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Abstract

Purpose: Urinary albumin-to-creatinine ratio (UACR) is one of the important diagnostic markers 

of chronic kidney disease. We aimed to investigate the association between UACR within normal 

range and cardiovascular or all-cause mortality.

Methods: This study included a nationally representative sample of 31,413 U.S. adults aged 

greater than or equal to 20 years enrolled in the National Health and Nutrition Examination Survey 

1999–2014. Mortality was ascertained through 2015. We used multivariable Cox proportional 

models to investigate the association of UACR with all-cause and cardiovascular mortality. 

Stratum-specific analyses were conducted by age, sex, race, education status, and comorbidities 

(e.g., hypertension, diabetes, cardiovascular disease, and chronic kidney disease).

Results: Over a median follow-up of 7.6 years, 2854 all-cause deaths and 454 cardiovascular 

deaths were identified. Higher UACR (per 10 mg/g) was associated with increased risk of all-

cause mortality (adjusted hazard ratio = 1.29, 95% confidence interval = 1.22–1.37) and 

cardiovascular mortality (adjusted hazard ratio = 1.34, 95% confidence interval = 1.17–1.55). The 
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association was larger among women for both all-cause and cardiovascular mortality, and among 

younger and highly educated participants only for all-cause mortality. The association did not 

differ by the presence of comorbidities.

Conclusions: Elevated UACR within normal range was associated with higher all-cause and 

cardiovascular mortality risk across almost all subgroups including participants without 

comorbidities. Our findings suggest the importance of the early detection of albuminuria and 

careful evaluation of UACR even within normal range to reduce mortality risk.
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Introduction

Chronic kidney disease (CKD) affects approximately 37 million people (15%) of the U.S. 

adults (aged ≥18 years), resulting in an increased risk of hospitalization, mortality, and 

health care spending [1,2]. CKD is referred to as a “disease multiplier” by increasing the 

risks of cardiovascular disease (CVD) and death because it often occurs along with multiple 

comorbidities (e.g., hypertension, diabetes, obesity, etc) [1]. Although mortality rates have 

decreased for dialysis and transplant patients since 1996, there is still a substantial number 

of patients suffering from long-term adverse health outcomes of CKD [1,2]. A urinary 

albumin-to-creatinine ratio (UACR) is a well-known marker of glomerular damage and 

therefore, one of the important diagnostic markers of CKD [1]. Ample evidence has shown 

that microalbuminuria (UACR, 30–300 mg per g), as well as macroalbuminuria (UACR, 

>300 mg per g), is associated with the progression to end-stage renal disease [3,4]. 

Furthermore, previous studies have shown the association of microalbuminuria with CVD 

and all-cause mortality in the general populations [5–7], underscoring the importance of 

screening and early intervention of albuminuria.

Although a linear relationship between UACR levels within normal range and all-cause 

mortality has also been indicated [8–10], it is still unclear whether and in which 

subpopulations we need to consider clinical interventions when individuals show mildly 

elevated UACR levels within the normal range (i.e., <30 mg per g). Identifying the high-risk 

population susceptible to even mildly elevated UACR could help clinicians effectively 

measure UACR focusing on these populations to prevent long-term adverse health outcomes. 

As the distribution of UACR levels and mortality risks due to elevated UACR might vary by 

individuals’ socioeconomic status [11–13] as well as comorbidities [9,10], it is important to 

investigate the association between UACR within normal range and long-term adverse health 

outcomes in accordance with each status. In addition, given the recent advancement of 

treatment and change in CKD epidemiology, new evidence using the updated data would 

help us to understand the current situation and provide additional insight for future clinical 

management of albuminuria.

Therefore, using the most recent national survey of the U.S. general population linked to the 

mortality data, we examined the association between UACR and cardiovascular or all-cause 

mortality among the U.S. general population. We also examined whether the association 
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differs by participants’ characteristics including age, sex, race, education status, and 

comorbidities.

Methods

Data sources and study population

We used a total of eight cycles of the continuous U.S. National Health and Nutrition 

Examination Survey (NHANES) 1999–2014, which has been conducted every two years. 

The NHANES is a multistage, stratified probability sample of noninstitutionalized U.S. 

adults conducted by the National Center for Health Statistics (NCHS). In the NHANES, 

individual data were corrected from interviews, physical examinations, and laboratory assays 

on collected blood and urine samples. Among adults enrolled in the NHANES during 1999–

2014, the unweighted response rates for the household interview and physical examinations 

were 71%–84% and 70%–80%, respectively [14]. We included 35,891 participants aged 

greater than or equal to 20 years who had the information on urine albumin and creatine 

concentrations, below-mentioned covariates, and mortality. As our study focused on the 

mortality risks of UACR within the normal range, participants with UACR greater than or 

equal to 30 mg per g were also excluded (n = 4,478), resulting in the final analytical cohort 

of 31,413 participants. All NHANES protocols were approved by the NCHS Research 

Ethics Review, and all participants signed written informed consent forms [15].

Urinary albumin-to-creatinine ratio

In NHANES, spot urine specimens were collected from participants, and frozen urine 

samples (≤−20° C) were sent to the laboratory. Specimen stability was demonstrated at 5°C 

and less than or equal to −20°C [16]. Urine albumin was measured using a solid-phase 

fluorescent immunoassay, and urine creatinine was measured using the kinetic Jaffe rate 

reaction before 2007 and the enzymatic method from the 2007–2008 cycle [17–19]. 

Therefore, we used the following equations to adjust urine creatinine before 2007 to 

compare with urine creatinine from 2007 forward based on the NHANES recommendation 

[17]: i) urine creatinine less than 75 mg per dL, 

Y (adjustment creatinine) = [1.02 × unadjusted creatinine − 0.36]2; ii) urine creatinine 75 to less 

than 250 mg per dL, Y (adjustment creatinine) = [1.05 × unadjusted creatinine − 0.74]2; iii) 

urine creatinine greater than or equal to 250 mg per dL, 

Y (adjustment creatinine) = [1.01 ×  unadjusted creatinine − 0.10]2. Among participants with 

UACR, participants were substratified into three categories by UACR as follows: very low, 

less than 5 mg per g; low, 5–9 mg per g; medium to high, 10–29 mg per g.

Outcome ascertainment

Our primary outcome was all-cause mortality, and the secondary outcome was 

cardiovascular mortality. Using respondent sequence number assigned for each participant, 

we linked the NHANES database from 1999 to 2014 with the mortality data which contain 

the National Death Index ascertained from the NCHS using probabilistic matching based on 

social security number, name, date of birth, race, sex, state of birth, and state of residence 

[20]. Mortality follow-up was available through December 31, 2015. The cardiovascular 
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mortality was determined based on the International Classification of Diseases, 10th version: 

I00–09,111, 113, and I20–51. We used the time-to-event information (month) from the 

examination date (i.e., measurement of UACR) to the death record as the previous study did 

[21,22]. We excluded 34 participants who were missing for mortality data due to insufficient 

identifying information.

Other covariates

We included the following demographic characteristics of the study participants: age, sex 

(male, female), race (non-Hispanic white, non-Hispanic black, Mexican-American, or 

others), education status (less than ninth grade, 9–11th grade, high school or General 

Education Degree, or more than high school), marital status, and income (poverty income 

ratio). Participants reported their smoking status (never, current, or former) and the history 

of comorbidities including cancer, diabetes, hypertension, dyslipidemia, CVD, and stroke at 

baseline. Statin, angiotensin-converting enzyme (ACE) inhibitors, and angiotensin II 

receptor blockers (ARBs) were ascertained from the examination of the containers provided 

by the participants. Body mass index was calculated using measured weight and height. 

Blood pressure measurements were obtained in the mobile examination center by trained 

physicians following a standard protocol. Serum creatinine (Scr), fasting glucose, and 

HbA1c measurements were performed in accordance with the laboratory procedure manual 

for the continuous NHANES. An estimated glomerular filtration rate (eGFR) was calculated 

from serum creatinine measurements using the Chronic Kidney Disease Epidemiology 

Collaboration equation: eGFR = 141 × min[Scr/k, 1]a × max[Scr/k, 1]−1.209 × 0.993age × 

1.018 [if female] × 1.159 [if black]; k = 0.9 for male and 0.7 for female, a = −0.411 for male 

and −0.329 for female, min[Scr/k, 1] = the minimum of Scr/k or 1, and max[Scr/k, 1] = the 

maximum of Scr/k or 1 [21].

Statistical analyses

Descriptive statistics for patient characteristics across each UACR group were compared 

using X2 tests for categorical variables and analysis of variance for continuous variables. We 

calculated the distribution of baseline characteristics in accordance with UACR substratified 

groups. Then, we used multivariable Cox proportional hazards regression models adjusting 

for potential confounders to estimate hazard ratios (HRs) of all-cause and cardiovascular 

mortality in accordance with low or medium to high UACR compared with very low UACR. 

The proportional hazard assumption was tested using Schoenfeld residuals (estat phtest in 

Stata). We first adjusted for age and sex, and then, additionally adjusted for race, education 

status, income, marital status, and smoking (model 1). In our final model, we further 

adjusted for body mass index, eGFR, previous history of cancer, hypertension, diabetes, 

CVD, stroke, statin prescriptions, and ACE inhibitors or ARB prescriptions in addition to 

covariates in model 1 (model 2). We also investigated the continuous associations between 

UACR (per 10 mg per g increase) and all-cause mortality by using restricted cubic spline 

models fitted for Cox proportional hazard models with three knots at 10th, 50th, and 90th 

percentile of UACR [23].

We conducted the stratum-specific analyses to estimate the effects of UACR on all-cause or 

cardiovascular mortality in accordance with age (<65, ≥65 years), sex (male, female), race 
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(non-Hispanic white, non-Hispanic black, Hispanic, and others), education status (<12 

grade, ≥12 grade), previous history of comorbidities such as hypertension, diabetes, and 

CVD, and eGFR categories (<60, 60 to <90, and ≥90 mL per min/1.73 m2). We formally 

tested whether the interaction was statistically significant by the insertion of a multiplicative 

term into each model. In additional analyses, we investigated the association of UACR with 

all-cause or cardiovascular mortality additionally adjusting for blood pressure (systolic and 

diastolic), fasting glucose levels, and HbA1c (n = 27,204). Finally, to assess the sensitivity 

of our findings to cutoff points, we reanalyzed the data using tertiles of UACR (low-normal, 

0.01–4.76 mg per g; medium-normal, 4.77–8.30 mg per g; and high-normal, 8.31–29.99 mg 

per g).

Statistical analyses were conducted using Stata, version 15. We applied the NHANES 

sampling weights which were provided by the NCHS to account for the complex survey 

design (including oversampling), survey nonresponse, and poststratification so that we can 

calculate estimates among the civilian, noninstitutionalized U.S. population [24].

Results

The mean age ± standard deviation of participants was 47.5 ± 17.7 years, and 48.1% were 

men. Participants with medium to high UACR were generally older, women, less educated, 

and had lower poverty income ratio compared with those with very low UACR (Table 1). 

The mean of eGFR was slightly lower among participants with medium to high UACR. 

Patients in the higher UACR group also tended to have a higher prevalence of comorbidities 

including cancer, hypertension, diabetes, CVD, and stroke as well as statin and ACEI/ARB 

prescriptions than those in the lower UACR group.

Urinary albumin-to-creatinine ratio and mortality

The median duration of follow-up was 7.6 years (interquartile range, 4.3–11.6) years, and 

2854 all-cause deaths and 454 cardiovascular deaths were identified. We found no evidence 

for violation of the proportional hazard assumption for UACR. After adjusting for all 

potential confounders, the estimated HRs per 10 mg per g increase in UACRwas 1.29(1.22–

1.37) for all-cause mortality and 1.34(1.17–1.55) for cardiovascular mortality, respectively 

(Table 2, Supplementary Table 1). The restricted cubic spline curve showed a curvilinear 

association of UACR with all-cause mortality (Fig. 1) and cardiovascular mortality 

(Supplementary Fig. 1). We also found higher HRs (95% confidence interval [95% CI]) of 

all-cause mortality and cardiovascular mortality among participants with medium to high 

UACR (all-cause, 1.48 [1.31–1.67]; cardiovascular, 1.71 [1.17–2.50]) compared with 

participants with very low UACR (Table 2). The results did not substantially change when 

we additionally adjusted for blood pressure, glucose levels, and HbA1c (Supplementary 

Table 2) and when we used different cutoff points based on UACR tertiles for exposure 

categories instead (Supplementary Table 3).

Subgroup analyses

In stratified analyses, we found higher HRs of all-cause mortality per 10 mg/g increase in 

UACR among younger participants than older participants (P for interaction = .01), women 
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than men (P for interaction = .06), and participants with greater than or equal to 12 grades 

than those with less than 12 grades (P for interaction = .01) (Fig. 2). The association was 

found among non-Hispanic whites and blacks, but not among Hispanics and other races with 

wide 95% CIs because of a small number of outcome events. We also found higher HRs of 

cardiovascular mortality per 10 mg/g increase in UACR in women than in men (P for 

interaction = .02) (Fig. 3). Other races showed high HR of cardiovascular mortality, but the 

95% CI was wide. The magnitude of the association between UACR and all-cause or 

cardiovascular mortality did not differ by the presence of comorbidities.

Discussion

Using the national survey of the U.S. general population, we found that within normal range 

UACR (<30 mg per g), there was a linear relationship between higher UACR levels and risk 

of all-cause and cardiovascular mortality. We found the increased risk of all-cause mortality 

even among participants with mildly elevated UACR (i.e., 5 to <10 mg per g). The 

association between UACR and all-cause or cardiovascular mortality tended to be larger 

among women than that among men, and the association was even found among the low-risk 

population (i.e., individuals without hypertension, diabetes, CVD, and CKD).

Urinary albumin excretion is a robust predictor of long-term adverse health outcomes 

including cardiovascular and all-cause mortality in general population [5–7]. Although it is 

unclear whether slightly elevated UACR is associated with such long-term outcomes, 

albuminuria has been reported to have an association with several risk factors of mortality 

including hyperglycemia, hypertension, dyslipidemia, and smoking [25–27]. Moreover, 

albuminuria reflects the increased renal endothelial permeability that may represent diffuse 

endothelial dysfunction [28,29], leading to the occurrence of CVD [30]. A recent cross-

sectional study showed the association between elevated UACR and subclinical 

atherosclerosis (carotid intima-media thickness and plaque) among Japanese men without 

diabetes [31]. As such, UACR is a potentially useful tool to improve risk stratification for 

all-cause and cardiovascular mortality, and early detection of pathologic urinary albuminuria 

would be critical to identify the high-risk population of CVD and all-cause mortality. Our 

findings of the association between UACR and all-cause or cardiovascular mortality even 

among participants without comorbidities corroborate the idea.

The present study advances our current state of knowledge about the association between 

UACR within normal range and mortality [5–7], by using the recent data through 2015, 

adjusting for many important potential confounders including socioeconomic status (which 

was not often included in the previous studies), and conducting a variety of stratified 

analyses. It has been a challenging and important topic to define what the “normal” UACR is 

because such definition directly affects clinical decision-making (i.e., eligibility of treatment 

and therapeutic targets). Consistent with prior literature including the large collaborative 

meta-analysis [8] and more recent single-center study from Korea [32], we found that the 

lower UACR the better long-term adverse health outcomes among individuals with UACR 

less than 30 mg per g, a well-established cutoff value in clinical practice [8]. Of note, we 

found that even UACR levels of 5 to less than 10 mg per g were associated with the 

increased risk of all-cause mortality compared with very low UACR levels (i.e., < 5 mg per 
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g). Given that more than half of individuals with UACR less than 10 mg per g had UACR 

levels of 5 to less than 10 mg per g, we may need careful monitoring for those with mildly 

elevated UACR to reduce long-term adverse health outcomes that requires further 

investigation.

We found the larger association between UACR and all-cause or cardiovascular mortality 

among women than men. Our findings are consistent with previous literature including 

meta-analysis showing a higher risk of all-cause mortality and CVD in accordance with 

UACR among women than men [33–35] and demonstrate that this is also the case for the 

general population with the normal range of UACR (i.e., <30 mg per g). Although the 

underlying mechanisms are unclear about the sex-specific association between UACR and 

long-term adverse health outcomes, microvascular dysfunction related to albuminuria might 

be more involved in the occurrence of CVD or death among women than men [36,37]. We 

found the larger HR for all-cause mortality among the younger population than the older 

population as shown in some [38] but not all [39] previous studies. The younger population 

is generally healthier and therefore might have fewer opportunities to examine and control 

UACR than the older population. The association was also larger among highly educated 

participants than that among those with education less than 12 grades. Given that we focus 

on UACR within the normal range, the observed association might be attenuated (or 

competed) by other comorbidities causing death in such high-risk populations (i.e., older and 

less-educated participants). More evidence about pathophysiological interaction by sex, age, 

and education status would be warranted. Despite the wide CI due to insufficient statistical 

power, our null findings for both all-cause and cardiovascular mortality among Hispanic 

might reflect the “Hispanic paradox” (i.e., lower mortality despite a higher incidence of 

traditional cardiovascular risk factors [40,41]) that also requires future research focusing on 

this largest minority group in the United States. We found the association between UACR 

and all-cause or cardiovascular mortality regardless of the previous history of hypertension, 

diabetes, CVD, or low eGFR. These findings corroborate the previous research among 

nonhypertensive and nondiabetic individuals [42], indicating the potential clinical 

effectiveness of active screening for albuminuria to prevent long-term adverse health 

outcomes even among people without risk factors of CVD or death.

A major strength of our study is that we used the most recent well-established national 

survey of the noninstitutionalized U.S. population. Leveraging the extensive set of covariates 

and large sample size in the NHANES, we could have performed multiple subgroup 

analyses in accordance with participants’ characteristics. Another strength is that our data 

had long follow-up periods of hard endpoints by linking mortality data based on the National 

Death Index. However, our study also has several limitations. First, although we included 

many potential confounders between UACR and mortality, we cannot rule out the 

unmeasured or residual confounding because of the nature of the observational study. 

Second, urinary albumin excretion was evaluated only from a single spot urine measurement 

in NHANES. Although repeat sampling or 24-hour urinary albumin excretion is 

recommended in clinical practice, a recent study showed the high agreement between early 

morning UACR and 24-hour UAE categories, and reclassification for the outcome 

assessment is limited [43]. Given the clinical usefulness and cost saving of UACR in a spot 

urine sample to assess the prognosis of CKD, our findings could be informative in clinical 
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practice. Third, as the comorbidities (i.e., history of cancer, hypertension, diabetes, CVD, 

and stroke) were self-reported in NHANES, we might have a risk of mismeasurement of 

such confounders. Fourth, as the baseline characteristics were obtained simultaneously, we 

could not clarify the temporality between UACR and other covariates at baseline. To 

overcome these limitations and understand the causal relationship between UACR within 

normal range and mortality in the general population, further investigations with larger 

sample size of medical records and longitudinal follow-up would be needed. Finally, given 

that NHANES participants are the U.S. noninstitutionalized citizens, our findings may not 

be generalizable to the non-U.S. or institutionalized population.

Conclusions

Using the recent large survey data on noninstitutionalized U.S. citizens, we found the 

association between UACR within normal range and all-cause and cardiovascular mortality. 

The association was found even among participants without risk factors of CVD. These 

findings indicate that early detection of pathologic urinary albuminuria and careful 

evaluation of UACR even within normal range might be important to effectively reduce the 

risk of long-term adverse health outcomes. Future studies with longer follow-up period 

would be needed to examine whether active screening of albuminuria is recommended even 

for previously unidentified subpopulations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Associations between UACR and all-cause mortality using a restricted cubic spline 

regression model in NHANES 1999–2014 followed through 2015. The Y-axis (left) shows 

HRs (log scale) adjusted for age, sex, race, education status, income, marital status, 

smoking, previous history of cancer, hypertension, diabetes, cardiovascular disease, and 

stroke, statin prescription, ACE-I/ARB prescription, BMI, and eGFR. The Y-axis (right) 

shows prevalence of each ACR level among study population. The dashed lines represent the 

confidence intervals for the restricted cubic spline model (reference is 5 mg per g). BMI = 

body mass index.
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Fig. 2. 
Associations between UACR and all-cause mortality stratified by NHANES 1999–2014 

followed through 2015. HR per 10 mg per g increase in UACR adjusted for age, sex, race, 

education status, income, marital status, smoking, previous history of cancer, hypertension, 

diabetes, cardiovascular disease, and stroke, statin prescription, ACE-I/ARB prescription, 

BMI, and eGFR. BMI = body mass index.
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Fig. 3. 
Associations between UACR and cardiovascular mortality stratified by NHANES 1999–

2014 followed through 2015. HR per 10 mg per g increase in UACR adjusted for age, sex, 

race, education status, income, marital status, smoking, previous history of cancer, 

hypertension, diabetes, cardiovascular disease, and stroke, statin prescription, ACE-I/ARB 

prescription, BMI, and eGFR. BMI = body mass index.
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