA tertiary structure or protein interactions. Because hydroxyl 

radicals cleave the RNA backbone in a base-independent manner, hydroxyl radical 

footprinting provides structural data on the RNA at single-nucleotide resolution, unlike 

many other chemical probing techniques.

In contrast to hydroxyl radical, DMS methylates adenine N1, cytosine N3 and guanine N7, 

and therefore the extent of modification reports on the RNA secondary structure and other 

interactions with the RNA bases. Methylation of A N1 and C N3 is detected by pausing of 

reverse transcriptase during primer extension. Methylation of G N7 is usually only detected 

by primer extension if it subsequently causes depurination. DMS has been extensively used 

to probe RNA in vitro [32–34], and because it is highly reactive, can also be used to monitor 

RNA assembly in real time [35]. It has also been used in vivo for transcriptomics studies 

[36]. High-throughput DMS probing of rRNA structure has been performed in bacteria, 

yeast, and mammalian cells [36–38]. While DMS only modifies certain bases, it does not 

require a synchrotron, is reproducible, and easy to scale up.

The protocols below describe X-ray and DMS footprinting of RNA in actively dividing cells 

in order to map changes in the small ribosomal subunit that take place during assembly. The 
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reader can choose to use either technique or both depending on the resources of the lab and 

the requirements of the experiment.

 2. Materials and Methods

 2.1 Overview of Starvation Recovery

During normal cell growth, the ribosomes being synthesized in the cell are in various states 

of assembly, giving a time-average of the different pre-rRNA intermediates. To synchronize 

transcription of the rRNA, we exploited the fact that rRNA transcription in E. coli is 

repressed during starvation by the stringent response and then activated when nutrients 

become available [15]. As illustrated in Figure 2, little 17S pre-rRNA is present in E. coli 
MRE600 cells suspended in a minimal medium lacking phosphate. Upon addition of a rich 

medium containing phosphate, 17S pre-rRNA is detected within 1–2 min, consistent with 

the kinetics of pre-rRNA synthesis during recovery from stationary phase [15]. When 4sU is 

added to the medium before the food, we recover 4sU-labeled pre-rRNA with similar 

kinetics.

 2.2 Starvation Recovery Protocol

To prepare cultures, 3–5 mL of LB media is inoculated with a single bacterial colony and 

grown overnight at 37 °C with shaking. The following day, the culture is diluted at a ratio of 

1:100 to 1:1000 into 500 mL media. After the cells reach stationary phase, they are 

harvested by centrifugation, and resuspended in a defined minimal medium lacking 

phosphate (100 mM Tris-HCl, 25 mM KCl, 10 mM NaCl, 20 mM NH4Cl, 1 mM MgSO4, 

0.1 mM CaCl2, 2 μM thiamine, 0.4% glucose, pH 7.8). The cells are harvested and 

resuspended twice more to remove excess phosphate. On the final step, minimal media is 

added until the cells are diluted to the desired final volume and have an OD600 in the mid-

log range (0.6–0.8). For our experiments, we use 75 mL per time course, or 675 mL for 9 

trials. The cells are incubated in minimal media at 37 °C with shaking for 4 h to arrest pre-

rRNA transcription.

At the end of this starvation period, and approximately 2 minutes before rRNA transcription 

is induced, a 250 mM stock solution of the modified nucleotide 4-thiouridine (4sU) is added 

to the media to a final concentration of 0.5 mM. This concentration of 4sU minimally affects 

the growth rate of MRE600 (data not shown). The stock solution of 4sU should be kept 

away from light. Transcription and cell growth is restarted by adding 10X rich medium to 

the culture (5 g tryptone, 2.5 g yeast extract, 15 g Na2HPO4, 8.25 g KH2PO4 in 50 mL). The 

culture is grown with shaking for the desired period before treatment with DMS or hydroxyl 

radical as described below.

 2.2.1 Considerations for RNA metabolic labeling—The above protocol is 

optimized for footprinting rRNA in E. coli strain MRE600. When adapting the protocol to 

other target RNAs or bacterial strains, the following parameters should be considered: First, 

the duration of starvation, mechanism of RNA induction, and concentration of 4sU, should 

be optimized for the specific strain and RNA. On the one hand, starvation must be long 

enough that precursor rRNA is no longer present, which requires 30–60 min in minimal 
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medium in our hands. On the other hand, the period of starvation should be less than 12 h, to 

avoid activating scavenging ribonucleases that reduce the quality of the RNA. A further 

consideration is that not all cells readily take up 4sU. In some cases, it is necessary to 

overexpress a nucleoside transporter in order to accumulate a sufficient amount of 4sU in the 

cell [16].

The appropriate growth conditions can be determined by starving cells for different periods 

of time before nutrient upshift (Figure 2). We analyzed rRNA processing, yield and quality 

by extension of a complementary 32P-labeled primer. We determine the appropriate 

concentration of 4sU in a similar fashion, by varying the concentration of 4sU added before 

nutrient upshift. In this case, the labeled RNA is pulled down with streptavidin beads as 

described below, and the wash and elution fractions analyzed by primer extension to 

compare the recovery of pre-rRNA and mature RNA. The ideal 4sU concentration is the 

minimal amount at which the pre-rRNA is found almost exclusively in the eluted fraction.

 2.3 Beamline parameters for X-ray-dependent Hydroxyl Radical Footprinting

Unlike the in vitro experiments, in which hydroxyl radicals are produced using Fe(II)-EDTA 

and millimolar concentration of H2O2 [39–41], the live cell samples are probed by hydroxyl 

radicals that are generated by ionizing radiation, as shown in the equation below.

This in situ method of generating hydroxyl radical avoids the deleterious effect of hydrogen 

peroxide on live cells. Both γ-rays from a 137Cs source [25] and X-rays from a synchrotron 

source [42–44] produce hydroxyl radicals in situ. However, the higher flux density of a 

synchrotron beam delivers the necessary dose in a much shorter time, typically in less than 

100 milliseconds for frozen cells [26] and 10–20 ms for liquid culture, and ensures the least 

perturbation to live cells. Thus, access to a synchrotron X-ray source suitable for 

footprinting is highly recommended for this protocol. We used two beamlines for our 

experiments: X28C at the National Synchrotron Light Source (NSLS) at Brookhaven 

National Laboratory and 5.3.1 at the Advanced Light Source (ALS) at Lawrence Berkeley 

National Laboratory. Future experiments will be performed at beamline XFP (17-BM) at 

NSLS-II.

Synchrotron beamlines suitable for footprinting should provide a high flux density incident 

on the sample, and ideally a variable beam size ranging from 0.1 mm to several millimeters 

[43]. In general, a focusing mirror is necessary to achieve a variably sized beam [42]. The 

energy of the beam should allow a significant fraction of the photons to be absorbed as 

uniformly as possibly throughout the depth of the sample; typically, this is achieved using a 

broadband beam with energies in the 5–20 keV range. A beam flux of > 1016 photons/sec is 

desirable; high flux combined with focusing ability allows for a high brightness beam, which 

means that shorter exposure times can be used. As with the NSLS beamline X28C [45], a 

facility dedicated to x-ray footprinting, a footprinting beamline should also be equipped with 

sample-handling apparatuses for a variety of sample configurations and environments, 
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including both frozen (−34 °C) and liquid samples. At X28C, we used a cooled multi-sample 

holder to irradiate frozen cells with exposure time controlled by electronic shutter (typically 

10 to 100 ms) [26] and controlled the X-ray dose to buffered samples or liquid culture by 

adjusting the flow rate through a capillary tube [43].

Although the NSLS is no longer operating, facilities optimized and configured for X-ray 

footprinting are currently under construction at NSLS-II. In the interim, a functional subset 

of the live cell culture exposure apparatus has been transplanted for use at ALS beamline 

5.3.1. Currently, the ALS synchrotron supports two beamlines for X-ray footprinting, 

beamlines 5.3.1 and 3.2.1, with a collaboration-based user program in place. Access to the 

beamlines can be obtained through the User Office of the respective synchrotron facility, 

typically through the general user program. Prospective users should begin to plan their visit 

several months in advance of the intended experiment.

Beamline 5.3.1 is located on a bending magnet source and equipped with a platinum-coated 

toroidal focusing mirror suitable for focusing a white-light X-ray beam [44]. The broadband 

X-ray beam (1 – 13 keV) exits from the beryllium window of the beampipe under ultrahigh 

vacuum, with a flux of ~1×1016 photons/sec. For the in vivo studies described here, the 

focused beam sizes were set to deliver the highest flux density possible which also 

maintained homogeneous beam over the 540 and 700 μm ID microcapillary tubes used to 

irradiate cell samples as described in the next section.

 2.4 Hydroxyl Radical Footprinting using Live Culture

A basic protocol for exposing live bacterial culture to a synchrotron X-ray beam is described 

below, using a simple apparatus such as the one shown in Figure 3. In order to probe newly 

synthesized rRNA in E. coli, cultures should be grown in minimal medium to stop pre-rRNA 

transcription as described in Section 2.2, and then fed immediately before footprinting to 

reactivate transcription (Figure 1). Liquid culture irradiation was performed using a custom 

capillary holder and slit assembly capable of being water-cooled [43]. As the culture is 

pumped past the X-ray beam, fractions are collected at different time points.

We culture MRE600 cells in minimal medium and dope with 4sU as described in Section 

2.2. At the start of the footprinting experiment, the cell culture is transferred to a 37 °C 

water bath in the beamline experiment end-station enclosure (“hutch”). During this transfer, 

we collect two 0.75 mL fractions to serve as “No Hutch” controls. These are used to 

determine the amount of background signal that can be attributed to sources outside the 

beamline enclosure. We use a magnetic stirrer to aerate and mix the culture during the 

footprinting experiment.

The cells are exposed to the synchrotron X-ray beam by pumping the culture through a flow 

cell placed in the path of the beam. We use an M50 pump (Vici) because it provides a 

continuous flow (up to 5 mL/min) and can pump an unlimited volume. We run silica tubing 

from the pump inlet to the bottom of the culture flask, taking care not to aspirate air into the 

flow path. A second piece of silica tubing connects the M50 pump outlet with the flow cell 

and fraction collector. For the flow cell, we use silica tubing between 0.54 and 0.7 mm 

internal diameter. To obtain uniform cleavage of intracellular RNA, it is necessary for the X-
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ray beam to cover the entire internal diameter of the flow cell tubing with as homogenous an 

intensity profile as possible. To achieve high levels of cleavage, the beam should be focused 

to the smallest area (cross-section) that still covers the sample.

To induce outgrowth and pre-rRNA transcription, 10X rich medium (5 g tryptone, 2.5 g 

yeast extract, 15 g Na2HPO4, 8.25 g KH2PO4 in 50 mL) is added to the starved culture using 

a dispensing syringe pump. The syringe pump is first primed with the 10X rich medium and 

the outlet connected to the culture flask (Figure 3). The fraction collector should be filled 

with at least 60 2-mL screw-cap microcentrifuge tubes. Each microcentrifuge tube should 

contain 1 mL RNAprotect Bacteria Reagent (Qiagen) or an equivalent RNA stabilization 

solution. This will protect the RNA from being degraded during isolation. This ratio of 

RNAprotect to culture provides optimal RNA quality and quantity (data not shown).

After the culture flask, flow cell, feed tube, and fraction collector are properly configured, 

the experimenter exits the beamline enclosure and activates the interlock system. The 

pumps, fraction collector, and beam shutter should be interfaced with a computer outside the 

enclosure and controlled by a computer macro in LabView or similar program [45]. The 

instruments are programmed to collect two 0.75 mL fractions of 4sU-containing culture 

before opening the beam shutter (“Pre-Food, No Dose”). Next, the shutter is opened, and 

two fractions in which the starving cells are exposed to the X-ray beam (“Pre-Food”) are 

collected. These fractions will serve as controls for the RNA cleavage pattern in the starved 

cells. After these control samples are collected, the M50 pump and fraction collector are 

stopped, and the beam shutter is closed. During this time, food is added to the culture flask 

using the syringe pump, and mixed for 10 s to induce pre-rRNA synthesis. After inducer is 

added, we open the shutter, restart the pump and fraction collector, and collect 52 0.75-mL 

fractions at 5 mL/min (9 s per fraction).

At the end of the run, we collect two 0.75 mL samples from the culture flask (“Post-Food, 

No Dose”). These controls test for stray radiation in the experiment end-station enclosure. If 

the RNA extracted from the unexposed culture at the end of the run is significantly more 

cleaved than RNA from unexposed controls collected at the beginning of the run, the cells 

were likely exposed to radiation throughout the experiment and not just at the appointed 

times. In this case, the run should be discarded and additional shielding should be added at 

the beamline to protect the culture outside the flow cell from radiation.

After the run, the tubes are capped, inverted to mix the culture with the RNAProtect, and 

placed in a microcentrifuge to pellet the cells. After decanting the supernatant, the cell 

pellets are immediately placed on dry ice, and stored at −80 °C. These final steps should be 

completed as promptly as possible to reduce background RNA degradation.

 2.4.1 Considerations for rRNA Quality—The quality of the footprinting results 

depends greatly on minimizing X-ray- independent RNA cleavage, which leads to undesired 

background in the sequence analysis. MRE600 cells lack RNase I, a periplasmic protein that 

can degrade RNA during extraction [46]. To further limit non-specific RNA degradation, we 

use RNAprotect Bacteria Reagent (Qiagen) to stabilize the RNA. We obtain the best results 

when the culture and RNAprotect are mixed as soon as possible after each fraction is 
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collected. If the samples will be shipped to another location for analysis, they should be 

packaged in ample dry ice to guard against partial thawing during shipment. Cells should be 

stored at −80 °C until the RNA can be extracted.

 2.4.2 Considerations for rRNA Yield—In log phase cells, nascent rRNA represents 

2–5% of the total rRNA [6]. In cells emerging from starvation, nascent rRNA only 

represents 1–2% of the total rRNA for the first 5 minutes of outgrowth (data not shown). 

Downstream analysis of the 16S rRNA typically requires 4 μg purified RNA to achieve full 

sequence coverage by random priming and high-throughput sequencing, or 10 μg RNA for 

gene-specific priming. Therefore, every effort should be made to obtain the highest RNA 

yield possible. At the beamline, the volume of cells collected in each sample is limited by 

the flow rate (5 mL/min for the M50 pump) and desired time resolution (9 s per 0.75 mL 

fraction). Each 0.75 mL fraction typically yields ~60–150 ng purified 4sU-RNA, although 

this depends on the cell density and the extent of labeling. If RNA other than rRNA is to be 

probed, the total amount of sample required will depend on the abundance of the transcript 

of interest. The RNA yield can be improved by increasing the RNA overexpression, 

collecting larger fractions, or examining the RNA at steady-state, eliminating the need for 

4sU labeling. For RNAs ≤ 300 nt, full sequence coverage can be achieved using less 

material. If only one gene-specific primer is required, only 500 ng purified RNA is 

sufficient.

 2.5 Obtaining the proper X-ray dose

For reliable analysis of the hydroxyl radical cleavage pattern by primer extension, the RNA 

should be cleaved no more than once within each detection window [47]. If an RNA strand 

is cleaved multiple times, those events nearer to the location of priming will be preferentially 

detected over events further from the site of priming. Thus, for analysis by traditional gene-

specific priming, the X-ray dose should be adjusted such that 70–90% of the RNA is full-

length. Assuming the cleavage events follow a Poisson distribution, if 80% of the RNA is 

uncleaved, ~19% will be cleaved once, and the remaining ~1% will be cleaved twice. If 

high-throughput sequencing is used to analyze the footprinting pattern, the RNA is typically 

fragmented to ~200 nucleotides before library construction [37]. In this instance, a much 

higher X-ray dose, sufficient to cleave the RNA once per 200 nucleotides, is needed to 

ensure good signal-to-noise.

To determine the correct X-ray exposure, we generate a dose-response curve by placing 

aluminum sheets of different thickness in front of the flow cell to attenuate the beam 

intensity incident on the sample. Alternatively, the X-ray dose is varied by changing the 

sample flow rate, which alters the time needed for the sample to traverse the beam. After 

exposing the cells to the X-ray beam, the amount of full-length 16S RNA remaining in each 

sample is determined by isolating total RNA, and extending a radiolabeled primer 

complementary to nucleotides 1486–1510 at the 3′-end of the 16S rRNA. The percent full-

length cDNA (normalized to an unexposed sample) is plotted versus the aluminum 

thickness, and fit to a line. This dose-response plot is used to empirically determine the 

appropriate beam attenuation needed to obtain the desired level of cleavage (Figure 4).
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A few methods have been devised to estimate the intensity of the beam prior to each run. 

The first is a fluorescence-based assay using Alexa-488 [45], which is photobleached upon 

exposure to the X-ray beam. A 2 μM solution of Alexa-488 is pumped past the beam at a 

range of flow rates (i.e. different exposure times), with or without aluminum attenuation. 

The exposed Alexa-488 solution is collected, diluted into the linear range of the fluorimeter, 

and the fluorescence intensity measured. The rate constants for quenching Alexa-488 

obtained for the different attenuations can be compared between runs. This information is 

used to adjust the attenuation to obtain the appropriate dosage.

A second method for rapidly estimating the X-ray dose at the beamline is to expose log-

phase culture to the X-ray beam using different thicknesses of aluminum to attenuate the 

beam. After extracting the total RNA, a primer complementary to the 3′-end of the RNA is 

extended using reverse transcriptase. The RNA is degraded with RNase H. The cDNA is 

then analyzed by real time qPCR (Quantitect SYBR Green PCR Kit, Qiagen) to determine 

the amounts of full-length RNA relative to an unexposed sample. Although not as accurate 

as extension of a radiolabeled primer, the qPCR results can be used to confirm that a given 

experimental configuration will yield an appropriate cleavage rate.

 2.6 Footprinting rRNA in live culture using DMS

To probe the rRNA secondary structure with dimethyl sulfate (DMS), we adapted the in vivo 
DMS probing and quenching conditions of Wells et al. [48] to our protocol. For a starvation-

recovery time course, MRE600 cells are cultured as described in Section 2.2. The volume of 

each sample needed to recover sufficient RNA for the intended sequencing analysis should 

be determined in advance (see above). This amount should be multiplied by the desired 

number of time points and controls to determine the total culture volume required for the 

experiment. Ideally, one should collect control samples to which no DMS is added for each 

time point to be assayed. In practice, the no DMS background changes slowly during 

outgrowth, so it is sufficient to collect an untreated control every few minutes.

For each sample to be treated with DMS, the desired amount of DMS diluted 1:4 (v/v) in 

95% ethanol is placed in a 50 mL screw-cap conical tube. DMS is toxic and mutagenic; 

place tubes in a chemical fumehood if available, wear eye shields and protective gloves and 

clothing, and avoid inhalation or contact with the skin. Ethanol interferes with phospholipid 

bilayers, so the amount of DMS and ethanol added to samples should be as low as possible 

while still giving sufficient probing. The ratio of DMS-ethanol solution to culture medium 

was typically 1:25 (v/v) in these experiments.

At the desired times, an aliquot (e.g. 20 mL) is removed from the main culture and added to 

one of the 50 mL tubes. After 30 seconds, the methylation reaction is quenched with the 

addition of a 1/2 volume (e.g. 10 mL) of ice-cold 0.6 M β-mercaptoethanol and a 1/2 volume 

of water-saturated isoamyl alcohol [48].

After DMS treatment, pellet the cells in each sample by centrifugation and resuspend the 

cells in one culture volume (e.g. 20 mL) 0.6 M β-mercaptoethanol [48]. Addition of 

RNAprotect (Qiagen) is unnecessary. Harvest the cells again and decant the supernatant. At 
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this point, continue with RNA extraction, or store the cell pellets at −80 °C until ready to 

extract the RNA.

 2.6.1 Optimizing the Amount of DMS—The amount of DMS to be used should be 

determined from a dose response curve as described for hydroxyl radical footprinting (more 

below). For consistent results, it is essential that all samples be treated with DMS for the 

same amount of time. The time should be determined based on the desired time resolution of 

the experiment.

 2.7 Isolation of 4sU-labeled rRNA from E. coli

Structural analysis of probed 16S rRNA requires 4–10 μg of high-quality RNA. We use 

RNeasy spin columns (Qiagen) to extract total RNA from treated bacterial cell pellets. For a 

smaller number of samples with larger volume, alternative RNA isolation methods such as 

Trizol may be less costly and similarly effective.

To isolate nascent 4sU-labeled RNA, 4sU is first biotinylated and then captured on 

streptavidin beads (Figure 5). The purification protocol that follows is based on that of 

Dölken et al [17] with slight modifications to the buffers and the incubation durations.

The 4sU-labeled RNA is modified using EZ-Link HPDP-Biotin (Pierce), freshly dissolved 

in dimethylformamide to a concentration of 2.2 mg/mL. We dilute the RNA to 100 ng/μL in 

10 mM Tris-HCl pH 7.6, 1 mM EDTA, and add the HPDP-Biotin reagent to a final 

concentration of 0.4 mg/mL, for 10 min at 65 °C.

Because unreacted biotin can interfere with affinity purification in the next step, we remove 

unbound biotin by extracting the biotinylation reaction with an equal volume of chloroform/

isoamyl alcohol (39:1). The upper aqueous layer is collected using Phase-lock-gel (Heavy) 

tubes (Eppendorf). The RNA (200–300 μL) is precipitated by adding 1/10 volume 3 M 

sodium acetate (pH 5.5) and 3 volumes 100% ethanol, incubating 1 h at −80 °C, and pelleted 

by centrifugation at 13,000 x g at 4 °C for 30 min. The pellet is washed with 1 volume 75% 

ethanol, centrifuged again for 10 min, and dried under vacuum. The pellet is resuspended in 

100 μL binding buffer (20 mM Tris-HCl pH 7.6, 1 mM EDTA, 0.5 M NaCl) before 

determining the RNA concentration (Nanodrop UV spectrometer).

The resuspended biotinylated RNA (50–150 μg) is added to 100–150 μL magnetic 

streptavidin beads (NEB) for 1 h at 4 °C with gentle shaking. Before adding the RNA, the 

beads should be washed three times with binding buffer, blocked with 40 ng/mL glycogen in 

binding buffer, then washed once more with binding buffer. After the supernatant-containing 

unlabeled RNA is removed, we wash the beads three times with one volume wash buffer 

(100 mM Tris-HCl pH 7.6, 10 mM EDTA, 0.5 M NaCl, 0.5% Tween20) at 65 °C and three 

more times with wash buffer at room temperature. The supernatant containing unlabeled 

RNA and first wash may be combined and saved.

The labeled RNA is eluted from the beads using one volume freshly prepared 100 mM 

dithiothreitol (DTT). This elution step is repeated, and the eluates combined. The RNA is 

precipitated from the eluate using 1/10 volume 3 M sodium acetate, three volumes 100% 
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ethanol, and 40 ng/mL glycogen as a carrier. The RNA pellet is collected and washed as 

described above. The RNA is resuspended in 25 μL RNase-free water and the concentration 

determined by UV absorption. If desired, the washes containing the unlabeled RNA can also 

be purified in the same manner. Alternatively, the RNA may be purified using RNeasy 

MinElute Spin columns.

The yield of 4sU-labeled RNA should be 1–2% of the input and reflects the extent of 4sU 

incorporation under these conditions. We analyze the quality of 4sU-labeled RNA by 

extending a 32P- or dye-labeled primer on RNA recovered from the wash and elution 

fractions. In this example, the pre-rRNA should be primarily found in the eluted fraction 

(Figure 6). Alternatively, RNA transcribed in vitro in the presence of 4S-UTP can be used as 

an internal standard to validate the purification procedure. Although we expect very little 

DNA contamination with this procedure, the total RNA can be treated with RNase-free 

DNase if residual DNA is a concern.

 2.8 Analysis of 4sU-labeled RNA

Footprinting patterns have historically been analyzed by extending gene-specific primers by 

reverse transcriptase and examining the cDNA that is produced [49,50]. This can be done 

with radiolabeled primers, in which case, the cDNAs are separated on a traditional 

sequencing gel and analyzed by autoradiography. Each primer requires 0.5–1 μg RNA and 

can be expected to give sequence data for roughly 200 nucleotides. The band intensities in 

the gel can be analyzed using the Semi-Automated Footprinting Analysis (SAFA) software 

package [51]. Footprinting analysis can also be performed by extending fluorophore-labeled 

primers and separating the resulting cDNA using capillary electrophoresis [52]. Each primer 

requires 0.5 μg RNA and can be expected to give sequence data for 300–400 nucleotides. 

Capillary electrophoresis data can be analyzed using ShapeFinder [53]. A further possibility 

for analysis is to use high-throughput sequencing [37,54]. This technique does not carry with 

it the need for gene-specific priming. These methods are all extensively described in the 

literature and will not be discussed further here.

 3. Example: Probing the 3′ domain of 16S rRNA during assembly

We conclude this protocol with an example showing how in vivo DMS probing can be used 

to generate structural data on in vivo ribosome assembly intermediates. A 220 mL culture of 

phosphate-starved cells was pulse-labeled with 4sU to a final concentration of 0.5 mM and 

probed with DMS at time points before and during outgrowth. A total of 14 15-mL time 

points and controls were collected. Samples were treated with DMS immediately before the 

food was added to start outgrowth, and then over the first 8 min after feeding. No DMS 

controls were collected immediately before feeding, and at 4 min and 8 min after feeding. 

The 4sU RNA was isolated as described above, and the methylation patterns were analyzed 

by traditional primer extension sequencing, using primers complementary to the 16S rRNA 

(Figure 7a). Band intensities were analyzed using SAFA (Figure 7b).

Our initial results using this technique are consistent with earlier findings regarding the 

folding of the central platform and 3′ domain of the 30S ribosome (Figure 7c). For example, 

nucleotides 890–920 in the central domain are strongly exposed to methylation in the newly 
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transcribed 4sU-labeled pre-rRNA. Nucleotides 885–912 form helix 27, which supports the 

decoding site helix 44. Nucleotides 917–919 form part of the central pseudoknot, a structure 

that draws together the 5′, central, and 3′ domains and that is known to form late in 30S 

assembly [55]. Also prominently exposed in the 17S pre-rRNA is helix 33, which forms the 

“beak” of the 30S ribosome and is known to fold late in assembly [55]. More surprisingly, 

certain nucleotides in the 5′ domain also take about 6 minutes to become fully protected, 

although this region is the first domain to be transcribed. Thus, this method can pinpoint 

RNA interactions that form late during assembly of the 30S ribosomal subunit, or that lie on 

the interface with 50S subunits.

 4. Conclusions

This method of isolating nascent RNA over time, combined with the in vivo RNA probing 

techniques of hydroxyl radical and DMS footprinting, will allow the kinetics of structural 

changes in rRNA during ribosome biogenesis to be determined. This is a novel way of 

examining ribosome assembly intermediates that does not require the use of temperature-

sensitive cells strains or conditional mutants. The time resolution currently attainable with 

these probing methods is appropriate for the study of ribosome biogenesis, and may be 

improved in the future. This technique has the potential to heighten our understanding of 

ribosome biogenesis in ways that would not be possible by in vitro studies. For example, this 

method would be very conducive to studies of ribosome assembly factors in vivo. By using 

cell strains lacking ribosome assembly factors, it should be possible to use this technique to 

determine, not just where these proteins interact with the assembling ribosome, but when 

they interact as well. Finally, this method can be adapted to map time-dependent 

conformational changes in a wide range of stable, non-coding RNAs.
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Highlights

• A method is demonstrated for isolating nascent rRNA transcripts in E. coli.

• The structures of ribosome assembly intermediates can be probed in vivo.

• A protocol for DMS footprinting RNA in the cell over time is described.
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Figure 1. Overview of time-resolved in vivo footprinting protocol
The method consists of three major parts: (1) starvation recovery, (2) in vivo RNA 

footprinting, and (3) isolation and analysis of the RNA. In the first phase, pre-rRNA 

transcription is synchronized by starving cells of phosphate, then adding nutrients and 

phosphate to trigger de novo ribosome biogenesis. The modified nucleotide 4-thiouridine 

(4sU) is added to the media prior to food. During the recovery from starvation, 4sU-labeled 

nascent rRNA is probed with hydroxyl radical or DMS in the second phase. In the third 

phase, the 4sU-labeled RNA is isolated from harvested cells and sequenced.

Hulscher et al. Page 16

Methods. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Pre-ribosomal RNA synthesis during starvation recovery
Percent 17S pre-rRNA versus time after nutrients were added to MRE600 culture grown in 

minimal (low phosphate) medium for 0.5, 6, 12, or 18 h before feeding. The pre-existing 

pre-rRNA is usually depleted within 30–60 min after transfer to low phosphate medium. In 

this example, some pre-rRNA remains after 30 min, accounting for the large amount of RNA 

at the start of the time course. The fraction of 17S rRNA was determined for each sample by 

primer extension, and calculated from ƒ = cpm [17S]/(cpm [16S] + cpm [17S]).
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Figure 3. Apparatus for X-ray footprinting of live cultures
(a) Schematic showing the flow of liquid culture past the X-ray beam and into a fraction 

collector. A syringe pump (Harvard Model 33) is used to dispense nutrients into the culture 

at the desired time. A M50 pump (Vici) displaces culture through a capillary flow cell in the 

path of the X-ray beam [43], at flow rates up to 5 mL/min. The X-ray dose depends on the 

flow rate, the length of tubing exposed to the beam (horizontal slit), and the X-ray flux 

density of the beam itself. The exposed culture is collected in 0.75–1 mL fractions. (b) 

Photograph of apparatus at NSLS X28C. The X-ray beam pipe is pointing toward the front 

of the image.
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Figure 4. X-ray dose-response curves for RNA footprinting
Full-length 16S rRNA remaining after exposure of log-phase MRE600 culture to an X-ray 

beam, using the flow apparatus described in Fig. 3. The flow rate was 5 mL/min. The 

capillary tubing was 700 μm ID. The fraction full-length RNA was determined by primer 

extension and normalized to the amount of RNA in unirradiated controls. The X-ray dose 

was varied by attenuating the beam with aluminum sheets of varying thickness. The curves 

represent experiments performed on different dates at NSLS X28C (BNL) and ALS 5.3.1.
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Figure 5. Scheme for isolation of 4sU-containing RNA
Newly transcribed RNA is metabolically labeled with 4-thiouridine added to the medium 

just before outgrowth. 4sU is covalently modified with bifunctional HPDP-Biotin, which 

reacts with reduced thiols. The biotinylated RNA is captured on streptavidin beads, and then 

eluted with 0.1 M DTT. The purified RNA is analyzed by traditional or high-throughput 

sequencing.
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Figure 6. Analysis of 4sU-RNA purification
6% sequencing gel (1X TBE) showing the primer extension of RNA from elution and flow-

through fractions of 4sU affinity purification (10 μg input RNA) as outlined in Figure 5. The 

unlabeled rRNA will be in the flow-through fractions. The pre-rRNA should be almost 

exclusively in the elution fractions. The primer used for probing the 5′ end of the 17S 

anneals to nucleotides 162 – 178 of the 16S rRNA.
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Figure 7. Time-resolved DMS footprinting of rRNA in E. coli
(a) 6% sequencing gel (1X TBE) showing the change in the primer extension pattern from 0 

– 8 min after the addition of food. Lanes ND indicate samples with no DMS. Sequencing 

standards are on the left. Examples of residues that become protected from DMS 

methylation with different kinetics are denoted as in (c). (b) Example of integrated band 

intensities for each nucleotide, for 16S nucleotides 880 to 1042. Black, no DMS treatment (4 

min); blue, DMS treatment before feeding; red, DMS treatment 4 min after feeding. c) 

Secondary structure and 3D ribbon (2i2p) of the E. coli 16S rRNA showing the folding 

kinetics for individual residues as the time to reach saturation (pink, red, brown); n.d. (gold), 

change in methylation but rate not determined.
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