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Online Decision Making with Icon Arrays 
 

 Jingqi Yu (jingqi.yu@rotman.utoronto.ca) 
Rotman School of Management, 105 St George Street 

Toronto, ON M5S 3E6, Canada 
 

Abstract 
Leveraging people’s proficiency in extracting summary 
statistics from ensembles, we conducted two studies in 
which we presented rating information from consumer 
feedback systems through color-coded icon arrays.  The 
investigation aims to explore how different icon array 
arrangements (ascending, descending, random) influence 
decision making and average estimation across varying 
levels of ensemble means (average ratings) and ensemble 
sizes (review volume). Our results revealed four key 
insights: 1) Preferences for rating variance differed, 
particularly at the extremes of the average rating spectrum 
when ensembled were dominated by one or two rating 
categories. 2) Structured information yielded greater 
certainty in responses, with confidence increasing when the 
task setup aligned with task goals. 3) Ensemble size 
prompted individuals to adapt strategies based on 
contextual needs. 4) Unstructured presentations led to 
higher estimation accuracy, suggesting that a lack of 
structure may encourage heightened processing effort.   

 
Keywords: Icon arrays, ensemble perception, consumer 
feedback, decision making, estimation 

Introduction 
Information visualization significantly influences decision 
outcomes. Depending on how data is visually represented, the 
same dataset can yield various interpretations. Different 
visualizations highlight distinct aspects of the data, offering 
comparative advantages for tasks such as option comparison 
and trend forecasting (Hawley et al., 2008; Tait et al., 2010; 
Yuan et al., 2019).  

Among numerous applied contexts, online shopping 
platforms with consumer feedback (e.g., ratings and reviews) 
provide familiar environments for decision making based on 
data. Despite advancements in consumer feedback systems, 
the visual representation of quantitative data has remained 
largely unchanged. Current systems typically use bar graphs 
to depict rating profiles, with variations in how counts of each 
star rating category are conveyed. Some platforms present 
raw numbers (e.g., Tripadvisor), some use percentages (e.g., 
Amazon), and others show no numbers (e.g., Google, Yelp). 

Considering icon arrays’ demonstrated ability to aid 
individuals’ comprehension of probabilistic information by 
leveraging the human perceptual system (Nelson et al., 2008), 
particularly those with lower numeracy skills (Galesic et al., 
2009), we are intrigued by the potential impact of 
incorporating icon arrays in the context of online shopping 
with consumer feedback. An additional advantage of icon 
arrays is their perceived trustworthiness compared to other 
visual and non-visual forms (Hawley et al., 2008). This aligns 
well with the consumer feedback space, where concerns 

about the credibility and authenticity of information are 
growing, particularly due to the proliferation of fake reviews. 
Moreover, icon arrays, composed of individual elements, can 
be used to communicate ordinal and temporal information, 
offering a unique perspective that goes beyond traditional bar 
graphs used in consumer feedback systems. This is akin to 
how sites offer different sorting methods.   

The proposed approach seems promising, but a crucial 
question is whether individuals possess the capacity to 
process rating information presented as icon arrays and 
differentiate between distinct star rating categories coded by 
colors (similar to Yelp’s display). Insights from ensemble 
perception literature suggest that viewers indeed have the 
capacity. Humans demonstrate an extraordinary ability to 
extract various summary statistics from a group of elements 
(Alvarez, 2011), spanning low-level stimuli like hue and 
brightness, mid-lese stimuli like size, to high-level stimuli 
such as facial expressions. Beyond averages, people are also 
able to extract variance information from different ensembles 
(see Whitney & Leib, 2018 for a review). 

For color ensemble perception specifically, individuals can 
effectively extract summary statistics for means and variance 
(Maule et al., 2014). Hence, adopting an ensemble format 
with color-coded tokens to represent distinct star rating 
categories offers the potential to convey four pieces of 
information: 1) average ratings, 2) rating variance, 3) the 
number of reviews, and 4) sorting information. Leveraging 
an ensemble format for the number of reviews allows for 
direct manipulation of visual impact by displaying more or 
fewer icons. For instance, a sample size of 100 and a sample 
size of 999 may share the same digit count (3), potentially 
diminishing the salience of size impact. However, ensembles, 
with their distinct visual areas, highlight the contrast between 
100 and 999 tokens (assuming identical token sizes). 
Regarding sorting information, the common methods enabled 
by rating sites include “highest,” “lowest,” and “most recent.” 
This information could be communicated by organizing 
color-coded tokens in specific arrangements, reminiscent of 
Xiong et al.’s (2022) investigation into the impact of different 
arrangements of icon arrays on percentage estimation. 

The present study investigates how perceptual features such 
as icon arrangement and color variation influence preferences 
and judgments in online shopping. Specifically,  we 
employed color ensembles to convey rating information, 
aiming to explore how icon arrangements (ascending from 
lowest to highest star ratings, descending from highest to 
lowest star ratings, and random) influence decision making 
and average estimation across different ensemble means 
(representing average ratings) and ensemble sizes 
(representing the number of reviews).  
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Experiment 1 
Experiment 1 explores how different arrangements of color-
coded icon arrays influence people’s preferences for rating 
variance and their confidence in those preferences.  
 

Method 
Participants. In exchange for course credit, 108 
undergraduate students from a major university in the 
Midwest participated in the experiment. 
 
Materials and Design. The experiment was a within-subject 
design manipulating three Vs of online reviews: valence 
(average ratings), volume (number of reviews), and variance 
(dispersion in opinions). For valence, we introduced four 
levels to cover the entire spectrum of a 5-star rating scale: 
extremely low (1.X), low (2.X), medium (3.X), and high 
(4.X). For volume, we included three levels: low (< 50 
number of reviews), medium (50 – 400 number of reviews), 
and high (> 400 number of reviews). For simplicity and 
differentiation purposes, the rest of the paper used the valence 
level of 1.X, 2.X, 3.X, and 4.X and the volume level of low, 
medium, and high. At each combination of valence and 
volume level, we chose three variations. For example, at the 
combination of a valence level of 1.X and a low volume level, 
we introduced 1.5 (50), 1.7 (45), and 1.9 (30). We created 
three products for each combination of valence and volume 
level, leading to three pairwise comparisons. This led to a 
total of 108 trials: 4 (valence level) x 3 (volume level) x 3 
(variations) x 3 (pairwise comparisons). To-be-compared 
products were presented to participants in pairs with identical 
valence and volume levels. The only difference between the 
two products in each pair was their rating variance.  

We used the low volume level as the basis of stimuli design. 
For medium and high-volume levels, we simply retained star 
proportions by applying a multiplier across the board. For 
example, at one of the low volume levels, we had 1.5-star 
ratings out of 50 stars with 42 1-star ratings, one 2-star rating, 
one 3-star rating, two 4-star ratings, and four 5-star ratings. 
When expanding this into the level of high volume with 450 
stars, we simply multiplied every star rating category with 9, 
resulting in 378 1-star ratings, nine 2-star ratings, nine 3-star 
ratings, 18 4-star ratings, and 36 5-star ratings. 

An ensemble format was used to display the statistical 
characteristics of product ratings. The colors of different star 
ratings were modeled after those displayed on Yelp.com. The 
purpose of introducing three variations at each level of 
valence and volume combination was that we could display 
star ratings in one of the following three arrangements: 
ascending (from 1-star ratings to 5-star ratings), descending 
(from 5-star ratings to 1-star ratings), and random. This 
manipulation was referred to as display order in the rest of 
the paper. On any given trial, the display was the same for 
each product pair. The overall experiment featured eight trials 
of ascending, descending, and random orders, respectively. 
Figure 1 shows a sample of each display order. 

 

Procedure. Trials were randomized and counterbalanced. 
Participants were tasked to indicate their purchase 
preferences on a 6-point Likert scale, ranging from “1 = 
definitely buy the left product” to “6 = definitely buy the right 
product.” 
 

    

Figure 1. Sample trials of three display orders. 
 

Results 
Preference in Rating Variance To examine participants’ 
preferences for rating variance when presented in an 
ensemble format, we recoded their responses as binary 
choices. Values of 1 represented responses within the range 
of 1-3 when the left product had a lower rating variance, or 
responses within the range of 4-6 when the right product had 
a lower rating. Values of 0 represented responses within the 
range of 1-3 when the left product had a higher rating 
variance, or responses within the range of 4-6 when the right 
product had a higher rating variance. As responses were 
recoded into 0 or 1, we created the probability of picking a 
less-variable product as a new dependent variable.  

A three-way within-subjects ANOVA analysis was 
conducted with display order, valence level, and volume level 
as independent variables and the probability of picking a less-
variable product as a dependent variable. While there was a 
significant three-way interaction between the three factors, 
F(12,1284) = 1.88, p = .033, post-hoc analyses showed that 
there were no differences between the effects of ascending 
and descending orders, t(107) = -1.27, p = .207. Therefore, 
we decided to combine ascending and descending orders into 
a new display order: structured. The rest of the results section 
on Task 1 would report comparisons between structured and 
unstructured display orders on participants’ probability of 
picking a less-variable product. 

We conducted a new three-way within-subjects ANOVA 
analysis to reflect the combination of ascending and 
descending orders into an overall structured order. As shown 
in Figure 2, there was a significant three-way interaction 
between display order, valence level, and volume level, 
F(6,642) = 2.811, p = .001. Simple two-way interactions at 
each level of valence level showed that there was a significant 
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interaction between volume level and display order at the 
valence level of 4.X, F(1.86,200) = 4.79, p = .011. Post-hoc 
analyses with Bonferroni adjustments showed that when the 
valence level was 4.X, the probability of picking a less-
variable product between a structured and unstructured order 
differed when the volume level was low, F(1,107) = 17.7,  p 
< .001, or medium, F(1,107) = 5.6, p = .02. The probability 
remained the same when the volume level was high, F(1,107) 
= 0.347, p = .557. There was a simple main effect at the 
valence level of 1.X, F(1,107) = 19.6, p < .001,  2.X, F(1,1.07) 
= 4.53, p = .036, and 4.X, F(1,107) = 13.5, p < .001. Post-hoc 
analyses revealed that the effect of display order was 
significant in six combinations of valence and volume level, 
reported in the valence level – volume level format: 1.X – 
low (p < .001), 1.X – medium (p = .042), 1.X – high (p = .01), 
2.X – low (p = .008), 4.X – low (p < .001), 4.X – medium (p 
= .02). Across all these cases, structured orders led to a 
significantly higher probability of picking a less-variable 
product than unstructured orders.  
 

 
  

Figure 2. The effect of display order (structured vs. 
unstructured) on preference for rating variance by valence 
level and volume level.   
 

Simple two-way interactions were observed at each volume 
level, revealing a significant simple two-way interaction 
between valence level and display order specifically at low 
volume levels, F(3,321) = 7.58, p < .001. Post-hoc analyses 
with Bonferroni adjustments revealed that at the low volume 
level, the probability of choosing a less-variable product 
varied between two display orders across three valence levels: 
1.X, 2.X, and 4.X. For all these valence levels, structured 
orders were associated with significantly higher probabilities 
of picking less-variable products compared to unstructured 
orders, ps < .001. In the three significant valence-level 
combinations, the probabilities of picking lower rating 
variance between structured and unstructured orders were as 
follows: 1.X – low – structured: M = 0.56, SD = 0.23 vs. 1.X 
– low-unstructured: M = 0.46, SD = 0.27; 2.X – low – 
structured: M = 0.48, SD = 0.26 vs. 2.Xm – low – 
unstructured: M = 0.40, SD = 0.32; 4.X – low – structured: M 
= 0.63, SD = 0.25 vs. 4.X – low – unstructured: M = 0.47, SD 
= 0.33. 

Simple two-way interactions at each type of display order 
indicated a significant two-way interaction between valence 

level and volume level with both structured, F(6,642) = 3.82, 
p < .001,  and unstructured orders, F(6,642)=  4.27, p < .001. 
Through pairwise comparisons with Bonferroni adjustments, 
we identified five significant differences (ps: < .001— .047) 
in volume levels across various combinations of valence level 
and display order. Two major findings emerged from these 
patterns. First, more differences in preference toward rating 
variance were observed across volume levels when tokens 
were presented in an unstructured fashion. Second, the 
primary disparities originated from comparisons involving 
the low or high volume level. 

We further examined probabilities of picking less-variable 
products against a threshold of 0.5, seeking to understand 
whether participants displayed a genuine preference for a 
particular type of rating variance, or if their choices were of 
a 50-50 split (i.e., no preference). To this end, multiple one-
sample t-tests against the 0.5 threshold were conducted. Five 
conditions where a significant preference emerged, presented 
in the format of display – valence level – volume level. 
Among these, three exhibited a preference for lower rating 
variance, with probabilities of picking less-variable products 
above 0.5: structured – 1.X – low (p < .001), structured – 4.X 
– low (p < .001), structured – 4.X – high (p = .018). In 
contrast, two conditions indicated a preference for higher 
rating variance, with probabilities of picking more-variable 
products below 0.5: unstructured – 1.X – high (p = .0019), 
unstructured – 2.X – low (p = .0026). Additionally, two 
conditions were marginally below 0.5, suggesting a tendency 
towards more-variable products: unstructured – 1.X – low (p 
= .097) and unstructured – 1.X – medium (p = .086).  Taken 
altogether, at the valence level of 1.X, there was a distinct 
preference for more-variable products under unstructured 
presentations, evident in the consistently lower-than-0.5 
average probabilities of choosing less-variable products: M = 
0.46, SD = 0.27 for low volume, M = 0.45, SD = 0.30 for 
medium volume, and M = 0.40, SD = 0.31 for high volume. 

 
Choice Confidence We conducted a similar three-way 
within-subjects ANOVA analysis with participants’ response 
extremity as a dependent variable, which was used as a proxy 
of choice confidence. To determine this metric, we calculated 
the absolute differences between the Likert scale responses 
and 3.5 (the midpoint of the scale).  

As illustrated in Figure 3, there was a significant three-way 
interaction between valence level, volume level, and display 
order. Given our research questions, we were particularly 
interested in terms pertinent to display order.  Simple two-
way interactions revealed that there was a significant 
interaction between volume level and display order at the 
valence level of 2.X, F(1.89,  202) = 11.3, p < .001, 3.X, F(2, 
214) = 5.34, p = .005 and 4.X, F(2,214) = 6.48, p = .002. Post-
hoc analyses with Bonferroni adjustments showed that 
structured orders consistently led to higher choice confidence 
than unstructured orders across all volume levels when 
average ratings were moderately good (3.X and 4.X), ps 
< .001. This trend extended to valence-volume combinations 
featuring a valence level of 2.X and a medium or large 
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volume size, ps < .001. However, for every volume size at the 
valence level of 1.X and a low volume size at the valence 
level of 2.X, there was no significant difference in choice 
confidence between structured and unstructured orders, 
ps > .1. Choice confidence was significantly higher at the 
valence of 4.X than the other three valence level, ps < .001. 

 

 
 

Figure 3. The effect of display order on choice confidence by 
valence and volume level.   
 

Overall, there was a main effect of display order, F(1, 107) 
= 50.91, p < .001, in which choice confidence was 
significantly higher when tokens were presented with 
structured (M = 1.14, SD = 0.32) than unstructured orders (M 
= 1.01, SD = 0.34). 

 
Discussion 

One of the most consistent findings is that at the valence level 
of 1.X, unstructured presentations resulted in a preference for 
larger rating variance. We speculate that this was due to the 
distinct star composition. At a valence level of 1.X, there 
were a lot more negative star ratings than positive star ratings, 
with a substantial presence of 1- and 2-star ratings and some 
limited presence of 4- and 5-star ratings.  

Structured presentations facilitated various visual cues, 
allowing participants to trace the number of 5-star ratings or 
1-star ratings. They could even engage in intra-product 
(calculate net star counts) or inter-product comparisons 
(determine which side had a higher count of particular star 
counts). The environmental affordance of structured orders 
might have played a role in shaping participants’ strategies.  

In contrast, unstructured orders posed challenges for direct 
comparisons at the valence level of 1.X. Side-by-side 
comparisons of poorly rated products conflicted with the 
selection goal. Individuals needed to rationalize their choices 
with positive aspects (albeit limited). As a result, counting 
seemed the most straightforward approach, especially with 
fewer positive star ratings at the valence level. In our 
experiment, a more-variable product had a higher number of 
positive star ratings (whether considering 5-star only or a 
combination of 4-star and 5-star ratings). As such, regardless 
of whether participants perceived only 5-star ratings as 
positive or lumped 4-star and 5-star ratings together as 
positive (Yu et al., 2022; Fisher et al., 2018), their desire to 

seek products with more positive signals led to a preference 
for more-variable products. While participants could use a 
similar approach with structured orders, the salient structure 
provided flexibility, possibly encouraging quick estimation 
over precise counting.  

 On the opposite side of the spectrum, where average 
ratings were above 4 stars, we observed a preference for less-
variable products with structured orders across volume 
levels.  We theorize that this was because at the valence of 
4.X, products were attractive, despite the exact composition 
of rating profiles. When choosing between two desirable 
products, negative information becomes more diagnostic, 
leading to a focus on the number of negative stars. As the 
less-variable products were those with fewer 1-star ratings or 
a fewer total of 1-star and 2-star ratings, whether participants 
considered only 1-star ratings as negative or perceived both 
1-star and 2-star ratings as negative (Yu et al., 2022; Fisher 
et al., 2018) did not make a difference. Structured 
presentations facilitated such comparisons.  

Why do individuals prioritize positive ratings at the 
valence level of 1.X with structured orders, but not negative 
ratings at the valence level of 4.X? Intuitively, one might 
expect people to focus on the diagnostic category with the 
fewest stars in both cases. We speculate that this distinction 
stems from people’s motivations. With an average rating 
above 4 stars, both products were attractive, creating a “one 
cannot go wrong with either opinion” situation. 
Consequently, there might be less motivation to pick one 
from two already desirable options. Since there are no right 
or wrong answers with preferences, this may be especially the 
case when rating information does not have a salient 
structure. This lack of effort aligns with the observation that 
choices were essentially evenly split with unstructured orders 
at the valence of 4.X. 

There is also the possibility that specific strategies and 
response patterns were influenced by perceptual capabilities. 
When the valence levels were 2.X or 3.X, the positive and 
negative star ratings were evenly distributed, making it 
challenging to discern differences when represented with 
colored tokens. This difficulty in visual discrimination could 
explain the limited observed differences at these valence 
levels. In contrast, when the valence levels were 1.X or 4.X, 
the ensembles were predominantly occupied by one or two 
rating categories, creating significant contrasts in the size of 
color patches. Given our experimental design, at the valence 
level of 1.X, the presentation mostly consisted of green and 
yellow star arrays with subtle hints of orange and red. At the 
valence level of 4.X, the presentation was mostly composed 
of orange and red stars with glimpses of green and yellow. 

Surprisingly, or not, the impact of volume level was 
limited. Upon deeper examination, the main differences in 
probabilities of picking less-variable products arose from 
comparisons that included either the low- or high-volume 
level. While one could speculate that participants acted as 
intuitive statisticians, adjusting their decisions based on 
presentation size, we attributed these observations to a shift 
in strategies stemming from the stimuli interface. 
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Specifically, when the volume level was low (< 50 tokens), 
participants could easily count stars and make decisions with 
precise numbers. However, with a large volume level (300 – 
400 tokens), participants may have been more inclined to 
resort to ensemble perception to form an overall impression 
of a rating profile. As single-item recognition is not a 
prerequisite of ensemble coding (Whitney & Leib, 2018), it 
became especially suitable at the high-volume level in our 
study. This implies that participants did not need exact counts 
or even to identify the meaning of each token to gauge the 
homogeneity or heterogeneity in previous buyers’ opinions. 
Moreover, the summary representation of rating distributions 
independently influences people’s subjective evaluations 
even when average ratings are presentations (Fisher et al., 
2018). As a result, participants could have arrived at different 
conclusions about the attractiveness of a product, even when 
average ratings were provided during our experiment.  In 
short, to obtain information on rating variance, individuals 
can either count, estimate, or employ alternative approaches. 
The appeal of various strategies changes at different stages, 
influenced by differences in volume levels. 

Examining participants’ response extremity revealed a 
consistent trend of greater confidence in decision making 
with structured presentations compared to unstructured 
presentations. This suggests that structured information 
affords greater certainty. A similar idea was expressed by 
Brannon and Carson (2003), who observed that both nurse 
experts and novices reported greater certainty in their 
diagnosis with information that is high in structure compared 
with information low in structure.  

The absence of differences in choice confidence at the 
valence level 1.X suggests an intriguing nuance. Rather than 
being influenced by icon arrangements, this phenomenon 
might be due to our experimental design. In everyday 
scenarios, individuals typically consider purchasing products 
with a minimum average rating of 3.3 stars (BrightLocal, 
2023). Thus, choosing between two equally unappealing 
options with average ratings as low as 1.X stars may have 
influenced participants’ moderately held attitudes overall.  

Another consistent finding is that individuals were more 
confident when the valence level was 4.X compared to other 
levels. Choosing between two highly rated products aligns 
with a selection mindset, in line with our task goal. Products 
rated four stars and above are perceived as more appealing, 
boosting confidence in purchasing intentions, regardless of 
the final choice. 

In summary, structured information affords greater 
certainty in answers, and this confidence increases when the 
task setup aligns with task goals. The influence of ensemble 
size becomes evident as it prompts individuals to adapt 
strategies that best suit their contextual needs.  

 
Experiment 2 

Experiment 1 asked participants to indicate their preferences, 
so there were no right or wrong answers. While we 
demonstrated that people were more confident in their 
choices with structured presentations, we did not directly 

assess the accuracy associated with different display orders. 
Hence, Experiment 2 required participants to evaluate two 
representations and determine which side had a higher 
average rating, introducing right or wrong answers.  
 

Method 
Participants. The same 108 participants from Experiment 1 
participated in Experiment 2.  
 
Materials and Design. The number of icons in Experiment 
2 was restricted to 100 to ensure the manageability of the task, 
aiming to simplify participants’ estimation of percentages. 
The experimental design manipulated two variables: valence 
level and display order. For the valence level, similar to 
Experiment 1, valence featured four levels: extremely low 
(1.X), low (2.X), medium (3.X), and high (4.X). For display 
order, three display orders were featured – ascending, 
descending, and random – each with eight trials. Within each 
display order, two comparisons were presented for each 
valence level: Same comparisons involved products with 
both higher or lower average ratings and variances. For 
instance, a comparison might feature a 4.2-star product with 
20 1-star ratings and 80 5-star ratings (SD = 1.61) against a 
4-star product with 100 4-star ratings (SD = 0). Different 
comparisons involved products with a higher average rating 
paired with a lower variance or vice versa. For instance, a 4.5-
star product with 50 4-star ratings and 50 4-star ratings (SD = 
0.50) versus a 4-star product with 25 1-star ratings and 75 5-
star ratings (SD = 1.74). This manipulation was referred to as 
trial type in the rest of the paper.  
 
Procedure. Participants faced 24 trials where they were 
required to decide which side of a product pair had a higher 
average rating through two-alternative forced-choice tasks.  
 

Results 
We conducted a three-way within-subjects ANOVA with 
valence level, display order, and trial type as independent 
variables and participants’ response accuracy as a dependent 
variable. As there were no differences in accuracy between 
an ascending and descending order, p > .1, we decided to 
combine descending and ascending orders into the category 
of structured orders. With this combination, we conducted a 
new three-way within-subjects ANOVA to reflect this 
change. The three-way interaction was not significant, 
F(3,321) = 0.044, p = .99. 

Figure 4 showcases a significant two-way interaction 
between valence level and display order, F(3,321) = 3.777, p 
= .011. Simple main effects were conducted at each level of 
the valence level to further explore the effect of display order 
on response accuracy. Results showed that the effect of 
display order was significant at the valence level of 4.X, 
F(1,107) = 7.89, p = .006. At this valence level, structured 
orders (M = 0.56, SD = 0.24) led to significantly lower 
accuracy than unstructured orders (M = 0.67, SD = 0.33). 

4935



 
 

Figure 4. Accuracy by display order, trial type, and valence 
level. Overall, estimation accuracy was higher with 
unstructured than structured presentations. 
 

A significant two-way interaction between valence level 
and trial type was observed, F(3,321) = 6.586, p < .001. 
Simple main effects were conducted at each level of the 
valence level to further explore the effect of trial type on 
response accuracy. Results showed that the effect of trial type 
was significant at the level of 1.X and 2.X (lower end of the 
valence spectrum), ps < .001. In both cases, different 
comparisons resulted in significantly higher estimation 
accuracy compared to same comparisons. Specifically, at the 
valence level of 1.X, the average accuracy was 0.61 (SD = 
0.36) for different comparisons, and 0.43 (SD = 0.34) for 
same comparisons. Similarly, at the valence level of 2.X, the 
average accuracy was 0.65 (SD = 0.34) for different 
comparisons and 0.45 (SD = 0.37) for the same comparisons. 
In summary, display order influenced accuracies 
differentially at the lower end of the valence spectrum. 

We also observed a main effect of valence level. F(3,321) 
= 7.633, p < .001. Post-hoc analyses, adjusted with 
Bonferroni corrections, revealed three significant 
comparisons.  The accuracy at the valence level of 1.X (M = 
0.52, SD = 0.17) was significantly lower than both at the 
valence level of 3.X (M = 0.63, SD = 0.20), p < .001 and 4.X 
(M = 0.59, SD = 0.20), p = .006. In addition, the accuracy at 
the valence of 2.X (M = 0.55, SD = 0.17) was significantly 
lower than at the valence level of 3.X (M = 0.62, SD = 0.20), 
p = .003. Overall, there is some suggestion that accuracy 
improves with increasing ensemble means. 

 
Discussion 

The results of Experiment 2 indicate that display orders 
directly influenced individuals’ estimation accuracy. The 
direction of the finding is especially intriguing – unstructured 
ensembles lead to higher accuracy in average rating 
judgments than structured ensembles. This contradicts the 
findings in Xiong et al.’s (2022) work, where top (bottom), 
row, and diagonal arrangements resulted in overall higher 
accuracy in people’s percentage estimates compared to 
arrangements such as edge, central, and random. Aside from 
the differences in the number of distinct token categories used 
(Xiong et al., had black and white while we used five), we 
posit that the higher accuracy associated with unstructured 

arrangements in our experiment is due to increased cognitive 
effort. Ascending or descending orders may give people the 
impression of easiness, similar to the perceptual fluency 
effect (Jacoby & Dallas, 1981). With unstructured 
presentations, the task may have seemed challenging to 
individuals, prompting them to actively engage in counting, 
calculation, or other cognitive processes to arrive at 
conclusions. Our findings indicated that creating an 
environment requiring a reasonable level of effort can foster 
engagement and result in higher performance. The advantage 
of an unstructured order was particularly pronounced when 
options were attractive, as indicated by the valence level of 
4.X. As mentioned previously, this may be attributed to the 
alignment between the experimental setup (attractive product 
pairs) and the task goal (selection). Unlike Experiment 1, 
where preferences were solicited and people could not go 
wrong with either option at the valence level of 4.X, 
Experiment 2 emphasized accuracy. The absence of structure 
could further amplify motivation to engage in deliberate 
processes to get correct answers. Future research could 
explore whether people tend to overestimate or underestimate 
average ratings across different types of display orders and 
levels of valence.  

Another interesting finding is that different comparisons 
led to significantly higher accuracy compared to same 
comparisons. In different comparisons, a higher (lower) 
average rating is paired with a lower (higher) rating variance, 
whereas in same comparisons, a higher (lower) average rating 
is paired with a higher (lower) rating variance. The challenge 
posed by high-variance color ensembles makes the extraction 
of summary statistics more difficult and less accurate (de 
Gardelle & Summerfield, 2011). This suggests that rating 
variance can distort the perception of the actual average 
rating. Our exploratory item analysis indicated a discernable 
trend: higher variance tends to make a higher average rating 
appear lower than it actually is, while making a low average 
rating seem higher than it truly is. Future research could 
explore the directions in which variance influences the 
estimation of means across varying levels of means with 
structured vs. unstructured ensemble formats. 

 
Conclusion 

The present study examined the effectiveness of icon arrays 
in conveying consumer ratings in online decision-making 
contexts. It presents two experiments investigating how three 
different color-coded icon arrays – ascending, descending, 
and random – influence users’ decision-making, confidence, 
and estimation accuracy regarding product ratings. We found 
that 1) preferences differed for rating variance, 2) information 
structure affected choice confidence, 3) the ensemble size 
played a role in strategy adaptation, and 4) unstructured 
presentations led to higher estimation accuracy (perhaps 
because they evoked more careful processing).   

We encourage future studies to further investigate whether 
these findings are specific to the consumer feedback context, 
given its relatively recent establishment. 
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