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High-resolution structure determination by continuous rotation 
data collection in MicroED
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2Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
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Abstract

MicroED uses very small three-dimensional protein crystals and electron diffraction for structure 

determination. An improved data collection protocol for MicroED called “continuous rotation” is 

presented. Here microcrystals are continuously rotated during data collection yielding improved 

data, and allowing data processing with MOSFLM resulting in improved resolution for the model 

protein lysozyme. These improvements pave the way for the implementation and application of 

MicroED with wide applicability in structural biology.

Producing large well-ordered crystals is a major bottleneck for protein structure 

determination by X-ray crystallography. Because large crystals are needed to withstand the 

negative effects of radiation damage during data collection, small micro and nanocrystals 

have generally been ignored and cast aside as unusable. Many difficult to crystallize targets 

never reach a usable size and are generally discarded; therefore methods that can facilitate 

structure determination from these small crystals would be exceedingly valuable. Advances 

with X-ray free-electron lasers (XFEL) have made it possible to use microcrystals to solve 

protein structures1-3, however its current implementations require the collection of XFEL 

diffraction patterns from thousands, or even millions, of crystals.

Recently we reported the development of MicroED (micro electron diffraction) as a 

complementary method to XFEL. In MicroED, electron diffraction data are collected from 

extremely small, three-dimensional protein microcrystals for protein structure determination. 

In our previous work4, diffraction data of lysozyme microcrystals were taken as a tilt series 
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of still exposures and these data were integrated and merged using in-house developed 

programs5. Following phasing and refinement, the final structure of lysozyme was solved to 

2.9 Å and represented an important first step in the use of electron diffraction data to solve 

structures of biological material from nano and microcrystals.

Here we report a number of significant developments in MicroED. An improved data 

collection protocol was developed called “continuous rotation method for MicroED”. Here 

the electron diffraction data is collected as a movie as the crystal is continuously rotated by 

the microscope stage (a method that is analogous to X-ray crystallography where the crystal 

is oscillated using the goniometer). The collected data were processed by MOSFLM6, 7, a 

well established data processing program for X-ray crystallography, which further improved 

the process of structure determination by MicroED. These enhanced data collection and 

processing strategies yielded more accurate diffraction data and allowed the structure of 

lysozyme to be solved at 2.5 Å resolution with significantly improved statistics relative to 

the original report.

In the original MicroED protocol4, diffraction data were collected as a series of still 

exposures, each related by the tilt of the stage (0.1 - 1°) between exposures during data 

collection (Figure 1a and b). By nature still exposures mainly produce partial intensities, and 

while we showed that a data set solely composed of still exposures is able to produce a 

structure, some inaccuracies resulting from the partiality will be carried through the 

subsequent data processing steps unless scaling is performed.

In order to overcome this problem and improve the quality of the MicroED data, we sought 

to collect diffraction data as the crystals are continuously rotated which is more similar to 

how X-ray diffraction data is collected8. Our hypothesis was that this improved data 

collection method would yield more accurately measured intensities as reciprocal space is 

more finely sampled (Figure 1c and d). Such sampling would allow the use of standard X-

ray data processing programs for integrating and scaling, further improving data quality and 

subsequent processing.

To collect diffraction data by the continuous rotation method, lysozyme microcrystals 

(Supplementary Figure 1) were grown, applied to an EM grid, and vitrified in liquid ethane 

as described previously4. The microcrystals were wedge-shaped, typically with the length 

and width of ~2 μm and the wedge thickness measured as ~0.1 μm - 0.6 μm within each 

individual crystal. The crystal thickness was measured in real space by analyzing the same 

crystal at different tilts in imaging mode. The grids were then loaded, assessed and 

diffracted at cryogenic temperatures using a 200 kV TEM equipped with an FEG. Once a 

crystal was selected, the compustage of the microscope was rotated at a constant rate of 

~0.09° s−1. As the crystal rotated, it was simultaneously exposed to the electron beam and 

the diffraction was recorded as a movie on a CMOS-based detector in rolling shutter mode 

with each frame covering a ~0.36° wedge (frame rate of 4 s per frame). Typically a total of 

~44° of data were collected per crystal before reaching the total accumulated dose limit of 

5e−/Å2 (see Supplementary Results, Supplementary Video 1, and Supplementary Figure 2 

for description of radiation damage assessment). With this procedure we were able to collect 

continuously rotating electron diffraction data sets with visible reflections beyond 2 Å 
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(Supplementary Figure 1, Supplementary Video 2) that could be merged and further 

processed.

One of the major factors for the widespread use of X-ray crystallography is the powerful and 

relatively user-friendly software that has been developed over many decades for efficient 

data processing. We sought to capitalize the work put in to such programs by processing the 

MircoED data with MOSFLM6, 7, a widely used program for X-ray data integration and 

processing. Processing the MicroED continuous rotation data with MOSFLM was possible 

without making any changes to the software (Supplementary Figure 3), but some 

modifications to the standard procedure and processing parameters were required, as 

described in the Supplementary information.

Data from two crystals were collected and processed with their overall completeness to 2.5Å 

being 80% and 45% for crystals 1 and 2, respectively. It is important to note that the total 

angular range collected for both crystals was the same (44°), and the higher completeness 

for crystal 1 is the result of crystal orientation on the grid. Ultimately, data from either one 

or two crystals were processed with MOSFLM and merged to provide a complete dataset. 

The intensity data were merged, scaled, and converted to structure factor amplitudes using 

POINTLESS9, AIMLESS10, and CTRUNCATE within the CCP4 suite11. The data sets 

were truncated at 2.5 Å based on the merging statistics presented in Supplementary Table 1.

Molecular replacement (MR) was performed using PHASER12 in order to determine phases 

with lysozyme PDB 1IEE13 as a search model. We continued with refinement in PHENIX14 

using electron scattering factors to obtain models with good statistics and geometry for both 

data sets (Supplementary Table 1). The final refined structures show excellent agreement 

with the density map (Figure 2, Supplementary Video 3), with strong clear density for the 

peptide backbone as well as the side-chains and some well-ordered water molecules.

In order to check for model bias in the final structure, residues 27-36 of the final model were 

removed and the remaining model was used for MR with the original data. After refinement 

the resulting map showed strong interpretable density in the region where the model had 

been removed (Figure 2b) and the correct residues could be readily fitted into this density 

(Figure 2c and d) indicating low levels of bias from the search model.

Overall the quality of the MicroED data obtained by continuous rotation is better than the 

original still diffraction data that we reported previously (Figure 3). When the scaled 

amplitudes from continuous rotation data are compared with those from a lysozyme data set 

obtained by X-ray crystallography, the correlation coefficient between the continuous 

rotation data and the X-ray data was 0.76 overall (0.84 to 6.0 Å). This is a substantial 

improvement over the still diffraction data collected previously4, which showed a 

correlation of 0.56 for the data overall (0.63 to 6.0 Å).

With continuous rotation data the effects of dynamic scattering should be diminished, as was 

reported for electron diffraction using precession diffraction of thicker materials15, 16. 

Dynamic scattering (multiple elastic scattering events) in electron diffraction can 

redistribute primary reflection intensities as the primary scattered electrons scatter again 

elastically within the crystal, which can lead to a reduction in the accuracy of the measured 
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intensities17. We previously noted that dynamic scattering in still diffraction data of 

lysozyme contributed on average an error of ~5%4. This observation was based on intensity 

measurements for forbidden reflections in the still data set. The lysozyme crystals have 

P43212, symmetry and systematic absences are expected along a* and b* at positions (2n

+1,0,0). However, in the still data set weak reflections were observed at the positions where 

absences were expected (Supplementary Figure 4). We argued that these reflections 

originated from dynamic scattering events. By performing the same analysis as reported 

previously4, it was clear these weak forbidden reflections along the a* and b* axis were 

reduced and contributed an average error of only 2.5% (SEM = 0.9%, n=16) in the 

continuous rotation data.

To conclude, we present here improved methods for collecting and processing MicroED 

data. By using continuous rotation, MOSFLM for data processing, and standard X-ray 

programs for merging and scaling, MicroED delivered more complete and accurate data at 

higher resolution relative to our original study4, even from a single crystal. Additionally, the 

overall process from data collection to the refinement of the final structure was greatly 

simplified, streamlined and accelerated by using established software for crystallography.

The continuous rotation method described here is similar in principle to precession electron 

diffraction18. Improvements in data accuracy with precession electron diffraction have been 

reported in materials science due to the reduction in dynamic scattering effects and better 

intensity values as the reflections are integrated through the Bragg angle15, 16. The effects of 

dynamic scattering are diminished in precession electron diffraction because at any given 

point along the beam’s precession path, the total number of allowed secondary scattering 

paths are reduced16. This decreases the intensity redistribution due to dynamic scattering as 

the reflections are integrated over the complete circular path of the precession beam. 

Because continuous rotation is a simplified version of precession diffraction, it is not 

surprising that we improved the MicroED data in comparison with data collected with 

diffractions stills4.

While the improvements to MicroED reported here are significant, there still remain other 

areas that could further improve the performance and applicability of MicroED to the 

structural study of biological materials. One possibility is the use of faster detectors with real 

movie mode capabilities. While the rolling shutter mode on the CMOS camera we use is 

performing well, the data still suffers because of the readout time of the sensor. The rotation 

of the crystal during the readout time results in an angular gradient across an image that is 

hampering data integration at the highest resolution shell. At the same time, signal to noise 

is also an issue in rolling shutter mode. Improvements in detector speed or including new 

algorithms to better handle this error in MOSFLM should help to further improve the final 

data. Also, while we have attempted to reduce the effects of multiple elastic scattering by 

continuously rotating the sample, we have not yet addressed the errors associated with 

inelastic scattering. Inelastic scattering leads to high levels of background noise in thicker 

samples, and the use of an energy filter would greatly reduce the noise in our diffraction 

patterns19. By collecting data on a microscope equipped with an energy filter, the signal to 

noise ratio of the MicroED data should be significantly improved.
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The continuous rotation method coupled with processing in standard X-ray crystallographic 

software makes MicroED a much more accessible method to all structural biologists already 

familiar with the suite of programs available for X-ray diffraction data. The only difference 

is the way in which the diffraction data is obtained – electrons versus X-rays. With such 

improvements and streamlining we believe that MicroED is quickly becoming a feasible 

method with wide applicability for solving structures of biological materials from extremely 

small crystals using an electron microscope.

METHODS

Collection of rotation electron diffraction data

Lysozyme microcrystals and EM samples for diffraction were prepared as described 

previously4. All electron diffraction was performed with intensity less than 0.01 e−/Å2 on a 

TEM operated at 200 kV, equipped with an FEG, and data were collected with 4k × 4k 

TVIPS TemCam-F416 CMOS camera in rolling shutter mode (15.6 μm pixel size). For 

continuously rotating diffraction data the stage of the microscope was set to rotate at 0.09° 

s−1 using the microscope’s standard hardware and software. Crystals were located on the 

grid by searching in over-focused diffraction mode. When a crystal was found, an initial 

diffraction pattern was recorded to judge the quality of that particular crystal. If the crystal 

showed strong and sharp diffraction20, the beam was blanked and the rotation of the stage 

was started. Once the stage began its rotation and had achieved a constant rate, the beam 

was unblanked and diffraction data were recorded at a constant frame rate of 1 frame per 4 s 

(0.36°/frame) using the camera’s rolling shutter mode. Data sets of approximately 44° were 

collected for each crystal (total dose <5e−/Å2, see supplementary results for dose rate). For 

the radiation damage assessment, the stage was set at 0° and oscillated back and forth 

between −1° and 1° during the course of the continuous dosage experiment.

Data processing and structure refinement

Raw MicroED data was converted into an SMV file format, which could be read by 

MOSFLM. Diffraction data were indexed, integrated, merged, scaled and prepared for 

refinement using MOSFLM v7.1.06 and the graphical interface iMOSFLM v1.0.77, 

POINTLESS9, and AIMLESS10. In the scaling and merging step, the refinement of the 

standard deviation correction factors in AIMLESS was unstable and these were set to 

SDFAC=1.5, SDB=0.0, SDADD=0.03. Phases were obtained by molecular replacement 

using PHASER12 with lysozyme PDB ID: 1IEE13 as a search model (LLG = 673 and TFZ = 

24.3 for multiple crystal data set; LLG = 821 and TFZ = 8.5 for single crystal data set), and 

the molecular replacement solutions were refined using electron scattering factors in 

PHENIX14 using a 5% free data set.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Nannenga et al. Page 5

Nat Methods. Author manuscript; available in PMC 2015 March 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



ACKNOWLEDGMENTS

The authors wish to thank J. Hattne, F.E. Reyes, D. Olbris, H. Tietz, and M. Stumpf for helpful discussions. Work 
in the Gonen lab is supported by the Howard Hughes Medical Institute. A.G.W. Leslie is supported by the Medical 
Research Council (U105184325) and BBSRC (BB/F020384/1) and CCP4.

REFERENCES

1. Barends TR, et al. Nature. 2014; 505:244–247. [PubMed: 24270807] 

2. Chapman HN, et al. Nature. 2011; 470:73–77. [PubMed: 21293373] 

3. Boutet S, et al. Science. 2012; 337:362–364. [PubMed: 22653729] 

4. Shi D, Nannenga BL, Iadanza MG, Gonen T. eLife. 2013; 2:e01345. [PubMed: 24252878] 

5. Iadanza MG, Gonen T. J Appl Crystallogr. 2014; 47

6. Leslie AGW, Powell HR. Nato Sci Ser Ii Math. 2007; 245:41–51.

7. Battye TG, Kontogiannis L, Johnson O, Powell HR, Leslie AG. Acta Crystallogr D. 2011; 67:271–
281. [PubMed: 21460445] 

8. Dauter Z. Data-collection strategies. Acta Crystallogr D. 1999; 55:1703–1717. [PubMed: 10531520] 

9. Evans PR. Acta Crystallogr D. 2011; 67:282–292. [PubMed: 21460446] 

10. Evans PR, Murshudov GN. Acta Crystallogr D. 2013; 69:1204–1214. [PubMed: 23793146] 

11. Winn MD, et al. Acta Crystallogr D. 2011; 67:235–242. [PubMed: 21460441] 

12. Mccoy AJ, et al. J Appl Crystallogr. 2007; 40:658–674. [PubMed: 19461840] 

13. Sauter C, et al. Acta Crystallogr D. 2001; 57:1119–1126. [PubMed: 11468395] 

14. Adams PD, et al. Acta Crystallogr D. 2010; 66:213–221. [PubMed: 20124702] 

15. Gjonnes J, et al. Acta Crystallogr A. 1998; 54:306–319.

16. Oleynikov P, Hovmoller S, Zou XD. Ultramicroscopy. 2007; 107:523–533. [PubMed: 17291687] 

17. Grigorieff N, Ceska TA, Downing KH, Baldwin JM, Henderson R. J Mol Bio. 1996; 259:393–421. 
[PubMed: 8676377] 

18. Vincent R, Midgley PA. Ultramicroscopy. 1994; 53:271–282.

19. Yonekura K, Maki-Yonekura S, Namba K. Biophys J. 2002; 82:2784–2797. [PubMed: 11964264] 

20. Gonen T. Method Mol Biol. 2013; 955:153–169.

Nannenga et al. Page 6

Nat Methods. Author manuscript; available in PMC 2015 March 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1. Data collection strategies in MicroED
(a-b) The initial data collection strategy termed “Still Diffraction” consists of rotating the 

stage in discrete steps between exposures. This provides data in the form of 2D slices 

through the 3D reciprocal space (a), and while this is sufficient for structure determination, 

the data are inherently incomplete because most reflections are only partially recorded (b). 

(c-d) The improved “Continuous Rotation” method for MicroED samples the reciprocal 

space continuously as the crystal is rotated (c), which yields much more complete and 

accurate measurements of reflection intensities (d). In the examples shown here originating 

from two different crystals, the reflections on the left side of the still diffraction are missing 

due to crystal orientation while they are present in the continuous rotation data because 

reciprocal space is being more completely sampled (c versus d, respectively).
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Figure 2. Final refined structure of lysozyme at 2.5 Å from Continuous Rotation MicroED data
(a-d) A representative region of the final refined structure of lysozyme originating from the 

2-crystal data set is shown, with the 2Fobs-Fcalc density map (a; contoured at 1.0σ) showing 

well defined density around the backbone and sidechains. The final 3D structure is also 

shown in Supplementary Video 3. To test any potential model bias, residues 27 through 36 

were removed from the final refined model and the incomplete model was used to phase and 

refine the original data. The 2Fobs-Fcalc map (contoured at 1.0σ) without the deleted residues 

(b) shows clearly defined density for both backbone and sidechains where the missing 
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residues (shown in yellow) could easily be placed (c). The Fobs-Fcalc map (contoured at 3σ) 

also shows very strong density for the deleted residues (d). The strong density for the 

missing residues in the 2Fobs-Fcalc and Fobs-Fcalc maps indicate the final map does not suffer 

from model bias. (e-f) Final refined structure of lysozyme at 2.5 Å resolution using data 

originating from a single crystal. The 2Fobs-Fcalc density map (e; contoured at 1.0σ) shown 

around residues 20-35 shows well-defined density around both backbone and sidechains. 

The Fobs-Fcalc (f; contoured at ±3σ) shows no clear differences between the observed data 

and the model.
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Figure 3. Continuous Rotation improves MicroED data quality
(a-c) Views of the (001) plane show that the intensities from still diffraction data (a) exhibit 

less variation between high and low intensity reflections when compared to X-ray data (b) 

and the data collected from continuous rotation (c). Data is displayed using VIEWHKL 

within the CCP4 suite11. (d) The lysozyme MicroED data collected as diffraction stills 

previously4 was compared with a data set collected by X-ray crystallography (top). While 

the data is moderately correlated (Pearson correlation coefficient of 0.56 for all data to 2.9 

Å, n = 2,466), there is some spreading of the data. When continuous rotation MicroED data 

is compared with X-ray data (bottom) it is clear that the two are much more correlated 
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(Pearson correlation coefficient of 0.76 for all data to 2.5 Å, n = 3,950) and the spread of the 

data is narrower relative to the analysis done with diffraction stills. Overall, this analysis 

shows that the continuous rotation method in MicroED yields data with high quality 

compared with X-ray data.
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